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Master’s Thesis in Informatik

Using Synthetic Data for Classification of
Small Parts

Verwendung synthetischer Daten für die
Kleinteil-Erkennung

Author: Amr Abdelraouf

Supervisor: Prof. Bernd Brügge, Ph.D.
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Abstract

Aircraft engines periodically undergo an overhaul process during which
the engine parts are dismantled and then later reassembled. When the engine
components are taken apart, thousands of small parts are unfastened. To
facilitate the step of engine reassembly, the small parts have to be sorted and
classified.

In this thesis we present a system to automatically classify small parts
using convolutional neural networks. To train the neural networks, we use
3D models of the small parts to render synthetic images. The network is
trained using a mixture of real images of small parts and synthetic images
of their corresponding 3D models. We examine the use of a fully synthetic
image set for training, as well as different ratios of real and synthetic images.

Our results indicate that a convolutional neural network trained on a
dataset that contains as little as 5% real images can provide a comparable
classification accuracy to networks that have been trained on purely real
image sets. This is advantageous in supervised learning problems targeting
novel domains, where an annotated dataset of images might not be available
for training.

Keywords: image classification, convolutional neural networks, synthetic
images, 3D models
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Chapter 1

Introduction

Aircraft engine overhaul is the process of removing, disassembling, inspect-
ing, repairing, cleaning, reassembling and testing a used engine. Overhaul
involves the intricate process of taking an engine apart, and in doing so, un-
doing up to thousands of small parts from the engine—eg. screws, nuts and
bolts. In order to reassemble the engine in the overhaul process, the small
parts have to be sorted and classified. Figure 1.1 shows an example of small
parts that need to be classified.

Figure 1.1: Small parts that were taken apart during an aircraft engine overhaul,
and have to be sorted for reassembling.

Manual Small Part Classification

Traditionally, the tasks of classifying and sorting small parts are executed
manually by a human task force. The dismantled small parts are brought
to the workers in a special work station, where the workers have access to
manuals, pictures of each small part, magnifiers and measuring instruments.
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CHAPTER 1. INTRODUCTION

The small parts are engraved with a part number which can be used for
identification. However, sometimes the part number is indistinguishable due
to erosion, rust or physical damage. In this case, the workers have to look
up the small part in the manuals. The measuring instruments are used
to compute the small part’s distinguishing features as shown in 1.2. For
classifying a small part with a distorted part number, the workers might
need a few seconds to measure the different small part features and compare
them against the models in the manual for classification. The time can varry
depending on the small part and the exprience of the worker.

Figure 1.2: The structure of a sample screw displaying the different associated
measurements.

Automatic Small Part Classification

An automatic small part classification system involves a setup where a camera
and a robotic arm are placed over a conveyor belt. First, the small parts are
placed on the conveyor belt. Next, the camera takes pictures of the small
parts that are rolling underneath on the conveyor belt. The pictures are then
sent to an image classification system which in turn classifies the images of
the small parts. The classification system sends the labels of the small parts
to the robotic arm, which uses those labels to sort the small parts accordingly.
Figure 1.3 shows the automatic small part classification system.

The main brain behind automatic small part classification is the image
classification system. In order to build a small part image classification sys-
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1.1. PROBLEM

tem, we employ convolutional neural networks (CNNs). CNNs have become
the state-of-the-art approach to classical computer vision and image process-
ing tasks such as image classification, object detection and many others [38].

The automatic approach involves minimal human interaction, and thus
slashes the amount of man power required to sort and classify small parts.
Moreover our automatic approach provides a quantifiable measurement for
accuracy which can be used to assess and improve the classification system.

Figure 1.3: The automatic small part classification system.

1.1 Problem

Convolutional neural networks are characteristically data-centric algorithms.
The performance of a CNN algorithm depends on the availability of a dataset
of images that can capture each target object’s intra-class variability [26]. In
our case, we need to train a convolutional neural network using images that
capture the distinguishing features of each of our small parts. Since aircraft
engines can have up to thousands of small parts, and our CNN requires
multiple images of each small part, the task of collecting an image set can
be time consuming.

Our contribution in this thesis is twofold. 1) we describe a system to
generate synthetic images for the classification of small parts. In addition to
using pictures of the small parts, we obtain their respective 3D models and

3



CHAPTER 1. INTRODUCTION

use 3D modeling software to render 2D synthetic images of the small parts.
The advantage being that the images are rendered rather than collected
manually using a camera, and hence generation of the output image set
requires less time and effort. 2) we train a convolutional neural network
using synthetic images. We assess the use of synthetic data as input for
CNN algorithms to perform image classification. We explore the use of a
fully synthetic dataset and also a mixed dataset of both real and synthetic
images in different ratios.

1.2 Motivation

Using synthetic images to classify small objects yields the power of convolu-
tional neural network while overcoming the need to collect and annotate a
dataset of images manually. This approach is extendable to image classifica-
tion problems in other novel domains.

Furthermore, the process of generating synthetic images gives full control
of the surrounding environment to the creator of the synthetic scene. The
3D models and the synthetic scenes can be easily adjusted to capture specific
differentiating features of the small parts.

1.3 Outline

In chapter 2, convolutional neural networks are described and the necessary
mathematical background needed to navigate this thesis is provided. We
also define the terminology that we use to describe small parts and different
types of images in our dataset. Chapter 3 transcribes the literature that was
reviewed in preparation for this thesis. A review of convolutional neural net-
works based image classification, image classification in industrial use cases
and the usage of synthetic data is provided. In chapter 4, the requirements
of our system are broken down. The system use cases, object model and de-
ployment diagrams are presented. In chapter 5, we describe our subsystems
and the relationships between them. We also describe the software and hard-
ware components used for implementation. Chapter 6 provides an in-depth
explanation of the external frameworks, APIs, algorithms and software that
we use out-of-the-box. Chapter 7 contains our implementation details, ex-
periment design and results. Lastly, chapter 8 contains a recap of our work,
the conclusions we have reached and the potential future work that can be
based on our thesis.

4



Chapter 2

Background

In this chapter we provide the background needed for different concepts that
are discussed in this thesis. In section 2.1 we introduce convolutional neu-
ral networks and how they are trained. Moreover we define the necessary
terminology and provide the mathematical background required to navigate
this thesis. Section 2.2 provides the terminology that we use throughout this
thesis to describe small parts, synthetic images and real images.

2.1 Convolutional Neural Networks

A neural network is a massively parallel distributed processor made up of
single processing units, which has a natural propensity for storing experi-
ential knowledge and making it available for use [21]. Convolutional neural
networks are a special type of neural network. They are typically used to
solve computer vision problems like image classification and object recogni-
tion.

Regular neural networks consist of an input layer, hidden layers and
an output layer. Every layer is made up of a set of neurons, where each
neuron is fully connected to all neurons in the layer before. A neuron which
has an input x of size n calculates the weighted sum z as follows:

z =
n∑

i=1

wixi + bi

where w is called weight and b is called bias. The weights and biases of all
the neurons in a network are called the network parameters. Each neuron
calculates its output y by applying a differentiable non-linear function ϕ(·),
called the activation function, to the weighted sum of its input signals z.

y = ϕ(z)
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CHAPTER 2. BACKGROUND

A neural networks relays the output of its neurons through a series of hidden
layers. Finally, the last fully-connected layer, called the output layer, com-
putes the predictions of the neural network. Figure 2.1 shows an example
structure of a regular neural network.

Figure 2.1: A neural network with an input layer, two hidden layers and an
output layer. Each neuron is fully connected to all the neurons in
the preceding layer.1

Convolutional neural networks (CNNs) are structured differently. CNNs
have 3 types of layers: convolution layers, pooling layers and fully con-
nected layers. Convolution layers slide a weighted matrix (called filter or
kernel) over the previous layer, and calculate the sum of products. The
size of the step that the filter takes while sliding is called a stride. Figure
2.2 shows how a convolution layer applies a 3x3 filter to the previous layer.
A non-linear activation function is applied to the output of the convolution
operation to create a feature map. It is common to add a pooling layer
after the convolution layer for subsampling, which reduces the convolution
layer dimensionality. A frequently used type of pooling is max pooling [47].
Max pooling divides the input layer into sections and computes the maxi-
mum activation of each section. Figure 2.3 shows how a max pooling layer
applies a 2x2 filter to the preceding layer. Fully connected layers are similar
to layers in a regular neural network. Each neuron in a fully connected layer
is connected to all neurons in the previous layer.

