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Abstract

Shape matching has been a long-studied problem for the
computer graphics and vision community. The objective
is to predict a dense correspondence between meshes that
have a certain degree of deformation. Existing methods ei-
ther consider the local description of sampled points or dis-
cover correspondences based on global shape information.
In this work, we investigate a hierarchical learning design,
to which we incorporate local patch-level information and
global shape-level structures. This flexible representation
enables correspondence prediction and provides rich fea-
tures for the matching stage. Finally, we propose a novel
optimal transport solver by recurrently updating features on
non-confident nodes to learn globally consistent correspon-
dences between the shapes. Our results on publicly avail-
able datasets suggest robust performance in presence of se-
vere deformations without the need of extensive training or
refinement.

1. Introduction
Deformable surfaces have been studied extensively by

both computer graphics and computer vision communities.
Dense correspondence estimation is closely linked to ap-
plications such as reconstruction and human pose estima-
tion. In a standard formulation, we want to find a function
f : G → H where f is a mapping from a shape G to an-
other shape H . A shape is usually discretized in a triangle
mesh that can be expressed in the form of a graph G =
(V,E) constituted by vertices V with associated 3D coor-
dinates and edges E.Among the most successful optimiza-
tion methods to find correspondences between deformable
shapes, there is the Functional Map framework [40]. The
pointwise correspondence between two shapes is expressed
as a linear map between the functional bases (i.e. eigen-
functions of the Laplace Beltrami Operator) defined on the
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Figure 1. We process deformable shape pairs by two levels of hier-
archy, local graphs and shape graphs. Such hierarchical structure
offers a flexible and holistic shape representation that enables cor-
respondence matching and provides rich features for an optimal
transport matching stage.

shapes.
As a first work to pair the functional map framework

with deep neural networks on deformable shapes, deep
functional maps [31] present a pipeline to seek a corre-
spondence using as input SHOT [58] handcrafted descrip-
tors on sampled points. Despite building on top of point
cloud features, FMNet [31] finds correspondences densely
on deformable shapes. Recent works [21, 59] also use
learned point cloud features [57] to describe local regions.
Other methods also suggest integrating spectral manifold
wavelets [25] or iterative spectral upsampling into func-
tional maps [36]. While these methods investigate dense
correspondences, many require numerous initial keypoints
or are sensitive to initial sparse matches.

Though meshes are commonly represented and stored as
undirected lattice graphs, limited works explore graph deep
learning frameworks to extract features from meshes [20,
38, 62]. Litany et al. use graph convolutional auto-
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encoders for the task of shape completion and Zhou et al.
use graphs for image-based deformable matching. Graph
neural networks (GNNs) are successfully applied to point
clouds [30,52,56,66] across many tasks. This work presents
a graph-based descriptor designed for meshes, capturing lo-
cal surface structures by constructing edges given a mesh
lattice graph. GNNs on meshes are a discretization of spec-
tral convolutions on manifold representations [7] and there-
fore constitute a powerful tool to capture local deforma-
tions.

Moreover, GNNs have proven to be a great framework
to construct hierarchical representations [9, 17, 64, 67, 70].
During recent years GNNs have been used in many com-
puter vision tasks, from scene graph generation [17] to
holistic representation learning [74], enabling relationship
definition [28] and information exchange and propaga-
tion [67, 68]. Here we incorporate a high-level shape graph
to represent and interconnect shape regions, as shown in fig-
ure 1. Each shape region describes the surrounding geom-
etry by the local graph. Using such hierarchical graphs, we
can process 3D meshes efficiently and learn a rich holistic
shape representation, which is able to capture local details
and capture neighbor geometry information.

We address the problem of 3D deformable shape match-
ing as an optimal transport problem. As a classic problem,
optimal transport is gaining popularity in the fields of fea-
ture matching and registration [42, 45, 53, 71], where dif-
ferentiable Sinkhorn algorithm [41, 53, 71] performs well
with learning-based feature matching [10]. The Sinkhorn
solver favors putative correspondences by iteratively apply-
ing softmax and does not work well in soft correspondence
problems or when an exact matching is missing. The coarse
deformable setting with sampled graph seeds does not guar-
antee putative hard matches. To deal with such an issue,
we propose a new strategy using Gated Recurrent Units
(GRUs) to propagate features using matching confidence in
our shape graph leading to a more robust optimal transport
solution.

