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Toward Dexterity-Aware Dual-Arm Grasping
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Fig. 1: A glimpse of the DA2 dataset. Various grasp pairs are colored differently (best viewed with zoom-in). As one single grasp can be affiliated with several
grasp pairs, we attach several sphere markers to the grasp to distinguish different pairs. The number of spheres on one grasp indicates how many times the
grasp has been reused.

Abstract—In this paper, we introduce DA2, the first large-scale
dual-arm dexterity-aware dataset for the generation of optimal
bimanual grasping pairs for arbitrary large objects. The dataset
contains about 9M pairs of parallel-jaw grasps, generated from
more than 6000 objects and each labeled with various grasp
dexterity measures. In addition, we propose an end-to-end dual-
arm grasp evaluation model trained on the rendered scenes from
this dataset. We utilize the evaluation model as our baseline to
show the value of this novel and nontrivial dataset by both online
analysis and real robot experiments. All data and related code
will be open-sourced at https://sites.google.com/view/da2dataset.
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I. INTRODUCTION

OVER the past few years, numerous methods have surged
to solve the problem of grasping arbitrary objects in a

data-driven manner. The data sources being used significantly
affect the success rate of these methods. As a result, many
grasp datasets have been introduced [4, 9, 11, 15, 21, 41]
to stipulate academic advancement. Although the research of
single-arm grasping dealing with small objects has been well
explored [14, 15, 19, 23, 33, 36], how to address the query
of dual-arm optimal grasping for objects with various shapes
remains untouched. Dual-arm manipulation has some obvious
advantages. For example, a dual-arm-hand (DAH) system
can coordinately manipulate large and heavy objects with
high dexterity which single-arm robots cannot accomplish.
However, some problems in the robotic manipulation area may
result in failures in exploiting these advantages by directly
using current state-of-the-art approaches in terms of optimal
grasp planning.

Unlike common tiny items, larger objects tend to be more
sensitive to the positions a robot grasps since they usually
have more complex geometric features and load distribution.
This particularity results in the inapplicability of the current
single-arm approaches to the dual-arm cases. To pave the
way towards closing this gap, it is necessary to generate and
select more feasible and reasonable grasp pairs for dual-arm
cooperation and manipulation from the astronomical number
of pairwise grasp configurations obtained by random combina-
tion. While the multi-fingered manipulation theories, including
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the dual-arm one [34], have been well-developed over a long
period, how to bridge the perception and classical dexterous
grasping theory to facilitate the practical implementation of
bimanual grasp is still unclear. The focus of research in
the dual-arm grasping estimation field will narrow the gap
between vision and manipulation, thus considerably enlarging
application scenarios of the robots both in domestic and
industrial environments beyond picking tiny objects from bins
using a single arm.

To facilitate this process, a standardized grasping dataset
related to DAH grasping is required. In the current single-
arm grasping research area, fundamental methodologies for
data generation can be classified into three categories: trial-
and-error with grasping experiments [15, 24], manual annota-
tion [12, 39], and synthetic data generation. The last category
is subsequently classified into analytic grasp [19] and physics
engine based simulation [5, 7, 12]. Inspired by the pioneering
work [7], who generate a grasp dataset from meshes with
high flexibility, we also choose ShapeNet [29] to be our
object data source. We generate dual-arm grasp poses labeled
with various dexterity features. Our synthetic dataset combines
several desirable properties reflecting multiple characteristics
in dual-arm parallel-jaw grasping:
Various dexterity measures: Popular 3D-based methods [16,
19, 23] proposed in recent years process 3D estimation
perfectly. Nevertheless, they are trained on data generated
by considering force closure as the main factor influencing
grasp performance. However, grasp dexterity analysis is also
an important factor to evaluate the grasp candidate and is
missing in the training process. Our dataset fully utilizes the
grasp matrix and analyzes it from various aspects such as
grasp stability and dexterity. Moreover, we design a novel
evaluation module named Dual-PointNetGPD which is based
on PointNetGPD [16] to select the optimal grasp pair from
massive pair candidates through scoring of the visual inputs.
Multiple applications: Our dataset is compatible with com-
mon tools, like trimesh1 and pyrender2 to process collision
checks and cluttered scene rendering. With a customized
modification of the dataset, it can further serve for various
manipulation tasks, especially for large objects eventually
improving the autonomy of robotic systems for e.g. Robot-
to-Human (R2H) handover, Human-robot collaboration, and
autonomous bimanual manipulation.

