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Abstract

Establishing correspondences from image to 3D has
been a key task of 6DoF object pose estimation for a long
time. To predict pose more accurately, deeply learned dense
maps replaced sparse templates. Dense methods also im-
proved pose estimation in the presence of occlusion. More
recently researchers have shown improvements by learning
object fragments as segmentation. In this work, we present
a discrete descriptor, which can represent the object surface
densely. By incorporating a hierarchical binary grouping,
we can encode the object surface very efficiently. Moreover,
we propose a coarse to fine training strategy, which enables
fine-grained correspondence prediction. Finally, by match-
ing predicted codes with object surface and using a PnP
solver, we estimate the 6DoF pose. Results on the public
LM-O and YCB-V datasets show major improvement over
the state of the art w.r.t. ADD(-S) metric, even surpassing
RGB-D based methods in some cases.

1. Introduction

Augmented reality and robotics are two of the main ap-
plication fields of 3D computer vision. In many augmented
reality applications, the location and pose of an object of in-
terest has to be determined at a high precision [46,55]. Sim-
ilarly, object grasping and manipulation is needed for many
robotic applications (e.g. automatic manufacturing [51], co-
operative assistance [9, 21]), and also demands accurate 6
Degree-of-Freedom (6DoF) object pose information. As the
crucial element in both application domains, estimating the
6DoF object pose has received increasing attention from the
computer vision research community.

The correspondence problem is a classical problem in
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Figure 1. ZebraPose assigns a discrete code to each surface ver-
tex hierarchically. We project the code as binary black and white
values (top) and learn them using deep neural networks. Our bi-
nary descriptor allows one-to-one correspondence for the problem
of 6DoF object pose efficiently.

computer vision. While finding correspondences across the
same domain is more straightforward, estimating the 6DoF
object pose requires 2D-3D correspondences. In earlier ob-
ject pose estimation research, depth maps came to help to
match image pixels to 3D surface points [28, 65]. Due to
cost and setup complications, the detection of 6DoF pose
without depth information can be advantageous. However,
RGB approaches typically achieve a lower accuracy with
respect to their depth-based counterparts [16, 26].

Driven by the recent developments in deep learning and
Convolutional Neural Networks (CNNs), various methods
were proposed, which make 6DoF pose estimation from
a single RGB image feasible [10, 34, 54, 62, 70]. In a
correspondence-based setting, to estimate the object pose,
Perspective-n-Points (PnP) algorithms require at least 4 2D-
3D point matches [39]. Therefore, sparse methods are ap-
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plied to extract points of interest [48, 53]. However such
methods might fail to find object landmarks under view-
point changes, occlusion, or lack of texture. With the suc-
cess of deep neural networks in image synthesis problems,
researchers use such tools to generate dense correspondence
maps. For instance, several methods learn UV [72] or UVW
[49, 68] values in object local coordinates. Since the net-
work produces dense smooth results, certain low-level ge-
ometry is lost. Moreover, neural networks tend to achieve a
higher performance in classification tasks [34].

To this aim, we propose a dense correspondence pipeline
that combines the concepts of handcrafted features and im-
age segmentation in a hierarchical fashion for RGB-based
6DoF pose estimation. In order to design a descriptor that
encodes surfaces efficiently, we use the binary numeral sys-
tem. Binary-based descriptors are applied in ORB [57] and
are still in use in robust SLAM applications [12]. In our
work, we split the surface into halves in multiple iterations
and define our vertex encoding by stacking the assigned
group labels. By leveraging a hierarchical discrete represen-
tation, we guarantee a compact mapping and simple learn-
ing objective as a multi-label classification problem [29,34].
Moreover, learning how to encode a full sequence at once
might be challenging for neural networks. Therefore, we
propose a coarse to fine learning scheme. By design, our
encodings on the coarse levels are continuously shared in
wider object regions. As the network learns to differentiate
coarse splits, we focus on finer encoding positions. With a
coarse to fine loss and training strategy, we then manage to
predict fine-grained surface correspondences.

In contrast to previous works where there is no guaran-
teed putative correspondence [49,50,68], our encoding pro-
motes direct pixel-to-surface matching just by means of a
look-up table. With a simple matching and PnP-RANSAC
scheme of Progressive-X [2], we outperform the state of the
art in 6DoF pose on the most commonly used benchmarks
w.r.t. ADD(-S) metric.

In summary, we propose ZebraPose, a two-stage RGB-
based approach that defines the matching of dense 2D-3D
correspondence as a hierarchical classification task. We di-
vide the general two-stage approach for 6DoF object pose
estimation into three components: 1) assigning a unique de-
scriptor to the 3D vertex; 2) predicting a dense correspon-
dence between the 2D pixels and 3D vertices; 3) solving the
object pose using the predicted correspondences. We can
summarize our proposed contributions in this paper related
to the first two components:

• A novel coarse to fine surface encoding method as-
signing the dense vertex descriptor in an efficient way,
which also fully exploits traditional outlier filters used
in computer vision task.

• A novel hierarchical training loss and strategy to auto-

matically adjust the weights of each code position.

Extensive experiments on LM-O [3] and YCB-V [11]
datasets show that our proposed approach achieves state of
the art results.

2. Related Work
We limit our in-depth discussion of related work to the

most relevant methods to our work, i.e. RGB-based 6DoF
pose estimation, and object surface encoding techniques.