In summary, our contributions are as follows:

• We present a new representation for deformable
meshes using hierarchical graphs, constituting of local
feature graph and global shape graphs.

• We combine self-supervised local description and
global shape features into an end-to-end deformable
matching pipeline.

• We propose a novel Gated Optimal Transport (GOT)
module incorporating attention-based feature propaga-
tion into the Sinkhorn algorithm.

2. Related Work
In this section, we will briefly review the related works

in the area of 3D feature description, shape registration, and

dense correspondence methods which are either related to
the proposed method or are compared in the evaluation sec-
tion.

Point descriptors Being able to produce a robust and de-
scriptive point descriptor is at the core of many 3D Com-
puter Vision tasks, especially when corresponding points
have to be found between different objects. Unlike 2D im-
age features, 3D features need to handle additional ambi-
guity introduced in the third dimension. To handle this
ambiguity, some methods depend on a local reference
frame, such as SHOT [58], RoPS [22] and TriSi [23],
some others rely on pair-wise point description, such as
PFH [51] and FPFH [50]. For non rigid meshes, spec-
tral descriptors are often used [3, 8, 12] given their invari-
ance to (near-)isometric deformations. Later, data-driven
approaches are proposed to compress hand-crafted features
into a compact yet informative representation [26] or to
learn a more robust feature description directly from point
clouds [14, 46]. PointNet [46] is the first approach that di-
rectly outputs feature description using points with a per-
mutation invariant pooling, but it fails to capture geometric
details and ignores neighbor information. PointNet++ [47]
is proposed to solve these issues by using multiple Point-
Nets hierarchically to capture local details. 3DMatch [72]
and Perfect Match [19] use voxel representation to com-
pute feature descriptors with a 3D convolutional neural net-
work, which is able to grasp the connection between vox-
els. The usage of 3D convolutions, however, significantly
increases memory consumption and therefore limits the us-
ability of these methods. Another line of works [5, 52, 57]
benefits from the point representation while using GNNs
to incorporate the information from surface and manifolds.
KPConv [57] defines 3D local filters with a set of kernel
points which allow efficient and flexible point description.
Graphite [52] uses a Graph Neural Network to describe lo-
cal patches and predict keypoints for point cloud registra-
tion.

Shape registration Shape registration aims to find the de-
formation between two given geometric shapes. A classic
solution is ICP [2] which estimates a transformation matrix
to minimize the distance between closest points of the given
shapes iteratively. Several methods are proposed to improve
the matching performance of ICP, such as GoICP [69].
PointNetLK [1] exploits learned point features [46] with
the Lucas-Kanade algorithm [33] to tackle the registration
problem. Deep Closest Point [65] incorporates the popular
attention mechanism in the correspondence finding process
to estimate the transformation. Other approaches reinforce
correspondence prediction leveraging additional sources of
knowledge, such as parametric human [4, 32, 43, 44] or ani-
mal [75–77] models.



Dense correspondence In the correspondence problem,
the goal is to find a map relating the points of an input
shape to the points of a second one, possibly undergoing
some deformation. Most of the methods for non-rigid shape
matching [27, 40, 48] relies on intrinsic properties of the
input shapes. A common drawback of these methods is
that correspondences are poorly localized. Moreover, in-
trinsic properties are unaware of isometrics in the input
shapes, resulting in misplaced matches. Several methods
have been proposed to solve these issues [18, 36, 63], but
still, the performance deteriorates in a more challenging
scenario [35]. Unlike previous works that rely on axiomatic
descriptors [39, 48], recent methods focus on learning an
optimal descriptor to have a better functional map estima-
tion [13, 15, 24, 31, 34, 49, 54, 59]. Marin et al. [34] propose
a two-stage method to estimate an optimal linear transfor-
mation by the use of an invariant embedding network com-
bined with a probe function network. Trappolini et al. [59]
propose to estimate the transformation between two input
point clouds with an auto-encoder architecture and a trans-
former network [61]. Groueix et al. [21] learn to estimate
the transformation between two given shapes using a neural
network.