Figure 2.4 shows the LeNet-5 convolutional neural network, which was
designed by LeCun et al. [31] for handwritten digit recognition. LeNet-5 is
an example of a CNN architecture. A CNN architecture is a set up of
different types of layers which are combined to predict the class of the input
image.

1Image: http://cs231n.github.io/convolutional-networks/
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2.1. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.2: A 3x3 filter is applied to the source pixel. Each weight in the filter
is multiplied by the source’s neighboring pixel in the corresponding
position. The sum of products is used to calculate the destination
pixel’s value in the output feature map.2

Figure 2.3: A max-pooling filter of size 2x2 and stride 2 is applied to the source
feature map. The maximum value of each filter is used in the desti-
nation feature map.3

2Image: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-
neural-networks-584bc134c1e2

3Image: http://cs231n.github.io/convolutional-networks/
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CHAPTER 2. BACKGROUND

Figure 2.4: Architecture of the LeNet-5 convolutional neural network. [29]

The LeNet-5 network uses 3x3 filters with a stride of 1 for convolution
layers and 2x2 filters with a stride of 2 for subsampling layers. LeNet-5 uses
average pooling, which calculates the average of the values in the filter.

The network takes a 32x32 image as input. The first layer is a convolution
layer (C1), which applies 6 filters, followed by a subsampling layer (S2). Next
comes another convolution layer (C3) which applies 16 filter, followed by a
subsampling layer (S4). A final convolution layer (C5) that applies 120 filters
follows S4. Afterwards comes a fully connected (F6) layer with 84 neurons.
Finally, an output layer of size 10 is connected to F6. Each neuron in the
output layer corresponds to the probability of the input image to be one of
the 10 digits (0-9).

2.1.1 Training a Convolutional Neural Network

We train a CNN using supervised learning. Supervised learning entails that
our network learns from examples. The network is presented with a dataset
of images. The dataset is divided into a training set, a validation set and
a testing set. Each set contains images and their corresponding labels (also
referred to as classes). We train a CNN to predict the labels of images as
seen in the training set. The validation set is used for intermediate assessment
of the CNN performance during the training phase, while the testing set is
used to assess the performance of the CNN after the training phase is done.

CNNs process the training set in mini-batches. While the use of large
mini-batches increases the available computational parallelism, small batch
training has been shown to provide improved generalization performance
[34]. It is also common for CNNs to process the whole training set multiple
times. Each single iteration through the training set is called an epoch. The
batch size and number of epochs are examples of CNN hyperparameters.

8



2.1. CONVOLUTIONAL NEURAL NETWORKS

Hyperparameters are network parameters that are not learnable, but rather
optimized manually.

Training a convolutional neural network is the process of learning the
right parameters (filter weights) to compute the correct labels from the input
images in the training set. To do so, each CNN has a loss function. A loss
function calculates the error of the predictions made by the CNN. The loss
of a CNN which predicts an output y on a training set that has the correct
labels ŷ is calculated as follows:

L(y, ŷ) =
1

m

m∑
i=1

L (yi, ŷi)

where m is the number of examples in the training set, and L (·) is a distance
function that calculates the difference between pairwise instances in y and ŷ.

An optimization function (or optimizer) uses back propagation [29]
to minimize the loss of a CNN during the training phase. The optimizer prop-
agates the output of the loss function backwards by calculating the partial
derivative of the loss function with respect to weights and using it to update
the values of the weights.

The stochastic gradient descent (SGD) optimizer updates the weights
of a CNN that uses the loss function L thusly:

wnew = wold − α
∂L

∂wold

where α is called the learning rate. The learning rate controls how fast
the weights are updated during training. The learning rate is a tricky hy-
perparameter to tune. If it is too large, the optimizer might overshoot the
optimum parameter values. If it is too small, the optimizer might never reach
the optimal value.

Transfer learning [35] is sometimes employed to speed up the training
of convolutional neural networks. Transfer learning involves pre-training a
CNN on images from a different domain, and then retraining the network on
an image set that is specific to the desired classification task. The advantage
of transfer learning is the ability to learn features from a different dataset.
This is useful when we have a classification task in one domain of interest,
but we only have sufficient training data in another domain. A common
technique is to freeze the weights of earlier layers while training a CNN,
meaning that the weights are set to be untrainable. The number of frozen
layers is a network hyperparameter.
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CHAPTER 2. BACKGROUND

2.2 Small Part Classification

We describe a system for the automatic classification of small parts in
aircraft engines. Small parts refer to the fasteners used to build the engine
like screws, bolts and nuts.

There is a set of classification challenges that are specific to small parts.
A number of small parts can only be separated by subtle distinctions. This
difference can be a slight change in size, which means that small parts, unlike
scale invariant categories, are sensitive to differences in size, length and width.
Figure 2.5 shows 2 screws that are identical except for a 6mm difference in
length.

Figure 2.5: Screw (a) is identical to screw (b) except that screw (a) is 6mm
shorter than screw (b). An overhead light shines on the 2 screws.
The reflection changes the natural color of their surface.

Aircraft fasteners are metallic and have a shiny surface. The light re-
flection off the fastener surface disturbs the natural surface color as shown
in figure 2.5, and may hide important features. Furthermore, the effect of
the light reflection depends on the direction of the light, which may cause
variance between images of a single small part.

Unlike cases where the background can provide information, the back-
ground is non-informative to the classification of small parts. Additionally,
exposure to a regular lighting condition, like an overhead light in a room,
causes the fasteners to cast a shadow on their background. A fastener shadow
is not a discriminative feature. Both the background and the fastener shadow
are a source of noise for the classifier.

10



2.2. SMALL PART CLASSIFICATION

2.2.1 Real and Synthetic Images

To automatically classify small parts, we build a convolutional neural network
that is trained on both real images and synthetic images. We define
real images as the natural images of the small parts, taken using a camera.
Synthetic images, on the other hand, are artificially created images. They are
2-dimensional renditions of 3D models of small parts. To generate synthetic
images, we must create a synthetic scene: an artificial environment created
in 3D modeling software. Figure 2.6 shows an example of a synthetic scene.
A 3D model is placed in a synthetic scene in 3D modeling software. The
software renders a 2D image of the environment to create a synthetic scene.

The real and synthetic images should capture the small parts and their
corresponding 3D models from different angles and in different positions. To
do so, we apply transformations to the small parts and 3D models. There
are two types of transformations: translation to change the position of the
target object, and rotation to change the angle. Each transformation has
a range. This prevents the target objects from being translated or rotated
away from the camera view.

Figure 2.6: A synthetic scene where a screw lies on a horizontal plane. (a) shows
the isometric view of the scene while (b) shows the side view.
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Chapter 3

Related Work

We provide in this chapter the literature review about topics which touch dif-
ferent aspects of our work. Section 3.1 discusses CNN based image classifica-
tion, inspired by the overview of deep learning in neural networks presented
by Schmidhuber [41]. Section 3.2 provides an overview of different industrial
use cases of image classification. Finally, in section 3.3 we examine the use
of synthetic images for different computer vision problems.

3.1 CNN Based Image Classification

The Neocognitron, introduced by Fukushima [14], is the first neural network
that resembles the modern convolutional neural network. It was based on
the neurophysical insights of Hubel et al. [23] [24], where simple cells and
complex cells were observed to respond differently to stimulation in the cat’s
visual cortex. Subsequently, Fukushima introduced S-cells (corresponding to
simple cells), where a weighted filter is shifted across a 2 dimensional array
to produce activations of higher order, in order to detect a particular pattern
(eg. edge, shape, etc..). Fukushima also introduced C-cells (corresponding to
complex cells), which are in turn wired to the output activations of a set of S-
cells. C-cells are activated if any of the preceding S-cells are activated, hence
they were used as subsampling layers. The Neocognitron is a multilayered
network of S-cells and C-cells. The structure of a Neocognitron is similar
to what we currently know as a convolutional neural network. Fukushima
applied the Neocognitron to hand-written character recognition.