2.1. RGB-based 6DoF Pose Estimation

Traditional Methods. With the development of the
feature descriptor [43], the object pose problem could be
solved by feeding estimated 2D-3D correspondences into a
RANSAC/PnP framework. However, dealing with texture-
less objects remained a challenge. To overcome the lack
of keypoints, Hinterstoisser et al. [25] proposed to utilize
the image gradient information and formulate the pose es-
timation task within a template matching pipeline. Later
advances [5] avoided the template searching time by apply-
ing a statistical learning-based framework to regress object
coordinates and object labels jointly. However, the accu-
racy that handcrafted methods can achieve is far from that
of deep learning methods nowadays.

End-to-End Methods. PoseNet [35] was the first work
that attempted to regress the camera viewpoint with a CNN.
Following works usually concatenated an object detector
with the pose regression, making multi-object pose esti-
mation possible [70]. Finding a suitable rotation represen-
tation for pose regression was a problem at that time and
typical rotation parametrization did not populate Euclidean
spaces [8]. SSD6D [34] avoided complex parameters by
discretization of the rotation space thus treating the rota-
tion estimation as a classification problem. Zhou et.al [74]
proposed a continuous 6-dimensional rotation representa-
tion that shows advantages over quaternions [44, 45] or Lie
algebra [20,61] parametrization for neural network training.
This representation is utilized in several direct regression
works [19, 37, 67].

In parallel, several efforts have been made to integrate
RANSAC and PnP modules to pose learning frameworks.
[4,6,7] propose differentiable RANSAC variants, which are
not applicable to object pose estimation as they require a
good initialization and complex training strategy. [30] pro-
poses a network to solve the PnP problem, with a loss func-
tion reflecting pose metrics. At the same time, a new branch
of methods has been developed with the growth of neural
renderers [15, 33, 42]. [32] is able to define the loss accord-
ing to the texture colour on pixel level. [59, 66] used a dif-
ferentiable depth map and achieved self-supervised network
fine-tuning with unlabeled RGB-D data. In an effort to com-
bine correspondence-based methods with direct regression
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of 6DoF parameters, [67] used correspondence maps as an
intermediate geometric representation to regress the pose.
[19] further enhances [67] by employing self-occlusion in-
formation that provides richer information to predict the ob-
ject pose with the predicted 2D-3D correspondences.

Indirect Methods with Deep Learning. While end-to-
end methods have evolved through time by integrating dif-
ferentiable modules, the performance of such methods are
normally below geometrical and indirect methods. Combin-
ing learning features and geometrical fitting, [69] uses met-
ric learning to learn an implicit pose representation through
triplet loss and finally looks for nearest neighbors in pose
space. AAE [62] learns to generate a latent vector based on
the visual information of the object in discrete viewpoints.
At inference stage, the rotation is obtained by comparing
the latent code with the pre-generated rotation-latent code
lookup table. The rest of the indirect methods usually esti-
mate the 2D-3D correspondence, and solve the object pose
using RANSAC/PnP. BB8 [53] firstly defines the 3D ob-
ject bounding box corners as the keypoints and PVNet [50]
reaches high recall rate in LM [27] dataset by predicting the
keypoints with a dense pixel-wise voting for sampled key-
points on the object. The main drawback of such sparse
2D-3D correspondence methods is that the prediction of
keypoints in the occluded area lacks in accuracy. Hybrid-
Pose [60] proposed to leverage multiple geometric infor-
mation to tackle this issue while other methods [29, 49, 72]
predict pixel-wise dense 2D-3D correspondences.

2.2. Surface Encoding

The binary surface encoding technique has been success-
fully used in the field of structured light reconstruction for
many years [47,52,58,64]. For this purpose, a video projec-
tor illuminates the scene with several successively refined
binary fringe patterns. The composition of the different
stripe patterns provides an encoding of the surface points.
Surface coding using multiple classification problems has
proven to be highly reliable and competitive [22]. Since
neural networks are ideally suited for solving classification
problems, a transfer of the approach as we presented in this
work constitutes a logical step.

In pose estimation domain, to estimate the dense 2D-3D
correspondence, each 3D corresponding point must be as-
signed a unique descriptor. Pix2Pose [49] simply treats the
3D vertex coordinates as this descriptor. DPOD [72] tex-
tures the object with a 2-channel UV-map with discrete val-
ues to learn the correspondences. EPOS [29] divides the
object surface into multiple fragments, and estimates the
corresponding points by combining fragment segmentation
and local fragments coordinates prediction. Although most
of these encodings are limited to local object coordinates,
we propose a method that learns dense 2D-3D correspon-
dence through a handcrafted code. Compared to methods

that predict local coordinates space [68, 72] in 2D or 3D
grid, we encode the object surface in a coarse to fine man-
ner. Moreover, unlike EPOS [29] that divides the object
surface into multiple coarse bins at once, we divide the ob-
ject surface iteratively until the fragments are fine enough
to define the unique 3D corresponding point. This allows
for gradual refinement of the correspondence through the
hierarchical levels.

3. Method: ZebraPose
In this section, we present our approach for the problem

of 6DoF object pose, which involves the entire process from
our surface encoding to the final pose estimation.

3.1. Coarse to Fine Surface Encoding

Given a surface CAD model of an object and its vertices
vi ∈ R3 , where i stands for the vertex id, we want to rep-
resent each vi with vertex code ci ∈ Nd, where d is the
length of the vertex code. We need to define such encoding
based on vertices’ position relative to the given 3D object
surface to enable coarse to fine learning. To enable this, we
construct our codes in a non-decimal numeral system.