The contributions of this work are as follows:

1) We build a large-scale Dual-Arm Dexterity-Aware
(DA2) grasp dataset, including a total of about 9M
parallel-jaw grasp pairs for more than 6000 different
meshes (see Fig. 1). The grasp pairs are labeled with
multiple grasp dexterity measures by fully analyzing the
grasp matrix. Our unique dataset constitutes a standard-
ized data source filling the gap in vision-guided dual-arm
grasping of arbitrary objects.

2) We propose a novel grasp quality scoring module Dual-
PointNetGPD as a baseline exclusive for DAH systems

1https://github.com/mikedh/trimesh
2https://github.com/mmatl/pyrender

by modifying feature representations and coordinate
expression of the single-arm method PointNetGPD.

3) Both our online validation and real robot experiments
verify that the combined measures introduced in our
proposed dataset are practical and are easily learned by
our baseline module through feature embedding of the
rendered point clouds.

II. RELATED WORK

This section includes a review of some single-arm grasp
datasets with related estimation methods. As our dataset is the
first attempt to lay the basis for optimal dual-arm grasp pose
generation, the general pipeline and evaluation baseline for the
single-arm grasp pose generation are reviewed and analyzed
here. Existing grasp datasets mostly focus on the single-arm-
based grasp of small objects but differ in the type of data
sources, labeling methods for the grasp samples as well as the
intra-dataset variations (see Table. I). It should be noted that
only our dataset supports dual-arm grasping.

Robot grasping is an inherent 3D spatial manipulation
task. Therefore, grasp configurations in SE(3) show benefits
compared with 2D planar representations [1, 2, 4, 10, 13, 26,
38, 43]. Similar to popular datasets for single-arm grasping [9,
12, 19, 35], our dataset dispenses grasp pairs in 6-DOF format.
Previous pioneering works provide real RGB-D measurements,
however, are either limited in scale [11] or limited to planar
grasping [15, 41]. As described in ACRONYM [7], simu-
lating observations provides a scalable alternative. Synthetic
datasets are flexible and can be customized by incorporating
either RGB images [5] or other modalities such as depth
maps and point clouds. Some of them, e.g., Columbia grasp
database [9] and ACRONYM, can be seamlessly combined
with any commonly-used renderers. One of the differences
among various datasets is the way the grasping qualities are
labeled. While physics-based simulators [5, 12, 35] can be
used for dataset creation, others leverage explicit models with
analytic design [8, 9, 19] or practical exploration with real
robots [15]. Grasp data, however, can be cumbersome to
annotate by hand [11, 12]. Most methods [8, 16, 19] that use
analytical models leverage parallel-jaw force closure based on
point contact with a friction model (PCWF). To comprehen-
sively evaluate the grasp quality, a combined metric with Grasp
Wrench Space (GWS) analysis and quantified force-closure
inspection is employed in PointNetGPD [16]. The baseline
in GraspNet-1B [8] defines a measure called Grasp Affinity
Fields (GAFs) to describe grasping robustness. To deal with
dual-arm grasping, the single use of a stability descriptor is
not sufficient. The challenge lies in the extraction of potential
candidates from a high number of left-right grasp pairs. In
this work, we leverage three well-established measures from
the dexterous manipulation literature to evaluate the bimanual
grasp pairs and extract the reasonable ones.