3. Bending Graph Methodology
In this section, we illustrate our methodology. The

overview of our method can be seen in figure 2. As a stan-
dard dense matching pipeline between two shape meshes,
we first focus on each input mesh and process them inde-
pendently. We start by explaining our local graph definition
and how the descriptor is configured in section 3.1. Next,
in 3.2, we discuss how the higher-level shape graph is con-
structed to represent the shape structure. In section 3.3, we
focus on the matching problem where we present a GOT
unit to predict the correspondences. At the end of this sec-
tion in 3.4 we explain the training and loss formulations.

3.1. Local Graphs

Each of the input shapes is given in the form of a mesh.
A mesh M consists of vertices V ∈ R3, edges E, and
M = (V,E) which form a regular tiling. This definition
is very close to that of an undirected graph, where a node
represents vertices. To define local structures, we focus on
sampled local graphs Gi, i ∈ N. To sample N graphs, we
first apply furthest point sampling (FPS) on mesh vertices
in Euclidean space. We form graphs Gi around each of the
sampled vertices vj ∈ V . In order to construct the graph
based on the mesh structure, we define edges using the lo-
cal Dijkstra algorithm. We cut a sub-graph from a mesh
graph where the vertices are below a certain shortest path
value dcut:

Vi = {vj ∈ G | d(vi, vj) < dcut}, (1)

where d(vi, vj) defines the shortest paths between the ver-
tices vi and vj . Each node is associated by its coordinate
values in a local reference frame, vj = (xj , yj , zj). Edges
are linked to nearby vertices. As an alternative to KNN [5],
we consider the unit ball with radius r to maintain metrics
around each node’s positional coordinates and connect them
to other nodes when their distance falls bellow r. To in-
duce some weight to the edges, we attribute a scalar value
ei,j ∈ R to it as the vertex-to-vertex distance.

Local Mesh Description We now introduce our graph
neural network (GNN) architecture. We build graphs con-
sisting of edges and nodes to represent a local mesh. In con-
trast to classic and learned point cloud descriptors, which
only define a certain number of points [14, 52, 58], here we
want to describe dynamically-sized graphs based on how
the local mesh is structured.

The node and edge features, connections are fed into
a GNN architecture to estimate a descriptor under vari-
able deformations. Output descriptors should be invariant
to permutations, meshing variations, and applied deforma-
tions. Following Graphite [52] we use a topology adap-
tive graph (TAG) [16] convolutional operator, which com-
bines node and edge feature propagation inside the graph.
We use multiple layers of TAG function with increasing
hops (K=1,2,3). Hops define how many nodes the informa-
tion propagates inside the graph and provides a multi-scale
feature extraction by message passing. Every graph con-
volutional module takes into account the adjacency matrix
A ∈ Rn×n and its diagonal degree matrix D ∈ Rn×n to
propagate node features across the graph. As in [16], we
update node-level information v′j by propagating features
as follows:

v′j =

K∑
k=0

D−1/2AkD−1/2vjΘk. (2)

Following the multi-scale message passing in each local
graph, we apply a global max pooling operator to extract the
local feature descriptor Di. The features are then passed to
a Multi-Layer Perception (MLP) and normalized to bring
the final feature on a unit sphere. The local features Di, i ∈
N are trained as a triplet to encourage more robustness of
features as further explained in 3.4.

3.2. Shape Graphs

In this section, we describe our higher-level shape graph.
The intention of the shape graph is to build a coarse-level
representation of the shape and facilitate feature propaga-
tion between the local graphs. In this way, we can incorpo-
rate more global features into the node descriptor and pro-
vide better grounds for correspondence matching.

A shape graph S consists of N nodes, where each node
is associated with a local descriptor vector Di ∈ Rd and
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Figure 2. Our pipeline consists of 3 stages: 1) (left) Local graphs are sampled over a mesh pair. A negative sample is used for training
the descriptor. 2) (middle) the shape graphs are constructed, consisting of local GNNs with spatially connected edges; the positions are
also encoded into the shape graphs. 3) (right) a GOT learner integrates a Sinkhorn optimizer into a recurrent graph propagation unit and
produces confident matches.

seed point vi ∈ R3, initially sampled in 3.1 using FPS. Fur-
thermore, we define edges using a unit ball in the geodesic
space. Keeping the shape into a unit ball, we further de-
fine a shape radius rshape to construct edges between shape
nodes. Similarly to local graphs, we add an edge weight
based on the geodesic distance of the nodes. Figure 4 shows
sample shape graphs generated from the MPI FAUST [4]
dataset. The graph structure remains somewhat similar in
presence of local deformations.