In 1989, LeCun et al. used the backpropagation algorithm to train a 5-
layer network (dubbed LeNet-5 ) [32] [31]. Similar to the Neocognitron, there
are two types of layers. Convolution layers use a weighted sliding window
to across the 2-dimensional input to calculate the layer activations. On the

12



3.1. CNN BASED IMAGE CLASSIFICATION

other hand, subsampling layers calculate the average of neighboring input
activations. LeCun et al. trained LeNet-5 on 16x16 images of handwritten
digits [30], and later applied this concept to develop an application for au-
tomatically reading zip codes [29]. This work also introduced the MNIST
dataset, which is a database of handwritten digits [28].

Inspired by the Neocognitron, Weng et al. introduced the Cresceptron
[47], which adapts the same topology during training. To implement the sub-
sampling layers, the Cresceptron uses max pooling. Here, the 2-dimensional
input to the subsampling layer is partitioned into smaller rectangular arrays.
Each is replaced in the subsampling layer by the maximum activation value
within the partition.

Traditionally, convolutional neural networks were implemented and com-
puted on central processing units (CPU). To speed up the processing of
CNNs Chellapilla et al. provided a graphical processing unit (GPU) based
implementation of convolutional neural networks [5]. The GPU-based imple-
mentation was 4.11 times faster than the CPU-based implementation. GPUs
have become more and more important for deep learning in subsequent years.

In 2011, Ciresan et al. [7] described a GPU-implementation [5] of a CNN
with max pooling layers [47], trained using backpropagation [29]. Ciresan
et al. used this to achieve superhuman visual pattern recognition perfor-
mance in the IJCNN 2011 traffic sign recognition contest in San Jose, Cal-
ifornia [44] [8] [9]. Ciresan et al. obtained a 0.56% error rate, while the
human performance on the test set was 1.19%. Furthermore, Ciresan et al.
achieved human-competitive performance (around 0.2%) on MNIST hand-
writing benchmark [10].

The ImageNet Large Scale Visual Recognition Challenge is a benchmark
in object category classification and detection on hundreds of object cate-
gories and millions of images [38]. The challenge has been conducted annually
from 2010 to present. In 2012, Krizhevsky et al. [26] used a CNN (dubbed
Alexnet) to achieve the best results on the image classification benchmark.
Alexnet achieved 16.4% classification error, a significant improvement over
the 2011 winning team, which achieved 25.8%. Zeiler and Fergus [48] won
the classification challenge in 2013. They presented a network which was
based on Alexnet (dubbed ZF Net) and were able to achieve 11.6% clas-
sification error. Based on the work of Zeiler et al. [49], Zeiler and Fergus
developed a visualization technique called Deconvolutional Network, which
projects the feature activations back to the input pixel space. 2014 saw yet
another CNN-based winning system. Szegedy et al. [45] created a network
called GoogLeNet (also known as Inception) that achieved 6.7% classification
error. In second place during the same year, Simonyan and Zisserman [42]
reached 7.3% using the VGG network.
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CHAPTER 3. RELATED WORK

3.2 Industrial Use Cases for Image Classifi-

cation

Marino et al. [33] [11] describe Visual Inspection System for Railway main-
tenance (VISyR), which detects the presence of hexagonal-headed bolts.
VISyR uses two 3-layer neural networks (NN) running in parallel. The input
features to the two networks are extracted using discrete wavelet transform
(DWT). The first NN uses Daubechies wavelets, while the second one uses
Haar wavelets. Both neural networks are trained with same examples and
fined tuned using back propagation. The system signals the presence of a
hexagonal-headed bolts if both networks detect its presence.

Gibert et al. [18] describes a method to detect the presence of a fastener
in an image, determine whether the fastener is broken, and further subcat-
egorize the fastener into one of five classes. The method uses Histogram of
Gradients (HOG) to extract features, and a Support Vector Machine (SVM)
for classification. In the same year, Gibert et al. [17] presented a way to
classify materials in images of railway tracks. Gibert et al. use a 4-layered
convolutional neural network to perform segmentation on the input images.
The network classifies each pixel in the image into one of 10 materials. The
CNN was trained to detect chipped or crumbling railway cross ties. In 2017,
Gibert et al. [19] presented an approach to perform the tasks simultaneously:
classify both the materials and the fasteners in an input image. Gibert et al.
extended the material classification network [17] by extracting the features
from the 3rd network layer. The features were used as input for an SVM
classifier to detect the presence of a fastener and classify its type if found.

In 2015, Aytekin et al. [2] describe a real-time railway fastener detection
system using a high-speed laser range finder camera, which is placed under
a railway carriage designed for railway quality inspection. Aytekin et al.
present multiple pixel-similarity-based approaches, namely principal com-
ponent analysis (PCA), linear discriminant analysis (LDA), random-forest
(RF), sparse representation (SR), and multitemplate matching (MTM). More-
over, the histogram-based approaches histogram matching (HM) and depth
peeks (DP) approaches are also implemented. Aytekin et al. focused on
false alarm rate (FAR) as an evaluation metric since they wanted to mini-
mize false positives. Aytekin et al. concluded that a combination of PCA
and DP produce the least false alarm rate.

Feng et al. [13] describes a method to perform automatic fastener clas-
sification and defect detection. Their system which places 2 cameras under
a train coach, which in turn takes pictures of the track and sends it to an
onboard processor which performs fastener localization, classification and de-
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3.3. USING SYNTHETIC IMAGES

fect assessment by ranking the status of the fasteners. Feng et al. propose
a novel classification technique based on Latent Dirichlet Allocation (LDA).
Their system can model different types of fasteners using unlabeled data and
is robust to illumination changes.

3.3 Using Synthetic Images

Synthetic images have been used for training in a variety of problems. Peng
et al. [36] uses 3D CAD models to generate synthetic images. These images
are then used to tests the invariance of convolutional neural networks to low
level cues, namely, object texture, color, 3D pose and 3D shape, as well as
background scene texture and color. A region-based convolutional neural
network (RCNN) [20] is used to test cue invariance in object detection. Peng
et al. present the results of training a CNN on novel domains using synthetic
images. They use part of the Office dataset [39], which has the same 31
categories of common objects (cups, keyboards, etc.) in each domain. They
compare the usage of 3D models with real texture versus 3D models with
uniform gray texture. Peng et al. conclude that a CNN trained on synthetic
images with real texture perform better than images with a gray texture.

Gerogakis et al. [15] use a mixture of synthetic images and real images
to train a network for object detection in indoor scenes. The synthetic im-
ages are created by superimposing images of the target objects on indoor
backgrounds. Instead of rendering images from 3D models, cropped real im-
ages from the BigBird dataset [43] are used. Additionally, the background
images have depth map information (RGB-D images), and come from the
GMU-Kitchen Scenes dataset [16] and the Washington RGB-D Scenes v2
datasets [27]. Gerogakis et al. place the target object in the scene using a
method they call selective positioning. First, they use image segmentation to
find counters and tables in the background image. Next, they use the depth
map of the background image to scale the width and height of the target
object. Lastly, they blend the object with the background image in order to
mitigate the effects of changes in illumination and contrast. Gerogakis et al.
conclude that training an object classifier using a mixture of 90% synthetic
images and 10% real images can produce comparable results to a classifier
trained on only real images.

Rajpura et al. [37] used 3D models of refrigerators and and products that
are placed in refrigerators from Archive3D1 and ShapeNet [4] to perform
object detection in refrigerator scenes. Synthetic images were generated by

1http://archive3d.net/
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rendering 2D images of a 3D synthetic scene were the products are placed in-
side the refrigerators. Rajpura et al. trains a CNN using a fully real training
set, a fully synthetic training set, and a synthetic training set containing 10%
real data. The CNN fully trained with only synthetic images underperforms
against one with real images but the mixed training set boosts the detection
performance by 12% which signifies the importance of transferable cues from
synthetic to real.