III. DATASET DETAILS

In this section, details about the proposed DA2 dataset are
presented. In the first part, we describe some basic information
about our data source and the format of dual-arm grasp pairs.

https://github.com/mikedh/trimesh
https://github.com/mmatl/pyrender
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TABLE I
Comparison of publicly available grasp datasets.

Dataset Grasps Grasp Total Total Data Metric Gripper
/obj. label obj. grasps source variety(ies) support

Levine et al. [15] N/A Rect. - 800k Real 1 Single
Dex-Net [19] 100 6-DOF 1500 6.7M Sim. 1 Single∗
GraspNet-1B [8] 12.5M 6-DOF 88 1.2B Sim.+Real 2 Single
PointNetGPD [16] N/A 6-DOF 47 350k Sim.+Real 2 Single
ACRONYM[7] 2000 6-DOF 8872 17.7M Sim. 1 Single
DA2 (Ours) up to 2001 6-DOF 6327 9.0M Sim. 3 Dual

∗Dex-Net series support two-modality end-effectors which constitute a parallel jaw and suction cup, but they are not tightly coupled.

In the following parts, we illustrate our pipeline to generate
grasp pairs. Our code will be made publicly available via
https://sites.google.com/view/da2dataset/code.

A. Preliminary

Our goal is to avoid labeling through complex and time-
consuming manual setups. Since ACRONYM [7] has shown
the effectiveness of simulated data which has been successfully
deployed in several works [31, 37, 40], we also omit real data
and use a simulation environment instead. We leverage the
same source as in Eppner et al. [7], namely ShapeNetSem [29],
to obtain extended semantic information. Unlike the scaling
policy used by them, we explicitly choose a factor to rescale
the meshes so that the bounding box is scaled in the interval
from 60 to 100 cm to represent large objects. Given the
workspace of typical dual-arm robots, objects larger than
100 cm are not considered.

Each pair of grasp poses in our dataset is given by G =
{Gi|i = 1, 2}, where Gi ∈ SE(3) is the 6-DOF pose of the left
and respectively right end-effector pre-grasps with respect to
the object frame.Our dataset is built for parallel-jaw grippers,
and specifically, we use Robotiq 2F-85 [28] as the gripper
model. All pre-grasps in the dataset are created with 0.085m
gripper width to match the Robotiq 2F-85 hardware.

B. Block Antipodal Sampling

Antipodal sampling is a frequently used technique for grasp
pose generation, which has been used in several previous
works [7, 16, 19]. Antipodal sampling constitutes a typical
method [6, 7] to create a set of diverse grasps for small objects
with the range of up to 100 k grasps per object. Given an object
mesh, this scheme first samples an arbitrary point on the mesh
surface as the initial contact point together with a line within
a range around the surface normal. The sampling threshold
γ = tan(α/2) with the cone angle α restricts the range at
which rays can be emitted. A second point is found as the
intersection of both mesh and line. Gi is then derived by taking
the center point between two contacts and a randomly sampled
rotation around the line. While this method generates a set of
grasp poses, some issues exist that hinder its direct application
for large objects. Firstly, it is not guaranteed to find a line
segment whose length between two contact points is shorter
than the maximum width of the gripper fingers. Secondly,
the density of sampled surface points for large objects is
significantly sparser than that for smaller ones. Thus, more

iterations are required to create a sufficient number of feasible
grasp candidates for one end-effector.

To conquer such issues, we propose an incremental sam-
pling scheme called Block Antipodal Sampling. Assuming our
goal is to obtain g grasp pairs, we firstly crop meshes by
dividing the bounding box of the original object into i× i× i
blocks, and then we can sample g/i3 grasps in each block in
parallel as illustrated in Fig. 2. We iteratively check whether
or not the generated grasps collide with the object mesh and
produce new grasps until we either found enough poses or
the number of iterations has reached its maximum. Once the
feasible grasps for a single end-effector are generated, we
can obtain C2

g grasp pairs by random combination. Note that
this step will generate millions of feasible grasp pairs if no
additional evaluation metrics are applied. In Section III-C, we
prune the grasp pairs through force closure inspection and set
the maximum number of grasp pairs per object to 2001.

