
Technische Universität München
Fakultät für Physik

Quantum Information Methods in
Many-Body Physics

Jiří Guth Jarkovský
Vollständiger Abdruck der von der Fakultät für Physik

der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.

Vorsitzender: Prof. Dr. Rudolf Gross

Prüfer der Dissertation: 1. Hon.-Prof. Dr. J. Ignacio Cirac
2. Prof. Dr. Michael Knap

Die Dissertation wurde am 17.08.2022 bei der Technischen Universität München
eingereicht und durch die Fakultät für Physik am 16.09.2022 angenommen.





Abstract

This thesis explores the connection between two important fields in quantum
physics — quantum information theory (QIT) and quantum many-body physics.
We utilise methods and approaches from the former to solve difficult problems in
the latter.

One of the main results of the thesis is a criterion for the approximability of
mixed quantum states by matrix product operators (MPO), a type of variational
family called tensor networks. We have proven that if a quantity called Rényi
entanglement of purification between different parts of a multi-partite mixed state
scales slowly enough, the state can be approximated efficiently by MPO.

Another topic of the thesis is the detection of spontaneous symmetry breaking
and the search for the ground states of symmetric Hamiltonians despite its presence.
We find that regardless of spontaneous symmetry breaking, there always exists
a symmetric purification of the ground state. Furthermore, the entanglement of
this purification indicates the presence of spontaneous symmetry breaking and
its properties allow us to find out which symmetry is broken (in case of multiple
symmetries).

We apply this method to completely solve a toy model of permutationally-
invariant Hubbard model with off-site interactions. We derive the ground state
phase diagram and characterize each phase by which of the original symmetries
has been spontaneously broken.

The thesis also contains some research conducted in parallel to the research
described above. We show an alternative approach to solving the Hubbard model
on a cubic lattice in infinite dimensions and we provide some analytical results for
the Rényi mutual information of pure and classically-correlated states.
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Zusammenfassung

Diese Dissertation erforscht die Verbindung zwischen zwei wichtigen Gebieten der
Quantenphysik — der Quanteninformationstheorie (QIT) und der Quantenviel-
teilchenphysik. Es werden Methoden und Ansätze aus der Quanteninformations-
theorie verwendet, um quantenphysikalische Probleme zu lösen.

Eines der wichtigsten Ergebnisse dieser Dissertation ist ein Kriterium für die
Approximierbarkeit von gemischten Quantenzuständen durch Matrixproduktopera-
toren (MPO), eine Art Variationsfamilie, die Tensornetzwerke genannt wird. Wir
haben bewiesen, dass der Zustand effizient durch MPO approximiert werden kann,
wenn eine Größe namens Rényi-Verschränkung der Reinigung zwischen verschiede-
nen Teilen eines gemischten Mehrteilchenzustands langsam genug skaliert.

Ein weiteres Thema der Dissertation ist der Nachweis spontaner Symme-
triebrechungen und die Suche nach Grundzuständen symmetrischer Hamiltonianer
trotz ihrer Anwesenheit. Wir stellen fest, dass unabhängig von spontanen Symme-
triebrechungen immer eine symmetrische Reinigung des Grundzustandes existiert.
Darüber hinaus zeigt die Verschränkung dieser Reinigung das Vorhandensein von
spontanem Symmetriebruch an, und ihre Eigenschaften erlauben es uns, her-
auszufinden, welche Symmetrie gebrochen ist (im Falle von mehreren Symmetrien).

Wir wenden diese Methode an, um ein Spielzeugmodell des permutationsinvari-
anten Hubbard-Modells mit Off-Site-Wechselwirkungen vollständig zu lösen. Wir
leiten das Phasendiagramm des Grundzustands ab und charakterisieren jede Phase
dadurch, welche der ursprünglichen Symmetrien spontan gebrochen wurde.

Die Dissertation enthält auch einige kürzere Forschungsarbeiten, die parallel
zu den oben beschriebenen Arbeiten durchgeführt wurden. Wir zeigen einen
alternativen Ansatz zur Lösung des Hubbard-Modells auf einem kubischen Gitter
in unendlichen Dimensionen und liefern einige analytische Ergebnisse für die
gegenseitige Rényi-Information von reinen und klassisch korrelierten Zuständen.
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Chapter 1

Introduction

In 1948 Claude Shannon introduced a new mathematical theory of communication
[1]. His article A Mathematical Theory of Communication established a rigorous
mathematical description of information, randomness and communication. Near
the end of the 20th century, significant attention was focused on generalizations of
Shannon’s theory to quantum systems [2–4]. On top of that, several phenomena
unique to the quantum setting were also discovered, such as quantum teleportation
[5] or super-dense coding [6]. Thus quantum information theory (QIT) was born.

One of the main features that makes quantum systems distinct from classical
systems is entanglement [7, 8]. This “spooky action at a distance”, as Albert
Einstein called it [9], plays countless important roles all over quantum physics
and related disciplines. Entanglement is the backbone of most known quantum
computing algorithms [10, 11], in quantum metrology it enhances the resolution of
microscopes [12] and in quantum communication it enables quantum teleportation,
which may one day pave the way for quantum internet [5, 13, 14].

And old proverb says “Fire is a good servant, but a bad master” [15]. The
same could be stated about entanglement. While it is helpful in many information-
theoretic tasks, in quantum many-body physics it is responsible for the large
complexity of quantum states. Because of entanglement, the computational re-
sources required to exactly represent a generic quantum state of N particles grow
exponentially in N , making it nearly impossible to classically describe even mod-
estly large systems (N ∼ 50). One of the main goals of quantum many-body
physics is to develop methods to overcome this obstacle. The main questions asked
are “Which systems can be described efficiently?” and “Which methods can be
used for this description?”.

One possible answer to the first question is “systems with little entanglement”.
Our method of choice to describe such systems are tensor networks (TN). Tensor
networks are used to represent complicated objects (such as state wavefunctions,
operators or their expected values) as contractions of many easy-to-describe tensors.
There exist various TN architectures designed to represent different kinds of
systems. In 1 dimension, matrix product states (MPS) are particularly suitable for
describing the ground states of local, gapped Hamiltonians [16]. Together with a
numerical method called the density-matrix renormalization group (DMRG) [17],
one-dimensional tensor networks have seen great success in expressing thermal
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Chapter 1. Introduction

states [18–27] and simulating (short-)time dynamics [27–36].
A different group of quantum systems that can be described efficiently are

those with “extreme dimensionality”. Some many-body systems can be solved
analytically on a lattice in 1 or 2 spatial dimensions [37–43], often employing the
Bethe ansatz [44]. Conversely, mean field theories are a class of methods that
describes well physical systems in high dimensions [45, 46]. However, mean field
theories have also been used widely as approximations for low-dimensional systems
[47–50] and even outside of physics [51–53].

Another important feature that makes quantum systems easier to describe is
the presence of symmetries, as symmetries greatly reduce the number of relevant
degrees of freedom of a many-body system. Nowhere does this stand out more
prominently than in systems with permutation symmetry. As such systems are
not very common in nature, they are often studied from a very theoretical point
of view by the mathematical physics community. In quantum physics, the tool
to describe permutationally-invariant states is the quantum de Finetti theorem
[54–58], which originates from a similar theorem in probability theory [59]. In QIT,
the quantum de Finetti theorem has found uses in quantum cryptography [56] and
in entanglement detection [60].

This thesis seeks to deepen the connection between quantum information theory
and quantum many-body physics. We will apply the tools of QIT, such as various
entanglement measures, purifications and the de Finetti theorem to problems in
quantum many-body physics, such as approximability by tensor networks and the
search for ground states of Hamiltonians in infinite dimensions or with permutation
symmetry.

1.1 Structure
The thesis is divided into 8 chapters (including the introduction and the conclusion)
and 3 appendices. The first chapter Introduction serves to introduce the reader
into the topic of the thesis and to provide a detailed overview of the structure of
the thesis.

The second chapter Background on Quantum Information Theory covers
some basic concepts of quantum information theory. The most important of these
are entanglement and purifications, but the chapter contains a lot of other minor
topics needed throughout the thesis, from majorization to the various norms used
in quantum information theory.

The third chapter of the thesis is titled Background on Quantum Many-
Body Physics. The field of quantum many-body physics is very broad and deep,
so this chapter contains only the ingredients necessary in later chapters of the
thesis. The most important topic introduced in this chapter is tensor networks.

In the fourth chapter Approximating 1D Mixed States with Matrix
Product Operators we combine the knowledge from chapters 2 and 3. First
an older result is presented, using entanglement entropy as a criterion for approx-
imability of pure states by tensor networks. After that, we use a quantity called
entanglement of purification to construct a criterion for approximabilty of mixed
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1.1. Structure

states by similar tensor networks.
The fifth chapter Symmetries and Purifications describes a novel method

of connecting spontaneous symmetry breaking in ground states of symmetric
Hamiltonians to entanglement in purifications of said ground states. This approach
is directly applied in chapter 6, but it is first presented as a stand-alone chapter
because its applications are potentially much broader.

In the sixth chapter Hubbard Model with Permutation Symmetry, we
investigate a particular quantum many-body model. The model is a version of the
famous Hubbard model with permutation symmetry of all its sites. The chapter
showcases a particular use of the method described in chapter 5 and shows the
appearance of some interesting ground state phases for particular configurations of
the model Hamiltonian.

The seventh chapter Hubbard Model in Infinite Dimensions describes
some research done into the Hubbard model on infinite-dimensional cubic lattice
utilising methods described earlier in the thesis. In particular, different variational
families of quantum states are used to approximate the true ground state energy.

The thesis is supported by three appendices. Appendix A Hubbard Model
Phase Diagram contains the lengthier calculations involved in finding the ground
state of the Hubbard model in chapter 6 and plotting the associated phase diagram.
Appendix B Selected Topics from Functional Analysis contains information
about some topics from functional analysis needed for the rigorous mathematical
foundations of the results in this thesis. And finally appendix C Rényi Mutual
Information contains some unpublished and relatively inconsequential original
research into Rényi mutual information.

The relations between the various parts of the thesis are summarized in the
figure 1.1. While the two main projects covered in this thesis tackle very different
problems of quantum many-body physics (approximability by tensor networks and
spontaneous symmetry breaking in the permutationally-invariant Hubbard model),
the approach they use is similar (see figure 1.2). In both cases we have a physical
many-body system, which we purify into an ancillary subspace. In both cases we
are interested in the entanglement of this purification.

Publications
This thesis contains results from one article published during the PhD and one
article currently in preparation.

• Efficient Description of Many-Body Systems with Matrix Product Density
Operators. Jiří Guth Jarkovský, András Molnár, Norbert Schuch and J.
Ignacio Cirac. PRX Quantum, 1, 010304, (2020) [62]
The content of this article is covered in chapter 4.

• Detecting Spontaneous Symmetry Breaking with Purifications. Jiří Guth
Jarkovský, Lorenzo Piroli and J. Ignacio Cirac. In preparation [63]
The content of this article is covered in chapters 5 and 6.
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Chapter 1. Introduction

Figure 1.1: The main relations between the various topics within the thesis
visualized. Figure inspired by a similar figure of de Groot [61].

Figure 1.2: Both projects covered in this thesis use the entanglement of purifications.
In the approximability project we are interested in entanglement between two parts
of the system (solid red line), whereas in the symmetry-breaking project we use
the entanglement between the ancillary subspace and the physical space (dashed
green line).
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Chapter 2

Background on Quantum
Information Theory

In this chapter we review some necessary background on quantum information
theory to serve as a reference for the rest of the thesis. We will go over the
basic definitions of quantum states (section 2.1), entanglement and the various
quantities used to quantify it (section 2.2). We will also review some important
topics needed for the later chapters — purifications of quantum states (section 2.3),
majorization (section 2.4), norms (section 2.5), fermionic systems (section 2.6) and
some methods of quantifying the correlations present in mixed states (subsections
2.2.3 and 2.3.1). For a much deeper look into quantum information theory, there
are excellent textbooks by Wilde [64], Watrous [65] or Nielsen and Chuang [66].

The chapter assumes knowledge of linear algebra and of the basic principles of
quantum physics but most required concepts from quantum information theory
will be developed from the ground up.

2.1 Quantum States
In this section we define basic quantum states and describe some of their properties.
A quantum system corresponds to a Hilbert space H. We denote B(H) the set
of all bounded operators acting on H. We may label one orthonormal basis of H
the computational basis and label its elements {|i⟩}dim H−1

i=0 . Then all vectors in the
Hilbert space may be expressed as complex vectors of coefficients with respect to
this basis (and all operators in B(H) may be expressed as matrices).

2.1.1 Pure and Mixed States
Generally speaking, quantum states are described by a density matrix ρ. A density
matrix is an operator acting on the Hilbert space ρ ∈ B(H). In order to describe a
valid quantum state, the density matrix has to be postive-semidefinite ρ ≥ 0 and
normalized Tr{ρ} = 1. We will refer to the set of all valid density matrices over
the Hilbert space H as S(H).

As a positive-semidefinite matrix, ρ has non-negative eigenvalues λi ≥ 0. The
normalization condition ensures that the sum of all the eigenvalues is equal to one
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Chapter 2. Background on Quantum Information Theory

∑
i λi = 1.

If ρ has one eigenvector |ϕ⟩ ∈ H with an eigenvalue 1, then the quantum state
is called pure. In that case the density matrix can be written as an outer product
of the vector |ϕ⟩ with itself ρ = |ϕ⟩ ⟨ϕ|. When talking about pure states, it is
common to only refer to the vector |ϕ⟩ (as opposed to the corresponding density
matrix). If a quantum state is not pure, it is mixed. The density matrix of a
mixed state is a convex combination of density matrices of pure states and can be
interpreted as a statistical ensemble of multiple different pure states.

Definition 1 (Maximally mixed state). Let H be a d-dimensional Hilbert space.
The state

ρ = 1
d
∈ S(H) (2.1)

is called the maximally mixed state.

The maximally mixed state corresponds to having no information about the
state of the system (other than the Hilbert space dimension). It can be interpreted
as an equal mixture of all the (pure) basis states of H.

2.1.2 Multipartite States
Two Hilbert spaces HA and HB may be multiplied to create a larger Hilbert space
HA ⊗HB. This corresponds to a larger quantum system being composed of two
subsystems. In quantum information theory, a d-dimensional Hilbert space without
any extra structure is called a qudit. Except for section 2.6, throughout this chapter
we assume that the Hilbert space H is constructed as a tensor product of multiple
qudit Hilbert spaces.

Definition 2 (Partial Trace). Let ρAB ∈ S(HA⊗HB) be a bipartite quantum state.
A partial trace over the subspace HB is an operation

TrB{·} : S(HA ⊗HB)→ S(HA). (2.2)

Let ρA = TrB{ρAB}. Then the partial trace satisfies

∀O ∈ B(HA) : Tr{ρAO} = Tr{ρAB(O ⊗ 1)}. (2.3)

We refer to ρA as the reduced state of ρAB to subsystem A.

The physical interpretation is that ρA describes the state of ρAB on subsystem
A only. The partial trace corresponds to an operation of discarding (or hiding) the
subsystem B. Equality (2.3) ensures that ρA has the same expectation values as
ρAB with any observable acting on system A only.

2.2 Entropies and Entanglement
In classical thermodynamics, entropy is described as a measure of disorder in a
system. In classical information theory, it is the measure of information (or lack
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thereof). Quantum information theory takes inspiration from the interpretation
of classical information theory and applies it to quantum systems. Because there
are many different ideas of how to measure (the lack of) information, there are
many different entropies. In classical information theory, the most common one is
the Shannon entropy [1]. Because of the connections between classical information
theory and quantum information theory, all logarithms throughout this thesis are
base 2.

Definition 3 (Shannon entropy). For a random variable X with possible outcomes
x1, x2, ..., xn, we define the Shannon entropy of X as

H(X) = −
n∑
i=1

p(xi) log [p(xi)] , (2.4)

where p(xi) is the probability of the outcome xi and we use the convention that
p(xi) log [p(xi)] = 0 if p(xi) = 0.

In quantum information theory, we calculate the entropy of quantum states
instead of distributions of random variables.

Definition 4 (von Neumann entropy). For a density matrix ρ with eigenvalues
λ1, λ2, ..., λn, we define the von Neumann entropy of ρ as

S(ρ) = −Tr{ρ log ρ} = −
n∑
i=1

λi log [λi] , (2.5)

where we use the convention that λi log [λi] = 0 if λi = 0.

From the formula (2.5) we can see that the von Neumann entropy of a pure
state is equal to 0 (analogous to the Shannon entropy of a distribution with just
one outcome).

2.2.1 Rényi Entropies
There are many different ideas of what it means to measure information, and
many different entropies capture those ideas. One particular family of entropies
are the Rényi entropies [67]. For brevity we will only state the definition for
quantum states, as the formula looks very similar whether applied to classical
random variables or quantum states.

Definition 5 (Rényi entropies). Let ρ be a quantum state density matrix and
α ∈ (0, 1) ∩ (1,+∞) be a real parameter. The α-Rényi entropy of ρ is defined as

Sα(ρ) = log(Tr {ρα})
1− α . (2.6)

The limits limα→1+ Sα(ρ) and limα→1− Sα(ρ) are both well defined and they are
equal to the von Neumann entropy S(ρ) (which can also be labelled as S1(α) for
consistency). Two other entropies (which measure information in yet another way)
are the min- and max- entropies.

7



Chapter 2. Background on Quantum Information Theory

Definition 6 (Min- and max-entropies). The min-entropy of a quantum state ρ
with eigenvalues λ1, λ2, ...λn is

S∞(ρ) = − log max
i
{λi}. (2.7)

The max-entropy [68] of a quantum state ρ is

S0(ρ) = log rank ρ. (2.8)

As the notation suggests, the limits of the Rényi entropies limα→0+ Sα(ρ) and
limα→+∞ Sα(ρ) are both well defined and they are equal to the min- and max-
entropies respectively.

Example 1 (The effect of α in Rényi entropies)
Roughly speaking, as α decreases, the corresponding Rényi entropies give more
weight to the number of eigenvalues of ρ and less weight to their value.

Consider the following two density matrices

ρ1 =0.8 |0⟩ ⟨0|+ 0.1 |1⟩ ⟨1|+ 0.1 |2⟩ ⟨2| , (2.9)
ρ2 =0.5 |0⟩ ⟨0|+ 0.5 |1⟩ ⟨1| . (2.10)

These have the following Rényi entropies

S1/2(ρ1) = 1.2212..., S2(ρ1) = 0.5995..., (2.11)
S1/2(ρ2) = 1, S2(ρ2) = 1. (2.12)

As we can see, according to 1/2-Rényi entropy, the density matrix ρ1 is more
“mixed” than density matrix ρ2, but according to 2-Rényi entropy, it is the
other way around.

Example 2 (Calculations of Rényi entropies)
In this example we demonstrate the application of the formula (2.6) to a few
special example states.

First consider a pure state ρ = |ϕ⟩ ⟨ϕ|. This density matrix taken to any
power α remains the same: ρα = |ϕ⟩ ⟨ϕ|α = |ϕ⟩ ⟨ϕ|. The trace of this is 1 and
the logarithm of 1 is 0. Therefore all Rényi entropies of this state are equal to
0 (and by applying the limits of α→ 0+, 1,+∞ also the min-, von Neumann
and max-entropies).

Now consider the maximally mixed state ρ = 1
d
. The eigenvalues of this

density matrix are all equal to 1
d
. After taking the αth power, the eigenvalues

will transform to 1
dα . The trace of ρα will then be d

dα = d1−α. The logarithm
of that is (1− α) log d. All Rényi entropies of this state will therefore be log d
(and by applying the limits of α→ 0+, 1,+∞ also the von Neumann, min- and
max-entropies).

Lemma 1. Rényi entropies are non-increasing in α, i.e.

∀α, β ∈ (0,∞) : α ≥ β =⇒ Sα(ρ) ≤ Sβ(ρ). (2.13)
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2.2. Entropies and Entanglement

As can be seen in example 2, the Rényi entropies may not be strictly decreasing
in α. In fact, they can be all the same.

2.2.2 Schmidt Decomposition
The Schmidt decomposition is a particular way to write a bipartite pure state as a
sum of product states.

Definition 7 (Schmidt Decomposition). Let |Ψ⟩AB ∈ HA⊗HB be a bipartite pure
state. Let dA be the dimension of the subspace HA and dB the dimension of the
subspace HB. The Schmidt Decomposition of |Ψ⟩AB is the following expression

|Ψ⟩AB =
min(dA,dB)∑

i=1

√
λi |χi⟩A ⊗ |ξi⟩B , (2.14)

where
√
λi are the real Schmidt coefficients satisfying ∑i λi = 1 and the states

|χi⟩A and |ξi⟩B are elements of orthonormal bases in their respective Hilbert spaces.

While the Schmidt decomposition is not unique, the Schmidt coefficients are
(up to reordering). The Schmidt decomposition is closely tied to entanglement of
pure states.

Definition 8 (Entanglement of pure states). A bipartite pure state is called a
product state if it has only one non-zero Schmidt coefficient (which is equal to 1).
Otherwise it is entangled.

A pure product state is named as such because it can be written as a tensor
product of two pure states

|Ψ⟩AB = |χ⟩A ⊗ |ξ⟩B . (2.15)

Equation (2.15) is technically a Schmidt decomposition with only a single non-zero
Schmidt coefficient.

If we take a partial trace of the state |Ψ⟩AB from equation (2.14) and plug in
the Schmidt decomposition, i.e.

TrA {|Ψ⟩ ⟨Ψ|AB} =
min(dA,dB)∑

i=1
λi |ξi⟩ ⟨ξi|B , (2.16)

TrB {|Ψ⟩ ⟨Ψ|AB} =
min(dA,dB)∑

i=1
λi |χi⟩ ⟨χi|A , (2.17)

we learn of another meaning of the Schmidt coefficients. We see that they are the
square roots of the eigenvalues of either of the reduced density matrices we obtain by
tracing out one part of the system. This implies that the reduced state of a product
pure state is again a pure state. Conversely, the reduced state of an entangled pure
state is always mixed. Furthermore, we can quantify entanglement by the entropy
of the reduced density matrix. As can be seen from equations (2.16) and (2.17),
the two reduced density matrices have the same non-zero eigenvalues and therefore

9



Chapter 2. Background on Quantum Information Theory

they have the same von Neumann and Rényi entropies. The literature usually
refers to the entropy of entanglement or entanglement entropy when talking about
the von Neumann entropy of the reduced states as a measurement of entanglement
of the pure bipartite state.

Example 3 (Entropy of entanglement)
Consider the following three bipartite states:

|ϕ1⟩ = |00⟩ , (2.18)

|ϕ2⟩ = |00⟩+ |11⟩√
2

, (2.19)

|ϕ3⟩ = |00⟩+
√

2 |11⟩√
3

. (2.20)

Their reduced density matrices on the first subsystem are, in order:

ρ1 = |0⟩ ⟨0| , (2.21)

ρ2 = |0⟩ ⟨0|+ |1⟩ ⟨1|2 , (2.22)

ρ3 = |0⟩ ⟨0|+ 2 |1⟩ ⟨1|
3 . (2.23)

The von Neumann entropies of these three density matrices are:

S(ρ1) = 0, (2.24)
S(ρ2) = log(2) = 1, (2.25)

S(ρ3) = −1
3 log 1

3 −
2
3 log 2

3 ≈ 0.9183... (2.26)

We have S(ρ2) > S(ρ3) > S(ρ1), which implies that the state |ϕ2⟩ is more
entangled than the state |ϕ3⟩, which in turn is more entangled than the state
|ϕ1⟩ (which is a product state).

For completeness we also provide the definition of entanglement of mixed states.

Definition 9 (Entanglement of mixed states). A bipartite mixed state ρAB ∈
B (HAB) is called a product state if it can be written as a tensor product of two
states

ρAB = σA ⊗ θB (2.27)
for some density matrices σA ∈ B (HA) and θB ∈ B (HB). A bipartite mixed state
is called a separable state if it can be written as a convex combination of product
states. Otherwise it is an entangled state.

Unfortunately, for mixed states there is no connection between the entropy of
the reduced states and the entanglement present therein.

10



2.2. Entropies and Entanglement

Example 4 (Un-entangled mixed states)
Consider the bipartite state ρAB = 1

dA
⊗ 1

dB
on HA ⊗HB (with dimensions dA

and dB respectively). This corresponds to the maximally mixed state on the
Hilbert space HA ⊗HB. Its reduced states on the subsystems A and B are
ρA = 1

dA
and ρB = 1

dB
respectively. These two states have their von Neumann

entropies S(ρA) = log dA and S(ρB) = log dB respectively. However, the state
ρAB is not entangled at all. It is in fact a product state! As we can see, the
von Neumann entropy of reduced states is not a good quantity to quantify
entanglement of mixed states.

The Schmidt decomposition can also be defined for operators, but it does not
have the same properties as the Schmidt decomposition for pure states:

Definition 10 (Operator-Schmidt decomposition). The Schmidt decomposition of
a bipartite operator is

ρAB =
min[(dA)2,(dB)2]∑

i=1
γi (Σi)A ⊗ (Πi)B , (2.28)

where γi ∈ R are the operator-Schmidt coefficients. The operators Σi,Πi are
elements of B(HA) and B(HB) respectively, orthonormal with respect to the Hilbert
Schmidt inner product, i.e.

Tr
{
Σ†
iΣj

}
= Tr

{
Π†
iΠj

}
= δij. (2.29)

2.2.3 Mutual Information and Relative Entropy
Mixed states may contain some correlations that are not entanglement. Those are
usually referred to as classical correlations. A quantity that allows us to quantify
all correlations present in a mixed quantum state is mutual information. The
mutual information of a bipartite density matrix ρAB is defined as

I(A : B)ρ = S(ρA) + S(ρB)− S(ρAB). (2.30)

Alternatively, the mutual information may be defined in a number of equivalent
ways [64]:

I(A : B)ρ = D(ρAB||ρA ⊗ ρB) (2.31)
= min

σB
D(ρAB||ρA ⊗ σB) (2.32)

= min
σA

D(ρAB||σA ⊗ ρB) (2.33)

= min
σA,σB

D(ρAB||σA ⊗ σB) (2.34)

where the minimizations run over valid density matrices and D(·||·) is the quantum
relative entropy.
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Definition 11 (Quantum relative entropy). Quantum relative entropy between
two density matrices ρ and σ is

D(ρ||σ) = Tr{ρ (log ρ− log σ)}. (2.35)

The mutual information has several desirable properties. It is zero for product
states and non-zero for entangled states and classically-correlated separable states.
For illustration of mutual information calculations, see example 5.

There are several ways to generalize the mutual information into Rényi mutual
information. These generalizations and some original research into their properties
can be found in appendix C

Similar to mutual information is a quantity called the conditional mutual
information. This quantity is defined for tripartite states as

I(A : B|C)ρ = S(ρAC) + S(ρBC)− S(ρABC)− S(ρC). (2.36)

As the name suggests, conditional mutual information gives us the expected value
of the mutual information between two subsystems, given knowledge of the state
on a third subsystem. The non-negativity of conditional mutual information
I(A : B|C)ρ ≥ 0 is called the strong subadditivity of von Neumann entropy [69].

2.3 Purifications
In this section we introduce the concept of purifications. Purifications play a
significant role in chapters 4, 5 and 6.

Definition 12 (Purification). For a density matrix ρA on a Hilbert space HA a
purification is a pure state |Ψ⟩AB on a Hilbert space HA ⊗HB = HAB such that

TrB {|Ψ⟩ ⟨Ψ|AB} = ρA. (2.37)

Note that a purification is not unique. In particular, for any isometry UB, the
state 1A ⊗ UB |Ψ⟩AB is also a purification of ρA.

2.3.1 Entanglement of Purification
Entanglement of purification [70] is a measure of correlations in a mixed state. We
use entanglement of purification as a criterion of approximability of mixed states
in chapter 4.

