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Abstract

Macroscopic current driven magnetohydrodynamic (MHD) instabilities pose a significant
threat to the viability of reactor relevant tokamak scenarios. While stellarators are gener-
ally considered to have much milder MHD stability properties than tokamaks, because of
the reduction or removal of the toroidal plasma current carried in such devices, there are
still unanswered questions regarding their nonlinear MHD stability limits. In particular
for the context of this work, quasi-axisymmetric (QA) stellarator concepts feature boot-
strap currents comparable to tokamaks. These currents could re-introduce the problem
of nonlinear MHD stability to the optimisation process of such stellarators. The main
purpose of this work is to use existing MHD codes to gain an understanding of the dy-
namics of current carrying stellarators. Particular attention is given to low n external
kink modes, where n defines the toroidal mode number of the instability. These global
instabilities limit the operational space of QA devices. How such modes are modified by
the introduction of an external rotational transform, produced through loosely wound
helical field coils, is the main research question of interest.

The work can be divided into three parts. In the first part, the ideal MHD equilibrium
code, VMEC, is used to study saturated external kink modes in tokamaks and classical
l = 2 stellarators. As this method has never been compared with an initial value problem
approach for external modes, tokamak computations are first compared against results
from the nonlinear MHD code, JOREK. It is shown that the two approaches compare
favourably, especially in the case where the MHD dynamics are dominated by a single
MHD instability. The approach is then extended to consider external MHD modes in
l = 2 stellarators, where l refers to the poloidal periodicity number of the external field
coils. This provides a full MHD interpretation of how the dynamics of external kink
modes can change with the introduction of an external rotational transform.

In the second part, a nonlinear approach is developed within the JOREK code to sim-
ulate stellarators axisymmetrically. This method is based on the well known stellarator
expansion and has a long history of use in the stellarator community as a first approxima-
tion of MHD dynamics. The model is first tested against a variety of ideal and resistive
MHD instabilities. It is shown that the fully non-axisymmetric growth rates of resistive
instabilities modelled linearly in Wendelstein 7-X (W7-X) can be captured by this model,
and reasonable agreement is obtained for the linear growth rates of external kink modes
in a candidate QA stellarator. The current in this stellarator is 8.25 MA, which trig-
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gers strong external MHD activity at low order rational surfaces lying just outside the
confined region. Simulations of the QA stellarator are then continued into the nonlinear
regime to gain a first understanding of whether the relatively weak external rotational
transform of this configuration is sufficient to stabilise the MHD dynamics triggered by
the linearly unstable mode. Violent MHD dynamics are still observed which would lead
to a significant loss of confinement. In order to understand how much current needs
to be removed to stabilise the mode, artificial stellarator approximations are made by
incrementally removing more plasma current from the simulated device, such that the
external rotational transform is increased. It is shown that the MHD dynamics are only
significantly stabilised when nonlinearly triggered internal MHD activity in the plasma
mid-region is avoided. This occurs after most of the plasma current is removed from the
device.

In the final part of this work, steps are made towards fully non-axisymmetric simu-
lations of stellarators using JOREK. These numerical developments are separate from
the physics studies in previous sections. The grid structure in JOREK is modified to
handle non-axisymmetric grids enabling stellarator simulations in full 3D geometry. An
initial study of tearing and ballooning modes is then designed, based on the experimen-
tal observations of such modes in the classical stellarator Wendelstein 7-A (W7-A). The
linear verification of this instability against CASTOR3D builds confidence in using this
approach to model optimised stellarators in the future.
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Zusammenfassung

Makroskopische stromgetriebene MHD-Instabilitäten stellen eine erhebliche Bedrohung
für die Realisierbarkeit von reaktorrelevanten Tokamak-Szenarien dar. Während Stellara-
toren im Allgemeinen wesentlich mildere MHD-Stabilitätseigenschaften haben als Toka-
maks, da der toroidale Plasmastrom in diesen Geräten fehlt oder reduziert ist, gibt es
immer noch offene Fragen bezüglich ihrer nichtlinearen MHD-Stabilitätsgrenzen. Ins-
besondere relevant für den Kontext dieser Arbeit, weisen quasi-axialsymmetrische (QA)
Stellaratorkonzepte mit Tokamaks vergleichbare Bootstrap Ströme auf. Diese Ströme er-
fordern die Berücksichtigung nichtlinearer MHD-Stabilität in den Optimierungsprozessen
solcher Stellaratoren. Das Hauptziel dieser Arbeit besteht darin, bestehende MHD-
Codes zu nutzen, um ein Verständnis der Dynamik von stromführenden Stellaratoren zu
gewinnen. Ein besonderes Augenmerk liegt dabei auf externe Kink-Moden mit niedriger
toroidaler Modenzahl und deren Auswirkung auf den Betriebsbereich von QA-Stellatoren.
Wie solche Moden durch die Einführung einer externen Rotationstransformation verändert
werden, die durch lose gewickelte helikale Spulen erzeugt wird, ist die wichtigste Forschungs-
frage von Interesse.

Die Arbeit lässt sich in drei Teile gliedern. Im ersten Teil wird der ideale MHD-
Gleichgewichts-Code, VMEC, verwendet, um gesättigte externe Kink-Moden in Toka-
maks und klassischen l = 2 Stellaratoren zu untersuchen. Da diese Methode zuvor noch
nicht mit der Lösung eines Anfangswertproblems für externe Moden verglichen wurde,
werden zunächst Tokamak-Berechnungen mit Ergebnissen aus dem nichtlinearen MHD-
Code JOREK verglichen. Es wird gezeigt, dass die beiden Ansätze generell vergleich-
bare Ergebnisse liefern, insbesondere wenn die MHD-Dynamik von einer einzigen MHD-
Instabilität dominiert wird. Der Ansatz wird dann erweitert, um externe MHD-Moden in
l = 2 Stellaratoren. Dies ermöglicht eine vollständige MHD-Interpretation der Dynamik
externer Kink-Moden unter Einführung einer externen Rotationstransformation.

Im zweiten Teil wird ein nichtlinearer Ansatz innerhalb des JOREK-Code entwickelt,
um Stellaratoren axialsymmetrisch zu simulieren. Diese Methode basiert auf der bekan-
nten Stellarator-Expansion und wird in der Stellarator-Gemeinschaft schon seit langem
als erste Annäherung an die MHD-Dynamik verwendet. Das Modell wird zunächst an
einer Reihe von idealen und resistiven MHD-Instabilitäten getestet. Es wird gezeigt,
dass die Wachstumsraten von resistiven Instabilitäten in Wendelstein 7-X (W7-X), mit
diesem Modell reproduziert werden. Auch eine angemessene Übereinstimmung für die lin-
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earen Wachstumsraten externer Kink-Moden in einem QA-Stellarator-Kandidaten wird
gezeigt. Der Strom in diesem Stellarator beträgt 8,25 MA, was eine starke externe MHD-
Aktivität an einer q = 2 Oberfläche auslöst, die direkt außerhalb der eingeschlossenen
Plasma-Region liegt. Die Simulationen des QA-Stellarators werden dann in das nichtlin-
eare Regime fortgesetzt, um ein erstes Verständnis dafür zu gewinnen, ob die in diesem
Fall relativ schwache externe Rotationstransformation ausreicht, um die MHD-Dynamik
zu stabilisieren. Es werden immer noch starke MHD-Dynamiken beobachtet, die zu
einem erheblichen Verlust des Plasma-Einschlusses führen würden. Um zu verstehen,
wie viel Strom entfernt werden muss, um die Moden zu stabilisieren, werden künstliche
Stellarator-Näherungen vorgenommen, indem schrittweise mehr Plasmastrom aus dem
simulierten Gerät entfernt und die externe Rotations-Transformation entsprechend erhöht
wird. Es wird gezeigt, dass die MHD-Dynamik nur signifikant stabilisiert wird, wenn die
nichtlinear getriebene interne MHD-Aktivität in der Plasmamittelregion stabilisiert ist.
Dies geschieht, wenn der größte Teil des Plasmastroms entfernt wurde.

Im letzten Teil dieser Arbeit werden Schritte zur vollständig nicht-axialsymmetrischen
Simulation von Stellaratoren mit JOREK erläutert. Diese numerischen Entwicklun-
gen sind unabhängig von den physikalischen Studien in den vorangegangenen Abschnit-
ten. Die Gitterstruktur in JOREK wird so modifiziert, dass sie nicht-axialsymmetrische
Gitter handhaben kann, um Stellarator-Simulationen in vollständiger 3D-Geometrie zu
ermöglichen. Eine erste Studie zu Tearing- und Ballooning- Moden auf der Grundlage der
experimentellen Beobachtungen am klassischen Stellarator Wendelstein 7-A (W7-A) wird
gezeigt. Der lineare Vergleich dieser Instabilitäten mit CASTOR3D stärkt das Vertrauen
in die künfige Verwendung dieses Ansatzes zur Modellierung optimierter Stellaratoren.
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1 Introduction

This thesis is concerned with the development and use of numerical models for
the nonlinear analysis of magnetohydrodynamic (MHD) instabilities in stellarators
- non-axisymmetric, toroidal magnetic confinement systems that are one of the
main prospects for developing a viable fusion reactor [1]. Conventional wisdom
states that optimised stellarators are very likely to be free from disruptions - strong
MHD activity that can lead to a sudden complete loss of confinement [2–4]. For
this reason, it is worth asking at the outset of this work, why does the magnetic
confinement fusion community need to develop nonlinear codes for modelling MHD
activity in such devices?

To answer this question, a brief summary of the context of MHD research in
stellarators follows. The meaning and nature of magnetic confinement is outlined
in Section 1.1, as an introduction to the physical systems that are of interest herein
- tokamaks and stellarators. The current prospects for developing a fusion reactor
from such devices is considered in Section 1.2. This leads naturally onto the question
of MHD stability, which is one of the root causes of their performance limits. In
Section 1.3, the main instabilities that have been modelled as part of this thesis are
discussed, highlighting their relevance to stellarators. Section 1.4 turns to the value
of using numerical approaches to model such instabilities, in order to understand
them. A strategy is outlined within the community around the nonlinear MHD code
JOREK for developing and using such numerical methods to model stellarators, and
understand the nature of observed and predicted MHD activity. In Section 1.5, the
structure of the remainder of the thesis is outlined.

1.1 Magnetic confinement in tokamaks and stellarators

The objective of magnetic confinement research is to confine a hot plasma at suffi-
ciently high density for an appreciable amount of time, such that the fusion reaction
rate is sufficient to enable an economically viable reactor. Magnetic confinement
relies on the principle that a magnetised plasma, being an ionised gas whose mo-
tion is governed by collective behaviour [5], is tied to the magnetic field it moves
through, due to the Lorentz force [6]. As a result, particles are free to move parallel
to the magnetic field, but are constrained in their perpendicular motion, such that
they gyrate around the magnetic field lines. In this way, it is possible to signifi-
cantly reduce the transport of thermal energy and particles perpendicular to the
magnetic field.

While there are straight magnetic confinement concepts, such as magnetic mirrors
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1 Introduction

(a) (b)

Figure 1.1: Sketch of a typical tokamak configuration (a) and a classical l = 2 stellarator
(b). The tokamak has an axisymmetric geometry, with planar toroidal and
poloidal field coils, relying on plasma current to generate the poloidal compo-
nent of the helical magnetic field within the torus. In contrast, the classical
stellarator uses plasma current and helical coils to generate the complete field.
Reproduced from IPP.

[7], typically the magnetic field is bent into a torus in order to solve the problem of
significant end losses, through unconstrained parallel transport along the magnetic
field. On the other hand, it can be shown that a simple torus with a purely toroidal
magnetic field has poor particle confinement as a result of drift motions [8]. As a
result, a helical field is needed to confine the plasma. In such devices, the magnetic
field winds around the toroidally confined region, such that particle trajectories
cover a radially localised region of the plasma volume. If the device is designed
well, the magnetic topology, or field structure, will form a series of nested flux
surfaces, as shown in Section 1.3.2. The winding of the helical field is characterised
by the rotational transform, ι/2π, which gives the average number of poloidal turns
completed by a field line, per toroidal transit around the torus. Alternatively, its
inverse, called the safety factor, q, can be used to describe the winding. These
quantities are important in MHD stability theory, as will be shown in Chapter 2.

The above design constraint leads to two closely related concepts for a fusion
reactor — tokamaks and stellarators, sketched in Figure 1.1. In order to pro-
duce the required helical field, tokamaks, shown in Figure 1.1 (a), make use of
a toroidal plasma current to generate the required poloidal magnetic field. The
toroidal magnetic field, and axisymmetric poloidal shaping of the plasma column
are generated using relatively simple planar field coils. As a result, the geometry
is near-axisymmetric, subject to the finite number of toroidal field coils that create
the approximately axisymmetric toroidal magnetic field.

Early classical stellarators were designed using helical coils of a certain poloidal
field number, l, to generate a helical ripple around the torus. The helical ripple is

2



1.2 Current performance and prospects of tokamaks and stellarators

(a)
(b) (c)

Figure 1.2: Plots of the magnitude of the magnetic field in optimised stellarators,
targeting quasi-isodynamicity (a), quasi-helical symmetry (b) and quasi-
axisymmetry (c). Reproduced from [9–11]

one of the ways in which an external rotational transform, ιext — the contribution to
the rotational transform from the external coil currents, which produce the vacuum
field — can be generated. An example of such a simple stellarator is shown in Figure
1.1 (b). Early stellarators suffered from enhanced particle and thermal transport
out of the device, such that the experimentally observed confinement was worse
than in contemporary tokamaks [12]. Designing an optimal non-axisymmetric field
for a stellarator, which minimises both the drift motion and collisional transport
out of the confined region, is much more challenging than in tokamaks.

Significant efforts have been made to design such optimised configurations, lead-
ing to different families of optimised stellarators. The Wendelstein 7-X (W7-X)
stellarator is the largest stellarator experiment currently operational. This stel-
larator was designed to limit collisional transport, approaching the limit of quasi-
isodynamicity, where contours of the magnitude of the magnetic field are poloidally
closed [2], as shown in Figure 1.2 (a). Other stellarators have been designed to ap-
proach the limit of quasi-symmetry [13]. In this limit, the magnetic field is chosen
such that its magnitude depends on only two of the three Boozer coordinates [14].
The field is thus in some sense symmetric. This leads to quasi-axisymmetric and
quasi-helical stellarators, which have improved confinement properties over classical
stellarators. Example quasi-helical and quasi-axisymmetric stellarators are shown
in Figure 1.2 (b) and (c).

1.2 Current performance and prospects of tokamaks and
stellarators

The development of magnetic confinement devices can be measured through the
Lawson criterion or triple product, niTiτE, which is the product of the plasma ion
density, ni, the plasma ion temperature, Ti, and confinement time, τE [15]. Values
of the triple product for different tokamaks and stellarators are shown in Figure
1.3. It can be seen that the highest values of the triple product achieved at the
time of writing are from the largest existing tokamak reactors, such as JET and
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Figure 1.3: Comparison of triple product for stellarators and tokamaks. Reproduced from
[16]

JT-60U. The result shown for ITER is a prediction for its Q = 10 scenario.
In this sense tokamaks are ahead of stellarators in their development, but they

are not without their challenges. The toroidal current that is necessary to confine
particles is large, and can drive MHD instabilities — macroscopic perturbations
of the desired field structure which can degrade confinement. Although significant
efforts have been made to avoid, or control these instabilities, tokamaks are still
susceptible to disruptive instabilities — a chain of events that leads to a total loss
of the plasma discharge [4]. Disruptions are highly nonlinear processes, such that
there is no one root cause to the loss of MHD stability. As such events expel a large
fraction of the thermal energy of the plasma onto the reactor vessel, damaging
components of the wall structures, they cannot be tolerated in an energy produc-
ing reactor concept. This demanding constraint is currently one of the central
challenges for the tokamak community.

Tokamaks have developed faster than stellarators and became the main reactor
concept for magnetic confinement, because of the increased complexity of non-
axisymmetric configurations. However with time, advanced stellarators have been
designed which can overcome the major transport losses that prevented early stel-
larators from advancing. It can be seen that in recent years, advanced stellara-
tors such as W7-X are reaching far higher values of the Lawson’s criterion that
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1.3 Macroscopic MHD instabilities of interest in stellarators

have begun to be comparable to modern tokamaks. The next operational phase of
W7-X aims to exceed a triple product of 1020 m−3keVs [16]. In addition, signifi-
cant advancements have been made in recent years regarding the optimisation of
quasi-axisymmetric stellarators [17]. Although these configurations are a generation
behind quasi-isodynamic stellarators, they offer a promising, compact alternative
stellarator concept.

As MHD stability becomes a limitation in the development of viable tokamak
reactors, stellarators have received increased attention as an alternative path to
a fusion reactor. Nowadays, stellarators are typically designed to minimise their
toroidal plasma current so as to prevent MHD stability thresholds from being over-
come. In such a way, the magnetic cage confining the plasma does not depend on
the plasma state itself. Modern stellarators that have been developed using this
strategy have shown far more robustness against the typical failure mechanisms
observed in tokamaks. However, constructing the helical field coils used in such
machines is a challenging engineering task.

As an alternative, stellarators can be designed which use both plasma current,
and an externally imposed helical field, which reduces the complexity of the coil
design. In reality, there is a spectrum of magnetic confinement configurations be-
tween typical zero net current stellarators and tokamaks. QA stellarators are of
particular interest in this regard, because they are known to have a significant
bootstrap current — a type of plasma current which occurs naturally in plasmas as
a result of collisional processes, such that it does not need to be externally driven
[18]. While such hybrid configurations can simplify the design of the external mag-
netic field coils, by reducing their 3D shaping, they can reintroduce the problems
of MHD stability. Despite this limitation, the parameter space of stellarators is
far larger than the one of tokamaks [3], and it is likely that more attractive reac-
tor configurations can be found, provided the understanding of 3D configurations
continues to develop. The main research questions considered in this thesis aim to
progress understanding of the detailed MHD stability properties of current carrying
stellarators.

1.3 Macroscopic MHD instabilities of interest in stellarators

In this section, several of the main MHD instabilities that are relevant for stellara-
tors are outlined. The characterisation of MHD instabilities in fusion plasmas is
described in detail in Section 2.4.1. For now, the instabilities are qualitatively de-
scribed, making use of observations from tokamaks where these MHD effects have
been analysed more extensively. The current understanding of the instabilities in
stellarators are then considered to motivate their further study.

The main MHD instability of interest within this thesis is called the external
kink. It will be shown in this section how such modes are relevant in defining
the operational limits of QA stellarators, where the toroidal plasma current is
significant. The external kink is studied with the objective of understanding how the
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Figure 1.4: A 1950s experimental observation of a kink instability in a Z-pinch at Al-
dermaston. Reproduced from UK Atomic Energy Authority. Public domain
image, by virtue of being published before 1960.

externally generated rotational transform of a stellarator can influence the nonlinear
dynamics of the instability.

In addition to external modes, non-ideal tearing modes, and internal kinks are
considered as part of validation studies for the numerical tools that have been
developed during this thesis. These studies are also contributing to the long term
goal of modelling the nonlinear dynamics observed in Wendelstein 7-X, using full
non-axisymmetric geometry.

1.3.1 External kinks and the performance limits of quasi-axisymmetric
stellarators

The external kink mode is named after the radially kinked flux surfaces that are
produced by the instability, as shown in Figure 1.4. This figure shows a kink
mode in a Z pinch — an early fusion device, which used a purely toroidal plasma
current to achieve confinement. MHD instabilities are generally characterised by
the dominant poloidal and toroidal mode numbers, m and n of the perturbation.
For example, in Figure 1.4, the dominant poloidal mode number can be identified
as m = 1. The kink instability is primarily driven by toroidal plasma current, and
was one of the main reasons this early proposal failed, because it can be shown to
be unconditionally unstable to this mode [12].

For tokamak plasmas, the external kink limits the plasma current, constraining
the edge safety factor to be above q = 2, in order to avoid the most threatening
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global versions of this instability. While the external kink is not a significant threat
for low pressure discharges with an Ohmic current profile, this is not the case at
finite pressure where some of the instability drive comes from destabilising pressure
gradients [19]. As part of the ITER physics basis, external kinks and resistive
wall modes — external kinks which are partially stabilised by the presence of a
resistive wall — were identified as potentially threatening MHD instabilities for
steady state fusion devices [20]. This is because steady state devices typically make
use of a large bootstrap current, which leads to broad toroidal plasma current
density profiles with steep edge gradients that enhance the external mode. At high
pressure, the pressure drive can also become significant in regions of low magnetic
shear.

In addition to external kink modes, axisymmetric kinks, called vertical displace-
ment events are a typical feature of disruptions in high performance tokamaks [21].
This is because a significant amount of shaping is necessary to improve the perfor-
mance of such devices. Poloidal field coils are used to effectively stretch the plasma
in the vertical direction, which has the beneficial effect of pushing up the edge safety
factor for the same total toroidal plasma current, improving confinement, and ex-
tending the operational limits. However, it can be shown that the vertical force
this shaping applies on the plasma column is destabilising [19]. The vertical field
coils used to stretch the plasma are intrinsically unstable for the tokamak case, as
they produce an unfavourable vertical gradient in the magnetic field. If the plasma
moves upwards or downwards towards one of the coils, a destabilising force will be
reinforced, resulting in an exponential growth of the plasma displacement from its
original axis location. Such effects often occur during disruptions, when the plasma
temperature begins to drop in the outer region, causing a higher resistivity, and
a sharper current profile with lower inductance, such that the stabilising effect of
the wall is mitigated. The fast motion of the plasma into the containment vessel
can lead to large thermal and mechanical loads that cannot be tolerated in a viable
reactor concept.

With respect to stellarators, external kinks pose a similar problem for QA stel-
larators, as they do for advanced tokamak scenarios. These current carrying config-
urations have a plasma current that is also generated mainly by bootstrap currents,
leading to broad profiles that suffer from the same problems as advanced tokamak
scenarios. In the optimisation of previous QA configurations, external kinks were
the main instability observed that limited the operational space, even at relatively
small toroidal plasma currents, 4 to 6 MA, for a reactor scale device [22, 23]. These
studies only considered the stability of the target equilibrium. In addition, during
the ramp-up of the bootstrap current profile at the start of a discharge, the finite
current could also make it difficult to find a trajectory that avoids MHD instabili-
ties [24]. As such, these instabilities seem to be important in determining potential
mechanisms for confinement to degrade in such QA stellarators, and their presence
has ruled out many otherwise attractive device candidates. This is because it is
unclear when the nonlinear dynamics of the observed external kink modes will lead
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to a disruption [11].
Ideal kinks have been studied extensively for tokamak geometries, and play an

important role in defining their performance limits [25]. Early work modeling vac-
uum Kadomstev bubbles has shown that the deformation of the plasma is largest
for low (m, n) pairs [26, 27]. The saturation of the external mode alone leads to
a significant degradation in confinement, but can also trigger further MHD activ-
ity [28]. Past studies have shown how internal ideal kink instabilities can lead to
disruptions, by driving locked tearing modes in the plasma core [29]. Even after
the inclusion of a resistive wall to stabilise ideal kinks, resistive wall modes remain
an important instability that needs to be controlled in tokamak devices, by plasma
rotation or active magnetic feedback.

Compared to tokamaks, external kinks in stellarators have not been studied so
extensively. Most existing analysis has only considered the linear stability of such
modes. In the design of the National Compact Stellarator Experiment (NCSX), it
has been shown that the pressure drive for finite pressure kink modes can be sta-
bilised by the external magnetic field through toroidally localised magnetic shear
[22]. It is still unclear how the nonlinear dynamics of such instabilities evolve, how-
ever. There are two physics questions of interest for QA stellarators. In proposed
QA devices where external kinks are predicted to threaten performance, can they
lead to disruptive instabilites? If they saturate, how significant is the degradation
of confinement?

It should also be noted that equivalent instabilities to vertical displacement events
can occur in stellarator plasmas, if the helical field coils are used to shape the
plasma, in addition to providing the external rotational transform. A simple ax-
isymmetric criterion for such n = 0 positional stability has been developed for plas-
mas with a flat current profile, and validated against numerical models [30]. This
approximation has been compared against experiments on the Compact Toroidal
Hybrid device, with reasonable agreement between the experimental and theoret-
ical stability boundary found by the axisymmetric criterion [31]. As such it is
relatively clear when vertical modes will be stabilised. In the stellarator case, once
the vertical mode is shown to be linearly stable, it is not clear what nonlinear per-
turbation to apply in order to make it unstable. The amount of external rotational
transform required to stabilise this mode is typically relatively small, such that it
does not significantly limit the operational space of stellarators to enforce that they
are vertically stable. For this reason, vertical stability is not considered in detail in
this thesis.

1.3.2 Resistive and non-ideal instabilities observed in Wendelstein
stellarators

The resistive analogue to the ideal kink mode is the current driven tearing mode,
so called because of how the instability tears the magnetic field topology. While
ideal instabilities deform the magnetic field structure, preserving nested flux sur-
faces wherever they exist, resistive modes can modify the topology, ripping the
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1.3 Macroscopic MHD instabilities of interest in stellarators

surfaces apart. Poincaré plots can be used to assess the magnetic field structure,
and illustrate this difference. Field lines are traced around the torus, plotting their
intersection points with a particular poloidal plane, as shown in Figure 1.5 (a),
which shows a simple tokamak equilibrium. As discussed in Section 1.1, the nested
toroidal flux surfaces in this equilibrium lead to good confinement properties by
minimising parallel thermal transport along field lines.

Using an appropriate radial coordinate, such as the normalised poloidal flux, Ψ̂,
discussed in more detail in Section 2.3, the magnetic topology can be shown more
clearly. Figure 1.5 (b-c) show examples of ideal and resistive nonlinear perturba-
tions of a tokamak equilibrium. The ideal instability has kinked the flux surfaces
such that the lines traced by the magnetic field in Figure 1.5 (b) are no longer

vertical, with constant Ψ̂, as they would be in the unperturbed equilibrium. On
the other hand, the resistive dynamics in Figure 1.5 (c) have torn the initial flux
surfaces apart, leading to magnetic islands — a region of the magnetic topology,
which forms closed magnetic flux surfaces and is partitioned from the rest of the
field structure by a separatrix. In such a way, resistive instabilities modify the
magnetic topology of the domain, such that two separate regions form, which are
divided by a magnetic island chain.

Tearing modes occur when the ideal kink mode is stable, over longer timescales
where resistive diffusion can dominate. Similar to the external kink, it is possible
for tearing modes to lead to disruptions in tokamaks [19]. Low order rational
surfaces can become tearing mode unstable during a discharge, leading to large
islands forming across the plasma region. Island structures create shortcuts in the
poloidal direction, such that thermal energy can be transported radially through
parallel transport. This leads to a reduction in the temperature, which increases
the resistivity, exacerbating the instability further. If secondary magnetic islands
are triggered by this process, and overlap, ergodic regions can form, as shown in
Figure 1.5 (d). These stochastic regions can degrade confinement to the point
where a significant amount of thermal energy is lost. At this point, the total
plasma current will typically spike as a result of current redistribution, before also
collapsing such that confinement is completely lost, terminating the discharge.

In the classical stellarator Wendelstein 7-A (W7-A), similar tearing mode driven
disruptions were observed [32]. These disruptions could be avoided in the device,
once a sufficient external rotational transform was applied to the experiment. It
was argued that the mechanism for stabilising the mode was the flattening of the
q profile, which shifts the unstable region of the plasma out towards the plasma
boundary. Linear analysis of the tearing mode stability showed that this effect
reduces the growth rate, as a result of the combination of smaller current density
gradients in the plasma periphery, and the influence of the conducting wall outside
the plasma, which helps to stabilise the mode. This stabilisation mechanism will
be shown explicitly in the linear analysis in Chapter 7.

Classical stellarators are much simpler than the advanced stellarators that are
the focus of the fusion community currently. Subsequently, experimental campaigns
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(a) (b)

(c) (d)

Figure 1.5: Poincaré plots of a tokamak equilibrium (a), compared with ideal (b) and re-
sistive (c) MHD perturbations, which modify the initially nested flux surfaces
by kinking or tearing them, respectively. The magnetic topology has changed
in the resistive perturbation, such that the original nested flux surfaces are
divided into two regions, separated by a magnetic island chain. An example
of an ergodic field produced by overlapping islands (d) is also shown. Note
that the Poincaré plots are not generated from the same tokamak.

have been attempted on W7-AS to inform the MHD stability of advanced devices.
W7-AS was designed in such a way as to minimise the toroidal plasma current.
When operated in this way, it was shown that the device had generally benign
MHD activity. In general, the reversed shear profiles of stellarators are expected
to be benign compared to those of tokamaks, because neoclassical tearing modes
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— tearing modes which are reinforced by the perturbed bootstrap current — are
expected to be stabilised in these configurations [2]. Several experimental cam-
paigns were carried out to intentionally increase the plasma current, in order to
understand the MHD activity this induces. Similar resistively driven disruptions
were observed in these campaigns as have been observed in W7-A [33]. The results
were not able to inform the design of QA stellarators conclusively, as similar large
bootstrap current profiles were not achievable in W7-AS [34].

More recently, an experimental campaign was carried out on the Wendelstein 7-X
(W7-X) stellarator, where a modest amount of Electron Cyclotron Current Drive
(ECCD) induced plasma current, on the order of kiloamps, was used to destabilise
modes at low order rational surfaces within the plasma. The induced plasma current
was shown to lead to oscillations in the core plasma temperature, similar in form
to sawteeth instabilities in tokamaks, and, in the worst case, plasma terminating
events [35]. The ECCD currents modify the q profile of the device in the plasma
core, introducing multiple q = 1 rational surfaces. MHD activity around these
surfaces is one potential cause for the observed periodic relaxations and plasma
terminations. These plasma terminating events are currently one of the central
research concerns for MHD activity in W7-X.