C. Grasp Dexterity Labeling

Grasp dexterity defines the ability of a grasp to achieve
one or more useful secondary objectives while satisfying the
kinematic relationship (between joint and Cartesian spaces) as
the primary objective. To reduce unnecessary costs, we need
to select feasible grasp pairs with various dexterity to form a
balanced dataset from the generated candidates. Different from
the single-arm optimal grasp generation, evaluating the grasp
dexterity and labeling the grasp pair for the DAH system are
much more involved in terms of grasp stability analysis. We
propose to evaluate the grasp quality for the DAH system from
three aspects, namely grasp stability, minimum singular value,
and force minimization. We detail these aspects hereafter:
Grasp stability: The generated grasp pair should satisfy the
force-closure condition, which means that with this grasp,
the DAH system can generate wrenches to the coordinately
manipulated object to resist random external disturbances
in any direction. PCWF is used as the contact model to
characterize the force transmission between each finger of
each end-effector and the object. A grasp pair for the DAH
can be represented by a set of contact point pairs P =
{(pl,1,pr,1) , (pl,2,pr,2) |pl,i,pr,i ∈ R3, i = 1, 2}, where
pl/r,i denotes the ith contact point of the left/right arm on the
object surface, respectively. To avoid slippage of the fingertips,
the contact force fl/r,i ∈ R3 applied by each finger of the
left/right hand at each contact point is constrained to lie in
the respective friction cone {(cl,i, µ) ∪ (cr,i, µ)} where cl/r,i
denotes the friction cone axis at the ith contact point of the

https://sites.google.com/view/da2dataset/code
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left/right arm and µ represents the friction coefficient of the
object surface. Inspired by [17], the constraints imposed by the
force closure on a given grasp configuration can be relaxed as

GGT � εI6×6, (1a)
Gf = 0, (1b)

‖Gc‖2 =

∥∥∥∥− Gft
‖fn‖2

∥∥∥∥
2

= ω, (1c)

where f = ft+ fn = [fTl,1, f
T
l,2, f

T
r,1, f

T
r,2] ∈ R12 is the collective

contact forces exerted by the DAH system, which is unknown
here. The parts ft and fn respectively denote the tangent and
normal components and c = [cTl,1, c

T
l,2, c

T
r,1, c

T
r,2]

T ∈ R12

is the collective vector of all the friction cone axes and
can be easily obtained through typical shape representations
of the objects. G = [Gl,1,Gl,2,Gr,1,Gr,2] with Gl/r,i =

[I3×3, (bpl/r,ic×)
T
]T denotes the grasp matrix,

⌊
pl/r,i

⌋
× is

the skew symmetric matrix of pl/r,i. To avoid solving the
unknown forces f we chose a small positive constant ε > 0
that guarantees the positive-definiteness of GGT and ω is
introduced to reflect the angle between the friction cone axis
and the applied force, which can be viewed as a measure of the
grasp stability. A small ω value indicates that the actual force
has a higher probability of lying within the friction cones. We
then arrange the grasp pairs into three parts according to ω
from smallest to largest, with an equal number of components
in each part, and select up to 667 best components in each
part to form the final set of grasping pairs for an object.
Remark 1. According to the grasp theory, the effectiveness of
using ω is supported by that: Gc/4 is guaranteed to be inside
the grasp wrench space and force closure requires the origin of
the wrench space to be inside the grasp wrench space. Hence,
the distance between Gc/4 and the origin, namely ‖Gc/4‖2
or equivalently ‖Gc‖2, can in some sense reflect how far the
grasp is from having force closure, and it is also related to the
inclination angle of the contact forces satisfying (1b) [42].
Minimum singular value: The minimum singular value
(MSV) of the grasp matrix G should be maximized to guaran-
tee that the DAH-object system with the grasp configuration
always has the capability of withstanding external wrenches
in all directions. The MSV employed here is to measure the
distance to the singular configuration of bimanual grasp, with
which grasp pairs that are prone to singularity-related task
failures can be filtered out. Previous considerations [30] have
shown that MSV varies significantly near singular configu-
rations. Using singularity value decomposition of the grasp
matrix G, we can obtain