Defining our encoding in a numeral system with lower
radix makes the representation very efficient and provides
easier grounds for coarse to fine grouping of the points. For
a code of length d, we perform d iterations of grouping of
the vertices. The collection of groups Gj in the j-th iter-
ation (j ∈ {0, ..., d} ⊂ N) consist of rj groups. G0 de-
fines the initial group, including only one group, i.e. the
entire object vertices. Gj with j > 1 is obtained by split-
ting each group in Gj−1 into r groups. In a grouping itera-
tion, each vertex vi is assigned with a class id mi,j , where
mi,j ∈ {0, ..., r − 1} ⊂ N based on the group it belongs
to in the j-th grouping. Finally, each vertex is assigned to
a vertex code with d digits by stacking the class id of each
grouping operation. This representation is stored and fixed
for every 3D object. The vertices in each group share the
same code. We build the lookup table to map a code to
the centroid of the each group in Gd, which is further used
to build 2D-3D correspondence and solve the pose as de-
scribed in Sec. 3.6. In this paper, we used k-means for the
grouping, more details are in Sec. 4.1. We illustrate this pro-
cess in Fig. 2 with r = 2 and break down the CAD model
surface into discrete and equally sized groups.

3.2. Choice of the Radix for Vertex Code

Following our grouping described in Sec. 3.1, we would
have K total number of classes, where K = rd. In a classi-
fication problem we learn these maps using o logits, where
o = r ·d. To minimize the number of outputs while learning
the most number of classes we have:

omin = min
r
r · d = min

r
r · logrK = 2 · log2K. (1)
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Figure 2. Left: Our hierarchical encoding is defined by grouping surface vertices in several iterations. In each iteration, object vertices are
split into equally sized groups. In a binary setting, vertices are classified into two groups, 0 (white) and 1 (black). This process happens
offline and the generated mapping between vertex code and the corresponding 3D vertex is stored in a look-up table. Right: Our training
framework uses a detector to crop the object ROI and predicts a multi-layer code using a fully convolutional neural network. The predicted
code is then matched to the 3D surface vertex and passed to RANSAC and PnP modules for pose estimation.

The best positive integer choice of r to minimize the num-
ber of network layers are 2 and 4. Since a value is classified
either as positive or negative, we do not need to use the cross
entropy loss with 2 explicit output layers for the binary clas-
sification. So we can reach log2K as the optimal number of
output layers with r = 2.

Besides the advantages of reduced GPU memory re-
quirement, we show later in the ablation study (see Sec. 4.2)
that using the binary vertex code yields the most accurately
predicted pose. Thus we choose a binary base for the vertex
code.

3.3. Rendering the Training Labels

Each object pixel in the image corresponds to a 3D object
vertex. The network predicts the class id that is assigned to
this vertex in each grouping operation. Therefore, we still
need to render the class id into the 2D image plane with a
given pose for the training. For this purpose, we transfer the
class id of vertices into the class id of the mesh faces using
the following criteria: if two vertices of a face have the same
class id, the face is assigned with this class id. Otherwise,
the face has the class id of its first vertex. We repeat this
rendering process for d times until the training label class
id for each grouping is generated.

3.4. Network Architecture

In Sec. 3.2 we justify our choice of r = 2. In this regard,
our goal is to classify 2d regions with only d binary values.

During training, we use the object pose annotations to
render the labels as layered black and white maps to im-
age coordinates. This way, our objective learning maps are
d + 1 binary labels (d for the binary vertex code and 1 for
the object mask) for code and visible mask prediction. An

encoder-decoder network generates d + 1 outputs with a
single decoder. We round the final output probabilities to
represent our discrete vertex codes.

The entire process from input images to the predicted
pose is presented in Fig. 2. To predict the code per pixel in
the frame with fine granularity, we process only a Region of
Interest (ROI) around object pixels. Following the pipeline
similar to [37, 41, 67], we focus on the object pose and use
the available 2D detector predictions to find the ROIs. We
crop and resize the ROI from the prediction to a fixed di-
mension H×W, and apply the exact process to the target
vertex code maps during training. Our goal is to predict
multiple labels per frame in the ROI.

3.5. Hierarchical Learning

Predicting correspondences directly from object pixels is
a fine-grained task. On the other side, deep neural networks
are commonly used for coarse level predictions. This means
features predicted per pixel are very similar in a small vicin-
ity. As our encoding is also hierarchical by design, we learn
the codes in a coarse to fine manner. Therefore, the predic-
tions are learned in different stages, from coarse groupings
to fine ones. We use an error histogram for each position
on hierarchical level and weight our Hamming-based loss
given the error to design this.

Mask loss. Firstly, we predict the visible mask to seg-
ment the object area from the background. Here, we simply
pass the predicted probability to the sigmoid function and
use L1 loss as Lmask. It is worth noting, for the binary ver-
tex code prediction in the following, we only calculate loss
of the pixels within the predicted object mask.