1.4 Computational methods in MHD analysis

Nonlinear MHD models are a valuable tool in helping to answer the research ques-
tions posed regarding the stability limits of stellarators. The highest fidelity model
would be to actually solve the initial value problem for a magnetic confinement
system, meaning that the physical system of equations governing the dynamics are
evolved in time. At the time this thesis began, only a few nonlinear codes could
be applied to solve initial value problems in stellarator geometry, such as MEGA
[36] and FLUXO [37]. The main workhorse codes used by US research commu-
nities, M3D-C1 [38] and NIMROD [39], which were originally designed to model
tokamaks, had begun the process of being extended to model strongly shaped non-
axisymmetric devices, but were not yet ready for extensive nonlinear MHD studies
of optimised stellarators. M3D-C1 has recently been extended such that it can be
used to model optimised stellarators [40].

The main code used throughout this thesis is the nonlinear code JOREK [41,
42]. JOREK is a fully implicit, 3D, nonlinear extended MHD and kinetics code,
capable of being run with reduced and full MHD models of varying complexity. In
cylindrical coordinates, the poloidal planes are discretised using bi-cubic G1 Bezier
finite elements, with a real Fourier series in the toroidal direction [43]. The option
for higher order continuity in the finite element basis has recently been added to
the code [44]. The numerical details of the code will be described in more detail in
Chapter 2.

JOREK was originally written to model tokamaks. In parallel to the main de-
velopments of this thesis work, which is based around the tokamak version of the
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Figure 1.6: Poloidal cuts at different toroidal angles, φ, of an example computation of a
saturated m = 4, n = 1 external kink instability (red) in a l = 2 classical
stellarator using an equilibrium approach. The perturbed equilibrium is com-
pared with the initial state (black). Note that the poloidal cross section of
the l = 2 stellarator varies toroidally because the axisymmetric plasma cross
section is elongated.

code, this PhD project also contributed towards the extension of JOREK to model
stellarators in full non-axisymmetric geometry. A hierarchy of stellarator capa-
ble models of varying complexity were derived as part of a separate thesis project
[45, 46], and validated in JOREK for linear resistive MHD instabilities in a classi-
cal stellarator [47–49]. In principle, this extension can be used to model optimised
stellarators, where the linear MHD dynamics begins to deviate qualitatively from
tokamaks, however the code has yet to be validated for and applied to these more
complicated equilibria.

Assessments of the nonlinear dynamics of global current driven instabilities re-
quires an evolution of the full magnetic field in time. For advanced stellarators,
where an accurate description of the magnetic field requires many toroidal harmon-
ics, simulations are expected to be computationally demanding. As such, it follows
to consider supplementing the high fidelity approaches being developed in nonlinear
codes with simplified simulations of the nonlinear dynamics of stellarators.

Two simplified modelling approaches were considered in this thesis project. The
first is to use ideal MHD equilibrium codes to model saturated MHD instabilities
in stellarators. As outlined in Section 2.3, equilibrium codes solve for a stationary
plasma configuration, which is in force balance. These methods can therefore not
resolve the time evolution of an instability. However, in Section 2.3.1, past work
that has used equilibrium codes to resolve the final, saturated state of an instability
is reviewed. An example of such a nonlinear study is shown in Figure 1.6. In this
figure, the initial shape of a two field period, l = 2 stellarator is shown in black,
overlaid with a perturbed ideal MHD state which corresponds to the m = 4, n = 1
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Figure 1.7: Poloidal cuts at different toroidal angles, φ, of the equilibrium flux surfaces of
the classical stellarator Wendelstein 7-A (red) and its axisymmetric approxi-
mation (grey).

deformation produced by an external kink instability. The final saturated state
of an instability can be characterised, helping to give a general impression of the
nonlinear dynamics, based on the size and structure of the perturbation that is
introduced.

This equilibrium approach is of interest to the research community because, al-
though it is an ideal MHD approach that can only be used to model the final
state of an instability, it is a free boundary, full MHD equilibrium model, meaning
that it makes no approximations about the structure of the magnetic field, and
can be used to model free boundary external modes, such as external kinks. The
main 3D stellarator capable model implemented in JOREK is currently a fixed
boundary reduced model. This means that the system of equations that need to be
solved are simplified by neglecting parts of the description that are considered to
not be important in the dynamics, and that free boundary external modes cannot
be simulated, due to the ideal wall boundary condition. As a result, the equilib-
rium approach could offer a computationally efficient approach to exploring full
MHD free boundary dynamics that would not be possible in the short term using
JOREK’s stellarator model.

The second approach is to modify configurations such that they can be modeled
axisymmetrically, as outlined in Section 2.6. Historically, this approach is known
as the stellarator expansion [50], but is referred to in the JOREK community as
the virtual current model, because the model is implemented using an artificial
toroidal current, rather than an externally imposed field. The approach allows
for the physical effects of a loosely wound, external helical field to be included in
nonlinear MHD models using an axisymmetric geometry. An example of the flux
surfaces of such an approximation of a classical stellarator is shown in Figure 1.7.
The figure shows the classical stellarator, Wendelstein 7-A, and an axisymmetric
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domain, which is used in JOREK to model the stellarator approximately. While
unable to capture features of strongly shaped optimised stellarators, the approach
can provide a first order understanding of how an external helical field influences
the MHD dynamics. This method is used to provide an initial understanding of the
nonlinear dynamics in optimised stellarators, before the stellarator capable model
is used to study the dynamics in detail.

1.5 Outline of the thesis

The remainder of this thesis is organised as follows. In Chapter 2, the background
regarding the physics concepts and numerical methods used herein will be provided.
Chapters 3 and 4 are devoted to the use of the VMEC code to model nonlinearly
saturated MHD states in tokamaks and stellarators. The method is validated, com-
paring previous results generated for tokamak equilibria with JOREK simulations,
and then applied to model external kinks in classical stellarators. The virtual cur-
rent model is then validated in Chapter 5, verifying the implementation against
linear ideal and resistive MHD stability problems. In Chapter 6 the virtual cur-
rent model is used to study the nonlinear MHD dynamics of a QAS device that is
unstable to external kink modes, showing the influence that an externally applied
helical field can have on such an instability. Finally, in Chapter 7, contributions
towards the development of fully non-axisymmetric simulations of stellarators are
discussed. Conclusions and future work are summarised in Chapter 8.
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2 Magnetohydrodynamics and Numerical
Modelling

In this section, an outline of magnetohydrodynamics in the context of plasma the-
ory is given, as well as an introduction to the main numerical methods and codes
that have been used in this thesis. The derivation of the MHD equations from
the Boltzmann equation, and their value in the context of numerical modelling, is
explained in Section 2.1. In Section 2.2, the different coordinate systems used in
magnetic confinement modelling are discussed. The importance of MHD equilib-
ria is then outlined in Section 2.3, as well as numerical approaches to calculating
them in axisymmetric and non-axisymmetric systems using the VMEC code. The
application of such codes to model nonlinearly saturated MHD instabilities is then
reviewed. The linear stability of such MHD equilibria to macroscopic instabilities
is considered using perturbation theory in Section 2.4, introducing a numerical ap-
proach to solving such problems using the CASTOR3D code. In Section 2.5, the
limitations of linear analysis motivate a discussion of nonlinear MHD dynamics and
solutions to the initial value problem, using the numerical approach in the JOREK
code. The implementation of an axisymmetric approximation of stellarators within
the JOREK code is finally outlined in Section 2.6.

2.1 Context of magnetohydrodynamics

2.1.1 Plasma physics and the value of the fluid description

The modelling work performed in this thesis requires a description of a magnetised
plasma which is tractable for long timescale simulations on the order of milliseconds.
A plasma is an ionised gas that exhibits collective behaviour through a response to
external and self-generated electric and magnetic fields. A magnetised plasma is a
plasma which is embedded in a strong magnetic guide field, such that the parallel
and perpendicular dynamics can be distinguished.

Plasma dynamics spreads over a wide range of length and time scales depending
on the properties of the system being studied. For fusion plasmas, the timescales
can range from the electron gyroperiod, on the order of a picosecond for a 1 T
magnetic field, to the resistive diffusion time, on the order of milliseconds at 10 keV
fusion relevant temperatures. Length scales vary from the electron gyroradius, on
the order of 10−5 m, to the ion mean free path, on the order of 103 m. One
of the central problems in modelling plasmas is finding an appropriate means of
reconciling these vastly different spatial and temporal scales.
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The timescale relevant for the macroscopic instabilities in the toroidally confined
plasmas considered here lies in the range of microseconds to milliseconds. To resolve
this timescale, a fluid, or magnetohydrodynamic description of the plasma can be
derived. In this section, the derivation of the MHD equations will be outlined,
following loosely the derivations in [12, 51]. To begin with, in Section 2.1.2, the
MHD equations are derived by applying a series of approximations on the more
general Boltzmann equation.

2.1.2 Derivation of the MHD equations

The Boltzmann equation provides a generalised governing equation for plasma dy-
namics, using a distribution function fα(t,x,v) for the particles of each species, α,
in a given system. x and v are independent variables defining position and velocity
space.

∂fα
∂t

+ v · ∇xfα +
F

mα

· ∇vfα =

(
∂fα
∂t

)
coll

. (2.1)

For a typical plasma in the absence of gravitational forces, F = eZα (v ×B + E),
where B is the magnetic field, and E is the electric field. The right hand side op-
erator corresponds to changes in the distribution function as a result of particle
collisions. The evolution of this equation provides a general description of plasma
dynamics, however it captures an unnecessary amount of detail for the problems of
interest herein, such that the equation becomes too expensive to solve numerically.
As a result, within the context of macroscopic dynamics, the equation is normally
simplified under a series of assumptions, leading to the fluid description of a magne-
tised plasma. By neglecting certain microphysical aspects, the fluid, or magnetohy-
drodynamic, description of a plasma provides a computationally tractable approach
to modelling a plasma globally, and understanding its macroscopic stability.

First, the fluid moments of the Boltzmann equation need to be taken for each
particle species. As shown in [52], this leads to the system of equations below

∂nα
∂t

+∇ · (nαuα) = 0,

mαnα

(
duα
dt

)
− Zαenα (E + uα ×B) +∇ ·Pα = Rα,

3

2
nα

(
dT

dt

)
+ Pα : ∇uα +∇ · qα = Qα,

∇×B = µ0e (niui − neue) +
1

c2

∂E

∂t
,

∇ · E =
e

ε0
(ni − ne) ,

∇ ·B = 0
(2.2)
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where the three lowest order moments of the distribution function - the particle
number density, fluid momentum and pressure tensor - are given by

nα =

∫
fαdv,

nαuα =

∫
vfαdv,

Pα =

∫
mαfα (v − uα)⊗ (v − uα) dv

(2.3)

Rα in the momentum equation refers to the friction force produced by the colli-
sional operator. Qα and qα are the heat source and flux, respectively. It can be seen
that the evolution of the magnetic and electric fields follows Maxwell’s equations.
When only two species for electrons and ions are assumed, this model is called the
two fluid model. Typically, in fusion plasmas, the two fluid model is a reasonable
assumption, as other species have such low relative densities that they can often
be included as perturbations to the two fluid model, instead of being modelled
explicitly as a third species in the system of interest. This model is still exact, as
long as the integrals for the fluid moments, nα, uα, Rα, qα and Qα are carried out
explicitly.

In order to obtain a system that is more amenable to analysis, more assumptions
need to be made. First, the high frequency content of the system is eliminated.
This can be done by assuming that electron inertia is negligible, such that the
response of the electrons to the dynamics of interest is effectively instantaneous,
and that ε0 is set to zero. This eliminates high frequency electromagnetic waves,
which would otherwise stiffen the system of equations. With these assumptions,
the two fluid model can be simplified further, obtaining a single fluid model.

The elimination of electron inertia leads to the derivation of Ohm’s law from
the electron momentum equation. If the electron inertia can be neglected, the
momentum equation for the electrons simplifies to

E + v ×B =
1

nee
[J×B−∇pe −∇ ·Πe −Re] . (2.4)

If the terms on the right hand side are neglected, the ideal Ohm’s law is recovered.
Typically the first effect to be included is the resistive friction term Re/nee ≈ ηJ,
leading to the resistive Ohm’s law. The other terms, corresponding to the Hall
effect, diamagnetic drift and electron viscosity, respectively, are included depending
on the physical system of interest. In particular for fusion plasmas, the diamagnetic
term can become important.

The final step is to eliminate the higher order moments that are found in the
single fluid equations by applying a closure relation, which can be used to write
these terms as functions of the lower moments. The type of closure, and the ordering
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assumptions used to eliminate terms define the complexity of the MHD equations
that are obtained. The single fluid viscoresistive MHD equations can be derived as

∂ρ

∂t
+∇ · (ρv) = Sρ +∇ ·

(
D⊥∇⊥ρ+D‖∇‖ρ

)
,

ρ
dv

dt
= J×B−∇p−∇ · Π̄,

d

dt

(
p

ργ

)
= Se +∇ ·

(
κ⊥∇⊥T + κ‖∇‖T

)
,

E = ηJ + v ×B,

∇× E =
∂B

∂t
,

∇×B = µ0J,

∇ ·B = 0

(2.5)

The viscous term in the above set of equations corresponds to ∇ · Π̄ and the
resistive term is ηJ. If these terms are removed, the ideal MHD equations are
obtained.

Physical processes that occur on faster timescales than MHD processes are termed
microphysical processes. These effects are important for defining several terms in
the above equations. Sρ and Se refer to such coupling terms between microphysical
models and the MHD equations, defining the external particle and heat sources,
respectively. Rigorously, these terms, in addition to the diffusion operators, D and
κ, would be defined from models of the microphysics in the particular system of
interest. Because these numerical models are too computationally expensive to run
over the MHD timescale, the coefficients for sources and diffusion coefficients are
typically prescribed on an ad-hoc basis.

2.2 Coordinate systems

Before turning to the problems that the system of equations 2.5 can be applied to,
it is important to understand the different coordinate systems that are available
to model these problems. Intuitively, it might be thought that the analysis of a
toroidal geometry is most suited to the cylindrical coordinate system, (R,Z, φ), as
shown in Figure 2.1. This simple orthogonal coordinate system is conventionally
much more amenable to analysis. For a righthand coordinate system, where the
toroidal angle, φ, increases clockwise around the Z axis, the relationship between
Cartesian and cylindrical coordinates is given by

x =

 R cos (φ)

−R sin (φ)

Z

 (2.6)
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R

R0

Z

s

φ, ζ

θ

Figure 2.1: Sketch of coordinate systems used in magnetic confinement theory. The major
radius R, vertical position, Z, and toroidal angle, φ make up the righthanded
toroidal coordinate system. The gray line sketches a typical flux surface, s,
which together with the poloidal coordinate, θ, and toroidal angle, ζ, make
up a flux surface coordinate system.

such that the covariant basis vectors are given by

eR =

 cos (φ)
−sin (φ)

0

 eφ =

−R sin (φ)
−R cos (φ)

0

 eZ =

0
0

1

 (2.7)

While such coordinate systems are often used in magnetic confinement theory,
they do not make use of any knowledge about the particular toroidal system of
interest that may simplify analysis further. A particularly important observation
is that the good magnetic confinement systems that we build towards comprise
of a series of nested toroidal flux surfaces, as shown in Figure 1.5 (a), or at least
approach this limit. This leads naturally onto the concept of a generalised flux
surface coordinate system (s, θ, ζ), as shown in Figure 2.1. In these typically non-
orthogonal coordinate systems, s is a radial coordinate which denotes a particular
flux surface in the system of interest. θ and ζ are poloidal and toroidal angular
coordinates respectively, that need not be related directly to their corresponding
geometric angles. Generalised flux surface coordinate systems can simplify the anal-
ysis of certain problems, as some physical quantities are constant on flux surfaces.
The plasma pressure for example can be written as p (s), rather than as a function
of R, Z and φ. Typically, the square root of the normalised toroidal flux, Φ —
a measure of the magnetic flux through a region inside a given flux surface of the

19



2 Magnetohydrodynamics and Numerical Modelling

plasma — is used to define s, as this term is approximately linearly proportional
to the plasma radius. However, the poloidal flux, Ψ — a measure of the magnetic
flux through the circular area extending from R = 0 to a given radius in the Z = 0
plane — is also commonly used in the tokamak community.

Lastly, in certain problems it is beneficial to make use of straight field line (SFL)
coordinate systems. SFL coordinate systems are a particular type of generalised flux
coordinate system, designed in such a way that the magnetic field traces straight
lines in the θ − ζ plane. Two commonly used SFL coordinate systems are PEST
and Boozer coordinates. In PEST coordinates, the geometric toroidal angle, φ,
is used for the toroidal coordinate, ζ. The poloidal angle, θ∗, is then constructed
in such a way that the field lines are straight in the θ∗ − φ plane. Boozer coor-
dinates are defined in such a way as to eliminate some of the variables used in
the representation of a magnetic field in general flux surface coordinate systems
[14]. The transformation leads to non-trivial poloidal and toroidal coordinates. In
the context of this thesis, straight field line coordinates are especially useful for
characterising linear MHD instabilities, as the structure of the instability is often
simplified by the transformation to SFL coordinate systems when compared with
generalised flux surface coordinate systems. As described in the next section, the
equilibrium code, VMEC, uses both a generalised and straight field line coordinate
system to solve the ideal MHD equilibrium problem.

2.3 MHD equilibra and the VMEC code

Now that the main coordinate systems have been outlined, they can be applied to
the MHD problems of interest. To begin with, stationary solutions to the MHD
equations - MHD equilibria - are considered. An MHD equilibrium is a state in
which the force operator of the MHD equations is set to zero, such that the system
of interest is in some sense stationary. Strictly speaking, an equilibrium does not
necessarily mean that there are no flows, or transport in the system of interest.
A real equilibrium needs to be driven by heat and particle sources which are in
turn constantly also leaking out of the device. In toroidally confined systems,
there may also be flows along flux surfaces that do not lead to transport, but
may change the equilibrium force balance. These flows of particles and energy, as
well as viscoresistive dissipation, are typically small enough to be ignored in the
equilibrium description. The remaining ideal MHD equilibrium equation is then
given by

J×B = ∇p, (2.8)

which is determined from the viscoresistive momentum equation in 2.5, elim-
inating viscoresistive terms, and assuming that v and time derivatives are zero.
This approximation is often used in the fusion community to describe magnetically
confined plasmas.
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Equation 2.8 cannot be solved analytically in arbitrary 3D geometry, and requires
some assumptions regarding either the geometry, or the imposed magnetic field in
order to make progress. If axisymmetry is assumed, it can be shown, as in [12],
that equation 2.8 can be simplified to an equation for the poloidal flux, Ψ, called
the Grad-Shafranov equation

∆∗Ψ = −µ0R
2p′(s)− FF ′(s), (2.9)

where the ∆∗ operator is defined in cylindrical coordinates by

∆∗Ψ = R2∇ ·
(
∇Ψ

R2

)
= R

∂

∂R

(
1

R

∂Ψ

∂R

)
+
∂2Ψ

∂Z2
. (2.10)

The two equilibrium functions for the pressure and the function FF ′ are functions
of the radial coordinate in flux surface coordinates. These profiles are normally
given as inputs to the Grad Shafranov solver. The righthand side is dependent
on Ψ, because it is a flux surface quantity, and so can be used to define s =
Ψ̂ = (Ψ−Ψaxis) / (Ψbnd −Ψaxis), where Ψaxis and Ψbnd refer to the value of Ψ at
the plasma axis, and plasma edge, respectively. Even with this simplification, the
solution for Ψ, can only be solved analytically for simple Soloviev equilibria, where
the dependence of the righthand side on Ψ is eliminated, or using an ordering
approach [12]. Otherwise, Ψ has to be solved for numerically.

To consider 3D stellarator configurations, a numerical approach is required from
the outset. The main code used for this purpose is the Variational Moments Equilib-
rium Code (VMEC) [53]. This equilibrium approach solves equation 2.8, assuming
an ansatz for the vector potential, A, given by

A = Φ(s)∇θ∗ + Ψ(s)∇ζ, (2.11)

where Φ is the toroidal flux, ζ is the toroidal angle, and θ∗ = θ + λ(s, θ, ζ) is
the straight field line angle using PEST coordinates. λ is a transform from the
poloidal angle θ used for the representation of R(s, θ, ζ) and Z(s, θ, ζ) describing
a flux surface, and the straight field line angle. These quantities are represented
using radial splines, and a Fourier series in the poloidal and toroidal directions

R(s, θ, ζ) =
∑

RC
mn(s)cos(mθ − nNpζ) +

∑
RS

mn(s)sin(mθ − nNpζ),

Z(s, θ, ζ) =
∑

ZC
mn(s)cos(mθ − nNpζ) +

∑
ZS

mn(s)sin(mθ − nNpζ),

λ(s, θ, ζ) =
∑

λC
mn(s)cos(mθ − nNpζ) +

∑
λS

mn(s)sin(mθ − nNpζ)

(2.12)

The use of a separate poloidal angle, θ, for the description of the flux surfaces,
rather than using θ∗, is useful as it allows the spectral representation of R and Z to
be condensed by choosing θ carefully [54]. m and n are integer values corresponding
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to the poloidal and toroidal mode number of the Fourier series respectively, and
Np is an integer used to define the field periodicity of the device. Normally, the
representation is simplified so that R is purely cosinusoidal, and Z, and λ are
sinusoidal, such that the device represented is up-down, or stellarator symmetric
[55].

The ansatz for the vector potential in equation 2.11, assumes closed, nested
magnetic flux surfaces, simplifying the computation. In order to actually find the
MHD equilibrium, the potential energy

Wmag =

∫ (
p

γ − 1
+
B2

2µ0

)
dV, (2.13)

is minimised using a variational approach up to a prescribed tolerance in the
MHD force balance F = j×B−∇p. The force operator acting on each flux surface
is calculated and used to modify the flux surfaces on each iteration. Moving along
the path of the MHD force operator should minimise the potential energy, thus
reaching an acceptable equilibrium.

There are other approaches to solving the MHD equilibrium equation that are
worth mentioning here. A similar approach using an improved numerical represen-
tation of the equilibrium has been developed in the Galerkin Variational Equilib-
rium Code (GVEC) [56]. This code is used later in Chapter 7 to generate equilibria
for the stellarator extension of the JOREK code. Another such example is the
Stepped Pressure Equilibrium Code [57], which relaxes the assumption of nested
flux surfaces by instead solving the Beltrami equation across segments of the plasma
volume. This approach has gained increased attention in recent years, but has not
been used as part of this thesis, and so is mentioned here only as an aside.

2.3.1 Nonlinear MHD modelling using equilibrium codes

While VMEC is an equilibrium code, it will be used in Chapter 3 and 4 to gain an
initial understanding of nonlinear MHD problems. In this section, the equilibrium
approach to solving nonlinear MHD problems is outlined by reviewing previous
efforts to use equilibrium codes to model perturbed tokamak and stellarator equi-
libria. Over the past decade, there have been considerable efforts to model nonlin-
early perturbed tokamak equilibria modified by resonant magnetic perturbations
(RMPs), using VMEC [58, 59]. Such a perturbed configuration can for instance
be attractive for preventing the onset of large edge localised modes (ELMs), while
maintaining good confinement across the edge region. While initial studies on the
DIII-D tokamak suggest differences between VMEC results and other modeling ap-
proaches [60], more recent studies have successfully applied VMEC to study the
effect of RMPs on the ASDEX Upgrade tokamak [61–63], suggesting that the ap-
proach can be useful as an initial approach to studying nonlinear MHD problems.

It is also possible to use an equilibrium solver to find nonlinearly saturated equi-
librium states, corresponding to internal and external MHD instabilities [64, 65].
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VMEC computations have been successful in identifying saturated core (1, 1) ideal
MHD instabilities, which have been linked to the experimentally observed ‘snakes’
in JET [66], and stationary states near the MHD stability threshold of sawtooth
crashes [67]. The latter stationary states have also been observed in nonlinear MHD
simulations [68], and compared with experimental findings on the TCV tokamak
[69]. More recently, external instabilities have been identified with the application
of exploring edge harmonic oscillations (EHOs) [70]. These computations have been
tested against ideal MHD stability codes, showing good agreement between the ini-
tial eigenfunctions of the MHD instability and the final nonlinear perturbation of
the flux surfaces observed in VMEC [65, 71]. Prior to this thesis work, these calcu-
lations of external modes from VMEC had yet to be validated against a nonlinear
MHD code, as performed in Chapter 3.

There are a few studies which have applied the equilibrium approach to MHD
stability problems in stellarators [72, 73], motivating discussion regarding the valid-
ity of this approach to approximating stellarator MHD phenomena. With respect
to the non-ideal plasma terminating events that have been induced in W7-X, the
VMEC computations could be a useful starting point for more detailed SPEC cal-
culations of the phenomena. For external modes in QA configurations, saturated
equilibria in VMEC would be a valuable starting point for transport calculations to
see the negative influence they could have on confinement, and further validate the
nonlinear approaches being developed to model stellarators in JOREK. Given the
limited number of studies using this approach for stellarators, it is not clear what
MHD activity the VMEC approach will be amenable to study. For this reason, an
initial study of classical stellarators, as described in Chapter 4, was chosen as a
starting point towards these longer term goals such that the performance of this
approach when applied to stellarators could be assessed in a simpler geometry.

2.3.2 Convergence behaviours in VMEC

Before VMEC can be applied in this thesis to consider nonlinear MHD problems,
the behaviour of the code needs to be better understood, such that it can be
used appropriately. In this section, the correct convergence of the force residuals
in nonlinear MHD studies is described. Several different convergence behaviours
of the force residual, FR are shown in Figure 2.2 for unperturbed and perturbed
VMEC computations, which converge successfully, and a perturbed case, which fails
to converge. In the unperturbed case, the force residual decreases monotonically,
as is expected with the minimisation of the WMHD energy. For the perturbed cases,
it can be seen that the force residuals increase, as the instability is found and the
equilibrium becomes out of force balance. Note that this often occurs at a relatively
low residual value, below 10−13, which would normally be considered well converged
in equilibrium studies. If a new perturbed state is found, the residuals must fall as
the new perturbed state is reached.

In many cases however, the force residuals continue to rise, until the VMEC
algorithm detects the unfavourable behaviour. The equilibrium is then reset to an

23



2 Magnetohydrodynamics and Numerical Modelling

(a) (b) (c)

Figure 2.2: Plots of the force balance residuals for VMEC computations during the con-
vergence. An unperturbed case (a) and perturbed cases with poor (b) and
good (c) convergence to a nonlinear state are shown.

earlier stage, and the numerical time step parameter is decreased in an attempt to
improve convergence. Though the residuals still remain relatively low compared to
normal equilibrium studies, the results produced by these cases are either considered
to be numerical instabilities, or real MHD instabilities that lead to such large
perturbations that they can be considered disruptive. The results reported in this
paper all have the benign convergence behaviour shown in Figure 2.2 (c).

It is challenging to construct MHD equilibria that will saturate nonlinearly in
VMEC. This is because perturbed states can only be found by converging the
equilibrium to force residuals that are well below the tolerances necessary for normal
equilibrium studies. Large scale MHD structures corresponding to low (m, n) modes
can be difficult to converge. Equally, small scale, high (m, n) modes require a large
number of Fourier harmonics to converge and thus are similarly challenging to find.
In addition, n > 1 perturbed states are typically only observed for RMP cases
[58, 62], where the state is externally driven, and thus easier to find. In this work,
medium scale perturbations between m = 4 and m = 6 were successfully converged
for n = 1, when considering external kink instabilities, and so this is the parameter
space that has been targeted in Chapter 3 and 4.

2.3.3 Conservation of helicity in VMEC

It has been shown how to use VMEC to appropriately converge to a nonlinearly
saturated state in Section 2.3.2. At the same time, it is important to justify the
physical validity of VMEC computations, which model nonlinear MHD phenomena.
In particular, during VMEC iterations, the equilibrium is modified by a minimi-
sation of the ideal MHD equilibrium energy, without use of the full ideal MHD
time evolution equations. In such a way, the dynamics associated with the momen-
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tum of the plasma, and the evolution of its kinetic energy are neglected. For this
reason, it is difficult to justify that the trajectory of subsequent iterations follows
a physical path. It has been argued in past studies that in order to use this ap-
proach for nonlinear MHD studies, physical links need to be enforced between the
unperturbed axisymmetric equilibrium, and the final perturbed state of the free
boundary computation [74].

As VMEC assumes the ideal MHD force balance, a reasonable choice for this
constraint is to assume the conservation of helicity during the computation, because
this quantity is conserved during the evolution of ideal MHD instabilities. This can
be achieved by fixing ι during the computations, as shown by the following analysis.
The global helicity, K, of an equilibrium is

K =

∫
A ·B dV, (2.14)

where, in VMEC, the magnetic field, B, is defined by the vector potential, A,
such that

B = ∇×A

= ∇× (Φ(s)∇θ∗ −Ψ(s)∇φ)

= Φ′(s)∇s×∇θ∗ −Ψ′(s)∇s×∇φ,

where Φ and Ψ are the toroidal and poloidal flux respectively, and s, θ, and ζ
have their usual meanings as the radial, poloidal, and toroidal coordinates. θ∗ is
the transformed poloidal angle in straight field line coordinates. The local helicity
can therefore be written as

A ·B = (Ψ′Φ− Φ′Ψ) [∇s · (∇θ∗ ×∇φ)]

= (Ψ′Φ− Φ′Ψ)
1

J∗
,

where J∗ is the Jacobian of the transformation from laboratory to plasma coor-
dinates. Finally, it can be shown that equation 2.14 can be simplified to

K = 4π2

∫ 1

0

(Ψ′Φ− Φ′Ψ) ds. (2.15)

As the ι profile, toroidal flux profile, Φ(s), and total toroidal flux are fixed during
VMEC computations, the profile for the poloidal flux is also fixed, because

Ψ(s) = Φ(s = 1)

∫ s

0

ι(s)ds. (2.16)

As such, the profiles in equation 2.15 are all fixed, such that the helicity is kept
constant during the VMEC computation. Thus, constraining ι enforces a physically
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meaningful link between the initial and final states, justifying the use of the method
for studying nonlinear MHD. It should be noted that there is no reason to assume
conservation of helicity is sufficient to guarantee a physically meaningful solution
is obtained. As discussed further in Chapter 4, it is possible for multiple solutions
to be obtained if only this constraint is enforced. This leads to the need to impose
further physical constraints on the solution, as discussed in Section 4.2.

