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ABSTRACT 

 

 The value of structural health monitoring (SHM) can be quantified as the difference 

in expected total life-cycle costs between two different maintenance planning strategies, 

one representing the standard means to assessment, namely intermittent visual 

inspections, and the other based on availability of continuous SHM data. We show how 

to quantify the value of vibration-based SHM conditional on a damage history over the 

structural lifetime. We showcase the analysis through application on a numerical 

benchmark model of a two-span bridge system subjected to gradual deterioration and 

sudden damages in the middle elastic support over its life-cycle, simulating the case of 

scour. The effect of environmental variability is included in the analysis by means of a 

stochastic model for the dependence of the Young’s modulus on temperature (E-T). The 

numerical investigations provide insights related to the effect of the temperature 

variability, as well as the visual inspections’ quality, on the value of SHM. 
 

 

INTRODUCTION 

 

Deployment of continuous vibration-based structural health monitoring (SHM) 

systems on structures and infrastructures can support and facilitate infrastructure 

operation and maintenance (O&M). However, to date, such systems are not used 

extensively on real-world structures due to reasons relating mostly to acceptance and 

familiarization of infrastructure owners and operators with this technology. One of the 

biggest challenges lies in accounting for the fact that the damage sensitive features 

(typically the identified system’s modal characteristics in the case of vibration-based 

SHM) are also sensitive to variations in environmental and operational conditions (e.g., 

ambient air temperature) [1, 2]. Neglecting to explicitly account for this dependence can 

result in false indications of damage in the structure, or in failure to identify damage that 

is present [3]. Another significant challenge relates to the fact that it is often difficult for 

owners and operators to grasp the potential benefits of installing SHM systems [4, 5].  
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The authors are currently developing a framework for the quantification of the 

Value of SHM (VoSHM) for demonstrating the benefit of continuous vibration-based 

SHM-aided maintenance planning [6]. The current contribution briefly summarizes this 

framework, and applies it on a numerical benchmark model of a two-span bridge system 

subjected to combined gradual and shock deterioration, as well as to environmental 

variability, over its life-cycle. In the presented numerical investigations, emphasis is 

placed on the capability of the Bayesian framework to account for the stochastic 

dependence of the Young’s modulus on temperature (E-T). It is shown that neglecting 

to account for this dependence can affect the damage identification results, and 

consequently the maintenance decisions triggered from the SHM system. Furthermore, 

the effect of the quality of the visual inspection measurements on the VoSHM is 

investigated. 

 

 

VALUE OF STRUCTURAL HEALTH MONITORING 

 

      Preposterior Bayesian decision analysis [7] offers an appropriate formal 

mathematical framework to investigate the potential economic benefit of installing a 

specific SHM system for damage detection tasks prior to actual deployment.  

      The analysis starts from prior probabilistic information on the uncertain structural 

system state and on the parameters of deterioration models describing the system state 

evolution over time, summarized in a random vector 𝑿. Additionally, a model of the 

investigated SHM system is required, which allows simulating extraction of noisy SHM 

data 𝒁𝑆𝐻𝑀, for given sampled realizations of the random vector 𝑿. The SHM modal 

data sampling process is presented in the next section. Finally, a probabilistic inspection 

model is employed, which allows probabilistic predictions of visual inspection 

measurements 𝒁𝑖𝑛𝑠𝑝 for a given 𝑿; here 𝒁𝑖𝑛𝑠𝑝 is assumed to follow the Gaussian 

distribution conditional on 𝑿, with mean 𝑿 and an assigned coefficient of variation 

cv𝑖𝑛𝑠𝑝, whose chosen value reflects the quality of a visual inspection measurement. 

      The VoSHM can be quantified via Equation (1), and emerges from the solution of 

two different preposterior analyses, one for the case without SHM (only with visual 

inspections), and one for the case with continuous SHM (complemented by additional 

visual inspections). Equation (1) quantifies the difference in expected total life-cycle 

costs between the two different cases. 

 

𝑉𝑜𝑆𝐻𝑀 = E𝑿,𝒁𝑖𝑛𝑠𝑝
[𝐶𝑡𝑜𝑡(𝑿, 𝒁𝑖𝑛𝑠𝑝)] − E𝑿,𝒁𝑖𝑛𝑠𝑝,𝒁𝑆𝐻𝑀

[𝐶𝑡𝑜𝑡(𝑿, 𝒁𝑖𝑛𝑠𝑝, 𝒁𝑆𝐻𝑀)] (1) 

 

      The total life-cycle cost 𝐶𝑡𝑜𝑡 comprises the cost of the different inspections 𝐶𝑖𝑛𝑠𝑝, 

repairs 𝐶𝑟𝑒𝑝, and the risk (expected cost of failures) 𝑅𝐹. 𝐶𝑡𝑜𝑡 is a function of the different 

actions taken over the life-cycle. These actions are implemented following heuristic 

decision rules, which are prescribed for the solution of the sequential decision problem 

and the computation of the expected total life-cycle cost. It is assumed that at discrete 

time instances 𝑡, structural performance can be assessed via the updated estimate of the 

structural reliability [8]. The following two heuristic rules are employed. 