G = UΣVT , (2)

where U ∈ R6×6 and V ∈ R12×12 are two real orthogonal
matrices. Σ is a 6× 12 rectangular diagonal matrix with non-
negative singular values {σ1, σ2, ..., σm} of G on the diagonal
which are arranged in a descending order and m ≤ 6 with

σ1 ≥ σ2 ≥ ... ≥ σm, (3)

where σm denotes the MSV of the grasp pair candidate. We
discover a regular pattern that the candidate grasp pair with

Fig. 2: (Top) We perform antipodal sampling in each block, aligning adja-
cent blocks (red and blue) with a little overlap to prevent some potential
grasps across both blocks from vanishing. (Bottom) An example shows the
effectiveness of maximum MSV.

maximum MSV tends to be symmetrically distributed around
the centroid of an object (see Fig. 2 for an example). Grasp
pairs with ideal MSV will balance the grasping force.
Force minimization: To further evaluate the grasp pair can-
didates in terms of energy consumption, the grasp configu-
ration with least force requirements on the DAH system is
typically preferred. Here we introduce the concept of force
ellipsoid [30] to depict the relationship between the grasp
matrix and the force requirement, which is expressed as

fText
(
GGT

)−1
fext ≤ 1, (4)

where the resultant force fext applied at the object frame is
generated by the normalized contact forces f with a given
grasp configuration G and they are related as Gf = fext. It
is worth mentioning that (1b) is the homogeneous equation
of Gf = fext. For a given fext balancing the desired object
dynamics, a grasp configuration with least forces f is desirable.
Since the major axis of this force ellipsoid denotes the
direction in which the DAH system can apply the largest forces
to the object for a given f , we use the angle θG between the
direction of gravity and the major axis of the force ellipsoid
for a grasp configuration as a new metric to measure the
transformation efficiency. We note

θG = arccos

(
vmajor·vgravity

‖vmajor‖ ‖vgravity‖

)
, (5)

where vmajor denotes the direction vector of the major axis of
the ellipsoid, which coincides with the normalized eigenvector
corresponding to the smallest eigenvalue λ of GGT consid-
ering that the length of the major axis is 1/

√
λ, and vgravity

is the directional vector of gravity. Noting that λ and σm are
related by σm =

√
λ.

Remark 2. It is worth mentioning that the preferred force di-
rection can be replaced according to specific task requirements.
We assume that the object’s gravity is the major force to be
resisted in, e.g., pick-place or handover tasks.
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Table Coordinate
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Fig. 3: Dual-PointNetGPD pipeline. Data generation module (left) generates depth images using pyrender, and the point cloud is obtained with the intrinsics of
the virtual camera. After this step, points in the gripper closing volume are transformed to the object coordinates as presented in the canonical transformation
module (right). Finally, transformed points are sent to PointNet to perform a classification task supervised by ground truth data.

IV. GRASP QUALITY EVALUATION BASELINE

To validate the performance of the generated dataset for op-
timal pair candidates, we propose an end-to-end baseline mod-
ule called Dual-PointNetGPD based on PointNetGPD [16].
The main idea of [16] is to build a map between local features
in points and the qualities of grasps through PointNet [25].
As our grasp measures are based on grasp matrix analysis
and the coordinates of the contact points, this basic mapping
idea is also applicable to our case when evaluating the grasp
quality. Compared with the non-dual case, Dual-PointNetGPD
modifies the data source, coordinate representation, and quality
labels to adapt to specific requirement of the DAH system. The
pipeline is shown in Fig. 3.