Definition 13 (Entanglement of purification). For a bipartite density matrix ρAB,
the entanglement of purification is defined as

Ep(ρAB) = min
|Ψ⟩AA′BB′

S (ρAA′) , (2.38)

where the minimization runs over all purifications |Ψ⟩AA′BB′ of ρAB that use two
ancillary subspaces A′ and B′. The density matrix ρAA′ = TrBB′ |Ψ⟩ ⟨Ψ|AA′BB′ is
this purification with both the subsystems B and B′ traced out.
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The von Neumann entropy of ρAA′ can be interpreted as the entanglement
of the purification |Ψ⟩AA′BB′ , hence its name. The entanglement of purification
captures both classical and quantum correlations, similarly to mutual information.

The entanglement of purification has several interesting properties. In the
following we will denote by A : BC when a tripartite state is interpreted as a
bipartite state with the subsystems B and C together being treated as one. The
entanglement of purification is bounded from above by the von Neumann entropy
of the reduced density matrices

Ep(ρAB) ≤ min[S(ρA), S(ρB)], (2.39)

it is monotonic with respect to the partial trace

Ep(ρA:BC) ≥ Ep(ρAB), (2.40)

and it is bounded from below by half the mutual information

Ep(ρAB) ≥ I(A : B)ρ
2 . (2.41)

For an overview of the entanglement of purification, see Nguyen et. al. [71].
Recently, there has been a new surge of interest in entanglement of purification

[72–78]. This has been sparked by a seminal paper [79] suggesting that a quantity
called the minimal cross-section of the entanglement wedge could be its holographic
counterpart in the setting of the anti-de Sitter / conformal field theory (AdS/CFT)
correspondence [80]. The AdS/CFT correspondence is an important conjecture
linking string theory to quantum field theories, and is therefore receiving a lot of
attention in the theoretical physics community [81–83]. The recent wave of research
is focused mostly on the AdS/CFT interpretation of entanglement of purification
and is therefore not particularly relevant for the topic of this thesis.

In comparison to quantum mutual information, the entanglement of purification
gives more weight to classical correlations, as can be seen in example 5.

Example 5 (Entanglement of purification vs. mutual information)
Consider the following two states:

|Φ⟩AB =
∑
i

√
λi |i⟩A ⊗ |i⟩B , (2.42)

ρAB =
∑
i

λi |i⟩ ⟨i|A ⊗ |i⟩ ⟨i|B . (2.43)

Both these states have the same reduced states on the subsystems A and B,
ρA/B = ∑

i λi |i⟩ ⟨i|A/B. However, the first state is pure and entangled whereas
the second state is mixed and classically correlated. The mutual information
of the pure state is

I(A : B)Φ = S(ρA) + S(ρB)− S(|Φ⟩ ⟨Φ|AB) = 2S(ρA). (2.44)
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In contrast the mutual information of the mixed state is

I(A : B)ρ = S(ρA) + S(ρB)− S(ρAB) = S(ρA), (2.45)

which is half the mutual information of the pure state.
Now consider the entanglement of purification. Since |Φ⟩AB is pure, any of

its purifications will be a product state

|Φ⟩AA′BB′ = |Φ⟩AB ⊗ |Φ
′⟩A′B′ , (2.46)

whose reduced state on subsystems AA′ looks like

ρAA′ = ρA ⊗ ρ′
A′ . (2.47)

The entropy of ρAA′ is be minimized if ρ′
A′ is pure, in which case it equals

Ep(|Φ⟩ ⟨Φ|AB) = S(ρAA′) = S(ρA). (2.48)

One possible purification of ρAB is

|Ψ⟩AA′BB′ =
∑
i

√
λi |i⟩A ⊗ |i⟩B ⊗ |0⟩A′ ⊗ |i⟩B′ . (2.49)

with entanglement
Ep(ρAB) = S(ρAA′) = S(ρA). (2.50)

We skip the proof that this is optimal and instead refer the reader to Nguyen
et al. [71].

Both states have the same entanglement of purification, but they have
different mutual information. This can be interpreted as the mutual information
giving less “weight” to classical correlation whereas entanglement of purification
treating classical correlations on equal footing with entanglement.

The entanglement of purification can be easily generalized to the Rényi en-
tanglement of purification by simply replacing the von Neumann entropy in the
definition (2.38) with a desired Rényi entropy,

Ep
α(ρAB) = min

|Ψ⟩AA′BB′
Sα(ρAA′). (2.51)

The Rényi entanglement of purification retains most of the important properties of
(von Neumann) entanglement of purification. For instance the inequalities (2.39)
and (2.40) still hold. Even an analogy of inequality (2.41) holds, but to properly
state it and prove it, we first need to define Rényi mutual information. For that
reason, the Rényi version of (2.41) is only stated and proven in section C.3 of
appendix C.

14



2.4. Majorization

2.4 Majorization
Now we summarize a bit of information about majorization, an important concept
in quantum information theory (see theorem 1). In this thesis we will only use it
once as a part of a proof in chapter 4. In statistical mathematics, majorization
provides the notion of a preorder on probability distributions.

Definition 14. We say that a discrete probability distribution {pi}di=1 majorizes a
different probability distribution {qi}di=1 (symbolically p ≻ q) if

∀k ∈ {1, 2, ...d} :
k∑
i=1

p↓
i ≥

k∑
i=1

q↓
i . (2.52)

Here {p↓
i }di=1 and {q↓

i }di=1 are the distributions obtained from {pi}di=1 and {qi}di=1
by reordering their values from largest to lowest.

Majorization has several uses throughout quantum information theory. Namely,
it governs the allowed transformations of bipartite pure states via local operations
and classical communication (LOCC).

Theorem 1 (Nielsen’s theorem [84]). A bipartite pure state |ϕ1⟩AB = ∑d
i=1
√
λi |i⟩A |i⟩B

can be deterministically transformed to |ϕ2⟩AB = ∑d
i=1
√
σi |i⟩A |i⟩B via local opera-

tions assisted by classical communication if and only if the distribution {λi}di=1 is
majorized by the distribution {σi}di=1.

In this thesis, we will use majorization in context of Schur-convex functions.

Definition 15 (Schur-convexity). A multi-variate function f is called Schur-convex
if and only if f(p) ≤ f(q) for any probability distributions p, q satisfying p ≺ q. It
is called Schur-concave if its negative −f is Schur-convex.

Importantly for our work, all Rényi entropies are Schur-concave, where the
probability distribution is given by the eigenvalues of the input density matrix [85].

2.5 Norms
In this section we go over some commonly used norms in quantum information
theory and beyond. Knowledge of various norms and their relations is crucial to
be able to prove efficient approximations of quantum states by tensor networks.

Any Hilbert space has a norm induced by the inner product. The norm of a
pure state is an example of one such norm, defined as

∥|ϕ⟩∥ =
√
⟨ϕ|ϕ⟩. (2.53)

Operators acting on a Hilbert space have a norm induced by this vector norm.
This is called the operator norm ∥·∥∞ and it is defined as

∥O∥∞ = sup
|ϕ⟩∈H

∥O |ϕ⟩∥
∥ϕ∥

. (2.54)
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Generally, for operators we can introduce a family of norms called the Schatten
norms. They are defined for p ∈ [1,+∞) as

∥O∥p = (Tr{|O|p})
1
p . (2.55)

The special case of Schatten norm with p = 1 is called the trace norm. The
limit of p→ +∞ corresponds to the operator norm ∥·∥∞.

The Shatten norms have multiple useful properties [65]:

1. They are non-increasing in p. For any p, q ∈ [0,+∞] and any operator A, we
have

p ≤ q ⇒ ∥A∥p ≥ ∥A∥q. (2.56)

2. There exists a duality between pairs of the norms. For any p, q ∈ [1,+∞]
such that 1

p
+ 1

q
= 1 we have

∥O∥p = sup
T

∣∣∣Tr
{
O†T

}∣∣∣
∥T∥q

. (2.57)

Relaxing the supremum, this turns into a useful inequality

∥O∥p∥T∥q ≥
∣∣∣Tr
{
O†T

}∣∣∣. (2.58)

This is an analogy of Hölder’s inequality for Lp norms of integrable functions
[86].

3. For any p ∈ [0,+∞], Schatten norms satisfy

∥ABC∥p ≤ ∥A∥∞∥B∥p∥C∥∞. (2.59)

4. Despite the non-increasing property of equation (2.56), there exists an upper
bound on ∥·∥1 in terms of ∥·∥2. For any A, we have

∥A∥1 ≤
√
d∥A∥2, (2.60)

where d is the dimension of the Hilbert space that the operator A acts on.

The trace distance is a frequently used distance measure between two density
matrices, defined as half of the trace norm of the difference of the two density
matrices 1

2∥ρ− σ∥1. Because of the inequality (2.58), the trace distance may be
used to bound the difference in expectation values of a bounded observable O in
two states ρ and σ,

Tr{ρO} − Tr{σO} ≤ ∥O∥∞∥ρ− σ∥1. (2.61)

For pure states, the trace distance reduces to [66]

1
2∥|ϕ⟩ ⟨ϕ| − |ψ⟩ ⟨ψ|∥1 =

√
1− |⟨ϕ|ψ⟩|2. (2.62)
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2.6 Fermionic States
All the previous sections in this chapter discussed systems of qubits in which the
information is stored in an effective spin, e.g. an inner degree of freedom of an
atom, a polarization angle of a photon or the actual spin of an electron. However,
in chapters 6 and 7 we want to describe different versions of the Hubbard model,
which is a model of fermions. Investigating the states of particles following the
Fermi-Dirac statistics brings with it a new layer of intricacy, which requires different
mathematical structures to be introduced.

To describe fermionic Hilbert spaces, we first need to define the fermionic
annihilation and creation operators ai and a†

i . These operators follow the canonical
anti-commutation relations (CAR):

{ai, aj} = 0, (2.63)
{a†

i , a
†
j} = 0, (2.64)

{ai, a†
j} = δij. (2.65)

Here the subindex i, j refers to the species of the fermion. In practice the species
index can be split further to represent some other labelling of the fermions, e.g.
their position on a lattice or their momentum. The physical interpretation is
that the creation operator a†

i adds a fermion of species i to the system, and the
annihilation operator ai removes a fermion of species i from the system. The
anti-commutation relations imply that there can only be one (or none) fermion of
species i in the system.

To build a Hilbert space of discrete fermionic systems, we begin with the
vacuum state |Ω⟩. This state corresponds to a system without any particles in it.
The annihilation operators are defined to destroy the vacuum state: ai |Ω⟩ = 0,
but we can construct physical states by acting with creation operators on the
vacuum state a†

i |Ω⟩. Because of the anti-commutation relation (2.64), acting with
the same creation operator twice will destroy the state. Therefore the dimension of
the Hilbert space is 2K where K is the cardinality of the set of possible subindices
i of the creation operators.

Because of the anti-commutation of the creation operators, the Hilbert space of
a fermionic many-body system does not have the structure of a tensor product of
individual Hilbert spaces, as was the case for effective spin qubits. We can still use
most of the concepts introduced earlier in this chapter, but we need to be more
careful with some of the definitions.

We may divide the fermionic Hilbert space into subspaces based on the fermionic
species present therein. This allows us to define a reduced state.

Definition 16 (Fermionic reduced state). Let J and I be two sets of fermionic
species satisfying J ⊂ I. Let HI ,HJ be the Hilbert spaces of fermionic pure states
containing only the fermionic species from the corresponding set. Let ρ ∈ B (HI).
We call σ ∈ B (HJ ) the reduced state of ρ onto the subspace HJ if

∀O ∈ B (HJ ) : Tr{ρO} = Tr{σO}. (2.66)

This allows us to use the define pure entangled / product states:
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Definition 17. A pure fermionic state is entangled / product across a bipartition
of fermionic species if its reduced state is mixed / pure.
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Chapter 3

Background on Quantum
Many-Body Physics

Quantum many-body physics is an area of research which studies quantum systems
with many subsystems. The tensor-product nature of quantum system Hilbert
spaces means that the dimensionality of the entire system usually grows exponen-
tially fast with the number of subsystems. As an example, a system consisting
of N d-dimensional qudits has a Hilbert space of dimensionality dN . The large
dimensionality of the Hilbert space is problematic for the study of such systems.
Even just accurately describing the wavefunction of an arbitrary state in many-body
Hilbert space requires computational resources exponentially large in the system
size N .

Many different approaches have been developed to overcome this problem. One
way to simplify the situation is to artificially restrict the set states to consider.
Due to e.g. symmetries or entanglement structure, we may choose to simply limit
the solution of a many-body problem to a relatively small set of states, which itself
is easy to describe accurately. This set of states is typically characterized by a
relatively small number of parameters (typically scaling polynomially in the system
size) and it is called a variational family of states. In this chapter we will discuss
two common variational families of states: Gaussian states (section 3.1) and tensor
networks (section 3.2). These two families of states have become commonplace
throughout quantum many-body physics.

Quantum many-body physics is a rich field with a plethora of problems, the-
orems, methods and approaches. In this chapter, we will focus on the topics
particularly important for the content of this thesis and therefore we will omit a
lot of other interesting topics. For a more in-depth look into quantum many-body
physics, see e.g. Coleman [87].

3.1 Gaussian States
Gaussian states are a variational family of many-body states with a lot of useful
properties. One of them is Wick’s theorem [88] — the expectation values of
higher-order products of creation and annihilation operators with Gaussian states
can be reduced to products of expectation values of at most two creation and
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annihilation operators [89]. Furthermore, Gaussian states are the exact ground
states of quadratic (non-interacting) Hamiltonians. However, they also give very
good results when used as variational family for interacting systems. That is what
we will do in subsection 7.5.2 to tackle the infinite-dimensional Hubbard model.

Gaussian states exist for both bosonic and fermionic systems, but in this thesis
we work exclusively with fermionic Gaussian states, so we will adapt all definitions
and theorems to that. Gaussian states are obtained by acting on the vacuum
|Ω⟩ with an operator, which is the exponential of an anti-Hermitian operator
quadratic in the creation and annihilation operators, e.g. |ψ⟩ = eia†a |Ω⟩1. One
way to parameterize Gaussian states is by parameterizing this unitary (or the
anti-Hermitian exponent).

However, we will choose a different parametrization given by the covariance
matrix Γ. Before properly defining Γ, we switch from the creation and annihilation
operators to Majorana fermionic operators p and q:

a†
i = qi − ipi√

2
, (3.1)

ai = qi + ipi√
2

. (3.2)

As a reminder, here the index i labels the site of the lattice on which those operators
act. Those operators are Hermitian and they follow the following anti-commutation
relations

{qi, qj} = δi,j, (3.3)
{pi, pj} = δi,j, (3.4)
{qi, pj} = 0. (3.5)

with other anti-commutation relations being zero. With this we can define the
covariance matrix of a Gaussian state |ψ⟩

Γxy = −2i ⟨ψ|xy |ψ⟩+ iδx,y, (3.6)

where x, y can stand for any of {pi, qj}, labelling all of the fermionic indices.
The letter p, q labels the “type” of the Majorana fermion and the sub-index
labels the species of the original fermion. By construction, the Γ matrix is anti-
symmetric. Due to Wick’s theorem, any expectation value can be computed
from two-point expectation values. The covariance matrix determines all possible
two-point expectation values, so it determines all expectation values. This way,
the covariance matrix determines the Gaussian quantum state while only having
number of entries quadratically proportional to the number of fermionic species.

The covariance matrix Γ squares to negative identity

Γ2 =
∑
y

ΓxyΓyz = −1. (3.7)

There exist many additional variational families built upon Gaussian states [90],
and developing new ones better suited for specific applications is an active area of
research [91, 92].

1That is where the name Gaussian comes from
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3.2. Tensor Networks

3.1.1 Imaginary Time Evolution
A commonly used methods to minimize the energy of Hamiltonians is imaginary
time evolution. We will only use it in connection to Gaussian states, so we mention
it here. The idea of imaginary time evolution is simple. First, recall that (ordinary)
time evolution operator of an isolated system with Hamiltonian H is

U(t) = eitH . (3.8)

Similarly, the thermal state of a system with Hamiltonian H at temperature T is
equal to

ρT = e 1
T
H

Z
, (3.9)

where Z = Tr
{
e 1

T
H
}

is the partition function. The ground state corresponds to
T = 0, so its density matrix can in principle be obtained as ρGS = limT→0+ ρT . Note
the similarities between the right-hand sides of equations (3.8) and (3.9). The main
difference is the imaginary unit i in the (ordinary) time evolution. Interpreting
the inverse temperature as imaginary time, we can try to find the ground state by
evolving along this imaginary time far enough (reaching very low temperature T ).
Naturally, we need to normalize the state along the way, as the imaginary time
evolution is not unitary.

If we perform imaginary time evolution within the manifold of Gaussian states,
the covariance matrix evolves as [89]

d
dτ Γ = −4

(
dE
dΓ + ΓdE

dΓ Γ
)
. (3.10)

3.2 Tensor Networks
In this section we provide the basic information about tensor networks and de-
scribe two simple TN architectures. But before doing that we need to clarify the
nomenclature. Throughout this work, a tensor simply refers to a generalization of
a matrix (an array of numbers, often complex numbers). Tensors are characterized
by their indices: a tensor with one index corresponds to an ordinary vector in Cn,
a tensor with two indices corresponds to a matrix, etc. Throughout this work (and
much of the tensor network literature), we make no distinction between covariant
and contravariant indices.

The term “tensor network” refers to objects made up of multiple tensors
contracted over some of their indices. As tensor networks can be quite complicated,
we use the following graphical notation:

• A tensor is represented by a box2.

• The indices of a tensor are represented by legs sticking out of the box.

• When the indices of two tensors are contracted, the corresponding legs are
connected to form a link between the two boxes.

2Some authors use a circle
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Chapter 3. Background on Quantum Many-Body Physics

Figure 3.2: The tensor ϕi1,i2, ... iN from equation (3.11) in the tensor network
notation.

By contracting the indices of many tensors, we create a tensor network.

Example 6 (Simple tensor networks)
The tensor network notation can be used even for relatively simple objects.
The following figure depicts some simple objects from linear algebra depicted
using the notation of tensor networks.

(a) Vector Ai (b) Matrix Bji (c)
∑
iBjiAi

Figure 3.1: A vector, a matrix and their product in the tensor network notation

Note that the product ∑iBjiAi in the tensor network notation has one free
leg, which means that as a whole it is again a vector.

In quantum many-body physics tensor networks are used to represent complicated
state vectors, operators or their expectation values. As will be shown below, the
tensor network representation can provide very efficient ways to describe the desired
objects. The question of which states can be represented (approximated) by tensor
networks is discussed in chapter 4.

For a more in-depth overview of tensor networks and their methods see [93–96].
In the remainder of this section we will discuss in detail linear tensor networks

— matrix product states and matrix product operators. In subsection 3.2.4 we
briefly comment on projected entangled pair states (PEPS) — a tensor network
architecture which generalizes matrix product states to 2D.

3.2.1 Matrix Product States and Matrix Product Operators
A generic pure state |ϕ⟩ of a system of N d-dimensional qudits can be described as

|ϕ⟩ =
d−1∑
i1=0

d−1∑
i2=0

...
d−1∑
iN =0

ϕi1,i2, ... ,iN |i1i2 ... iN⟩ , (3.11)

where |i1i2...iN⟩ are the basis states of the Hilbert space written in the computa-
tional basis. The state is defined by its coefficients ϕi1,i2,...iN . The object ϕi1,i2,...iN
itself (depicted in figure 3.2) is a tensor containing dN components, making it
difficult to describe exactly.
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3.2. Tensor Networks

Definition 18 (Matrix Product State). The matrix product state [97] (MPS) is a
pure state of the following form:

(3.12)

Here the objects A[j] (for j ̸∈ {1, N}) are tensors with dimensions d×Dj−1 ×Dj.
The tensors A[1] and A[N ] have dimensions d×D1 and d×DN−1 respectively. The
free indices are called the physical indices and their dimension d is called the
physical dimension. In contrast, the contracted indices are called virtual indices
and their dimensions Dj are called the bond dimensions.

If we fix the physical index of the tensors A[j], they become matrices and the
tensor network in equation (3.12) becomes a simple matrix product, which is where
the name comes from.

Example 7 (MPS, adapted from [98])
Consider a system of many qubits (i.e. d = 2). We want to describe an MPS
on such a system. To simplify notation, we split the tensors A[j] into two
parts — one corresponding to the physical index being equal to 0 and another
corresponding to it being equal to 1. Consider the following set of tensors (for
j ∈ {2, 3, ..., N − 1}:

A
[1]
0 =

(
1 0

)
, A

[j]
0 =

(
1 0
0 0

)
, A

[N ]
0 =

(
1
0

)
, (3.13)

A
[1]
1 =

(
0 1

)
, A

[j]
1 =

(
0 0
0 1

)
, A

[N ]
1 =

(
0
1

)
. (3.14)

If we plug this set of tensors into equation (3.12), we obtain the GHZ state
|ϕ⟩ = 1√

2 (|000...00⟩+ |111...11⟩).

Example 8 (Schmidt decomposition as an MPS)
The MPS formalism can be applied to Schmidt decompositions, defined in
equation (2.14). Consider a generic bipartite Schmidt-decomposed state |Ψ⟩AB

|Ψ⟩AB =
D∑
i=1

√
λi |χi⟩A ⊗ |ξi⟩B , (3.15)

where we substituted D = min(dA, dB). The states |ϕi⟩A and |ξi⟩B can be
expanded in the computational bases of their respective subsystems as

|χi⟩A =
dA−1∑
j=0

χ
[A]
ji |j⟩A and |ξi⟩A =

dB−1∑
l=0

ξ
[B]
li |l⟩B . (3.16)

Furthermore, we simplify the expression by substituting ξ̃[A]
ji =

√
λiξ

[A]
ji . This
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Chapter 3. Background on Quantum Many-Body Physics

leads to

(3.17)

The j-th tensor of an MPS has dDj−1Dj components, other then the first and
last, which have dD1 and dDN−1 components respectively. Therefore, to fully
describe an MPS, we need

d

D1 +
N−1∑
j=2

(Dj−1Dj) +DN−1

 (3.18)

components. This can be upper-bounded by NdD2 for D = maxj Dj.
A very similar approach can be taken to describe a generic (density) operator

acting on N d-dimensional qudits,

ρ =
d−1∑
i1=0

d−1∑
i2=0

...
d−1∑
iN =0

d−1∑
j1=0

d−1∑
j2=0

...
d−1∑
jN =0

ρi1,i2,...iN ,j1,j2,...,jN |i1i2...iN⟩ ⟨j1j2...jN | . (3.19)

The object ρi1,i2,...iN ,j1,j2,...,jN is a tensor containing d2N components.
Definition 19 (Matrix Product Operator). A matrix product operator (MPO) is
an operator of the following form:

(3.20)
An MPO can describe both a density operator and any other operator acting

on the Hilbert space (for example a quantum circuit [99]). When used to describe
a density operator, the object is sometimes called matrix product density operator
(MPDO). However, this name implies that the operator is positive, which is
something that we can not guarantee for the operators that we will encounter in
this thesis. Therefore, we will continue to call our tensor networks MPO, despite
the fact that in this work we try to approximate exclusively density operators.

The j-th tensor of an MPO has d2Dj−1Dj components, other then the first and
last, which have d2D1 and d2DN−1 components respectively. Therefore, to fully
describe an MPO we need

d2

D1 +
N−1∑
j=2

(Dj−1Dj) +DN−1

 (3.21)

components. This can be upper-bounded for by Nd2D2 for D = maxj Dj.
To simplify the notation of more complicated expressions, we sometimes omit

the sums and the computational basis elements. Instead we represent states and
operators only by their tensor networks, especially later in the thesis, e.g. in figure
4.3.
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3.2. Tensor Networks

3.2.2 Bond Dimension and Efficiency
In the quantum many-body physics community, a task is considered to be done
efficiently if the number of resources required scales at most polynomially in the
size of the input3. In our case, the size of the input denotes the number of sites of
the quantum system in question. In this language, exactly representing a generic
pure quantum state on N sites (equation (3.11)) is not efficient, because it requires
the knowledge of dN complex coefficients (d2N for a generic mixed state).

Describing an N -site system using an MPS (MPO) with a fixed bond dimension
D requires the knowledge of NdD2 (Nd2D2) complex numbers. This could be
efficient, depending on our choice of D. Allowing D to grow at most polynomially
with N keeps the MPS (MPO) description efficient, but it prevents us from being
able to represent arbitrary pure (mixed) states exactly. The question of which
states can be efficiently and accurately represented with MPS (MPO) is extremely
important for quantum many-body physics research. The chapter 4 discusses
sufficient conditions on pure (mixed) states to be approximable efficiently and
accurately by MPS (MPO).

Throughout this work, when discussing how one variable scales with respect to
some other variable, it is implied that we are interested in the limiting behaviour,
i.e. N → +∞. This limit is called the thermodynamic limit and is discussed in
more detail in section 3.3.

3.2.3 Entanglement Area Law
In this subsection we look at the entanglement present in an MPS. Take the MPS
from equation (3.12). Consider a bipartition of the system into first k sites and
the remaining N − k sites. Consider the following pair of substitutions:

∣∣∣ψ[k]
l

〉
=

d−1∑
i1,...,ik=0

(
A

[1]
i1 A

[2]
i2 ...A

[k]
ik

)
l
|i1...ik⟩ , (3.22)

∣∣∣ξ[k]
l

〉
=

d−1∑
i1,...,ik=0

(
A

[k+1]
ik+1

A
[k+2]
ik+2

...A
[N ]
ik

)
l
|ik+1...iN⟩ . (3.23)

We can write the MPS |ϕ⟩ as

|ϕ⟩ =
Dk∑
l=1

∣∣∣ψ[k]
l

〉
⊗
∣∣∣ξ[k]
l

〉
. (3.24)

This indicates that |ϕ⟩ has Schmidt rank at most Dk across the bipartition, which
is in turn bounded by D = maxk(Dk). The max-entanglement-entropy of a state
is equal to the logarithm of its Schmidt rank, so it is upper-bounded by log(D).
And because of the monotonicity of Rényi entropies (2.13), they are all also be
bounded by log(D) for all α ∈ (0,+∞). Importantly, the entanglement of the
MPS depends only on the bond dimension, not on k. This is a special case of what
is traditionally referred to as entanglement area law.

3Sometimes quasi-polynomial scaling is considered efficient too.
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Chapter 3. Background on Quantum Many-Body Physics

The entanglement area law is a property of some special quantum many-
body states. It means that after bipartitioning the system into two sections, the
entanglement between the two sections scales linearly with the area of the boundary
of the two sections, as opposed to their volume which is the situation for a generic
quantum state [100]. In one dimension, the area of a section corresponds only
to the two sites at the edge of the section. The size of the area does not change
(regardless of the size of the section). In a system obeying the entanglement area
law, we would expect the same for entanglement, as is the case for a finite-bond
MPS.

The situation with MPOs is more complicated. Mixed states contain classical
correlations on top of entanglement, so it makes sense to talk about area law
for some more general measure of correlations. In 2008 Wolf et. al. [101] noted
that the mutual information between two parts of an MPO is bounded by the
logarithm of the bond dimension of its local purification — an MPS which yields
the MPO once its alcillary space is traced out. In other words, an MPO which
is in a locally-purified form obeys the mutual information area law. The result
was later generalized for Rényi mutual information [102]. However, it has also
been demonstrated that there exist MPOs with fixed bond dimension and with
a local purification MPS whose bond dimension grows logarithmically with the
system size [103]. For this counter-example the mutual information bound does
not imply area law because it grows with the system size, albeit slowly. Therefore,
the question of whether all MPOs with a fixed bond dimension obey the area law
for the mutual information remains open.

This question is partially addressed in appendix C for classically correlated
MPOs (for Rényi mutual information).

(a) MPO in a locally purified form, obtained by
tracing out the ancillary subspace of an MPS
|ΨMPS⟩.

(b) MPO obtained by merging
the tensors A[k] with their com-
plex conjuagte A[k].

Figure 3.3: Locally-purified form explained with tensor network diagrams. Figure
adapted from [103]

3.2.4 Projected Entangled Pair States
In this subsection, we briefly comment on projected entangled pair states (PEPS).
This tensor network architecture is not studied anywhere else in this thesis, so we
include the information here solely for completeness. A simple way to generalize
MPS/MPO is to arrange the tensors not in a line, but in a 2D lattice. Such
tensor networks are usually referred to as projected entangled pair states / operators
(PEPS / PEPO).
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3.3. Thermodynamic Limit

(a) A square lattice PEPS tensor net-
work.