Positional Encoding In order to aggregate the node in-
formation, we need to present the position in a high-
dimensional embedding. This process is commonly per-
formed using layers of MLP similar to [46]. The absolute
input position vi should be encoded to a feature of size d.
To capture the fine details and inspired by NeRF positional
encoding [37], we use a Fourier feature mapping [55]. We
map input coordinates into a higher dimensional Fourier
space before passing them through the network with

γ(vi) =
[
. . . , cos(2πσj/mvi), sin(2πσj/mvi), . . .

]T
.

(3)
We extract m− 1 log-linear spaced frequencies for each

positional element. Afterwards, we pass them to a shallow
MLP network (MLPe) to create an embedding of size d.
The embedded positional encoding is added toDi, followed
by another MLP network (MLPp) to obtain the node feature
fi. The entire process can be expressed as follows:

fi = MLPp (Di + MLPe (γ(vi))) . (4)

3.3. Gated Optimal Transport

To find the matching between two 3D meshes, we formu-
late the task as a linear assignment problem, which tries to

maximize the total score of
∑

i,k Ci,kPi,k with an assign-
ment P and a score matrix C ∈ RM×N . As in [53], the
score for each match is calculated as a simple inner product
of their descriptors:

Ci,k =
〈
fAi , f

B
k

〉
,∀(i, k) ∈ A×B, (5)

where 〈·, ·〉 is the inner product, A and B represent a source
and a target.

The above optimization problem can be efficiently
solved with the Sinkhorn algorithm. This algorithm esti-
mates bipartite joint probabilities by iteratively normalizing
exp(C) along rows and columns with a given number of
iterations. Since the entire operation is differentiable, the
whole process can be trained end-to-end by minimizing the
negative log-likelihood of P . The loss formulation will be
explained in 3.4.

Sinkhorn Operation Sinkhorn Operation
Recurrent

Graph Propagation

Figure 3. Our GOT module consists of Sinkhorn iteration and re-
current feature propagation (in middle) in the shape graph. Pro-
moting the feature propagation of more confident nodes, lets more
information flow into weak nodes, consequently improving graph
matching.

Gated Feature Propagation Although solving the opti-
mal transport with Sinkhorn provides a fast and direct way



to solve the bipartite matching, it focuses on finding the
exact match on each given input without considering the
mesh topology. Two nearby vertices on a mesh may be as-
signed to different regions after the matching process. To
tackle this issue, we propose to utilize the confidence in the
Sinkhorn operation to effectively propagate the feature with
high confidence to its nearby low confidence features along
with the shape graph, which we call GOT. This enforces the
nearby point features to be matched to a nearby locations
on the target region, as shown in Fig. 3.

Node feature propagation on the shape graph with the
confidence value estimated by the similarity score can be
considered as conditional random fields (CRFs) [29], which
is typically the final optimization step in a pipeline. Pre-
vious work showed that similar processes are achievable
at training time using recurrent neural networks (RNNs)
[68, 73]. Inspired by these, we formulate the node feature
as a mean-field approximation with the connectivity as the
shape graph. Similarly, we use mean-field to perform ap-
proximate inference. The feature of a node on each update
step can then be formulated as:

hti = Q

(
ht−1i , max

l∈N (i)

(
wlh

t−1
j

))
, (6)

where hti is the hidden state of node i at time t, N (i) is all
the neighbors of node i, Q is an RNN model, for which we
used a GRU [11] unit and wl is the weight of node l. The
initial hidden state of each node h0i is initialized as fi.

As each node may receive multiple features from its
neighbors, we weight each input by the log likelihood es-
timated in the score matrix C. The weight value of each
node is estimated in the Sinkhorn assignment, which can be
obtained from the score matrix C by:

wi = max
l

(Ci,l) , wl = max
i

(Ci,l) . (7)

The confidence values are kept in log space in the message
passing process, since we found that it results in better per-
formance. The usage of the shape graph allows us to control
the number of hop neighbors to be considered in the mes-
sage passing operation. Furthermore, the entire GOT pro-
cess can also be applied iteratively to reinforce the optimal
transport solution.

