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Abstract— Retinal surgery is a complex medical procedure
that requires exceptional expertise and dexterity. For this pur-
pose, several robotic platforms are currently being developed
to enable or improve the outcome of microsurgical tasks. Since
the control of such robots is often designed for navigation
inside the eye in proximity to the retina, successful trocar
docking and inserting the instrument into the eye represents
an additional cognitive effort, and is therefore one of the
open challenges in robotic retinal surgery. For this purpose,
we present a platform for autonomous trocar docking that
combines computer vision and a robotic setup. Inspired by
the Cuban Colibri (hummingbird) aligning its beak to a flower
using only vision, we mount a camera onto the endeffector of
a robotic system. By estimating the position and pose of the
trocar, the robot is able to autonomously align and navigate the
instrument towards the Trocar’s Entry Point (TEP) and finally
perform the insertion. Our experiments show that the proposed
method is able to accurately estimate the position and pose of
the trocar and achieve repeatable autonomous docking. The
aim of this work is to reduce the complexity of robotic setup
preparation prior to the surgical task and therefore, increase the
intuitiveness of the system integration into the clinical workflow.

Index Terms— Medical Robots and Systems; Surgical
Robotics: Planning; Computer Vision for Medical Robotics.

I. INTRODUCTION

Vitreoretinal surgery is known to be one of the most chal-
lenging and delicate surgical procedures, requiring surgeons
to have sufficient expertise and exceptional hand stability
to manipulate microsurgical instruments. The demand for
specialized retinal surgeons is high, as more than 300 mil-
lion [1] patients are affected by visual disorders caused by
various retinal diseases. These diseases are mainly treated
through vitreoretinal interventions aiming to preserve or
restore vision. Since vitreoretinal surgery is a minimally
invasive procedure, trocars are placed as insertion ports on
the sclera (sclerotomy) prior to surgery allowing access to
the operating area. The surgeon then docks an infusion line,
an illuminator and a surgical instrument into these ports to
start the vitreoretinal intervention (see Fig. 1).
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Fig. 1. In conventional vitreoretinal interventions, trocars are inserted
into the sclera to dock various surgical instruments and allow access to
the surgical site: a. Trocar I b. Infusion line c. Instrument approaching
the trocar d. Trocar II e. Trocar III f. Illuminator g. Instrument docking
the trocar h. Instrument aligning towards the trocar orientation i. Properly
aligned instrument inserted into the trocar.

In conventional vitreoretinal interventions, surgeons rely
on both their visual and haptic feedback to introduce in-
struments through the trocars. They approach by visually
identifying the trocar and fine-tune the insertion alignment
by sensing the forces during the docking procedure.

In recent years, robotic platforms have made promising
strides towards facilitating and improving vitreoretinal pro-
cedures and could enable more surgeons to perform such
complicated tasks [2]–[4]. Despite their significant technical
improvements, robotic systems are still limited in interfacing
and integration capabilities into the surgical workflow. For
instance, in current robotic setups clinicians need to invest
significant time and energy for the preparation of the system
and the accurate manual positioning of the robot in order to
adjust the appropriate docking orientation prior to the main
procedure. Therefore, in minimally invasive robotic surgery,
and specifically in vitreoretinal robotic surgery, the task of
robot positioning, trocar docking, and instrument insertion
poses additional cognitive demands on the surgeon. The main
reason for this effort is that the control of such systems is
designed for delicate procedures at micron-level scale inside
the eye, with limited working volume, and is often manip-
ulated using a controller such as a joystick [5]. Therefore,
inserting the microsurgical instrument into the trocar using
this control system naturally becomes more challenging and
time-consuming compared to the conventional insertion in
manual surgery. Automating the task of navigating a surgical
tool from a safe distance towards the trocar and introducing
it into the eye could thus relieve additional cognitive load
on the surgeon and consequently reduce the complexity of
employing a robotic system in the clinical workflow.