2.4 Linear MHD stability and the CASTOR3D code

Turning now to the explicit solution of the dynamical MHD problem, once an
equilibrium point has been found, the question still remains - is the equilibrium
stable to perturbations, which may naturally send the confined plasma into an
unfavourable state where confinement is either partially, or fully lost? This question
can be studied at different levels of complexity depending on how much information
is desired about the stability properties. A framework for characterising MHD
instabilities is constructed in Section 2.4.1. Linear perturbation theory is then
outlined in Section 2.4.2, and can be used to develop models for understanding the
growth rate, and structure of instabilities. Finally, the linear viscoresistive MHD
code, CASTOR3D, is discussed.

2.4.1 Characterising MHD instabilities

Before turning to the linear theory of MHD instabilities, the main characteristics
of MHD instabilities will be described, such that MHD perturbations can be dis-
tinguished from one another. To begin with, it is worth understanding the main
stabilisation mechanisms that result from the magnetic field. The stabilising effects
are magnetic field line bending, magnetic field line compression, and magnetic field
line curvature, as shown in Figure 2.3. Each of these effects corresponds to a way
in which the magnetic field resists a perturbation to its field structure. The first
corresponds to the increase in magnetic tension produced by bending magnetic field
lines. Similar to a taught wire, magnetic field lines tend to shorten when possi-
ble. And thus, a perturbation which increases the length of the field line will meet
resistance from the magnetic field. The second mechanism represents the increase
in magnetic pressure, as field lines are compressed by a perturbation. The last
stabilising effect corresponds to the curvature of the magnetic field, and whether
the perturbation acts to increase, or decrease the curvature. Increasing curvature
is stabilising as once again the magnetic tension is increased.

The above stabilising effects are minimised on rational surfaces, where field lines
close exactly in on themselves after a finite number of toroidal transits. This implies
that the value of q will be rational, hence the name. In such a way, the mode that
is resonant on the rational surface will more easily dominate over stabilising effects,
such that instabilities can be characterised by the dominant poloidal and toroidal
mode numbers, m and n, respectively, which contribute to the perturbation of the
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-∇pκ

Figure 2.3: Sketch of stabilising terms in the MHD equations due to magnetic field line
bending (left) and compression (centre). Grey lines show the unperturbed
magnetic field. These stabilising terms can be related to the shear Alfvén
and fast magnetosonic waves. Field line curvature (right) is only stabilising
if the centre of curvature is in the opposite direction to the pressure gradient.
Based on Figure 6.1.1 from [75].

initial equilibrium structure.

The main drive for such macroscopic MHD instabilities are the toroidal plasma
current density and pressure gradient. It can be shown that a current carrying
plasma always has a source of free energy to drive instabilities that push the plasma
in the direction of thermodynamic equilibrium [3]. Equally, a pressure gradient
must imply that the plasma can perform work. As a result, a magnetically con-
fined plasma is always threatened by MHD instabilities, and needs to be carefully
designed such that these sources of free energy cannot be released. Current driven
instabilities are typically low n modes, which are global, such that the perturba-
tion to the equilibrium extends over most of the plasma. Pressure driven modes
are generally localised in regions of bad magnetic curvature. For a toroidal plasma,
where the dominant magnetic field is toroidal, such that the centre of curvature is
predominantly in the direction −êR, pressure driven modes can be localised on the
low field side of the torus, where the magnetic curvature is not favourable.

MHD instabilities can also be characterised by the assumed form of Ohm’s law in
equation 2.4. Ideal MHD perturbations can be analysed using the ideal Ohm’s law,
eliminating the viscoresistive terms from equations 2.5. Ideal instabilities are fast
modes, which occur on the Alfvén timescale, on the order of microseconds. They
are present even in the limit where the plasma is perfectly conducting, or ideal. This
limit is generally valid in the core of hot fusion plasmas. Ideal MHD instabilities
are subject to the frozen-in flux theorem, which implies that the magnetic field
moves with the plasma, such that its topology cannot break down, and magnetic
flux surfaces are maintained [76].

Over the long timescales of a plasma discharge, or close to the edge of the plasma,
where the temperature decreases, resistive modes, driven by the ηJ term in equa-
tions 2.5, are possible. As discussed in Section 1.3.2, a finite resistivity enables
magnetic reconnection and island formation — the rearrangement of a plasma’s
magnetic topology by non-ideal, diffusive processes. While resistivity is often the
cause of the magnetic diffusion needed to drive reconnection, it should be noted
that if other two fluid effects are included in equation 2.4, they can also lead to
forms of non-ideal reconnection. Ideal MHD instabilities generally have a non-ideal
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analogue. The resistive analogue is normally observed close to the stability bound-
ary of the ideal MHD instability, once the ideal mode has been stabilised. Broadly
speaking, the resistive stability boundary envelopes the ideal instability, as shown
in Figure 5 of [77].

Lastly, MHD instabilities can be characterised by whether they are internal or
external modes. Internal modes occur within the plasma volume, and do not require
a motion of the plasma boundary. In such a way, such modes can occur, even when
the plasma is surrounded by a perfectly conducting vessel, which holds the plasma
boundary fixed. External modes on the other hand imply a motion of the plasma
surface. In this case, it is necessary to take into account the interaction with the
vacuum region in order to study the mode — a free boundary computation, as
discussed in Section 2.4.2.

2.4.2 Linear perturbation theory

The question of stability itself can be answered by using linear perturbation the-
ory, where the fluid variables in the MHD equations, Q(x, t), are treated using an
ordering.

Q (x, t) = Q0 (x) +Q1 (x, t) (2.17)

The 0th order quantities are used to describe the stationary equilibrium, while 1st

order quantities describe a perturbation to the equilibrium condition, which evolves
in time. Higher order terms are considered nonlinear and neglected. Typically, the
stationary equilibrium, v0 = 0, is given an instantaneous velocity perturbation,
v1 = ∂ξξξ

∂t
, where ξξξ is the perturbed displacement from the equilibrium condition. If

this ordering is applied to the ideal MHD equations, neglecting nonlinear terms,
as well as the sources, and diffusive terms, the following linearised equations are
obtained

∂ρ1

∂t
+∇ ·

(
ρ0
∂ξξξ

∂t

)
= 0,

ρ
∂2ξξξ

∂t2
= J0 ×B1 + J1 ×B0 −∇p1,

∂p1

∂t
+
∂ξξξ

∂t
· ∇p0 = −γp0∇ ·

∂ξξξ

∂t
,

∂B1

∂t
= ∇×

(
∂ξξξ

∂t
×B0

)
,

µ0J1 = ∇×B1,

∇ ·B1 = 0

(2.18)

Because tokamaks and stellarators are periodic in the poloidal and toroidal di-
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rection, it is reasonable to assume a perturbation with the form

ξξξ (s, θ, ζ, t) =
∞∑

m=−∞

∞∑
n=−∞

ξξξm,n(s)e−i(mθ+nζ)e−iωt, (2.19)

where ω is the frequency of the perturbation, and m and n are the poloidal
and toroidal mode numbers characterising the periodic spatial dependence of the
perturbation. Using equation 2.19, the linearised momentum equation becomes

−ω2ρ0ξξξ = J0 ×B1 + J1 ×B0 −∇p1 = F (ξξξ) . (2.20)

Stability can therefore be determined by the sign of ω2. If negative, the system
is unstable, corresponding to exponential growth, and if positive, the motion cor-
responds to an oscillation around the equilibrium state. While instructive, solving
for ω, which corresponds to the growth rate or oscillation frequency, is often not
trivial and provides more information than necessary. An equation for the work
done on the plasma by its perturbed motion can be more instructive. The total
work done on a confined plasma-vacuum system, δW , can be described by

δW = δWP + δWS + δWV, (2.21)

where δWP corresponds to the change in potential energy across the plasma vol-
ume, δWS is the change in energy as a result of the deformation of the plasma
boundary, and δWV is the change in the magnetic energy in the vacuum surround-
ing the plasma. For perturbations where the plasma boundary is fixed, δWV and
δWS can be neglected. This thesis is concerned with external modes, and so this
simplifying assumption cannot be made.

Before proceeding to consider the terms in equation 2.21, it is important to
understand how the change in potential energy, δW = 1

2

∫
ξξξ · F(ξξξ)dV , leads to

poloidal and toroidal mode coupling of MHD instabilities. It is discussed in [78]
that terms in 2.21 consist of two perturbed quantities of the form in equation 2.19,
and one equilibrium quantity, which can be described similar to the flux surfaces
in equation 2.12, using poloidal harmonics m and toroidal harmonics nNp. In the
poloidal direction, this can lead to non-zero contributions from all combinations
of perturbed and equilibrium harmonics, such that different poloidal modes can
contribute to the same eigenvalue of system. In such a way, modes can be poloidally
coupled in both tokamaks and stellarators when equilibria are shaped poloidally.
In the toroidal direction, only particular combinations of the toroidal harmonics
can be combined together in the same eigenvalue, due to the periodicity of the
system. This separates instabilities in configurations with Np > 0 into toroidal
mode families. The number of toroidal mode families, Nf, is defined by

Nf = bNp

2
c+ 1, (2.22)
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where bAc represents a floor function, returning the largest integer value below
A.

Returning to the task of defining the individual terms in equation 2.21, δWP is
given by

δWP =

∫
P

{| Q⊥ |2 +B2 | ∇ · ξξξ⊥ + 2ξξξ⊥ · κ |2 +µ0γp | ∇ · ξξξ |2

− 2µ0 (ξξξ⊥ · ∇p) (ξξξ∗⊥ · κ)

− µ0J‖ξξξ
∗
⊥ × b ·Q⊥}dV.

(2.23)

The first three terms on the righthand side can be related to the shear Alfvén
wave, fast magnetosonic wave, slow magnetosonic wave, respectively. The remain-
ing two terms can be related to the driving mechanisms for instabilities, namely
the pressure gradient, and parallel current density.

The surface energy is given by

δWS =
1

2µ0

∫
Sp

|n · ξ⊥|2 n ·
r
∇
(
B2

2
+ µ0p

)z
dS, (2.24)

where n is the normal to the plasma boundary, and
q
A

y
is the jump in A across

the plasma-vacuum interface. This term is typically zero, unless a surface current
flows on the plasma-vacuum boundary [12]. Lastly, the energy in the vacuum region
can be calculated as

δWV =
1

2µ0

∫
V

∣∣∣B̂1

∣∣∣2 dV. (2.25)

Note that B̂1 is not the externally generated magnetic field, but the total per-
turbed magnetic field in the vacuum region as a result of external field coils and the
perturbed plasma current. The modification of the energy in the vacuum region
will become important in the discussion of using VMEC to model free boundary
perturbations in Chapter 4.

If the total change in energy of a system is negative, the equilibrium has released
some of the potential energy of the plasma, and thus must be unstable. Therefore,
most early linear analytical work of MHD equilibria studied the energy equation
in simplified geometry subject to an applied perturbation. The perturbation itself
can be arbitrary. It only needs to be shown that a single perturbation reduces
the potential energy in order to prove the equilibrium is unstable. This energy
formulation can be extended to include the terms for resistive MHD, however this
formulation is not considered here. Simplified forms of the work formulation ex-
ist for cylindrical plasmas. The simplest method for assessing MHD stability is
Newcomb’s method [79], in which a cylindrical plasma is considered, subject to
incompressible, perpendicular perturbations.
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2.4.3 CASTOR3D

In general, the simplified approaches described in Section 2.4.2 are not amenable to
poloidally shaped, or non-axisymmetric configurations. For these more advanced
geometries, numerical models are necessary to solve the problem. There are many
existing numerical codes, which use different sophisticated approaches to solve for
MHD perturbations, such as KINX, MARS-F, and CAS3D [78, 80, 81]. CAS-
TOR3D [82] is one of the state of the art linear viscoresistive MHD codes, which
can be applied to study both axisymmetric, and non-axisymmetric plasmas. The
code is an extended, re-implementation of the original CASTOR (Complex Alfvén
Spectrum in Toroidal Geometry) code [83] and solves the extended eigenvalue prob-
lem for the plasma-vacuum system, assuming the perturbed viscoresistive MHD
equations, solved in the weak form, as described in [84, 85]. 1D radial finite el-
ements are used in combination with a 2D Fourier representation of the poloidal
and toroidal dependence of both equilibrium and perturbed quantities within the
plasma region. To represent the response of external wall structures, the code is
coupled to the resistive wall code, STARWALL [86].

One of the major advantages of this code over other approaches is its use of
generalised flux surface coordinates, as described in Section 2.2. While SFL coordi-
nates are beneficial in most situations as the description of the MHD perturbation
is simplified in this coordinate system, this rule of thumb is not valid for x-point
geometries [41], where the SFL coordinates become ill-defined around the x-point
[77]. For such cases, generalised flux surface coordinates, such as the VMEC coor-
dinate system, can be more effective. CASTOR3D is used throughout this thesis,
to scan the linear parameter space of test cases, and to benchmark the nonlinear
models that have been used to extend analysis into the nonlinear phase.

2.5 Nonlinear MHD dynamics and the JOREK code

Beyond the question of initial instability, the question still remains what nonlinear
dynamics the perturbation will lead to. It is often observed that the linearly domi-
nant perturbation does not lead the nonlinear dynamics. As the initial perturbation
grows, and saturates, it can destabilise secondary instabilities which overtake the
initial perturbation. Equally, a fast growing linear instability does not necessar-
ily pose a threat to the confinement of an equilibrium if its nonlinear saturation
amplitude is small enough to not significantly change the magnetic geometry. As
such, linear analysis, while an essential part of the description of MHD dynamics,
cannot be used to define the operational limits of toroidally confined plasmas.

A nonlinear approach to MHD in general requires a numerical solution. Analytic
models exist [87], but these models can only be applied to simplified geometries.
There are several state of the art nonlinear MHD codes used in the fusion com-
munity, such as M3D-C1, NIMROD, and JOREK [38, 39, 42]. In this section, the
numerical methods used in JOREK will be outlined.
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2.5.1 Reduced MHD

When considering nonlinear problems, evolving the set of MHD equations of Sec-
tion 2.1 remains computationally expensive. And so, when appropriate, further
approximations can be made in order to achieve a reduced set of equations. A
typical reduction removes the fast MHD waves from the system, which are often
unnecessary in dynamics where field compression is not of interest. Removing the
fast magnetosonic wave from the analysis has the advantage that it reduces the size
of the system of equations that needs to be solved for, and removes the constraint
resolving this wave imposes on the numerical time step used in nonlinear codes.

A hierarchy of ansatz based stellarator capable reduced MHD models was recently
derived by N. Nikulsin in [45]. The ansatz used for the full MHD magnetic field
and velocity are defined as

.B = ∇χ+∇Ψ×∇χ+∇Ω×∇Ψv (2.26)

v =
∇Φ×∇χ

B2
v

+ v‖B +∇⊥ζ, (2.27)

where∇χ is used to represent the vacuum magnetic field, and Bv is its magnitude.
It can be shown that the momentum equation associated with each of the scalar
functions, Φ, v‖, and ζ approximately captures the shear Alfvén, acoustic, and
compressional Alfvén waves, respectively. In the MHD dynamics of interest, the
compressional Alfvén wave represented by ζ and Ω can be neglected. The reduction
of this ansatz sets these terms to zero. Of course, in order to solve this system of
equations, projection operators need to be defined so that the number of equations
is equal to the number of unknowns being solved for.

If the equations are simplified by assuming that the vacuum magnetic field is
purely toroidal, as in tokamaks, the reduced MHD equations as defined in the
tokamak version of the JOREK code are recovered [42, 88]

∂ρ

∂t
= −∇ · (ρv) +∇ · (D⊥∇⊥ρ) + Sρ (2.28)

êφ · ∇ ×

(
ρ
∂v

∂t
=− ρ (v · ∇) v −∇ (ρT ) + J×B

+ µ∆v + SV

) (2.29)
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B ·

(
ρ
∂v

∂t
=− ρ (v · ∇) v −∇ (ρT ) + J×B

+ µ∆v + SV

) (2.30)

ρ
∂T

∂t
=− ρv · ∇T − (γ − 1) ρT∇ · v

+∇ ·
(
κ⊥∇⊥ + κ‖T∇‖T

)
+ ST

(2.31)

1

R2

∂Ψ

∂t
=

η

R2
j − 1

R
[u,Ψ]− F0

R2

∂u

∂φ
(2.32)

The Poisson bracket in equation 2.32 is defined as [f, g] = êφ · (∇f ×∇g). In
this model, the magnetic field is defined as

B =
F0

R
êφ +

1

R
∇Ψ× êφ (2.33)

where F0 = R0Bφ0 is spatially and temporally constant, and êφ is the normalised
toroidal basis vector in cylindrical coordinates. In such a way, the toroidal field is
held constant through the simulation, while Ψ is evolved in time. In reduced MHD,
the velocity is defined as

v = −R∇u× êφ +
miR

eF0ρ
∇pi × êφ + v‖B (2.34)

where u = ϕ/F0 with ϕ as the electrostatic potential, such that the first term
represents the E×B velocity. The second term is the source for diamagnetic flows,
and the third describes flows along the magnetic field. Therefore, reduced MHD
JOREK simulations only need to solve for a system of five unknowns (ψ, u, v‖, T ,
and ρ) for experimentally relevant simulations of such modes. It should be noted
that JOREK also uses two auxiliary equations for the toroidal plasma current

j = ∆∗Ψ, (2.35)

and fluid vorticity

ω = ∇ · ∇polu. (2.36)

These equations are important for eliminating high order derivatives of the poloidal
flux and u, such that the discrete system remains smooth using cubic finite ele-
ments, improving numerical stability. Regarding numerical stability, it should be
noted that hyper-viscosity and hyper-resistivity, µnum and ηnum, terms are often
added to equations 2.29, and 2.32, respectively, to improve numerical stability.
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These terms act to damp fourth order derivatives of the poloidal flux and fluid vor-
ticity, ω = ∇ · ∇polu, respectively, in order to prevent the development of sub-grid
resolution numerical structures.

This reduced tokamak version of the MHD equations is used for most of the
nonlinear simulations carried out in this thesis. It should be noted that JOREK
has both reduced and full MHD models. The full MHD model is particularly useful
for the study of high β internal modes [89]. For the external modes considered in this
thesis, the reduced MHD model is fully sufficient for capturing the relevant physics.
In Section 2.6, the model is modified to include an axisymmetric representation of
the stellarator field, which is used for preliminary nonlinear studies of such devices.

2.5.2 Spatial discretisation

In JOREK, the poloidal planes are described by a 2D isoparametric Bézier finite
element grid. The finite elements are quadrilateral, such that the coordinates and
physics variables can then be written as

X(s, t) =
∑

i,j

Pi,jB
3
i,j(s, t) =

∑
i,j

Pi,jB
3
i (s)B3

j (t), (2.37)

where

B3
i (s) =

3!

i!(3− i!)
si(1− s)3−i. (2.38)

s and t are the local element coordinates, and Pi,j are the control points of the
finite element. G1 continuity across elements is ensured by enforcing additional con-
straints on these control points [43]. The above poloidal representation is combined
with a toroidal Fourier representation for the physics variables.

The basis outlined above is versatile, and can be used to construct flux aligned
grids, which are typically used in nonlinear MHD simulations to minimise numerical
errors in parallel transport. Mesh refinement is in theory possible [43], however in
practise is not used.

2.5.3 Time stepping

A Crank-Nicolson or Gears implicit time stepping scheme is typically used to ad-
vance the physics variables. Defining the system of equations to be solved as
∂A (u) /∂t = B (u, t), where u represents a vector of the physics variables to be
solved, a general form of the discretised time evolution can be written as

[
(1 + ξ)

(
∂A

∂u

)n

−∆tθ

(
∂B

∂u

)n]
δun = ∆tBn + ξ

(
∂A

∂u

)n

δun−1, (2.39)

where n represents the time step, and δun = un+1 − un. ξ and θ are constants
used to change between Crank-Nicolson (θ = 0.5, ξ = 0.0) and BDF5/Gears (θ =
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1.0, ξ = 0.5) time stepping. Equation 2.39 leads to a large sparse matrix that is
iteratively solved using GMRES [90]. The solution to the block diagonal matrices
formed by individual toroidal harmonics is typically solved using PASTIX [91], or
STRUMPACK [92], and used as a pre-conditioner for the solution to the full system
of equations.

2.6 Axisymmetric approximations of stellarators

As described in Section 1.4, JOREK was written for the simulation of tokamaks,
and has only recently been extended to model stellarators during the period in
which this thesis was carried out. In this section, the simplest nonlinear model im-
plemented in the JOREK code for simulating stellarators will be considered. This
model “averages out” toroidal effects, such that the stellarator can be modelled
axisymmetrically. In Section 2.6.1, the original axisymmetric model of a stellarator
is outlined, and its previous applications are discussed. This original ordering ap-
proach makes use of an analytic representation of the externally generated magnetic
field. The implementation of a similar model in the JOREK code is then outlined
in Section 2.6.2, where this analytic magnetic field representation is replaced with
a numerically computed virtual current, which generates an equivalent toroidally
averaged external poloidal field. A method for numerically constructing equilibria
with this method, and the necessary modification of the reduced MHD model in
JOREK used for the time evolution is outlined.

2.6.1 Stellarator expansion

Stellarator theory has always lagged behind tokamak theory, because of the higher
complexity of modeling 3D configurations. Early stellarator theory was devoted to
developing an approximation to the stellarator equilibrium based on an ordering
approach. The most successful early model was the stellarator expansion laid out
by Greene and Johnson [50]. This approximation assumes that the externally gen-
erated poloidal field, δ, is one order smaller than the dominant toroidal field. The
inverse aspect ratio of the stellarator, ε, is in turn one order smaller than δ, such
that a large aspect ratio is assumed. In addition, the expansion assumes a planar
magnetic axis, which does not vary toroidally around the device. This leads to the
following ordering of terms in the equilibrium

ε =
r

R
δ = ε

1
2 β = ε Np =

1

ε
l = 1, (2.40)

where Np is the number of field periods, and l refers to the poloidal periodicity
number of the helical field coils. The above ordering is similar to the high beta
tokamak expansion, with the inclusion of a large helical field, δ, to represent the
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external rotational transform, leading to a modified Grad Shafranov equation for
the equilibrium [52]

∇2
⊥ψ = −G(ψ)− ∂β

∂ψ

(
r

R0

cos(θ) + |∇⊥V |2 + h2|V |2
)
− i

h
∇2
⊥ (êφ.∇⊥V ∗ ×∇⊥V ) ,

(2.41)
whereG(ψ) plays the role of FF ′(ψ) and ∂β/∂ψ is a normalised pressure gradient,

similar to p′ in equation 2.9. Equation 2.41 includes an additional term, V (r, θ),
representing the external field coils

V (r, θ) =
∑
i

VlIl(hr)e
ilθ, (2.42)

where h = Np/R0, Vl are coefficients defining the magnitude of the externally
applied helical field, and Il(hr) are modified Bessel functions. Typically, the poten-
tial for the external field is an input to the equilibrium calculation. The potential
coefficients are computed by fitting the representation to the vacuum magnetic field
produced by the equilibrium’s coil set [93]. As such, the expansion acts effectively
as an axisymmetric approximation, where the effect of the stellarator fields are
included in a toroidally averaged sense. This approach to calculating three dimen-
sional equilibria was used in the first theoretical studies of stellarator MHD stability
[94].

Later this expansion was used to generate a modified form of Newcomb’s stability
criterion, and the tearing mode equation, which included the effect of a toroidally
averaged rotational transform [95]. This was used to assess tearing modes and kink
instabilities in current carrying stellarators, later being applied to explain disrup-
tions observed in W7-A experimental campaigns [32]. A nonlinear model similar
to that developed in this thesis was previously developed by Wakatani and Strauss
[96, 97]. Wakatani used the model to look at (1, 1) internal kink modes and disrup-
tions in current carrying stellarators [98]. Using a similar approach, a simple model
for stability against VDEs was developed to understand the fraction of rotational
transform necessary to stabilise such modes in stellarators, using an axisymmetric
approximation [30]. This model was later used to understand VDEs occurring on
the Compact Toroidal Hybrid [31]. Such models have provided insight into MHD
phenomena experimentally observed on W7-A and W7-AS, as well as being applied
to predict the stability properties for NCSX [24, 32, 34]. More recently, the model
has been used to understand plasma terminating events in W7-X [99]

In such a way, it can be said that axisymmetric approximations of stellarators
have been used effectively to gain insights into the behaviour of such devices. A
significant part of this thesis is the development of similar axisymmetric approx-
imations within the JOREK code, to model the nonlinear dynamics of modern
stellarators. The model in JOREK differs from others in the sense that the exter-
nal rotational transform is modeled using axisymmetric virtual currents that can
be calculated from modern equilibrium codes. Such currents are attributed to rigid
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coils that are assumed to be immersed inside the confined plasma, but physically
shielded from it, such that the two do not interact. The virtual currents effectively
play the role of the external field represented by V (r, θ) in equation 2.41.

This method allows for an easier representation of vacuum fields that are more
complicated than the helically symmetric fields used in early studies, without re-
quiring any knowledge of the vacuum field itself, which would normally be necessary
in order to compute the coefficients of V (r, θ). In the next section, it is shown how
fixed boundary VMEC computations can be used to obtain an appropriate de-
scription of the virtual current to approximate the vacuum field of the modelled
stellarator.

2.6.2 Virtual current model

This section will outline the procedure for calculating the virtual currents used in
JOREK, and including them in the time evolution equations. It will be shown that
the implementation requires minimal changes to the equilibrium solver, and time
stepping, such that the model enables a fast track to a simplified, nonlinear model
for assessing nonlinear MHD in stellarators.

VMEC workflow for constructing equilibria

In order to make use of the axisymmetric approximation of a stellarator, an axisym-
metric equilibrium first needs to be constructed, which appropriately captures the
physics of the non-axisymmetric device. As described in detail in [85], a stellarator
equilibrium can be mapped onto an axisymmetric domain, using VMEC. The main
steps in constructing such approximations for simulating internal modes is shown in
Figure 2.4 (a). The n = 0 Fourier components of the stellarator boundary are nor-
mally used as the axisymmetric equilibrium boundary, in order to preserve the same
toroidally averaged shaping of the plasma. The same pressure, pstel, and rotational
transform, ιstel, profiles are used as in the original stellarator. For the axisymmetric
equilibrium to have the same ι profile, the poloidal field generated externally must
be replaced by increasing the toroidal current in the new axisymmetric device, Itok,
when compared with the original stellarator, Istel.

This type of axisymmetric approximation is referred to as the equivalent toka-
mak approximation. The increase in the toroidal current is typically expected to
make the equilibrium more unstable than the stellarator it is intended to represent,
although it is shown in Section 5.3 that this is not always the case. In order to
produce a better axisymmetric approximation, the physics of an external rotational
transform must be replicated. This is possible by removing the additional current
in the equivalent tokamak from the plasma, instead attributing it to virtual cur-
rents within the torus. This leads to a model referred to as the virtual current
approximation, where

Ivc(s) = Ip(s) + Iv(s), (2.43)
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(a) Equivalent tokamak and virtual current model construction for internal modes

(b) Equivalent tokamak construction for external modes in JOREK

(c) Virtual current model construction for external modes in JOREK

Figure 2.4: Workflow for constructing the equivalent tokamak and virtual current model
of a stellarator using VMEC for internal (a) and external (b-c) mode studies in
JOREK. There are two main steps in the approach. The first is to modify the
definition of the plasma boundary to be axisymmetric, preserving the pressure,
and ι profiles of the original stellarator. This leads to an equivalent tokamak
approximation. The virtual current model is constructed by splitting the
toroidal current in the new axisymmetric equilibrium into plasma and virtual
current components. For external modes, an additional step is necessary to
extend the equilibrium into the vacuum region. This is necessary because
of the JOREK boundary conditions, and to capture the correct rotational
transform outside the plasma in the virtual current model.

defining Ip and Iv as the plasma and virtual current within a given toroidal config-
uration, respectively. s has its usual meaning as the radial flux surface coordinate.
An example of these modified equilibrium profiles is given in Section 5.4, where
external kink modes in a l = 2 and QA stellarator are studied.

Grad Shafranov Solution with Virtual Currents

In order to include Iv in the equilibrium description, the in-built Grad Shafranov
solver in JOREK that initialises equilibria for nonlinear studies needs to be modi-
fied. The total current Ivc needs to be split between Ip and Iv in the solution of the
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Figure 2.5: Sketch of virtual currents in a circular axisymmetric approximation of a stel-
larator. The total current density, Jvc, has contributions from virtual, Jv, and
plasma, Jp, currents. The virtual current is along the total equilibrium mag-
netic field, B, and as such does not modify the solution to the Grad Shafranov
equation.

equilibrium equation. To do this, the equilibrium equation is modified such that

∆∗Ψ = jvc(Ψ, R) = −µ0R
2p′ (Ψ)− FF ′ (Ψ)

= −µ0R
2p′ (Ψ)−

[
FpF

′
p (Ψ) + FvF

′
v (Ψ)

]
,

(2.44)

where jvc(Ψ, R) describes the total current density in the torus. The plasma and
virtual current densities are then defined by

µ0RJp · êφ = jp = −µ0R
2p′ (Ψ)− FpF

′
p (Ψ) (2.45)

µ0RJv · êφ = jv = −FvF
′
v (Ψ) . (2.46)

As long as the virtual current introduced is along the magnetic field lines, as
shown in Figure 2.5, this should not introduce an inconsistency into the force bal-
ance of the solution to the Grad Shafranov equation. As shown in Figure 2.5, the
diamagnetic current represented by FF ′ is parallel to the total equilibrium mag-
netic field, and as such the virtual current removed from this term can be considered
force free. In such a way, the virtual currents can be removed from the equilibrium
without influencing the force balance. The modified solution to the Grad Shafranov
equation therefore remains in equilibrium.