3.4. Loss Functions

In this section, we describe our training strategy and loss
functions. As expressed initially in section 3.1, we are given
pairs of shapes as meshes, and we suggest a mapping for
each vertex in Va to a vertex in Vb. To enable efficient
and coarse-level matching, we sample N points from each
shape. To train our descriptor using a triplet loss, we also
require a negative sample. As a common practice in met-
ric learning and to increase feature distinctiveness, we add

a hard-negative sample from shape B. To mine a negative
sample, we use the Dijkstra algorithm to draw a graph in the
vicinity of the target seed vertex.

Local descriptor Learned descriptors or features are
trained by self-supervision of pose or deformation varia-
tions [14, 21, 52]. The estimated feature vector can be
trained using contrastive or metric learning. We make sure
a feature pair D(Ga) and D(Gb), describing respectively
the local graphs ofGa andGb, are closed in a feature space.
In a triplet setting, we furthermore use a negative D(Gn)
describing a negative graph sample as explained below:

LD = max

(
N∑
i=1

dist(Ga,i, Gb,i)− dist(Ga,i, Gn,i) + α, 0

)
(8)

where dist(Ga,i, Gb,i) = ||D(Ga,i)−D(Gb,i)||2 and α de-
fines a small margin to reduce zero values in the loss.

Matching Following our GOT module, described in 3.3,
we yield a cost matrix of sizeN×N , where each index Ci,l

defines the softmax confidence value derived from Sinkhorn
iterations. During training, we have a bipartite distance ma-
trix M, where each Mi,l defines the shortest path in the
graph from node i from shape A to node l from shape B.
Close matches are defined as minimum entries in the bi-
partite distance matrix. Our final goal is to have maximum
score values on such entries.

In order to increase the log-likelihood of the entries
softly based on the bipartite distance matrix, we define a
weighting matrix, M ′d based on the matrixM where

M′i,l =

{
rd−Mi,l

rd
, ifMi,l ≤ rd

0, otherwise
(9)

whereM′i,l defines an element of matrixM′d. We use this
weight to induce some distance softly into the matching
loss. Our loss is minimising the negative log-likelihood of
correct matches on the nonzero elements ofM′.

Lm = −
∑

log
(
vi,l · M′i,l

)
(10)

Regularization term The predicted match for node i of A
in B is wheremaxlvi,l. This is how we define our matching
loss in the previous section. However, to regularize the pre-
dictions further and use the global shape structure to assert
shape consistencies, we can use conventional graph opera-
tors to assert local gradient consistencies. We first apply a
softpooling operator on predicted positions. This way, we
can have a differentiable operation for the loss calculation.
We first calculate

ŝi =
1

N

N∑
j

Ci,j · vj,j (11)



Figure 4. Samples of Shape Graphs from MPI-FAUST [4] dataset.
We sample 200 local graphs and associate local graphs spa-
tially using the depicted shape graphs. The graph edges are
weighted based on the pairwise Euclidean distance (visualized
with grayscale edge color). Under severe deformations, the graph
shape still shows consistent structure.

and then define a Laplace operator ∆(V )i on the original
shape V with source positions vi ∈ R3 and predicted soft-
pool positions V̂ as

∆(V )i =
∑

J:(i,j)∈E

|vj − vj |, (12)

where E is the set of shape graph edges.
Finally, we propose our regularization loss as follows:

LR =

N∑
i=1

∆(V̂ )i −∆(V )i (13)

Our total loss is a summation of the discussed loss func-
tions:

Ltotal = γD · LD + γM · LM + γR · LR (14)

4. Experiments
4.1. Training Setup

In this section, we demonstrate the performance of
our method by showing two major evaluations on popular
datasets used by the state-of-the-art methods for deformable
3D shape correspondences. The first experiment is to eval-
uation our network on the task of human shape registra-
tion (sec. 4.3), and the second one is on the task of ani-
mal shape registration (sec. 4.4). We further ablate each of
the proposed modules both qualitatively and quantitatively
(sec. 4.5).

4.2. Experimental Settings

In the first experiment, we use the FAUST dataset [4]
with the same testing split used in [34,59]. This dataset con-
tains 100 human shapes with a per-vertex correspondence

which allows us to evaluate the dense correspondence qual-
ity of our method. For training, we generate 500 samples
using the SURREAL dataset [60], which consists of human
SMPL [32] models with a set of parameters to control the
deformation and poses of the models. In the second exper-
iment, we use the animal shapes provided in TOSCA [6].
The TOSCA dataset provides several synthetic models in
different poses and classes. For testing, we consider all
pairs composed of the T pose of each class with all other
poses in the same class. For training, we generate 100 ran-
dom models from SMAL [77] with a Gaussian distribution
of variance 0.15.