A. Train-val Generation
Our train-val data are different from the original PointNet-

GPD. While PointNetGPD uses real scanning data from the
YCB dataset [3] to train simulated grasps, we use the meshes
in our simulated dataset. Following the instructions in Contact-
GraspNet [31], we render point clouds by virtual depth cam-
eras in different views. More concretely, we construct a scene
with a virtual table being the support surface. Since the force
minimization requirement we use in the dataset is highly
relevant to the direction of gravity, we search for a stable
pose Tobj←table where the inner product of the Z-axis normal
vector and the gravity is the smallest. Such a pose indicates
that the object is “standing” on the table, thus guaranteeing
that all objects share consistent coordinate representation. The
rotation angle around the Z-axis is sampled uniformly. We
then position the camera on a hemisphere centered around the
table midpoint where the optical axis points towards the table
center. We choose a sphere radius between 1.5 and 2.0 m and
render point clouds from this viewpoint. Additionally, we use
two cameras which are antipodal with some perturbations, as
the point cloud rendered by only one camera cannot cover the
positions for arbitrary grasp pairs satisfactorily. We train Dual-
PointNetGPD on the simulated scenes and validate it with real
point cloud data to verify that models trained on DA2 have
the potential to be transferred to the practical applications.

B. Canonical Transformation
PointNetGPD crops and transforms the point cloud within

the gripper into the gripper’s local coordinates for each grasp

candidate and feeds the points into the neural network. This
process eliminates ambiguity caused by using different camera
coordinate frames. The situation is entirely different for dual-
arm grasp pose estimation. It is hard to define which gripper
is the optimal reference candidate. At the same time, it is
beneficial to choose a fixed global frame as the reference frame
so that the coordinates of the inner points will not change
with respect to each object to improve feature embedding and
classification performance. This facilitates the convergence
of PointNet [25] as the backbone used in PointNetGPD.
While it is intricate to set a global coordinate system for all
data, considering that the dexterity measures for labeling the
bimanual grasp pairs are all based on the algebraic properties
of the grasp matrix and G is naturally expressed with respect
to the object frame, the object frame is thus a reasonable
candidate as the reference frame since it can be considered
as a relatively fixed frame for all grasp pairs on the object
surfaces regarding the metrics and is available directly from
meshes. Thus we transform all inner points of the object
initially from the camera frame Pcam to the object frame Pobj

whose origin coincides with the centroid. Since the table frame
can be treated as the world frame in the rendered scene, i.e.,
Ttable = I4×4, we can obtain Pobj by using the transformation
between camera and object frame:

Tobj←cam = Tobj←tableTtable←cam

Pobj = Tobj←camPcam.
(6)

For practical implementation, we consider the average of
the coordinates of all points on the object t as an equivalent
replacement for the centroid. The rotation part R of the stable
pose can be calculated as:

R = [nx,ny,nz]

nx =
1√

n2
z1 + n2

z2

[nz2 ,−nz1 , 0]
T

ny = nz × nx,

(7)

where nz denotes the unit normal vector of the support surface,
which is usually a visible plane in the camera frame. Thus,
Tobj←cam = [R, t;0, 1]

−1.
After obtaining Pobj of both simulation training and the

real test, we input them into a PointNet architecture to filter
out the optimal grasp pair with a classifier.
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Fig. 4: Data distribution.

C. Combined Measures

Considering multiple characteristics will influence the bi-
manual grasp performance. We combine the three measures
mentioned in Section III-C to evaluate the grasp quality of the
pair candidates. The approach to balance the two measures
in PointNetGPD is empirical. However, if the label is not
normalized, gradients may oscillate and convergence speed
would probably be slow. Different from PointNetGPD, we
decide to normalize each measure in DA2 to the range (0, 1].
We adjust weights applied to the three measures such that the
network is capable to learn and evaluate grasp pairs of varying
degrees. We note down the score

Qk
score = αQk

for + βQk
dex + γQk

tor, (8)

Qk
for = 1− ωk, Qk

dex = σk
m/maxσ, Qk

tor = cos θkG, (9)

where α + β + γ = 1, and k represents the k-th grasp pair
which belongs to one object. And σ is the set of MSV of all
objects in the training dataset, where σ = {σm|m = 1, ...,M},
σm =

{
σk
m|k = 1, ..., n

}
.