In this paper, we propose ColibriDoc, a system for au-
tonomous trocar docking and instrument insertion. Our setup
consists of an RGB camera, mounted on the endeffector of
an ophthalmic robot. Its design is mainly inspired by the
natural behavior of Cuban Colibris (hummingbirds), which
hover at flowers and rely only on their stereo vision to align
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Fig. 2. Our setup for autonomous trocar docking consists of a mono-
vision RGB camera (a) mounted on a microsurgical robot (b). The surgical
instrument (c) is attached to the robot endeffector and autonomously
navigated to perform the docking procedure to the target trocar (d).

and insert their beak [6], [7]. Due to the space constraints
in the operating room and the limited mounting options on
robotic systems, contrary to the hummingbird we follow a
mono-vision approach based on a single camera.

Our proposed method precisely identifies the homoge-
neous location of the Trocar Entry Point (TEP) and its ori-
entation from RGB images using a two-stage learning-based
approach. The robot then autonomously aligns the surgical
tool with the trocar orientation and ultimately performs trocar
docking and instrument insertion. For a proof of concept and
experimental evaluation, we implement the proposed method
on a robotic system designed for vitreoretinal surgery, which
is described in [5]. Our experiments show that the TEP
and trocar pose can accurately be determined using RGB
images only. Most importantly, we show that such a system
is capable of performing trocar docking and instrument
insertion in a precise and repeatable manner, automating a
task that in robotic surgery poses additional complexity on
the surgeon. We demonstrate the concept for vitreoretinal
surgery, however, this methodology could also be transferred
to other types of minimally invasive robotic surgery. To the
best of our knowledge, the system proposed in this paper
is the first work towards automating the trocar docking
procedure.

II. RELATED WORKS

Robotic Systems: In the last decade, many robotic sys-
tems have been designed and applied in surgeries as robotic
assistants to promote autonomy and high accuracy such
as [8]–[10]. These approaches are classified into the follow-
ing types according to the interaction between the surgeon
and the robotic system: 1) hand-held surgery instruments [11]
fully controlled by the surgeon, 2) cooperatively controlled
robotic systems [12] in which the surgical instrument is
jointly controlled by the robot and surgeon and 3) teleoper-
ation systems, in which the robot is remotely controlled by

the surgeon via a guidance device such as a joystick [13],
[14]. In this work we employ a 5 DoF hybrid parallel-serial
robot [13], [15] specifically designed for delicate vitreoreti-
nal procedures, which can be controlled as a teleoperation
system or by a software framework.

Trocar Entry Point Detection and Pose Estimation: Till
date, only few works have been published with a motivation
similar to the one for autonomous trocar docking proposed
in this paper. Multiple works have focused on estimating
the TEP and positioning the Remote Center of Motion
(RCM) during surgery using a geometric approach [16]–[18]
or an external stereo-vision system [19]. Birch et al. [20]
recently published an initial paper on the development of an
instrument with two integrated miniature cameras to detect
the trocar position and an internal measurement unit to
estimate the RCM point of the robot. Rather than performing
the entire trocar docking procedure at an initial safe distance
from the target, such approaches focus on repositioning the
instrument to align the RCM with the TEP after instrument
insertion. In contrary, we detect the TEP and its pose at a
safe initial distance from the eye and autonomously navigate
the robot to perform docking and instrument insertion.

In recent years, 6D Pose Estimation of objects has become
a popular research topic. While depth-based methods show
higher accuracy than monocular-based methods, the recent
progress in the field of monocular pose estimation [21]–
[23], demonstrates the high capabilities of using monocular
camera instead of stereo or depth cameras. These approaches
can be categorized into two main groups: indirect and direct
methods. The indirect methods goal is to find 2D − 3D
point correspondences to directly derive the pose from a PnP
algorithm [24]. Direct methods, on the other hand, approach
the problem as a regression [22], [23] or classification [21]
task using a direct differentiable method. To estimate the
pose of a microsurgical trocar as part of our proposed system,
we use a mono-camera based direct approach, in order to
better cope with the texture-less and symmetric properties
of trocar and the limitations in the workspace of the robot,
as described in more detail in section IV-B.