In all experiments, we sample 200 local graphs with far-
thest point sampling (FPS), as shown in figure 4. Note that
the sampled points on the source and target mesh may not
be in the same location. Therefore we do not have exact
and putative correspondences during inference. Therefore,
dense correspondence matching is achieved by using the
functional map method [40]. The error metric in all ex-
periments follows [27] which uses the average geodesic er-
ror. For ablation study, we further report the Bijectivity Rate
(BR) measures the percentage of bijective correspondences
between source and target (one-to-one consistency) over the
total number of correspondences.

For all the experiments, we implemented our method on
Pytorch and trained with an initial learning rate of 0.001, de-
creasing to 0.0001 after 30 epochs with ADAM optimizer.

4.3. Human Shape Registration

We compare our method with two dense correspondence
methods using an auto-encoder architecture, i.e. 3DC [21]
and SRT [59], a functional map method with learned linear
high dimensional basis, i.e. LinInv [34], and a method that
directly learns optimal descriptors with the functional map
framework, i.e. DGFM [15]. The dense correspondence re-
sult from our method is generated by first estimating the
coarse correspondences on the 200 patches sampled with
FPS, and then giving this correspondences as input to the
functional map algorithm in form of corresponding delta
functions. The result is shown in table 2. It can be seen
that our method outperforms previous methods by a sig-
nificant margin. We also report the number of parameters
used in each method. Due to the use of a lightweight GNN
module and our hierarchical design, our method needs only
100k trainable parameters, which is 0.7% used in [15] and
7.1% of the parameter used in [34]. The qualitative result is
shown in figure 5. Our method can match patches correctly
in locations that undergo significant deformations.

4.4. Animal Shape Registration

To show our method can be used across different shapes,
we evaluate our method on the TOSCA dataset. For this
evaluation, we trained a model with 100 random samples



(a) (b) (c) (d) (e) (f)

Figure 5. The result of dense shape matching on MPI-FAUST [4] trained on a few samples of SURREAL [60]. (a) we have a target
shape to which we are finding correspondences. Coarse matches (b) show robust matched patches to the target shape. In (c) we visualize
the final confidence values predicted. The maps suggest more confidence in less deformed regions. In (d) we can see our fine and dense
correspondences by passing our coarse matches to the FM algorithm in form of corresponding delta functions. Finally, we have the
Ground correspondence map in (e) and error map in (f) which highlights our good performance for inter-subject cases without the need for
refinement.

on the horse class from SMAL and tested it on horse, cat,
centaur and david from TOSCA. The results are shown in
figure 6 and table 1. The dense correspondence results sug-
gest that our method can also be applied to other shapes.
The matching on unseen classes is more challenging since
the class was unseen during training. Thanks to our hierar-
chical design, the model can generalize to unseen shapes.

4.5. Ablation Studies

To prove the functionality and performance of each pro-
posed module, we design ablation studies as a further exper-
iment. Table 3 contains the comparative results of the mod-
ules by looking at bijectivity rate (%) and average geodesic
error normalized to the shape area. We follow the experi-
ment setting in 4.3 by training our pipelines on 100 samples

coarse error (�) fine error (�)

horse 0.2194 0.0231
cat 0.1856 0.0143

centaur 0.2150 0.0193
david 0.3254 0.0213

Table 1. The average geodesic error on TOSCA dataset [6]. The
coarse error is calculated after the patch matching of our method.
The fine error is calculated by feeding the estimated correspon-
dences to the functional map. Note that the model is trained only
on the horse class and has never seen other classes.

of SURREAL and testing on 20 samples of MPI-FAUST.
Ablation #1 shows matching with Vanilla OT and only using



(a) (b) (c) (d)

Figure 6. The dense matching result of our model on TOSCA
dataset. Our method is able to learn robust features that work on
an unseen class. a) target shape. b) source shape with the predicted
correspondences c) ground-truth correspondences, d) error map.