In order to be a meaningful approximation of the stellarator, the plasma current
density of the virtual current model should approximate the plasma current density
of the original stellarator as closely as possible. For this reason, jv is chosen such
that

jv = µ0〈R〉
[
〈jvc(Ψ, R)

R
〉 − dIstel

dAvc

(Ψ)

]
, (2.47)
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where 〈 〉 refers to a flux surface averaged quantity, and Avc is the toroidally
averaged cross sectional area of a given flux surface in the axisymmetric approx-
imation. To first order in the aspect ratio, this ensures that the stellarator and
the virtual current model correspond to the same plasma current distribution,
Ip(s) = Istel(s) (1 +O (ε2)). The righthand side of the above equation is com-
puted numerically from VMEC and JOREK. Equation 2.47 can then be used to
define Iv(s) in equation 2.43, using

Iv(s) =

∫ Avc(s)

0

jv

R
dAvc. (2.48)

When the toroidally averaged flux surfaces of the stellarator and axisymmetric
approximation align, Ip(s) = Istel(s). This is normally true for low beta cases, as
will be shown in Section 5.4.

For the simulation of external modes, the equilibrium construction becomes more
complicated because of the representation of the vacuum region. The workflow for
external modes is shown in Figure 2.4 (b) and (c). In JOREK simulations of
external modes, the vacuum region needs to be included in the simulation domain,
because the JOREK model used here applies a Dirichlet boundary condition on
the poloidal velocity at the boundary. As such, this boundary condition needs to
be sufficiently far from the plasma-vacuum interface so as not to interfere with the
growth of external modes.

In addition to this, the vacuum magnetic shear of a tokamak and stellarator are
different, due to the contribution to the magnetic field in the vacuum region from
external helical coils. For this reason, to capture the correct rotational transform
of the stellarator axisymmetrically in the virtual current approximation, virtual
currents need to flow in the vacuum region to approximate the effect of these
helical coils. This is important as the magnetic shear of the vacuum region has a
stabilising effect on external modes.

For the studies of external modes in this thesis, the original fixed boundary
stellarator equilibria are extended smoothly into the vacuum region, linearly scaling
the edge toroidal flux with the new cross sectional area of the equilibrium. This
extended domain is then transformed to a new axisymmetric approximation in the
same way as has been previously described, preserving the correct magnetic shear
of the stellarator in the vacuum region.

Time evolution

During the time evolution, the virtual current remains fixed in space and time.
Equations 2.28 to 2.32 are modified for studies with the virtual current model,
removing the parallel momentum equation to improve numerical stability. This
is an acceptable simplification because perpendicular convection and parallel heat
transport should dominate over parallel convection, as has been observed in com-
parable edge localized mode studies [100]. The momentum, pressure, induction,
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and current equations require the following minor modifications to include virtual
currents

R∇ ·
(
R2ρ∇⊥

∂u

∂t

)
=

1

2

[
R2 |∇⊥u|2 , R2ρ

]
+
[
R4ρω, u

]
+ [Ψ, jvc − jv]

− F0

R

∂jvc

∂φ
+
[
ρT,R2

]
+Rµ (T )∇2ω

(2.49)

∂ (ρT )

∂t
= −v · ∇ (ρT )− γρT∇ · v

+∇ ·
(
κ⊥∇⊥T + κ‖∇‖T

)
+

2

3R2
η (T ) (jvc − jv)2 + Sp

(2.50)

∂Ψ

∂t
= R[Ψ, u] + η (jvc − jv)− F0

∂u

∂φ
(2.51)

jvc = ∆∗Ψ = jp + jv (2.52)

.
The necessary modifications for the virtual current model are marked in blue, and

amount to the inclusion of a virtual current, which is subtracted from the terms
responsible for releasing free magnetic energy through ideal and resistive effects.
The change made in equation 2.51 is equivalent to the addition of a current source,
fixing the background virtual current. In equations 2.49 and 2.50, the virtual
current is removed from the Ohmic heating term and Lorentz force, as the plasma
should only experience the influence of its own current. The changes outlined above
are easily implemented, allowing a fast, albeit qualitative assessment of stellarator
nonlinear dynamics.

External kinks are modeled in this study in the no wall limit, keeping the n = 0
component fixed. The influence of virtual currents on the boundary conditions
therefore also needs to be considered. The free boundary condition for n > 0
toroidal harmonics is included by coupling JOREK to the STARWALL code [86,
101]. This coupling enforces that

n ·BJOREK = n ·BSTARWALL (2.53)
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n×BJOREK = n×BSTARWALL (2.54)

n · JJOREK = n · JSTARWALL (2.55)

where n refers to the normal vector on the JOREK simulation boundary. As the
virtual current in the domain is parallel to the equilibrium magnetic field, there
is no component normal to the plasma boundary. Equation (2.55) is therefore
independent of the virtual currents in the domain. Equation 2.53 and 2.54 are
implemented in terms of the total magnetic field [21]. The representation of the
total magnetic field is unchanged in the virtual current model, and so there is no
need to change the coupling between the two codes.

2.7 Discussion

In this section, the viscoresistive MHD equations have been derived and a frame-
work for understanding MHD equilibrium, linear and nonlinear stability problems
has been developed. Each part of this framework is necessary in the characterisation
of the MHD properties of a fusion plasma.

Three codes that are used extensively in this thesis — VMEC, CASTOR3D and
JOREK — have been briefly described. VMEC is used in most of the studies which
follow in order to generate the starting equilibrium point for stability calculations.
The methods described in Section 2.3 are used to study saturated nonlinear MHD
perturbations. The reduced MHD models in JOREK are applied for more compre-
hensive nonlinear simulations, such that the viscoresistive time evolving dynamics
can be studied. CASTOR3D is used mostly to linearly benchmark the nonlinear
approaches used in this thesis, to demonstrate their fidelity.
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3 Comparison of nonlinearly saturated
external MHD modes in tokamaks with
JOREK and VMEC

In this chapter, the use of VMEC as a method for studying nonlinearly saturated
external MHD modes observed in JET-like tokamak equilibria is compared with
nonlinear simulations using JOREK. In the context of this thesis, the purpose of this
study was to test the validity of the equilibrium approach and identify the physical
effects which can lead to deviations in the dynamics, such that the equilibrium
approach can be used appropriately to model stellarators in Chapter 4. In Section
3.1, the saturated states found in VMEC that are used in the comparison — a
(5, 1) external kink mode, and Edge Harmonic Oscillation (EHO) — are outlined.
The set up of the JOREK simulations for the comparison with VMEC follows in
Section 3.2. In Section 3.3, it is shown that for the external kink mode, there is
good agreement between the two modelling approaches. This is likely because the
simulated kink is dominated by a single toroidal harmonic. A more complicated
test case representing an EHO is modelled in Section 3.4. The dynamics of the test
case are more complex, because multiple toroidal harmonics are linearly unstable.
In JOREK simulations, the different linearly unstable modes are shown to compete
for nonlinear dominance, such that the saturated state found on the ideal MHD
timescale differs from the VMEC result. Extending simulations into timescales
where resistive effects can play a role, similar n = 1 perturbations can be found
as observed using the equilibrium approach. The nonlinear dynamics that lead to
this mode, and the similarities with the VMEC solution are studied. In Section
3.5, the implications of these results for future work considering stellarators with
the equilibrium approach is discussed. The results of this thesis chapter have been
published in [102].

3.1 VMEC results for saturated external modes in tokamaks

The test cases used in this study are based on modified versions of previously
published results considering edge MHD instabilities in JET-like tokamaks [65].
The computations have assumed up-down symmetry, and used Ns = 311 radial grid
points, andm = 15 poloidal harmonics. The modelling approach outlined in Section
2.3 is applied. For these tokamak cases, the unperturbed equilibria are converged
axisymmetrically, such that the MHD instability is artificially suppressed. When
searching for the perturbed state, n = 6 toroidal harmonics are used. In both
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3 Comparison of nonlinearly saturated external MHDmodes in tokamaks with JOREK and VMEC

(a) (b)

Figure 3.1: Unperturbed (black) and perturbed (red) equilibrium flux surfaces at
√

Φ̂ =
0.1, 0.3, 0.7 and 1.0 (a), and radial profiles (b) from VMEC for the external
kink case.

cases, the equilibria are considered converged when the force residuals in VMEC
fall below ftol = 5× 10−17. As discussed in Section 2.3.3, the VMEC computations
are carried out constraining the q profile, to provide a physical link through helicity
conservation between the axisymmetric and final perturbed state.

3.1.1 External kink observed in VMEC

The unperturbed equilibrium used in the external kink case is shown in Figure 3.1
(a). It has been shown previously that this case is a current driven external kink
mode [65]. A quartic current profile and approximately linear pressure profile are
assumed for the unperturbed equilibrium with respect to the normalised toroidal
flux, as shown in Figure 3.1 (b). This leads to an edge safety factor that is just
below 5, such that a (5, 1) ideal external kink mode can be found using VMEC.
The saturated (5, 1) mode is shown in Figure 3.1 (a).

It can be seen in Figure 3.1 (b) that the modified toroidal current profile has a
sharp increase in current near the plasma edge. This effect is similar to the surface
currents that were observed in past calculations of fast major radius compression
in tokamaks [103], and can be understood qualitatively in the following way; as the
q profile is fixed during the development of the 3D perturbed state, the ratio of the
poloidal and toroidal pitch angles of magnetic field lines must remain effectively
constant. With the major and minor radius, and the toroidal field approximately
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3.1 VMEC results for saturated external modes in tokamaks

(a) (b)

Figure 3.2: Unperturbed and perturbed equilibrium flux surfaces at
√

Φ̂ = 0.1, 0.3, 0.7
and 1.0

(a), and radial profiles (b) from VMEC for the edge harmonic oscillation case.

held constant, the poloidal field will vary according to

µ0

∫
j · dS =

∮
B · dl. (3.1)

Considering Figure 3.1 (a), the total surface area is also approximately constant,
while the line integral of the equilibrium flux surfaces has visibly increased. In
such a way, the total plasma current should also increase to preserve the q profile.
The current spike can be interpreted as the typical plasma current spike observed
experimentally during fast MHD dynamics. This interpretation makes sense, given
that the perturbed equilibrium is thought to be the saturated state obtained on the
ideal timescale, just after the current spike observed in the time evolving dynamics.

3.1.2 Edge harmonic oscillation observed in VMEC

The EHO considered in Section 3.4 is based on the external-infernal (exfernal) mode
[104] calculated using VMEC in [65]. These instabilities are typically observed in
plasmas with a large edge bootstrap current generated by strong pressure gradients.
The bootstrap current flattens the q profile near the plasma edge, allowing the large
pressure drive in the edge region to strongly couple internal and external MHD
perturbations.

The deformation of the last closed flux surface, and corresponding current spike is
smaller in Figure 3.2 when compared to Figure 3.1. This is expected, as EHOs have
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3 Comparison of nonlinearly saturated external MHDmodes in tokamaks with JOREK and VMEC

been referred to as kink-peeling modes in the literature [105, 106], which are more
radially localised than global external kink modes. It should be noted that during
the parameter scans carried out in this study, only the n = 1 dominant saturated
mode was found in VMEC, even though the simulated test case is unstable to
multiple low n toroidal harmonics, as shown in Section 3.4.

3.2 Set up of JOREK simulations for comparison

To model comparable instabilities to those computed in VMEC using JOREK,
the same unperturbed equilibria can be obtained using its built-in Grad-Shafranov
solver, preserving the pressure profile, q profile and plasma boundary from VMEC.
This is, however, not sufficient for an accurate comparison, because ad-hoc diffu-
sion parameters in JOREK can modify the equilibrium condition during the time
evolution. This may influence the MHD dynamics in turn. In order to avoid this
problem, an initial VMEC equilibrium is imported and run in JOREK axisymmet-
rically, such that the MHD instability is suppressed. Once the equilibrium profiles
are approximately stationary over the simulated timescale, the new equilibrium pro-
files and plasma boundary are used to construct updated VMEC equilibria. These
equilibria have been shown in Section 3.1, and are used in the comparison, such
that the initial state used in the two approaches is consistent.

In Section 3.3 and 3.4, the assumed simulation conditions have tried to approx-
imate the ideal MHD conditions assumed in VMEC. Parameter scans are then
carried out for the EHO case with more physically meaningful parameters to under-
stand the influence of resistivity and equilibrium flows on the nonlinear dynamics.
As this study does not attempt to compare results with an experiment, the core
plasma resistivity is chosen to be 1.9382× 10−7 Ωm — higher than the experimen-
tally relevant value — as a compromise between computational cost, and physical
accuracy.

In VMEC, the vacuum region is assumed to be a perfect vacuum with no plasma
currents flowing outside the plasma volume. To achieve similar vacuum conditions
in JOREK, where the computational domain extends beyond the plasma boundary,
the resistivity in the vacuum region is set to be artificially high. This prevents
currents being induced by the plasma deformation, which could otherwise stabilise
the plasma motion. For vacuum resistivities higher than 1.9 × 10−2 Ωm, it was
found that this stabilising effect is negligible for the simulated cases. This value was
therefore selected for the main comparison between the two modelling approaches.

During the nonlinear evolution, the resistivity needs to be linked to the plasma
temperature in order for the vacuum region alone to remain highly resistive as the
plasma boundary deforms in JOREK. In order to do this, the initial resistivity
profile is converted into a function of the n = 0 temperature that is used in the
time evolution through the nonlinear phase. This choice of resistivity is somewhat
artificial, and only used in order to have a profile that approaches the ideal MHD
assumptions in the VMEC result. In Section 3.4.2, simulations are also run with
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3.2 Set up of JOREK simulations for comparison

Table 3.1: JOREK Parameters used in nonlinear MHD simulations of the external kink
and edge harmonic oscillation discussed in Section 3.3 and 3.4, respectively.
The diffusive parameters are the values defined at the plasma core.

Parameter External Kink EHO

T [keV] 0.03− 3.52 0.14− 8.12
n [×1020] 0.05− 1.02 0.014− 0.826

κ‖ [kg ·m−1 · s−1] 4936.0 39386.0

κ⊥ [kg ·m−1 · s−1] 1.755 1.755
D⊥ [m2 · s−1] 1.54 1.54
η [Ω ·m] 1.9382× 10−7 1.9382× 10−7

ηnum [Ω ·m3] 1.9382× 10−12 1.9382× 10−12

µ [kg ·m−1 · s−1] 5.1594× 10−7 5.1594× 10−7

µnum [kg ·m · s−1] 5.1594× 10−12 5.1594× 10−12

nrad 201 115 121
npol 121 151 151
nplane 32 32

modified resistivity profiles, in order to determine the effect this can have on the
dynamics.

The simulations in the following sections used the parameters shown in Table
3.1. Unlike in VMEC, a perfect vacuum, which has zero plasma density, is not
assumed. Using the lower bound for the density and temperature shown in Table
3.1, numerical issues could be avoided sufficiently to run into the nonlinear phase.
The diffusive parameters given are those assumed in the core of the plasma. For
the parallel thermal conductivity, a Spitzer-Haerm dependence is assumed. A small
amount of parallel particle diffusion is also used in the simulations to approximate
the influence that the neglected parallel flow would have on the particle transport.
For the perpendicular coefficients, a pedestal transport barrier is approximated by
reducing the diffusivity coefficients near the plasma edge. Outside the plasma, the
perpendicular diffusive coefficients are artificially increased to 10 times the core
value, in order to keep the vacuum density and temperature relatively low in the
axisymmetric state. This is necessary because a limiter geometry is used without
modelling the target, so that there are closed magnetic flux surfaces outside the
plasma in the simulation domain. For this reason, the parallel transport alone
would not ensure reasonable vacuum conditions are maintained.

Regarding resolution, the number of radial, nrad, and poloidal, npol, grid elements
were chosen to resolve the dynamics. For the external kink case shown in Section
3.3, a non-flux aligned polar grid with 201 radial and 121 poloidal elements was
used. The dominant low n modes which are simulated have large structures that
are well resolved at this relatively high poloidal resolution. A flux aligned grid with
115 radial and 151 poloidal elements was used for the remaining simulations of
the external kink, in order to converge the linearly unstable n = 5 mode that was
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3 Comparison of nonlinearly saturated external MHDmodes in tokamaks with JOREK and VMEC

(a) (b) (c)

Figure 3.3: Comparison of radial eigenfunctions observed in JOREK during the linear
phase (a), CASTOR3D (b), and the nonlinear perturbation observed in
VMEC (c). The Fourier representation has been calculated using PEST co-
ordinates.

found. For the EHO simulation, the grid is aligned to the initial equilibrium flux
surfaces. The toroidal mode numbers n = 0− 5 are simulated. 32 poloidal planes
were used for both test cases, which is sufficient to resolve the representation of the
toroidal harmonics.

3.3 Comparison with JOREK for the external kink case

3.3.1 Comparison of linear eigenfunctions

To begin with, it is important to confirm that the poloidal mode structure of the
nonlinear displacement, E⊥, in VMEC is qualitatively consistent with the perturbed
displacement, ξ⊥, from linear stability theory as described in Section 2.4.2. To
this end, the linear eigenfunction observed in both JOREK and CASTOR3D are
compared with the nonlinear Fourier representation of the perturbed displacement
from VMEC, as shown in Figure 3.3.

The linear mode structure in JOREK and CASTOR3D shows good agreement
across the plasma region, as expected. Comparing these linear eigenfunctions with
the nonlinear displacement from VMEC, it can be seen that the structure of the
internal (3, 1) contribution is peaked closer to the q = 3 surface. This strong
peaking is thought to be because the (3, 1) mode has a larger nonlinear amplitude
in the saturated state, than during the linear phase.

It should be noted that when comparing the nonlinear displacement found in the
VMEC solution, with the perturbed displacement from linear theory, quantitative
agreement is not expected. This is because E⊥ does not have the same dependencies
as ξ⊥. For example, the nonlinear displacement is not dependent on the density,
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3.3 Comparison with JOREK for the external kink case

(a) (b) (c)

Figure 3.4: Magnetic energy evolution of the JOREK simulation during the nonlinear
phase (a). Poincaré comparisons are made with the perturbed VMEC equi-
librium at the initial saturation of the n = 1 mode (b) and near the end of
the simulation run time (c). The times of the Poincaré plots are marked by
grey dashed lines in Figure 3.4 (a). The poloidal magnetic energy spectrum
computed in Figure 3.5 (a) is averaged over the region shaded in red. The
last closed flux surface from VMEC (green) is overlaid on the Poincaré plots.

as it does not reflect the inertia of the plasma displacement. For this reason, the
comparison is only meant to show that E⊥ has a qualitative correspondence with
ξ⊥.

3.3.2 Comparison of flux surfaces and nonlinear magnetic energy spectrum

Beginning the nonlinear comparison of results in JOREK and VMEC, Poincaré
plots generated at different points in the dynamics are compared against the con-
verged flux surfaces from VMEC. The results in Figure 3.4 show reasonable agree-
ment between the flux surfaces in JOREK and VMEC.

A final quantitative comparison is possible by comparing the magnetic energy
spectra from the JOREK simulation with VMEC. The perturbed poloidal flux of the
VMEC solution needs to be calculated in a similar representation as in JOREK for
this comparison. The magnetic field of the perturbed VMEC solution is therefore
re-calculated on a (R,Z, φ) grid, using EXTENDER to calculate the magnetic
field produced by internal plasma currents beyond the plasma boundary. The
axisymmetric vacuum magnetic field can be neglected in this calculation, because
this study is only concerned with the n > 0 perturbed fields. The poloidal flux is
then computed using∫

1

R
(∇Ψ · ∇w) dA =

∫
w

(
∂BR

∂Z
− ∂BZ

∂R

)
dA. (3.2)
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(a)
(b) (c)

Figure 3.5: Comparison of perturbed magnetic energy spectrum in JOREK and VMEC
solutions (a). The spectrum from JOREK is computed as the average over the
red shaded region in Figure 3.4 (a). The perturbed poloidal flux in JOREK
at the end of the simulation time (b) is compared with the VMEC solution (c)
for a comparable poloidal plane. The simulation boundary used in JOREK
(blue), and the last closed flux surface from the perturbed state (black) are
also shown. Note that the same colour bar is used in both pseudocolour plots.

Equation 3.2 is written in the weak form, where w is the test function. The
righthand side comes from substituting the magnetic field into the definition of
∆∗Ψ in equation 2.10. By taking a Fourier transform of the computed solution, the
same representation of the magnetic field is obtained as in JOREK.

The magnetic energy spectrum of both representations, integrated over the com-
putational domain in JOREK, is shown in Figure 3.5 (a). The two solutions for
the saturated state have relatively similar magnetic energies. The local structure
of the perturbed poloidal flux, omitting the n = 0 mode, in JOREK and VMEC is
compared in Figure 3.5 (b) and (c) at the poloidal plane where the mode structures
observed in the two codes are approximately in phase. It can be seen that there
is good agreement between the two codes, and that the perturbation is strongly
dominated by (5, 1) and (4, 1) mode structures.

3.4 Comparison with JOREK for edge harmonics oscillation

3.4.1 Comparison of linear eigenfunctions and mode structure

Similar to Section 3.3, an equivalent equilibrium to the unperturbed state from
VMEC in Figure 3.2 is generated in JOREK. The linear perturbation observed in
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(a) (b)

(c) (d)

Figure 3.6: Comparison of the n = 1 radial eigenfunctions observed in JOREK (a) during
the linear phase of the EHO test case, with the radial eigenfunction found
in CASTOR3D (b), and the nonlinear perturbation observed in VMEC (c).
The linear n = 2 mode observed in JOREK is also shown in (d). The Fourier
representation has been calculated using PEST coordinates. The location of
relevant rational surfaces with their corresponding poloidal mode number are
marked by grey dashed lines.

JOREK is then compared with CASTOR3D, and the the nonlinear eigenfunction
of the perturbed displacement amplitude in VMEC. The result of the comparison
for the n = 1 instability is shown in Figure 3.6 (a-c). It can be seen that there
is qualitative agreement once again between the different approaches. The typical
strong (4, 1) internal contribution to the edge harmonic oscillation is observed in
all codes.

The linear dynamics are immediately different to the case considered in Section
3.3, because the n > 1 toroidal harmonics are also unstable to linearly independent
modes. As an example, the radial eigenfunction for the n = 2 mode is shown in
Figure 3.6 (d). It can be seen that this mode has a similar structure to the n = 1
mode, with a large internal component localised at the q = 4 rational surface, and
a dominant external component corresponding to the nearest rational surface to
the plasma edge, (nq + 1)/n.

The linear mode structure of the exfernal modes that are observed in this equi-
librium is shown in Figure 3.7 (b). For this case, the n = 2 and n = 3 toroidal
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(a) (b)

Figure 3.7: Modification of the E×B velocity (a) with increasing diamagnetic source in
JOREK. The red curves correspond to a value for the diamagnetic source in
equation 2.34, which is close to the expected value for the modelled equilib-
rium. Results are also shown without flows (black) and at an intermediate
value (blue) The linear growth rate of external modes up to n = 8 (b) show
that high n modes are stabilised significantly when moderate flows are intro-
duced. The results in this figure have used the resistivity profile from case 2
in Figure 3.8 (a).

harmonics have the largest linear growth rates. As shown in Section 3.4.2, they
will therefore lead the initial nonlinear dynamics of the instability in JOREK sim-
ulations.

Before proceeding to nonlinear studies, the influence of toroidal and poloidal
flows on the dynamics is explored. Equilibrium flows are an important area of
research in the context of EHOs. It has been argued that flows play a crucial
role in stabilising high n ballooning modes that would otherwise lead the linear
dynamics. These ballooning modes can prevent low n kink modes from becoming
the dominant nonlinear mode structure. Previous nonlinear studies have already
observed the stabilisation of high n modes, and the excitation of low n external
modes with increased toroidal and E×B flows [105, 107].

The diamagnetic source term in equation 2.34 was introduced to the EHO equilib-
rium to confirm that a similar stabilisation of high n modes with increased diamag-
netic flows would be observed for the simulated EHO test case. Three equilibrium
conditions were considered with increasing values of the diamagnetic source term.
The corresponding E × B velocity within the plasma is shown in Figure 3.7 (a).
The red curve in Figure 3.7 (a) is considered close to the expected E×B velocity
that would be driven in the given equilibrium, however it should be acknowledged
that the assumed source has not been informed by experimental observations. The
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3.4 Comparison with JOREK for edge harmonics oscillation

black curve corresponds to the case without a diamagnetic source, and is the as-
sumed source used in the main simulations carried out in the subsequent nonlinear
analysis. The blue curve is an intermediate value, between these two limits.

The modification of the linear growth rates in the no wall limit with increasing
flows for n <= 8 is shown in Figure 3.7 (b). The expected preferential stabilisation
of high n modes is observed, consistent with theoretical models of EHOs [104]. This
analysis provides further evidence that low n modes can be expected to dominate
the dynamics in an experiment for the given test configuration. In Figure 3.7, the
low n modes were marginally stabilised by poloidal flows, unlike in previous studies
of DIII-D [107]. However, for the simulated JET-like discharge, it is not clear that
this effect should be observed. The inclusion of flows in the linear analysis of these
modes serves to show that the dependency observed in JOREK is consistent with
experimental and analytic results. In the following sections, the simulations without
flows are continued into the nonlinear regime to compare with VMEC results.

3.4.2 Dependence of MHD dynamics on resistivity

The evolution of the magnetic energies for the EHO test case is shown in Figure
3.8. For this test case, parameter scans of the resistivity have been carried out. The
test case was first simulated with the resistivity profile of case 1, shown in Figure
3.8 (a), which approximates the ideal MHD conditions in VMEC. As expected from
the linear analysis in Section 3.4.1, the n = 2 EHO grows fastest, dominating the
initial nonlinear dynamics and saturating on the fast ideal MHD timescale. The
initial saturated state can be identified as a n = 2 EHO by the nature of the toroidal
mode coupling, which includes only even toroidal mode numbers [105].

The sub-dominant n = 1, 3 and 5 modes continue to grow after the initial satu-
ration of the n = 2 mode. The slow growth of the odd toroidal harmonics indicates
that the nonlinear dynamics involve resistive effects. To verify this, a second simu-
lation was run with the resistivity inside the plasma prescribed with a Spitzer-like
dependence. In such a way, the resistive dynamics are accelerated, compared to
case 1. As expected, the odd toroidal harmonics grow faster in this case, indicating
resistivity is important in the nonlinear dynamics observed. To determine whether
the n = 1 mode could dominate later in the nonlinear phase, case 2 is extended over
a longer timescale. It can be seen that after approximately 3.5 ms, the n = 1 mode
begins to suppress the initially prevailing n = 2 structures. This n = 1 saturated
state is compared with the VMEC result in the following sections.

It is important to note the timescale of the MHD dynamics that are observed in
the JOREK simulations. In Section 3.1.1, the solution of the VMEC computation
was interpreted as the saturated state immediately after the fast phase of the in-
stability, before resistive effects can become important. In the JOREK simulation,
this fast phase ends after the saturation of the n = 2 mode, at t ≈ 1.3 ms in case 1
and 2 of Figure 3.8. The expectation from the VMEC result is that the n = 1 mode
would dominate on this timescale, which is not observed in the JOREK simulations.
This leads to two important questions — why does the n = 1 mode not dominate
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on the ideal timescale in JOREK simulations, and secondly, how much does the
observed n = 1 mode correspond to the expected ideal EHO mode? The second
question is addressed by considering the ergodisation of the plasma and perturbed
magnetic energies in Section 3.4.3.

With respect to the first question, it is likely that the nonlinear influence of the
n = 2 mode reduces the drive for the competing n = 1 mode for the simulated case.
The rapid linear growth of the n = 2 mode, stabilises the n = 1 mode through
quadratic coupling, as described in [108]. The ideal n = 1 mode must be stabilised
by the n = 2 mode, because any deformation of the flux surfaces related to the
odd toroidal mode numbers, which overlaps with the dominant n = 2 perturbation,
must compete with this nonlinearly saturated mode structure. It can be seen in
Figure 3.6 (a) and (d) that the linear perturbation associated with the n = 1
toroidal harmonic overlaps with the n = 2 perturbation. This implies that the
nonlinearly saturated n = 2 EHO will have a stabilising influence on the linear
n = 1 instability during its initial nonlinear saturation.

The sharp rise in the n = 1 energy during the initial saturation of the n = 2
mode implies that the n = 1 mode structure is strongly influenced, as it is forced to
accommodate the n = 2 EHO. After this point, the deformation of the plasma leads
to thermal losses that increase the resistivity inside the plasma and reduce it in the
vacuum region. The pressure gradient driving the mode in the plasma edge region
also relaxes. The saturated n = 2 mode also influences the evolution of the n = 1
mode through these effects, leading to the slower timescale to saturation of the
n = 1 mode. While the observed dynamics in JOREK are physically reasonable,
the timescale means that these results cannot be used to rigorously verify the
VMEC result, which neglects viscoresistive and diffusive effects. In this limit, the
dynamics could be different.

A final simulation, case 3, was run with a more realistic Spitzer resistivity in-
side, and outside the plasma. This simulation serves to highlight the difficulty in
predicting the nonlinear outcome of an EHO, because of the strong dependence of
the initial dynamics on the assumed resistivity profile. The lower resistivity in the
vacuum region has a stabilising effect on the initial ideal MHD instabilities, which
brings the ideal and resistive timescales closer together compared to case 1 and 2.
The evolution of the magnetic energies is shown in Figure 3.8 (d). It can be seen
that for this case, all linearly unstable modes have been partially stabilised, and
the n = 3 mode leads the dynamics, before quickly being overtaken by the n = 2
mode. After this point, there is a period of competition between the n = 1 and
n = 2 modes, before the n = 2 mode becomes the principal mode. The n = 1− 3
modes that dominate the perturbation at different points in the dynamics are all
kink-peeling modes, such that the linear dynamics are similar to the simulation re-
sults for case 1 and 2. The nonlinearly saturated state at the end of the simulation
time has changed due to the modification of the resistivity in the vacuum region,
highlighting the sensitivity of the nonlinearly dominant mode on this parameter.
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(a) (b)

(c) (d)

Figure 3.8: Toroidal magnetic energies from JOREK for the EHO test case simulated
with different resistivity profiles (a). Note that the energies are normalised
by a factor µ0. A larger core resistivity compared to case 1 (b) is used in
case 2 (c) to accelerate the onset of resistive effects. The time points marked
by grey dashed lines correspond to the Poincaré plots shown in Figure 3.9,
and pseudocolour plots in Figure 3.11 (b) and (c). The coloured regions
correspond to the simulation time over which the energy spectrum is averaged
over in Figure 3.11 (a). A Spitzer resistivity is used in case 3 (d).