Hamming distance: The CNN outputs the binary ver-
tex code probabilities p̂ ∈ Rd for a pixel within a ROI, we
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obtain the predicted discrete binary code b̂ by rounding p̂.
Given b̂ and its known ground truth binary vertex code b,
the Hamming distance Hamm is defined by counting the
number of bits b̂ which are different from b. This formula-
tion does not favor any of the positions and calculates the
error without considering any hierarchical information ex-
plicitly. As a common practice in deep learning, we use
binary cross-entropy as an activation function for the dis-
tance:

Hamm(b, p̂) =

d∑
j=1

bj log p̂j + (1− bj) log(1− p̂j), (2)

where bj stands for the j-th bit in b (the j-th bit is generated
in the j-th vertices grouping).

Active bits. Lower bits in binary vertex code b hold
coarse correspondences, and higher bits define finer esti-
mates. During the initial training phase, the network fo-
cuses on learning the coarse splits and has a higher error on
fine bits. Therefore we adaptively weight the coarse bits by
looking at the histogram of error of all bits. As the train-
ing proceeds and coarser predictions become more robust,
finer bits are induced with more weights. We define our his-
togram at training step t by looking at the error at different
bits:

Hj(t) = avg(λ(btj − b̂j
t
) + (1− λ)(bt−1

j − b̂j
t−1

)), (3)

where b̂j
t

defines the predicted binary vertex code b̂j at
training step t, and λ is a constant. With the avg operator,
we get the error ratio by calculating the average difference
in btj and b̂j

t
of all pixels within the predicted object mask

in a mini-batch. During training we update the histogram
given the previous histogram in training step t − 1 and the
current error histogram. We show how to define a hierarchi-
cal loss based on the histogram in the following.

Hierarchical loss. We compute a weighting coefficient
based on the error histogram, and use it on top of a Ham-
ming distance to form our hierarchical loss with

wj(t) = exp(σ ·min{Hj(t), 0.5−Hj(t)}), (4)

where the function w uses an exponential term to softly de-
fine a weight for n-th bit at training step t, σ is a constant.
All object pixels in the mini-batch share the same weight-
ing coefficients. We normalize the weights across all bits.
We then define our hierarchical loss based on the weighting
function of active bits and Hamming distance as below:

Lhier =

d∑
j=1

wj ·Hamm(bj , p̂j). (5)

With this loss we focus mainly on active bits which
automatically change from coarse to fine during training.

Total loss to train the CNN. We weight the Lmask and
Lhier with a hyper-parameter α (α set as 0 for pixels pre-
dicted as background), the total per pixel loss can be math-
ematically expressed as

Ltotal = Lmask + α · Lhier. (6)

3.6. Pose estimation

In previous sections, we discussed how to generate our
descriptor and learn to predict them using a fully convo-
lutional neural network. Now we incorporate the predicted
code and visible mask and the reference 3D model encoding
to match correspondences. Different from common dense
correspondences such as [49,67,68], this compact represen-
tation also enables a bijective correspondence between the
surface vertices and the descriptor space. That means, un-
like the regressed 3D point which can be off the object sur-
face, our estimated 3D correspondences always refers to a
vertex on the object model, which eases the matching stage
for the pose solver. For the matching, we use a look-up table
that extracts the corresponding 2D and 3D points. Follow-
ing that, we use Progressive-X [2] solver to calculate the
rotation R and translation t.

4. Experiments
In this section, we firstly introduce the implementation

details, the datasets and metrics used for the evaluation.
Subsequently, we present ablation study experiments on the
LM-O [5] dataset. Finally, we compare our experimental
results with state of the art methods on the LM-O [5] and
YCB-V [70] datasets. Please refer to supplementary mate-
rials for more qualitative results.

4.1. Experiments Setup

Implementation Details. In order to have the same
number of classes as DPOD [72] (K = 2562), we firstly
upsample the mesh by subdivision of each face using the
edge’s midpoint [14] until the mesh has more than 2562 ver-
tices. Subsequently, we group the 3D vertices of the object
model as we described in Sec. 3.1 with r = 2 and d = 16.
After several iterations of the grouping operation, a group
could contain fewer points than 2 and cannot be grouped
further. To avoid this, we modified the k-means++ cluster-
ing algorithm [1], to force both output groups of points to
have equal sizes.

We modified Deeplabv3 [13] by adding skip connections
and used Resnet34 [23] as the backbone. The input ROI is
resized to the shape of 256×256×3, and the CNN output
has a height and width of 128. We applied the same dy-
namic zoom-in strategy as CDPN [41] to generate the noisy
ROI for the training. The parameter λ used in the histogram
is 0.05. The parameter σ used in the hierarchical loss is 0.5,
and α has been set as 3 to balance the training for mask and
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vertex code prediction. The CNN has been trained 380k
steps using the Adam optimizer [36] with a batch size of
32 and a fixed learning rate of 2e-4. During the inference
stage, we utilize the detected bounding box with Faster R-
CNN [56] and FCOS [63] provided by CDPNv2 [41]. If
not specified, we used detected bounding box from Faster
R-CNN in the ablation study.

Additionally, by changing any bit in the vertex code, the
code refers to another 3D point, possibly even to a vertex on
the other side of the object. To maintain the topology pre-
sented with the ground truth correspondence map, we dis-
abled the interpolation during the rendering when we gen-
erated the ground truth. The resizing of ground truth is also
done with nearest neighbourhood interpolation in the train-
ing stage.

Datasets. The reported recall rate in LM [28] dataset
has lately been higher than 95% and quite saturated, there-
fore we focus on the more challenging LM-O [5] and YCB-
V [70] dataset in this paper. LM-O consist of 1214 images
and is only used as test images. LM-O annotated 8 objects
poses in the images under partial occlusion, making pose
estimation more challenging. About 1.2k images per ob-
ject in LM are used as the real training images for LM-O.
Compared to LM-O, YCB-V is a large dataset containing
21 objects. Although YCB-V provides more real training
images, the objects are strongly occluded in the scene, and
many of the objects are geometrically symmetric.