(b) Contracting two tensors together in
a PEPS produces a tensor with 6 virtual
legs.

Figure 3.4: A diagrammatic depiction of a PEPS tensor network and its state after
contracting two of the tensors. The legs originating in the middle of the tensors
are the physical legs and they are pointing outside of the plane.

Most commonly PEPS are constructed on a square lattice, so that each of the
tensors has 4 virtual legs connecting it to the other tensors (see figure 3.4a). Despite
their similarity to MPS, the 2D nature of PEPS brings with it several fundamental
limitations. It can be easily seen from the diagram that even contracting a PEPS
tensor network (which is necessary to do in order to calculate expectation values)
gets complicated as contracting two neighbouring tensors gives a tensor with more
virtual legs (see figure 3.4b). Contracting more and more tensors will lead to
larger and larger tensors, negating the speed-up of using tensor networks in the
first place. In fact, Schuch [104] showed that the task of contracting PEPS lies in
the complexity class of #P -complete, i.e. it is at least as hard as NP-complete
problems [105]. Furthermore, it has been shown that several questions about
PEPS (such as invariance under symmetries or gap of parent Hamiltonians) are
fundamentally undecidable [106].

That being said, PEPS still approximate ground states of local gapped Hamil-
tonians well [104] (just like MPS) and they are used for studying ground states of
both gapped and critical systems [107–110] and also some non-quantum problems
[111].

3.3 Thermodynamic Limit
The thermodynamic limit of a system is usually defined as the situation when
the number of particles N gets very large, or symbolically N → +∞. The
thermodynamic limit is important for two reasons. First, most systems systems
encountered in nature contain very large numbers of particles N ∼ 1023, so it
makes sense physically to investigate what happens when N is very large. Secondly,
in some cases the math describing large systems actually becomes simpler when
taking the limit N → +∞, allowing us to get better results than for finite (small)
N .

A mathematically rigorous way to describe systems in the thermodynamic limit
is by using the formalism of C∗-algebras. However, in practice in physics it is done
in different ways. Usually when interested in the large N limit, we do not actually
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Chapter 3. Background on Quantum Many-Body Physics

talk about states or operators (e.g. the Hamiltonian), but families of states and
families of operators which are defined for an arbitrary N . For example the 1D
transverse-field Ising Hamiltonian

H = −J
N∑
i=1

σxi σ
x
i+1 − h

N∑
i=1

σzi (3.25)

represents a family of Hamiltonians (for various values of N), each acting on
a different system and each having a different ground state. Similarly, on N
qubits, we can have a family of states which are all a product of qubits being
in the state |0⟩: ϕ = |0⟩⊗N . In examples like these, it is simple to intuitively
take the thermodynamic limit N → +∞. For a more rigorous treatment of the
thermodynamic limit, see section B.1.

In most literature, the distinction between states / operators and families of
states / operators is not explicitly made. In order to remain consistent, we will
also sometimes write about states or operators when we mean families of states /
operators.
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Chapter 4

Approximating 1D Mixed States with
Matrix Product Operators

In the previous chapter, we described tensor networks and outlined some of their
most important uses. This chapter focuses on an essential question regarding
1D tensor networks (MPS, MPO): Which quantum states can be accurately de-
scribed/approximated by such tensor networks? There are a few ways to answer
this question. The main focus of this chapter is criteria based on entanglement
and correlations present in the state (see section 4.4 for a brief overview of other
criteria of approximability).

First, in section 4.1 we provide a short motivation, explaining why we are
interested in this particular result. Then in section 4.2 we present an older
result which proves that a linear pure state is approximable by MPS if its Rényi
entanglement scales only logarithmically with system size (see theorem 2 for a
more specific formulation). This is a seminal result, which has a strong influence
on our approach as well. In section 4.3 we will present our own result on the
approximability of mixed states by MPO. In that case Rényi entanglement is
replaced by Rényi entanglement of purification and the scaling required is slightly
different (see theorem 3). At the end in section 4.4 we discuss other criteria used
for approximability of states by tensor networks.

4.1 Motivation

As was shown in chapter 3, MPS follow by construction the entanglement area
law. This suggests that they are well suited to describe quantum states that follow
the entanglement area law. It wa shown in [112] that there is indeed a connection
between the entanglement in a pure state and its approximability by MPS. This has
been an important result for quantum many-body physics and for tensor networks.
However, a weakness of this result is that it only applies to pure states. For years
there has been no analogous result quantifying the approximability of mixed states
by MPO.
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Figure 4.1: If the eigenvalues λi decay rapidly, we make only a small error by
truncating them.

4.2 Approximating 1D Pure States with Matrix Prod-
uct States

In this section we review the result of [112], which our own result is built upon.
Most of the statements in this section come from that source. The main result
states that a 1D pure state can be efficiently approximated by a matrix product
state (MPS) if there exists α < 1, such that the corresponding Rényi entropy of
entanglement Sα across every bipartition scales at most logarithmically with the
number of sites. We will go through the proof of the statement in this section
because it will be illustrative for the proof of our own statement.

4.2.1 Schmidt Decomposition Truncation

The idea of constructing the MPS is built on truncating the Schmidt decomposition
of the pure state across a bipartition. If the Rényi entropy of entanglement across
a bipartition is small, it implies that the Schmidt coefficients decay rapidly and
therefore we make only a small error by truncating (see figure 4.1). This idea is
quantified in the following lemma:

Lemma 2. Let ρ be a density matrix with eigenvalues λi labelled in descending
order (i.e. i ≥ j ⇒ λi ≤ λj). Define εD = ∑d

i=D+1 λi to be the sum of all but first
D eigenvalues (d = dim ρ). For any 0 < α < 1 we have

log εD ≤
1− α
α

[
Sα(ρ)− log D

1− α

]
. (4.1)

Proof. The proof is done in several steps. First we seek to lower-bound the Rényi
entropy of an arbitrary classical distribution {pi}di=1 as a function of its “tail”
εpD = ∑d

i=D+1 pi.
Consider the following family of distributions (with h satisfying 0 < h <

1−εp
D

D
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Figure 4.2: The distribution described in equations (4.2)–(4.4).

serving as a free parameter at this moment, see figure 4.2):

p1 = 1− εpD − (D − 1)h, (4.2)
p2 = p3 = ... = pD+εp

D/h
= h, (4.3)

pD+εp
D/h+1 = pD+εp

D/h+2 = ... = pd = 0. (4.4)

These distributions majorize all other distributions with the same εpD and
pD+1, therefore they have the lowest Rényi entropy among them (because of the
Schur-concavity of Rényi entropies explained in section 2.4). The range of h allows
to cover all possible values of pD+1, so a distribution of this form will minimize the
Rényi entropy Sα

(
{pi}di=1

)
among all distributions with fixed εpD.

For the distribution described in equations (4.2)–(4.4) the following inequality
holds:

d∑
i=1

pαi = [1− εpD − (D − 1)h]α + (D − 1 + εpD/h)hα ≥ Dhα + εpDh
α−1. (4.5)

We minimize the right-hand side expression with respect to h to obtain
d∑
i=1

pαi ≥
D1−α(εpD)α

(1− α)1−ααα
. (4.6)

Next, we plug this into the formula for the Rényi entropy to obtain

Sα({pi}di=1) ≥
1

1− α log
[
D1−α(εpD)α

(1− α)1−ααα

]
. (4.7)

As was said above, any other distribution with the same εpD will have larger Rényi
entropy. That includes the eigenvalues of ρ, {λi} (for which εpD = εD). We therefore
have

Sα(ρ) ≥ 1
1− α log

[
D1−α(εD)α

(1− α)1−ααα

]
. (4.8)

And finally we express εD as

log εD ≤
1− α
α

[
Sα(ρ)− log D

1− α

]
+ logα. (4.9)

The equation (4.1) is obtained by omitting the negative term logα.
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Lemma 2 gives us information about the rate of decay of the Schmidt coefficients
based on the Rényi entropy of entanglement. It can be used to bound the error
made by truncating the Schmidt decomposition of pure bipartite states. Let |ϕ⟩AB
be a bipartite pure state with the Schmidt decomposition

|ϕ⟩AB =
d∑
i=1

√
λi |χi⟩A ⊗ |ξi⟩B (4.10)

with d = min(dimA, dimB). For D ≤ d we define the (unnormalized) state |ϕD⟩AB
obtained by truncating the Schmidt decomposition of |ϕ⟩AB after the first D terms:

|ϕD⟩AB =
D∑
i=1

√
λi |χi⟩A ⊗ |ξi⟩B . (4.11)

The state |ϕD⟩AB approximates |ϕ⟩AB with the error ε = ∥|ϕ⟩AB − |ϕD⟩AB∥
2 =∑d

i=D+1 λi. This ε can be identified with εD from Lemma 2. Therefore, this error
can be bounded by a function of the Rényi entropy of ρB = TrA |ϕ⟩ ⟨ϕ|AB and the
bond dimension, according to equation (4.1). Changing the truncating cut-off D
allows us to manipulate the upper bound on the error ε.

4.2.2 Approximating Multipartite States
Having quantified the error obtained by truncating a bipartite Schmidt decomposi-
tion, we are now ready to formulate and proof the approximability theorem for
multipartite pure states. We will first state precisely the theorem, then give a brief
sketch of the general idea of the proof and then go through the proof in detail. The
result comes from Verstraete et al. [112], but the proof presented here is original.

Theorem 2 (Approximability of 1D Pure States). Let |ϕ⟩ be a pure state on a
linear lattice with N sites containing qudits. Let ρk = TrN\k |ϕ⟩ ⟨ϕ| be its reduced
density matrix on the first k sites. If there exists α ∈ [0, 1) and c ∈ R (independent
of N) such that ∀k

Sα(ρk) ≤ c logN (4.12)
then the state can be efficiently approximated by an MPS.

The proof of theorem 2 can be split into the following steps:

1. We take the Schmidt decomposition of the state |ϕ⟩ across every possible
bipartition of the system into the first k sites and the remaining N − k sites.

2. We truncate each of these decompositions after the first D terms. Because of
the scaling of the Rényi entropy, we can apply lemma 2 to upper-bound the
error created by this truncation. This way we create a set of N − 1 states,
each with Schmidt rank D across a different bipartition.

3. We construct projectors onto these states. Applying those projectors enforces
Schmidt rank D across the corresponding bipertition. Applying all of them
to the original state |ϕ⟩ creates the resulting MPS, without accumulating too
much error.
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The state |ϕ⟩ can be exactly described by a dN dimensional tensor ϕi1,i2, ... ,iN ,
as seen in equation (3.11):

|ϕ⟩ =
d−1∑
i1=0

d−1∑
i2=0

...
d−1∑
iN =0

ϕi1,i2, ... ,iN |i1i2 ... iN⟩ . (4.13)

For k ∈ {1, 2, ...N − 1}, consider the bipartition of the system into the first k
sites and the remaining N − k sites (hereinafter called the k-bipartition). Across
the k-bipartition, the state |ϕ⟩ has the Schmidt decomposition:

|ϕ⟩ =
dmin(k,N−k)∑

i=1

√
λk,i |χk,i⟩ ⊗ |ξk,i⟩ (4.14)

Let |ϕk⟩ be the state obtained from |ϕ⟩ by truncating its Schmidt decomposition
across the k-bipartition after D terms1, i.e.

|ϕk⟩ =
D∑
i=1

√
λk,i |χk,i⟩ ⊗ |ξk,i⟩ . (4.15)

Following example 8 from section 4.2 we can write the states |ϕk⟩ as MPS-like
tensor networks

(4.16)

Here the states |j⟩k form the computational basis on the first k qudits and |l⟩N−k
form the computational basis on the last N − k qudits. To simplify notation, the
Schmidt coefficient

√
λk,i was absorbed into the tensor ξ̃[N−k]. The bond dimension

is naturally D. The indices j and l run from 0 to dk− 1 or dN−k− 1 and enumerate
all computational basis states on the two parts of the state. We can split them
into indices {j1, j2, ..., jN} running from 0 to d− 1 which enumerate computational
basis states on each site individually.

(4.17)

In equation (4.17) we can already start seeing the desired MPS structure emerging.
Note that the equation describes many different states |ϕk⟩ for all possible values
of k. Each of these states approximates the original state |ϕ⟩ with an error
εk = ∥|ϕ⟩ − |ϕk⟩∥2, which we can control by changing the bond dimension D (using

1This is only possible if D ≤ dmin(k,N−k). That might not be true for k close to 1 or N . In
those cases the sum in equation (4.14) does not even have D terms, so truncating it to D terms
is ill-defined. To avoid badly defined expressions in those two cases we may additionally define
|χk,i⟩ = 0 and λk,i = 0 for i ≥ dk + 1 and similarly |ξk,i⟩ = 0 and λk,i = 0 for i ≥ dN−k + 1.
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Chapter 4. Approximating 1D Mixed States with Matrix Product Operators

the result of lemma 2). The next step is to “merge” the states |ϕk⟩ together to
create a state that has low bond dimension across every bipartition and which
still accurately approximates the original state. To that end, we define the set of
projectors Pk = ∑D

i=1 |χk,i⟩ ⟨χk,i| (depicted as tensor networks in figure 4.3a). We
can see that the projectors Pk produce the states |ϕk⟩ when applied to the original
state |ϕ⟩ (figure 4.3b):

Pk |ϕ⟩ =
D∑
j=1
|χk,j⟩ ⟨χk,j|

dmin(k,N−k)∑
i=1

√
λk,i |χk,i⟩ ⊗ |ξk,i⟩ = |ϕk⟩ , (4.18)

where we used the Schmidt decomposition (4.14) and the orthonormality property
⟨χk,j|χk,i⟩ = δij.

(a) The projector Pk (b) The projector Pk applied to |ψ⟩

Figure 4.3: The tensor networks corresponding to the projector Pk and its appli-
cation to |ϕ⟩, creating |ϕk⟩. Compare the tensor network in 4.3b with the tensor
network in equation (4.17).

As we can see in equation (4.18) and figure 4.3, applying the projectors Pk
introduces the bond dimension D into the state. Consider what happens when we
apply multiple of the projectors Pk in sequence. For l > k consider

PkPl |ϕ⟩ = Pk |ϕl⟩ =
D∑
j=1
|χk,j⟩ ⟨χk,j|

D∑
i=1

√
λl,i |χl,i⟩ ⊗ |ξl,i⟩ (4.19)

=
D∑
j=1

D∑
i=1
|χk,j⟩ ⊗ |ζk,l,i,j⟩ ⊗

√
λl,i |ξl,i⟩ ≡ |ϕkl⟩ , (4.20)

where we defined ⟨χk,i|χl,j⟩ ≡ |ζk,l,i,j⟩. Remember that the states |χl,j⟩ and |χk,i⟩
live on a different number of sites, so their product |ζk,l,i,j⟩ is a state on l − k sites
(as can be seen in figure 4.4). The state |ϕkl⟩ obtained in equation (4.20) can be
interpreted as the “fusion” of |ϕl⟩ and |ϕk⟩. This state now has bond dimension D
across two bipartitions simultaneously — after the first k sites and after the first l
sites.

Motivated by the result of consecutive application of the projectors Pk, we now
apply all of them to the original state, one after another. We get

|ϕMPS⟩ =
N−1∏
k=1

Pk |ϕ⟩ , (4.21)
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Figure 4.4: The tensor network representing |ζk,l,i,j⟩ = ⟨χk,i|χl,j⟩.

Figure 4.5: The tensor network representing the application of Pk to |ϕl⟩ (for
k < l), equivalent to applying PkPl to |ϕ⟩.

where the product is done in sequence (starting from the left), i.e. P1P2...PN−1,
which means that PN−1 is applied to |ϕ⟩ first. The projectors do not commute
with each other, so their order is important. See figure 4.6 for the tensor network
representing equation (4.21).

The product of the projectors Pk in equation (4.21) produces single-site terms
like 〈

χk,ik

∣∣∣χk+1,ik+1

〉
=
∣∣∣ζk,k+1,ik,ik+1

〉
. (4.22)

The resulting state |ϕMPS⟩ can then be written as

|ϕMPS⟩ =
D∑

i1,i2,...,iN−1=1
|χ1,i1⟩ ⊗

(
N−2⊗
k=1

∣∣∣ζk,k+1,ik,ik+1

〉)
⊗
∣∣∣ξN−1,iN−1

〉√
λiN−1 . (4.23)

Figure 4.6: The tensor network representing the right-hand side of equation (4.21)
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Chapter 4. Approximating 1D Mixed States with Matrix Product Operators

This state is an MPS, as can be seen by expressing the single-site states |χ1,i1⟩ ,
∣∣∣ζk,k+1,ik,ik+1

〉
and

∣∣∣ξN−1,iN−1

〉
in the computational basis:

|χ1,i1⟩ =
d∑
j=1

χ
[1]
ji1 |j⟩ , (4.24)

∣∣∣ζk,k+1,ik,ik+1

〉
=

d∑
j=1

ζ
[k]
jikik+1

|j⟩ , (4.25)

∣∣∣ξN−1,iN−1

〉
=

d∑
j=1

ξ
[1]
jiN−1 |j⟩ . (4.26)

This allows us to rewrite the state |ϕMPS⟩ using tensor network notation:

(4.27)
The bonds connecting the tensors together correspond to the indices ik (for k ∈
{1, 2, ..., N−1}) in equation (4.23). All these indices run from 1 to D. This implies
that the state |ϕMPS⟩ has exactly the form of an MPS with bond dimension D.

Now we examine how far this state is from the original state |ϕ⟩, i.e. what is
the approximation error

∥|ϕMPS⟩ − |ϕ⟩∥2 =
∥∥∥∥∥
N−1∏
k=1

Pk |ϕ⟩ − |ϕ⟩
∥∥∥∥∥

2

. (4.28)

To upper-bound the error, we repeatedly use the triangle inequality∥∥∥∥∥
n∏
k=1

Pk |ϕ⟩ − |ϕ⟩
∥∥∥∥∥ ≤

∥∥∥∥∥
n∏
k=1

Pk |ϕ⟩ −
n−1∏
k=1

Pk |ϕ⟩
∥∥∥∥∥+

∥∥∥∥∥
n−1∏
k=1

Pk |ϕ⟩ − |ϕ⟩
∥∥∥∥∥ (4.29)

valid for any n ∈ {2, 3, ..., N − 1}. We apply this inequality recursively to reduce n
all the way from N−1 down to 1. This generates terms

∥∥∥∏n
k=1 Pk |ϕ⟩ −

∏n−1
k=1 Pk |ϕ⟩

∥∥∥
for n ∈ {2, 3, ...N − 1}. Each of these terms can be bounded by using ∥Pk∥∞ = 1,
by the virtue of Pk being a projector:∥∥∥∥∥

n∏
k=1

Pk |ϕ⟩ −
n−1∏
k=1

Pk |ϕ⟩
∥∥∥∥∥ =

∥∥∥∥∥
n−1∏
k=1

Pk (Pn |ϕ⟩ − |ϕ⟩)
∥∥∥∥∥ (4.30)

≤
∥∥∥∥∥
n−1∏
k=1

Pk

∥∥∥∥∥
∞

∥Pn |ϕ⟩ − |ϕ⟩∥ (4.31)

≤
n−1∏
k=1
∥Pk∥∞∥Pn |ϕ⟩ − |ϕ⟩∥ (4.32)

= ∥Pn |ϕ⟩ − |ϕ⟩∥ (4.33)
= ∥|ϕn⟩ − |ϕ⟩∥ = √εn. (4.34)
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4.2. Approximating 1D Pure States with Matrix Product States

Figure 4.7: A table of approximability and inapproximability regions of 1D systems
based on their scaling of various Rényi entropies of entanglement. The rows
correspond to different values of α ∈ [0,+∞] and the columns correspond to
different possible scaling of the corresponding Rényi entropy of entanglement Sα
(S1 being the von Neumann entropy). Figure adapted from [113]

Summing all those terms together, we get ∥|ϕ⟩ − |ϕMPS⟩∥ ≤
∑N−1
k=1
√
εk. Using

lemma 2 gives us

log εk ≤
1− α
α

[
c logN − log D

1− α

]
. (4.35)

For a given target error ε, we can set

D = (1− α)N
2α

1−α
+c

ε
α

1−α
, (4.36)

which ensures that εk ≤ ε
N2 and therefore ∥|ϕ⟩ − |ϕMPS⟩∥2 ≤ ε. The bond dimension

from equation (4.36) is polynomial in N (and in ε). The MPS approximation is
therefore efficient.

4.2.3 Inapproximability of 1D Pure States with Matrix Product
States

Shortly after theorem 2 was published [112], the result was expanded on by Schuch
et al. [113]. They provided entropy-based conditions implying the impossibility
of efficient MPS approximation as well as examples to demonstrate that those
conditions are tight. In this subsection we briefly summarize their results.

Schuch et al. proved that if the von Neumann entropy of entanglement scales
linearly with the system size, the state can not be efficiently approximated with
an MPS. Furthermore, if for any α > 1, the Rényi entropy Sα grows sublinearly
with the system size (i.e. proportional to Nκ for some 0 < κ < 1), the same is true.
These two situations correspond to the red region in figure 4.7. The green region
corresponds to approximability based on the scaling of Rényi entropies for α < 1,
which was proven in subsection 4.2.2. The blue region corresponds to situation
when (in)approximability by MPS can not be determined from the scaling of the
entropies alone. In the blue region, Schuch et al. found examples of states which
can be approximated efficiently as well as examples of states which can not.
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Chapter 4. Approximating 1D Mixed States with Matrix Product Operators

Possibly the most interesting part of the diagram in figure 4.7 is the area
corresponding to constant von Neumann entropy. This describes states whose von
Neumann entanglement obeys the area law. Yet, that on its own is not a sufficient
condition for MPS approximability, as an example by Schuch et al. demonstrates.
However, this example is not translationally invariant, unlike all other provided
examples. The question of whether any translationally invariant pure state obeying
the von Neumann entanglement area law can be efficiently approximated by an
MPS remains open.

4.3 Approximating 1D Mixed States with Matrix
Product Operators

In this section we show our own research generalizing the result of section 4.2. The
first question that we should ask ourselves is which quantity will play the role of
the Rényi entropy to determine whether a mixed state is approximable. We cannot
use the Rényi entropy of the reduced state anymore as it no longer has the meaning
of entanglement of the original state, as was shown in example 4 in chapter 2. In
fact, we cannot use any measure of entanglement alone. There exist separable
states (with zero entanglement) which require large bond dimension to approximate
accurately. For example the state ρAB = 1

D

∑D
i=1 |i⟩ ⟨i|A⊗|i⟩ ⟨i|B for D > 1 has zero

entanglement and requires bond dimension D to represent exactly. Therefore we
need a quantity that captures both classical and quantum correlations. A natural
candidate would be the mutual information (or rather its Rényi generalizations).
We did some research into Rényi mutual information, some of which is presented in
appendix C, in hopes of using it as approximability criterion. Unfortunately, we did
not find a rigorous connection between the mutual information and approximability
by MPO. Instead we used the Rényi entanglement of purification (see subsection
2.3.1 for definition), as this allows us to take advantage of Theorem 2.

Theorem 3 (Approximability of 1D Mixed States). Let ρ be a mixed state on a
linear lattice with N sites. Consider the bipartition of the system into the first k
sites and the remaining N − k sites. If there exists c > 0 (independent of N) such
that for any k the Rényi entanglement of purification across this bipartition follows

Ep
α(ρ) ≤ c logN for α = 1

logN (4.37)

then the state can be efficiently approximated by an MPO

As before, we will prove this theorem in steps.

1. First we show that small entanglement of purification across a bipartition
guarantees that we can approximate the mixed state by a low-rank approxi-
mation (analogous to the Schmidt decomposition truncation).

2. Then we will devise a scheme to merge two such bipartite approximations
together in a way that preserves the low bond dimension without increasing
the approximation error too much.
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3. Finally, we devise a scheme to repeat this process iteratively to construct the
final MPO.

Bounded entanglement of purification across a bipartition Ep
α(ρAB) ≤ c logN

implies that there exists a purification |Ψ⟩AA′BB′ with an equally bounded Rényi
entanglement across the same bipartition Sα(ρAA′) = Ep

α(ρAB) ≤ c logN . This
purification can therefore be approximated by a low-rank approximation obtained
by truncating the Schmidt decomposition |Ψ⟩AA′BB′ = ∑D

i=1
√
λi |χi⟩AA′ ⊗ |ξi⟩BB′ .

For this approximation, we have ∥|Ψ⟩ − |ΨD⟩∥2 = εD with εD bounded by an
equation analogous to (4.1),

log εD ≤
1− α
α

[
Ep
α(ρAB)− log D

1− α

]
. (4.38)

The error εD is made in the standard vector norm, i.e.

∥|Ψ⟩ − |ΨD⟩∥2 = εD =
d∑

i=D+1
λi = 1−

D∑
i=1

λi = 1− ⟨ΨD|ΨD⟩ . (4.39)

However, this time we are interested in the trace distance between the state and
its approximation. To calculate that, we first normalize the approximating state
|Ψ′

D⟩ = |ΨD⟩√
⟨ΨD|ΨD⟩

. The trace distance between the state |Ψ⟩ and its normalized
approximation |Ψ′

D⟩ is
1
2 ||Ψ⟩ ⟨Ψ| − |Ψ

′
D⟩ ⟨Ψ′

D||1 =
√

1− |⟨Ψ|Ψ′
D⟩|

2 =
√

1− ⟨ΨD|ΨD⟩ = √εD. (4.40)

We can now apply a partial trace to the left side of (4.40). Partial trace is
contractive with respect to the trace distance. Hence we obtain∥∥∥ρAB − ρDAB∥∥∥1

≤ 2√εD, (4.41)

where ρDAB is the density matrix obtained by tracing out the A′ and B′ subsystems
from |Ψ′

D⟩. This density matrix has the form

ρDAB = TrA′B′ |Ψ′
D⟩ ⟨Ψ′

D|AA′BB′ (4.42)

=
D∑
i=1

D∑
j=1

√
λiλj

[
TrA′ |χi⟩ ⟨χj|AA′

]
⊗
[
TrB′ |ξi⟩ ⟨ξj|BB′

]
. (4.43)

Importantly, the density matrix ρDAB has operator-Schmidt rank D2.

(a) The pure state |Ψ′
D⟩AA′BB′ (b) The mixed state ρDAB

Figure 4.8: The tensor networks corresponding to the purification approximation
|Ψ′

D⟩AA′BB′ and its partial trace of subsystems A′ and B′ (which gives ρDAB).
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Figure 4.9: The superoperator Pk(·). Input operators go in the shaded area.

4.3.1 Merging of Two Bipartite Approximations
As was shown above, if the mixed state has low entanglement of purification
across one bipartition, we can approximate it accurately by a mixed state with
low operator-Schmidt rank. Now the task is to merge those approximations into a
tensor network with low bond dimension. In the case of pure states, a similar task
was done by applying norm-non-increasing projectors onto the subspaces spanned
by halves of the bipartite approximations in equation (4.21). We may attempt the
same approach for mixed states. Assume that we have two approximations to ρ,
with operator-Schmidt rank D2 across different bipartitions (and k < l). They
have the operator-Schmidt decompositions

ρk =
D2∑
i=1

γ
[k]
i Σ[k]

i ⊗ Π[N−k]
i (4.44)

, ρl =
D2∑
i=1

γ
[l]
i Σ[l]

i ⊗ Π[N−l]
i (4.45)

and they approximate ρ with error εk and εl respectively. The subspaces spanned
by Σ[k]

i and Σ[l]
i are subspaces of operators. The projectors onto these subspaces

are therefore superoperators (for any k)

Pk(·) =
D2∑
i=1

Σ[k]
i Tr[k]

{(
Σ[k]
i

)†
·
}
. (4.46)

The projectors Pk work similar to projectors Pk, i.e. Pk(ρ) = ρk and the
operator obtained by their consecutive application

ρ′
kl ≡ Pk(ρl) =

D2∑
ik=1

D2∑
il=1

Σ[k]
ik
⊗ Tr[k]

{(
Σ[k]
ik

)†
Σ[l]
il

}
⊗ γ[l]

il
Π[N−l]
il

(4.47)

has operator-Schmidt rank D2 across two cuts, as can be seen in figure 4.10.
However, this approach fails because the projectors Pk are generally not norm-

non-increasing with respect to the trace norm. The approximation error of ρ′
kl

from equation (4.47) can be bounded as

∥ρ′
kl − ρ∥1 ≤ ∥ρ

′
kl − ρk∥1 + ∥ρk − ρ∥1 (4.48)

= ∥Pk(ρl − ρ)∥1 + εk (4.49)

=
∥∥∥∥∥∥
D2∑
i=1

Σ[k]
i ⊗ Tr[k]

{(
Σ[k]
i

)†
(ρl − ρ)

}∥∥∥∥∥∥
1

+ εk. (4.50)
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Figure 4.10: The operator ρ′
kl obtained by acting on ρl with Pk. As we did before

with states, we absorbed the operator-Schmidt coefficient γ[l]
il

into Π[N−l]
il

, forming
Π̃[N−l]
il

.