Sarkar et al. [40] train a CNN image classifier on synthetic images ren-
dered from 3D models of 5 different objects. The 3D models are created
by scanning the real target objects using a 3D scanner. Synthetic images
are created by rendering the 3D models on 3 different types of backgrounds:
a plain white background, a random indoor background taken from indoor
categories of PASCAL dataset [12], and a chosen background similar to that
of test images. Additionally, images are rendered with two object texture
settings: full texture and no texture. Sarkar et al. find that synthetic images
of fully textured objects overlaid on a mixture of white and chosen back-
grounds produce the best results compared to other texture and background
settings.
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Chapter 4

Analysis

The analysis process results in a model of the system that aims to be cor-
rect, complete, consistent and unambiguous [3]. In this chapter, we focus
on scenario-based analysis. Section 4.1, identifies the functional and non-
functional requirements of the system. In section 4.2, we describe a use case
model that depicts the different interactions between the users and the sys-
tem. Furthermore, we identify and study the objects of our system in the
Analysis Object Model. Finally, 3 dynamic models that depict workflows in
our system are presented.

4.1 Requirements

A requirement is a feature that the system must have or a constraint that
it must satisfy to be accepted by the client [3]. Requirements elicitation
requires domain knowledge of the problem statement as well as experience
in building software systems.

We design a system that uses synthetic and real images to classify dif-
ferent small parts. To do so, we create 3D models of our small parts. We
subsequently generate a real image set for each small part, and a synthetic
image set from the small part’s 3D model. The real and synthetic image
sets are combined to form a dataset, which we use to train a classification
model based on convolutional neural networks. In this section, the concrete
functional and nonfunctional requirements needed to build our system are
defined.
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4.1.1 Functional Requirements

Functional requirements (FRs) describe the interactions between the system
and the its environment independent of its implementation [3].

The system’s main function is to classify images of different small parts.
Furthermore, the system needs to be dynamic and scalable to accommodate
new small parts. To ensure that the system is able to classify images accu-
rately, while leveraging synthetic input images, we introduce the following
Functional Requirements.

FR1 Create 3D Model: The system should use a 3D scanner to create a
3D model of a given small part.

FR2 Generate Synthetic Image Set: Given a 3D model of a small part,
the system should place the 3D model in a synthetic scene and subse-
quently render a set of 2D synthetic images of the scene. The synthetic
images should capture the 3D model in different positions.

FR3 Set 3D Model Transformation Range: To capture the model from
different positions the model should be rotated and translated in the
synthetic scene. The system should allow the user to define a rotation
and translation range for each 3D model to avoid the risk of placing
the 3D model in unrealistic positions.

FR4 Generate Real Image Set: Given a small part, the system should
generate a set of real images of the small part.

FR5 Split Input Dataset: The synthetic and real image sets are combined
to form a dataset. The system should split the dataset into a training
set, a testing set and a validation set to train and evaluate a classifi-
cation model. Moreover, the system should allow the user to set the
ratio of synthetic to real images in the training set.

FR6 Train Classification Model: The system should have the capacity
to train a classification model given a training and a validation set.

FR7 Evaluate Classification Model: The system should provide a mech-
anism to evaluate the performance of a given classification model.

4.1.2 Nonfunctional Requirements

Nonfunctional Requirements (NFRs) are key system requirements that apply
to the system as a whole [3]. To maintain the system’s general requirements
we define the following nonfunctional requirements.
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NFR1 Performance: A performance requirement is the measure of a quan-
tifiable attribute of our system. In our case we would like to track our
system’s classification accuracy.
We first define our system’s accuracy for a single class to be the per-
centage of the given class’s testing images that the classification model
correctly predicts. We consequently define our system’s classification
accuracy to be the classification model’s average prediction accuracy
over each class.

NFR2 Adaptability: Adaptability is the ability to change a system to deal
with additional application domain concepts [3]. Our system should
accommodate for the addition of new small parts to the set of target
classes that our classification model is trained to identify. This addition
can be done even after the system has been deployed.

4.2 System Models

In this section we take a closer look at the system models. In section 4.2.1, we
establish the main actors of our system and determine the actions that they
can undertake. Section 4.2.2, identifies the objects of our system, examines
their behavior and studies the relationship between them. Lastly, in section
4.2.3 we present activity diagrams that describe the workflows of our system.

4.2.1 Use Case Model

Use case models represent the relationship between the user group of a system
and the general functions that they can execute. A use case model can reduce
the complexity of a system and increase its understandability.

Figure 4.1 depicts the use case model of our system. There are three main
protagonists in our system. The 3DModelCreator is responsible for creating
3D models for the given small parts. The DataGenerator uses the small parts
and their corresponding 3D models to generate synthetic and real image sets.
Finally, the MachineLearningEngineer is responsible for creating a training,
a validation and a testing sets. Moreover, the MachineLearningEngineer
trains the classification model to identify a set of small parts, and evaluates
the model’s performance.

The use case model can be divided into 4 main functions; namely cre-
ating 3D models, generating synthetic images, generating real images, and
training/evaluating a classification model.
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Figure 4.1: The use case model displays the DataGenerator and the Machine-
LearningEngineer and the actions that they can undertake.
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Creating 3D Models

In order to create synthetic images, we need to create 3D models of our small
parts. To do so, the 3DModelCreator uses a 3D scanner and compatible 3D
scanning software to create the model.

Use Case Create3DModel

Participating Actors 3DModelCreator

Flow of Events

1. The 3DModelCreator places the small part on a flat surface.

2. The 3DModelCreator uses the 3D scanner to scan images of the
small part from all directions.

3. The 3D scanning software combines the scanned images to create a
3D model.

Entry Condition • A small part has been chosen for scanning.

• The compatible 3D scanning software is
open.

• The 3D scanner is turned on and recognized
by the 3D scanning software.

Exit Condition • A 3D model of the chosen small part has
been created.

Quality Require-
ments

• The 3D model is as realistic as possible.
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Generating Synthetic Images

The created 3D models are used to generate a synthetic image set. To in-
crease the understandability of our model, we separate the use case that
concerns modeling the 3D model as SetTransformationRange, and the use
case that deals with the synthetic scene environment as SetUpSyntheticScene.
Both are included in the use case GenerateSyntheticImageSet.

Use Case SetTransformationRange

Participating Actors DataGenerator

Flow of Events

1. In the modeling software, the DataGenerator chooses the transfor-
mations that are applicable to the small part’s 3D model.

2. For each transformation, the DataGenerator sets the range of each
transformation attribute that will be later used to generate a random
position for the synthetic image of the small part.

Entry Condition • A 3D model of a small part has been created.

Exit Condition • All the transformation ranges for the 3D
model have been set.

Quality Require-
ments

• The 3D transformation ranges should reflect
the real-life transformations that the small
parts can undergo.

• The 3D model should remain within camera
viewfield.
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Use Case SetUpSyntheticScene

Participating Actors DataGenerator

Flow of Events

1. In the modeling software, the DataGenerator places the 3D model
of the small part on a horizontal plane as if lying on a table.

2. The DataGenerator sets the background of the horizontal plane to
mimic the background upon which the small part’s real images are
taken.

3. The DataGenerator sets the lighting condition of the scene to reflect
the lighting condition of the environment where the small part’s real
images are taken.

Entry Condition • A 3D model of a small part has been created.

Exit Condition • In the modeling software, the 3D model of
the small part should be lying on a horizon-
tal plane.

• The background and lighting condition
should reflect the environment of the real
image set.

Quality Require-
ments

• The synthetic scene should look as photo-
realistic as possible. This helps the classifi-
cation model achieve a higher classification
accuracy using the synthetic image set.
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Use Case GenerateSyntheticImageSet

Participating Actors DataGenerator

Flow of Events

1. The DataGenerator specifies the desired number of output images
in the synthetic image set.

2. The modeling software generates the desired number of output syn-
thetic images. Each image is a rendition of the synthetic scene after
the transformations have been applied to the 3D model.

Entry Condition • DataGenerator has set the transformation
ranges of the 3D model.