III. DATASET

A major challenge in the learning-based detection of the
trocar and the estimation of its pose is the acquisition of
a dataset with accurate ground truth information containing
both the location and orientation of the TEP. Due to the lack
of available datasets, we generate a purely synthetic dataset
from a virtual setup, which contains virtual models of an eye,
a trocar, a surgical needle, as well as a virtual camera. The
camera and the tool are positioned relative to the eye and the
trocar similar to the real setup. In this virtual environment the
exact location and orientation of the trocar in relation to the
camera is known. The parameters of the virtual camera are
adjusted according to the parameters of the calibrated camera
that is mounted on the real robotic system and the resolution
of the rendered frames is adapted to match the image
resolution of the robot-mounted camera. To generate the
synthetic dataset, we randomize the position and orientation



of the trocar in the rendered frames, along with the location
of the trocar on the eye model. Furthermore, we vary the
metallic properties and glossiness of the trocar material, as
well as the direction and intensity of the lighting in the scene.
In 20% of the acquired frames the eye model is not rendered
to avoid bias towards specific eye characteristics, but rather
focus on learning the features of the trocar. In an effort to
improve robustness towards changing peripheral areas when
training deep learning models to estimate the TEP and pose,
randomized images from the cocodataset [25] are rendered in
the background of the virtual scene. The generated synthetic
dataset DSsynthetic contains 2000 images with ground truth
information of the TEP in image coordinates and the 3D pose
of the trocar in the virtual scene relative to the camera. For
fine-tuning and bridging the gap between the synthetic and
real data domain, we acquire two different labeled datasets,
consisting of images extracted from videos captured with
our proposed system. One of them, DStrainTEP , is used for
the TEP detection, while the other one, DStrainPoseReal, is
used for orientation estimation. To acquire these datasets, a
microsurgical trocar (23G from RETILOCK) was inserted
into a phantom eye and the robotic setup was positioned in
a realistic distance from the trocar. Two different phantom
eyes (VR Eye from Philips Studio and BIONIKO eye model
with flex orbit holder) were used to replicate real surgical
scenarios. Fig. 3 shows an example of a synthetic and a
real image. For DStrainTEP , six videos were acquired, from
which 1280 frames were extracted to create the dataset. The
ground truth location of the TEP was manually annotated
by a biomedical engineering expert. DStrainPoseReal con-
sists of 100 images, in which we obtain the ground truth
orientation of the trocar in relation to the camera using a
marker aligned with the trocar. With the same approaches,
160 images were extracted creating the dataset DStestTEP
and 50 images creating DStestPoseReal, which are used for
the evaluations presented in section V.

(a) (b)

Fig. 3. A synthetic (a) and a real (b) image with similar trocar poses.

IV. METHOD

In this section, the proposed method for autonomous trocar
docking is described in detail. Firstly, the setup consisting of
an ophthalmic robot and a mono-vision camera mounted on
the robot endeffector is illustrated. Thereafter, the compo-
nents to detect the position and orientation of the trocar, as
well as the post-processing steps to refine the estimations
are presented. Finally, we outline the trajectory planning to
autonomously align the instrument with the trocar orientation

(c)(a)

TEP Loss

(b)

Rotation Loss

Fig. 4. The proposed pipeline for the 4DoF trocar pose estimation. a. A
U-Net like network to segment the TEP, b. Cropping the image around TEP,
c. A Resnet34 to regress the pose.

and navigate the tooltip towards the TEP to perform the
docking procedure.

A. Setup

In this work, a 5DoF robotic micromanipulator [15], [26]
is employed. The robot consists of two parallel coupled joint
mechanisms for translation and rotation in two axes and a
decoupled prismatic joint for Z movement of the endeffector.
All joints are actuated by micron-precision piezo motors
with integrated sub-micron optical encoders. To achieve
autonomous trocar docking, a Teslong Multi-Function Sol-
dering Magnifier Camera is calibrated and rigidly mounted
on the endeffector of the robot. A sub-retinal cannula (23G
with 40G tip) is attached to the robot endeffector and a 3D
printed holder was specifically designed to mount the camera
to the syringe in a suitable orientation. The proposed robotic
setup is illustrated in Fig. 2. For this Eye-in-Hand [27] setup,
in which the endeffector moves the instrument along the
camera, a Hand-Eye calibration [28] is performed to acquire
the camera pose w.r.t. to the robot.

To create realistic docking targets, conventional 23G tro-
cars are placed 3.5 mm posterior to the limbus of two surgical
training phantom eyes (described in section III) with proper
scleral textures and deformability.