Method geodesic error parameters (million)

3DC [21] 0.0776 3.9
DGFM [15] 0.0656 14.1
LinInv [34] 0.0942 1.4
SRT [59] 0.0513 1.7
Ours 0.0230 0.1

Table 2. We trained all models on SURREAL [60] models and
tested them on MPI-FAUST synthetic [4]. Contrary to previous
methods, we only train our model on 5% of the available dataset.

local description (LG) does not provide reliable correspon-
dences. By adding the shape graph (SG) in ablation #2, we
observe a performance gain in terms of geodesic error. Here
we use a Sinkhorn algorithm with 100 iterations. In this
case, the correspondences contain a few bijective matches.
Adding a GOT layers in ablation study #3 yields more bi-
jective correspondences, and improved final error. Note that
the error is calculated on all the points without any outlier
removal.

Next, in ablation #4 we deactivate the shape graph,
which weakens our graph features. Nevertheless, compared
to #1, we see slightly better performance. This ablation
proves the effectiveness of our fine Fourier-based positional
encoding. Experiment #5 illustrates the role of local graphs
and descriptors and proves the local descriptor would be
richer with global holistic knowledge. Ablation #6 shows
the full pipeline. By comparing #3 and #6, we can observe

less error and higher bijectivity which proves the efficacy of
the regularization loss.

Experiment LG SG GOT Reg BR error

#1 only local desc., w. OT X 42.1 0.58
#2 hier desc., w. OT X X 23.3 0.42
#3 w/o graph regularization X X X 40.0 0.19
#4 w/o shape graphs X X X 21.1 0.43
#5 w/o local desc. X X X 47.0 0.16
#6 full pipeline X X X X 49.6 0.13

Table 3. Ablation study trained on SURREAL [60] and evalu-
ated on MPI-FAUST [4]. LG stands for activation of Local Graph
unit 3.1; SG for Shape Graph module 3.2; GOT for our Recurrent
Graph Propagation unit and Reg. for activation of our regulariza-
tion loss. For each ablation, we provide the percentage of bijective
correspondences (Bij. rate) and average geodesic error.

5. Limitation and failure cases
To learn and estimate correspondences, we suppose a

pair of mesh with similar density. When the number of
vertices varies, we need to reconstruct the mesh as a prepro-
cessing stage to describe and match the meshes independent
of the number of the points. Moreover, in our training and
experiments, we always normalize the meshes to the unit
spheres. Although this is common practice in deformable
registration, we do not provide a scale-invariant represen-
tation. The main reason for normalization is setting a fixed
radius for ball query operations across different datasets. Fi-
nally we only learn the coarse matches using our representa-
tion and rely on further non-learning refinements to provide
dense matches.

6. Conclusion
In this paper, we propose Bending Graph, an end-to-end

pipeline to learn deformable shapes in a hierarchical form.
Hierarchical graphs can represent the shape flexibly and ef-
ficiently. With the use of Local and Shape Graphs, we learn
object representation in a holistic way that can integrate into
a matching pipeline. Furthermore, we look at the problem
of dense matching using Optimal Transport. We propose a
solution to learning-based Optimal Transport using Gated
Recurrent Network. Using our representation, we can prop-
agate and reinforce our features through the shape graphs.
Finally, we demonstrate our pipeline and prove its effec-
tive design by providing robust results without the need for
large-scale training and computationally. Our representa-
tion and matching framework can be used for multiple prob-
lems in computer vision and graphics.
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Veličković. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021. 2

[8] Michael M Bronstein and Iasonas Kokkinos. Scale-invariant
heat kernel signatures for non-rigid shape recognition. In
2010 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, pages 1704–1711. IEEE,
2010. 2
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Supplemental Materials

1. Implementation details
Here are further details which were not included in the

experiment section of the paper.

• dcut: 7

• Feature size of local graph: 64

• Feature size of shape graph: 64

• Num. of Gated Feature Propagation (GFP): 2

• Weights first 30 epochs: γD = 1, γM = 0, γR = 1

• Weights after 30 epochs: γD = 0.1, γM = 1, γR = 1

Coarse-to-Fine Dense Matching We implement a simple
algorithm based on functional maps to populate our match-
ing to all mesh vertices densely. We provide 200 coarse
matches as corresponding landmarks and create Wave Ker-
nel Signature [3] of size 35 to find fine correspondences on
all 6890 vertices.