We know that ∥ρl − ρ∥1 = εl. Furthermore, we know that∥∥∥∥(Σ[k]
i

)†
∥∥∥∥

2
= 1 ⇒

∥∥∥∥(Σ[k]
i

)†
∥∥∥∥

∞
= 1. (4.51)

These together imply that∥∥∥∥Tr[k]

{(
Σ[k]
i

)†
(ρl − ρ)

}∥∥∥∥
1
≥
∥∥∥∥(Σ[k]

i

)†
∥∥∥∥

∞
∥ρl − ρ∥1εl. (4.52)

However, the problem is with Σ[k]
i . The trace norm

∥∥∥Σ[k]
i

∥∥∥
1

is upper-bounded by
k
∥∥∥Σ[k]

i

∥∥∥
2
, but this bound is too weak to be efficient. Therefore we cannot replicate

the approach used for pure states.
These problems with norms do not arise if we attempt to bound the approxi-

mation error in the 2-norm ∥·∥2:

∥ρ′
kl − ρ∥2 ≤ ∥ρ

′
kl − ρk∥2 + ∥ρk − ρ∥1 (4.53)

= ∥Pk(ρl − ρ)∥2 + εk (4.54)
≤ ∥ρl − ρ∥2 + εl (4.55)
≤ εk + εl. (4.56)

The operators Pk are orthogonal projections on the space of operators, therefore,
they do not increase the norm induced by the inner product. On the space of
operators, the inner product is the Hilbert-Schmidt inner product and the norm
induced by it is the 2-norm ∥·∥2. If we are interested in an MPO approximation
in the 2-norm, we can simply replicate approach described in section 4.2. The
final MPO would be obtained by consecutively applying the projector Pk for all
k ∈ {1, ..., N − 1} and the final error would be ε = ∑N−1

k=1 εk. It is possible to do
this efficiently, analogously to how the pure state case was done. However, we aim
for an MPO approximation in the trace norm, which means that we can not take
this approach.

The approach that we developed works similarly — we also use projections,
but different ones. We label our new projections Qk. We require that these project
onto the span of Σ[k]

i , so we have ∀i : Qk(Σ[k]
i ) = Σ[k]

i and consequently Qk(ρ) = ρk.
To build these projections we consider a collection of linearly independent matrices
Θ[k]
i which span the same subspace as the matrices Σ[k]

i . A possible projection onto
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the subspace span(Σ[k]
i ) is

Qk =
D2∑
i=1

Θ[k]
i ⊗ Tr[k]

{
Θ̂[k]†
i ·

}
. (4.57)

where Θ̂[k]
i are the dual matrices to Θ[k]

i so that Tr
{
Θ̂[k]†
i Θ[k]

j

}
= δij. Note that

there is a lot of choices of the matrices Θ[k]
i (and the corresponding Θ̂[k]

i ) that fulfill
our requirements so far. Obviously, one such choice is Θ[k]

i = Θ̂[k]
i = Σ[k]

i , but as we
saw earlier, that is not desirable.

When we apply this more general Qk onto ρl we get

ρkl ≡ Qk(ρl) =
D2∑
ik=1

D2∑
il=1

Θ[k]
ik
⊗ Tr[k]

{(
Θ̂[k]
ik

)†
Σ[l]
il

}
⊗ γ[l]

il
Π[N−l]
il

. (4.58)

This is not the same as the operator ρ′
kl which we got from equation (4.47). The

tensor network structure is the same (see figure 4.10 for reference), but the tensors
themselves are different.

Again, we ask how far this state is from ρ in the trace norm, i.e.

∥Qk(ρl)− ρ∥1 ≤ ∥Qk(ρl)− ρk∥1 + ∥ρk − ρ∥1 (4.59)
= ∥Qk(ρl)−Qk(ρ)∥1 + ε1 (4.60)
= ∥Qk(ρl − ρ)∥1 + ε1. (4.61)

Now we examine the first term specifically, i.e.

∥Qk(ρl − ρ)∥1 =
∥∥∥∥∥∥
D2∑
i=1

Θ[k]
i ⊗ Tr[k]

{
Θ̂[k]†
i (ρl − ρ)

}∥∥∥∥∥∥
1

(4.62)

≤
D2∑
i=1

∥∥∥Θ[k]
i

∥∥∥
1

∥∥∥Tr[k]
{
Θ̂[k]†
i (ρl − ρ)

}∥∥∥
1

(4.63)

≤
D2∑
i=1

∥∥∥Θ[k]
i

∥∥∥
1

∥∥∥Θ̂[k]†
i (ρl − ρ)

∥∥∥
1

(4.64)

≤
D2∑
i=1

∥∥∥Θ[k]
i

∥∥∥
1

∥∥∥Θ̂[k]†
i

∥∥∥
∞
∥ρl − ρ∥1. (4.65)

To keep this quantity as low as possible, we want to minimize
∥∥∥Θ[k]

i

∥∥∥
1

∥∥∥Θ̂[k]†
i

∥∥∥
∞
≥∣∣∣Tr{Θ[k]

i Θ̂[k]†
i }

∣∣∣ = |δii| = 1. It turns out that it is possible to choose Θ[k]
i and Θ̂[k]

i

such that
∥∥∥Θ[k]

i

∥∥∥
1

=
∥∥∥Θ̂[k]†

i

∥∥∥
∞

= 1. To show that, we use the following theorem
from functional analysis (for proof see appendix B):

Theorem 4 (Auerbach’s Lemma). Let V, |·| be an n-dimensional normed vector
space and V ∗ its dual space (with a dual norm ∥·∥). Then there exists a basis
{e1, e2, ..., en} ∈ V with a dual basis {f1, f2, ..., fn} ∈ V ∗ (fi(ej) = δij), such that
|ei| = ∥f1∥ = 1.
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Figure 4.11: The operator ρ2k−1,2k obtained by merging ρ2k−1 with ρ2k, i.e. by
acting with Q2k−1 on ρ2k.

The space span(Σ[k]
i ) equipped with the trace norm ∥·∥1 can be identified with

V from Auerbach’s lemma. Its basis will then be the matrices Θ[k]
i . For now we

will denote the dual basis elements θ̂i ∈ V ∗. The space V = span(Σ[k]
i ) together

with its norm ∥·∥1 is just a subspace of B(H[k]) with the same norm. However, the
same cannot be said for the dual spaces. Fortunately, we can use another tool of
functional analysis — The Hahn-Banach theorem (for full formulation see appendix
B). It guarantees that any dual element θ̂i ∈ V ∗ can be extended as θ̃i ∈ B∗(H[k])
such that

∥∥∥θ̂i∥∥∥ =
∥∥∥θ̃i∥∥∥ (here the norms are the dual norms on the corresponding

dual spaces). As an element of B∗(H[k]), θ̃i can be written as

θ̃i( · ) = Tr
{
Θ̂[k]†
i ·

}
, (4.66)

which implies that
∥∥∥θ̃i∥∥∥ =

∥∥∥Θ̂[k]
i

∥∥∥
∞

.
This means that we can always find appropriate Θ[k]

i (and corresponding Θ̂[k]
i )

such that
∥∥∥Θ[k]

i

∥∥∥
1

=
∥∥∥Θ̂[k]†

i

∥∥∥
∞

= 1 and therefore

∥Qk(ρl)− ρ∥1 ≤ D2∥ρl − ρ∥1 + εk ≤ D2εl + εk. (4.67)

If for simplicity we label ε = maxi(εi), we get ∥Qk(ρl)− ρ∥1 ≤ (D2 + 1)ε, i.e. by
merging two approximations together, we multiply the error by D2 + 1.

4.3.2 Merging of Multiple Low-Rank Approximations
The fact that merging two approximations together multiplies the error by D2 + 1
makes it impossible to merge the low-rank approximations sequentially as was done
for the pure states. The overall error would grow exponentially with the number of
sites, which would be too fast. Instead we merge the approximations in a tree-like
fashion.

First assume that the number of sites is one more than a power of two: N = 2p+1.
We will begin by approximating the state ρ by a set of states {ρ1, ρ2, ...ρN−1}, such
that the state ρi has low operator-Schmidt rank across the bipartition between the
i-th and (i+ 1)th site and it approximates ρ with error εi. These states have the
form of the states in equations (4.44) and (4.45). This is possible because of the
scaling of the entanglement of purification. For simplicity define ε = maxi εi

In the next step we merge together approximations ρ2k−1 and ρ2k (for k ∈
{1, 2, ..., N−1

2 }). The resulting approximations ρ2k−1,2k have low operator-Schmidt

43



Chapter 4. Approximating 1D Mixed States with Matrix Product Operators

Figure 4.12: The operator ρ2k−1,2k after contracting Tr[2k−1]
{
Θ̂[2k−1]†
i2k−1

Σ[2k]
i2k

}
into a

single-site tensor M [2k]
i2k−1,i2k

. Compare with the tensor network in figure 4.11.

Figure 4.13: The operator ρ4k−3,4k−2,4k−1,4k.

rank across two bipartitions. One of them is between the (2k − 1)st site and 2k-th
site and the other is between the 2k-th site and the (2k + 1)st site. The states
ρ2k−1,2k approximate the original state ρ with an error at most (D2 + 1)ε.

In the next step, we want to merge pairs of these approximations, i.e. we merge
ρ4k−3,4k−2 with ρ4k−1,4k (for k ∈ {1, 2, ..., N−1

4 }) to obtain ρ4k−3,4k−2,4k−1,4k. For
this, we have to construct new projections Q4k−3,4k−2.

The approach is the same as earlier, but there is one last thing we need to pay
attention to. The projection Q4k−3,4k−2 is constructed to project onto the span of

D2∑
i4k−3=1

Θ[4k−3]
i4k−3

⊗M [4k−2]
i4k−3,i4k−2

. (4.68)

These operators (as a whole object) have operator-Schmidt rank D2 across the
bipartition between the (4k − 3)rd site and the (4k − 2)nd site. Any linear
combination of them will also have the same operator-Schmidt rank across the
same bipartition (or lower). This means that when Q4k−3,4k−2 is applied to ρ4k−1,4k,
the resulting object ρ4k−3,4k−2,4k−1,4k will have low operator-Schmidt coefficient
across 4 different bipartitions (see figure 4.13). These ρ4k−3,4k−2,4k−1,4k approximate
ρ with an error bounded by (D2 + 1)2ε.

We continue with this process until we reach ρ1,...,N−1. This state is the
sought MPO approximation and it approximates ρ with an error bounded by
(D2 + 1)log(N−1)ε = (D2 + 1)pε because log(N − 1) is the number of steps of
merging we needed to take to get ρ1,...,N−1 (each step after the first doubles the
number of bonds with low operator-Schmidt rank).

In case that N is not one more than a power of two, we simply append the
original state ρ with product states, e.g.

ρ′ = ρ⊗

 2p+1⊗
i=N+1

|0⟩ ⟨0|
 , (4.69)

where p = ⌈log(N − 1)⌉. This definitely does not change the scaling of the Rényi
entanglement of purification. We then apply the above algorithm to ρ′ to find its
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MPO approximation. Finally, we trace out the appended system to get an MPO
approximation of ρ.

The final error we get is εfinal = (D2 + 1)⌈log(N−1)⌉ε when here ε is the error
obtained by truncation of the Schmidt decomposition of the purification across one
cut, related to the entanglement of purification by (4.38). Putting both equations
together, we get the expression for the final error,

εfinal = (D2 + 1)⌈log(N−1)⌉ exp
{1− α

α

[
Ep
α(ρAB)− log D

1− α

]}
. (4.70)

Given a target error εfinal, we are interested in what scaling of the Rényi entangle-
ment of purification is necessary to be able to reach the target error with the bond
dimension growing at most polynomially D ∼ poly(N). First note the factor in
front of the exponential (D2 + 1)⌈log(N−1)⌉. This factor will grow as we increase the
bond dimension, which means that the decay of the exponential has to offset this.

The expression for the final error can be manipulated to

εfinal ≤ exp
{

log
(
D2 + 1

)
⌈log(N − 1)⌉+ 1− α

α

[
Ep
α(ρAB)− log D

1− α

]}
. (4.71)

For a fixed α, the first term in the exponential log (D2 + 1)⌈log(N − 1)⌉ will always
outgrow the last term −1−α

α
log D

1−α for N large enough. This implies that the
exponent as a whole will be positive and the error will grow with D. However, this
does not happen if we allow α to change with N , specifically α = 1

3 logN is enough.
To see what effect this will have on εfinal, we plug in the bound on the entanglement
of purification Ep

α(ρAB) ≤ c logN , the allowed polynomial scaling of the bond
dimension D = Nκ, and we omit some sub-leading terms in the calculation. This
gives us the bound

εfinal ≤ exp
{

log
(
D2 + 1

)
(logN + 1) + 1− α

α

[
Ep
α(ρAB)− log D

1− α

]}
(4.72)

≲ exp
{

log
(
D2
)

logN + 1
α

[Ep
α(ρAB)− logD]

}
(4.73)

≤ exp
{
log

(
N2κ

)
logN + 3 logN [c logN − logNκ]

}
(4.74)

≤ exp{(3c− κ) logN logN}. (4.75)

We can see that we just require κ > 3c in order for the error to decay super-
polynomially with N . Given that c does not depend on N , this is an efficient
scaling of the bond dimension.

4.4 Other Criteria of Approximability
Aside from entanglement or purification and Rényi entropies, there are other
criteria for approximability of pure (or mixed) states by an MPS (MPO). In this
section we will briefly comment on those.
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4.4.1 Decay of Conditional Mutual Information
One way to construct an MPO is via recovery maps. This was developed in the
Bachelor’s thesis of Sieber [114], which was based on a breakthrough result by
Fawzi and Renner [115]. Sieber describes the following method to approximate a
mixed state by an MPO:

1. First we trace out all but the first two sites of a mixed state.

2. Then we construct a recovery map which acts on the right-most site of the
system and reconstructs the system to extend on one more site.

3. Repeat step 2 until the entire system is re-constructed.
By construction, this approach yields an MPO with bond dimension proportional
to the local physical dimension (which can be increased by blocking sites together).
The accuracy of this reconstruction comes from Fawzi and Renner’s result and it is
given by the conditional mutual information between two next-nearest neighbour
sites, conditioned on the site in between. The conditional mutual information
depends on blocking the sites together. If it decays exponentially in the number of
sites blocked, then we can block the sites in such a way that the bond dimension
grows polynomially with the system size.

A natural question to ask is when does the conditional mutual information
decay exponentially with the block size. One answer apparent from the definition
of conditional mutual information (2.36) is when the state is pure and the von
Neumann entanglement saturates the area law exponentially fast. As was discussed
in subsection 4.2.3, a von Neumann entanglement area law does not on its own
imply efficient approximability by MPS. The result by Sieber [114] proves that a von
Neumann entanglement area law is enough, if the constant entanglement entropy is
saturated fast enough (with the size of the entangled region). Recently Kuwahara
[116] discovered that the conditional mutual information decays quickly enough
when the mixed state is a Gibbs state above a certain threshold temperature.

4.4.2 Ground States of Gapped Hamiltonians
Another criterion of approximability of pure states is whether they are a ground
state of a gapped one-dimensional Hamiltonians. This result came together by
a combination of several different works. The flow of implications is outlined in
figure 4.14.

Hastings [16] (together with Koma [117]) proved that being a ground state
of a gapped Hamiltonian implies that a pure state has exponentially decaying
correlations and its Rényi entanglement entropies obey the area law (for some
α < 1). The result by Verstraete and Cirac [112] discussed in section 4.2 connects
this result to approximability by MPS. Later in 2013, Arad, Vazirani, Landau and
Kitaev [118] proved directly that ground states of 1D gapped Hamiltonians can
be efficiently approximated by MPS, bypassing the area law result. This allowed
them to get better efficiency in the approximation. Note that the connection
between between exponentially decaying correlations and entanglement area law
was rigorously proven only in 2015 by Brandão and Horodecki [119].
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Figure 4.14: A diagram of the various results connecting approximability by MPS
with the state being a GS of a gapped 1D Hamiltonian.

47





Chapter 5

Symmetries and Purifications

The laws of physics are rich with symmetries. So are most of the models studied
in quantum many-body physics. Symmetries can be useful to us in a lot of ways.
Knowledge of the symmetries of a system allows us to greatly simplify the its
description in terms of only the crucial / relevant degrees of freedom.

Entire textbooks have been written about symmetries and symmetry breaking
[120, 121] (not only in physics [122]), so in this chapter we will not go into too
much detail. We investigate a method of simplifying the search for the ground
states of symmetric quantum many-body Hamiltonians. As part of the method,
we will use purifications (see section 2.3). This chapter is written without placing
any unnecessary assumptions on the system such as the symmetry group or the
statistics of the constituents. The method described in this chapter will turn out
to be crucial in solving the permutationally-invariant Hubbard model in chapter 6.

5.1 Symmetries
In mathematics a symmetry is usually defined as an operation that leaves a certain
object invariant. In quantum physics those operations will be represented by
unitaries and the objects of interest are quantum states / operators.

Definition 20 (Symmetries). A pure quantum state |ϕ⟩ is considered symmetric
with respect to a symmetry represented by a unitary matrix U if and only if

U |ϕ⟩ = |ϕ⟩ . (5.1)

We say that a pure quantum is symmetric up to a phase if and only if

U |ϕ⟩ = eiα |ϕ⟩ . (5.2)

A quantum operator O is considered symmetric with respect to a symmetry repre-
sented by a unitary matrix U if and only if

UOU † = O. (5.3)

We distinguish between symmetric pure states and pure states which are
symmetric up to a phase. Usually, symmetry up to a phase is sufficient for pure
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states, as the global phase does not have a physical meaning. However, in this
work we will often use the more strict definition of symmetry which requires the
global phase of the state to be preserved. The reason for that will become apparent
in section 5.3. One of the advantages of this convention is that a superposition of
symmetric states is always symmetric.

The unitaries representing a symmetry (of a state / operator) always form
a group. The symmetry is often labelled by the name of the underlying group
(SU(2), U(1), etc. ... ).

5.2 Spontaneous Symmetry Breaking
Typically, the full symmetry group G of a quantum many-body Hamiltonian
contains several different subgroups. Consider a symmetry subgroup G ′ ⊂ G
represented by unitaries Ug for g ∈ G, i.e. UgHU †

g = H. Let |ϕ0⟩ be a ground state
of a Hamiltonian H. It is possible that the state |ϕ0⟩ does not have the symmetry
Ug(for some g ∈ G ′), not even up to a phase, i.e.

Ug |ϕ⟩ = |ϕg⟩ ̸∝ |ϕ⟩ . (5.4)

This is usually referred to as spontaneous symmetry breaking (although precise
definitions differ [120, 123]).

Spontaneous symmetry breaking complicates the search for ground states. As
described in chapter 3, the Hilbert spaces corresponding to quantum many-body
systems are huge, so searching them for the ground state is very difficult. The
search can be made easier by restricting it only to a symmetric subspace, i.e. the
subspace of vectors that have the symmetries of the Hamiltonian. However, by
enforcing this restriction, we will not be able to find symmetry-broken states.

One might claim that there always exists a ground state, which is symmetric
with respect to the symmetry subgroup G ′. Starting from an arbitrary ground
state |ϕ⟩, we can define the pure symmetrization

|ϕsym⟩ =
∫

G′
dµG′Ug |ϕ⟩ . (5.5)

Here the integration over the group uses the Haar measure µG′ on the group G ′. The
vector |ϕsym⟩ constructed this way is symmetric by construction Ug |ϕsym⟩ = |ϕsym⟩,
but in some cases it is equal to the 0-vector (which has all the possible symmetries,
but does not represent any physical quantum state).

A different symmetrization is

ρsym =
∫

G′
dµG′Ug |ϕ⟩ ⟨ϕ|U †

g . (5.6)

This ρsym is always a valid quantum state (positive semi-definite and normalized).
If the starting state |ϕ⟩ is symmetric up to a phase, then equation (5.6) gives
ρsym = |ϕ⟩ ⟨ϕ|. If |ϕ⟩ is not symmetric, even up to a phase, then ρsym is a mixed
state. Note also that we get the same ρsym whether we start from |ϕ⟩ or from any
Ug |ϕ⟩ for g ∈ G ′.
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The energy of the state ρsym is

Tr{Hρsym} = Tr
{
H
∫

G′
dµG′Ug |ϕ⟩ ⟨ϕ|U †

g

}
(5.7)

=
∫

G′
dµG′ Tr

{
U †
gHUg |ϕ⟩ ⟨ϕ|

}
(5.8)

=
∫

G′
dµG′ Tr{H |ϕ⟩ ⟨ϕ|} (5.9)

= ⟨ϕ|H |ϕ⟩ . (5.10)

As we can see, regardless of whether spontaneous symmetry breaking occurs or
not, there always exists a symmetric density operator ρsym with the ground state
energy.

5.3 Purified Ground States
As discussed in section 5.2 above, there always exists a symmetric state ρsym with
the ground state energy. This ρsym may be a pure state, but it may also be a mixed
state. Either way, we may purify it. We construct the standard purification

|Ψ⟩AB = √ρsymA
|ω⟩AB . (5.11)

where |ω⟩ is the maximally-entangled state between the subspaces A and B. In
particular

|ω⟩AB = 1√
d

d−1∑
i=0
|i⟩A ⊗ |i⟩B for qudits, (5.12)

|ω⟩AB =
d∏
i=1

(
1i + a†

ib
†
i√

2

)
|Ω⟩ for fermions. (5.13)

For fermions, use bi and b†
i as the annihilation and creation operators for the

ancillary fermionic modes. The pure state |Ψ⟩AB is a purification of ρsym, with the
subspace B being ancillary. Since the matrix ρsym is symmetric with respect to Ug,
so is its square root

∀g ∈ G ′ : Ug
√
ρsymU

†
g = √ρsym (5.14)

Now we plug equation (5.14) into equation (5.11), specifying the subspace that the
operators act on with an additional subindices A and B,

|Ψ⟩AB = (Ug)A
√
ρsymA

(
U †
g

)
A
|ω⟩AB (5.15)

= (Ug)A
√
ρsymA

(
Ũg
)
B
|ω⟩AB (5.16)

= (Ug)A
(
Ũg
)
B

√
ρsymA

|ω⟩AB (5.17)

= (Ug)A
(
Ũg
)
B
|Ψ⟩AB . (5.18)

Here the form of Ũg depends on the nature of the quantum system again. For
qudits any operator O obeys

OA |ω⟩AB = OT
B |ω⟩AB , (5.19)
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implying that Ũg = U∗
g . For fermions we have

ai |ω⟩AB = b†
i |ω⟩AB , (5.20)

a†
i |ω⟩AB = −bi |ω⟩AB , (5.21)

so we construct Ũg from Ug by expressing it using the mode operators and using
the equalities (5.20) and (5.21).

Either way, (Ug)A
(
Ũg
)
B

is a unitary and the purification |Ψ⟩AB is symmetric
with respect to the action of this unitary.

The purification |Ψ⟩AB has the same energy as |ϕ⟩ and ρsym, i.e.

⟨Φ0|HA |Φ0⟩AB = Tr{ρAHA} = ⟨ϕ0|HA |ϕ0⟩A . (5.22)

Therefore, the problem is shifted to minimizing ⟨Φ|HA |Φ⟩AB with respect to
purifications |Φ⟩AB symmetric under the action of (Ug)A

(
Ũg
)
B

(for all g ∈ G ′).
The calculations above show that regardless of whether the ground state

spontaneously breaks the symmetry Ug or not, there always exists a pure state
living in a Hilbert space appended by the ancillary subspace, which has the
symmetry (Ug)A

(
Ũg
)
B

. If we want to find the ground state of H, we can proceed
in the following steps:

1. Identify the symmetries of H and their respective unitaries Ug.

2. Append the Hilbert space with an ancillary subspace.

3. Construct (Ug)A
(
Ũg
)
B

(for all g ∈ G).

4. Search the enlarged Hilbert space for a ground state. Restrict the search to
states symmetric under (Ug)A

(
Ũg
)
B

.

This approach allows us to restrict the search to symmetric states without having
to worry about spontaneous symmetry breaking. On the other hand, the dimen-
sionality of the Hilbert space that we need to search is larger now (square of the
dimensionality of the physical Hilbert space alone). Simply restricting the Hilbert
space to symmetric purifications will not be able to offset this dimensionality
growth. As we will see in the examples in section 5.4 and chapter 6, we usually
have to utilize some other approach that amplifies the advantage of symmetries of
the purifications (e.g. the quantum de Finetti theorem or tensor networks).

5.3.1 Detecting Spontaneous Symmetry Breaking
In this subsection, we investigate the properties of |Ψ⟩ and ρsym and how are they
related.

A purification of a density matrix ρ is entangled (between the physical part and
the ancillary part) if and only if ρ is mixed. The calculation above demonstrated
that if a ground state |ϕ⟩ breaks the symmetry G ′ of the Hamiltonian, then the
state ρsym is mixed and therefore its purification is entangled. But the logic can
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also go the other way. If the purification ground state is a product state, then the
corresponding ground state ρsym = |ϕ⟩ ⟨ϕ| is pure and symmetric. If the purification
ground state is entangled, then the corresponding ground state ρ is mixed and
therefore degenerate. Ground state degeneracy means that some symmetry of the
Hamiltonian is spontaneously broken. We can always define a unitary permuting
the various ground states. This is itself a symmetry of the Hamiltonian (according
to the definition 20), but it might not be part of G ′ — the symmetry group that
we’re interested in.

It is generally advised to pick G ′ as large as possible. The larger the group G ′ is,
the more restricted the space of symmetric purifications is. And the more restricted
the space of symmetric purifications is, the easier it is to find the ground state
purification. The examples in subsection 5.4.2 and chapter 6 are permutationally-
invariant systems because the permutation group is large (exponential in the system
size), so it restricts the Hilbert space a lot.

On the other hand, some of the symmetries of the Hamiltonian might not be
very interesting and/or physical, so their spontaneous breaking is not relevant. As
was mentioned above, a degenerate ground state automatically breaks a symmetry
of the Hamiltonian which permutes the different ground states. Furthermore,
depending on the method used to find the ground state purification, it might
sometimes be beneficial to not include a known (and physically relevant) symmetry
in the group G ′. A specific case of this will be discussed in subsection 5.4.2.

In the case that G ′ itself further decomposes into smaller subgroups, we can
find out which of them was broken.

Theorem 5. Let G ′′ be a subgroup of G ′. We claim that the symmetry corresponding
to G ′′ is not spontaneously broken if and only if the purification ground state fulfills

∀g ∈ G ′′ : (Ug)A |Φ⟩AB = eiα(g) |Φ⟩AB . (5.23)

Proof. For one direction of the equivalence, split the situation in two cases: If the
ground state is not degenerate, then the ground state has the symmetry Ug for
g ∈ G ′′ up to a phase and the equation (5.23) is obvious.

If the ground state is degenerate then no spontaneous symmetry breaking
implies that all of the ground states have to be symmetric with respect to Ug
up to the same phase. If different ground states gave different phase, then a
superposition of these would be a ground state spontaneously breaking the Ug
symmetry. All ground states being symmetric up to the same phase α(g) implies
Ugρsym = eiα(g)ρsym, which immediatelly gives equation (5.23).