Since the LM-O dataset includes only a limited num-
ber of training images, [34, 50] additionally render a large
number of synthetic images for training. However, due
to the domain gap between the synthetic and real images,
the performance of the methods also heavily depends on
the domain randomization and domain adaptation tech-
nique [62, 71]. As the physically-based rendering (pbr)
training images [18] for both datasets are publicly acces-
sible now, using pbr images to support the training can help
us focus on the pose estimation CNN itself. We use the pbr
images together with the real images for the training in the
same manner as [19, 29, 67].

Error Metrics. We selected the ADD(-S) error metric
as the most commonly used metric for the 6DoF pose es-
timation task. This metric calculates the average distance
of model points projected to the camera domain using the
predicted pose to the same model points projected using
the ground truth pose. For symmetric objects, the metric
matches the closest model points projected with the ground
truth pose instead of the same model point. In all the exper-
iments in this paper, if ADD(-S) error is smaller than 10%
(most commonly used threshold) of the object diameter, the
predicted pose is considered to be correct For YCB-V, we
also reported the AUC (area under curve) of ADD(-S) with
a maximum threshold of 10 cm [70].

4.2. Ablation Study on LM-O

In this section, we present the results of several ablation
studies as follows:

Length of Binary Vertex Code. The object 3D surface
is encoded through iterative k-means++ clustering until the
size of the segmented cluster is small enough so that we
can map the vertex code to the centroid of each cluster. We
used the same total number of classes as DPOD [72], which
means each binary vertex code has 16 bits. However, if the
objects are small or the distance of the object to the cam-
era is too large, different clusters in the fine level could be
rendered into the same pixel when we generate the ground
truth data. This makes the binary code in the fine levels (the
last few bits) redundant. Due to the distance variation of the
object to the camera, we can not determine which bits are
redundant.

In this ablation study, we research which bits are the re-
dundant bits. The models are trained without the hierarchi-
cal training strategy, and we use Progressive-X [2] to solve
the pose. We ignore the last few bits of the predicted bi-
nary code in the inference stage. The new binary vertex
code with fewer bits refers to a larger point cloud group (see
Fig. 2 left). We calculated the new centroid of the group and
reassigned the centroid as the corresponding 3D points for
the binary vertex code with fewer bits. From Fig. 3 b) we
can see that using 10-bit code is already sufficient to yield
an accurate prediction for the objects in LM-O, indicating
the last 6 bits are redundant for those objects. The results
fluctuated a bit when we applied the redundant bits, which
indicates that for some objects the best results is achieved
by not using the full 16-bit code. However, in the follow-
ing experiment, we always report the results with the full
predicted vertex code.

Radix used in Vertex Code. The number of the clusters
in each iteration decides the radix of the generated vertex
code that describes the 3D vertex. Since our CNN predicts
the vertex code, it is meaningful to compare which radix
in vertex code suits the representation better. We do not
need to generate all the vertex codes used in this ablation
study from scratch. More specifically, by merging every
log2r bit of a vertex code, we get a code with a radix r. For
instance, a vertex with a binary code {11111110 11111111}
can be transformed to {254 255} using 256 as the radix. We
will get exactly the same code for this vertex if we split the
object into 256 groups and split each group again into 256
groups. We use a fix wj = 1 (see eq. 4) for all positions
so the loss is essentially a binary cross entropy when r = 2,
and cross-entropy loss for other radixes.

We present the comparison results in Tab. 1. If
RANSAC/PnP is used to solve the pose, the results with
different radices are quite similar. There is no clear indi-
cation whether using the small or large radix is better. If
we switch the pose solver to Progressive-X [2], the code
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Figure 3. a) In the first row, a yellow dot has the ground truth binary vertex code beginning with 000, and the yellow circle refers to the
neighborhood vertex of this yellow dot. If the vertex code has been predicted as 100 (the first bit is wrong, marked as red in the figure)
during the inference stage, the estimated yellow dot lies somewhere on the head of the drill (marked in blue). The estimated 3D vertex
is far away from its original neighborhood and can be easily found by checking the spatial coherency. We show four similar cases in this
figure. b) We calculated ADD pose metrics only on the first j bits of the predicted code to build the 2D-3D correspondence. Here we
observe from which bit the predictions are stable. c) We present the average error rate at different bit positions on the LM-O dataset [5].

with small radix improves the most and yields the best ac-
curacy. Progressive-X solver includes a spatial coherence
filter that checks neighboring 3D points with respect to its
assigned 2D correspondences based on label cost energy
minimization as introduced in [17]. It can therefore deal
particularly well with the type of outliers, from our method
as we mentioned in Fig. 3. We show in the Fig. 3 a), if the
CNN predicts the first few bits wrong for the yellow dot,
the estimated corresponding 3D points is far away from the
ground truth position and totally incoherent with its orig-
inal neighbourhood. Assuming that most predictions are
correct, most neighbourhood vertices are posed within the
yellow circle in the figure. In this case, this false estimated
3D corresponding can be easily filtered by calculating the
coherency with its neighbourhood. This spatial coherency
filter can not detect outliers well if the wrong prediction is
in the last few bits, and the same for 256 as radix, as divide
the vertices into 256 groups is already a fine grouping. Nev-
ertheless, the Fig. 3 b) already shows that the last few bits
do not affect the solved pose. So we argue that the binary
vertex code suits this task the best. Moreover, the predic-
tion of binary codes requires the least RAM in GPU, as we
discussed in Sec. 3.1.