• DataGenerator has set up the synthetic
scene.

Exit Condition • The DataGenerator obtains a set of syn-
thetic images for the specified small part.
The image set can be later used to train a
classification model.

Quality Require-
ments

• The generated image dimensions should
match the input dimensions required by the
classification model.
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Generating Real Images

The DataGenerator should strive to create an environment that is easy to
model in 3D software. This will enable the creation of photo-realistic syn-
thetic images.

Use Case GenerateRealImageSet

Participating Actors DataGenerator

Flow of Events

1. The DataGenerator places the camera over a plane.

2. The DataGenerator sets the small part over the plane in a random
position, while maintaining that the small part remains horizontal.
The full small part body should remain within the viewfield of the
camera.

3. The DataGenerator takes a picture of the small part.

4. The DataGenerator repeats steps 2 and 3 until the desired number
of real images of the small part is reached.

5. The DataGenerator resizes the images to correspond to the input
image size of the classification model.

Entry Condition • A small part has been chosen.

Exit Condition • The DataGenerator obtains a set of real im-
ages for the specified small part that can be
later used to train the classification model.

Quality Require-
ments

• The lighting of the environment should elim-
inate shadows and light reflections on the
small part surface.
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Training the Classification Model

The synthetic and real image sets are combined to form a dataset. Train-
ing a classification model requires the dataset to be split into a training, a
validation, and a testing set. We model this requirement as the use case
SplitInputDataset. Furthermore the actions required for setting up the clas-
sification model are modeled as the use case SetUpClassificationModel.

Use Case SplitInputDataset

Participating Actors MachineLearningEngineer

Flow of Events

1. The MachineLearningEngineer chooses the number of images for the
training set, validation set and testing set.

2. The MachineLearningEngineer chooses the ratio of synthetic images
to real images in the training set.

Entry Condition • For each small part set to be classified by
the classification model, the corresponding
real and synthetic image sets should be gen-
erated and ready for use.

Exit Condition • The images in the dataset are split into
a training, a validation and a testing set,
ready to be used by the classification model.
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Use Case SetUpClassificationModel

Participating Actors MachineLearningEngineer

Flow of Events

1. The MachineLearningEngineer chooses a convolutional neural net-
work architecture for the classification model.

2. The MachineLearningEngineer sets the hyperparameters: number
of batches, number of epochs, number of frozen layers in the CNN,
the optimizer and the hyperparameters associated with the chosen
optimizer.

Exit Condition • The classification model architecture, opti-
mizer and corresponding hyperparameters
should be selected.
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Use Case TrainClassificationModel

Participating Actors MachineLearningEngineer

Flow of Events

1. The MachineLearningEngineer trains the classification model on the
given training and validation sets.

2. The MachineLearningEngineer evaluates the accuracy of the classi-
fication model by studying the model’s predictions on the testing
set.

3. The MachineLearningEngineer fine-tunes the hyperparameters and
re-trains the system until the maximum possible accuracy is reached.

Entry Condition • The dataset should be split.

• The CNN model architecture, optimizer and
initial hyperparameters should be chosen.

Exit Condition • The classification model outputs the max-
imum possible accuracy given the input
dataset.

Quality Require-
ments

• The classification model’s hyperparameters
should be fine-tuned until the maximum
possible accuracy has been reached.
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4.2.2 Analysis Object Model

The analysis object model is a visual dictionary of the main concepts visible
to the user [3]. The analysis object model depicts a system’s entities, their
corresponding attributes and functions, and illustrates the relationship be-
tween said entities. Figure 4.2 and figure 4.3 represent the analysis object
models of our system. We divide our model into 2 UML packages, namely,
Dataset Generation and Image Classification depicted in figures 4.2 and 4.3
respectively. Dataset Generation presents the objects required to create 3D
models of small parts and subsequently generate a dataset of real and syn-
thetic images. Image Classification displays the objects used to utilize the
generated dataset for the training and evaluation of a CNN model, which we
use to classify our small parts.

Dataset Generation

To generate our dataset, we first need to create 3DModels of our Small-
Parts. A 3DScanner and a compatible 3DScanningSoftware are used to
scan a SmallPart and generate the corresponding 3DModel. Each SmallPart
and its reciprocal 3DModel have a label string which it later used by the
image classifier as the object class.

SmallParts and 3DModels both implement the Transformable inter-
face. Each Transformable has multiple Transformations, and can apply
the transform function. Transformation is an abstraction of Translation
and Rotation. Each Transformation has an axis (x, y or z) and a range;
Translations define minimum and maximum distances, while Rotations de-
fine minimum and maximum angles. Additionally, each transformation has a
function to generate a random value within the defined range. This function
is used to transform the object randomly before generating a real or synthetic
image.

ImageGenerator is a generalization of RealImageProcessor, which
uses the Camera to generate RealImages, and 3DModelingSoftware,
which generates SyntheticImages. ImageGenerators define the output
number of images, as well as their width and height. Moreover, they ap-
ply random transformations to their target transformable before generating
each image. Each 3DModelingSoftware has a SyntheticScene where the
background and lighting conditions of the synthetic images are defined.

RealImage and SyntheticImage are both specializations of the Image
class. Each Image has a width, height, label (corresponding to the label
of the depicted SmallPart of 3DModel), and a data buffer which holds the
values of the image pixels. The Dataset is a composition of multiple Images.
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Figure 4.2: UML package of the analysis object model which models dataset
generation.
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Image Classification

After the dataset has been generated, it is split into a training set, a validation
set and a testing set by the DatasetSplitter. The DatasetSplitter sets the
size of each set as well as the ratio of synthetic to real images in the training
set. The ImageClassifier uses the split dataset to train and evaluate a
CNNModel. The CNNModel defines the model weights as well as the
hyperparameters: batch size, number of epochs, and, number of frozen layers.
CNNModel uses the Optimizer to adjust the model weights in the training
phase.

Figure 4.3: UML package of the analysis object model which depicts the objects
that are used for image classification.
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4.2.3 Dynamic Model

The dynamic model is focused on the behavior of the system. Sequence
diagrams, activity diagrams and state machines are usually used to depict
dynamic models [3]. In this section we present 3 activity diagrams, each
depicts a workflow in our system. Namely, the workflow to create a real
image set from a small part, the workflow to create the small part’s 3D model
and subsequently generate the synthetic image set of the small part, and the
workflow to train a classification model using the dataset that combines both
generated image sets.

Synthetic Image Set Generation

Figure 4.4 depicts the workflow of activities required to generate a synthetic
image set. The 3DModelCreator uses a 3D scanner to create a 3D model of
a small part. Next, the DataGenerator sets the 3D model transformations
and creates the synthetic scene in the 3D modeling software. Finally, the
software is used to generate a synthetic image set.

Figure 4.4: Activity Diagram depicting the workflow required for synthetic image
set generation.
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Real Image Set Generation

The workflow of activities required to generate a real image set is depicted
in figure 4.5. The DataGenerator selects a small part. The small part is
transformed and the camera is used to take a picture. The process is repeated
until the desired number of real images is reached.

Figure 4.5: Activity Diagram depicting the workflow required for real image set
generation.

Image Classification

Figure 4.6 describes the workflow of activities required to create the image
classifier. The MachineLearningEngineer splits the data into training, vali-
dation and testing sets. The MachineLearningEngineer then creates a CNN
model. The training and validation sets are used to train the CNN model.
Next, the model accuracy is evaluated using the testing set. If the accuracy of
the trained CNN model is not sufficient, the hyperparameters are fine tuned
and the CNN model re-trained.
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Figure 4.6: Activity Diagram describing the workflow required to train a CNN
model and create an image classifier.
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Chapter 5

System design

In the previous chapter, we have extracted the functional and non-functional
requirements of our system. Subsequently, we broke down our system into
use cases in the use case model. Furthermore, we have described the entities
of our system and the relationships between them using an Analysis Object
Models and we presented 3 activity diagrams that depict the workflows in
our system.