For the other direction of the equivalence, start from the equation (5.23). After
decomposing the purification ground state as |Φ⟩AB = √ρsym |ω⟩AB we get an
equality between two operators acting on the maximally entangled state. It can
therefore be reformulated as equality between two operators:

Ug
√
ρsym = eiα(g)√ρsym. (5.24)

Next, we multiply both sides by √ρsym from the right and apply trace to both
sides:

Tr{Ugρsym} = eiα(g). (5.25)
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Now, we express ρsym as the integral from equation (5.6) and take the integration
outside of the trace: ∫

f∈G′
dµG′ Tr

{
UgUf |ϕ⟩ ⟨ϕ|U †

f

}
= eiα(g). (5.26)

Next, we rearrange the trace to a bra-ket expectation value and multiply both
sides of the equation by e−iα(g):∫

f∈G′
dµG′ ⟨ϕ|U †

fUgUf |ϕ⟩ e−iα(g) = 1. (5.27)

Now, we take the real part of both sides of the equation. The operation of taking
the real part of a complex number commutes with the integration:∫

f∈G′
dµG′ Re

[
⟨ϕ|U †

fUgUf |ϕ⟩ e−iα(g)
]

= 1. (5.28)

As the last step, we simply subtract 1 from both sides and take it inside the integral
(utilising the property of the Haar measure

∫
f∈G′ dµG′ = 1)∫

f∈G′
dµG′

{
Re

[
⟨ϕ|U †

fUgUf |ϕ⟩ e−iα(g)
]
− 1

}
= 0. (5.29)

The absolute value of ⟨ϕ|U †
fUgUf |ϕ⟩ e−iα(g) is less or equal to 1. Its real part is

thus also less or equal to 1. Therefore we have an integral of non-positive function
that is equal to 0. The only possibility is that the function is 0 almost everywhere.
That implies

⟨ϕ|U †
fUgUf |ϕ⟩ = eiα(g). (5.30)

In other words, almost all of the ground states Uf |ϕ⟩ have the symmetry Ug, up
to the same phase eiα(g).

5.4 Examples
In this section we present a couple of simple examples to demonstrate the use of
the method described about. We will start with an elementary example of two
fermions. Then we will look at hardcore bosons on a permutationally-invariant
lattice with all-to-all hopping and interactions. And the last example will be
the Majumdar-Ghosh model. In chapter 6 we apply our method to yet another
example — The Hubbard model with on a permutationally-invariant lattice with
all-to-all hopping and interactions. However, that problem is relatively complex,
so it deserves its own chapter.

5.4.1 Elementary Example — Two Fermions
In this example we have a Hilbert space of two fermions (a1 and a2) with the
Hamiltonian

H = a†
1a1.
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We can clearly see that the ground state is either |Ω⟩ or a†
2 |Ω⟩ or any superposition

of the two, for example

sin(θ) |Ω⟩+ cos(θ)a†
2 |Ω⟩ . (5.31)

for a free parameter θ ∈ [0, π/2]. As we can see, this ground state is degenerate.
The Hamiltonian has plenty of symmetries, for example:

• U(1) for the 2nd species with parameter ϕ: a2 → eiϕa2

• U(1) for the 1st species with parameter φ: a1 → eiφa1

• Particle-hole symmetry for the 2nd species: a2 ←→ a†
2

Looking back at the general ground state (5.31), we can see that it always breaks at
least some of the above symmetries. The particle-hole symmetry is broken unless
θ = π/4. And the U(1) symmetry is broken unless θ ∈ {0, π/2}.

However, a mixed state

|Ω⟩ ⟨Ω|
2 + a†

2 |Ω⟩ ⟨Ω| a2

2

has all of the above symmetries. And it has a purification

|Ψ⟩ = 1 + a†
2b

†
2√

2
|Ω⟩ ,

which has all of the above symmetries and is entangled, indicating symmetry
breaking for the physical ground state.

5.4.2 Hardcore Bosons with All-to-All Hopping and Interactions
For this example we consider a permutationally-invariant system of hardcore bosons
living on N sites. Hardcore bosons commute when they are on different sites (j ̸= i),
but anticommute on-site:

[aj, ai] = 0, (5.32)
[aj, a†

i ] = 0, (5.33)
{ai, a†

i} = 1, (5.34)
{ai, ai} = 0. (5.35)

The Hamiltonian

H = t

N

∑
i ̸=j

(
a†
iaj + h.c.

)
+ µ

∑
i

a†
iai + V

N

∑
i ̸=j

a†
iaia

†
jaj (5.36)

contains three terms: hopping, chemical potential and a two-body interaction.
These three terms each have corresponding real parameters t, µ and V to tune
their strength. The hopping and interaction terms are scaled so that all parts of
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the Hamiltonian scale linearly with N (and therefore remain relevant for large N).
Note that the sums in the hopping and interaction terms run over all pairs of sites.
In fact, the Hamiltonian does not contain any information about underlying lattice
structure at all. This is compatible with the permutation symmetry of the system.
The Hamiltonian also has the U(1) particle-number symmetry (seen already in the
previous example). The permutation symmetry will be examined in more detail in
chapter 6.

As explained in section 5.3, there exists a purification ground state |Ψ⟩ with the
permutation symmetry and the U(1) symmetry. To find it, we can use the quantum
de Finetti theorem [54–57]. It guarantees that for large N , any expectation values
of local observables may be reproduced by a product state |ψprod⟩ = ⊗N

i=1 |ψi⟩
(with error scaling as 1/N). However, the quantum de Finetti theorem says
nothing about preserving the symmetries of the original state. So while |ψprod⟩ is
permutationally-invariant by construction, it might not have the U(1) symmetry.
If we force the variational family to be a product of U(1)-symmetric states, it will
not achieve the ground state energy (in some parts of the phase diagram). For
this reason, we choose G ′ to only include the permutation symmetry and we will
address the U(1) symmetry later.

In the purified Hilbert space, there will be another species of hardcore bosons,
annihilated and created by bi, b†

i respectively. Most generally, the single-site state
|ψi⟩ has the following form:

|ψi⟩ =
(
θ0 + θ1a

†
i + θ2b

†
i + θ3a

†
ib

†
i

)
|0i⟩ . (5.37)

with the four parameters θ0, θ1, θ2, θ3 subjected to the normalizition restriction
|θ0|2 + |θ1|2 + |θ2|2 + |θ3|2 = 1. In terms of these parameters, the energy density of
the state is

E

N
= ⟨ψprod|H |ψprod⟩

N
(5.38)

= µ ⟨ψi| a†
iai |ψi⟩+ t ⟨ψi| ⟨ψj|

(
a†
iaj + a†

jai
)
|ψi⟩ |ψj⟩+ V

(
⟨ψi| a†

iai |ψi⟩
)2

(5.39)

= µ
(
|θ1|2 + |θ3|2

)
+ 2t|θ∗

0θ1 + θ∗
2θ3|2 + V

(
|θ1|2 + |θ3|2

)2
. (5.40)

In the second equality we used the fact that ⟨ψprod| is permutationally invariant to
replace the sums in the Hamiltonian H with just one of its summands.

The expression for the energy density can be minimized by hand. We will split
the calculation in two cases based on the sign of t.

First consider t > 0. In this case, we want to minimize the expression
|θ∗

0θ1 + θ∗
2θ3|. This can be achieved by setting θ2 = θ1 = 0 without restricting the

possible values of |θ1|2 + |θ3|2 (because of the freedom in setting θ3). Finding the
ground state energy density then reduces to minimizing µ|θ3|2 +V |θ3|4 (for allowed
range of |θ3| ∈ [0, 1]).

We can easily see that the ground state corresponds to |θ3| = 0 for V ≥ −µ ≤ 0,
|θ3| = 1 for −µ ≥ 2V ≤ −2µ and to |θ3| =

√
− µ

2V in the remaining area (2V ≥
−µ ≥ 0), see figure 5.1. Because of the normalization, changes in |θ3| will change
|θ0|, however this has no effect on the energy (after we forced θ2 = θ1 = 0).
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Figure 5.1: Ground state phase diagram for hardcore bosons for t > 0.

Now consider t < 0. In this case, we want to maximize |θ∗
0θ1 + θ∗

2θ3|. When
minimizing the energy, we can assume all θ’s to be real and non-negative. This
is because their individual phases will not have any effect on the µ and V terms,
while the t term is maximized if θ∗

0θ1 and θ∗
2θ3 are in phase. By substituting

θ0 = √c1A, (5.41)
θ2 =

√
1− c1A, (5.42)

θ1 = √c2B, (5.43)
θ3 =

√
1− c2B, (5.44)

for some real A,B, c1, c2 satisfying c2
1 + c2

2 = A2 + B2 = 1, we find the energy
density to be

E

N
= µB2 + 2tA2B2

(√
c1c2 +

√
(1− c1)(1− c2)

)2
+ V B4. (5.45)

The term in the parentheses is maximized by c1 = c2 (in which case it is just A2B2).
Setting c1 = c2 simplifies the energy density to

E

N
= µB2 + 2tA2B2 + V B4 (5.46)

and the purification ground state ansatz to

|ψi⟩ =
(
A+Ba†

i

) (√
c1 +

√
1− c1b

†
i

)
|0i⟩ . (5.47)

The energy density (5.46) can be minimized using the Lagrange multipliers
method. There are three possible solutions, depending on the paramteres V, µ and
t:

• For µ > −t and V > −µ+t, the energy density is minimized by A = 1, B = 0.
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Figure 5.2: Ground state phase diagram for hardcore bosons for t < 0.

• For V < −µ + t and 2V < −µ + 3t, the energy density is minimized by
A = 0, B = 1.

• For µ < −t and 2V > −µ+ 3t, the energy density is minimized by

A =
√

2V − 2t+ µ

2V − 4t , (5.48)

B =
√
−2t− µ
2V − 4t . (5.49)

Regardless of A and B, the resulting state is a product state between the
ancillary subspace and the physical subspace.

The phase diagram looks similar to the t > 0 case. One difference is that the
position of the critical point is changed, although the slope of the phase transition
lines is not. Another difference is that now the partially-filled phase is different
from what it was previously.

Symmetry breaking

Now, we analyze the phases from the perspective of spontaneous symmetry breaking.
The vacuum and full filling phases are obviously product states and they do not
break any of the symmetries of the Hamiltonian.

There are two partial filling phases. In the phase diagrams we labelled them
as Partial filling phase I / II. The partial filling phase I for t > 0 corresponds to
(θ0, θ1, θ2, θ3) = (

√
1 + µ

V
, 0, 0,

√
− µ
V

). The ground state in this phase is entangled,
signaling spontaneous breaking of the permutation symmetry. On the other hand,
the partial filling phase II for t < 0 is a product state (between the physical and
ancillary degrees of freedom), as can be clearly seen in equation (5.47). The state
breaks the U(1) symmetry and it is degenerate. When we were looking for the
ground state, we restricted ourselves to real θ’s. Lifting this restriction reveals the
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5.4. Examples

Figure 5.3: The two ground states of the Majumdar-Ghosh model

degeneracy — adding any complex phase to B does not change the ground state
energy. Neither does any change of the ancillary part of the state (i.e. changing
c1 = c2).

Physically, the difference between the two phases is the following: In phase I,
some sites will be filled and some will be empty (breaking permutation symmetry),
while in phase II, all sites will be in the same superposition of being filled and
empty (preserving permutation symmetry, but breaking the U(1) symmetry).

5.4.3 Majumdar–Ghosh Model

The Majmundar-Ghosh model [124] is a simple model of a spin chain with a
nearest-neighbour interaction as well as a next-nearest-neighbour interaction (of
half strength). The Hamiltonian is

H =
∑
i

(
S⃗i · S⃗i+1 + 1

2 S⃗i · S⃗i+2

)
. (5.50)

It is a special case of a more general class of J1 − J2 models (which can have any
relative strength of the two interaction terms). The exact solution to this model is
known [125]. The ground state corresponds to pairs of neighbouring spins forming
singlets (|↑↓⟩ − |↓↑⟩) /

√
2. The ground state is 2-fold degenerate, depending on

which pairs of sites are entangled into the singlets (see figure 5.3).
The symmetries of the model are translations (by any number of sites) and

global rotations of all the spins simultaneously. The symmetry group of translations
is much smaller than the symmetry group of permutations, so we do not expect to
be able to solve this ground state problem by hand. Instead of attempting to find
the solution from scratch by using the symmetric purification approach, we will
take into account that we already know the solution and just present a symmetric
purification ground state which reduces to a mixture of the two degenerate ground
states.

First, note that the two ground states |Ψ1⟩ and |Ψ2⟩ fulfill the global spin
rotation symmetry. The symmetry broken is the translation symmetry (when
translated by an odd number of sites).

The ground states are product states of blocks of two sites and can therefore be
represented as matrix product states (MPS) with bond dimension two (see figure
5.4b). As operators, the ground states will be matrix product operators of bond
dimension four, depicted in figure 5.4a.
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Figure 5.5: The MPS tensor corresponding to the purification ground state. For
the tensor values see table 5.1.

Left / right bond index 1 2 3 4 5
1 0 0 0 0 |↑↑⟩
2 0 0 0 0 i |↑↓⟩
3 0 0 0 0 i |↓↑⟩
4 0 0 0 0 |↓↓⟩
5 |↓↓⟩ i |↓↑⟩ i |↑↓⟩ |↑↑⟩ 0

Table 5.1: The components of the tensor constructing the purification ground state
MPS. The table contains the output of the tensor, given the left and right bond
indices (ranging from 1 to 5). The second spin in each pair is the ancillary spin.

(a) The two ground states of the Majumdar-
Ghosh model as an MPO of bond dimen-
sion four.

(b) The two ground states of the Majumdar-
Ghosh model as an MPS of bond dimension
two.

Figure 5.4: The ground states of the Majumdar-Ghosh model depicted as tensor
networks.

In order to get the ground state purification, we first need to mix those two
states uniformly, corresponding to equation (5.6). This will by construction create
a translationally invariant MPO with bond dimension five. From it we create a
translationally invariant purification, analogously to equation (5.11). The tensor of
the purification is diagramatically shown in figure 5.5 and its values are described
in table 5.1. The ground state purification is a translationally-invariant MPS, so it
is defined by only one tensor.

By construction, the MPS purification is invariant with respect to translations
or global rotations of the spins. However, as was explained in section 5.3.1, when
we apply translation to only the physical spins, the state is changed. This comes
from the fact that the original ground states break the translation symmetry.
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Chapter 6

Hubbard Model with Permutation
Symmetry

In this chapter we will describe our approach towards solving the Hubbard model
with permutation symmetry, taking advantage of the method described in chapter
5. We will start with a description of the Hubbard model in section 6.1, which
includes the identification of the symmetries of its Hamiltonian. Then in section 6.2,
we discuss extending those symmetries to the ancillary subspace and constructing
a symmetric variational family on the extended Hilbert space. Finally in section
6.3 we describe the ground state phase diagram, including a description of all its
phases. The calculation of the phase diagram is included in appendix A.

6.1 Hubbard Model
In this section we will describe the object of our study — the Hubbard model with
permutation symmetry. In subsection 6.1.1 we will give a general description of
models generally referred to as Hubbard models, their features and some known
results. In subsection 6.1.2 we will describe our particular model. Lastly in
subsection 6.1.3 we will identify and describe the symmetries of our model, in
particular, the unitaries representing those symmetries.

6.1.1 Hubbard Model Generally
The Hubbard model [126], sometimes called the Fermi-Hubbard model to distin-
guish it from the Bose-Hubbard model [127], is a standard model in quantum
many-body physics. It describes systems with two species of fermions on a lattice.
The Hubbard Hamiltonian contains two important terms — the hopping term and
the interaction term.

The hopping term serves to allow the hopping of fermions of both species
between two neighbouring sites:

t
∑
<i,j>

(
a†
i,1aj,1 + a†

i,2aj,2 + h.c.
)
, (6.1)
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where the sum is taken over all pairs of neighbouring sites i and j. The real
parameter t is used to tune the strength of this term.

The interaction term represents the interaction that happens when two fermions
(of different species) end up on the same site:

U
∑
i

a†
i,1ai,1a

†
i,2ai,2. (6.2)

Here the sum is taken over all sites of the system. Again, this term has a real
parameter U associated with it, whose sign determines whether this interaction is
repulsive or attractive.

Usually, the Hubbard model is solved for a fixed number (or density) of particles
[128, 129]. In this thesis, we focus on a different approach in which we let the
number of particles change freely and add one more term to the Hamiltonian,
representing the chemical potential,

µ
∑
i

(
a†
i,1ai,1 + a†

i,2ai,2
)
. (6.3)

This term simply adds energy µ for each particle in the system, regardless of which
site it is on. Tuning the parameter µ of this term allows us (in principle) to control
the density of particles in the system by punishing (or rewarding) adding extra
particles.

The Hubbard Hamiltonian is made up of the three aforementioned terms. The
real parameters t, U and µ change the relative importance of the terms of the
Hamiltonian, which in turn influences the ground state. For t→ +∞, the model
describes a Fermi gas of freely moving (non-interacting) particles [130]. On the
other hand for t = 0, the model reduces to a single-site problem [130]. There
are many different versions of the Hubbard model based on the geometry of the
underlying lattice [131–134]. The lattice geometry determines which sites are
considered nearest neighbours for the sum in equation (6.1). At first sight, this
might seem like a minor detail, but it can have profound effect on the ground state,
or even our capability to find one. Alternative generalizations of the Hamiltonian
stem from tweaking some of its terms (e.g. adding anisotropy) or adding other
terms (e.g. off-site interaction).

(a) 1D linear lattice (b) 2D square lattice

Figure 6.1: Depiction of possible states of the Hubbard model on two simple
lattices. There are two fermionic species: depicted as red and blue. Each site has
space for one fermion of each species. The straight lines connect neighbouring sites.
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Despite its simplicity, solving the Hubbard model has proven to be difficult.
To date, only a handful of special cases or toy versions of the model have been
solved. One of such is the analytical solution of the Hubbard model on a 1D chain
[42, 135, 136] (see figure 6.1a) found by employing the Bethe ansatz [44]. Another
is a numerical solution of the Hubbard model on an infinite-dimensional cubic
lattice obtained by using dynamical mean field theory [137]. In this chapter we solve
another toy version of the model — permutationally-invariant Hubbard model. In
chapter 7 we provide some of our own investigation into the infinite-dimensional
cubic lattice Hubbard model.

6.1.2 Permutationally-Invariant Hubbard Model with Off-Site
Interactions

In our case we are going to solve the Hubbard model for a permutationally-invariant
system. Here it should be mentioned that only after our work was finished did it
come to our attention that some research into this model (and similar models) had
already been done in the past [129, 138–142]. Some of the results overlap, but our
approach is unique. Furthermore, we also add a permutationally-invariant off-site
interaction term to the Hamiltonian, which is entirely new.

We will label by N the number of sites in our system and we are interested in
the limit of very large N . The permutation invariance implies that there is no way
of distinguish any specific pair of sites, contrary to what happens for usual lattices
where we can identify nearest neighbours. In a permutationally-invariant system,
every site is nearest neighbour with every other site. This means that in our case,
the hopping term looks like

Ht = t
N∑
i=1

N∑
j=1
j ̸=i

(
a†
i,1aj,1 + a†

i,2aj,2
)
. (6.4)

This sum runs over all pairs of sites twice, however it only contains terms hopping
from site j to site i, so no term is repeated.

The on-site interaction and the chemical-potential terms look like

HU = U
N∑
i=1

a†
i,1ai,1a

†
i,2ai,2, (6.5)

Hµ = µ
N∑
i=1

(
a†
i,1ai,1 + a†

i,2ai,2
)
. (6.6)

On top of these three terms, we add an extra off-site interaction term to the
Hamiltonian,

HV = V

2

N∑
i=1

N∑
j=1
j ̸=i

(
a†
i,1ai,1 + a†

i,2ai,2
) (
a†
j,1aj,1 + a†

j,2aj,2
)
. (6.7)

The 1
2 factor in the off-site interaction term is included to cancel double counting

(because the sums will count every pair of sites twice). Note that unlike the on-site
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interaction, the off-site interaction acts also between two fermions of the same
species, which may sit on different sites. We could have different same-species
and off-species off-site interactions, but that would explicitly break the SU(2)
symmetry of the Hamiltonian. The overall Hamiltonian will consist of the sum of
the above four terms (6.4)–(6.7).

In order for all of the terms of the Hamiltonian to be relevant even in the
thermodynamic limit (number of sites N → +∞), we need to pay attention to
how they scale with N . We use the result of Kraus et al. [143], who described the
scaling of permutationally-invariant fermionic Hamiltonians with at most two-site
terms. Terms which are sums of single-site operators, such as HU and Hµ, scale
linearly with N . For sums of two-site operators, there are two possibilities. The
deciding factor is whether the two-site operators act with even or odd number of
mode operators on each of the two sites. The off-site interaction term HV belongs
in the even category and therefore scales like N2. The hopping term belongs in
the odd category and therefore it scales linearly with N . This scaling behaviour
is typical of fermionic operators and does not apply to permutationally-invariant
bosonic systems (compare with the Hamiltonian for hardcore bosons (5.36)).

For simplicity, we scale the Hamiltonian so that the energy is of the scale O(1)
as N → +∞,

H = Ht

N
+ HU

N
+ Hµ

N
+ HV

N2 . (6.8)

6.1.3 Symmetries of Hubbard Model with Permutation Invari-
ance

To be able to apply the approach from chapter 5, we first need to identify the
symmetries of the Hamiltonian from equation (6.8).

Permutation symmetry

The first symmetry (obvious from the construction) is the permutation symmetry.
The corresponding group is called the symmetric group and it is labelled SN . The
permutation is an operation on the system sites i, transforming them into different
system sites

π : i→ π(i). (6.9)

The correspond unitary acts on the the annihilation operators as1

ai,1 → aπ(i),1, (6.10)
ai,2 → aπ(i),2. (6.11)

Note that we have to apply the same permutation to both species of the fermions.
This makes sense physically because we permute only the sites and a site can host
both species of the fermions. Any permutation can be constructed from multiple

1As the action of the symmetry is a unitary transformation, it looks exactly the same when
annihilation operators are turned into creation operators by the Hermitian adjoint †.
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swaps (permutations of only two sites). A unitary corresponding to the swap of
sites i←→ j looks like

U(ij) =
2∏

k=1

(
ai,ka

†
i,kaj,ka

†
j,k + a†

i,kai,ka
†
j,kaj,k + a†

i,kaj,k + a†
j,kai,k

)
. (6.12)

Any more complicated permutation will be composed of multiple swaps, so the
overall unitary will be a product of multiple swap unitaries.

Particle number symmetry

Another symmetry of the Hamiltonian is the U(1) particle number symmetry.
The corresponding unitary representation will add a complex phase to all of the
annihilation operators (and the opposite phase to all of the creation operators):

ai,1 → eiαai,1, (6.13)
ai,2 → eiαai,2. (6.14)

Here α is a real parameter. We can see that this is a symmetry of the Hamiltonian
because each of its terms consists of products of an equal number of creation and
annihilation operators. The corresponding unitary looks like

UU(1)(α) =
N∏
i=1

2∏
k=1

(
ai,ka

†
i,k + e−iαa†

i,kai,k
)
. (6.15)

SU(2) rotation symmetry

The last symmetry that we will present here is the SU(2) spin symmetry. This
symmetry corresponds to the following transformation:

ai,1 → βai,1 − γ∗ai,2, (6.16)
ai,2 → γai,1 + β∗ai,2. (6.17)

Here β and γ are complex parameters satisfying |β|2 + |γ|2 = 1 (so that the
transformation in equations (6.16) and (6.17) is a special unitary transformation).
To see that the Hamiltonian has this symmetry, we look at each term individually:

a†
i,1aj,1 →

[
β∗a†

i,1 − γa
†
i,2

]
[βaj,1 − γ∗aj,2] (6.18)

= |β|2a†
i,1aj,1 − β∗γ∗a†

i,1aj,2 − βγa
†
i,2aj,1 + |γ|2a†

i,2aj,2, (6.19)

a†
i,2aj,2 →

[
γ∗a†

i,1 + βa†
i,2

]
[γaj,1 + β∗aj,2] (6.20)

= |γ|2a†
i,1aj,1 + β∗γ∗a†

i,1aj,2 + βγa†
i,2aj,1 + |β|2a†

i,2aj,2. (6.21)

If we add together the terms (6.19) and (6.21), we obtain a†
i,1aj,1 + a†

i,2aj,2, proving
that the hopping term has this symmetry. The same applies when we set j = i,
proving that the chemical-potential and off-site interaction terms also have this

65



Chapter 6. Hubbard Model with Permutation Symmetry

symmetry. To see what the on-site interaction term gets transformed into, we look
at the transformation of ai,1ai,2:

ai,1ai,2 → [βaj,1 − γ∗aj,2] [γaj,1 + β∗aj,2] (6.22)
= |β|2ai,1ai,2 − |γ|2ai,2ai,1 = ai,1ai,2. (6.23)

For the same reason, we get a†
i,1a

†
i,2 → a†

i,1a
†
i,2. Therefore

a†
i,1ai,1a

†
i,2ai,2 = −a†

i,1a
†
i,2ai,1ai,2 → −a

†
i,1a

†
i,2ai,1ai,2 = a†

i,1ai,1a
†
i,2ai,2, (6.24)

which proves that the interaction term also has the SU(2) symmetry. The
corresponding unitary is

USU(2)(β, γ) =
N∏
i=1

(
ai,1a

†
i,1ai,2a

†
i,2 + a†

i,1ai,1a
†
i,2ai,2 (6.25)

+ βa†
i,1ai,1ai,2a

†
i,2 + β∗ai,1a

†
i,1a

†
i,2ai,2 (6.26)

− γ∗a†
i,2ai,1 + γa†

i,1ai,2
)
. (6.27)

Note that as it stands, the Hubbard Hamiltonian from equation (6.8) does
not have a particle-hole symmetry. It can have it for some specific values of the
parameters t, U, µ and V , but it does not have it generally.

6.2 Symmetries and Variational Family

In this section we will go through the process described in chapter 5 to extend
the symmetries described in subsection 6.1.3 to act onto a larger Hilbert space
of purifications. We will then describe the states within this space that have the
required symmetries and which will therefore be used to find the ground state.

6.2.1 Extending Symmetries to the Ancillary Subspace

Before we start looking for the ground state purification, we need to extend the
action of the symmetries discussed in subsection 6.1.3 to the ancillary subspace.
The way to do that is shown in section 5.3. We let the Hermitian adjoint of the
unitaries act on the physical half of a maximally entangled state (5.13) and then
use the formulas (5.20) and (5.21) to transform the unitaries into different ones
acting on the ancillary subspace instead.