B. 4DoF Trocar Pose Estimation

In a typical vitreoretinal surgery, several trocars are placed
to provide the ports for instruments and access to the
surgical site. The first step towards autonomous robotic trocar
docking is identifying the appropriate entry point and pose
of the target trocar based on image frames captured by the
camera mounted on the robot. Our goal is to estimate the
projected 2D point of the closest trocar’s TEP in the current
image plane and the normal vector of its cross-section. Due
to the nature of vitreoretinal surgery and the small working
area of the surgical robot, the robot’s endeffector is initially
positioned in a reachable distance to the trocar. Thus, the
closest trocar is the docking target, which is also directly
visible in the camera’s field of view. We employ a two stage
4DoF pose estimation neural network, to address both the
TEP and trocar pose estimation from single RGB images. We
initially locate the TEP by the first network, which extracts



the ROI that is subsequently forwarded to the second net-
work, responsible for estimating the orientation. Obtaining
the orientation along the TEP provides the homogeneous
location of the trocar, which is the basis of our hummingbird-
inspired docking approach, as explained further in section
IV-C.

Trocar Entry Point Detection. Detecting the TEP is,
firstly, relevant for extraction of a ROI to be later used for
pose estimation, and controlling the robot to align the tooltip
with the trocar orientation and to perform the trocar docking
procedure. In addition, a small region of interest around the
TEP is subsequently extracted from the input frame and used
to estimate the trocar orientation. Rather than using an object
detection network to estimate a bounding box around the
trocar, it is instead important to estimate the exact location of
the TEP, since, depending on the orientation of the trocar, the
entry point cannot easily be obtained from a bounding box.
For this stage, a U-Net-style network [29] using a Resnet34
[30] as a backbone feature extractor is trained to obtain the
location of the TEP in the camera images. To generate the
ground truth images for training the network, a Gaussian
function is applied around the ground truth TEP with a
maximum distance of 15 pixels from its center and a sigma
of 1.

The network is first pretrained on DSsynthetic and after-
wards fine-tuned on DStrainTEP . The last network layer
uses the sigmoid activation function, which is followed by
the binary cross entropy loss.

To derive the final image coordinates of the TEP location
for each processed frame, we consider all pixel locations
(x, y) in the network output, which satisfy the equation

pred(x, y) ≥ 0.8 ∗max(pred) (1)

where pred(x, y) defines the confidence that the output
image at the pixel location (x, y) is classified as TEP and
max(pred) is the overall maximum value in the network’s
output image. The TEP is then estimated as the median of
the extracted candidate locations.

During inference, we apply further post-processing which
combines the predicted locations of every seven consecutive
frames to improve the robustness of the prediction. First,
the median value of all seven predictions is calculated and
the Euclidean distance between each individual prediction
and the overall median value is determined. All predictions
more than one quarter of a standard deviation distant from
the overall median location are considered outliers. The
remaining estimates are then averaged to produce the final
TEP.

Orientation Estimation. While dealing with a texture-less
and symmetric object as a trocar, we leverage a direct pose
estimation method with symmetric loss to predict the normal
vector of trocars’ cross-section.

In order to have a continuous space of rotations in SO(3),
we follow the method introduced in [31] to parameterize
rotation angles. As demonstrated in [22], [23], the mapping
function f to the 6-dimensional representation R6d is defined

as the first two columns of R

f

 R1 R2 R3

 =

 R1 R2

 (2)

Given a 6-dimensional vector R6d = [r1|r2], the unit and
orthogonal rotation matrix R is computed as

R1 = φ(r1)

R3 = φ(R1 × r2)

R2 = R3 ×R1

, (3)

where φ(•) denotes the vector normalization operation.
For the convenience of our problem, we use a permutation

of columns of R which changes the 6D representation to

R6d = [RZ | RY ] (4)

Thereafter, we use a Resnet34-based [30] backbone to
convert the input image, derived from a trocar-centered ROI
extraction into its features, followed by fully connected
layers to regress to the 6D representation of the rotation.
Assuming the coordinate system of a trocar as illustrated in
Fig. 5, it can be seen that a trocar is symmetric along its Z
axis. In this regard, we design a loss which does not penalize
the network for non-relevant rotations around the trocar’s z
axis. The angle between the ground truth RZ and estimation
can be computed as:

∆θ = arccos(Rgt
Z ·Rpred

Z ) (5)

For `2-normalized vectors MSE is proportional to cosine
distance, and due to this fact we use Eq. 6 as the loss
function, which shows a more promising convergence.