In this chapter we map our analysis into the solution domain. We first
identify our design goals in section 5.1. In section 5.2, we group the ob-
jects that we have identified in the analysis object models into subsystems,
and we discuss the dependencies between those subsystems. In section 5.3
we present the hardware and software components used to implement our
system. Lastly, section 5.4 presents the structure of our system’s persistent
data.

5.1 Design Goals

In the previous chapter we have defined our non-functional requirements. In
this section, we use those non-functional requirements to extract our design
goals, and we use those design goals as a compass for our system design.
Defining our design goals allows us to make consistent design decisions across
our different subsystems. Table 5.1 lists our non-functional requirements and
their corresponding design goal. There are 5 types of possible design criteria
from which the design goals can be selected: performance, dependability,
cost, maintenance and end user criteria [3].
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Requirement Design Goal Criteria
Adaptability The system should create

a convolutional neural net-
work that can accommodate
the addition of new classes.

Performance

Accuracy The system should utilize
real and synthetic images
to train a CNN model to
classify different small parts
with high accuracy.

Performance

Table 5.1: Non-functional requirements and their corresponding design goals.

5.2 Subsystem Decomposition

Figure 5.1 depicts our system’s subsystem decomposition. Our system is
divided into 3 subsystems. SyntheticImageSubsystem is responsible for
providing our system with synthetic images. It consists of 4 main compo-
nents: 3DScanner, 3DScanningSoftware, 3DScanningSoftware, Syn-
theticScene and 3DModelingSoftware. The 3DScanner scans Small-
Parts and outputs raw 3D model, which are processes by the 3DModeling-
Software to create a 3DModel. The SyntheticScene generates an artificial
environment. The 3DModelingSoftware places the 3D models in the environ-
ment created by SyntheticScene, and renders SyntheticImages of the 3D
models.

On the other hand, RealImageSubsystem is responsible for providing
our system with real images. The Camera is used to take real images of
the SmallParts. Next, the RealImageProcessor resizes the raw images to
provide our system with RealImages that can be used out of the box.

The synthetic images created by the SyntheticImageSubsystem and the
real images created by the RealImageSubsystem are both sent to the Im-
ageClassifierSubsystem. The ImageClassifierSubsystem in turn combines
both image sets to create a Dataset. The images are then fed to the
DatasetSplitter, which is in turn responsible for splitting the data into
a training set, a validation set and a testing set. The ImageClassiefier
uses the training and validation sets to train a CNNModel. The CNN-
Model uses an Optimizer to adjust the model weights during the training
phase. The testing set is then used to evaluate the accuracy of the trained
CNNModel.
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Figure 5.1: Subsystem decomposition showing the SyntheticImageSubsystem,
the RealImageSubsystem, the ImageClassifierSubsystem and the ser-
vices that they provide and consume.
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5.3 Hardware Software Mapping

This section describes how the subsystems are mapped onto existing hard-
ware and software components. Figure 5.2 depicts the deployment diagram
of our system. The SyntheticImageGenerator device is used to run 2
execution environments: the Artec Studio1 3D scanning software, and the
Rhinoceros2 3D modeling software. Artec Studio is used to process the
scans produced by the 3DScanner3 device. The 3DScanner is the Artec
Space Spider. The Windows version of Rhinoceros is chosen because it sup-
ports extra features that are not available on the Ubuntu or Mac versions.
We use Rhinoceros to construct the SyntheticScene. Moreover, Rhinoceros
hosts a Python execution environment. We use the Python interpreter to
render synthetic images on Rhinoceros.

The Camera is used to capture raw images of the small parts. We use
the Camera application on an iPhone 6. The RealImageGenerator runs
a Python environment. We use the Python commands to resize the the raw
images of the small parts captured by the camera. The resized real images
are then ready to be fed to the image classifier.

The Dataset is stored in the file system of the ImageClassifier device.
We use the device’s Python environment to run the DatasetSplitter, the
ImageClassifier, the CNNModel and the Optimizer. Furthermore, we use
Keras [6], a neural networks API that provides out-of-the-box CNN imple-
mentations. The ImageClassifier device is equipped with a graphics process-
ing unit (GPU). The GPU is used for parallel processing of the Convolutional
Neural Network training algorithm. This enhancement significantly slashes
down the time needed to train a CNN.

1https://www.artec3d.com/3d-software/artec-studio
2https://www.rhino3d.com
3https://www.artec3d.com/portable-3d-scanners/artec-spider
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Figure 5.2: System Deployment Diagram depicting the different hardware and
software components used to implement our system.
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5.4 Persistent Data Management

The implementation of the ImageClassifier requires the split dataset to be
organized in a certain way. The file structure of the dataset is shown in
figure 5.3. The root folder contains 3 folders: one for training images, one
for validation and one for testing. Each folder, in turn, contains one folder
per class, and each of these folders are named after their respective class’s
label. Lastly, each class folder contains a set its own images.

Figure 5.3: Dataset file structure model displaying how the split dataset is or-
ganized before being fed as input to the image classifier. Each sub-
folder in the training/validation/testing directory is named after a
small part label.
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Chapter 6

Object Design

In chapter 4, we identified the objects in our system by creating the analysis
object model. In chapter 5, we mapped our objects to components and we
defined the hardware and software platforms that host those components.
During hardware/software mapping, off-the-shelf components that we use
throughout our system have been identified. In this chapter, we close the
gap between the application objects and the off-the-shelf components by
identifying additional solution objects and refining existing objects [3].

Section 6.1 presents the Artec Space Spider 3D scanner and the Artec
Studio 3D scanning software. It also describes how they are used to create
3D models. Section 6.2 presents the 3D modeling software Rhinoceros and
how it is used to create synthetic images. Section 6.3 describes Pillow the
python imaging library, and how it is used to process real images. In section
6.4, we introduce Keras and Tensorflow, and we describe how they are used to
create an image classifier. Section 6.5 describes the VGG convolutional neural
network algorithms used to implement the CNNModel. Finally, Section 6.6
presents the Adam optimization algorithm.

6.1 Artec Space Spider and Artec Studio

Artec Space Spider1 is a high-resolution 3D scanner based on blue light tech-
nology. It is built for capturing small objects or intricate details of large
industrial objects in high resolution, with steadfast accuracy and precise
color.

Artec Studio2 is a 3D scanning and data processing software. It is used
hand in hand with the Artec Space Spider 3D scanner to create 3D models.

1https://www.artec3d.com/portable-3d-scanners/artec-spider
2https://www.artec3d.com/3d-software/artec-studio
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6.1.1 Usage

We use the Artec Space Spider 3D scanner to scan our small part from mul-
tiple angles. The different scans are then sent to Artec Studio for processing.
Artec Studio provides a functionality that detects features in multiple scans
and automatically combines the scans to form a 3D model. Moreover, Artec
Studio automatically removes outlier points in the scans. We also use Artec
Studio to identify the horizontal plane where the small part was lying during
the scan. The plane is then removed from the output 3D model. After the
scans have been combined to construct a 3D model, Artec Studio automati-
cally fills the holes in the object where there are missing scans.

6.2 Rhinoceros

Rhinoceros3 (Rhino for short) is a 3D modeling software. Rhino can create,
edit, analyze, document, render, animate, and translate curves, surfaces,
solids, point clouds, and polygon meshes.

We choose Rhino to create our synthetic data because it has a python
library called RhinoScriptSyntax. RhinoScriptSyntax provides an API for
object transformation, scene manipulation and image rendering in python.
Moreover, the Rhino software hosts a python interpreter and consequently
supports running python scripts directly in the software. RhinoScriptSyntax
and the hosted python interpreter are used to automate repetitive tasks that
can otherwise consume more time if executed manually.

6.2.1 Usage

We use Rhino to create our synthetic scene. We set the background and the
lighting conditions of the environment, then we import our 3D model and
place it horizontally on the background.

Furthermore, RhinoSyntaxScript over python to is used to create our
synthetic images. After setting up the synthetic scene in Rhino, we write
a python script that executes random transformations over our 3D model.
Next, a RhinoSyntaxScript function that renders and saves a 2D image is
applied to the synthetic scene. In the python script, the desired number of
output images is specified. Rhino repeats the transformation and rendering
process accordingly.