2. Domain Transfer
To demonstrate the generalization ability of our network,

we used the same model trained on SURREAL [60] dataset
in section 4.3 to test on the TOSCA [6] horse class. The
results are shown on Figure S1 and table 1. The results
suggest the strong domain transfer capability of our learned
model to unseen shapes.

coarse error (�) fine error (�)

horse 0.1988 0.0146
cat 0.2141 0.0223

Table 1. To evaluate the domain adaptability to new shapes, we
use the model trained with SURREAL dataset to test on TOSCA
dataset. We achieve equivalent results compared to the model
trained on SMAL dataset with animal shapes.

3. Number of GOT and GFP
The proposed GOT consists of a Sinkhorn optimal trans-

port layer followed by a GFP (See section 3.3). This in-
volves two hyper-parameters, the number of message pass-
ing layers and the number of the total GOT operation. We
ablate the effect on these two factors following the same
setup of the ablation studies we provided in the main paper
(Sec. 4.5). The results are shown on table 2 and figure S3

By comparing #2 #4, it can be seen that the number of
GFP does not linearly influence the result. Without GFP

(#1), the patch features are unaware of the local manifold,
thus only focusing on matching similar features, resulting
in a reasonable bijection rate and high error. With adequate
GFP to enforce the regularity of the adjacent features, the
network can achieve the best bijection rate and error. How-
ever, when the propagation is performed in several hops,
the patch features are bound too widely to the local geom-
etry and cannot provide a correct and distinctive matching.
The same phenomenon is observed in the number of GOT
operations. By comparing #2, #5, and #6, we can observe
that the more GOT operations, the lower the system’s per-
formance becomes.

From #3 and #5, it can be seen that using two GOT oper-
ations with 2 GFPs is more effective than having one GOT
with 4 GFPs. Note that these two settings are not identical.
The former uses different confidence values on each GOT
operation, while the latter uses the same confidence value
to do 4 GFPs. Re-estimating the confidence values through
Sinkhorn allows more flexible feature propagation.

N. GOT N. GFP bij. rate (�) err. (�)

#1 0 0 52.75 14.11
#2 1 2 64.70 8.63
#3 1 4 39.78 10.50
#4 1 8 36.78 10.99
#5 2 2 45.78 9.59
#6 3 2 36.60 11.31

Table 2. The ablation on the number of GOT and the number of
GFP layers. As proven by bijectivity and error, the study #2 with
a single GOT and two layers of GFP performs the best.

4. Effect of GFP
To study the effect of the GFP module on matching, we

do an ablation on matching results before and after GFP.
Here we train our network with one GOT and 2 GFPs and
show the matching results of the first Sinkhorn versus the fi-
nal Sinkhorn. Figure S2 shows the results of coarse match-
ing on the Faust dataset. In Table 3 we also compare coarse
and fine geodesic errors with the outputs of each Sinkhorn
layer. As visualized, the matching results after the GFP has
lower error and less outliars.

coarse error (�) fine error (�)

Before GFP 0.1315 0.0229
After GFP 0.2896 0.0253

Table 3. We show the effect of GFP during evaluation on FAUST
by comparing the matching error before and after the GFP module.
Results are calculated from the output of the Sinkhorn.



(a) (b) (c) (d) (e)

Figure S1. Results trained on SURREAL [60] and tested on Tosca [6]. In this experiment, we show the generalizability of the pipeline
when trained on human shapes and tested on animal shapes. a) target shape. b) coarse matches c) source shape with the predicted
correspondences d) ground-truth correspondences, e) normalized L2 error map.

(a) (b) (c) (a) (b) (c)

(a) (b) (c) (a) (b) (c)

Figure S2. To show the effectiveness of our GFP module, we visualize correspondences before and after the GFP. Here a model is trained
on SURREAL [60] and during evaluation on FAUST [4], we visualize the results from the first and final Sinkhorn. a) Correspondence map
of target shape. b) Predicted correspondences from the first Sinkhorn (before GFP). c) Predicted correspondences from the final Sinkhorn
(after the GFP).



(a) (b) (c) (d) (e) (f) (g)

Figure S3. We show the visual difference of the ablation study on the number of GFP layers (corresponding to #1 #2 and #3 on table 2. The
human models from left to right are (a) The target shape map (b) The coarse matching result of model #1, (c) the coarse matching result of
model #2, (d) the coarse matching result of model #3, (e) the dense matching result of model #2, (f) the ground truth dense matching result
and (g) normalized L2 error map of model #2.
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