3.4.3 Comparison of flux surfaces and perturbed magnetic energies

The modification of the magnetic geometry and confinement can be used to un-
derstand the differences between the nonlinearly perturbed state found in case 2
and the ideal VMEC result. The Poincaré plots in Figure 3.9 are taken at the
saturation of the n = 2 and n = 1 mode. The n = 2 mode initially saturates with a
dominant (9, 2) perturbation of the poloidal flux. The corresponding island chain
can be identified in Figure 3.9 (a), but is faint due to the significant stochastisation
in the edge region. Later in the dynamics, when the n = 1 mode is dominant,
a (5, 1) island chain is observed outside the plasma, as shown in Figure 3.9 (b).
The observed magnetic island structure and the approximate structure of the last
closed flux surface from the equivalent VMEC computation, shown in green, are
in reasonable agreement. The internal flux surfaces in VMEC are replaced by a
strongly ergodic region with clearly visible (4, 1) magnetic islands in the region
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(a) (b)

Figure 3.9: Poincaré comparisons are made with the perturbed VMEC equilibrium at two
time points in the nonlinear evolution of case 2. The time points are marked
by grey dashed lines in Figure 3.8 (c). Each field line is given a different
colour to identify the island structures more easily in ergodic regions. At the
initial saturation of the n = 2 harmonic, a (9, 2) island structure is identified
at the plasma edge (a). At the end of the simulation, (5, 1) and (4, 1) island
structures become dominant (b). The last closed flux surface from VMEC
(green) is overlaid on the Poincaré plots.

near the plasma boundary.
The connection length of magnetic field lines to the simulation boundary can be

used to assess how these internal structures change the parallel transport. This
diagnostic is shown in Figure 3.10. The connection length is calculated using the
harmonic mean of 1000 sample field lines uniformly distributed along the poloidal
angle of the n = 0 flux surfaces. The radial coordinate is taken to be the square root
of the n = 0 component of the normalised poloidal flux. The results are normalised
by the maximum distance traced. It can be seen that across the majority of the
plasma region, field lines remain well confined within the plasma volume. There is
only a significant loss of field lines near the plasma edge. Similar results have been
observed in more realistic studies of EHOs in DIII-D using x-point geometry [109].

Similar to Section 3.3, the magnetic energy spectrum has also been calculated
and compared between the two codes, as shown in Figure 3.11 (a). The energy
spectra in JOREK are taken during the initial saturation of the n = 2 mode, and
final saturation of the n = 1 mode for comparison. For the final n = 1 dominated
state, it can be seen that while the low n modes agree reasonably well, the high
n modes are notably larger in JOREK. The flat spectra observed in the JOREK
energies is typically seen when there is MHD activity in the higher n modes which

56



3.4 Comparison with JOREK for edge harmonics oscillation

Figure 3.10: Average connection length of field lines to the JOREK simulation boundary
as a function of time for case 2. Note that the results are normalised by the
maximum distance traced, which is in the plasma core.

is not driven by the lower toroidal harmonics. This behaviour is also observed later
in this thesis in Chapter 6, when studying the change in the nonlinear saturation
of external kink modes with reduced plasma current. It will be shown in Figure
6.5 of this separate study that the magnetic energy spectrum remains broad when
multiple toroidal harmonics are linearly unstable or nonlinearly triggered. In other
words, for the EHO case that is considered in this study, the magnetic energy
spectrum in Figure 3.11 (a) is broad because the higher toroidal harmonics are
linearly unstable in JOREK, as shown by the linear mode structure in Figure 3.7.
The decay of the energies seen in the VMEC spectrum is typical for an instability
which is driven by the n = 1 mode alone, implying that the high n modes observed
in JOREK are suppressed.

The perturbation of the poloidal flux from JOREK is shown at the time of sat-
uration for the n = 2 mode in Figure 3.11 (b). This shows that the instability is
initially led by a (9, 2) external structure, as expected from the linear eigenfunction
observed in Figure 3.6 (d). Near the end of the simulation time, shown in Figure
3.11 (c), the poloidal flux perturbation looks very similar to the stationary pertur-
bation in VMEC. This indicates that the resistive dynamics have not changed the
overall structure of the mode from the ideal result.

The question remains, why does the energy spectrum differ in Figure 3.11 (a)?
The connection length diagnostic shows that the overall mode structure has strong
similarities to previous observations of EHOs, and the poloidal flux perturbation
is very similar to the VMEC result. It seems that the instability observed in the
two codes has strong similarities, despite the discrepancy in the energies of higher
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3 Comparison of nonlinearly saturated external MHDmodes in tokamaks with JOREK and VMEC

(a)
(b)

(c) (d)

Figure 3.11: Comparison of the perturbed magnetic energy spectrum in JOREK and
VMEC (a). The energy spectra during the n = 2 dominant phase (blue),
and the final n = 1 dominant mode (red), corresponding to the blue and red
regions in Figure 3.8 (c), are shown. The perturbed poloidal flux in JOREK
during the initial saturation of the n = 2 mode (b) and at the end of the
simulation time (c) is plotted for the time slices marked by grey dashed lines
in Figure 3.8 (c). A comparable poloidal plane from the VMEC solution
(d) is shown with the JOREK simulation boundary (blue), and the plasma
boundary from the perturbed state in VMEC (black). The colour bars are
not the same in the three pseudocolour plots, so that the poloidal structures
can be more easily compared with one another.
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3.5 Discussion

toroidal harmonics. As a result, it appears that the VMEC solution does not
capture the full toroidal mode coupling of the instability, represented by the sub-
dominant modes in Figure 3.11 (a). This could be because of the assumption of
nested flux surfaces in VMEC, which prevents the ergodisation of the edge region
observed in JOREK, as shown in Figure 3.9.

3.5 Discussion

In this chapter, nonlinear MHD simulations have been compared with saturated
free boundary MHD perturbations in VMEC for external modes. For the consid-
ered external kink case, where the initial unperturbed equilibrium is unstable to a
single dominant linear perturbation, the agreement between the two approaches is
reasonable. For the more complex dynamics observed in the EHO test case, where
several competing toroidal mode numbers feature in the dynamics, the dominant
perturbation observed in the two codes can differ. Because the n = 2 toroidal mode
number is significantly more unstable than the n = 1 mode, the n = 1 mode is found
to only dominate on a resistive timescale. Comparing the structure of this resistive
perturbation with the n = 1 mode observed in VMEC, the mode structure remain
in reasonable agreement, in terms of the dominant poloidal flux perturbation. The
JOREK results show signs of stronger toroidal mode coupling, which is likely sup-
pressed in VMEC due to the assumption of closed flux surfaces, which prevents the
plasma ergodisation in the edge region observed in JOREK. The main nonlinear
JOREK simulations presented in this study were run without diamagnetic flows, in
order to have similar stationary equilibrium conditions as are assumed in VMEC.
The linearly unstable high n modes seem to lead to deviations between the JOREK
and VMEC simulation results. In such a way, it is expected that including flows,
which suppress these high n modes, could improve the agreement in Figure 3.11
(a). In addition, equilibrium codes such as SPEC [57] or SIESTA [110] relax the
assumption of nest closed flux surfaces. It would therefore be interesting to see if
the magnetic energy spectrum observed in such codes recovers the high n spectral
content observed in JOREK through ergodisation of the plasma edge region. Such
a study is a possible direction for future work.

The results show that a reasonable link can be drawn between the two modelling
approaches, even for advanced test cases. This is not to say that the results should
agree well in general. Experimentally, similar ideal external modes can nonlinearly
trigger resistive core MHD instabilities [29], which VMEC is not expected to cap-
ture. In such cases, a stronger deviation in the dynamics can be expected. In
addition, caution needs to be taken when multiple competing modes are observed
in the linear analysis of the perturbation, but even in these cases, the results from
VMEC clearly have a correspondence with the results from a full time evolving ap-
proach. For this reason, it was considered reasonable to use the approach in VMEC
to provide an initial assessment of external modes in stellarators, as considered in
the next chapter.
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4 Applying VMEC to model nonlinear MHD
activity in stellarators

The assessment of free boundary equilibrium approaches for the study of nonlinear
MHD is continued in this chapter. The studies of external modes in Chapter 3 are
extended to consider stellarator equilibria. As there are only a few studies which
have attempted to use VMEC for modelling MHD activity in stellarators, this work
considers classical stellarators as a first step, with the purpose of understanding the
behaviour of VMEC, and characterising the nonlinear states obtained in such simple
geometries. By scanning the ellipticity, and current profile, a parameter space is
defined in which to search for nonlinearly saturated states in Section 4.1. It is found
that (4, 1) external kink modes can be converged with ι preserving computations
for cubic current profiles. In Section 4.2, resolution scans are used to show that the
saturated state is not well defined by enforcing the conservation of helicity alone.
To resolve this problem, an additional constraint on the observed plasma current
spike is enforced to define the appropriate resolution parameters to use.

Parameter scans of the edge safety factor and external rotational transform are
then performed in Section 4.3. While saturated states can be found where the non-
linear perturbation amplitude is correlated with the linear growth rate observed
using linear MHD codes, additional perturbed equilibria have been found which
contradict this trend. It is argued that the latter perturbed equilibria are bifur-
cated states that do not correspond to the MHD dynamics. The nonlinear energy
spectrum of the modes is then considered in Section 4.4, showing that the per-
turbation in classical stellarators have dominant contributions from the toroidal
harmonics that belong to the Nf = 1 mode family. It is argued, using free bound-
ary JOREK simulations, that the increase in the n = 0 poloidal magnetic energy
could be caused by a modification of the energy distribution in the vacuum region
due to the plasma current spike. A preliminary comparison of VMEC results with
JOREK stellarator simulations shows that the dominant poloidal mode structures
in the l = 2, Np = 2 stellarator are consistent in both codes, cross validating the
modelling approaches. These initial results are intended to be further developed for
publication, and are a first step towards future studies considering external modes
in optimised devices.
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4 Applying VMEC to model nonlinear MHD activity in stellarators

4.1 Parameter space for nonlinear studies

As discussed in Section 2.3.2, it is not clear that an ideal MHD unstable equilibrium
will necessarily converge to a saturated state. In this section, the parameter space
for VMEC studies is narrowed down by searching for a region where saturated states
can be robustly converged. As classical stellarators are of interest, the modelled
stellarators are all in the β ≈ 0, high aspect ratio, A = R0/rminor ≈ 10, limit.

To begin with, scans of the ellipticity, κ = b/a, where b is radius along the semi-
major axis, and a is the radius along the semi-minor axis, and the initial current
profile are considered to narrow down the parameter space. The toroidal current
profiles are set to be parabolic of the form

j(s) = 1− sp, (4.1)

where p is an integer constant. Note that, as discussed in Section 2.3.3, the ι
profile is kept fixed during the equilibrium computation. Scans of 1.0 <= κ <= 1.5
and 2 <= p <= 4 were carried out. Results for the scan using p = 3 are shown in
Figure 4.1. With reduced κ and increased p, convergence becomes more difficult.
This is expected as the edge current density gradient increases with p, making the
perturbation more violent, and the magnetic shear at the plasma edge decreases
with κ, as shown in Figure 4.1 (a), such that the instability becomes more global.
The perturbation is therefore harder to converge.

As it is intended to model classical stellarators in this study, the unperturbed
equilibria would ideally have a circular plasma cross section. Such equilibria could
not be converged within the considered parameter space, however. A small amount
of vertical shaping, κ ≥ 1.25, was found to be necessary in order to converge the
perturbed equilibrium state, using m = 15 and n = 6 as the maximum poloidal
and toroidal mode numbers in the computation. It is thought that this is because
the equilibria at lower ellipticity are linearly more unstable. This is shown by
the growth rates, γ̂, shown in Figure 4.1 (b), where γ̂ has been normalised by
the volume averaged magnetic field strength of the equilibrium. The normalised
amplitude of the (4, 1) component of the perturbed displacement of the plasma
boundary, η̂n=1, m=4, where the displacement has been normalised by the minor
radius, is also shown in Figure 4.1 (b). For this reason, all further parameter scans
set κ = 1.25 and p = 3, varying qedge and ιext.

4.2 Convergence scans

Before proceeding to scans of the physical parameters, qedge and ιext, it is important
to understand the convergence properties of the perturbed equilibria that are being
considered. In previous studies of RMPs [63], it was found that computations of
tokamak plasmas do not converge with increasing poloidal resolution due to the
high resolution required in order to resolve the resonant poloidal mode number at
the edge. A similar observation is made in this study, as shown in Figure 4.2.
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4.2 Convergence scans

(a) (b)

Figure 4.1: Parameter scan of the ellipticity, κ, for tokamak cases with qedge = 3.85,
and p = 3. The shear of the q profile (a) increases with κ. The normalised
nonlinear displacement amplitude (black, left y-axis) and linear growth rates
(orange, right y-axis) are shown in (b). Nonlinearly saturated states can only
be found for κ >= 1.25.

While the displacement of the plasma boundary is converged at reasonable radial
resolution, Ns, the result is not converged in the poloidal resolution for any of the
simulated cases. The implied contributions to the saturated mode structure from
the higher poloidal harmonics is plausible, given that m = 4n modes are required
to resolve the resonant poloidal mode of a given toroidal mode number for the
modeled (4, 1) dominant instability. In addition to this observation, the toroidal
resolution requirement increases with Np, such that edge displacements are harder
to converge for the Np = 5 case. This is likely due to higher toroidal components of
the mode as a result of the mode coupling produced by the n > 0 components of the
background vacuum magnetic field. It should be noted that, unlike the boundary
representation itself, the plasma boundary deformation can be represented well by
a single Fourier component, η̂n=1, m=4, because the Fourier representation is taken
in straight field line coordinates.

The above observations present a challenge to the use of this approach for physics
studies — all of the above equilibria are valid perturbed equilibrium states that
could correspond to a saturated ideal MHD mode, so how does one determine the
numerical resolution which is most representative of the true saturated state pro-
duced by the ideal MHD dynamics? Following the discussion in Section 2.3.3, it
should be possible to identify the relevant saturated state by enforcing additional
physical constraints on the MHD dynamics. In this work, constraints on the evo-
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4 Applying VMEC to model nonlinear MHD activity in stellarators

Figure 4.2: Resolutions scans for the normalised boundary displacement as a function
of radial resolution, Ns, and maximum toroidal, n, and poloidal, m, mode
numbers in the flux surface representation (left to right). Results are shown
for tokamak (blue), Np = 2 (orange) and Np = 5 (green) stellarator cases
with qedge = 3.9. The stellarator cases both have ιext ≈ 0.1.

lution of the plasma current are explored.

The convergence of the toroidal plasma current density with radial and poloidal
resolution is shown in Figure 4.3 and Figure 4.4. Convergence difficulties were
encountered for free boundary equilibria with Ns > 501 using reasonable computa-
tional resources, and so this is the limit for the radial resolution used for the initial
free boundary convergence scan shown in Figure 4.2. It can be seen in Figure 4.3
(a) that the plasma current at the plasma boundary, Φ̂ = 1, does not converge with
increasing radial resolution, even though the plasma boundary itself is not mod-
ified significantly by increasing the radial resolution. A similar observation was
once again observed in [63]. The response to the plasma deformation in this region
is similar to the shielding of magnetic islands that has been observed in previous
studies, which has been shown to have significant resolution requirements in VMEC
[111]. However, for the main metric of interest in this study — the deformation of
the plasma — convergence in the radial resolution is easily achieved.

At the same time, however, when the converged solutions from Figure 4.2 are
restarted, keeping the final perturbed boundary fixed, and using a higher radial
resolution, numerical structures can be observed in the equilibrium solutions. A
comparison of the original free boundary solution with the fixed boundary compu-
tations is shown in Figure 4.4. The perturbed plasma boundary is fixed, and the
computation is repeated with increased radial resolution at Ns = 2001. It can be
seen that as the poloidal resolution is increased, the enhanced radial resolution re-
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4.2 Convergence scans

(a) (b)

Figure 4.3: Variation of the toroidal current density profile (a) and plasma flux surfaces
(b) with increasing radial resolution, Ns, for Np = 2 stellarator case with
qedge = 3.9 and ιedge ≈ 0.1. The radial resolution strongly affects the plasma
current profile, while the plasma displacement is almost identical for all con-
sidered resolutions.

veals a localised current sheet at the plasma boundary. Using m = 15, this current
sheet could only be converged to ftol = 10−12. Further, in Figure 4.4 (b), numer-
ical oscillations are observed in the plasma core. These numerical features, which
worsen with increased poloidal mode number could indicate that the use of a lower
poloidal resolution, around m = 10 for the tokamak case, where the toroidal current
profile is not modified significantly with increased Ns would produce more physical
results. While this approach to constraining the equilibria could be promising, it
is currently not clear at what point the current sheets should be considered nu-
merical. A recent study has considered this question in Cartesian geometry [112],
but there is still not a clear answer to resolve the problem, and so this approach to
constraining the solution was not pursued further in this initial study.

Alternatively, one might consider applying an additional physical constraint on
the VMEC equilibrium to define the appropriate resolution. In [63], where fixed
current VMEC computations were performed, such that qedge could be modified, an
additional physical constraint was used to define the numerical parameters, namely
a constant edge safety factor between the unperturbed and perturbed solutions.
This constraint is already enforced in ι preserving computations, and therefore a
constraint is imposed on the current profile here instead. An alternative constraint
to identify more realistic solutions could be to ensure that the observed current spike
between the perturbed and unperturbed solutions is reasonable in magnitude. For
studies which compare to an experiment, prior knowledge of the current spike can
be used to inform the resolution requirements. Unfortunately for this study, there
is no corresponding experiment to compare against, and so it is unclear what the
expected current spike should be. For this reason, it is assumed that at qedge = 3.9,
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4 Applying VMEC to model nonlinear MHD activity in stellarators

(a) (b)

Figure 4.4: Variation of the toroidal current density profile at the plasma edge (a) for
perturbed tokamak equilibria with qedge = 3.9, using different poloidal resolu-
tions. The radial resolution is increased from Ns = 501 (solid) to Ns = 2001
(dashed) with the plasma boundary kept the same. At high poloidal resolu-
tion, numerical variations of the edge current and internal flux surfaces (b)
can be observed. Note that the Ns = 2001 computations are only converged to
ftol = 10−12 and the m = 15 computation only converged to ftol = 2× 10−12.

a current spike on the order of 5 % would be reasonable.
The variation of the plasma current spike observed in resolution scans is shown in

Figure 4.5. It can be seen that the current spike remains below 5 % for the tokamak
and Np = 2 case when m <= 15. For this reason, the results in Section 4.3 use
this value. The radial resolution, Ns ≈ 300, is used in all cases, and the toroidal
resolution is varied from n = 6 for the tokamak case, to n = 15 in the Np = 5
stellarator case. Based on the results in Figure 4.5, it seems that the Np = 5 case
will be under resolved. Higher resolution simulations were attempted but were not
tractable due to high computational cost, and convergence difficulties.

4.3 Correlation of nonlinearly saturated mode amplitude with
linear growth rates

The saturated behaviour of the external kink is compared with the expectation
given by linear theory for circular tokamak plasmas. It is expected that the external
kink amplitude should increase with the linear growth rate. For the simulated
tokamak cases, this behaviour is observed, as shown in Figure 4.6. Similar results
have been observed in [71]. In addition, the observed plasma current spike is shown
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4.3 Correlation of nonlinearly saturated mode amplitude with linear growth rates

Figure 4.5: Resolution scans for the plasma current as a function of radial resolution Ns,
maximum toroidal mode number n, and maximum poloidal mode number m
(left to right). Similar to Figure 4.2, the plasma current spike does does not
converge with increasing poloidal resolution.

in Figure 4.6 (d). It can be seen that the spike in current varies up to approximately
8 %, which is considered comparable to current spikes observed in other simulations
of violent MHD dynamics [113, 114]. Given that the modelled kink saturates, the
current spike may be an overestimate, however this cannot be confirmed without
an experimental comparison, and the trend is considered reasonable enough to
continue with this exploratory study.

It should be noted that the external kink could not be observed in either VMEC
or CASTOR3D at qedge = 3.55. Below this value, only a resistive, internal (3, 1)
tearing mode was observed in linear scans with CASTOR3D. This shows that the
perturbed states have only been observed within the identified window of linear in-
stability, which supports the notion that they correspond to physical perturbations
of the initial equilibrium state.

For the simulated tokamak cases, the nonlinear displacement can be seen to vary
most in proximity to qedge = 3.9. This point was therefore chosen for further scans
of l = 2 stellarators with Np = 2 and Np = 5. The nonlinear displacement of these
cases is plotted as a function of the external rotational transform at the unperturbed
plasma axis, R = 10, in Figure 4.7 and 4.8.

For the Np = 2 case, computations are carried out using n = 6 and n = 10
producing different physical trends. For n = 6, it can be seen that the satu-
rated perturbed amplitude continues to decrease, such that the external rotational
transform appears to have a stabilising influence on the nonlinear dynamics of the
external kink. For n = 10, the mode amplitude unexpectedly grows with the frac-
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4 Applying VMEC to model nonlinear MHD activity in stellarators

(a) (b)

(c) (d)

Figure 4.6: The q profile (a) and perturbed surfaces in the φ = 0 plane (b) of tokamak
cases. In (c), the perturbation amplitude (black, left y-axis) approximately
follows the structure of the linear growth rate (orange, right y-axis). The
plasma current spike (d) ranges up to 8 %.

tion of external rotational transform. It is currently unclear which of these two
solutions is physical. The trends in the linear growth rates should indicate that
the saturated mode amplitude will decrease, if the dependencies of the nonlinearly
saturated mode amplitude in simple stellarators is the same as has been derived for
tokamaks, however this has not been shown rigorously [87]. Further, the parame-
ter scan that is explored in this study is essentially one where the toroidal plasma
current is decreased, relative to the applied external field. For increasing ιext, the
effective plasma current should tend to zero, such that the drive for instability is
removed. For this reason, the n = 6 case is currently considered a physical solution,
while the n = 10 is a bifurcated state.

A similar scan was carried out for Np = 5 stellarators. With increasing ιext only a
stabilising trend was found, however in this case the toroidal resolution was n = 15,
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4.4 Assessment of the nonlinearly saturated perturbed magnetic energy

(a) (b)

Figure 4.7: Modification of the q profile (a) with increasing ιext for l = 2 Np = 2 stellara-
tors. The behaviour of the nonlinearly saturated perturbation amplitude (left
y-axis) with increasing ιext depends on the maximum toroidal mode number
used in the computation. The results with n = 6 (blue) are considered more
physical than with n = 10 (black), as the behaviour is correlated with the
change in the linear growth rate (orange, right y-axis).

which is shown to be underresolved from Figure 4.2. If a higher resolution that is
toroidally resolved were used, it may have been possible to recover similar larger
amplitude perturbed states to those observed when using Np = 2. Unfortunately,
higher resolutions were found to be prohibitively expensive to run parameter scans
for this case.

4.4 Assessment of the nonlinearly saturated perturbed
magnetic energy

The change in the poloidal magnetic energy spectrum can in principle be used to
infer how the magnetic configuration has been modified by the instability, and con-
firm whether a more energetically favourable state has been reached. As discussed
in Section 2.4, for a free boundary mode, the magnetic energy should in principle
be considered over all real space to account for the modification of the energy in
the vacuum region. A method to compute the total energy could not be found, but
the EXTENDER [115], NESCOIL [116], and MAKEGRID codes could be used to
compute the plasma and vacuum magnetic fields in a finite domain both inside and
outside the plasma volume on a R, Z, φ grid.

The magnetic field is therefore computed and Fourier decomposed inside a cylin-
drical torus, centred at R = 10, with minor radius, rminor = 1.75. This torus
contains all of the simulated cases considered in the parameter scans from Section
4.3. An example of the Fourier decomposed radial magnetic field, BR, for an unper-
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4 Applying VMEC to model nonlinear MHD activity in stellarators

(a) (b)

Figure 4.8: Modification of the q profile (a) with increasing ιext for l = 2 Np = 5 stel-
larators. The nonlinearly saturated perturbation amplitude (blue, left y-axis)
decreases with the linear growth rate (orange, right y-axis). Note that com-
putations at higher spectral resolution were not possible for this case, due to
the demanding computational requirements.

turbed l = 2, Np = 2 stellarator is shown in Figure 4.9. It should be noted that the
n = 2 component of the equilibrium magnetic field is larger than the n = 0 com-
ponent, indicating that it contributes a significant component of the equilibrium
magnetic field.

The poloidal magnetic energy spectrum is then computed, normalising by the
square of the volume averaged toroidal magnetic field such that results of different
equilibrium computations can be compared with one another. The results for three
cases with different field periodicities are shown in Figure 4.10. It can be observed
that the energy in the perturbation is notably smaller in the stellarator cases.

A similar result to Figure 3.5 (a) is observed for the tokamak case. For stellarators
however, it can be seen that the perturbation exists predominantly in the Nf =
1 mode family of the simulated stellarator device. This means that the energy
corresponding to the perturbation cascades down from the dominant n = 1 mode
to n = 3, 5, and so on in the Np = 2 case. Equally in the Np = 5 case, the n = 4
and n = 6 modes are notably larger than the members of the Nf = 2 mode family.
These results are expected due to the toroidal mode coupling of the instability in
stellarators.

In contrast, the Nf = 0 mode family shows a decrease in poloidal magnetic energy
for n > 0 toroidal harmonics. This means that the plasma perturbation results in a
reduction in the associated contributions of the symmetry preserving components
of the perturbed equilibrium. A similar result is obtained for Np = 2. This could
be because these toroidal harmonics contribute to the equilibrium drive for the
instability, which releases energy from these toroidal harmonics in the perturbed
state.
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4.4 Assessment of the nonlinearly saturated perturbed magnetic energy

(a) (b)

Figure 4.9: n = 0 (a) and n = 2 (b) Fourier components of the total radial magnetic
field, BR, of the total magnetic field in tesla. The field is computed within a
cylindrical torus enclosing the plasma volume in the φ = 0 plane for a l = 2,
Np = 2 stellarator with ιext = 0.029. The initial (grey) and perturbed (black)
plasma boundary are overlaid on the data.

At the same time, it is important to note an unexpected result, which is that the
n = 0 poloidal magnetic energy has increased in all cases. As in the tokamak case,
the n = 0 energy provides the drive for the MHD instability, the overall energy in
this mode should decrease as a result of the MHD perturbation. The computed
energies in Figure 4.10 do not include the energy outside the cylindrical torus, and
so it could be that this observation is due to the unaccounted energy in this part
of the vacuum region. In order to understand the nature of the dynamics further,
the local poloidal magnetic energy in the VMEC computations is compared with
observations running a free boundary simulation with the JOREK code in the next
section.

4.4.1 Understanding the increase in n = 0 poloidal magnetic energy

To understand the increase in the n = 0 poloidal magnetic energy, the local change
of the n = 0 and n = 1 components of the tokamak case in Figure 4.10 is plotted in
the φ = 0 plane in Figure 4.11. Considering the n = 1 energy, the m = 8 poloidal
mode structure is expected as the magnetic energy corresponds to the square of
the magnetic field, which has a m = 4 dominant perturbation for the modelled
(4, 1) external kink. As expected, the increase in energy corresponding to the
perturbation is only in the region localised around the plasma boundary, where the
flux surfaces of the equilibrium are modified most significantly.

The change in the n = 0 component is more global. Several structures can be
observed. Firstly, there is a region where the poloidal energy has decreased around
the plasma boundary. This is likely the energy lost in driving the MHD instability
from the n = 0 mode. In addition to this effect, there is also a global structure in

71
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(a) (b) (c)

Figure 4.10: Perturbed magnetic energy of the tokamak (a), and l = 2 classical stellara-
tors with Np = 2 (b) and Np = 5 (c) at qedge = 3.9.

the plasma core. This can be identified as the result of a slight shift in the plasma
axis, as shown in Figure 4.11 (c), where the influence of an axis shift is isolated by
calculating the difference in total magnetic energy when the plasma currents of the
unperturbed equilibrium are artificially shifted rigidly in the outboard direction. It
can be seen however that the axis shift does not account for the increase in magnetic
energy in the region outside of the plasma volume, observed in Figure 4.11 (a).

To understand this feature of the VMEC results, a free boundary JOREK equi-
librium was constructed of the tokamak case. This equilibrium was then evolved
with free boundary conditions applied to all toroidal harmonics. The evolution of
the poloidal magnetic energies is shown in Figure 4.12. It can be seen in Figure
4.12 (b) that as the n = 1 external kink saturates, an increase in the n = 0 energy

(a) (b) (c)

Figure 4.11: Change in the spatial distribution of the Fourier decomposed poloidal mag-
netic energy in the φ = 0 plane for a tokamak case with q = 3.9 for the
n = 0 (a) and n = 1 (b) toroidal harmonics. The change in the poloidal
magnetic energy as a result of a radial axis shift of the unperturbed plasma
(c) explains the core structure in the n = 0 component.
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(a) (b) (c)

Figure 4.12: Evolution of poloidal magnetic energy spectrum (a and b) in n = 0 free
(solid) and n = 0 fixed (dashed) boundary JOREK simulations of the toka-
mak test case modeled in VMEC with qedge = 3.9. The Poynting flux (c)
into the free boundary JOREK simulation domain indicates the increase in
n = 0 integrated poloidal magnetic energy comes from the vacuum region.

is observed, similar to in VMEC computations. To confirm that this observation is
related to the finite integral over the simulation domain, which does not capture all
of the energy in the free boundary system, a simulation is also run applying a fixed
boundary condition to the n = 0 poloidal flux. With this boundary condition, the
n = 0 energy does not increase. The result is expected because the fixed bound-
ary implies that the the simulated domain is a closed system, such that the total
magnetic energy cannot increase as a result of the instability. Finally, the Poynting
flux on the JOREK boundary is computed in the free boundary simulation case,
as shown in Figure 4.12 (c). This diagnostic shows that there is a flux of magnetic
energy into the system from the vacuum region.