Effectiveness of Hierarchical Training. According to
the first ablation study, the last few bits are redundant and
may not be trainable (see Fig. 3c)). During the training, we
can recognize redundant bits based on the error histogram
and focus on the decisive bits as described in Sec. 3.5.
Tab. 2 shows that the results are further improved by our
proposed hierarchical training.

Influence of 2D detection. The CNN estimates the pose
with the cropped ROI from the detected bounding box. The
object pose estimation is meaningless with a false-positive
detection, also the pose is not even estimated in the case of
false-negative detection. By leveraging the detected bound-

Method RANSAC/ Pnp [39] Progressive-X [2]

2 as radix 73.06 75.23 (+2.17)
4 as radix 72.94 74.59 (+1.65)

16 as radix 73.04 74.98 (+1.94)
256 as radix 73.25 74.52 (+1.27)

Table 1. Ablation study on LM-O [5]. We tested the use of
different radices to encode the vertices, and using different solvers
to calculate the pose. The results are presented in terms of average
recall of ADD(-S) in %.

Method ADD

2 as radix 75.23
2 as radix + Hierarchical Learning 75.86
2 as radix + Hierarchical Learning
+ Faster R-CNN [56]→ FCOS [63] 76.91

Table 2. Ablation study on LM-O [5]. We compare the result
with and w/o applying our hierarchical loss, as well as the impact
of the prior object detector. The results are presented with average
recall of ADD(-S) in %.

ing box with FCOS [63] instead of the one from Faster R-
CNN [56], the recall rate improved 1.05%.

4.3. Comparison to State of the Art

We use 2 as radix, i.e. binary vertex code and apply
the hierarchical training strategy and Progressive-X pose
solver [2] in our proposed ZebraPose to compare to state
of the art on LM-O [5] and YCB-V [70] datasets. The de-
tected bounding box of FCOS [63] detector are provided by
CDPNv2 [41].

Results on LM-O. We report the recall of ADD(-S) met-
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Method RGB Input RGB-D Input
HybridPose [60] RePose [32] GDR-Net [67] SO-Pose [19] Ours PR-GCN [73] FFB6D [24]

ape 20.9 31.1 46.8 48.4 57.9 40.2 47.2
can 75.3 80.0 90.8 85.8 95.0 76.2 85.2
cat 24.9 25.6 40.5 32.7 60.6 57.0 45.7

driller 70.2 73.1 82.6 77.4 94.8 82.3 81.4
duck 27.9 43.0 46.9 48.9 64.5 30.0 53.9

eggbox* 52.4 51.7 54.2 52.4 70.9 68.2 70.2
glue* 53.8 54.3 75.8 78.3 88.7 67.0 60.1

holepuncher 54.2 53.6 60.1 75.3 83.0 97.2 85.9
mean 47.5 51.6 62.2 62.3 76.9 65 66.2

Table 3. Comparison with State of the Art on LM-O [5]. We report the Recall of ADD(-S) in % and compare with state of the art. (*)
denotes symmetric objects.

ric in Tab. 3. We ordered the methods according to the in-
put modality. HybridPose [60] and RePose [32] have been
trained with synthetic and real images. GDR-Net [67] also
reported their recall of 53% when trained with synthetic
and real images. Therefore, GDR-Net outperforms Hybrid-
Pose and RePose. In our Tab.3, we report the best results
that GDR-Net and SO-Pose [19] presented, which are also
trained with pbr and real images. GDR-Net used faster
R-CNN [56] as the detector, ZebraPose yields a recall of
75.86% with faster R-CNN (see Tab. 2), which can be seen
as a more fair comparison with GDR-Net.

To summarize, our ZebraPose outperforms state of the
art RGB based methods with a large margin on this dataset.
Additionally, we found that our ZebraPose also outperforms
state of the art RGB-D based methods [24,73]. Most objects
in the LM-O dataset are texture-less, meaning that RGB-
D based methods should have more advantage in feature
extraction on the objects with the help of depth image. Even
in this case, our results still exceed theirs.

Results on YCB-V. We compare ZebraPose with other
approaches in the YCB-V dataset in Tab. 4. The AUC re-
ported in Tab. 4 has been calculated using all-points interpo-
lation. Tab. 4 shows that ZebraPose is still better than state
of the art w.r.t. ADD(-S) and AUC of ADD(-S) metrics and
comparable to them w.r.t. the AUC of ADD-S metric.

4.4. Runtime Analysis

We tested the runtime on a desktop with an Intel
3.50GHz CPU and an Nvidia 2080Ti GPU. The CNN run-
time plus the time to build the 2D-3D correspondence
is about 52 ms. The FCOS detector [63] takes 55 ms.
RANSAC/PnP [39] needs only 4 ms to solve the pose, while
Progressive-X [2] requires 150 ms to obtain the pose. So for
ZebraPose used in Sec.4.3, it totally needs about 250 ms to
estimate the object pose. If we use RANSAC/PnP to solve
the pose, the runtime reduces to 110 ms, while with about
2.6% recall drop on LM-O dataset.