We begin with the U(1) unitary from equation (6.15). We go slowly here
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whereas for the other unitaries we skip over some steps for brevity:

[
U †

U(1)(α)
]
A
|ω⟩AB =

N∏
i=1

2∏
k=1

(
ai,ka

†
i,k + e−iαa†

i,kai,k
)†
|ω⟩AB (6.28)

=
N∏
i=1

2∏
k=1

(
ai,ka

†
i,k + eiαa†

i,kai,k
)
|ω⟩AB (6.29)

=
N∏
i=1

2∏
k=1

(
−ai,kbi,k + eiαa†

i,kb
†
i,k

)
|ω⟩AB (6.30)

=
N∏
i=1

2∏
k=1

(
bi,kai,k − eiαb†

i,ka
†
i,k

)
|ω⟩AB (6.31)

=
N∏
i=1

2∏
k=1

(
bi,kb

†
i,k + eiαb†

i,kbi,k
)
|ω⟩AB (6.32)

=
[
ŨU(1)(α)

]
B
|ω⟩AB . (6.33)

The parentheses each act on a different site/species and contain an even number of
fermionic operators, so they all commute with each other. That is why we can do
the operations in parallel. We can see that the unitary

[
ŨU(1)(α)

]
B

looks almost
exactly like the unitary

[
UU(1)(α)

]
A

, but with the opposite phase (and acting on
the ancillary fermions instead of the physical fermions). Taken as a single unitary[
UU(1)(α)ŨU(1)(α)

]
AB

acting on the entire Hilbert space, the U(1) symmetry acts
like

ai,1 → eiαai,1, (6.34)
ai,2 → eiαai,2, (6.35)
bi,1 → e−iαbi,1, (6.36)
bi,2 → e−iαbi,2. (6.37)

Applying the same process, we find that the unitary
[
Ũ(ij)

]
B

corresponding to
the swapping of two sites extended onto the ancillary degrees of freedom looks like

[
Ũ(ij)

]
B

=
2∏

k=1

(
bi,kb

†
i,kbi,kb

†
i,k + b†

i,kbi,kb
†
i,kbi,k + b†

i,kbj,k + b†
j,kbi,k

)
. (6.38)

This looks identical to
[
U(ij)

]
A

(other than acting on the ancillary fermions instead
of the physical fermions). Therefore permutation acts in the same way on the
physical and the ancillary fermions:

ai,1 → aπ(i),1, (6.39)
ai,2 → aπ(i),2, (6.40)
bi,1 → bπ(i),1, (6.41)
bi,2 → bπ(i),2. (6.42)
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Similarly, we extend the action of the SU(2) symmetry to the ancillary fermions.
The corresponding unitary is

[
ŨSU(2)(β, γ)

]
=

N∏
i=1

(
bi,1b

†
i,1bi,2b

†
i,2 + b†

i,1bi,1b
†
i,2bi,2 (6.43)

+ β∗b†
i,1bi,1bi,2b

†
i,2 + βbi,1b

†
i,1b

†
i,2bi,2 (6.44)

− γb†
i,2bi,1 + γ∗b†

i,1bi,2
)
. (6.45)

This looks like the SU(2) unitary for the physical fermions, except the coefficients
β and γ are complex-conjugated. The SU(2) symmetry extended on the entire
Hilbert space acts like

ai,1 → βai,1 − γ∗ai,2, (6.46)
ai,2 → γai,1 + β∗ai,2, (6.47)
bi,1 → β∗bi,1 − γbi,2, (6.48)
bi,2 → γ∗bi,1 + βbi,2. (6.49)

6.2.2 Fermionic de Finetti Theorem
Now we start restricting our state space to states compatible with the symmetries
described in the previous subsection. We will start with the permutation symmetry.
Bosonic states with permutation symmetry obey the quantum de Finetti theorem,
which says that for N → +∞, they can be approximated well by product states
(or mixtures thereof) [54–57].

An analogous result for fermionic systems was recently discovered by Krumnow
et al. [58], called the fermionic de Finetti theorem.

Theorem 6 (Fermionic de Finetti). Let ρ be a permutationally invariant fermionic
state on a system with N ≥ 6 sites with p fermionic species per site. Then there
exist single-site fermionic states |ϕl⟩ respecting the fermionic parity superselection
rule and coefficients al ≥ 0 such that ∑l al = 1, satisfying

∥∥∥∥∥TrN\k ρ−
∑
l

al |ϕl⟩ ⟨ϕl|⊗l
∥∥∥∥∥

1
≤ 22p+1√k − 13

√
3N

+ 22p+1k

N
. (6.50)

The notation here is adapted directly from Krumnow et al. [58] and warrants
some explanation. As was emphasized in section 2.6, fermionic many-body Hilbert
spaces do not have the tensor product structure and thus do not allow for simple
tensor-product states2. However, as the states |ϕl⟩ respect the fermionic parity
superselection rule, the density matrix |ϕl⟩ ⟨ϕl| consists of products of even number
of mode operators. Products of even number of fermionic mode operators commute
with each other, so a product of the density matrices |ϕl⟩ ⟨ϕl| for different sites
will act exactly like a tensor product state. If we perform the Jordan-Wigner

2Instead, we can use Slater determinants [144], which have similar properties to product
states.
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transformation [145], we get indeed a tensor product state (of qudits). The operator
TrN\k ρ corresponds to the state ρ reduced from N to k sites.

The Fermionic de Finetti theorem implies that expectation values of operators
with the permutationally invariant purification ground state can be approximated
with error of order O

(
1
N

)
by a fermionic product state

σ =
∑
l

al |ϕl⟩ ⟨ϕl|⊗N . (6.51)

In particular, let |Ψ⟩ be the true purification ground state of the permutationally-
invariant Hubbard model. The expectation value of the chemical-potential term
with the ground state |Ψ⟩ is

⟨Ψ|
N∑
i=1

µ

N

(
a†
i,1ai,1 + a†

i,2ai,2
)
|Ψ⟩ = µ ⟨Ψ|

(
a†

1,1a1,1 + a†
1,2a1,2

)
|Ψ⟩ . (6.52)

Here we used the fact that |Ψ⟩ is permutationally invariant to replace the sum
with just one of its summands. The expectation value of the same term with the
state σ from equation (6.51) is

Tr
{
σ

N∑
i=1

µ

N

(
a†
i,1ai,1 + a†

i,2ai,2
)}

= µTr
{
σ
(
a†

1,1a1,1 + a†
1,2a1,2

)}
. (6.53)

We can again use the fact that σ is permutationally invariant to replace the sum
with just one of its summands. The difference of the expectation values in (6.52)
and (6.53) is equal to

µTr
{
(|Ψ⟩ ⟨Ψ| − σ)

(
a†

1,1a1,1 + a†
1,2a1,2

)}
(6.54)

= µTr
{
TrN\1 {|Ψ⟩ ⟨Ψ| − σ}

(
a†

1,1a1,1 + a†
1,2a1,2

)}
(6.55)

≤ µ
∥∥∥TrN\1 {|Ψ⟩ ⟨Ψ| − σ}

∥∥∥
1

∥∥∥a†
1,1a1,1 + a†

1,2a1,2

∥∥∥
∞
. (6.56)

From theorem 6 we know that the trace norm scales as O
(

1
N

)
whereas the other

terms do not scale with N . This means that for large N the difference of the
expectation values will go to 0 (for a correctly chosen σ).

As we are eventually interested in minimizing the energy, we may simplify σ
further. Instead of considering a generic mixture of product states (6.51), we may
instead only consider pure product states of the form |ϕ⟩ ⟨ϕ|⊗N .

The same conclusion can be made for the on-site interaction term and for the
off-site interaction term. However, it does not work for the hopping term. In that
case the analogous term in ∥·∥∞ would scale linearly with N , negating the O

(
1
N

)
scaling of the ∥·∥1 term.

6.2.3 Hopping
So far we have shown that we can approximate the ground state expectation value
of the interaction terms and the chemical-potential term by a mixture of product
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states σ (6.51). The same cannot be said of the hopping term. For that we show a
different result.

First, we start with subtracting

t
N∑
i=1

(
a†
i,1ai,1 + a†

i,2ai,2
)

(6.57)

from the chemical-potential term and adding it to the hopping term. This changes
the chemical-potential term to

H ′
µ = (µ− t)

N∑
i=1

(
a†
i,1ai,1 + a†

i,2ai,2
)

(6.58)

and the hopping term to

H ′
t = t

N∑
i=1

N∑
j=1

(
a†
i,1aj,1 + a†

i,2aj,2
)
, (6.59)

so that now the sum includes the terms when i = j. This allows us to re-write the
hopping term as

H ′
t = tN

(
A†

1A1 + A†
2A2

)
(6.60)

by using

Ak =
N∑
i=1

ai,k√
N
. (6.61)

Note that the operators Ak satisfy the standard fermionic anti-commutation
relations:

{Ak, A†
l} = δkl, (6.62)

{Ak, Al} = 0. (6.63)

The operator A†
kAk (for k ∈ {1, 2}) is a positive operator with unit norm. Therefore

the lowest / highest expectation value it can yield is 0 and 1 respectively. We
will show that we can slightly tweak σ to force the expectation values to be either
0 or 1 without affecting the expectation values of the other terms by more than
O
(

1√
N

)
. The slight tweak is to add the operators Ak or A†

k. To show how this
works, we first consider the following two density matrices:

σ′ = A†
1σA1

Tr
{
A†

1σA1
} , (6.64)

σ′′ = A1σA
†
1

Tr
{
A1σA

†
1

} . (6.65)

These two matrices were designed to yield expectation values 0 and 1 with the
operator A†

1A1. We can check that it is indeed the case by calculating

Tr
{
σ′A†

1A1
}

=
Tr
{
A†

1σA1A
†
1A1

}
Tr
{
A†

1σA1
} =

Tr
{
A†

1σA1
}

Tr
{
A†

1σA1
} = 1, (6.66)

Tr
{
σ′′A†

1A1
}

=
Tr
{
A1σA

†
1A

†
1A1

}
Tr
{
A†

1σA1
} = 0

Tr
{
A†

1σA1
} = 0. (6.67)
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Now we check the expectation values of the other terms of the Hamiltonian with
these density matrices. For the following, define hI = a†

1,1a1,1a
†
1,2a1,2 and

Ãk = Ak −
a1,k√
N

=
N∑
i=2

ai,k√
N
. (6.68)

The expectation value of the on-site interaction term is

Tr
{
σ′HU

N

}
=

Tr
{
A†

1σA1HU

}
N Tr

{
A†

1σA1
} (6.69)

= U
Tr
{
A†

1σA1a
†
1,1a1,1a

†
1,2a1,2

}
Tr
{
A†

1σA1
} (6.70)

=
U Tr

{
Ã†

1σÃ1hI
}

Tr
{
A†

1σA1
} +

Tr
{
a†

1,1σA1hI + A†
1σa1,1hI

}
√
N Tr

{
A†

1σA1
} −

Tr
{
a†

1,1σa1,1hI
}

N Tr
{
A†

1σA1
} . (6.71)

The second fraction on the line (6.71) is O
(

1√
N

)
and the last fraction is O

(
1
N

)
.

To simplify the first fraction, we use the property that σ is a product state, so an
expectation value of a product of non-overlapping observables factorizes

Tr
{
Ã†

1σÃ1hI
}

= Tr
{
Ã†

1σÃ1
}

Tr{σhI}. (6.72)

Finally, Tr
{
Ã†

1σÃ1
}

is O
(

1√
N

)
-close to Tr

{
A†

1σA1
}
, which makes the final expec-

tation value U Tr{σhI} = Tr
{
σHU

N

}
+ O

(
1√
N

)
. Naturally, the same calculation

can be done for σ′′ and for the expectation values of H ′
µ/N and HV /N

2.
The only possible problem with σ′ and σ′′ is that they might not be defined

if Tr
{
A†
kσAk

}
or Tr

{
AkσA

†
k

}
is equal to 0. However, that means that either

Tr
{
σA†

kAk
}

= 0 or Tr
{
σAkA

†
k

}
= 0, which implies that σ already minimizes /

maximizes the expectation value of A†
kAk.

The density matrices σ′ and σ′′ only minimize / maximize A†
1A1. If we want to

minimize / maximize A†
2A2 at the same time, we need to consider a matrix like

A1A2σA
†
2A

†
1. In fact, we can add any number of the operators Ak, A†

k (each at most
once because of the anti-commutation relations) on top of σ without influencing
the expectation values of H ′

µ, HU or HV by more than O
(

1√
N

)
. In the final state,

we will call σ the “even” part of the state and the added operators Ak, A†
k the

“odd” part of the state.
In previous research on the permutationally-invariant Hubbard model van

Dongen and Vollhardt [129] reached the same conclusion as we did here. However,
their approach was different. They showed that in the thermodynamic limit the
kinetic part of the Hamiltonian commutes with the rest, so it can be minimized
independently.

6.2.4 Restricting to Symmetric Purifications
Having described how the unitaries of the symmetries act on the Hilbert space
of the purifications, we now search for those purifications which have all those
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symmetries (including the phase). To simplify notation, in this phase we will
relabel the creation / annihilation operators of the ancillary fermions. In chapter
5 and in subsection 6.2.1, these were labelled with the letter b to emphasize that
they live in a subsystem B, e.g. bi,2 is the ancillary fermion of species 2 on site i.
However, here it will be more convenient to label them as the 3rd and 4th fermionic
species, using the annihilation / creation operators ai,3, a†

i,3, ai,4, a
†
i,4.

Because of the observations made in the subsections 6.2.2 and 6.2.3, we may
take the following as the ansatz of our permutationally-invariant family of states:

4∏
x=1

(
A†
x

)nx
4∏

x=1
(Ax)mx

N∏
i=1

 ∏
x⃗ even

1i + αx⃗√
N

|x⃗|∏
j=1

a†
i,xj

 |Ω⟩ . (6.73)

The bracket ∏N
i=1 [...] creates the product-state part of the state, also known as

the “even” part. It only contains products of even number of creation operators to
conform with the fermionic super-selection rule and the permutation invariance.
Because of the anti-commutation relations of the operators Ak, the coefficients nx
and mx can only attain values 0 or 1. This ansatz corresponds to the family of
fermionic symmetric basic states which was introduced by Kraus et al. [143].

To simplify the description, we expand the product over ∏x⃗ even and relabel the
coefficients:

4∏
x=1

(
A†
x

)nx
4∏

x=1
(Ax)mx

N∏
i=1

[
α01i + α12a

†
i,1a

†
i,2 + α13a

†
i,1a

†
i,3 + α14a

†
i,1a

†
i,4 (6.74)

+α23a
†
i,2a

†
i,3 + α24a

†
i,2a

†
i,4 + α34a

†
i,3a

†
i,4 + α1234a

†
i,1a

†
i,2a

†
i,3a

†
i,4

]
|Ω⟩ . (6.75)

All the coefficients α as well as nx,mx are still free variables. In this subsection,
we examine which values of them are allowed in order to keep the state symmetric
under the U(1) and SU(2) symmetries3. We do this by applying the symmetry
transformations as defined in equations (6.34)–(6.37) and (6.46)–(6.49).

Let us start with SU(2). By choosing γ = 1, β = 0 in equations (6.46)–(6.49),
we get a transformation that transforms a†

i,1a
†
i,3 into a†

i,2a
†
i,4. That implies that

α13 = α24. Setting β = i, γ = 0 transforms a†
i,1a

†
i,4 into −a†

i,1a
†
i,4 and a†

i,2a
†
i,3 into

−a†
i,2a

†
i,3, forcing α14 = α23 = 0. By similar arguments, the U(1) symmetry

requires that α12 = α34 = 0. Consequently, the symmetry restrictions therefore
reduce the ground-state search to states with the following “even” part:

|Ψ⟩ =
N∏
i=1

[
α01i + α13

a†
i,1a

†
i,3 + a†

i,2a
†
i,4√

2

+ α1234a
†
i,1a

†
i,2a

†
i,3a

†
i,4

]
|Ω⟩ . (6.76)

For consistency, we will enforce |α0|2 + |α13|2 + |α1234|2 = 1, so that the “even” part
of the state is normalized.

3The state is already permutationally symmetric by construction.
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6.3 Ground State Phase Diagram

Using the variational family described in equation (6.76), we will now find the
ground state depending on the parameters t, U, µ, V of the Hamiltonian. First, we
calculate the energy of the generic state in equation (6.76). As was mentioned in
subsection 6.2.4, the “odd” part of the state does not influence the expectation
value of the H ′

µ, HU , HV terms of the Hamiltonian. Let |Ψ⟩ be a state of the form
(6.76). We have

⟨Ψ| HU

N
|Ψ⟩ = Uα∗

1234α1234, (6.77)

⟨Ψ|
H ′
µ

N
|Ψ⟩ = (µ− t) (2α∗

1234α1234 + α∗
13α13) , (6.78)

⟨Ψ| HV

N2 |Ψ⟩ = V (2α∗
1234α1234 + α∗

13α13)2 . (6.79)

The expectation value of the hopping term H ′
t can be manipulated purely by

changing the “odd” part of the wavefunction. Specifically A1A2A3A4 forces the
hopping term expectation value to be 0 whereas A†

1A
†
2A

†
3A

†
4 makes it t — the choice

depends only on the sign of t. Both A1A2A3A4 and A†
1A

†
2A

†
3A

†
4 have all of the

symmetries of the Hamiltonian.

We can now minimize the energy. Based on the resulting α1234, α13, α0 we
construct the phase diagram. It is important to note that regardless of these
coefficients, each phase is further split into two based on the “odd” part of the
wavefunction. We may call these two situations fermion hopping and hole hopping,
corresponding to A†

1A
†
2A

†
3A

†
4 and A1A2A3A4 respectively. Note that for t ̸= 0,

fermion/hole hopping will make a relevant change in the energy, even though
the operators A†

1A
†
2A

†
3A

†
4 and A1A2A3A4 only add / remove 4 particles to / from

the system. However, the hopping will not be visible in the thermodynamic
limit. Adding fermion / hole hopping to a state cannot be detected by any local
observable (in the thermodynamic limit) and thus it will make no difference for the
ground state. Note that in the language of C∗-algebras, there is no definition for
the Hamiltonian or the ground state energy in the thermodynamic limit — only
the ground state itself. See appendix B for a more thorough explanation of the
C∗-algebra approach to the thermodynamic limit.

As the calculation of the phase diagram is somewhat tedious, we leave it
over to appendix A and only present the results here. The ground state phase
space is parametrized by the 4 paramters µ, V, t, U , but the phase diagram is fully
characterized by its cut in the t− U plane for positive and negative V separately.

The phase diagram for positive V is depicted in figure 6.2 and the phase diagram
for negative V is depicted in figure 6.3. The phases are separated by a number of
hyperplanes whose equations are provided below in equations (6.80)–(6.89).
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Figure 6.2: The ground state phase diagram for the permutationally-invariant
Hubbard model in the t − U plane for V > 0. The lines a, b, c, d, e, f, g are
described in equations (6.80)–(6.86).

Figure 6.3: The ground state phase diagram for the permutationally-invariant
Hubbard model in the t − U plane for V ≤ 0. The lines h, j, i are described in
equations (6.87)–(6.89).
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a : t = µ (6.80)
b : t = µ+ 2V (6.81)
c : U = t− µ− 2V (6.82)
d : U = t− µ− 4V (6.83)
e : U = 0 (6.84)
f : U = 2t− 2µ (6.85)
g : U = 2t− 2µ− 8V (6.86)
h : t = µ+ 2V (6.87)
i : U = t− µ− 2V (6.88)
j : U = 2t− 2µ− 4V (6.89)

6.4 Interpretation of Results
In the phase diagrams 6.2 and 6.3 we can see a lot of interesting phases. In this
section we go over parts of the phase diagram and discuss the physics of the various
phases and the symmetries they spontaneously break. For a deeper look into how
these results were obtained, see appendix A.

6.4.1 Full Filling and Vacuum
These two phases are relatively simple from the physical point of view. They
correspond to the only non-zero coefficient being either α0 or α1234 in equation
(6.76). This makes their wavefunctions (without hopping)

|Φvac⟩ = |Ω⟩ , (6.90)

|Φfull⟩ =
N∏
i=1

a†
i,1a

†
i,2a

†
i,3a

†
i,4 |Ω⟩ . (6.91)

This means that the system is either completely full or completely empty of
fermionic particles. As such, these states are product states without any entangle-
ment or symmetry breaking. Depending on the sign of t, the vacuum ground state
may have fermion hopping and the full filling state may have hole hopping:

|Φ′
vac⟩ = A†

1A
†
2A

†
3A

†
4 |Ω⟩ , (6.92)

|Φ′
full⟩ = A1A2A3A4

N∏
i=1

a†
i,1a

†
i,2a

†
i,3a

†
i,4 |Ω⟩ . (6.93)

6.4.2 Half Filling
The half filling phase corresponds to the situation of each site being occupied
by just one particle. It corresponds to α13 being the only non-zero coefficient in
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equation (6.76). That makes the “even” part of the wavefunction

|Φhalf⟩ =
N∏
i=1

a†
i,1a

†
i,3 + a†

i,2a
†
i,4√

2

 |Ω⟩ (6.94)

The ground state wavefunction itself will have A1A2A3A4 or A†
1A

†
2A

†
3A

†
4 in front

(depending on the sign of t). We can see that |Φhalf⟩ is entangled between the
physical and ancillary subspaces, so the reduced state onto the physical subsystem
is necessarily mixed. Specifically, it looks like

ρhalf =
∏
i

1
2
(
a†
i,1ai,1ai,2a

†
i,2 + ai,1a

†
i,1a

†
i,2ai,2

)
. (6.95)

This mixed state may be interpreted as a mixture of many different ground state
(there is large degeneracy). Each of the ground states has 1 particle per site,
conforming to the U(1) particle number symmetry. However they differ in which
species are which of the particles. For example a state that is fully filled with
fermions of species 1,

|Φ1⟩ =
N∏
i=1

a†
i,1 |Ω⟩ , (6.96)

belongs to this phase. While this state has the permutation symmetry (up to a
phase), it breaks the SU(2) symmetry by favouring one fermionic species over
the other. Furthermore, as N grows this state becomes a rare abnormality. For
large N , most of the ground states will have roughly half of the sites occupied by
fermions of species 1 and the other half by fermions of species 2, which breaks the
permutation symmetry.

6.4.3 Sub- and Super-Half Filling
The sub- and super-half filling phases correspond to both α13 and either α0 or α1234
non-zero. The magnitude of α13 decreases as we move away from half-filling towards
vacuum / full filling in the phase diagram. The “even” parts of the wavefunctions
look like

|Φsub⟩ =
N∏
i=1

[
α01i + α13

a†
i,1a

†
i,3 + a†

i,2a
†
i,4√

2

] |Ω⟩ , (6.97)

|Φsuper⟩ =
N∏
i=1

[
α13

a†
i,1a

†
i,3 + a†

i,2a
†
i,4√

2

+ α1234
(
a†
i,1a

†
i,2a

†
i,3a

†
i,4

) ]
|Ω⟩ . (6.98)

Again, on top of the wavefunctions in equations (6.97) and (6.98), these states will
contain hole hopping or fermion hopping.

These phases correspond to ground states where the proportion of half-occupied
sites is strictly between 0 and 1 while the rest is empty / fully occupied. As is
shown in the appendix section A.3, the states in this phase break all of the U(1),
SU(2) and permutation symmetries. The reduced states on the physical subsystem
look like
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ρsub =
N∏
i=1

[
|α0|2ai,1a†

i,1ai,2a
†
i,2 + |α13|2√

2
(
a†
i,1ai,1ai,2a

†
i,2 + ai,1a

†
i,1a

†
i,2ai,2

)]
, (6.99)

ρsuper =
N∏
i=1

[
|α1234|2a†

i,1ai,1a
†
i,2ai,2 + |α13|2√

2
(
a†
i,1ai,1ai,2a

†
i,2 + ai,1a

†
i,1a

†
i,2ai,2

)]
.

(6.100)

These states may again be interpreted as mixtures of many different ground
states. Most of these will have a proportion of |α13|2 sites occupied by one fermion
and the rest either empty of full (doubly occupied). Note that as |α13| decreases,
the entanglement weakens (and the ground state degeneracy becomes smaller).

6.4.4 Pairing
The pairing phase corresponds to states with both α0 and α1234 non-zero. That
means that the “even” part of the wavefunction of the ground state in this phase
is

N∏
i=1

[
α01i + α1234

(
a†
i,1a

†
i,2a

†
i,3a

†
i,4

) ]
|Ω⟩ . (6.101)

The relative magnitude continuously shifts from α0 to α1234 as we move from
vacuum to the fully filled phase in the phase diagram. Physically, those states
correspond to the situation in which no site is half-occupied while some are empty
and some are fully occupied. This phase only occurs for negative interaction energy
U , which encourages the fermions to pair together.

Again, there is entanglement between the ancillary and physical subspace and
again the strength of the entanglement changes throughout the phase. As is shown
in appendix section A.3, there is spontaneous breaking of U(1) and permutation
symmetries. However, now the SU(2) symmetry is preserved, which comes from
the fact that the fermions stick together in pairs. Among the many ground states
in this phase, two are particularly interesting:

|Ψ1⟩ =
|α1234|2N∏

i=1

(
a†
i,1a

†
i,2

)
|Ω⟩ , (6.102)

|Ψ2⟩ =
N∏
i=1

(
α0 + α1234a

†
i,1a

†
i,2

)
|Ω⟩ . (6.103)

The state |Ψ1⟩ preserves the U(1) symmetry while spontaneously breaking the
permutation symmetry. On the other hand, the state |Ψ2⟩ preserves the permu-
tation symmetry at the cost of breaking the U(1) symmetry. The state |Ψ1⟩
corresponds to |α1234|2N sites being fully occupied with the rest empty. The state
|Ψ2⟩ corresponds to each site being in a superposition of being fully occupied and
empty. The state |Ψ2⟩ contains pairing as defined in [146], and it gives the phase
its name.
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Chapter 7

Hubbard Model in Infinite
Dimensions

This chapter summarizes our investigation of the Hubbard model in infinite di-
mensions. The standard method to solve this problem is the dynamical mean field
theory (DMFT) [147]. The research in this chapter was not motivated by the goal
to improve upon this method, but by the idea to approach the problem from the
direction of quantum information theory instead. The hope was that applying
quantum-information-theoretic methods to this problem would give us more insight
into the structure of the ground state, its entanglement and similar properties.
This research was done in parallel with the research into models with permutation
symmetry, however it was not published, as it did not lead to any particularly
novel results.

First in section 7.1 we introduce the Hubbard Hamiltonian in infinite dimensions.
Then in section 7.2 we briefly describe the idea behind DMFT. In section 7.3 we
discuss the problem without on-site interactions and provide an analytical solution.
Section 7.4 showcases the use of a variational family called fermionic symmetric
basic states to provide a lower bound on the ground state energy. Then in section
7.5 we attempt to approach the ground state energy from the top with a few basic
variational families of states generalized for infinite dimensions. Finally, section
7.6 provides a comparison of our approaches with DMFT.

7.1 Hamiltonian
The Hubbard Hamiltonian on a cubic lattice in d dimensions consists of the familiar
hopping term

t
∑
<i,j>

(
a†
i,1aj,1 + a†

i,2aj,2
)
, (7.1)

the interaction term
U
∑
i

a†
i,1ai,1a

†
i,2ai,2, (7.2)

and the chemical-potential term

µ
∑
i

(
a†
i,1ai,1 + a†

i,2ai,2
)
. (7.3)
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The sum over i runs over all sites of the entire system whereas the sum over
< i, j > runs over all ordered pairs of nearest neighbours. For simplicity of notation
we still label the sites by a single letter i, but now these indices can be understood
as a vector of d integers enumerating the coordinates of the sites. For future
reference, we label A the set of all such vectors.

We want to investigate this Hamiltonian in the limit of an infinitely large cubic
lattice in infinite dimensions. To get there, we will start with a finite cubic lattice of
edge length N in d dimensions with periodic boundary conditions. Therefore, the
system contains a total of Nd sites. We are interested in the limits N → +∞ and
d→ +∞. As one might expect, the order in which we take the limits is relevant.
We will first take d→ +∞ followed by N → +∞ to simplify the calculations.

As in the permutationally-invariant case, we need to pay attention to the scaling
of the various terms in order to make them all relevant within the limits. Overall
the hopping term will contain a sum of 2dNd terms whereas the interaction term
and the chemical-potential term will both contain just a sum of Nd terms. We
want the energy to be extensive in the number of sites, so the scaling with Nd is
desired. Similarly to the permutationally-invariant case though, the proper scaling
of the hopping term now is 1√

2d [137, 147].

7.2 Dynamical Mean Field Theory
The standard method for solving the Hubbard model and related models in a large
number of dimensions is dynamical mean field theory (DMFT). The results of
DMFT become exact as the number of dimensions approaches infinity, but the
theory is used for finite-dimensional systems as well [50, 148–151].

To explain properly the theory behind DMFT is out of scope of this thesis, so
we just briefly summarize the approach here. For a more detailed look into DMFT,
we recommend [147].