Lrotation = MSE(Rgt
Z ,R

pred
Z ) (6)

Fig. 5. Illustration of the trocar coordinate system. The trocar orientation
can be defined only by the rotation around its x and y axis, which are
visualized in red and green, respectively.

In order to be robust against noise, we average seven
consecutive estimations using the method introduced in [32].

C. Trajectory Planning

Due to the non-unique Z value obtained from the TEP
detection, it is not possible to apply a direct docking process.
This creates the need for designing a method to dynamically
find the appropriate trajectory for the robot. In this work
we have designed a procedure, inspired by hummingbird’s
docking approach [6]. We first align the tooltip and trocar
orientation, followed by the alignment of the XY translation
of the tooltip with TEP. As drawn in Fig. 6, keeping the
tooltip on the line which connects the trocar’s entry location



(d) Trocar Location

(c) Homogeneous Trocar Locations

(a) Mono Camera

(b) Image Plane

(e) Robot End-Effector
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Fig. 6. Trajectory of the tooltip, compared to the camera and trocar’s
homogeneous location, illustrated in a 2D projection.

to the camera, we start approaching the trocar with an
adaptive speed. With this approach we ensure the tooltip is
always aligned with the trocar, and the tooltip’s projected
position is aligned with the TEP’s projected position in each
image plane. By iteratively following this approach, we can
also compensate for small movements of trocar.
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Fig. 7. The offset between the ground truth TEP and the detected TEP in
x and y direction in pixel. The color scheme indicates the number of times
each offset was attained. To aid illustration, two outliers with euclidean
distances to the ground truth location of 320 and 216 pixel were omitted.

V. EXPERIMENTS AND RESULTS

To validate our proposed system, we first separately eval-
uate its sub-components and finally the overall autonomous
trocar docking performance. In the following, we demon-
strate the accuracy of the TEP detection and trocar ori-
entation estimation. We finally recreate a surgical scenario
using phantom eyes and demonstrate the validity of our
system by reporting the success rate of our method. We
additionally show that the autonomous docking procedure
does not increase the operation time compared to the manual
joystick-based approach. Besides the quantitative results pre-
sented in the following sections, we provide qualitative visual
results of the TEP and orientation estimation as well as the

autonomous docking procedure as supplementary materials
along with this paper.

A. Trocar Entry Point Detection

To evaluate the detection of the TEP we use our test set
DStestTEP consisting of 160 images, which were extracted
from a video captured with our proposed setup. The 2D
image coordinates of the ground truth TEPs were manually
annotated in the image frames. The detected location of
the TEP is then compared to its respective ground truth.
The overall achieved median, mean and standard deviation
of the error in x and y image coordinates are 6.19, 2.82,
and 30,29 pixel, respectively. Given an image resolution of
1280×720 pixels using our robot mounted camera, the offset
error results in a mean of 0.74%, a median of 0.28%, and a
standard deviation of 3.75% from the annotated entry point.
Fig. 7 illustrates the detection error along with the number
of occurrences of each offset evaluated in our test set. The
corresponding euclidean distances in pixels are visualized in
Fig. 8. The comparably high standard deviation is caused by
two outliers, of which one showed a euclidean pixel distance
of 320 and 216 pixels, respectively.

0 2 4 6 8 10 12 14 16

Fig. 8. The euclidean distances between the estimated TEPs and the
respective ground truth locations in pixel. Similar to Fig. 7, two outliers
were omitted for improved visualization.

Ground Truth

Prediction

Fig. 9. Comparison between the ground truths and the pose regression
network on the test set of the synthetic dataset.

B. Trocar Orientation Estimation

After training the pose estimation model on the
DSsynthetic and fine-tuning on DSrealPoseTrain, we eval-
uated the results on the real images of our test set
DSrealPoseTest. As illustrated in the Fig. V-B, the model
has achieved an accuracy of 80% to estimate the trocar
orientation below 10◦ error, and 94% below 15◦, which is
achieved by fine tuning on a small set of real data. It is worth
mentioning that the generation of a real dataset with ground
truth orientation of the microsurgical trocar is challenging
and prone to small errors due to the marker-based estimation.
Therefore, this quantitative evaluation is limited to the quality
of the generated ground truth orientation.