1. 𝑝𝑡ℎ
𝑖𝑛𝑠𝑝: Perform an inspection at any time step before the updated structural 

reliability estimate exceeds 𝑝𝑡ℎ
𝑖𝑛𝑠𝑝

. 



2. 𝑝𝑡ℎ
𝑟𝑒𝑝: Perform a repair at any time step before the updated structural reliability 

estimate exceeds 𝑝𝑡ℎ
𝑟𝑒𝑝

. 

      In the case without SHM, periodic inspections must additionally be performed every 

𝛥𝑡𝐼
 years. It is considered that with SHM, one will put enough trust on the SHM system, 

and will not perform periodic inspections every 𝛥𝑡𝐼
 years. 

 

 

NUMERICAL BENCHMARK CASE STUDY 
 

 

Figure 1: Bridge system subject to environmental variability and to damage due to deterioration 

(reduction of stiffness 𝐾𝑦
(2)

) at the middle elastic support (pier). 

 

      Figure 1 shows the numerical benchmark model of a two-span bridge system, which 

is assumed to be subjected to environmental variability, and to damage (stiffness 

reduction) due to gradual and shock deterioration at the middle elastic support. This type 

of damage is typical in cases of scour in bridge structures [9]. 

  

Environmental Variability Model  

 

      A linear elastic material is assigned. The Young’s modulus of the structure (i.e., the 

stiffness) is modeled to vary for changing temperatures according to equation (2). 

Parameter 𝜃 in equation (3) is a stochastic function of temperature, which contains five 

hyper-parameters. The prior probability distributions of these hyper-parameters are 

shown in Table I. 𝐸0=29.11GPa for a reference temperature of 20°C. This 

environmental variability model has been used in [10]. 
 

 𝐸(𝑇𝑡) = 𝜃(𝑇𝑡) ∙ 𝐸0 (2) 
 

 

 
 

 
𝜃(𝑇𝑡) = 𝑄 + 𝑆 ∙ 𝑇𝑡 + 𝑅 ∙ (1 − 𝑒𝑟𝑓 (

𝑇𝑡 − 𝑌

𝜏
)) 

(3) 

   
 

TABLE I. PRIOR DISTRIBUTION OF ENVIRONMENTAL MODEL PARAMETERS 

Parameter Distribution Mean CV 

Q Normal −0.005 10% 

S Normal 1.115 2.5% 

R Normal 0.165 10% 

Y Normal −1.00 25% 

τ Normal 3.00 20% 

 

Damage Model 

 

      It is assumed that the stiffness in the 𝑦-direction of the middle elastic support 

boundary, modeled by a spring with stiffness 𝐾𝑦
(2)

, is subject to reduction over the 

  
y
 
(
 
 
 
 

 (     aussian  hite noise e citation

     m

      plane stress  elements

h    m

  
 
 
(
 
 
 
   

y
 
(
 
 
 
   

 
 
(
 
 
 
   

y
 
(
 
 
 
   

 
 
(
 
 
 
 

  
  
   m   

 
 
 
   m  

y
 
(
 
i
 
     

   m   
 
 
(
 
i
 
     

   m

              g m 
 

sensors



structural life-cycle, as described by Equation (4). 𝑋(𝑡) is the deterioration model, 

describing the gradual and shock deterioration process over time, following equation 

(5). The first part of Equation (5) models the gradual deterioration. The second part 

models the shock deterioration, described by a homogeneous compound Poisson 

process (CPP) [11, 12], which is superposed to the gradual deterioration. 𝑁(𝑡) describes 

the number of shock occurrences, and is a Poisson process with rate λ, and 𝐷𝑖 are the 

shock deterioration increments. The prior probability distributions for all the associated 

random variables of Equation (5) are given in Table II. 