The fixed boundary simulation, and the Poynting flux diagnostic confirm that the
increase in the n = 0 energy in JOREK is due to an exchange of energy between the
integrated volume, and the vacuum region. The exchange of energy is likely due to
the changing current profile, and total plasma current. To first order, the confined
plasma can be treated as a current carrying loop. If such a current loop has an
increasing current, similar to the spike in current observed in the VMEC result, the
induced Poynting flux will be towards the current loop. While the rearrangement of
current in VMEC and JOREK results is more complex than such a simplified case,
the first order effect of the dynamics should be similar, explaining the increase in the
n = 0 energy in the integrated region. This analogy breaks down when considering
the energy over all space, which would increase in the case of a loop with increasing
current. In the case of the external kink, it is expected that the total energy would
decrease because the spatial current distribution changes. At the time of writing,
this aspect of the dynamics is not fully understood, but is intended as a topic of
future work.
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n = 0

(a)

n = 1

(b)
n = 2

(c)

n = 3

(d)

Figure 4.13: Fourier decomposition of the n = 0 − 3 poloidal magnetic energies (a-d)
of the l = 2, Np = 2 stellarator with ιext = 0.029. The initial (grey) and
perturbed (black) plasma boundary are overlaid on the data.

4.4.2 Poloidal mode structures in l = 2, Np = 2 stellarator case

The poloidal mode structure of the stellarator case, shown in Figure 4.13, is clearly
more complicated than the tokamak case. Similar features can be observed in
the n = 0 energy as in Figure 4.11, in terms of the increase in energy in the
vacuum region, and internal structure corresponding to a small axis shift. The
energies around the plasma boundary behave differently, however, because of the
l = 2 stellarator field, which varies the plasma boundary toroidally. This means
that parts of the perturbation to the equilibrium field are taken up by the n > 0
members of the Nf = 0 mode family. This is also the most probable explanation
for the drop in energy that can be seen in the n = 2 component of the perturbed
energy.

Considering the Nf = 1 mode family, the n = 1 toroidal harmonic has the same
m = 8 mode structure as in the tokamak case in Figure 4.11, however the poloidal
mode structure shows some localisation in the poloidal direction. It is currently
unclear what causes this localisation. Equally, the n = 3 mode structure does not
have an intuitive structure. The poloidal structure for this mode appears to be a
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4.5 Discussion

Figure 4.14: Qualitative comparison of n = 1 poloidal magnetic energy in a fixed bound-
ary JOREK3D simulation with VMEC in comparable poloidal planes. It can
be seen that the same poloidal localisation of the mode structure is observed
in both codes. This comparison is not quantitative because the JOREK
simulation could only be run fixed boundary, such that the results are not
directly comparable.

combination of a m = 6 and m = 12 mode structure, neither of which correspond
to the m = 24 mode number anticipated for the perturbed energy at the q = 4
resonance of the simulated instability.

While it is not clear what the reason is for the structures observed in VMEC,
the structures can be compared with the recently implemented stellarator model
in JOREK, as described in [47, 48] to cross validate the two approaches. The
current implementation of JOREK3D is constrained to be fixed boundary, such
that the dynamics of the external mode is stabilised compared to the VMEC case.
Nevertheless, a comparison of the dominant mode structure in the n = 1 toroidal
harmonic is possible and is shown in Figure 4.14. It can be seen that, in both
computational approaches, the poloidal localisation of the mode can be identified
in the same approximate region of the domain. This very preliminary result builds
confidence in the two modelling approaches — although the numerical models differ
significantly, they produce a similar dominant mode structure.

4.5 Discussion

Simple l = 2 classical stellarators have been used to gain an understanding of
the behaviour of the VMEC equilibrium code when applied to model nonlinearly
saturated MHD modes in stellarators. The results of comprehensive resolution scans
indicate that the resolution requirements can be prohibitive for high field period
devices, however saturated perturbations could be found for classical stellarators
up to Np = 5 within the limits of reasonable computational resources.

It is possible for ι preserving VMEC computations to converge to different solu-
tions depending on the resolution parameters, as previously described in the liter-
ature for current preserving computations of RMPs in tokamaks [63]. Which state
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4 Applying VMEC to model nonlinear MHD activity in stellarators

is a more physical solution for the MHD dynamics is still unclear. It is proposed
to select the resolution parameters by applying an additional physical constraint
informed by an intuition of the expected plasma current spike produced by the
instability. Considering the physical parameter scans of saturated states that have
been computed for Np = 2 stellarators, the expectation from nonlinear theory is
that the under-resolved computations are more physical than the computations at
higher toroidal resolution, where the mode amplitude grows with increased ιext.

Considering the evolution of the magnetic energy spectrum, the expected toroidal
mode coupling is obtained in the stellarator solutions. Comparisons with JOREK
simulations indicate that the unexpected increase in the n = 0 poloidal magnetic
energy is reasonable, and due to an exchange of energy with the vacuum outside
the integration region. Similar comparisons with the stellarator capable models in
JOREK are currently limited, because a free boundary condition on the magnetic
field has not been implemented for this model. However, preliminary comparisons
of the dominant poloidal mode structure of the saturated state indicate that the
structures observed in JOREK and VMEC are consistent, helping to build confi-
dence in both approaches. Further work is necessary to understand the exact reason
for the mode structures, that have been observed in Section 4.4. The work in this
thesis chapter is intended for a future publication, where these outstanding issues
will be addressed.
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5 Validation of the virtual current model in
JOREK

The virtual current model that was introduced in Section 2.6.2 and can be used
to model stellarators axisymmetrically is validated against a series of ideal and
resistive MHD benchmarks. Beginning with a comparison of tearing modes in a
cylindrical plasma in Section 5.1, it is shown that the linear eigenfunction and ex-
pected stabilisation of the instability with increasing external rotational transform
is observed. A vertical displacement event in a plasma with an elliptical cross sec-
tion is then studied in Section 5.2. It is shown that the externally applied poloidal
field prevents the VDE, as anticipated by previous analytical studies. In Section
5.3, linear growth rates for resistive double tearing mode and kink instabilities for
W7-X equilibria with significant ECCD currents are then compared with other
MHD codes. Good agreement is found between the axisymmetric approximation
and fully 3D results. Finally, the linear growth rate for external kinks in simple
l = 2 stellarators and a quasi-axisymmetric device are compared with linear results
from CASTOR3D in Section 5.4. Reasonable agreement is obtained in the growth
rates, and linear eigenfunctions of the modes, justifying nonlinear studies with the
virtual current model, carried out in Chapter 6. The results of this thesis chapter
have been presented at conferences in [117] and published in [114].

5.1 Tearing mode validation

The linear perturbation of the poloidal flux, Ψ1, produced by a tearing mode in a
cylindrical plasma can be determined by solving the tearing mode equation [75]

1

r

∂

∂r

(
r
∂Ψ1

∂r

)
=
m2

r2
Ψ1 −

djp
dr

Bθ

µ0
(1− nq

m
)
Ψ1, (5.1)

where jp(r) is the plasma current density, and all other variables have their usual
definitions. As this model assumes a cylindrical plasma, the toroidal magnetic field
is homogeneous, and the poloidal field is a function of the minor radius alone. As a
result, modes are linearly decoupled both poloidally and toroidally, such that they
can be analysed independently.

As it is expected that resistive effects are only significant in the region localised
around the unstable rational surface, the plasma column can be separated into
two parts. An ideal region extends from both the axis and plasma boundary to
the rational surface being studied. Equation 5.1 describes the perturbation in this
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5 Validation of the virtual current model in JOREK

region. Within the infinitesimal region around the rational surface, the dynamics
must be treated resistively. For a physically reasonable solution, the poloidal flux
must be continuous across the resistive region, but is allowed to have a discontinuity
in its radial gradient, which would imply reconnection of the flux surfaces at the
rational surface.

To solve this problem, a shooting code has been implemented, following the
approach described in [75, 118]. The perturbed poloidal flux is found by matching
solutions numerically integrated from the axis and plasma boundary to the rational
surface of interest, located at r = rs. First, a solution from the plasma boundary
to the rational surface is found for a prescribed value of ∂Ψ1/∂r on the boundary.
∂Ψ1/∂r at the plasma axis is then iteratively modified until the solutions for both
regions match at the rational surface to a given tolerance.

Having found a solution, it can be determined whether the plasma equilibrium
is unstable, based on

∆′ =
∂Ψ1

∂r
(rs + ε)− ∂Ψ1

∂r
(rs − ε)

Ψ1(rs)
, (5.2)

where ε is an infinitesimal distance from the rational surface, located at rs. Equa-
tion 5.2 can be related to the Poynting flux. A positive value of ∆′ implies a flux
of magnetic energy into the rational surface, driving the instability, and causing
magnetic reconnection.

To approximate stellarators using this method, jp(r), used in equation 5.1 can
be reduced, while keeping the profiles for the poloidal and toroidal magnetic fields
in the circular plasma fixed. This modification is equivalent to the virtual cur-
rent model, where the total poloidal flux is preserved, while modifying the plasma
current. The removed current in the modified equilibrium is essentially treated as
virtual, in the sense described in Section 2.6.2.

The profiles used in this test case are shown in Figure 5.1. In this study, the
total current is multiplied by a constant, 0 < 1 − α < 1 in order to produce the
plasma current profile, shown in Figure 5.1 (b). For α = 0, a cylindrical tokamak
case is simulated, which is known to be tearing mode unstable. For α = 1, all
of the plasma current is treated as virtual current, such that a zero net current
device is modelled, which must be stable for this current driven mode. Such an
implementation should lead to similar results as the model outlined by Matsuoka et
al. [95]. Their model is different, only in that the current density term in equation
5.1 is written in terms of the fraction of rotational transform generated by plasma
currents, and they use profiles for the vacuum rotational transform which directly
correspond to those of realistic stellarators.

It should be noted that the profiles modelled here do not resemble those of a
realistic stellarator. This is because the removed virtual current, and resultant
externally generated magnetic field does not necessarily resemble a field that could
be generated by external field coils. Nevertheless, the configurations are a good
first numerical test for the virtual current model.
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5.1 Tearing mode validation

(a) (b) (c)

Figure 5.1: Input profiles for the poloidal magnetic field (a), plasma current (b), and q
profile (c) used in the tearing mode test case. The toroidal field is 10 T . To
test the virtual current model, the rotational transform of the plasma is held
fixed, while a constant fraction of the total current density, α, is treated as
virtual current across the plasma radius.

(a)

(b)

Figure 5.2: Plots of the poloidal flux perturbation (a) calculated by JOREK and the
tearing mode equation. The plot of ∂Ψ1/∂r (b) is used to show that there
is a discontinuity at the rational surface in the solution to the tearing mode
equation.
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Figure 5.3: Stability parameter ∆′ calculated from the linear tearing mode equation
(blue), and MHD codes JOREK (orange) and TM1 (green), for varying cur-
rent fractions, α, removed from the plasma. The dependence of ∆′ on α and
its stability boundary compare reasonably well for the three methods.

The solution of the perturbed poloidal flux given by the tearing mode equation
and calculated in JOREK for α = 0 is compared in Figure 5.2 (a). The discontinuity
in ∂Ψ1/∂r at the rational surface can be clearly seen in the solution to the tearing
mode equation in Figure 5.2 (b). It can be seen that the solutions for Ψ compare
well, except near the instability itself, where JOREK is more diffuse. This is not
surprising as JOREK includes viscoresistive physics outside the infinitesimal region
around the rational surface, and is limited by the resolution of the grid used to
model the instability.

The stability parameter ∆′ can be calculated from the growth rate from JOREK,
and TM1 [119], a cylindrical plasma code, and compared with the result calculated
from the tearing mode equation, for different values of α. The results of this
comparison are shown in Figure 5.3. The results from JOREK and TM1 compare
reasonably well, and follow the same trend as the linear theory. The results show
that the virtual current model captures the correct linear structure of resistive
modes for simple stellarator-like cases.

5.2 Vertical displacement event validation

In this section, a vertical displacement event is studied in a low beta, elliptical
plasma. This test case is based on previous work in [21]. The VDE is triggered by
introducing a small perturbation to the currents in the poloidal field coils, which
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5.2 Vertical displacement event validation

Figure 5.4: Simulation domain of the vertical displacement event test case. The red
poloidal field coils are perturbed in order to induce the instability. By in-
troducing virtual currents, the vertical displacement should be stabilised due
to the cage-like restoring force of the external rotational transform.

are used to shape the plasma cross section. Figure 5.4 shows an illustrative plot of
the simulation domain used in JOREK for this test case. It can be seen that part of
the vacuum region is included in the simulated region. The resistive wall modelled
with STARWALL is shown encompassing the simulation domain. The location
of the poloidal field coils are also shown. To initiate the VDE, the red poloidal
field coil currents are changed using a step function, adding a small amount of
current to the lower coil, and removing an equal amount from the upper one. The
consequence of this change is a small downward force. As the equilibrium coil forces
are unstable, and approximately linearly dependent on the vertical displacement
of the plasma axis, the displacement from its original equilibrium position should
grow exponentially.

Herein, the test case is modified by exchanging plasma current for virtual current
to see how this changes the dynamics of the VDE. Similar to Section 5.1, this
exchange is done somewhat artificially by setting jv = αjt, where 0 < α < 1.
The external rotational transform of a stellarator produces a stabilising force that
should alter the growth of the vertical displacement event, and eventually stabilise
it. The restorative force can be more easily interpreted using the virtual current
model, which effectively places an additional coil at the plasma axis. The virtual
current therefore acts to pull the remaining plasma current back towards the original
equilibrium axis.

In order to eliminate the influence of the external wall structures, a very high wall
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(a) (b)

Figure 5.5: Vertical position of the plasma axis (a) and integrated vertical force (b) on
the axis for a given displacement. Results are calculated with varying frac-
tions of virtual current, α. It can be seen that the integrated force on the
plasma becomes stabilising, and eventually force free. The transition to a
stabilising force corresponds with the transition from an exponential growth
in the plasma axis position to a step response.

resistivity is used, such that the simulations are in the no wall limit. Thus, there
is no significant nonlinear stabilising force produced by the wall structures. The
simulations use only the n = 0 toroidal harmonic so that any nonlinearly triggered
MHD activity produced by the VDE is suppressed.

The motion of the plasma axis is shown in Figure 5.5. As the virtual current is
increased, the motion of the plasma column transitions from the exponential growth
to a damped step function, moving the equilibrium to a new stable position, which
has been slightly modified by the perturbation applied to the coils. In a typical
fusion plasma, the motion is expected to be underdamped, because the viscosity and
damping produced by surrounding resistive structures interacting with the plasma
should not be strong enough to produce an overdamped motion. As a result,
the plasma column overshoots the new equilibrium point, and oscillates around it,
eventually becoming stationary.

The observed types of motion are found in many contexts in physics. The unstable
exponential growth can be approximated by

Z(t, Z0, δZ, γ) = Z0 + δZeγt, (5.3)

where Z0 is the original axis position, and δZ is the initial displacement. The
second type of motion is similar to a mass-spring-damper system. In this context,
the spring represents the restoring force produced by the virtual currents, once they
are dominant over the poloidal field coils. The damper represents the viscosity of
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5.2 Vertical displacement event validation

the plasma, which resists its motion. The qualitative dynamics can therefore be
estimated by approximating the plasma motion as a rigid displacement, using the
typical equations of motion for an underdamped step response

z(zoffset, ζ, ω0, θ0, t) = zoffset

[
1− 1√

1− ζ2
e−ζω0tsin(ω0

√
1− ζ2t− θ0)

]
. (5.4)

The growth rate, γ, and the oscillation frequency, ω0

√
1− ζ2, in equation 5.3 and

5.4 can be approximated by integrating the vertical force on the plasma column,
assuming a rigid vertical displacement of the entire plasma from its equilibrium axis
position. The result of this integration is shown on the righthand side of Figure
5.5. The gradient of the force as a function of vertical position can be used to
approximate the growth rate of the axis position as

γ =

√
∂FZ

∂Z

M
, (5.5)

where M is the total mass of the plasma column. ∂FZ/∂Z is approximated using
a linear fit to the data in Figure 5.5. The oscillation frequency can be approximated
using the same formula.

These parameters can also be computed by fitting the axis position data, using
equations 5.3 and 5.4. The dashed lines in Figure 5.5 represent the fits of the
simulation data. In such a way, the values of γ and ω0

√
1− ζ2, extracted from

the simulation time traces can be compared with the expected values of these
parameters from the computation of FZ. The comparison is shown in Figure 5.6.

The transition to vertical stability with increasing virtual currents is well matched
by the simulation results, however there are discrepancies in the oscillation fre-
quency, and growth rate away from the transition point. These differences are
attributed to nonlinear effects that are not taken into account in the force inte-
gral approximation. For low values of α, where the plasma motion is significant,
nonlinear stabilising effects play a role. Currents are induced in the computational
domain extending beyond the actual plasma boundary due to the small but finite
conductivity as a result of the fast motion of the plasma. These currents oppose
the plasma motion, reducing the growth rate of the vertical displacement event.

Equally, close to α = 1, the currents induced in the plasma by the change in the
poloidal field coil currents needs to be taken into account. Although these currents
are very small, when most of the current is no longer carried by the plasma, they can
significantly stiffen the plasma column, leading to a small amplitude perturbation
of the axis, at a high oscillation frequency. Accommodating for these nonlinear
effects, the behaviour of vertical displacement events with virtual currents appears
to be in good agreement with expectations.
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(a) (a)

Figure 5.6: Fits to the growth rate and oscillation frequency of the plasma (a), and final
offset of the plasma axis (b), at varying fractions of virtual current, α. There
is a good match between the results at low values of α. The reduction in
the plasma growth rate and oscillation frequency is thought to be due to
nonlinear damping from eddy currents in the vacuum region that has a low
but finite conductivity in JOREK. As α increases and the initial conditions of
the plasma become force free, the nonlinearities of the induced currents from
the changing magnetic field produced by the poloidal field coils are thought
to be the cause of the oscillations at high frequency.

5.3 Comparison of double tearing and resistive kink modes in
Wendelstein 7-X

After the simplified test cases considered in Sections 5.1 and 5.2, a more challenging
validation case for MHD activity observed in the W7-X stellarator is now described.
Recent experiments on Wendelstein 7-X have induced plasma terminating events
through ECCD. The ECCD currents modify the q profile of the device near the
plasma centre, introducing multiple (1, 1) rational surfaces, as shown in Figure 5.7.
MHD activity around these low order rational surfaces is one potential cause for
the plasma termination observed in experiments.

To test this hypothesis, modified W7-X equilibria had been investigated in previ-
ous work using CASTOR3D and TM1 [99, 120]. The results of linear MHD analysis
indicate the presence of resistive (1, 1) internal kink, and double tearing modes in
the core of the device. The internal kink is expected to lead to nonlinear dynam-
ics similar to the internal relaxation model originally described by Kadomtsev for
tokamaks [121].

JOREK is used to model axisymmetric approximations of W7-X using both the
tokamak approximation, and virtual currents. Two axisymmetric approximations
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Figure 5.7: Wendelstein 7-X q profiles, with and without ECCD respectively. Note that
Ref. [120] scans over a variety of different cases linearly to account for un-
certainties regarding the exact configuration, while the work with JOREK
focuses on one case for simplicity.

of the plasma boundary are taken. These approximations are compared with the full
non-axisymmetric flux surfaces in Figure 5.8. The first maps the W7-X geometry
to an equivalent cylindrical plasma, with the average minor radius of the original
stellarator equilibrium, using a similar workflow to that shown in Figure 2.4 with
a cylindrical boundary. This approximation is similar to those that have been
used in a recently published TM1 study [99]. The second uses the n = 0 Fourier
harmonics of the original equilibrium to define the axisymmetric approximation, as
described in Section 2.6.2. By comparing these two axisymmetric approximations,
it should be possible to assess the importance of the boundary approximation for
the axisymmetric model.

The two approximations are compared with linear studies by TM1 and CAS-
TOR3D in Figure 5.9. The axisymmetric approximations are modelled using both
the tokamak and virtual current approximations. In both axisymmetric models,
resistive tearing modes are observed from n = 1 to 16. Using the tokamak approx-
imation with the n = 0 Fourier coefficients defining the boundary, the n = 1 mode
shows a sharp change in the trend of the growth rates. This is because a (1, 1)
resistive kink mode is identified in JOREK, which exceeds the growth rate of the
double tearing modes that the CASTOR3D results correspond to.

It should be noted that the virtual current approximation has a larger growth
rate than the equivalent tokamak approximation for this case, even though the
total plasma current is higher in the tokamak approximation. The reason for this
can be identified by considering the function for FF ′, and FvF

′
v, shown in Figure
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(a) (b)

(c) (d)

Figure 5.8: Comparison of flux surfaces of W7-X (blue) and its axisymmetric approxima-
tion based on n = 0 Fourier coefficients (black) in different toroidal planes
(a-c). The circular axisymmetric approximation (grey) is also shown (d).

5.10. The contribution of the virtual currents are increasing from the plasma axis
to the simulation boundary. This is a common characteristic of virtual currents
approximating a realistic vacuum external rotational transform. In a real device,
the vacuum poloidal magnetic field contributing to the rotational transform should
be strongest near the plasma edge, where the distance to the external field coils
is reduced. The result of the additional current in the tokamak approximation is
a small reduction in the local current density gradient around the resonant q = 1
surfaces. In such a way the current drive of this resistive instability is reduced.

The comparison shows good agreement between the three codes. It should be
noted that in CASTOR3D, the full non-axisymmetric instabilities were only mod-
eled up to n = 10. For higher n, computations become numerically very demanding
as many toroidal and poloidal harmonics need to be taken into account. Due to the
complicated Fourier spectra of the eigenmodes caused by the coupling of toroidal
harmonics, and due to the numerical challenges posed by the considered case, the
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(a) (b)

Figure 5.9: Comparison of double tearing mode and resistive kink growth rates for Wen-
delstein 7-X, using TM1 (grey), CASTOR3D (black) and JOREK (blue). The
axisymmetric approximations are constructed using a circular boundary (a)
and one constructed from the n = 0 Fourier harmonics of the W7-X boundary
(b). The test case is simulated using both the equivalent tokamak (solid) and
virtual current model (dashed).

n = 6, 7, and 8 modes in CASTOR3D could not be identified in this study.
The error between the full non-axisymmetric CASTOR3D simulations, and the

virtual current JOREK simulation using the n = 0 Fourier boundary, are within
10 % of one another. This shows that the virtual current model can approximate
the full 3D stellarator for such internal modes, even for a device that violates some
of the assumptions of the stellarator expansion, due to its non-planar axis, and
strong shaping.

5.4 External kinks in l = 2 and quasi-axisymmetric stellarators

In this section, external kinks are modelled in two stellarator equilibria to validate
the use of the virtual current model for studying these instabilities. A simple l = 2
stellarator is considered in the linear validation, alongside the main QA stellarator
that is continued into the nonlinear phase in Chapter 6. As will be shown, the
results of the virtual current model deviate slightly more for this test case, than
for those considered in the previous sections. The l = 2 stellarator case is used to
better understand the reasons for the larger discrepancy.

The equilibrium profiles of the test cases are shown in Figure 5.11, alongside the
profiles of their corresponding axisymmetric approximations. The l = 2 stellarator
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Figure 5.10: FF ′ (black) and FvF
′
v (red), as defined by equation 2.44, for the W7-X case,

using the n = 0 Fourier harmonics of the stellarator to define the bound-
ary. The additional current in the tokamak approximation is represented by
FvF

′
v, and increases towards the plasma boundary. This is the reason for

the stabilising effect the increase in current has on the mode. In the virtual
current approximation, the additional current is subtracted away from the
total current so that for Ψ̂ > 0.25, there is effectively no plasma current in
the device.

was designed as a simple linear test case for external kinks, to validate the virtual
current model in a high aspect ratio, low β stellarator, within its known region
of validity. A flat current density profile is assumed so that the case would be
strongly unstable to external kink modes. The QA configuration is a version of the
two field period equilibrium previously modelled in [85], where the pressure profile
was modified to

p(s) =

{
(p0 − pvac)(1− 2s+ s2) + pvac for s ≤ 1

pvac for s > 1
(5.6)

where p0 and pvac are the pressure on axis and in the vacuum region, respectively.
This profile ensures that the gradients of density and temperature at the plasma
edge smoothly transition to the vacuum conditions. The q profile was also shifted
upwards such that the edge safety factor is closer to the q = 2 rational surface than
in [85]. To obtain a reasonable temperature of approximately 10 keV, the number
density is set to 3.295× 1020 m−3.

Figure 5.11 compares the equilibrium stellarator profiles with their tokamak and
virtual current approximations. As described in Section 2.6.2, the profiles have
been extended into the vacuum region. The pressure profile is identical in all three
cases. The safety factor profile is the same for the stellarator and its approximations
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: Equilibrium profiles for the l = 2 stellarator (a-c) and QA device (d-f) test
cases, and their axisymmetric approximations. The equivalent tokamak ap-
proximation (blue) has a larger total toroidal current, Itok, and vacuum
magnetic shear than the stellarator (black). The virtual current approxima-
tion (red) has the same pressure, and safety factor profile as the stellarator.
Ivc continues to increase in the vacuum region, beyond Φ̂ = 1. Ip is the
plasma current in the virtual current model, defined by equation 2.47.

within the plasma, except at the plasma edge. In this region, it can be seen that the
magnetic shear in the tokamak case is larger than the stellarator and virtual current
approximation. As discussed in Section 2.6.2, this is because the contribution from
the external rotational transform in the vacuum region has been neglected. The
virtual current approximation matches the stellarator profile outside the plasma by
having virtual current in the vacuum region to represent the field generated from
external coils.

Figure 5.12 shows the flux surfaces of the generated equilibria for poloidal cross
sections at φ = 0.0π, 0.25π and 0.5π. After the extension of the plasma, the
QA equilibrium has not changed considerably from Figure 1 of [85]. The n = 0
Fourier harmonics of the QA equilibrium are compared with the corresponding
surfaces from the axisymmetric approximation in Figure 5.12 (d) and (h). Here, it
can be seen that the Shafranov shift of the axisymmetric approximation is larger
than the 3D case. For the l = 2 stellarator, the pressure has been set to an
artificially low value, removing this discrepancy. This shows one of the limitations

89



5 Validation of the virtual current model in JOREK

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.12: Flux surface contours for the l = 2 stellarator (a-c) and QA configuration
(e-g) test cases. Surfaces of the stellarator equilibria (black) and their virtual
current approximations (red) are overlaid at different toroidal planes. The
n = 0 Fourier components of the complete l = 2 stellarator equilibrium
(d) are aligned with the flux surfaces of its axisymmetric approximation. A
similar comparison for the QA configuration (h) shows a deviation in the
Shafranov shift.

of the axisymmetric approximation, which is that the correct magnetic well of a
stellarator cannot be captured for the QA case. As a result, the plasma can shift
further towards the low field side of the device, modifying the magnetic shear, and
local current density gradient, which can have an effect on the MHD stability.

The linear growth rates of the external kink modes observed in the original QA
configuration and its axisymmetric approximations are shown in Figure 5.13. For
the non-axisymmetric results computed with CASTOR3D, the mode number of the
instabilities corresponds to the dominant toroidal mode number of the respective
eigenfunction, and the results are split into odd and even mode families. The si-
nusoidal and cosinusoidal pairs for each n of the stellarator instabilities are also
plotted. These orthogonal solutions are only non-degenerate at low toroidal mode
numbers in the QA case. For the l = 2 stellarator, with a simpler 3D geometry,
the two mode families do not diverge significantly. Numerical difficulties were en-
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(a) (b)

Figure 5.13: Linear growth rates of external kinks observed in the l = 2 (a) and QA
(b) stellarators, corresponding to the equilibria in Figures 5.11 and 5.12.
The stellarator average and QAS average lines (black dashed) refer to the
average of the sinusoidal (triangles) and cosinusoidal (squares) orthogonal
solutions of the odd (red) and even (blue) mode families. This average of
the stellarator modes is used to compare against the virtual current model
(blue dashed).

countered when solutions of extended equilibria, which include part of the vacuum
region outside the plasma, were used in CASTOR3D. For this reason, the 3D equi-
libria are only modeled in CASTOR3D up to the plasma boundary, coupling the
vacuum and MHD equations at this interface.

The comparison of the growth rates in the tokamak approximation show very
good agreement in JOREK and CASTOR3D for both the l = 2 and QA config-
uration. In the QA case, the lower growth rates close to n = 5 and n = 6 are
attributed to poloidal mode coupling between (m±1, n) pairs inside and outside of
the plasma near the plasma boundary, which provide a stabilising effect. This ef-
fect can be shown by plotting the relative contributions to the radial displacement
eigenfunction, ξ⊥, of the sideband poloidal modes, compared with the dominant
(m, n) pair, as shown in Figure 5.14. The l = 2 stellarator case, shown in Figure
5.14 (a), has very little poloidal shaping, and thus mode coupling in this stellarator
is not expected to be significant, the relative contributions of poloidal sidebands
remains small. For the QA case, the results in Figure 5.14 (b) show that there is
stronger poloidal mode coupling for the n = 5 and n = 6 cases.

The (9, 5) and (11, 6) modes are very close to the plasma edge. Small deviations
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(a) Equivalent l=2 tokamak (b) Equivalent QAS tokamak

Figure 5.14: Relative magnitude of the maximum radial displacement, ξ⊥, contribu-
tions of poloidal sidebands (m ± 1, n)max compared to the dominant pair,
(m,n)max. The large relative amplitude of the n = 5 and 6 modes for the
equivalent tokamak of the QAS case indicate more poloidal mode coupling,
because the edge safety factor is closer to the q = 9/5 and 12/6 rational
surfaces, inside and outside of the plasma, respectively.

in the q profile, and resistivity profile, which defines the plasma boundary, can
strongly influence the contribution of the sideband modes close to the plasma edge,
and lead to larger deviations between the two codes. In the l = 2 stellarator case,
the flat q profile was intentionally chosen to be above the closest lower sidebands
of the q = 2 surface for toroidal modes up to n = 7. Figure 5.14 (a) shows that the
poloidal coupling is therefore reduced compared to the QA result in Figure 5.14
(b).