3https://www.rhino3d.com
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6.3 Pillow

Pillow is a python imaging library built on top of PIL (Python Imaging
Library). Pillow is used for image manipulation in python. The Image
module provided by Pillow has a function to open an existing image, resize
it and save the new resized image. We use the Image module to implement
our RealImageProcessor.

6.4 Keras and Tensorflow

Keras is a high-level neural networks API, written in Python and capable of
running on top different backends such as Tensorflow, CNTK or Theano [6].
Keras focuses on being a user friendly API. It minimizes the number of ac-
tions required to develop common neural networks. Furthermore, Keras is
designed modularly. Neural layers, optimizers, cost functions and regulariza-
tion schemes are shipped as standalone components that can be easily used
to create new models.

Our system runs Keras over Tensorflow. Tensorflow is an open source
software library for high performance numerical computation and a machine
learning framework [1]. Tensorflow is a flexible library that can be used to
express neural network algorithms in a wide variety of domains.

6.4.1 Usage

Keras provides an out-of-the-box implementation of different CNN models,
optimizers and cost functions. We took advantage of Keras’s modular compo-
nents to build and fine tune our CNN models and their respective optimizers.

Furthermore, Keras provides an image loader, called ImageDataGenera-
tor. ImageDataGenerator feeds the training, validation and testing data to
the CNN models from a folder directory. Consequently, we built our Dataset-
Splitter using Keras’s image loader.

6.5 VGG CNN Algorithm

VGG is a convolutional neural network model created in 2014 by Karen
Simonyan and Andrew Zisserman of the University of Oxford [42]. VGG was
introduced in the ILSVRC 2014 competition, where the team came second
on the image classification benchmark with a 7.3% error rate.

As shown in figure 6.1, the VGG CNN algorithm has different configura-
tions. For example configuration D has 16 layers while E has 19 layers. The
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convolution layers used in the VGG network use a 3x3 filter with a stride
and a pad of 1, while the max pooling layers use a 2x2 filter with a stride of
2.

Figure 6.1 shows the different VGG architecture configurations presented
by Simonyan and Zisserman [42]. We use configurations D and E to imple-
ment our CNNModel. We refer to them as VGG16 and VGG19 respec-
tively.

Figure 6.1: Different VGG architectures. We use configurations D and E.
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6.6 Adam Optimization Algorithm

Adam [25] is a gradient descent optimization algorithm. It is used during
the training phase of a network to update the model weights. Adam differs
than the classical stochastic gradient descent (SGD) optimizer. While SGD
maintains a constant learning rate for all weight updates, Adam calculates
the exponential moving average of the gradient and the squared gradient.
The Adam optimizer updates the weight of a network that uses the loss
function L as follows:

gt =
∂L

∂wt−1

mt = β1 ·mt−1 + (1− β1 · gt)

st = β2 · st−1 + (1− β2 · g2t )

m̂t =
mt

1− βt
1

ŝt =
st

1− βt
2

wt = wt−1 − α
m̂t√
ŝt + ε

where α is the learning rate, β1 and β2 are decay rates for the moving
average of the gradient and the square gradient respectively, t is a time-step
that starts at 0 and ε is a small constant (usually 10−8) used to avoid division
by zero.

The Adam optimization algorithm is more sophisticated than the classical
stochastic gradient descent. However, we use both algorithms to implement
the Optimizer class, which is in turn used to update the weights of the
CNNModel during the training phase.
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Chapter 7

Evaluation

In this chapter we describe how our system is utilized to run our experiments.
We provide a quantitative analysis of the data that we gathered and the
comparison between the different experiment settings. Section 7.1 defines
out experiment objectives. Section 7.2 describes the implementation details
of how we generate our dataset and perform image classification. In section
7.3 we provide the results of our experiment. Our findings and experiment
limitations are described in sections 7.4 and 7.5 respectively.

7.1 Objectives

We hypothesize that we are able to enhance the classification accuracy of our
image classifier using synthetic data for training. Multiple ratios of synthetic
to real images for training are examined. Moreover, we run our experiments
on multiple CNN architectures and fine-tune their hyperparameters accord-
ingly.

7.2 Methodology

Our methodology is divided into 2 main sections. Section 7.2.1 describes 3D
model creation and dataset generation. Moreover, it discusses generating real
and synthetic images, and how they’re collected from small parts and their
corresponding 3D models. Section 7.2.2 presents image classification and
how the collected images are utilized to maximize the classification accuracy
of the image classifier.
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7.2.1 Dataset Generation

During dataset generation, we strive to create a synthetic dataset that has a
high degree of photo-realism. Simultaneously, we want to create 3D models
as fast as possible to decrease the timing of the whole workflow. To achieve
this balance, we aim to create an environment that is easy to model on 3D
software. We attempt to eliminate light reflections and shadows and reduce
the overall complexity of the scene.

Creating 3D Models

We first choose a small part that we wish for our image classifier to recognize.
A 3D scanner is used to create a 3D model of the chosen small part.

We were unable to create 3D models with satisfactory quality for two
reasons. Firstly, the small size of the target small parts requires a great level
of precision to create an accurate 1:1 model. Secondly, the reflective surface
of the small parts bounces the scanner’s light off and causes the scanner to
capture a lot of clutter. Figure 7.1 shows a small part and its corresponding
scanned 3D model. The scanner is not able to accurately scan fine details
like the small part threads.

To counter this problem, readily available 3D models are obtained. We
download 3D model by searching the Traceparts website1 for the small part’s
code name. Figure 7.2 shows each small part and its corresponding 3D model.

Figure 7.1: (b) is a 3D model of the small part (a) created by 3D scanning. The
3D scanner is unable to accurately capture fine details like the small
part threads as shown in (b). The 3D model is rendered without
texture for clarity.

1https://www.traceparts.com
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Figure 7.2: Samples of images for each class that we use in our experiments. For
each pair, the image on the left is a sample real image, while the
image on the right is a sample synthetic image. The label under
each image pair is the label we assign to the class.
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Generating Real Images

We place the chosen small part on a horizontal plane and place a light source
underneath. A plain, white, semi-transparent plane covered with opal foil
is used as background to disperse the light source coming from underneath,
and distribute the light evenly across the plane. We place the light source
beneath the plane, rather than above, to eliminate any shadow that the small
parts might cast. Moreover the dispersed backlight provides a lighting source
without casting a direct light on the objects. A direct light might cause glare
on the small part’s reflective surface.

Next, an iPhone is placed over the plane, such that the small object is
fully within the viewfield of the iPhone’s camera. A clamp places the iPhone
133 mm over the plane as shown in figure 7.3.

Afterwards, we rotate and change the position of the small part randomly,
while maintaining that the small part is fully within the viewfield of the
camera. The iPhone’s camera is used to take a picture of the small part.
These steps are repeated until we obtain the desired number of real images.

Lastly, the raw real images taken by the iPhone camera are resized to
conform with the height and width required by the image classifier.

Generating Synthetic Images

We start by creating the synthetic scene in the Rhinoceros 3D modeling
software. First, a picture of the real horizontal plane is taken and used as
a background for our synthetic scene. A synthetic lighting source is placed
underneath the plane to mimic the lighting effect of the real environment.
The 3D model is then placed on the horizontal plane of the environment.

Next, we generate a python script that uses the Rhinoceros library to
manipulate 3D objects in the Rhinoceros software. The python script is the
controller for the synthetic data generator. The synthetic data generator
obtains the rotation and translation ranges of the 3D model. It also speci-
fies how many images are to be generated. For each new image, the script
generates a random rotation and translation value from within the defined
ranges. It then applies those transformation to the 3D model and renders a
new 2D synthetic image.

Dataset

The real images generated from the small part and the synthetic images
generated from the corresponding 3D model are transferred to the Image-
Classifier device, where they are placed in the dataset folder.
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Figure 7.3: Sketch of the setup to generate real images. A clamp places the
iPhone over a horizontal, backlit glass table with an opal foil. The
small part rests on the table within the viewfield of the iPhone cam-
era.