 
 

𝐾𝑦
(2)(𝑡) =

𝐾𝑦,0
(2)

1 + 𝑋(𝑡)
 

(4) 

 
 

 
 

 

𝑋(𝑡) = 𝐴𝑡𝐵 ∙ 𝑒𝜔 + ∑ 𝐷𝑖

𝑁(𝑡)

𝑖=1

 

(5) 

 
 

 
      TABLE II. PRIOR DISTRIBUTION OF DETERIORATION MODEL PARAMETERS 

Parameter Distribution Mean CV 

A Lognormal 1.94∙10-4 40% 

B Normal 2.0 10% 

ω Normal -0.005 10% 

N(t) Poisson 0.04 - 

Di Lognormal 3.75 25% 

 

SHM Modal Data Sampling 

 

      In simulating extraction of SHM data, the numerical model (Figure 1) is utilized as 

a forward simulator to sample dynamic responses (vertical accelerations at the 12 

assumed sensor locations) and temperature measurements, based on a reference 

realization of the deterioration process and the E-T model, assumed as the ground truth 

system response. The noisy vertical acceleration measurements are subsequently 

processed by an output-only operational modal analysis (OMA) scheme [13], which 

identifies the system’s 𝑚 lower eigenfrequencies 𝑓𝑚. 

 

Bayesian Filtering  

 

      The eigenfrequency data, sequentially identified at different time instances 𝑡 and 

temperatures �̃�𝑡, are fed into a Bayesian filtering framework, whose initial goal is to 

learn the E-T dependence, and whose subsequent goal is to estimate the filtering 

distributions of the deterioration state. This leads to a continuous updating of the time-

dependent structural reliability estimate, which forms the basis on which 

inspection/repair decisions are made within the heuristic-based life-cycle cost 

optimization. The SHM likelihood function is formulated based on the discrepancy 

between the OMA-identified eigenvalues �̃�𝑚 = (2𝜋𝑓𝑚)
2
 and the forward finite 

element model 𝒢-predicted eigenvalues 𝜆𝑚. The likelihood function describing the 

SHM data obtained at a time instance 𝑡, for an unknown true deterioration state 𝑋(𝑡), 

is shown in Equation (6). 



𝑓�̃�𝑡|𝑋(𝑡)(�̃�𝑡|𝑋(𝑡)) = ∏ 𝑁 (�̃�𝑡𝑚
− 𝜆𝑡𝑚

(𝒢(𝑋(𝑡), 𝐸 = 𝜃(𝑇�̃�)𝐸0)); 0, 𝑐𝜆
2�̃�𝑡𝑚

2
)

𝑁𝑚

𝑚=1

 

(6) 

 

 

NUMERICAL INVESTIGATION RESULTS 

 

Bayesian Learning of Environmental Variability Model  

 

      With the assumption that no damage will be present in the beginning of the operation 

of the instrumented structure, the SHM modal data of the first few months of operation, 

identified at different temperatures, can be used within a Bayesian analysis [14] to 

update the distributions of the environmental variability model hyper-parameters. 

Posterior samples of the hyper-parameters are then used to estimate the ground truth E-

T model (blue curve in Figure 2). For subsequent sequential deterioration state 

estimation tasks, the learned posterior mean E-T model can be used. 
 

 
 igure     earning the underlying “true” E-T model via Bayesian analysis 

 

Bayesian Filtering of Deterioration and Sequential Decision Making  

 

      The structure’s lifetime of 𝑇 = 50 years is discretized in yearly intervals. The 

Bayesian filtering estimation and the heuristic-based decision making is performed in 

these yearly intervals. It is assumed that a CPP shock deterioration occurrence is the 

result of an observed extreme event, e.g., a flood occurrence. In this scenario, it is 

prescribed that a visual inspection should take place at the time right after the extreme 

event occurrence, both without and with SHM. For the visual inspection likelihood 

function, cv𝑖𝑛𝑠𝑝=0.15 is assumed.  

      The following heuristic parameter values are prescribed: 𝑝𝑡ℎ
𝑖𝑛𝑠𝑝

=5∙10-4, 𝑝𝑡ℎ
𝑟𝑒𝑝

=1∙10-3 

for both cases with and without SHM. For the case without SHM, scour-specific 

periodic inspections are additionally performed every 𝛥𝑡𝐼
=5 years. The cost of an 

individual inspection is assigned a value �̃�𝑖𝑛𝑠𝑝= 2∙104€, an individual repair costs �̃�𝑟𝑒𝑝= 

6∙105€, and the failure event cost is �̃�𝑓= 5∙107€. 



 
Figure 3: Bayesian filtering of the deterioration state and the reliability estimate with continuous SHM, 

complemented by visual inspection data, and the associated sequential decision making 

 

 
Figure 4: Bayesian filtering of the deterioration state and the reliability estimate with intermittent visual 

inspection data, and the associated sequential decision making 

 

 
Figure 5: Bayesian filtering of the deterioration state and the reliability estimate with continuous SHM, 

without accounting for the environmental variability, and the associated sequential decision making 

 

      The black dashed line in the left panel of Figures 3-5 is the same reference 

realization of the deterioration process 𝑋(𝑖), assumed as the ground truth system state 

evolution over time.  