The above comparison of the equivalent tokamak approximations serves to demon-
strate that the reduced MHD model used in this study is appropriate for modeling
these external kinks. Comparing the virtual current model with the stellarator
results from CASTOR3D, it can be seen that the general trend of the instabilities
is captured in both cases. Particularly in the QA configuration, the deviations are
largest where the dominant (m, n) mode is stabilised by its (m ± 1, n) poloidal
sidebands. In particular, the n = 4 mode found in CASTOR3D for the QA con-
figuration was not observed in JOREK. The reason for the modification of the
mode structure cannot be identified from the growth rates alone, but is expected
to be due to the modification of the toroidally averaged flux surfaces between the
two cases, as shown in Figure 5.12. The compression of the flux surfaces on the
outboard side of the tokamak approximation, due to the enhanced Shafranov shift
should lead to enhanced poloidal mode coupling. Figure 5.14 (b) shows that this
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(a) (b) (c)

(d) (e) (f)

Figure 5.15: Radial displacement eigenfunction comparisons of JOREK (solid) with CAS-
TOR3D (dashed) in Boozer coordinates. The tokamak approximations (a-c)
show very good agreement. The virtual current model (d-f) instabilities have
similar contributions from the leading toroidal harmonic of the equivalent
QA instability in CASTOR3D.

effect is especially important for 4 <= n <= 6, and could therefore explain why
the n = 4 mode is stabilised.

To obtain a more detailed comparison of the mode structure, the eigenfunctions
for the radial displacement in the QA case are shown in Figure 5.15. The results are
compared using Boozer coordinates [14]. The radial structure of the instabilities is
remarkably similar for the tokamak approximation. Comparing the virtual current
model with 3D results, the structure of the captured contributions from the leading
toroidal mode number of the instability compare very well. The grey dashed lines
that grow in amplitude towards the plasma edge are from toroidal sidebands of the
stellarator instability observed in CASTOR3D, as discussed in Section 2.4.2. The
virtual current approximation does not capture the toroidal mode coupling of a
stellarator, because the equilibrium magnetic field is not a function of the toroidal
coordinate.

The linear mode structure of the virtual current approximation, and the true
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5 Validation of the virtual current model in JOREK

stellarator agree surprisingly well, given the complexity of the case being modeled.
In particular, the growth rate of the n = 1 instability is captured. As it will be
shown in the next section, the n = 1 mode is dominant in the nonlinear dynam-
ics. For this reason, the virtual current model is considered a reasonable tool for
a preliminary study of these modes, which can provide an understanding of the
nonlinear dynamics.

5.5 Discussion

In this section, the virtual current model has been validated using a variety of ideal
and resistive benchmarks. The purpose of this exercise is to show that the model
works and understand what problems it can be reasonably applied to. As can
be expected from the ordering in Section 2.6, the low β, high aspect ratio tests of
tearing modes, and VDEs capture the expected stabilisation of the instability. This
is sufficient evidence to show that the implemented virtual current model provides
accurate results within the region of validity of the stellarator expansion which it
is based on.

Because the majority of physics questions of interest in stellarator research lie
outside this region of validity, the model has been used on more advanced test cases
to see how much the linear dynamics are changed as a result of the approximation.
Somewhat surprisingly, it has been shown that low n current driven instabilities
observed in W7-X can be simulated, obtaining similar linear dynamics to what has
been observed in full MHD linear codes. Pushing the model further outside of its
intended region of validity by modelling a low aspect ratio, high β, QA equilibrium,
comparable growth rates and linear eigenfunctions were found in the axisymmetric
approximation of the advanced stellarator when compared to full MHD codes.

It should be emphasised that the above results do not show that the model can
be applied to any advanced stellarator of interest. The virtual current model is a
severe approximation. However, for the simulated test cases, the observed error in
the model is sufficiently small to justify using the model in order to gain a first
order understanding of the dynamics in the considered advanced stellarators. The
nonlinear dynamics of the W7-X case has been analysed in independent work from
this thesis [99]. In the next chapter, simulations of the QA stellarator case in
Section 5.4 are continued into the nonlinear phase.
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6 Nonlinear simulations of a
quasi-axisymmetric stellarator

In this chapter, the linear study of an external kink unstable QA stellarator pre-
sented in Chapter 5 is continued into the nonlinear phase. The purpose of this
study is to understand the extent to which confinement is lost as the external rota-
tional transform is varied. The simulation parameters used are outlined in Section
6.1. In order to see the influence larger fractions of external rotational transform
can have on the dynamics, this parameter is artificially increased, such that the
whole parameter space from an equivalent tokamak to zero net current carrying
stellarator could be explored. The nonlinear evolution of the external kink is stud-
ied in detail in Section 6.2. It is shown that the relatively small external rotational
transform used in the real QA stellarator, ιext ≈ 0.15, does not have a significant
stabilising effect on the external kink mode, leading to strong MHD activity. For
larger fractions of external rotational transform, a strong loss of confinement is still
observed because of nonlinearly triggered internal MHD activity at the q = 1.8 and
q = 1.75 rational surfaces. It is only after a significant amount of plasma current is
removed from the device that the MHD activity is sufficiently stabilised to prevent
a major loss in confinement, as measured by the connection length of field lines to
the edge of the simulation domain. The results of this thesis chapter have been
presented in conference proceedings [122] and published in [114].

6.1 Simulation set up and numerical parameters

6.1.1 Numerical and diffusive parameters

Before continuing the simulation from Section 5.4 into the nonlinear regime, some
modifications need to be made to the numerical and diffusive parameters used in
the simulations. This is because the linear simulations were set up to match the
boundary conditions of CASTOR3D, modeling a highly resistive vacuum region
outside of the plasma, and approaching the zero viscosity limit within the plasma
region. For nonlinear simulations, these conditions are not realistic and numerically
demanding, as the fast dynamics drive current sheets near the plasma edge which
are very difficult to resolve. This is especially true for the violent kink instabilities
at the q = 2 rational surface which have been modelled. In order to resolve this
issue for a nonlinear study, the numerical and diffusive parameters are modified to
the values shown in Table 6.1.

In order to dissipate sub-grid resolution current sheets that form during the
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6 Nonlinear simulations of a quasi-axisymmetric stellarator

Table 6.1: Diffusive and grid resolution parameters used in nonlinear external kink sim-
ulations. The Ψ dependent step function profiles sharply transition from the
lower to upper limit of their ranges at the plasma boundary.

Parameter Range Dependence

χ‖ [m2 · s−1] 68.9− 2.18× 109 Spitzer-Haerm

χ⊥ [m2 · s−1] 1.45− 2.179× 103 Step function
D‖ [m2 · s−1] 847.0 Constant
D⊥ [m2 · s−1] 0.847− 847.0 Step function
η [Ω ·m] 1.06× 10−7 − 3.38× 10−4 Spitzer-like

ηnum [Ω ·m3] 1.06× 10−12 − 3.38× 10−9 Spitzer-like
µ [kg ·m−1 · s−1] 9.37× 10−8 − 2.96× 10−4 Spitzer-like
µnum [kg ·m · s−1] 9.37× 10−13 − 2.96× 10−9 Spitzer-like

nrad 120 -
npol 150 -
nplane 64

penetration of the kink into the hot core region, a Spitzer-like profile is used for
the plasma resistivity, viscosity and their equivalent hyper-diffusive terms. The
parallel conductivity is set based on the Spitzer-Haerm conductivity, such that
χ‖ = 2.18 × 109 m2s−1 at the magnetic axis. Similar to the set up in Section 3.2,
the simulation domain does not include a limiter, or x-point, such that there are
closed flux surfaces outside of the plasma. Therefore, the edge region does not
replicate the transport physics of the vacuum region expected in a real experiment.
In order to account for this non-physical effect, a relatively large perpendicular
diffusion is used in the vacuum region to approximate the physics of a limiter
around the plasma, where transport out of the simulation domain should be high.
In the plasma region, the perpendicular particle and thermal diffusion coefficients
are spatially constant. Because the parallel momentum equation is neglected in this
study, as described in Section 2.6.2, a parallel particle diffusivity is used as a proxy
for the parallel mass transport. Heat and particle sources are used to maintain the
density and temperature profiles over the timescale of the simulations.

The Ohmic decay of the plasma current, η(jvc − jv) in equation 2.51, is applied
only after the initial kink instability has begun to saturate, in order to preserve
the current profile during the linear phase. A more realistic bootstrap current
profile cannot be evolved from the initial conditions because the initial pressure
and bootstrap current density profiles have not been prescribed self-consistently.
The decay of the plasma current exacerbates resistive instabilities. As a result,
the simulations can be considered a worst case scenario for the dynamics, as the
enhanced resistivity should lower the stability threshold for nonlinearly triggered
modes [123].

Regarding resolution parameters, all simulated cases use a flux aligned grid with
120 radial, and 150 poloidal grid elements. In the toroidal direction, 64 poloidal
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6.1 Simulation set up and numerical parameters

Figure 6.1: Toroidal resolution scan for the tokamak approximation that has the most
violent dynamics. The dynamics of the n = 1 mode, which dominates the
instability, is very well converged, when using 10 toroidal harmonics.

planes are used to capture the simulated toroidal harmonics, up to n = 15. A
toroidal resolution scan, shown in Figure 6.1, considering the evolution of the mag-
netic energies in the equivalent tokamak approximation demonstrates that the n = 1
toroidal harmonic that leads the instability is sufficiently resolved when 10 toroidal
harmonics are included. The main simulations in this study therefore use this
resolution.

6.1.2 Equilibria of interest

The QA stellarator considered for this study, has a relatively small external rota-
tional transform, such that the plasma current, Ip, of its virtual current approxi-
mation remains high at 8.25 MA. In [85], it has been shown that the external field
stabilises the n = 0 mode, leading to qualitatively different nonlinear dynamics.
The equivalent tokamak would need to be actively controlled in order to avoid a
vertical displacement event (VDE), while the QA device is passively stable as a
result of the magnetic cage produced by the external field. Vertical stability is not
considered in this study, as the focus is on the nonlinear violence of the external
kink mode present in the QA stellarator, and whether it is sufficiently suppressed
by the modest external rotational transform applied in the device.

With respect to the dynamics of the simulated external kink mode, it will be
shown that the virtual current approximation of the stellarator is more stable than
the equivalent tokamak. However, the dynamics remain violent, leading to a severe
loss of confinement. For this reason, several additional simulations were run at
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6 Nonlinear simulations of a quasi-axisymmetric stellarator

Figure 6.2: Plasma current density of the simulated cases. The Ip = 8.25 MA (Virt.
Curr.) case corresponds to the approximation of the original stellarator equi-
librium from Section 5.4. The others are conceptual equilibria, that are used
to vary the external rotational transform, while fixing all other equilibrium
parameters. They maintain the same normalised plasma current density pro-
file as in the original approximation.

reduced plasma currents corresponding to an increased external rotational trans-
form. The same equilibrium is used, preserving the safety factor, pressure and total
current profiles from Figure 5.11 (d-f), while reducing Ip. Approximately the same
normalised plasma current density profile is maintained as in the original stellara-
tor. The plasma current density of the modified equilibria are shown in Figure
6.2, comparing with the original virtual current approximation from Section 5.4 in
blue. Six cases have been simulated at plasma currents ranging from 11.5 MA, in
the equivalent tokamak approximation, to 8.25 MA, approximating the original QA
configuration, and four conceptual cases with lower current at 6.75, 5.25, 4.00 and
2.75 MA respectively.

The full parameter space from the equivalent tokamak to a virtual current approx-
imation of a zero net current carrying stellarator is explored to give an intuition
of when the external kink is nonlinearly stabilised. It should be noted that the
modified equilibria at lower plasma currents do not have a known corresponding
3D equilibrium. They are conceptual cases generated for the purpose of this study,
to isolate the effect of the external rotational transform, keeping all other variables
in the equilibrium the same. If the parameter space was studied using real config-
urations, it is likely that the amount of 3D shaping would strongly increase as the
plasma current reduces. Such non-axisymmetric shaping is not accounted for in the
stellarator expansion ordering that the virtual current model is based on, and so
this is an important limitation of the results of this study. This has to be kept in
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6.2 Nonlinear evolution of the external kink

Table 6.2: Growth rates and saturation times for different plasma currents.

Case γn=1 tsat [ms] toffset [ms]

Tokamak 4.367× 104 0.445 0.075
Ip = 8.25 MA 1.840× 104 1.134 0.192
Ip = 6.75 MA 8.760× 103 2.492 0.483
Ip = 5.25 MA 3.427× 103 6.709 1.403
Ip = 4.00 MA 3.413× 102 67.083 13.849
Ip = 2.75 MA - - -

mind when interpreting the present study to inform intuition about real devices.

6.1.3 Timescale of dynamics

The dependence of the linear growth rate and time to saturation on the plasma
current is shown in Table 6.2. With the modifications to the diffusive parameters
described in Section 6.1.1, the structure of the growth rates in the tokamak and
virtual current approximation is damped compared to the growth rates observed
in Figure 5.13 (b). Even so, the external kink modes remain violently unstable.
The growth rates decrease significantly with increasing virtual current, until for
the Ip = 2.75 MA case, the virtual current approximation becomes linearly stable
to external kinks. Some of the plots in this chapter use a normalised time, t̂, such
that cases can be compared, despite their varying time scales. t̂ is normalised by
the linear growth rate of the n = 1 kink instability, γn=1, such that

t̂ = 1.1769× 10−6 γn=1 (t− toffset) (6.1)

where the prefactor is the time normalisation to JOREK units, and toffset is used
so that, at t = 0, all simulated cases have the same magnetic energy in the n = 1
mode, which has become linearly unstable.

6.2 Nonlinear evolution of the external kink

6.2.1 Variation of global quantities

In this section, the evolution of the total plasma current and thermal energy in time,
as well as the time averaged toroidal magnetic energy spectrum during the nonlinear
phase are shown. These global quantities can be used to gain a broad understanding
of the nature of the dynamics and how the reduction in plasma current changes the
nonlinear evolution. The diagnostics indicate the linearly unstable external kink
modes are stabilised with decreasing plasma current. In addition, indications of
nonlinear triggering of internal MHD activity are identified. This nonlinear effect
is discussed in more detail in subsequent sections.
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6 Nonlinear simulations of a quasi-axisymmetric stellarator

In the early nonlinear phase, the external kink should lead to similar current
dynamics as in a constrained relaxation process [124, 125]. The current profile
flattens, redistributing into the vacuum region. As a result, the inductance of the
plasma decreases, leading to a current spike. The magnitude of the spike is a
reasonable metric for the violence of the initial instability. Figure 6.3 (a) shows
the evolution of the normalised plasma current profiles as a function of time. As
expected, in the equivalent tokamak approximation, there is a large current spike as
the instability saturates. With larger external rotational transform, the instability
becomes milder and the timescale to saturation increases. This means that the
amplitude of the current spike reduces, and the dynamics begin to enter a hybrid
timescale, where resistive effects can dissipate the spike in current at the plasma
edge. For this reason, the current spike is not as pronounced as Ip decreases.
Eventually for the Ip = 4.00 MA case, the initial kink instability becomes so mild
that a current spike is not observed, and the current resistively decays.

The change in thermal energy stored in the plasma volume, Etherm, over time is
plotted for all cases in Figure 6.3 (b). In most cases the thermal energy does not
change significantly in the simulated time frame. This is because the dynamics are
strongest in the outer region of the plasma, while most of the thermal energy is
stored in the core, because of the assumed parabolic pressure profile, as shown in
Figure 5.11. Somewhat surprisingly, the Ip = 6.75 MA case loses the most ther-
mal energy. Note that this is partly due to the longer timescale of this simulation,
compared with the higher plasma current cases, as shown by the definition of t̂ in
equation 6.1. The increase in thermal losses is too large to be due to the longer
timescale of the simulated instability alone. The behaviour at Ip = 6.75 MA is
expected to be because of enhanced transport inside the plasma due to overlapping
internal modes as discussed in Section 6.2.3. At Ip = 4.00 MA, the thermal en-
ergy does not decay significantly. It is shown in Section 6.2.4 that confinement is
maintained over most of the plasma region in this case.

The time averaged MHD activity can be visualised by considering the magnetic
energy spectra during the nonlinear phase, as shown in Figure 6.4. Most of the
simulated cases have a very broad magnetic energy spectrum which remains large
up to the n = 10 mode. This is to be expected given that the edge q being modeled
is below 2, and is therefore highly unstable. In the tokamak case especially, all the
simulated toroidal harmonics are linearly unstable. As Ip decreases, more modes
are stabilised, such that the n = 1 component becomes the driving mode in the
nonlinear saturation. While the energies of the n = 1, 2 and 3 modes reduce with
the plasma current, the higher toroidal harmonics remain relatively constant during
the nonlinear phase. This provides further evidence that these toroidal harmonics
are not just driven by the low n external kink modes, and the stability threshold
of internal modes has been crossed. This is in particular true for the n = 4 and 5
modes, as discussed in Section 6.2.3, which have a localised peak in the magnetic
energy spectrum in Figure 6.4. The Ip = 4.00 MA case shows a significantly lower
saturated energy than the higher current cases. This seems to be because the initial
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(a) (b)

Figure 6.3: Normalised plasma current (a) and thermal energy (b) during the evolution
of the external kink. The Ip = 6.75 MA case has a significantly increased
transport of thermal energy out of the plasma.

kink instability is not violent enough to trigger MHD activity at internal surfaces.

6.2.2 General dynamics

Time traces of the energy and pseudocolour plots of the temperature in normalised
units are shown in Figure 6.5 for the unstable cases that were simulated. Contours
of density are also overlaid on the temperature plots. The initial saturation of
the external kink is lead by the low toroidal harmonics. As the higher harmonics
continue to grow and saturate, the outer region of the plasma becomes increasingly
chaotic, leading to a loss of thermal energy.

In the equivalent tokamak approximation, the n = 2 mode leads the instability.
This can be expected from the linear growth rates observed in Figure 5.13 (b)
where the n = 2 mode has a larger growth rate than the n = 1 instability. Soon
after its saturation, the n = 2 perturbation is suppressed by the n = 1 mode, as
can be seen from the change in the density contours in Figure 6.5 (b) and (c),
which trace the (4, 2) and (2, 1) mode structures that form. The saturation of the
n = 1 mode is followed by a relatively stationary phase where the higher toroidal
harmonics continue to grow, and saturate. The combination of multiple toroidal
harmonics that are all linearly unstable leads to significant loss of confinement, and
heat transport through perpendicular convection, and parallel conduction in the
outer region of the plasma.

As Ip is decreased, the higher toroidal harmonics are stabilised first, such that
the n = 1 mode initially drives the other harmonics. This can be seen to lead to
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6 Nonlinear simulations of a quasi-axisymmetric stellarator

Figure 6.4: Magnetic energy spectrum during the nonlinear phase in which the external
kink has saturated.

similar, but milder dynamics in the virtual current case with Ip = 8.25 MA. The
Ip = 6.75 MA and 5.25 MA cases follow the same initial trend, such that the n = 1
kink is milder. However the n = 4 and n = 5 modes play a larger role after the
initial saturation, especially in the Ip = 6.75 MA case. Here, it can be seen that
there is a transient peaking of the n = 4 and n = 5 modes around t = 2.9 ms. This
indicates that the kink triggers further internal instabilities led by these modes. A
combination of this effect and the longer timescale of the instability lead to larger
thermal losses by the end of the simulation, as can be seen from the constricted
temperature plot in the Ip = 6.75 MA case at t = 3.178 ms. Despite the longer
time scale, the thermal losses in the Ip = 5.25 MA case are smaller. This indicates
that the combined internal and external instabilities are stronger at Ip = 6.75 MA.

Compared to the other simulated cases, the dynamics at Ip = 4.00 MA are much
milder. Comparing the density contours in Figure 6.5 (r) with the initial contour,
shown in light blue, it can be seen that the initial (2, 1) kink saturates with a
relatively small deformation of the plasma. The internal perturbations led by the
n = 5 mode close to the plasma edge do not penetrate significantly into the plasma
region, or lead to secondary deformations of the plasma edge. The time scale of
the Ip = 4.00 MA case is an order of magnitude longer than at Ip = 6.75 MA,
with much milder thermal losses that are unlikely to lead to a disruption without
additional contributions to the destabilisation of the plasma that have not been
modeled.
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(a) Tokamak Approximation (b) t = 0.471 ms (c) t = 0.520 ms (d) t = 0.633 ms

(e) Ip = 8.25 MA (f) t = 1.236 ms (g) t = 1.295 ms (h) t = 1.530 ms

(i) Ip = 6.75 MA (j) t = 2.801 ms (k) t = 3.001 ms (l) t = 3.178 ms

(m) Ip = 5.25 MA (n) t = 7.309 ms
equilibrium

(o) t = 7.899 ms (p) t = 8.238 ms

(q) Ip = 4.00 MA (r) t = 66.495 ms (s) t = 72.980 ms (t) t = 80.029 ms

Figure 6.5: Energies of toroidal harmonics, and pseudocolour plots of normalised temper-
ature, during the dynamics. Contour lines of the number density at 10% to
90% of the initial peak value are also shown. The initial 10% contour is given
in light blue in (b), (f), (j), (n) and (r) to show the plasma deformation.
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(a) t̂ = 21.5 (b) t̂ = 21.5

(c) t̂ = 23.0 (d) t̂ = 23.0

Figure 6.6: q profile (a and c) and temperature profiles (b and d) averaged on the n = 0
normalised poloidal flux, Ψ̂, surfaces at t̂ = 21.5 (a-b) and t̂ = 23.0 (c-d).
Island structures can be observed in the profiles, indicating internal modes
have been triggered by the external kink. Flat regions are observed in q
profiles, around the q = 1.8 and q = 1.75 surfaces.

6.2.3 Internal modes

It is possible to observe internal modes as island structures in the surface averaged
radial plots of temperature, shown in Figure 6.6 (b) and (d). Magnetic islands
cause a local flattening of the temperature profile around rational surfaces, through
parallel thermal transport [126]. Two time points are shown during and after the
strong MHD activity observed for the Ip = 6.75 MA case. The surfaces that are
averaged over are defined by the n = 0 flux surfaces. The q profiles shown in
Figure 6.6 (a) and (c) are therefore only approximate, but give an indication of
where the rational surfaces are located. Island structures can be inferred from the
temperature plots around points where the profiles are partially flattened. The q
profile suggests that the (9, 5) and (7, 4) rational surfaces are important in the
dynamics.

It can be seen that the q profile is flattest for the Ip = 6.75 MA case both during
and after the dynamics around the q = 1.8 and 1.75 rational surfaces. The external
kink redistributes the plasma current, moving the peak in local current density at
the plasma edge both into the plasma and out into the vacuum. Overall, this leads
to a flattening of the q profile. In the tokamak case, redistribution occurs up to
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the region of strong negative shear in the plasma core, where the q profile remains
unchanged. Based on the q profiles in Figure 6.6, it appears that the radial extent
of this process reduces with Ip, as the kink dynamics become milder.

For the Ip = 6.75 MA case, the redistributed current acts to mostly flatten the

outer region of negative shear (0.6 < Ψ̂ < 0.8) in the q profile. This allows the
n = 4 and 5 modes to dominate in the mid-region of the plasma, such that their
island structures overlap. As shown in the temperature plots from a later point in
time, the temperature profile relaxes significantly after this point, while in the other
cases, the island structures seem to be too far apart to overlap and form ergodic
regions. In such a way, less thermal energy is transported out of the plasma.

The significance of the (9, 5) and (7, 4) modes can also be shown using pseudo-
colour plots of the poloidal flux, as in Figure 6.7. The contours show the n = 4
and n = 5 components of the flux for the equivalent tokamak, Ip = 6.75 MA, and
Ip = 5.25 MA cases. All three cases show (7, 4) and (9, 5) structures, indicating
that internal modes have been triggered. In Figure 6.7 (c) and (f), which show
the equivalent tokamak case, (8, 4) and (10, 5) structures can also be observed,
suggesting that the (2, 1) external kink still interferes with the internal modes.

The modes that are triggered could be either resistive double tearing modes, or
infernal modes. There is typically a transition between the two modes depending
on how close the plasma is to the ideal stability threshold [127]. The modes are
normally distinguished by differing dependencies of the linear growth rate on resis-
tivity, which cannot be analysed for the nonlinearly triggered modes in this paper.
It can be seen in Figure 6.5 that at Ip = 6.75 MA, the n = 4 and n = 5 energies
fall during the period where significant thermal energy is lost, indicating that the
modes might be pressure driven. This observation and the apparent occurrence of
the (7, 4) mode in plasmas that do not seem to have a q = 1.75 rational surface
give some indication that the nature of these modes might be infernal.

6.2.4 Plasma ergodisation

Similar to the analysis in Chapter 3.4.3, the connection length of magnetic field
lines to the simulation boundary can be used as a metric for the loss of confinement.
Field lines are traced for a maximum of 100 toroidal turns around the torus, or until
they connect with the simulation boundary. The connection length is determined
by the harmonic mean of 1000 poloidal sample points on each of 51 radial surfaces,
defined by the n = 0 component of the poloidal flux. The computed connection
length is plotted over time in Figure 6.8 for the equivalent tokamak, Ip = 6.75 MA
and Ip = 4.00 MA cases. Values are normalised by the connection length in the
plasma core.

The dynamics is split into two phases. The initial ergodisation of the kink is
characterised by a sudden loss in confinement near the plasma edge. For cases with
larger Ip, this initial stochastisation driven by the external kink penetrates further
into the core region. Later in time, there is a gradual loss of confinement further
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Pseudocolour plots of the n = 4 (a-c) and n = 5 (d-f) components of the
poloidal flux perturbation for the Ip = 5.25 MA (a and d), Ip = 6.75 MA (b
and e) and tokamak approximation (c and f) cases, at t̂ = 22.48. (7, 4) and
(9, 5) internal modes have been triggered in all cases.

inside the plasma as MHD activity grows on the internal rational surfaces. After
the strong internal modes in the Ip = 6.75 MA case, it can be seen that there is a
partial recovery of the internal surfaces. It is expected that if the other simulations
were continued further, a similar recovery may be observed once a comparable
amount of thermal energy is lost, and the drive for the internal modes diminishes.

At Ip = 4.00 MA, the initial kink only penetrates up to
√

Ψ̂ ≈ 0.95, and does not
lead to a complete loss of confinement in this region. The subsequent internal modes
break up the flux surfaces close to the plasma edge, but confinement is maintained
over most of the plasma. Later in time, the edge current density gradient and total
plasma current reduce due to resistive effects. This causes the edge safety factor to
rise, and the drive for the instability to relax. As such, the energy in the toroidal
perturbations decays, and the associated magnetic islands shrink, there is a partial
recovery of confinement in the simulation domain, such that losses are mostly in
the vacuum region.

Poincaré plots are shown in Figure 6.9 at t̂ = 23.0. A dominant (2, 1) island
structure is observed in all cases. In the equivalent tokamak approximation, the
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(a) Tokamak Approximation (b) Ip = 6.75 MA (c) Ip = 4.00 MA

Figure 6.8: Plots of normalised connection length to the simulation domain boundary at
the end of the simulated timeframe.

island structure is deformed by the remnants of the sub-dominant (4, 2) mode.
Relatively little structure can be observed in the region where confinement is lost.
This is because field lines very quickly connect to the simulation boundary via the
large (2, 1) magnetic islands outside the plasma.

In the equivalent tokamak, the radial extent of the (2, 1) instability is larger than
in cases with lower plasma current. This can be seen from the visible kink in the
core flux surfaces compared to the virtual current cases. The (2, 1) deformation
of the plasma reduces with Ip. In the Ip = 6.75 MA case, it can be seen that
there is more significant stochastisation in the mid-region of the plasma than in the
equivalent tokamak, as a result of the internal modes discussed in Section 6.2.3.
The initial (2, 1) deformation of the plasma reduces with Ip.

Similar to the connection length plots, the Poincaré plot of the Ip = 4.00 MA case
show relatively little deformation of the plasma. Large islands are still apparent,
but they are much less ergodic, which leads to better confinement of the field lines
within the external (2, 1) island structure. Smaller (7, 4) and (9, 5) island chains
have been identified just inside the plasma region, as shown in Figure 6.10, but
they remain at low enough energies to only mildly degrade the confinement in the
outer region of the plasma.

6.3 Discussion

In this chapter, the virtual current model has been used to model external kinks
with JOREK nonlinearly in axisymmetric approximations of a QA configuration. It
has been shown that, while the nonlinear dynamics of the tokamak approximation
and stellarator are known to be different due to the vertical stability of the latter,
the external kink remains violently unstable for the simulated QA configuration.
It can be expected that such strong MHD activity will lead to a significant loss of
confinement.
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6 Nonlinear simulations of a quasi-axisymmetric stellarator

(a) Tokamak Approximation (b) Ip = 6.75 MA (c) Ip = 4.00 MA

Figure 6.9: Poincaré plots taken at t̂ = 23.0 for the equivalent tokamak approximation
(a), Ip = 6.75 MA (b) and Ip = 4.00 MA case.

To explore the influence of larger fractions of external rotational transform on
the nonlinear dynamics, this parameter was artificially increased. While it is ac-
knowledged that the artificial increase of external rotational transform used in this
study does not capture all of the 3D effects which are likely to become important as
the external contribution to the poloidal field is increased, these qualitative results
have been carried out to inform the direction of future studies with a stellarator
capable 3D nonlinear code.

In the nonlinear phase, the violence of the initial external mode is reduced with
increased contribution of virtual currents to the rotational transform, as measured
by the current spike observed in the plasma, and the initial loss in confinement due
to the kink instability. Nonlinearly triggered internal modes, in particular for this
case the (7, 4) and (9, 5), mean that the loss in confinement can remain large, even
after an appreciable external rotational transform has been introduced. This means
that the variation of thermal losses with increasing external rotational transform
can be non-monotonic. There are cases at large external rotational transform where
internal modes are mild, indicating that the initial external modes could lead to a
nonlinearly stable state.