To derive the DMFT equations, we look at the Green’s functions of the system,
in particular at its self-energy Σijσ — the difference between the inverted free
Green’s function G0

ijσ and the invereted interacting Green’s function Gijσ. This
definition of the self-energy Σijσ

Σijσ =
(
G0
)−1

ijσ
− (G)−1

ijσ (7.4)

is also called the Dyson equation. Here i, j refer to two site indices and σ indicates
the species of the fermions. By examining the Feynman diagrams that make up
the self-energy, it becomes apparent that a lot of them vanish in the d→ +∞ limit.
In fact, only the terms of the self-energy which are diagonal in the site indices i, j
remain (this is where the mean field name comes from), rendering the self-energy
independent of momentum. This allows us to obtain a compact relation between
the (local) self energy and the (local) Green’s function:

Giiσ(iω) =
∫

dε ρ(ε)
iω + µ− Σiiσ(iω)− ε. (7.5)
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Here iω is the imaginary frequency that the Green’s functions as well as the self-
energy depend on and ρ(ε) is the free density of states at energy ε. This equation
together with (7.4) and the definition of Green’s function

Giiσ(iω) = ⟨aiσ(iω)a†
iσ(iω)⟩ (7.6)

form a trio of equations to solve self-consistently to find the (free) Green’s function
and the self-energy. The task is simplified by noting that the equations look
identical to the equations obtained when solving the Anderson impurity model
[152].

While the results of dynamical mean field theory gives good results in many
areas [50, 148–151], it is very reliant on numerical calculations due to the complexity
of the aforementioned equations. In the rest of this chapter, we try to approach
the problem from a more information-theoretic perspective, trying out different
ansätze to minimize the energy in hopes of getting more insight into the structure
of the ground state.

For our research we collaborated with Andreas Gleis, a PhD student in the
von Delft group at LMU. He provided us DMFT numerical results. His results are
summarized in table 7.1 in section 7.6.

7.3 No Interactions
Setting U = 0 is a significant simplification of the Hubbard model. Removing the
interaction effectively makes the fermions free [130]. It makes the Hamiltonian
look like

H = t√
2d

∑
<i,j>

(
a†
i,1aj,1 + a†

i,2aj,2
)

+ µ
∑
i

(
a†
i,1ai,1 + a†

i,2ai,2
)
. (7.7)

Now we can apply the Fourier transform to momentum space (for σ ∈ {1, 2}),

ai,σ =
∑
j

bj,σ
e2πi j·i

N

√
Nd

. (7.8)

Here bj,σ is the annihilation operator corresponding to momentum labelled by
j ∈ A and j · i is a scalar product of i and j, which are both elements of A — real
d-dimensional vectors of integers with values between 1 and N (included)1.

The Fourier transform keeps the chemical-potential term invariant, since
∑
i

a†
i,σai,σ →

∑
i

∑
j

b†
j,σ

e−2πi j·i
N

√
Nd

∑
k

bk,σ
e2πi k·i

N

√
Nd

(7.9)

=
∑
i,j,k

b†
j,σbk,σ

e2πi (k−j)·i
N

Nd
(7.10)

=
∑
j,k

b†
j,σbk,σδj,k =

∑
j

b†
j,σbj,σ. (7.11)

1To clarify notation, in this chapter we do not use ancillary Hilbert spaces and purifications.
Therefore we can use bi,σ and b†

i,σ for the annihilation and creation operators in momentum
space, even though these symbols are reserved for ancillary fermions in chapter 5.
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Before we look at how the hopping term transforms, we slightly adapt our notation.
Let ex be a unit vector pointing in the direction of the x-th dimension (i.e. the
vector has all components equal to 0 except for the x-th component which is equal
to 1). With this, the sum over all ordered pairs of nearest neighbours can be
rephrased as

∑
<i,j>

a†
i,σaj,σ =

∑
i

d∑
x=1

(
a†
i,σai+ex,σ + a†

i,σai−ex,σ

)
. (7.12)

This simplifies the Fourier transform

∑
<i,j>

a†
i,σaj,σ →

∑
i,j,k

d∑
x=1

b†
j,σbk,σ

e2πi i·(k−j)+ex·k
N

Nd
+ e2πi i·(k−j)−ex·k

N

Nd

 (7.13)

=
∑
j,k

d∑
x=1

b†
j,σbk,σ

(
δk,je2πi ex·k

N + δk,je−2πi ex·k
N

)
(7.14)

=
∑
k

d∑
x=1

b†
k,σbk,σ

(
e2πi ex·k

N + e−2πi ex·k
N

)
(7.15)

=
∑
k

b†
k,σbk,σ

d∑
x=1

2 cos
(

2πkx
N

)
. (7.16)

Here kx is the x-th component of the vector k.
Putting these two together, the Hamiltonian reduces to

H =
∑
k,σ

b†
k,σbk,σ

[
µ+
√

2√
d
t

d∑
x=1

cos
(

2πkx
N

)]
≡
∑
k,σ

E(k)b†
k,σbk,σ. (7.17)

Here we introduced E(k) as the energy of the k-th momentum mode. This
Hamiltonian is diagonal in the momentum labels k, making it very easy to find
the ground state. The ground state is obtained by simply filling the Fermi sea,
i.e. by starting with the vacuum state |Ω⟩ and adding all of the momentum modes
which have negative energy, i.e.

|Ψ0⟩ =
∏
k∈K

∏
σ

b†
k,σ |Ω⟩ . (7.18)

These states may be described as momentum Fock states. Here the set K is defined
as the set of all possible k which fulfill

E(k) =
d∑

x=1

√
2√
d
t cos

(
2πkx
N

)
+ µ ≤ 0. (7.19)

This is a non-linear condition binding the various components of k together. That
makes it difficult to describe the set K in a more elegant way. However, that is not
needed. The ground state energy E0 is equal to

E0 =
∑
k∈K

[
d∑

x=1

√
2√
2d
t cos

(
2πkx
N

)
+ µ

]
=
∑
k∈K

E(k). (7.20)
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Fortunately, we are able to evaluate the formula (7.20) (at least in the d→ +∞
limit) without having to describe the set K for a finite d any better than in equation
(7.19). In order to do that, we first take a step back. For all the possible k ∈ A,
the values of kx are distributed uniformly from 1 to N for all x. For a given x, the
distribution of cos

(
2π kx

N

)
is not uniform and it averages out to 0 with a variance

of 1/2.
Now consider the sum ∑d

x=1

√
2√
d

cos
(
2π kx

N

)
. By the central limit theorem, as

d→ +∞, the distribution of this variable will approach the Gaussian distribution
with mean 0 and variance 1. Multiplying it by t changes its variance to t2 while
adding µ changes the mean.

This means that in d→ +∞, the energies of the modes E(k) are distributed
according to Gaussian distribution with mean µ and variance t2. Equation (7.20)
is then simply a sum of all of those energies which are negative. It can therefore
be rephrased (in the d→ +∞ limit) as

E0 =
∫ 0

−∞
dE(k)

[
E(k) 1

t
√

2π
e− 1

2(E(k)−µ
t )2

]
(7.21)

= −te− µ2

2t2 + 1
2

[
erf

(
−µ
t
√

2

)
+ 1

]
. (7.22)

Interestingly, this does not depend on N . Therefore taking the d→ +∞ limit first
trivializes the N → +∞ limit.

7.4 FSBS as Lower Bound
One way to lower-bound the ground state energy is by using fermionic symmetric
basic states (FSBS) introduced by Kraus et al. [143]. This family of states was
designed as an ansatz for solving permutationally-invariant problems and we used
it for the Hubbard model with permutation symmetry in chapter 6. In appendix
B of [143], Kraus et al. demonstrated how FSBS may be used to produce a lower
bound on the energy of infinite-dimensional cubic models. We follow that approach
in this section.

Before we start, we need to define a few new terms. We will split the Hamiltonian
H into a sum of terms hij which act on two neighbouring sites i and j, such that

H =
∑
(i,j)

hij. (7.23)

Here the sum is no longer over ordered pairs of sites, but unordered pairs of sites so
the sum does not contain both hij and hji. This two-body Hamiltonian hij looks
like

hij = t√
2d

(
a†
i,1aj,1 + a†

i,2aj,2 + h.c.
)

(7.24)

+ µ

2d
(
a†
i,1ai,1 + a†

i,2ai,2 + a†
j,1aj,1 + a†

j,2aj,2
)

(7.25)

+ U

2d
(
a†
i,1ai,1a

†
i,2ai,2 + a†

j,1aj,1a
†
j,2aj,2

)
. (7.26)
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The single-site operators get a factor of 1
2d because they appear in 2d nearest-

neighbour pairs.
Let Ni be the set of all sites which are the nearest neighbours of site i. With

this, the sum in equation (7.23) can be rewritten as

H =
∑
i

∑
j∈Ni

hij
2 ≡

∑
i

hi, (7.27)

where we promptly defined
hi =

∑
j∈Ni

hij
2 . (7.28)

The factor 1
2 in equation (7.27) exists precisely to cancel double counting.

Let SH be the set of all states with the same symmetries as the Hamiltonian.
The ground state energy E0 can be expressed as

E0 = min
ρ∈SH

Tr{ρH} = N min
ρ∈SH

Tr{ρhi} = N min
σi∈S′

H

Tr{σihi}. (7.29)

Here we defined σi to be the reduced density matrix of ρ onto the sites i ∪ Ni.
Consequently, S ′

H is the set of density matrices which were obtained from matrices
in SH by reducing them to sites i ∪Ni. This set S ′

H can be relatively difficult to
describe. So we relax the restriction at the cost of transforming the equality into
an inequality,

E0 ≥ N min
σi

Tr{σihi}. (7.30)

Now σi is allowed to be any density matrix on sites i ∪Ni. When minimizing the
energy for Hamiltonian hi, we can take advantage of its symmetries. As can be
seen from the defining equation (7.28), the Hamiltonian hi is invariant with respect
to any permutation of the sites in Ni. We can therefore assume the same about σi.
A symmetric density matrix has a symmetric purification, so we can write

E0 ≥ N min
|Ψ⟩∈H′

⟨Ψ|hi |Ψ⟩ . (7.31)

Here H′ is the Hilbert space of all pure states on sites i ∪ Ni with 4 fermionic
species per site (two of which are physical and two of which are ancillary), which
are invariant with respect to any permutation of the sites in Ni. This set of states
is easier to characterize and we will use FSBS as the basis of the Ni subsystem.
For the purpose of this section we define

Ak =
∑
j∈Ni

aj,k√
2d
. (7.32)

With this the Hamiltonian hi can be rewritten as

hi = t

2
(
a†
i,1A1 + a†

i,2A2 + h.c.
)

(7.33)

+ µ

2
(
a†
i,1ai,1 + a†

i,2ai,2
)

+ µ

4d
∑
j∈Ni

(
a†
j,1aj,1 + a†

j,2aj,2
)

(7.34)

+ U

2
(
a†
i,1ai,1a

†
i,2ai,2

)
+ U

4d
∑
j∈Ni

(
a†
j,1aj,1a

†
j,2aj,2

)
. (7.35)
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We want to minimize the energy of hi with respect to states in H′. Those
states will be a combination of FSBS on sites Ni with anything on the site i. That
is still somewhat complicated to solve by hand, but it is really simple to search
numerically. The results are contained in table 7.1 in section 7.6.

7.5 Ground State Ansätze
In the following few sections, we go over a few possible ansätze for the ground state
of the Hubbard Hamiltonian in infinite dimensions, namely momentum Fock states
and Gaussian states. From DMFT we know accurately the ground state energy, so
we will investigate how close to it do we get within our ground state ansätze.

As the DMFT results were calculated for a fixed t = −1 and µ = 0 (with a few
different values of U) we will use the same configuration of the parameters U, t and
µ when we apply our ground state ansätze.

7.5.1 Momentum Fock States
In this subsection we attempt to minimize the energy of the infinite-dimensional
Hubbard model within the space of momentum Fock states. These states are the
exact ground states in the case of U = 0, as was demonstrated in section 7.3. It is
natural to ask how close will those states get to the ground state energy for U ̸= 0.

We start by transforming the Hubbard Hamiltonian (with µ = 0) into momen-
tum space, using the Fourier transform described in (7.8),

H = t√
2d
∑
k,σ

d∑
x=1

2 cos
(

2πkx
N

)
b†
k,σbk,σ + U

N2

∑
k,l,m,n

such that
k−l+m−n=0

b†
k,1bl,1b

†
m,2bn,2, (7.36)

where the sum over σ runs over σ ∈ {1, 2}.
Generally speaking, the momentum Fock states have the following form:

|Ψ⟩ =
∏
k∈K1

b†
k,1

∏
l∈K2

b†
l,2 |Ω⟩ (7.37)

Here K1 ⊂ A and K2 ⊂ A are two sets of momentum labels.
Looking at the Hamiltonian (7.36), we can expect that the energy will contain

terms like ⟨Ψ| b†
k,1bl,1b

†
m,2bn,2 |Ψ⟩. However, keeping in mind the ansatz (7.37), those

terms will be equal to 0 unless k = l and m = n. This allows us to simplify the
Hamiltonian

H = t√
2d
∑
k,σ

d∑
x=1

2 cos
(

2πkx
N

)
b†
k,σbk,σ + U

Nd

∑
k,m

b†
k,1bk,1b

†
m,2bm,2. (7.38)

As in section 7.3, we define the hopping energy corresponding to a momentum
label k as

E(k) = t
d∑
i=1

√
2 cos

(
2π ki

a

)
√
d

. (7.39)
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In section 7.3 we showed that as d → +∞, the distribution of E(k) approaches
the normal distribution, by the central limit theorem. Plugging that into the
Hamiltonian gives us:

H =
∑
k,σ

E(k)b†
k,σbk,σ + U

Nd

∑
l

b†
l,1bl,1

∑
m

b†
m,2bm,2 (7.40)

As we have shown in section 7.3, in the non-interacting case (U = 0), the ground
state is easy to find — we just fill in the Fermi sea. However, with the interaction,
we should be more careful about which fermionic modes we add to minimize
the energy. We can see that the interaction term in equation (7.40) does not
depend on momentum — it depends only on the number of particles of both
of the fermionic species. When filling the fermionic modes with particles, their
momentum distribution is not relevant for the interaction term. We simply pick
some hopping energy E(k) threshold and fill in all particles with energies lower
than that.

In the following we assume t > 0. For t < 0, the calculations would be
nearly the same, the only difference would be a few inverted inequality signs and
some cumulative distributions functions replaced the complementary cumulative
distribution functions. We define E1 and E2 as “energy thresholds” defining which
fermionic modes of each species we add. This allows us to characterize the sets

K1 = {k : E(k) ≤ E1} (7.41)

and
K2 = {k : E(k) ≤ E2}. (7.42)

With such defined sets K1 and K2, the energy of the state |Ψ⟩ from equation
(7.37) can be re-expressed as

⟨Ψ|H |Ψ⟩ =
∑
k∈K1

E(k) +
∑
l∈K2

E(l) + U

Nd

∑
k∈K1

∑
l∈K2

1. (7.43)

This is relatively easy to analyze. ∑
k∈K1

∑
l∈K2 1 sums up to |K1||K2|, i.e. the

product of the cardinalities of the two sets. Given that E(k) is distributed like a
normal distribution, the cardinalities of K1 and K2 are simply

|K1| = Ndcdf(E1) and |K2| = Ndcdf(E2). (7.44)

Here cdf(·) is the cumulative distribution function of the normal distribution, i.e.
the proportion of momentum labels k which are in the corresponding set K1 or K2.
Nd is the total number of momentum labels k, so multiplied by the proportion it
gives the number of momentum labels in the sets K1 and K2. The term∑

k∈K1

E(k) (7.45)

is the sum of the value E(k) for all elements in the set K1. An alternative way to
get this sum is to take the number of elements in the set K1 and multiply it by
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the average value of E(k) across this set (i.e. its expected value, in the language
of probability distributions). Therefore

∑
k∈K1

E(k) = ⟨E(k)⟩K1
Nd cdf(E1) = t

−pdf(E1)
cdf(E1)

Nd cdf(E1) = −tNd pdf(E1),

(7.46)
where pdf(·) is the probability density function of the normal distribution and the
formula for ⟨Ek⟩KA

is a standard formula for truncated normal distribution [153].
Taken all together, the energy of a momentum Fock state per site is

⟨Ψ|H |Ψ⟩
Nd

= −t [pdf(E1) + pdf(E1)] + Ucdf(E1)cdf(E1). (7.47)

To find the lowest-energy state, we just need to minimize this with respect to E1
and E1. For the results, see section 7.6.

7.5.2 Gaussian States
One idea on how to improve the upper bound is to use Gaussian states instead
of Fock states (Fock states being a special case of Gaussian states). Here we will
use Gaussian states with the same symmetries as the Hamiltonian. Since this
research was done before we found about the connections between purifications
and spontaneous symmetry breaking described in chapter 5, we did not consider
ground state purifications here. As we find out later in the section, Gaussian states
with the same symmetries as the Hamiltonian are not a good variational family for
this problem, because the imaginary time evolution (restricted by the symmetries)
does not evolve anywhere.

As was described in section 3.1, one way to define Gaussian states is by
their covariance matrix, Γ. To define Γ, we first need to switch from creation /
annihilation operators to Majorana fermions. As we have two different species of
physical fermions, we will have four different species of Majorana fermions

a†
i,1 = qi − ipi√

2
, (7.48)

ai,1 = qi + ipi√
2

, (7.49)

a†
i,2 = Qi − iPi√

2
, (7.50)

ai,2 = Qi + iPi√
2

. (7.51)

The covariance matrix is defined using the Majorana fermions

Γxy = −2i ⟨ψ|xy |ψ⟩+ iδx,y. (7.52)

Here x, y stands for any of {pi, qj, Pk, Ql}. These label all of the Majorana fermionic
indices. The letter p, q, P,Q labels the species of the Majorana fermion and the
sub-index labels the lattice site on which this Majorana fermion lives.

The Hubbard Hamiltonian has several symmetries which translate to the
symmetries of the covariance matrix as
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• Translational symmetry, i.e. Γpiqj
= Γpi+kqj+k

.

• Mirror symmetry, i.e. Γpiqj
= Γp−iq−j

.

• Spin flip symmetry (special case of SU(2)), i.e. Γpiqj
= ΓPiQj

.

This severely restricts the degrees of freedom of the covariance matrix, for example

Γpiqj
= Γpjqi

= ΓPjQi
, (7.53)

Γpipj
= Γpjpi

= −Γpipj
= 0, (7.54)

ΓpiPj
= ΓPipj

= −ΓpjPi
= −ΓpiPj

= 0. (7.55)

In equation (7.54) we first used a combination of rotation / translation symmetry
to switch i and j (which is always possible) and then the anti-symmetry of Γ. In
equation (7.55) we used the same together with the spin flip symmetry.

Equation (3.10) gives the formula for the imaginary time evolution of Γ:

d
dτ Γ = −4

(
dE
dΓ + ΓdE

dΓ Γ
)
, (7.56)

where E is the energy of the state, i.e. ⟨ψ|H |ψ⟩. dE
dΓ is a matrix where each

component corresponds to the derivative of the energy E with respect to the
corresponding component of Γ. To calculate that, we first need to obtain the
formula for the energy in terms of the components of Γ.

The Hubbard Hamiltonian in position space looks like

H = t√
2d

∑
<i,j>

(
a†
i,1aj,1 + a†

i,2aj,2
)

+ U
∑
i

a†
i,1ai,1a

†
i,2ai,2. (7.57)

From the definition of the Majorana fermions in equations (7.48)–(7.51) we get

a†
i,1aj,1 = (qi − ipi)(qj + ipj)

2 = qiqj + iqipj − ipiqj + pipj
2 , (7.58)

a†
i,2aj,2 = (Qi − iPi)(Qj + iPj)

2 = QiQj + iQiPj − iPiQj + PiPj
2 . (7.59)

We use this to express the Hamiltonian in terms of the Majorana fermions,

H = t√
2d

∑
<i,j>

(iqipj + iQiPj) + U
∑
i

(1
2 + iqipi

)(1
2 + iQiPi

)
. (7.60)

The expected value of (7.60) gives us the definition of various elements of
the covariance matrix Γ (together with using Wick’s theorem to split the 4-point
expectation value into products of Γ’s):

E = U

4
∑
i

(1− Γqipi
− ΓQiPi

+ Γqipi
ΓQiPi

+ ΓqiPi
ΓpiQi

)

− t

2
√

2d
∑
<i,j>

(Γqipj
+ ΓQiPj

). (7.61)
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This allows us to get the components of dE
dΓ :

(
dE
dΓ

)
piqi

=
(

dE
dΓ

)
PiQi

= U

2 (1 + Γpiqi
), (7.62)(

dE
dΓ

)
piQi

=
(

dE
dΓ

)
Piqi

= −U2 ΓpiQi
, (7.63)(

dE
dΓ

)
piqj

=
(

dE
dΓ

)
PiQj

= − t√
2d
. (7.64)

The matrix dE
dΓ inherits the symmetries from Γ, i.e.

• Translation symmetry:
(

dE
dΓ

)
piqj

=
(

dE
dΓ

)
pi+kqj+k

.

• Mirror symmetry:
(

dE
dΓ

)
piqj

=
(

dE
dΓ

)
p−iq−j

.

• Spin flip symmetry:
(

dE
dΓ

)
piqj

=
(

dE
dΓ

)
PiQj

.

If we show that Γ and dE
dΓ commute, that implies that the right-hand side of

(7.56) is identically 0, implying that the imaginary time evolution does not evolve
the state at all. That is exactly what we are going to do here in order to show that
symmetric Gaussian states are not a good ansatz. For α, β ∈ {p, q, P,Q} we look
at

(
ΓdE

dΓ

)
αiβj

=
∑

γ∈{p,q,P,Q}

∑
k

Γαiγk

(
dE
dΓ

)
γkβj

. (7.65)

We define an operation tilde˜that changes between the species of the Majorana
fermions as p̃ = P, P̃ = p, q̃ = Q, Q̃ = q. From (7.65) we can already see that either
α = β, α = β̃ or the expression is identically zero (because then either Γαiγk

or(
dE
dΓ

)
γkβj

are zero). First assume α = β. We perform a long chain of steps based

89



Chapter 7. Hubbard Model in Infinite Dimensions

on the symmetries of Γ and dE
dΓ :

(
ΓdE

dΓ

)
αiαj

=
∑

γ∈{p,q,P,Q}

∑
k

Γαiγk

(
dE
dΓ

)
γkαj

(7.66)

=
∑

γ∈{p,q,P,Q}

∑
k

Γα0γk−i

(
dE
dΓ

)
γkαj

(7.67)

=
∑

γ∈{p,q,P,Q}

∑
k

Γα0γk

(
dE
dΓ

)
γk+iαj

(7.68)

=
∑

γ∈{p,q,P,Q}

∑
k

Γα0γk

(
dE
dΓ

)
γkαj−i

(7.69)

=
∑

γ∈{p,q,P,Q}

∑
k

Γα0γ−k

(
dE
dΓ

)
γ−kαi−j

(7.70)

=
∑

γ∈{p,q,P,Q}

∑
k

Γα0γk

(
dE
dΓ

)
γkαi−j

(7.71)

=
∑

γ∈{p,q,P,Q}

∑
k

Γα0γk

(
dE
dΓ

)
γk+jαi

(7.72)

=
∑

γ∈{p,q,P,Q}

∑
k

Γα0γk−j

(
dE
dΓ

)
γkαi

(7.73)

=
∑

γ∈{p,q,P,Q}

∑
k

Γαjγk

(
dE
dΓ

)
γkαi

(7.74)

=
∑

γ∈{p,q,P,Q}

∑
k

(
dE
dΓ

)
αiγk

Γγkαj
(7.75)

=
(

dE
dΓ Γ

)
αiαj

. (7.76)

For the case of α = β̃ most of the steps are the same, but in the end there’s a
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few extra steps, (
ΓdE

dΓ

)
αiα̃j

= ... (7.77)

=
∑

γ∈{p,q,P,Q}

∑
k

(
dE
dΓ

)
α̃iγk

Γγkαj
(7.78)

=
∑

γ∈{p,q,P,Q}

∑
k

(
dE
dΓ

)
αiγ̃k

Γγkαj
(7.79)

=
∑

γ∈{p,q,P,Q}

∑
k

(
dE
dΓ

)
αiγk

Γγ̃kαj
(7.80)

=
∑

γ∈{p,q,P,Q}

∑
k

(
dE
dΓ

)
αiγk

Γγkα̃j
(7.81)

=
(

dE
dΓ Γ

)
αiα̃j

. (7.82)

This means that the imaginary time derivative of the covariance matrix vanishes

d
dτ Γ = −4

(
dE
dΓ + ΓdE

dΓ Γ
)

= 0 (7.83)

This implies that within the manifold of symmetric Gaussian states, the imaginary
time evolution does not work at all. While the reason for this is not entirely
understood, we believe that the symmetries constrain the class of Gaussian states
too strongly, making it impossible to evolve the system while preserving all of the
symmetries and the Gaussianity at the same time.

7.6 Comparison
In this section we compare the numerical results obtained from the methods
described in sections 7.2, 7.4 and 7.5.1. The results are presented in table 7.1 and
plotted in figure 7.1. For all of the methods, we compare the energy per site, i.e.
for the FSBS lower bound, it is the expectation value of hi (7.33) from equation
(7.31) and for the momentum Fock states it is the expectation value of ⟨Ψ|H|Ψ⟩

Nd from
equation (7.47). For all methods, the chosen parameters were t = −1, µ = 0 and U
increasing from 0 to 3 in increments of 0.5. As the parameteres of the Hamiltonian
are dimensionless, so is the energy.

The DMFT results were provided by Andreas Gleis. They contain not only the
energy per site E, but also the kinetic contribution to the energy Et, the interaction
contribution EU and the expected number of fermions per site n. Comparing the
DMFT results with the FSBS lower bound shows that the lower bound is not
very tight. On the other hand, the momentum Fock state ansatz provides good
agreement with the DMFT numerics, at least for low values of U . Note that the
energy value for U = 0 can be found analytically to be −

√
2/π.
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DMFT FSBS Mom. Fock
U Et EU E n E E
0 −0.7979 0 −0.7979 1 −1 −0.797885

0.5 −0.7759 0.0768 −0.6991 0.8376 −0.944425 −0.693609
1 −0.7350 0.0974 −0.6377 0.7348 −0.899802 −0.618636

1.5 −0.6949 0.0970 −0.5979 0.6703 −0.862956 −0.561657
2 −0.6610 0.0901 −0.5709 0.6286 −0.831819 −0.516552

2.5 −0.6337 0.0819 −0.5517 0.6006 −0.805006 −0.479738
3 −0.6118 0.0743 −0.5375 0.5809 −0.781560 −0.448977

Table 7.1: The results comparing the energy of infinite-dimensional Hubbard model
obtained by the various methods.

Figure 7.1: A graph depicting the values from table 7.1.

By further analysis of the momentum Fock space ansatz, we found that at
U/t = 3.3252... a phase transition occurs. For U/t < 3.3252..., the energy thresholds
E1 and E2 are the same. For U/t > 3.3252... one of them becomes larger while the
other one quickly becomes small (spontaneous symmetry breaking). This is simple
to interpret physically. As the interaction becomes strong, at one point it becomes
energetically beneficial to favour one species over the other one. Unfortunately,
further analysis of this behaviour is beyond the scope of this thesis.
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Chapter 8

Conclusion

This thesis started by asking the question of how can methods of quantum informa-
tion theory help us solve difficult problems in quantum many-body physics. The
bulk of this thesis challenged two seemingly-unrelated problems: approximability of
mixed states by tensor networks and detection of spontaneous symmetry breaking
in highly symmetric systems. In solving both of these problems, we used similar
approaches — we purified our states and we looked at the entanglement of the
purification.

We have found that the scaling of the entanglement of purification may be used
as a sufficient condition for a mixed state to have an efficient MPO approximation.
This result closed a 15-year long gap since an analogous condition was discovered
for pure states. Aside from the theoretical significance of this result, questions
remain about its practical usability. The entanglement of purification is not a very
popular measure of correlations and it remains open whether similar condition
based on mutual information exists. Furthermore, the scaling required from the
entanglement of purification is stricter than is necessary in the pure-state case,
suggesting potential for improvement. On the other hand, the scaling was obtained
by concatenating many single-cut approximations, suggesting that maybe it comes
from the fundamental differences between pure states and operators.