      The left panel of Figure 3 plots the filtered estimate of the deterioration state, 

obtained using continuous OMA-identified modal data, while the right panel plots the 

continuously updated failure rate of the structure, conditional on survival up to the 

previous time instance. It is clear that, when continuous data from the SHM system is 

available, and when the temperature variability has been properly accounted for, the 

ground truth deterioration state is very well tracked over time. For Figure 3, the heuristic 

thresholds trigger inspections at 𝑡𝑖𝑛𝑠𝑝= [14.2, 21.9, 31, 32, 33] and a repair at 𝑡𝑟𝑒𝑝=33. 

For this single sample, 𝐶𝑡𝑜𝑡( 𝑋(𝑖), 𝒁𝑖𝑛𝑠𝑝, 𝒁𝑆𝐻𝑀 , 𝒘)= 5     €. 



      Figure 4 plots the same estimates as Figure 3, but for the case without SHM. In this 

case, many more inspections need to be performed, 𝑡𝑖𝑛𝑠𝑝= [5, 10, 14.2, 19, 21.9, 24, 25, 

27, 29, 31, 32, 33, 39, 44, 49], and the ground truth deterioration state is not estimated 

as well at all time steps. Also, a much larger uncertainty is present in the estimation. A 

repair decision is triggered at 𝑡𝑟𝑒𝑝=33. The total life-cycle cost without SHM for this 

deterioration process sample is 𝐶𝑡𝑜𝑡( 𝑋(𝑖), 𝒁𝑖𝑛𝑠𝑝, 𝒘)=       €, which is larger than the 

cost in the case with SHM. 

      Finally, Figure 5 demonstrates that, in the case with SHM, but without accounting 

for the environmental variability, the ground truth deterioration state is underestimated 

at all times. Obviously, this further affects the decisions. Inspections are performed at  

𝑡𝑖𝑛𝑠𝑝= [14.2, 21.9, 34, 35, 36, 37, 38], and a repair is triggered at 𝑡𝑟𝑒𝑝=38, five years 

later than the repair triggered in Figure 3.  𝐶𝑡𝑜𝑡( 𝑋(𝑖), 𝒁𝑖𝑛𝑠𝑝, 𝒁𝑆𝐻𝑀 , 𝒘)=  5 44 €   hich 

is larger than the total cost computed in both cases above. This result shows how 

detrimental it can be to not account properly for the environmental variability. 

 

VoSHM Quantification 

 

      In the previous section, the total cost computation was shown for one single sample 

of the deterioration process. However, Equation (1) requires the evaluation of the 

expectation operator for quantifying the VoSHM, i.e., one needs multiple deterioration 

samples and the corresponding SHM and visual inspection data. With 1000 Monte Carlo 

samples, we obtain an expected 𝑉𝑜𝑆𝐻𝑀=110972€   hich indicates that installation of 

this SHM system on the deteriorating bridge structure provides an economic benefit in 

the expected value sense. 

      The quality of the visual inspection, as defined by the assumed cv𝑖𝑛𝑠𝑝 value in the 

visual inspection likelihood function, can affect the VoSHM. To demonstrate the 

capability of the presented framework to account for this, the full VoSHM analysis was 

run for three different visual inspection likelihood functions (for the same �̃�𝑖𝑛𝑠𝑝 cost in 

all three cases), and the following results were obtained: 
 

1. 𝑉𝑜𝑆𝐻𝑀=110972€ for cv𝑖𝑛𝑠𝑝=0.15. 

2. 𝑉𝑜𝑆𝐻𝑀=102104€ for cv𝑖𝑛𝑠𝑝=0.05. 

3. 𝑉𝑜𝑆𝐻𝑀=133454€ for cv𝑖𝑛𝑠𝑝=0.30. 
 

      As expected, better visual inspections lead to a lower VoSHM, while a reduced 

visual inspection quality leads to a higher VoSHM. 

 

CONCLUSIONS 
 

      This paper summarizes a recently developed framework for the quantification of the 

value of continuous vibration-based SHM, and demonstrates the application of this 

framework to a bridge system subjected to gradual and shock deterioration and 

environmental variability. The framework quantifies the expected gains that SHM-

aided maintenance planning can provide compared to inspection-based maintenance 

planning. It is exemplified that not properly accounting for the environmental variability 

present in the SHM data can severely affect the maintenance decisions triggered by an 

SHM system. Furthermore, we show how the quality of visual inspections affects the 

value of the SHM. 
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