Fig. 10. Pose estimation error on test set of the real dataset

C. Autonomous Trocar Docking

To validate our entire system for autonomous trocar dock-
ing, we simulate a surgical environment consisting of the
robotic setup and a VR Eye from Philips Studio, which
is attached to a head phantom. For each trial we initially
position the robot at a randomized location near the target
trocar, ensuring that the docking target is located within the
robot workspace and that the TEP can be reached during
the docking process. From the initial position, the robot then
aligns the instrument with the trocar orientation and moves
the tip towards the TEP as described in Section IV-C. Our
experiments showed that out of 11 attempts, the robot was
able to successfully reach the TEP and perform docking in
10 cases. In one case, the instrument touched the edge of
the trocar and missed the entry point. However, this was due
to a hand-eye calibration error between the instrument tip
and the camera caused by a deformation of the tooltip. The
average time to completion 10 successful autonomous trials
was 35.1 seconds with a standard deviation of 3.2 seconds.
For comparison, two biomedical engineers trained to control
the robot with a joystick performed the docking task with
the same setup. The manual alignment took on average
40.8 seconds but showed a higher variance in the time to
completion with a standard deviation of 12.75 seconds. The
maximum time required for autonomous docking was 41
seconds compared to 57 seconds for manual alignment

VI. DISCUSSION AND FUTURE WORK

In our current experiments, one constraint of our method
is the working space of the microsurgical robot. To perform
successful docking, the robot has to be positioned in prox-
imity to the trocar, so that the instrument can be aligned
with the trocar and the entry point can be reached. However,
the challenging act of aligning and inserting the instrument
is still performed autonomously by the robot. When using
a robot with a larger working space, autonomous docking
could also be performed from a greater starting distance.

In this work, we used a sub-retinal cannula (23G with
40G tip) with a straight tip, therefore, the introduction of
the cannula into the trocar was performed by a final ”Z”

movement, following the proper docking alignment. For
bent-tip cannulas, this method can be extended for more
complex introduction trajectories. Here, if the trocar is out
of detection range (due to movement of the eye during the
procedure, or coverage by an external objects or blood), the
docking procedure is stopped until the trocar is back to the
detection range.

As our experiments have shown, the current setup is
able to perform autonomous trocar docking and insert the
instrument into the eye. Once the instrument has reached the
desired insertion depth, the process is manually stopped. In
future works, we will investigate suitable stopping criteria to
autonomously insert specific tools to the desired depth within
the eye (e.g. when the tip appears in the microscopic view).
Additionally, our approach can be extended to dynamically
adjust for changing trocar position during the insertion
process. We will also further analyze the force applied
during autonomous robotic trocar docking and compare it
to the force applied during conventional manual insertion, as
autonomous trocar docking could lower the force applied on
the sclera, thereby reducing patient trauma.

VII. CONCLUSION

In this paper we proposed an autonomous docking system
inspired by the natural behaviour of hummingbirds for min-
imally invasive robotic surgery. Goller, Altshuler et al. in [6]
and [7], presented ”Feeding hummingbirds use vision, not
touch, to hover at flowers”. They showed hummingbirds are
identifying their target entry point and after approaching they
fix their head and proceed in ”Z” direction to insert their beak
into a flower. Learning from this natural phenomena, our sys-
tem for autonomous trocar docking and instrument insertion
is based on a camera mounted to the endeffector of a micron-
precision robot. The approach first obtains the position of
the TEP and subsequently estimates the trocar’s orientation
from RGB images. The robot then aligns instrument with the
trocar orientation and autonomously performs the docking
procedure. Our experiments have shown that the TEP can be
detected with a clinical grade accuracy with a mean euclidean
error of 3 pixel given an image resolution of 1280 × 720
pixel. The detection of this point is extremely important
for the subsequent pose estimation, since the input for the
pose estimation network comprises a small region around
the estimated TEP. Further experiments were performed to
validate our system by evaluating the entire autonomous
docking procedure using a conventional 23G trocar mounted
on a surgical training phantom eye: Successful trocar docking
could be achieved with high repeatability and an average
time of 35 seconds, which indicates the potential of our
method. We consider this work as a proof that the proposed
method for autonomous robotic trocar docking is a valid
approach towards automatizing a task, which in robotic
surgery would otherwise require additional cognitive effort
from the surgeon.
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