Further extensions to this work could consider the original QA device in more
detail, exploring further destabilising effects such as impurities introduced from the
plasma touching wall structures. However, as this study has shown, the test case
considered here is extremely violent, even without these additional destabilising
effects. As a result, this particular QA configuration is unlikely to be a candidate
for a reactor experiment. This conclusion is unsurprising, as the low edge q was
optimistic from a MHD perspective. The fusion community is likely to be inter-
ested in more conservative QA configurations, which have been designed with a
larger fraction of external rotational transform [11]. As discussed in Section 2.6, it
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Figure 6.10: Poincaré plot of the plasma edge taken at t̂ = 23.0 for the Ip = 4.00 MA
case. Multiple (9, 5) and (7, 4) magnetic island chains near the plasma edge
can be observed in line with the multiple rational surfaces (see Figure 6.6).

is unlikely that an axisymmetric approximation will be able to provide high fidelity
analysis of such devices, because 3D shaping will become more important. Even-
tually a non-axisymmetric nonlinear MHD code, will be necessary to look at the
detailed dynamics. In the next chapter, developments towards the commissioning
of such a code are discussed.
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7 Towards nonlinear modelling of
stellarators

In this section, the contributions carried out as part of this thesis towards the im-
plementation and testing of a fully non-axisymmetric nonlinear solver in JOREK
are outlined. This development was led by Nikita Nikulsin who derived and im-
plemented a stellarator capable reduced MHD model in JOREK, previously tested
in the tokamak limit [45, 46]. Several contributions to the testing of this model
for stellarator cases were made within this thesis. First, a non-axisymmetric finite
element mesh was imported to JOREK from the GVEC equilibrium code, convert-
ing to the necessary ansatz for the magnetic field used in the JOREK models. An
overview of the process for importing stellarator equilibria to JOREK, articulating
the need for an interface to an equilibrium code, is given in Section 7.1. The imple-
mentation and validation of the import from GVEC is discussed in Section 7.2. In
the next step, the reduced MHD model is verified by designing a linear benchmark
based on previous experimental observations on the W7-A stellarator. This case
was used to compare the linear growth rates computed by the JOREK reduced
MHD model for resistive tearing and ballooning mode cases, against those com-
puted by the full MHD model in CASTOR3D. Reasonable agreement was found
between the two modelling approaches, as shown in Section 7.3. The results in this
chapter were presented in conference proceedings [49] and published in [47].

7.1 Importing stellarator equilibria to JOREK

The conventional approach for generating equilibria for tokamaks in JOREK, using
its in-built Grad-Shafranov solver, will not work for stellarators. The advantage of
solving the equilibrium internally, is that equilibrium force balance can be converged
in the numerical representation used in JOREK, such that the initial equilibrium
condition is ensured. For stellarator equilibria, the development of an in-built
equilibrium solver using the magnetic field ansatz in equation 2.26 would require
a significant amount of work in itself. This is because the representation of the
vector potential makes no assumptions about the magnetic field structure, such as
nested flux surfaces, which are normally used to simplify the equilibrium solution
space. For this reason, it was decided instead to import stellarator equilibria from
existing equilibrium codes, such as GVEC [56].

GVEC is a modern implementation of VMEC, which is being used increas-
ingly to initialise simulation conditions for several codes, such as CASTOR3D,
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Figure 7.1: Workflow for importing stellarator equilibria to JOREK

and GENE3D. Similar to VMEC, GVEC uses a 2D Fourier series for its poloidal
and toroidal directions, such that the representation of the equilibrium flux sur-
faces and straight field line angle are also given by equations 2.12. One of the main
differences between the codes is the radial representation of flux surfaces. GVEC
uses a B-spline finite element representation which can handle non-uniform grids,
unlike VMEC.

In order to convert from the GVEC field representation to the JOREK ansatz,
the steps in Figure 7.1 are necessary. A VMEC computation is currently used as an
input to define an initial guess for GVEC. Once GVEC has been appropriately con-
verged, the representation of its flux surfaces are then used to define a flux surface
aligned JOREK grid. The total magnetic field is also converted to a representa-
tion which can be used to solve for the JOREK magnetic field ansatz, as an initial
condition for nonlinear simulations. Construction of the magnetic field ansatz also
requires knowledge of the vacuum magnetic field, represented as Dommaschk poten-
tials to ensure smoothness [128]. The potentials can be computed from the GVEC
equilibrium by first calculating the vacuum field using the EXTENDER code [115],
and then converting to Dommaschk potentials.

The challenge when using the workflow in Figure 7.1 is to minimise the error
in equilibrium force balance that is introduced by the conversion between the two
magnetic field representations. The main contribution to the validation of the work-
flow which was carried out in this thesis was the implementation and assessment
of the GVEC grid and fields imported to JOREK. The methods used to generate
the vacuum field and convert to the JOREK ansatz are described in [47]. The
implementation and validation of this conversion routine is outlined in the next
section.

7.2 Conversion of GVEC equilibria to JOREK

This section describes the implementation of the grid representation for stellarator
cases in JOREK, and its validation, using a W7-X test case. The steps in the
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Figure 7.2: Workflow for constructing JOREK grid and representation of BGVEC

conversion routine are shown in Figure 7.2. In order to model 3D configurations
efficiently, the symmetry of the axisymmetric grid in JOREK needs to be relaxed,
such that R and Z are dependent on the toroidal coordinate, ζ. This means that,
similar to the physics variables that are evolved in time, the geometry now also
needs to be represented as a toroidal Fourier series.

A conversion routine has been written to change from the 2D Fourier, 1D radial
spline representation in GVEC to the 2D poloidal finite element, 1D toroidal Fourier
degrees of freedom, used in JOREK at the desired node locations. In addition to the
(R, Z) grid representation of the GVEC grid, the magnetic field BGVEC needs to be
imported. The s and t derivatives in the JOREK finite element basis, as defined in
Section 2.5.2, for BGVEC are required to initialise the representation of the JOREK
magnetic field. In order to obtain these derivatives, a 2D Fourier representation of
BGVEC is first constructed, similar to the representation of R and Z. The values
of R, Z and BGVEC are then interpolated at the desired node locations, taking
uniform samples in the toroidal direction. A toroidal Fourier transform is then
used to generate the degrees of freedom in JOREK.

By using a sufficiently high resolution, this imported representation of BGVEC

in JOREK should remain smooth, and able to maintain the force balance that
has been converged in the original GVEC calculation. This representation of the
GVEC field is then used to initialise the JOREK ansatz for the vector potential
in equation 2.26, removing the ∇Ω×∇Ψv term, which is neglected in the reduced
MHD model currently implemented. As described in [48], neglecting this term
means that the reduced MHD ansatz in JOREK does not ensure that force balance
is maintained. However, the force imbalance is expected to be small, such that a
new equilibrium force balance should be found shortly after the imported initial
conditions are evolved in time.

Lastly, it should be noted that, when representing such equilibria, ζ does not
necessarily need to be equal to the toroidal angle, φ, as in the tokamak model, such
that the constant ζ planes represented by 2D finite elements remain in a single
constant φ plane. However, in the current implementation of the grid, ζ = φ is
assumed. This simplifies the extension of the code to stellarators, as the Jacobian
of the volume element in such a coordinate system remains the same as in the
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tokamak model, given by

J =
∂r

∂s
·
(
∂r

∂θ
× ∂r

∂φ

)
=

[
∂R

∂s

∂Z

∂θ
− ∂R

∂θ

∂Z

∂s

]
(s, θ, φ) .

(7.1)

In the future, this constraint may be removed, if it is found to be beneficial for
the practical application of the code.

Toroidal resolution requirements for the GVEC import

Considering equations 2.12, the individual contributions to the 2D Fourier rep-
resentation of R and Z can be split into multiplications of poloidal and toroidal
sinusoidal terms with the same poloidal and toroidal mode numbers. As such, it
is possible to represent R and Z as a 1D Fourier series in the toroidal direction
which conforms to the original GVEC representation, in the sense that the number
of toroidal Fourier harmonics necessary should be the same as in GVEC.

The toroidal resolution requirements for the magnetic field are not so clearly
defined, as shown in the following; using the GVEC coordinate system, the covariant
basis vectors of the general flux surface coordinate system are given by

es =

∂R∂s cos(ζ)
∂R
∂s

sin(ζ)
∂Z
∂s

 , eθ =

∂R∂θ cos(ζ)
∂R
∂θ

sin(ζ)
∂Z
∂θ

 , eζ =

∂R∂ζ cos(ζ)−R(s, θ, ζ)sin(ζ)
∂R
∂ζ

sin(ζ) +R(s, θ, ζ)cos(ζ)
∂Z
∂ζ

 (7.2)

and the contravariant components, ∇s, ∇θ and ∇ζ, can be calculated from the
appropriate cross products of these vectors. The magnetic field and vector potential
in Cartesian coordinates can then be calculated as

B =

[(
ι(s)− ∂λ

∂ζ

)
∂Φ

∂s
eθ +

(
1 +

∂λ

∂θ

)
∂Φ

∂s
eζ

]
/J (7.3)

A =

[
Φ(s)∇θ − λ∂Φ(s)

∂s
∇s− χ(s)∇ζ

]
(7.4)

where J is the Jacobian of the coordinate system. It is important to realise that
the form of B and A are not constrained to the original Fourier representation of
R and Z. The multiplication of sinusoidal terms in (7.3) lead to higher harmonics.
The Jacobian includes a multiplication of three sinusoidal terms which can lead
to mode numbers 3 times as high as the original representation. Division by this
term is a nonlinear operation, which makes it unclear how many harmonics are
needed in the Fourier representation of the magnetic field. For this reason, the
import has been implemented in such a way that the toroidal resolution of the grid
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Figure 7.3: L1 and Linf grid convergence plots for the absolute error in the R coordinate,
and its radial, poloidal and cross derivative - Rs, Rt and Rst, respectively -
of a W7-X equilibrium. 3rd (green) and 4th order convergence are shown for
comparison.

imported to JOREK can be set to an arbitrarily high resolution. For nonlinear
MHD simulations, the accuracy of the magnetic field import needs to be assessed
carefully.

Grid convergence studies for W7-X

In order to test the performance of the import routines into JOREK, a W7-X
equilibrium is converted to the JOREK representation, computing the error in the
field variables with the original GVEC representation. As discussed above, the
toroidal resolution of the grid should be well resolved in the toroidal direction if the
same number of Fourier harmonics are used as in the original GVEC equilibrium.
The node points in the finite element mesh are therefore captured to machine
precision.

An error can be introduced in the representation of poloidal planes, due to the
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Figure 7.4: L1 and Linf convergence plots for the absolute error in the magnetic field
representation of a W7-X equilibrium with varying resolution. The poloidal
and toroidal resolution are multiplied by a constant factor from the base
GVEC equilibrium with mpol = 12, ntor = 10 as a function of poloidal and
toroidal resolution. It can be seen that a significant increase in the number
of modes is necessary to capture the original field accurately.

3rd order Bézier surfaces, which represent the poloidal finite elements. The degrees
of freedom used at the nodes for this representation are the (R, Z) coordinates,
as well as their radial, poloidal and cross derivatives. In order to assess the error,
random points are sampled in (s, θ, φ) within the plasma domain, using a uniform
distribution. After the grid has been imported to JOREK, the same (s, t, φ) points
are interpolated, comparing the coordinates in R and Z with the original GVEC
representation.

The convergence of the L1 and Linf norms for R and its derivatives are shown in
Figure 7.3, for the W7-X test case. If either the radial or poloidal resolution are
increased independently, it is expected that the R and Z coordinates should con-
verge to 4th order, while the derivatives will converge at 3rd order. This behaviour
is approximately captured in Figure 7.3, such that the grid representation behaves
as expected.

In order to assess the resolution requirements for the magnetic field, the error
in the 2D Fourier representation of BGVEC, constructed as part of the conversion
routine, is compared with the original representation of the magnetic field, defined
by the equilibrium solution and equation 7.3. The results in Figure 7.4 show that
indeed more coefficients are needed than are present in the GVEC solution. How
important this error is for JOREK simulations is not yet clear. During this thesis,
most of the simulations were carried out assuming the same number of toroidal
harmonics in the GVEC solution. Even so, physical results were obtained for
classical stellarators, as shown in Section 7.3. It remains to be seen whether the
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toroidal resolution needs to be increased to obtain an accurate import for optimised
stellarators, where the field is more complicated. This issue needs to be tackled as
part of future work.

7.3 Initial studies of W7-A resistive instabilities

In this section, an initial linear benchmark of the growth rates of MHD instabilities
is carried out to validate the reduced MHD model in JOREK. W7-A was a high
aspect ratio, l = 2, planar axis stellarator with 5 field periods. The poloidal field
was generated by combination of external helical field coils, and Ohmic current
drive. The initial validation of JOREK for use with stellarators is carried out on a
5 period, elliptical equilibrium, based on the W7-A stellarator.

Figure 7.5: Flux surfaces for W7-A equilibria varying the external rotational transform.

The simple design of W7-A makes it possible to vary the fraction of external
rotational transform by modifying the elliptical deformation of the plasma, as shown
in Figure 7.5. In such a way, the external rotational transform can be controlled
using only the (m = 1, n = 1) Fourier coefficients of R and Z on the boundary.
The maximum external rotational transform, ιext, is approximately 0.23 [32]. W7-A
was able to produce arbitrary elliptical equilibria between this extremum and the
axisymmetric tokamak case. To generate this spectrum of equilibria within VMEC,
the (m = 1, n = 1) Fourier coefficients of the boundary representation can be varied
using

RC
m=1, n=1 = fRC, ιext≈0.23

m=1, n=1 , (7.5)

ZS
m=1, n=1 = fZS, ιext≈0.23

m=1, n=1 , (7.6)

where 0 < f < 1.0, and RC
mn and ZS

mn represent the fixed boundary Fourier
coefficients of the up-down symmetric equilibrium being computed.

Early experimental work assessed the dynamics of resistive tearing modes on
W7-A for the same current density profile, and an increasing fraction of external
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(a) (b) (c)

Figure 7.6: Safety factor profile (a), external rotational transform (b), and normalised
current density profile (c) for a low β, W7-A test equilibria. Note that the
external rotational transform shown is only approximate, as it is computed by
converging vacuum equilibria in VMEC for the prescribed plasma boundary.

rotational transform [32]. It was found that for ιext ≈ 0.15, (2, 1) tearing modes,
which could lead to disruptions, were stabilised [32]. The basic effect that produces
this stabilisation has little to do with 3D effects. As shown in in Figure 7.6, the
increased external rotational transform decreases the safety factor on axis, shifting
the unstable q = 2 surface closer to the plasma edge. Consequently, the (2, 1)
tearing mode saturates at a lower amplitude, due to the lower current density
gradient at the rational surface, and higher wall stabilisation.

Similar equilibria to these experiments can be generated in VMEC. Because the
temperature profile of the initial experiments is not exactly known, a cubic current
profile given by

j(s) = 3− 6s+ 3s2, (7.7)

has been used with a similar total plasma current to the original device, Ip =
17.5 kA.

This approximation generates safety factor profiles that are close to that of the
original study. These equilibria are tested for linear stability in CASTOR3D. The
growth rate of the (2, 1) tearing mode is shown in Figure 7.7. The tearing modes
are linearly stabilised at ιext ≈ 0.15 - the fraction of external rotational transform
that is expected from the experiment.

The generated equilibria are a useful first test case for full 3D nonlinear MHD
simulations, because they require relatively low toroidal resolution. For the linear
validation, the W7-A equilibrium with f = 0.6, or equivalently ιext = 0.08, was
used. Resistivity and β scans were carried out to ensure that the physical trends
observed in both codes were consistent. To increase β, a linear pressure profile
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Figure 7.7: Linear growth rates for tearing mode instabilities observed in CASTOR3D.
The resistivity in these results is 1.9832× 10−6 Ωm with a constant pressure
and density at 1 Pa and 1×1020 m−3, respectively. The observed stabilisation
of the tearing mode corresponds approximately to the experimental value.

p(s) = p0(1− s) was imposed, varying p0 from 1 Pa to 65 kPa, while preserving the
q profile for the equilibrium, shown in Figure 7.6. At high β, preserving the q profile
does not lead to experimentally relevant equilibria, as the Ohmic current profile is
not preserved, but the equilibria can still be used for this numerical verification
study. Modifying p0 varies β from approximately 0 to 1.47%. The modification
of the equilibrium plasma axis, observed both in GVEC and JOREK after the
reduced MHD ansatz is applied is shown in Figure 7.8 (a). The consistency in the
axis location provides some indication that the import of the GVEC equilibrium is
sufficiently accurate for the linear benchmark.

During this β scan, high n, resistive ballooning modes were observed with in-
creasing p0. The observed n = 10 ballooning mode was included in the comparison
of JOREK with CASTOR3D. The linear benchmark is shown in Figure 7.8 (b) for
both the n = 1 tearing mode and n = 10 ballooning mode. Reasonable agreement
in both the growth rate and physical trends is obtained. The largest error is ob-
tained for the tearing mode where it is expected that neglecting parallel flow could
lead to a larger error in the growth rate of the observed mode.

7.4 Discussion

The implementation and validation of a non-axisymmetric grid import from GVEC,
and the design and linear benchmarking of a W7-A test case, have assisted the
development of a nonlinear stellarator MHD model in JOREK. The results of this
chapter validate the linear results of the reduced MHD model for both current and
pressure driven modes in classical stellarators.

Of course, the main focus of the fusion community at the moment centres on
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(a) (b)

Figure 7.8: Modification of the R coordinate of the magnetic axis (a) in the φ = 0.0
plane in JOREK and GVEC, as a function of β. Growth rates observed
in CASTOR3D and JOREK for resistive tearing and ballooning modes (b).
Reasonable agreement is obtained at varying resistivity and β for both modes.

(a) (b)

Figure 7.9: Comparison of q profiles obtained with JOREK and VMEC for W7-X (a) and
LHD (b).

optimised stellarators. These devices have much stronger toroidal shaping, and
significantly larger external rotational transform than the devices simulated thus
far. In such a way, they require additional validation work in their own right. At-
tempts have already been made to import W7-X and Large Helical Device equilibria
to JOREK. The correct q profile is obtained for these equilibria over most of the
plasma volume at relatively low toroidal resolution in JOREK, as shown in Figure
7.9. Although more work is necessary to validate these test cases for nonlinear
modelling, first linear benchmarks can be considered in the near future.
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8 Conclusions and Outlook

Three separate nonlinear modelling approaches have been developed and used as
part of this thesis work. In chronological order, the virtual current model used
in Chapters 5 and 6 to model stellarators axisymmetrically was the first to be
explored. This method was developed with the objective of understanding the
nonlinear dynamics of quasi-axisymmetric stellarators, as outlined in Section 8.1.
The limits in validity of this approach led to the exploration of equilibrium codes
in Chapters 3 and 4. This method was used to simulate nonlinearly saturated free
boundary ideal MHD modes in stellarators, as described in Section 8.2. In parallel
to these developments, contributions were made in Chapter 7 to the implementation
and testing of a stellarator capable reduced MHD model, as outlined in Section 8.3.
To conclude this thesis, the future work that could be carried forward from these
projects is described in Section 8.4.

8.1 Axisymmetric modelling of nonlinear stability of QA
stellarators

The initial objective of this thesis was to make use of simple extensions of the
nonlinear MHD models within the JOREK code to assess the nonlinear stability
limits of quasi-axisymmetric stellarators, which were of interest to the German fu-
sion community at the time. The approach proposed was called the virtual current
model, which used an axisymmetric representation of the externally generated he-
lical field of a stellarator to capture some of the effects that an external rotational
transform has on the MHD dynamics. While it was shown in Section 2.6 that this
model is only expected to be rigorously valid in the limit of the stellarator expan-
sion — a high aspect ratio, low β ordering with a large number of toroidal field
periods — it was hoped that this model could be pushed beyond its strict region
of validity to provide a first assessment of optimised stellarators. In particular, the
nonlinear MHD characteristics of QA devices were of interest.

The virtual current model implementation was tested within its intended region
of validity in Section 5.1 and 5.2, before attempting linear validation studies of
optimised stellarators. For the core modes observed in W7-X, surprisingly good
agreement was found between the virtual current model and full MHD linear codes,
as shown in Section 5.3. In Section 5.4, the linear MHD mode structure of an
external kink in a QA device with relatively small external rotational transform
was reasonably captured. As a result, it was decided to continue simulations into
the nonlinear phase.
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The simulated equilibrium was originally found during optimisation studies of
QA stellarators. It was discarded as a candidate experimental device, because it
was feared that the violent external kinks could lead to disruptions, making the
experimental proposal impractical for a future reactor concept. The simulated case
could nevertheless be experimentally relevant as a QAS relies on a large bootstrap
current such that similar unstable conditions could be crossed during the build-
up of plasma current, before operational conditions are reached. To confirm the
expectation from the linear results, nonlinear simulations were continued to see
whether the mode would saturate or nonlinearly trigger further dynamics. The
results of the nonlinear simulations indicate that the global external kink modes
do indeed lead to violently disruptive MHD dynamics which would be prohibitive
for an experiment. Thus a larger fraction of external rotational transform seems
necessary for candidate experiments.

At larger fractions of external rotational transform in optimised stellarators, the
validity of the virtual current model for such low aspect ratio, high β, strongly
shaped devices is limited. For this reason, the results of any simulations applied
in this regime must be taken as qualitative. Simulations which artificially simu-
lated the influence of the external rotational transform at higher fractions showed
a stabilisation of the nonlinear dynamics only when a significant amount of the
plasma current was removed from the device, indicating that the attractive idea of
constructing a QA stellarator with a small external rotational transform may not
be practical, as similar challenges to disruptions in tokamaks may be encountered.

8.2 Investigation of VMEC for studying free boundary modes in
stellarators

The limits in the validity of the virtual current model, and the disruptive nature of
the external kink meant that there were not any immediately attractive directions
for future work with this approach. For that reason, it was decided to assess the
practicality of using the VMEC equilibrium code to model nonlinearly saturated
ideal MHD states. This approach had yet to be validated for nonlinear MHD studies
of external modes in tokamaks with a comparison to a full nonlinear solver of the
time evolution equations. For this reason, the study began with a validation of the
physics results previously published by other authors for external kinks and edge
harmonic oscillations.

It was shown in Section 3.3 that the simulated ideal external kink, which is
linearly unstable to a single low n mode, found good agreement with the nonlinear
simulations performed using JOREK. For the simulation of an EHO instability,
the two modelling approaches showed more significant disagreement, due in part to
the apparent loss of nonlinear mode coupling in the VMEC solution, as a result of
enforcing nested flux surfaces in the final nonlinear state.

While the comparison of this approach with JOREK results for tokamak cases
shows that there are limits to the equilibrium models applicability, the approach
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offers a complementary, less computationally expensive means of understanding
saturated nonlinear MHD states, and so free boundary modelling of stellarators
was pursued. This work focused on understanding how to use the VMEC method
itself. Simple elliptical tokamak and stellarator equilibria were used for this study.
It was shown using poloidal and toroidal Fourier resolution scans that the saturated
state is not well defined by enforcing the conservation of helicity alone as a physical
constraint. For this reason, it is proposed to use the spike in the plasma current
as an additional condition which can determine the most physically meaningful
solution computed by VMEC.

Including this physical constraint, the expected nonlinear trends were observed
for the dependence of the saturated state on the edge safety factor and external
rotational transform. Analysis of the saturated magnetic energy spectrum of stel-
larator solutions indicates that the energy of the modelled n = 1 perturbation is
concentrated in the Nf = 1 mode family, as can be expected due to toroidal mode
coupling. The observed increase in the computed n = 0 poloidal magnetic energy
in both VMEC and JOREK computations is attributed to an exchange of energy
between the integrated volume and external vacuum region. Finally, a preliminary
comparison of the dominant poloidal mode structure observed in VMEC and the
JOREK stellarator model, discussed in the next section, showed qualitative agree-
ment, helping to build confidence in both modelling approaches for future studies.

8.3 Steps towards reduced MHD for stellarators

While the simplified models outlined above have been useful in improving the intu-
ition for nonlinear MHD dynamics in stellarators, the final objective of the JOREK
group has always been to develop a 3D time evolving approach to modelling stel-
larators in realistic geometry. Such a model is essential in studying the detailed
nonlinear dynamics of optimised stellarators. To that end, a reduced MHD model
for stellarators was derived and implemented in parallel to this thesis, as part of a
separate thesis project. In support of this work, an equilibrium converter was im-
plemented and tested in Section 7.2, that was used to construct the initial condition
for nonlinear MHD simulations of stellarators in JOREK. In addition, a simple test
case of resistive modes was designed in Section 7.3. Using the W7-A stellarator,
the reduced model implementation was successfully validated against linear growth
rates of resistive tearing and ballooning modes in a classical stellarator.

8.4 Future work

There are several directions for future work. In theory, the virtual current model
could have been used to study the physics of QA devices with a large external
rotational transform using additional physics. Without a critical research question
to pursue with the model, such studies were not considered a fruitful use of time.
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8 Conclusions and Outlook

However, the surprising agreement of W7-X growth rates indicates that this model
could prove useful in assisting nonlinear studies of stellarators in the future. The
full non-axisymmetric approach is predicted to be computationally expensive, and
so it may be helpful to use the virtual current model to first scan the nonlinear pa-
rameter space to provide an intuition of the nonlinear dynamics, before embarking
on nonlinear studies in full non-axisymmetric geometry.

Considering the use of equilibrium approaches for modelling optimised stellara-
tors, the edge safety factor in such devices is often lower than the stellarators with
Ohmic current profiles considered in this thesis. For this reason, it is hoped that
the approach can be used to develop preliminary free boundary studies of external
modes in optimised stellarators. Appropriate test cases could be external modes
in optimised QA stellarators [23], and linear ideal edge perturbations observed on
W7-AS [129]. If such studies are successful, they would be helpful both in un-
derstanding the dynamics of ideal modes in stellarators, and in providing a future
nonlinear benchmark for the models being developed in JOREK.

Lastly, the focus of the JOREK group in the coming years will be the further
testing, validation and extension of this model for use with optimised stellarators.
Modelling these devices is computationally much more demanding than the classical
stellarators that have been considered thus far. Linear benchmarks of the instabil-
ities previously observed in W7-X are intended as the next step to be tackled, as
well as the extension of the models to include additional physics such as two-fluid
effects and free boundary treatments, which will become relevant depending on the
applications considered in future projects.
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[22] GY Fu, LP Ku, WA Cooper, SH Hirshman, DA Monticello, MH Redi,
A Reiman, R Sanchez, and DA Spong. Magnetohydrodynamics stability of
compact stellarators. Physics of Plasmas, 7(5):1809–1815, 2000.

[23] Nuehrenberg C. STELLATOK: Global ideal MHD. Technical report, Max-
Planck-Institut für Plasmaphysik, 2017.

[24] ED Fredrickson, MC Zarnstorff, and EA Lazarus. Tearing mode stability of
model plasmas in NCSX. Fusion science and technology, 51(2):232–237, 2007.

[25] Ming-Sheng Chu and M Okabayashi. Stabilization of the external kink and the
resistive wall mode. Plasma Physics and Controlled Fusion, 52(12):123001,
2010.

[26] BB Kadomtsev and OP Pogutse. Nonlinear helical perturbations of a plasma
in the tokamak. Sov. Phys. JETP, 5:575–590, 1973.

126



Bibliography

[27] Marshall N Rosenbluth, DA Monticello, HR Strauss, and RB White. Numer-
ical studies of nonlinear evolution of kink modes in tokamaks. The Physics
of Fluids, 19(12):1987–1996, 1976.

[28] GTA Huysmans, TC Hender, and B Alper. Identification of external kink
modes in jet. Nuclear fusion, 38(2):179, 1998.

[29] P Buratti, M Baruzzo, RJ Buttery, CD Challis, IT Chapman, F Crisanti,
L Figini, M Gryaznevich, TC Hender, DF Howell, et al. Kink instabilities in
high-beta JET advanced scenarios. Nuclear Fusion, 52(2):023006, 2012.

[30] GY Fu. Vertical stability in a current-carrying stellarator. Physics of Plasmas,
7(4):1079–1080, 2000.

[31] MC ArchMiller, MR Cianciosa, DA Ennis, JD Hanson, GJ Hartwell,
JD Hebert, JL Herfindal, SF Knowlton, X Ma, DA Maurer, et al. Suppres-
sion of vertical instability in elongated current-carrying plasmas by applying
stellarator rotational transform. Physics of Plasmas, 21(5):056113, 2014.

[32] W VII-A Team. Stabilization of the (2, 1) tearing mode and of the current
disruption in the W VII–A stellarator. Nuclear Fusion, 20(9):1093, 1980.

[33] E Sallander, A Weller, et al. Effects of non-vanishing toroidal current densities
on stability in the Wendelstein 7-AS stellarator. Nuclear fusion, 40(8):1499,
2000.

[34] A Weller, M Anton, J Geiger, M Hirsch, R Jaenicke, A Werner, W7-AS
Team, C Nührenberg, E Sallander, and DA Spong. Survey of magnetohydro-
dynamic instabilities in the advanced stellarator Wendelstein 7-AS. Physics
of Plasmas, 8(3):931–956, 2001.

[35] Marco Zanini, HP Laqua, H Thomsen, T Stange, Christian Brandt, H Braune,
Kai Jakob Brunner, G Fuchert, M Hirsch, J Knauer, et al. ECCD-induced
sawtooth crashes at W7-X. Nuclear Fusion, 60(10):106021, 2020.

[36] Y Todo, R Seki, DA Spong, H Wang, Y Suzuki, S Yamamoto, N Nakajima,
and M Osakabe. Comprehensive magnetohydrodynamic hybrid simulations
of fast ion driven instabilities in a Large Helical Device experiment. Physics
of plasmas, 24(8):081203, 2017.

[37] Florian Hindenlang, Matthias Hoelzl, and Eric Sonnendrücker. A Parallel 3D
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