Method ADD(-S)
AUC of
ADD-S

AUC of
ADD(-S)

SegDriven [31] 39.0 - -
SingleStage [30] 53.9 - -
CosyPose [37] - 89.8 84.5
RePose [32] 62.1 88.5 82.0
GDR-Net [67] 60.1 91.6 84.4
SO-Pose [19] 56.8 90.9 83.9
Ours 80.5 90.1 85.3

Table 4. Comparison with State of the Art on YCB-V [70]. We
compare our ZebraPose with state of the art w.r.t ADD(-S), AUC
of ADD(-S) and AUC of ADD-S in %. (-) denotes results missing
from the original paper.

5. Conclusion

In this work, we proposed a novel coarse to fine surface
encoding technique to provide 2D-3D correspondences for
6DoF object pose estimation. We also designed a specific
hierarchical training strategy that maximizes the prediction
accuracy for our proposed binary vertex code. Solving the
object pose using a PnP solver based on our vertex code sur-
passes the state of the art on different benchmarks, proving
our approach’s effectiveness. In the future, we would like to
extend our vertex code solution to the problem of category-
level object pose [40].

Acknowledgements
This work was partially funded by the Federal

Ministry of Education and Research of the Federal Re-
public of Germany (BMBF), under grant agreements
16SV8732 (GreifbAR) and 01IW21001 (DECODE).
We are thankful to Rene Schuster, Fangwen Shu, Yaxu
Xie and Ghazal Ghazaei for proofreading the paper.

8



References
[1] David Arthur and Sergei Vassilvitskii. k-means++: The

advantages of careful seeding. Technical report, Stanford,
2006. 5

[2] Daniel Barath and Jiri Matas. Progressive-x: Efficient, any-
time, multi-model fitting algorithm. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3780–3788, 2019. 2, 5, 6, 7, 8, 12

[3] Eric Brachmann, Alexander Krull, Frank Michel, Stefan
Gumhold, Jamie Shotton, and Carsten Rother. Learning
6d object pose estimation using 3d object coordinates. In
European conference on computer vision, pages 536–551.
Springer, 2014. 2

[4] Eric Brachmann, Alexander Krull, Sebastian Nowozin,
Jamie Shotton, Frank Michel, Stefan Gumhold, and Carsten
Rother. Dsac-differentiable ransac for camera localization.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6684–6692, 2017. 2

[5] Eric Brachmann, Frank Michel, Alexander Krull, Michael
Ying Yang, Stefan Gumhold, and others. Uncertainty-driven
6d pose estimation of objects and scenes from a single rgb
image. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3364–3372, 2016. 2,
5, 6, 7, 8, 12, 13, 14

[6] Eric Brachmann and Carsten Rother. Learning less is more-
6d camera localization via 3d surface regression. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4654–4662, 2018. 2

[7] Eric Brachmann and Carsten Rother. Neural-guided ransac:
Learning where to sample model hypotheses. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 4322–4331, 2019. 2

[8] Benjamin Busam, Tolga Birdal, and Nassir Navab. Camera
pose filtering with local regression geodesics on the rieman-
nian manifold of dual quaternions. In Proceedings of the
IEEE International Conference on Computer Vision Work-
shops, pages 2436–2445, 2017. 2

[9] Benjamin Busam, Marco Esposito, Simon Che’Rose, Nas-
sir Navab, and Benjamin Frisch. A stereo vision approach
for cooperative robotic movement therapy. In Proceedings
of the IEEE International Conference on Computer Vision
Workshops, pages 127–135, 2015. 1

[10] Benjamin Busam, Hyun Jun Jung, and Nassir Navab. I like
to move it: 6d pose estimation as an action decision process.
arXiv preprint arXiv:2009.12678, 2020. 1

[11] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srini-
vasa, Pieter Abbeel, and Aaron M Dollar. The ycb object and
model set: Towards common benchmarks for manipulation
research. In Advanced Robotics (ICAR), 2015 International
Conference on, pages 510–517. IEEE, 2015. 2

[12] Carlos Campos, Richard Elvira, Juan J Gómez Rodrı́guez,
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6. Supplementary Material
6.1. Hyper-parameters in the Pose Solver

For RANSAC/PnP [38], we set the threshold value for
reprojection error as 2 pixels, and execute 150 iterations.
For Progressive-X [2], we also set the threshold value for
the reprojection error as 2 pixels, and execute 400 iterations.
The additional parameters for Progressive-X are ”neigh-
borhood ball radius=20”, ”spatial coherence weight=0.1”,
”maximum tanimoto similarity=0.9”.

6.2. BOP Challenge

We submitted the results on 4 datasets of the BOP chal-
lenge and will test our method on the rest 3 datasets. The
results are online in BOP Leaderboards with the submission
name ”zebrapose”.

6.3. YCB-V Evaluation per Object

We present a more detailed result on the YCB-V
dataset [70] in Tab. 5 and Tab. 6. As the Tab. 5 shows, in
the evaluation of the estimate pose w.r.t ADD(-S) metric,
we show major improvement over the state of the art.

In Tab. 6, we carefully calculated the AUC with all-
points interpolation algorithm with the maximum threshold
of 10 cm. If we calculate the AUC with 11-points interpo-
lation, we will reach AUC of ADD-S of 94%, and AUC of
ADD(-S) of 89.8%.