Figure 7.4: Synthetic scene in Rhino. The 3D model rests horizontally on a
backlit plane to mimic the environment of the real setup. Sections
(a) and (b) of the image depict the top view of the scene.
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7.2.2 Image Classification

The image classifier uses the images that were generate to train a convolu-
tional neural network model to classify images of our small parts. We describe
the different dataset splits that were used in our experiment. Furthermore,
we present the convolutional neural models and optimizers used for image
classification.

Dataset Splitting

Firstly, the dataset is split into a training set, a validation set and a testing
set. Moreover, we determine the number of synthetic images and the number
of real images in our training set. The dataset is split into folders named
after the label of their respective small part. The images are organized as
shown in figure 5.3.

5 different ratios of synthetically enhanced training sets are compared
Table 7.1 describe our different dataset splits, detailing the number of images
per class for each split. We generate a fully synthetic training set R0S100,
a 2.5% real training set R2.5S97.5, a 5% real training set R5S95, a 10% real
training set R10S90, and a fully real training set R100S0.

Dataset
Training

(Synthetic)
Training
(Real)

Training
(Total)

Validation Testing

R0S100 600 0 600 100 150
R2.5S97.5 585 15 600 100 135
R5S95 570 30 600 100 120
R10S90 540 60 600 100 90
R100S0 0 600 600 100 100

Table 7.1: Different dataset splits that we use in our experiment. Each column
details the number of images per class for the specified data split.

CNN Model

For each data split, the VGG16 and the VGG19 [42] convolutional neural
network models are used. Moreover, the Stochastic Gradient Descent (SGD)
and the Adam optimization algorithms [25] are used to optimize the network
weights. We leverage the power of transfer learning [35] by using CNN models
that are pre-trained on the ImageNet dataset [38]. Furthermore, our CNN
models are tweaked to train and evaluate images of size 500px by 500px.
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Hyperparameter Tuning

For each split dataset, the hyperparameters of the CNN model and the op-
timizer are fine tuned to maximize the classification accuracy of the output.
Below is a list of hyperparameters that are optimized in the fine-tuning phase.

• Number of Frozen Layers: Our CNN models are pre-trained on the
ImageNet dataset, which means that each layer is pre-loaded with op-
timized weights. During training, some of the early network layers are
frozen to preserve these optimized weights. We optimize our classifica-
tion accuracy by fine tuning the number of frozen layers.
For VGG16, the first 10 or 14 layers are frozen. For VGG19, the first
12 or 16 layers are frozen.

• Batch Size: During training, our CNN model processes the training
set in batches. We fine tune our batch size between 4, 8 and 16.

• Number of Epochs: Due to the iterative nature of the training pro-
cess, a CNN has to train for multiple epochs until it reaches maximum
classification accuracy. We train each model for 30 epochs and observe
the peak accuracy during this range.

• Optimizer Learning Rate: For stochastic gradient descent and Adam,
a learning rate of 0.0001 is used.

7.3 Results

Tables 7.2 and 7.3 provide the resulting class-wise classification accuracy of
training a VGG16 network and a VGG19 network respectively. The dis-
played results are reached after fine-tuning the hyperparameters described
in the previous section. The provided classification accuracy is the result of
evaluating each CNN model using the respective testing set.

7.4 Findings

In our experiments, purely synthetic training sets are found to generate in-
ferior results compared to purely real training sets. A VGG16 model trained
on the R0S100 dataset has an accuracy of 83.556%, a whole 16.444% less
that a VGG16 model trained on the R100S0 dataset. However, A VGG16
trained on a training set with 10% real data produces comparable results to a
training set with purely real data. We note that while using R100S0 dataset,
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the VGG16 network reached an accuracy of 100% on the test set, while us-
ing the R10S90 dataset resulted in an accuracy of 97.037%. Moreover, the
VGG19 network achieved an accuracy of 99.333% using the R100S0 dataset,
compared to an accuracy of 97.222% as a result of using the R5S95 dataset.

Furthermore, we notice that the small parts with the highest class-wise
accuracy are Flat Head and Longhex Large. Compared to their counterparts,
those two small parts have a unique aesthetic. Hex Large and Hex small look
similar, and the same goes for Mushroom Large and Mushroom Small.

Dataset
Flat
Head

Hex
Large

Hex
Small

Long-
hex

Large

Mush-
room
Large

Mush-
room
Small

Total

R0S100 99.333 48.000 98.667 96.667 80.667 78.000 83.556
R2.5S97.5 100.00 79.259 99.259 99.259 83.704 80.741 90.370
R5S95 100.00 95.833 100.00 97.500 90.833 75.833 93.333
R10S90 100.00 94.444 98.889 100.00 98.889 90.000 97.037
R100S0 100.00 100.000 100.00 100.000 100.000 100.000 100.000

Table 7.2: Class-wise classification accuracy of a VGG16 network trained on dif-
ferent ratios of synthetic data to real data.

Dataset
Flat
Head

Hex
Large

Hex
Small

Long-
hex

Large

Mush-
room
Large

Mush-
room
Small

Total

R0S100 100.00 81.333 88.667 92.000 98.667 52.667 85.556
R2.5S97.5 100.00 100.00 86.667 99.259 99.259 90.370 95.926
R5S95 100.00 100.00 96.667 98.333 100.00 88.333 97.222
R10S90 100.00 90.000 96.667 98.889 98.889 96.667 96.852
R100S0 100.00 100.000 100.000 100.000 99.000 97.000 99.333

Table 7.3: Class-wise classification accuracy of a VGG19 network trained on dif-
ferent ratios of synthetic data to real data.

7.5 Limitations

Our system is dependent on having access to the 3D model of the small parts
in order to generate synthetic images. Moreover, the model’s classification
accuracy is dependent on the shapes of the small parts. As observed in the
previous section, the class-wise accuracy for an object that is similar to other
objects in the dataset is lower than an object that is aesthetically unique.
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Chapter 8

Summary

In this chapter we recap the work that we have done. We summarize the
status of the project by relating to the functional that were previously iden-
tified in section 8.1. In section 8.2 we present a conclusion of our results and
in section 8.3 propose a direction for future work that can further advance
the usage of synthetic data in image classification.

8.1 Status

We look back at the functional requirements that we have defined in chapter
4. We are able to create 3D models of our small parts using the 3DScanner
device. However the output 3D models were imprecise and could not cap-
ture the details of the small parts. We instead downloaded readily available
3D models. Generating the synthetic image set is implemented using ready
made 3D models, the creation of synthetic scenes and rendering 2D synthetic
images in Rhinoceros. The transformation ranges for each 3D model are set
in the python script that Rhino executes to generate the synthetic images. A
camera is used to take real images of the small parts which are then resized
by the RealImageProcessor component in the RealImageGenerator device.
In the ImageClassifier device, the DatasetSplitter divides the images in the
Dataset component into a training set, a validation set and a testing set. The
ImageClassifier trains a CNNModel using the training and validation sets,
and evaluates its classification accuracy using the testing set.

8.2 Conclusion

The main objective of our work was to decrease the amount of manual la-
bor required to label a dataset of small parts. We described a system that
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facilitates the usage of synthetic data in image classification. Furthermore,
we carried out an experiment to evaluate the usage of synthetic images to
train a convolutional neural network to classify images of small parts. Our
results indicate that a CNN trained on a mixture of synthetic and real im-
ages can provide a comparable classification accuracy to CNNs that have
been trained on purely real images. This is advantageous in situations where
a large dataset of images is not available for new classes.

8.3 Future Work

We propose 3 possible directions for future improvements over the work that
has been presented in our thesis. Firstly, our results indicate that, when
adding new classes, the output classification accuracy is affected by the aes-
thetic similarity of small parts in the dataset. A logical next step is to
evaluate the CNNs after increasing the number of output classes. Secondly,
a possible improvement is to evaluate the usage of deeper CNN models such
as the ones presented by He et al. [22] and Szegedy et al. [46]. Thirdly,
the total number of synthetic images in the training set has not been varied
throughout our experiments. A possible improvement in accuracy could be
achieved by training the CNN models on a bigger training set containing a
larger amount of synthetic images.
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