V. EXPERIMENTS

We believe DA2 dataset can serve as a fair comparison
benchmark for dual-arm optimal grasping, as it contains vari-
ous labels and sufficient grasp data. In this section, we illus-
trate the evaluation of Dual-PointNetGPD that is trained on
DA2 following the evaluation protocol of previous works [16,
31]. We quantify the classification ability of the network on
simulated data with ground truth data of every measure. In
real tests, we evaluate the model with a robotic hardware

experiment and focus on the grasping success rate by conduct-
ing several robotic grasping and R2H handover experiments.
These serve as a basis to validate the effectiveness of our
model in typical dual-arm coordinated tasks.

A. DA2 Exploration

i and γ mentioned in Section III-B are the hyperparameters
to be set for dataset generation. i can be dynamically adapted,
depending on the size of objects and the performance of the
workstation. In this work, i is fixed and set to be 3, since the
sizes of bounding boxes lie within a relatively narrow interval
and are evenly distributed. As mentioned in Section III-C, ω
is the primary factor when we prune the extensive data. It
is critical to ensure that ω is in a wide range. We examine
the effect of different sampling factors γ on ω during the
dataset generation phase. We evaluated Qfor for 10k grasp
pairs under different γ = 0.2, 0.3, 0.4 respectively. Fig. 4a
shows the stability distribution result. As γ increases, more
grasp pairs with lower Qfor appear, which indicates that DA2

is covering a wider variety of cases. We choose γ = 0.4 to
obtain a balanced dataset in our final dataset creation.

B. Simulation Details

Implementation details. Following PointNetGPD, we chose a
3-class classification task. For the training aspect, we used an
NVIDIA GeForce 1080Ti GPU and the Adam optimizer with
an initial learning rate of 5e-3 with rate decay to half every
60 epochs. For classification thresholds, we chose 0.85 and
0.92, for worst and best respectively to balance the number
of grasps in each bin (see Fig. 4b). The weighting parameters
in (8) are chosen as (α, β, γ) = (0.4, 0.5, 0.1) such that the
network focuses more on the bimanual grasp stability and
simultaneously avoids the grasp singularity to a large extent.
Simulation results. As the first attempt to deal with dual-arm
grasping, our method serves as a baseline, and here we report
the classification accuracy as the evaluation metric. Specifi-
cally, we randomly rendered 380 scenes, including 248’102
grasp pairs for training. After this, we chose 19 scenes,
13’739 pairs, for validation. The variation of the accuracy
of considered grasp pairs during training is demonstrated in
Fig. 5. After 250 epochs (model-250), the accuracy was stable
at 0.72 with the reduction of the negative log likelihood loss.
Finally, we tested model-250 in the real world.

C. Real World Experiment

Experimental Setup. We chose the dual-arm Kinova Gen3
manipulators with self-designed grippers. The visual sensors
we used were two synchronized and calibrated Kinect Azure
cameras. Additionally, we set up a table supporting the objects
to guarantee that they are in the workspace of the manipulators.
Method Pipeline. Following the procedures in [16], we chose
GPG [32] to heuristically generate single grasps. Then, the
single grasps were randomly combined to form grasp pair
candidates, which were sent to model-250 to extract the
optimal pair. As the classification results of top-k pairs are
the same, we sorted the candidates by the probability outputs.
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Fig. 5: The variation of classification accuracy and loss on the validation set
for different epochs during training.