6.4. Qualitative Results

6.4.1 Vertex Code Prediction LM-O

We visualized the predicted binary code of the ”duck” ob-
ject in LM-O dataset [5] with a few examples in Fig. 4. Due
to the size limits, we only show the predicted binary code
till the 11-th bits. We render the object with the predicted
pose on top of the original input ROI. To make the predicted
pose more visible in the figure, we set the colour of the ob-
ject model as red just for this figure. So the duck appears
with the orange colour (red + yellow) in the last row. We
can see that the rendered object overlapped the object in the
original image quite well, indicating that our predicted pose
is very accurate.

6.4.2 Pose Prediction LM-O

Qualitative Results on LM-O [5] can be found in Fig. 5. We
render the objects with estimated pose on top of the original
images. The presented confidence scores are from the 2D
object detection with FCOS detector [63].

6.4.3 Pose Prediction YCB-V

Qualitative Results on YCB-V [70] are available in Fig. 6.
We render the objects with estimated pose on top of the

original images. The presented confidence scores are from
the 2D object detection with FCOS detector [63].
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Figure 4. We visualized the predicted binary code of the ”duck” in LM-O dataset [5] with a few examples. Due to the size limits, we only
show the predicted binary code till the 11-th bit. We set the colour of the object model as red and render the object with the predicted pose
on the top of the input ROI. We can see that the rendered object overlaps the object in the image quite well.
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Figure 5. Qualitative Results on LM-O [5]: We render the objects with estimated pose on top of the original images. The presented
confidence score are from the 2D object detection with FCOS detector [63].
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Method SegDriven [31] Single-Stage [30] RePose [32] GDR-Net [67] Ours

002 master chef can 33.0 - - 41.5 62.6
003 cracker box 44.6 - - 83.2 98.5
004 sugar box 75.6 - - 91.5 96.3
005 tomato soup can 40.8 - - 65.9 80.5
006 mustard bottle 70.6 - - 90.2 100.0
007 tuna fish can 18.1 - - 44.2 70.5
008 pudding box 12.2 - - 2.8 99.5
009 gelatin box 59.4 - - 61.7 97.2
010 potted meat can 33.3 - - 64.9 76.9
011 banana 16.6 - - 64.1 71.2
019 pitcher base 90.0 - - 99.0 100.0
021 bleach cleanser 70.9 - - 73.8 75.9
024 bowl* 30.5 - - 37.7 18.5
025 mug 40.7 - - 61.5 77.5
035 power drill 63.5 - - 78.5 97.4
036 wood block* 27.7 - - 59.5 87.6
037 scissors 17.1 - - 3.9 71.8
040 large marker 4.8 - - 7.4 23.3
051 large clamp* 25.6 - - 69.8 87.6
052 extra large clamp* 8.8 - - 90.0 98.0
061 foam brick* 34.7 - - 71.9 99.3
mean 39.0 53.9 62.1 60.1 80.5

Table 5. Comparison with State of the Art on YCB-V. We report the Average Recall of ADD(-S) in % and compare with state of the art.
(*) denotes symmetric objects, (-) denotes the results missing from the original paper.
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Method PoseCNN [70] CosyPose [37] GDR-Net [67] Ours

Metric
AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

002 master chef can 84.0 50.9 - - 96.3 65.2 93.7 75.4
003 cracker box 76.9 51.7 - - 97.0 88.8 93.0 87.8
004 sugar box 84.3 68.6 - - 98.9 95.0 95.1 90.9
005 tomato soup can 80.9 66.0 - - 96.5 91.9 94.4 90.1
006 mustard bottle 90.2 79.9 - - 100 92.8 96.0 92.6
007 tuna fish can 87.9 70.4 - - 99.4 94.2 96.9 92.6
008 pudding box 79.0 62.9 - - 64.6 44.7 97.2 95.3
009 gelatin box 87.1 75.2 - - 97.1 92.5 96.8 94.8
010 potted meat can 78.5 59.6 - - 86.0 80.2 91.7 83.6
011 banana 85.9 72.3 - - 96.3 85.8 92.6 84.6
019 pitcher base 76.8 52.5 - - 99.9 98.5 96.4 93.4
021 bleach cleanser 71.9 50.5 - - 94.2 84.3 89.5 80.0
024 bowl* 69.7 69.7 - - 85.7 85.7 37.1 37.1
025 mug 78.0 57.7 - - 99.6 94.0 96.1 90.8
035 power drill 72.8 55.1 - - 97.5 90.1 95.0 89.7
036 wood block* 65.8 65.8 - - 82.5 82.5 84.5 84.5
037 scissors 56.2 35.8 - - 63.8 49.5 92.5 84.5
040 large marker 71.4 58.0 - - 88.0 76.1 80.4 69.5
051 large clamp* 49.9 49.9 - - 89.3 89.3 85.6 85.6
052 extra large clamp* 47.0 47.0 - - 93.5 93.5 92.5 92.5
061 foam brick* 87.8 87.8 - - 96.9 96.9 95.3 95.3
mean 75.9 61.3 89.8 84.5 91.6 84.3 90.1 85.3

Table 6. Comparison with State of the Art on YCB-V. We report the Average Recall w.r.t AUC of ADD(-S) and AUC of ADD-S in %
and compare with state of the art. (*) denotes symmetric objects, (-) denotes the results missing from the original paper.
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Figure 6. Qualitative Results on YCB-V [70]: We render the objects with estimated pose on top of the original images. The presented
confidence score are from the 2D object detection with FCOS detector [63].
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