TABLE II
Success Rate of Dual-Arm Large Object Grasping

Avg. Tripod Yellow
stool

Green
stool

Box Dustpan Gray
stool

Key-
board

0.66 1.00 0.00 0.60 0.80 0.80 0.80 0.60

Once the optimal one (i.e. the one with highest probability)
was generated, the two manipulators were controlled by using
the formulation of the extended cooperative task space [22] so
that the end-effectors were aligned with the desired optimal
grasp pair. Dynamic system [20] was used to plan the relative
and absolute trajectories for the DAH system.
Experimental results. As shown in Fig. 6, we selected seven
objects and tested each object for five rounds with random
initial orientations. If no feasible grasp pair is generated or if
the object drops during R2H handover, we mark this attempt as
failed. Table. II shows the success rate for large object grasping
using Dual-PointNetGPD. For keyboard grasping, we used an
upholder to lift the keyboard so that the grippers could grasp it
without collision. The tripod and those having shafts were easy
to grasp. For the yellow chair, its geometric feature is difficult
for GPG to find any proper grasps. Finding the optimal grasp
pair for the box was successfully done but grasping sometimes
failed due to the large box width which was difficult for the
gripper to fit it in. In addition to these, some failures happened
during handover even though the robot was able to find fea-
sible grasping positions. We observed that in these cases, the
contact surfaces were more slippery. Although the used grasp
stability measure is independent of the friction coefficient,
the domain gap can cause performance degradation and we
observed that object weight has a significant influence on the
grasping success. It can be concluded from the experimental
results that the employed grasp sampler, the capability of the
DAH system and the reality gap all have an effect on the final
success rate in practical implementations besides the network
that is trained with the proposed dataset. We believe that this
can inspire future research along these directions.

VI. DISCUSSION

The research of vision-guided dual-arm optimal grasping
is still in its infancy. It is also worth mentioning that the
unique framework built with this project generalizes further
to the DAH system with multi-fingered hands, for which the
proposed dexterity labeling process can be adjusted through
the extension of the grasp matrix. We believe that the dissem-
ination of our dataset can enable the first of such investigations

Tripod

Grasp pair

Camera 1
Camera 2

Dual-arm-hand system

Fig. 6: (Top) The agent actuator was picking up a tripod and then handed it
to a human; (Bottom left) Various large objects; (Bottom right) Point cloud
of the tripod and the optimal grasp pair candidate.

and ultimately pave the way to further dual-arm research in
the future. Here we point out two promising aspects.
Synthetic vs. Real dataset. Synthetic data enjoys low an-
notation cost due to the avoidance of label-intensive human
annotations and it is manageable to arrange virtual scenarios.
In line with previous works [7, 19], our real experiment shows
that training on synthetic data can serve as a reliable founda-
tion for practical implementations. However, a domain gap still
exists and we believe that further adaptation and photorealistic
rendering techniques [18] can be leveraged to further reduce
this gap and continuously improve model performance.
Conventional vs. Unique Benchmark. Our experimental
evaluation protocols allowed us not only to provide evidence
for reliable classification compared to synthetic ground truth,
but also to show the effectiveness of the proposed dual-arm
grasping model for practical applications despite the synthetic-
only training. Using the conventional single-arm grasping
benchmark enables the validation of the network classification
accuracy, while the real application could be tested using
the grasping success rate. Given the underexplored area of
dual-arm grasping with only limited considerations regarding
stability and dexterity [27], we think that case-aware metrics
that include multi-modal factors such as grasp equilibria,
kinematic considerations, tracking performance, as well as
surface or object properties, might further advance a detailed
understanding in this field.

VII. CONCLUSION

This paper introduced the first large-scale dexterity-aware
grasping dataset toward dual-arm grasping. Based on this novel
dataset, an end-to-end pipeline named Dual-PointnetGPD was
proposed as the critical component of the dual-arm grasping
baseline and trained to evaluate the qualities of the grasp
pair candidates effectively. Both simulation and real-robot
experiments showed that our dataset provides distinct dex-
terity features, which can help the neural network to extract
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reasonable grasp pairs from numerous candidates in terms of
dual-arm grasping dexterity. We hope both our dataset and
baseline evaluation module can stimulate new algorithms in
the dual-arm optimal grasping field.
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