We described a new method to approach the problem ground states of symmetric
systems. Our approach has two primary uses. First, it allows to restrict the ground
state search to purifications with all of the desired symmetries of the Hamiltonian
without the possibility of missing any ground states. Second, it gives us a way
to detect spontaneous symmetry breaking from the entanglement properties of
the purification ground state and even detect which sub-symmetry was broken in
case of multiple symmetries. The method cannot be used on its own, so its utility
is tied to how well it can synergize with other tools for solving the ground-state
problem. We showcased the use of our method by applying it to various systems
and demonstrated that it shines when used for permutationally-invariant systems,
for which it can be combined with the quantum de Finetti theorem. But there
also seems to be potential for combining our method with tensor networks —
research into which remains in the future. However, even if the practical use of our
method turns out to be limited, the conceptual connection between entanglement,
purifications and spontaneous symmetry breaking is of independent interest.
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Chapter 8. Conclusion

We applied our method to solve the ground state phase diagram of the
permutationally-invariant Hubbard model. Even though this is mostly a toy
model with very limited applications beyond theoretical studies, it does show some
interesting physics. We observe a half-filling phase spontaneously breaking the
SU(2) symmetry of the model as well as a pairing phase spontaneously break-
ing the U(1) particle-number symmetry. While this model appears completely
solved now, it is always possible to construct and solve other, more complicated
permutationally-invariant models, e.g. by adding more exotic interaction terms to
the Hamiltonian.

Our results have highlighted the deep connections between the fields of quan-
tum information theory and quantum many-body physics. Concepts like state
purification, majorization and Rényi entropies find clear applications in relevant
models describing real physical systems. Open questions remain, but unanswered
questions today are new directions of research tomorrow. Our contribution expands
the boundaries of scientific knowledge, but there is still a lot of research to be done
on Quantum Information Methods in Many-Body Physics.
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Appendix A

Hubbard Model Phase Diagram

This appendix expands the calculations regarding the permutationally-invariant
Hubbard model of chapter 6. In here we will go over all the areas of the phase
diagram of the model. For each area, we will find the lowest-energy state and then
determine the phase from the wavefunction. Here we minimize only the “even”
part of the state (6.76)

|Ψ⟩ =
N∏
i=1

[
α01i + α13

a†
i,1a

†
i,3 + a†

i,2a
†
i,4√

2

+ α1234a
†
i,1a

†
i,2a

†
i,3a

†
i,4

]
|Ω⟩ . (A.1)

as the “odd” part may be minimized independently
Recall that the expected values of some of the terms of the Hubbard Hamiltonian

with the state ansatz are

⟨Ψ| HU

N
|Ψ⟩ = Uα∗

1234α1234, (A.2)

⟨Ψ|
H ′
µ

N
|Ψ⟩ = (µ− t) (2α∗

1234α1234 + α∗
13α13) , (A.3)

⟨Ψ| HV

N2 |Ψ⟩ = V (2α∗
1234α1234 + α∗

13α13)2 . (A.4)

To simplify notation, we label D = α∗
1234α1234 ≥ 0 and S = α∗

13α13 ≥ 0 (for doubly
and single-occupied sites, respectively). We also split the phase space into two
halves (based on the sign of V ) and solve the phase diagram on each individually.
For some of the calculations below we use

D + S ≤ 1, (A.5)

which is implied by the normalization of the even part of the wavefunction |α0|2 +
|α13|2 + |α1234|2 = 1.

A.1 Repulsive Off-Site Interaction
We begin by considering V > 0.
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Figure A.1: The area of the phase diagram investigated in subsection A.1.1

A.1.1 Vacuum

We start by looking at the area bounded by the following two inequalities:

• µ > t,

• U > 2t− 2µ.

In this area, the expected value of HU/N +H ′
µ/N +HV /N

2 with the state |Ψ⟩ is

⟨Ψ|HU/N +H ′
µ/N +HV /N

2 |Ψ⟩ (A.6)
= UD + (µ− t) (2D + S) + V (2D + S)2 (A.7)
≥ UD + (µ− t) (2D + S) (A.8)
≥ UD + 2(µ− t)D (A.9)
= [U + 2(µ− t)]D (A.10)
≥ 0. (A.11)

This lower bound can be saturated by setting D = S = 0, which is the case for the
state |Ψ⟩ = |Ω⟩, i.e. the vacuum state.

A.1.2 Full Filling

Now we look at the area bounded by the following two inequalities:

• t− µ− 4V > U ,

• 2t− 2µ− 8V > U .
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A.1. Repulsive Off-Site Interaction

Figure A.2: The area of the phase diagram investigated in subsection A.1.2

In this area, the expected value of HU/N +H ′
µ/N +HV /N

2 with the state |Ψ⟩ is

⟨Ψ|HU/N +H ′
µ/N +HV /N

2 |Ψ⟩ (A.12)
= UD + (µ− t) (2D + S) + V (2D + S)2 (A.13)
≥ UD + (µ− t) (2D + S) + V (2D + S)2 + S(U + µ+ 4V − t) (A.14)
≥ D(2t− U − 2µ− 8V ) + (2D + S) (U + 2µ+ 4V − 2t) + V (2D + S)2 (A.15)
≥ (D + S) (U + 2µ+ 8V − 2t) + V (2D + S)2 − 4V (2D + S) (A.16)
≥ U + 2µ+ 8V − 2t+ V (2D + S)2 − 4V (2D + S) (A.17)
≥ U + 2µ+ 4V − 2t. (A.18)

This lower bound can be saturated by setting D = 1, which is the case for the
state

|Ψ⟩ =
N∏
i=1

a†
i,1a

†
i,2a

†
i,3a

†
i,4 |Ω⟩ , (A.19)

i.e. the full filling state.

A.1.3 Half Filling

Now we look at the area bounded by the following two inequalities:

• t > µ+ 2V ,

• U > t− µ− 2V .
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Figure A.3: The area of the phase diagram investigated in subsection A.1.3

In this area, the expected value of HU/N +H ′
µ/N +HV /N

2 with the state |Ψ⟩ is

⟨Ψ|HU/N +H ′
µ/N +HV /N

2 |Ψ⟩ (A.20)
= UD + (µ− t) (2D + S) + V (2D + S)2 (A.21)
≥ (t− µ− 2V )D + (µ− t) (2D + S) + V (2D + S)2 (A.22)
≥ (t− µ− 2V )(2D + S − 1) + (µ− t) (2D + S) + V (2D + S)2 (A.23)
≥ 2V + µ− t− 2V (2D + S) + V (2D + S)2 (A.24)
≥ V + µ− t+ V (2D + S − 1)2 (A.25)
≥ V + µ− t. (A.26)

This lower bound can be saturated by setting S = 1, which is the case for the state
|Ψ⟩ = ∏N

i=1

(
a†

i,1a
†
i,3+a†

i,2a
†
i,4√

2

)
|Ω⟩, i.e. the half filling state.

A.1.4 Pairing
Now we look at the area bounded by the following three inequalities:

• 2t− 2µ > U ,

• U > 2t− 2µ− 8V ,

• 0 > U .
In this area, the expected value of HU/N +H ′

µ/N +HV /N
2 with the state |Ψ⟩ is

⟨Ψ|HU/N +H ′
µ/N +HV /N

2 |Ψ⟩ (A.27)
= UD + (µ− t) (2D + S) + V (2D + S)2 (A.28)

≥ U

2 (2D + S) + (µ− t) (2D + S) + V (2D + S)2 (A.29)

≥ − [U + 2(µ− t)]2

16V . (A.30)
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Figure A.4: The area of the phase diagram investigated in subsection A.1.4

Here in last inequality we replace the quadratic expression for (2D + S) with its
minimum achieved for (2D + S) = 2t−2µ−U

4V . In fact, the lower bound is achieved
for S = 0 and D = 2t−2µ−U

8V . That corresponds to the state

|Ψ⟩ =
N∏
i=1

[
α01i + α1234

(
a†
i,1a

†
i,2a

†
i,3a

†
i,4

) ]
|Ω⟩ (A.31)

with α1234 =
√

2t−2µ−U
8V and α0 =

√
1− α2

1234. We call this phase pairing.

A.1.5 Sub-Half Filling
Now we look at the area delimited by the following three inequalities:

• U > 0,

• µ+ 2V > t,

• t > µ.
In this area, the expected value of HU/N +H ′

µ/N +HV /N
2 with the state |Ψ⟩ is

⟨Ψ|HU/N +H ′
µ/N +HV /N

2 |Ψ⟩ (A.32)
= UD + (µ− t) (2D + S) + V (2D + S)2 (A.33)
≥ (µ− t) (2D + S) + V (2D + S)2 (A.34)

≥ −(µ− t)2

4V . (A.35)

Similarly to before, in the last step we replace the quadratic expression for (2D+S)
with its minimum. The minimum is achieved for (2D + S) = t−µ

2V , specifically for
D = 0 and S = t−µ

2V , corresponding to the state

|Ψ⟩ =
N∏
i=1

α01i + α13

a†
i,1a

†
i,3 + a†

i,2a
†
i,4√

2

 |Ω⟩ (A.36)
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Figure A.5: The area of the phase diagram investigated in subsection A.1.5

with α13 =
√

t−µ
2V and α0 =

√
1− α2

13. We call this phase sub-half filling.

A.1.6 Super-Half Filling
Now we look at the area delimited by the following three inequalities:

• U > 0,

• t− µ− 2V > U ,

• t− µ− 4V > U .

In this area, the expected value of HU/N +H ′
µ/N +HV /N

2 with the state |Ψ⟩ is

⟨Ψ|HU/N +H ′
µ/N +HV /N

2 |Ψ⟩ (A.37)
= UD + (µ− t) (2D + S) + V (2D + S)2 (A.38)
≥ U(2D + S − 1) + (µ− t) (2D + S) + V (2D + S)2 (A.39)

≥ −U − (µ− t+ U)2

4V . (A.40)

Again, the last step consists of replacing the quadratic expression of (2D + S) with
its minimum. The minimum here is achieved for S = U+µ−t+8V

4V and D = t−µ−U−4V
4V ,

corresponding to the state

N∏
i=1

[
α13

a†
i,1a

†
i,3 + a†

i,2a
†
i,4√

2

+ α1234
(
a†
i,1a

†
i,2a

†
i,3a

†
i,4

) ]
|Ω⟩ (A.41)

with α13 =
√

U+µ−t+8V
4V and α1234 =

√
t−µ−U−4V

4V . We call this phase super-half
filling.
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Figure A.6: The area of the phase diagram investigated in subsection A.1.6.

A.2 Attractive Off-Site Interaction
For non-positive V , the phase diagram looks similar to V > 0, but some phases
are missing.

A.2.1 Vacuum
We start by looking at the area bounded by the following two inequalities:

• µ+ 2V > t,

• U > 2t− 2µ− 4V .

In this area, the expected value of HU/N +H ′
µ/N +HV /N

2 with the state |Ψ⟩ is

⟨Ψ|HU/N +H ′
µ/N +HV /N

2 |Ψ⟩ (A.42)
= UD + (µ− t) (2D + S) + V (2D + S)2 (A.43)
≥ UD + (µ− t+ 2V ) (2D + S) (A.44)
≥ UD + 2D(µ− t+ 2V ) (A.45)
= [U + 2(µ− t+ 2V )]D (A.46)
≥ 0. (A.47)

This expected value can be achieved by setting D = S = 0, which is the case for
the state |Ψ⟩ = |Ω⟩, i.e. the vacuum state.

A.2.2 Half Filling
Now we look at the area bounded by the following two inequalities:

• t > µ+ 2V ,

• U > t− µ− 2V .
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Figure A.7: The area of the phase diagram investigated in subsection A.2.1.

Figure A.8: The area of the phase diagram investigated in subsection A.2.2.

In this area, the expected value of HU/N +H ′
µ/N +HV /N

2 with the state |Ψ⟩ is

⟨Ψ|HU/N +H ′
µ/N +HV /N

2 |Ψ⟩ (A.48)
= UD + (µ− t) (2D + S) + V (2D + S)2 (A.49)
≥ (t− µ− 2V )D + (µ− t) (2D + S) + V (2D + S)2 (A.50)
≥ (t− µ− 2V )(2D + S − 1) + (µ− t) (2D + S) + V (2D + S)2 (A.51)
≥ 2V + µ− t− 2V (2D + S) + V (2D + S)2 (A.52)
= V + µ− t+ V (2D + S − 1)2 (A.53)
≥ V + µ− t. (A.54)

This minimum is achieved for S = 1, which corresponds to the half filling state
again (A.19).
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Figure A.9: The area of the phase diagram investigated in subsection A.2.3.

A.2.3 Full filling
Now we look at the area bounded by the following two inequalities:

• t− µ− 2V > U ,

• 2t− 2µ− 4V > U .
In this area, the expected value of HU/N +H ′

µ/N +HV /N
2 with the state |Ψ⟩ is

⟨Ψ|HU/N +H ′
µ/N +HV /N

2 |Ψ⟩ (A.55)
= UD + (µ− t) (2D + S) + V (2D + S)2 (A.56)
≥ UD + (µ− t) (2D + S) + V (2D + S)2 + S(U + µ+ 2V − t) (A.57)
≥ D(2t− U − 2µ− 4V ) + (U + 2µ+ 2V − 2t) (2D + S) + V (2D + S)2 (A.58)
≥ (D + S)(U − 2t+ 2µ+ 4V ) +−2V (2D + S) + V (2D + S)2 (A.59)
≥ U − 2t+ 2µ+ 4V +−2V (2D + S) + V (2D + S)2 (A.60)
≥ U − 2t+ 2µ+ 4V. (A.61)

This minimum is achieved for D = 1, which corresponds to the full filling state.

A.3 Symmetry Breaking
In this section, we look at the various phases of the phase diagram and investigate
which (if any) symmetries of the Hamiltonian they spontaneously break.

First we note that that hopping part of the state wavefunction (A1A2A3A4 for
hole hopping and A†

1A
†
2A

†
3A

†
4 for fermion hopping) has all of the symmetries of the

Hamiltonian, so no symmetry breaking occurs there.
Of the above ground states, some are product states between the physical and

ancillary space. Those correspond to a ground state that is not degenerate and that
respects all the symmetries of the Hamiltonian. Those are the phases of vacuum
and full filling.
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• Vacuum
|Φ⟩ = |Ω⟩ or |Φ⟩ = A†

1A
†
2A

†
3A

†
4 |Ω⟩ . (A.62)

• Full filling

|Φ⟩ =
∏
i

a†
i,1a

†
i,2a

†
i,3a

†
i,4 |Ω⟩ or |Φ⟩ = A1A2A3A4

∏
i

a†
i,1a

†
i,2a

†
i,3a

†
i,4 |Ω⟩ .

(A.63)

The rest of the phases contain some entanglement between the physical and
ancillary space and therefore correspond to ground state degeneracy and symmetry
breaking. As was described in subsection 5.3.1 we can examine which symmetries
are broken by applying the symmetry action to only half of the purified ground
state. Here we use the unitaries from subsection 6.1.3 to represent the symmetries
of the Hamiltonian:

U(lj) =
2∏

k=1

(
al,ka

†
l,kaj,ka

†
j,k + a†

l,kal,ka
†
j,kaj,k + a†

l,kaj,k + a†
j,kal,k

)
, (A.64)

UU(1)(α) =
N∏
i=1

2∏
k=1

(
ai,ka

†
i,k + e−iαa†

i,kai,k
)
, (A.65)

USU(2)(β, γ) =
N∏
i=1

(
ai,1a

†
i,1ai,2a

†
i,2 + a†

i,1ai,1a
†
i,2ai,2 + βa†

i,1ai,1ai,2a
†
i,2 (A.66)

+ β∗ai,1a
†
i,1a

†
i,2ai,2 − γ∗a†

i,2ai,1 + γa†
i,1ai,2

)
. (A.67)

Let us investigate the remaining phases one-by-one and see which of them break
which symmetries.

Pairing

• Permutation symmetry. To simplify notation, we label π the permutation
that swaps sites l and j:

U(lj) |Φ⟩ = U(lj)

N∏
i=1

(
sin(θ)1 + cos(θ)a†

i,1a
†
i,2a

†
i,3a

†
i,4

)
|Ω⟩ (A.68)

=
N∏
i=1

(
sin(θ)1 + cos(θ)a†

π(i),1a
†
π(i),2a

†
i,3a

†
i,4

)
|Ω⟩ ̸∝ |Φ⟩ . (A.69)

• U(1) symmetry:

UU(1)(α) |Φ⟩ = UU(1)(α)
N∏
i=1

(
sin(θ)1 + cos(θ)a†

i,1a
†
i,2a

†
i,3a

†
i,4

)
|Ω⟩ (A.70)

=
N∏
i=1

(
sin(θ)1 + e2iα cos(θ)a†

i,1a
†
i,2a

†
i,3a

†
i,4

)
|Ω⟩ ̸∝ |Φ⟩ (A.71)

104



A.3. Symmetry Breaking

• SU(2) symmetry:

USU(2)(β, γ) |Φ⟩ = UU(1)(θ)
N∏
i=1

(
sin(θ)1 + cos(θ)a†

i,1a
†
i,2a

†
i,3a

†
i,4

)
|Ω⟩ (A.72)

=
N∏
i=1

(
sin(θ)1 + cos(θ)a†

i,1a
†
i,2a

†
i,3a

†
i,4

)
|Ω⟩ = |Φ⟩ . (A.73)

As we can see, the SU(2) symmetry is preserved while the U(1) and the permuta-
tional symmetries are broken in the pairing phase.

Half Filling

• Permutation symmetry:

U(lj) |Φ⟩ = U(lj)

N∏
i=1

[
a†
i,1a

†
i,3 + a†

i,2a
†
i,4

]
|Ω⟩ (A.74)

=
N∏
i=1

[
a†
π(i),1a

†
i,3 + a†

π(i),2a
†
i,4

]
|Ω⟩ ̸∝ |Φ⟩ . (A.75)

• U(1) symmetry:

UU(1)(α) |Φ⟩ = UU(1)(α)
∏
i

[
a†
i,1a

†
i,3 + a†

i,2a
†
i,4

]
|Ω⟩ (A.76)

=
∏
i

[
eiαa†

i,1a
†
i,3 + eiαa†

i,2a
†
i,4

]
|Ω⟩ (A.77)

=
∏
i

eiα
[
a†
i,1a

†
i,3 + a†

i,2a
†
i,4

]
|Ω⟩ ∝ |Φ⟩ . (A.78)

We can see that the half filling phase only has this symmetry up to a global
complex phase. However, as was shown in section 5.3.1, this is allowed in
this case.

• SU(2) symmetry:

USU(2)(β, γ) |Φ⟩ = USU(2)(β, γ)
∏
i

[
a†
i,1a

†
i,3 + a†

i,2a
†
i,4

]
|Ω⟩ (A.79)

=
∏
i

[
βa†

i,1a
†
i,3 − γ∗a†

i,2a
†
i,3 + β∗a†

i,2a
†
i,4 + γa†

i,1a
†
i,4

]
|Ω⟩ ̸∝ |Φ⟩ . (A.80)

In this case we can see that the permutation symmetry and the SU(2) symme-
tries are broken while the U(1) is preserved.

Sub- and Super-half Filling

For the sub- and super-half filling phases, the symmetry breaking analysis may be
done without tedious calculations. First, note that in these phases, the ground state
is a superposition of vacuum / full filling with half filling. Vacuum and full filling
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both have all symmetries while half filling does not have the permutation symmetry
and the SU(2) symmetry. This implies that their superposition cannot have those
two symmetries either. Furthermore, the action of the U(1) symmetry introduces
a global complex phase in the half filling phase. When we take a superposition of
this state with either vacuum / full filling, this global complex phase will become
relative complex phase, which means that the symmetry will be broken.
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Appendix B

Selected Topics from Functional
Analysis

In this appendix we will go over some important results in functional analysis that
play a role in our research. The provided citations refer to when these results were
first discovered. Their formulation included here has been adapted from [154–157].

Theorem 7 (Hahn-Banach Theorem [158–160]). Let M be a subspace of a vector
space X, p a seminorm on X and f a linear functional acting on elements of M
such that

|f(x)| ≤ p(x) ∀x ∈M. (B.1)
Then f extends to a linear functional F on X that satisfies

|F (x)| ≤ p(x) ∀x ∈ X. (B.2)

Throughout the thesis the Hahn-Banach theorem is used two times. It is used
for the construction of an MPO approximation in subsection 4.3.1 and also when
properly defining the thermodynamic limit in the section B.1.

Lemma 3 (Auerbach’s Lemma [161]). Let V be an n-dimensional normed vector
space. Then there are unit vectors x1, ..., xn ∈ V and unit functionals x∗

1, ..., x
∗
n ∈ V ∗

such that
x∗
i (xj) = δij. (B.3)

The vectors x1, ..., xn ∈ V are referred to as Auerbach’s basis. The important
part of the lemma is that the dual basis x∗

1, ..., x
∗
n ∈ V ∗ is also unit norm. In

Hilbert spaces this can be easily achieved by taking any orthonormal basis with its
dual, but in general normed vector spaces, the existence of Auerbach’s basis is not
so trivial.

Proof. (adapted from [156]) Let {vi}ni=1 be a basis of the vector space V . For
any (other) set of vectors {ui}ni=1 in V define the function det(u1, u2, ..., un) as
the determinant of the matrix whose jth column are the coefficients of uj when
expressed in the basis {vi}ni=1. Let BV be the closed unit ball in V and let
Bn
V = BV × BV × ... × BV be the set of all n-tuples of vectors, each of which is

within the unit ball. The set Bn
V is compact, so the continuous function det(·)
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attains its supremum there. Let (x1, x2, ..., xn) ∈ Bn
V be the point where det(·)

attains its supremum within Bn
V . Because of the multilinearity of determinant, the

vectors {xi}ni=1 have to be on the surface of the unit ball ∥xi∥ = 1. Because the
determinant is non-zero, the vectors {xi}ni=1 have to be linearly independent and
therefore they form another basis of V .

Define the functionals fi ∈ X∗ as

fi(x) = det(x1, ..., xi−1, x, xi+1, ..., xn)
det(x1, ..., xn) ∀x ∈ V. (B.4)

For x ∈ BV , the following holds |fi(x)| ≤ 1 with equality attained for x = xi, so
the functionals fi are unit norm. By construction, they fulfill fi(xj) = δij, so they
are the dual basis to {xi}ni=1. The set {xi}ni=1 is therefore the Auerbach basis.

Auerbach’s Lemma is crucial in proving our theorem about approximability of
mixed states by MPO.

Theorem 8 (Banach-Alaoglu Theorem [162]). Let X be a normed vector space
with a dual space X∗. Let BX∗ be the closed unit ball in X∗ with respect to the
operator norm. Then BX∗ is closed with respect to the weak-∗ topology.

This theorem is used in this appendix in section B.1 to help properly define
the thermodynamic limit in the language of C*-algebras.

B.1 C*-Algebras and Thermodynamic Limit
If one wants to take the thermodynamic limit of a Hamiltonian like (3.25), it is
tempting to simply replace the upper bound of the summation to +∞. However,
there are many difficulties in actually taking the limit N → +∞. What object will
this Hamiltonian be? How will it be normalized? To address all of that, we turn
to C*-algebras. First we start with some basic definitions.

Definition 21. Let A be a vector space equipped with a binary operation acting
A × A → A (often called multiplication). If the operation is bilinear, A is an
algebra. We denote the product of x ∈ A and y ∈ A as xy ∈ A.

If the multiplication operation is associative, then A is an associative algebra.
If A is an associative algebra equipped with a norm ∥·∥ satisfying ∥xy∥ ≤ ∥x∥∥y∥,

then it is a normed algebra.
If the underlying field of A is C and A is equipped with an involution * satisfying:

(x∗)∗ = x, (B.5)
(x+ y)∗ = x∗ + y∗, (B.6)

(xy)∗ = y∗x∗, (B.7)
(λx)∗ = λ∗x∗. (B.8)

for any x, y ∈ A and λ ∈ C, then A is a *-algebra.
If A is a complete normed *-algebra satisfying ∥x∗x∥ = ∥x∥2 for any x ∈ A,

then it is a C*-algebra.
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The definition above fits some classes of quantum operators, equipped with the
operator norm ∥·∥∞ and with the Hermitian conjugate † as the involution. For
example quantum operators acting on N sites form a C*-algebra. If the operators
are elements of a C*-algebra, then what are the quantum states?

Definition 22. A functional ρ ∈ A∗ is called positive if ρ(x∗x) ≥ 0 for all x ∈ A.
A positive functional ρ is called a state if it has unit norm:

∥ρ∥ = sup
x∈A

|ρ(x)|
∥x∥

= 1. (B.9)

If a state cannot be expressed as a non-trivial convex combination of two other
states, it is called pure.

This algebraic definition of state coincides perfectly with our quantum-mechanical
understanding of what a state is. States (as members of A∗) acting on operators
(as members of A) can be interpreted as taking the expectation value of that state
with the corresponding operator. In this interpretation a state ρ is not defined by
a wavefunction vector or a density matrix, but by its expectation values.

In the thermodynamic limit, we want the number of sites to be infinite (but
still countable). We can use the set of natural numbers N to label the sites. Let
F(N) be the set of all finite subsets of N. For any Λ ∈ F(N) we define AΛ to be
the C*-algebra of all observables acting on the sites contained in Λ. Note that
for any Λ′ ⊃ Λ an observable x ∈ AΛ can be identified with another observable
xΛ ⊗ 1Λ′\Λ ∈ AΛ′ .

With this we can define the algebra of all local observables,

Aloc =
⋃

Λ∈F(N)
AΛ. (B.10)

In order for Aloc to be a well-defined algebra, it needs to be equipped with the
required algebra operations.

Definition 23. For any x ∈ AΛ and y ∈ AΓ, we define the addition and multipli-
cation in Aloc as

x+ y ≡
(
xΛ ⊗ 1Γ\Λ

)
+
(
yΓ ⊗ 1Λ\Γ

)
∈ AΛ∪Γ ⊂ Aloc, (B.11)

xy ≡
(
xΛ ⊗ 1Γ\Λ

) (
yΓ ⊗ 1Λ\Γ

)
∈ AΛ∪Γ ⊂ Aloc. (B.12)

The algebra of local operators can be equipped with the operator norm ∥·∥∞
and the * involution, making it a normed *-algebra. However, it is not complete and
therefore it is not a C*-algebra. To make it a C*-algebra, we consider its closure
Aloc called the algebra of quasi-local operators. Hereinafter the term quasi-local is
used to include local.

The corresponding space of functionals
(
Aloc

)∗
corresponds to the space quan-

tum states in the thermodynamic limit. Note that the states are again defined by
their expectation values (on all quasi-local observables). In particular, if two states
give the same expectation values, they are equal.
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Example 9 (Equality in the thermodynamic limit)
Consider the following two (families of) states — one mixed and one pure:

|ϕ⟩ = 1√
2
|0⟩⊗N + 1√

2
|1⟩⊗N , (B.13)

ρ = 1
2 |0⟩ ⟨0|

⊗N + 1
2 |1⟩ ⟨1|

⊗N . (B.14)

As we take the thermodynamic limit N → +∞, these states will give the
same expectation values for any local observable. Therefore those two families
of states correspond to the same state in the thermodynamic limit (which is
mixed).

Many physical Hamiltonians are a sum of local terms, e.g.

HN =
N∑

i,j=1
hij. (B.15)

As N goes to infinity, we can interpret this as a sequence in Aloc. However,
this sequence does not converge, which prevents us from properly defining the
Hamiltonian in the thermodynamic limit. The object that we would get just by
replacing the N in (B.15) with +∞ is not well defined.

However, each of the Hamiltonians HN ∈ A{1,...,N} has a ground state ϕN ∈
A∗

{1,...,N}. Since A{1,...,N} is a subspace of Aloc, we can apply the Hahn-Banach
theorem. In this case the theorem states that we can extend the states ϕN into(
Aloc

)∗
. We will call the extensions ΦN ∈

(
Aloc

)∗
. These extensions ΦN form a

well-defined sequence in ΦN ∈
(
Aloc

)∗
. Thanks to the Banach-Alaoglu Theorem,

the set of states is weakly-* compact, meaning that every sequence of states has
at least one accumulation point (if not a limit). We interpret these accumulation
points as the ground state(s) in the thermodynamic limit. This way we define the
ground state in the thermodynamic limit without having a proper definition of the
Hamiltonian itself in the thermodynamic limit.
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Appendix C

Rényi Mutual Information

This section contains some original results on the Rényi mutual information. These
results were obtained as part of the research into approximability of mixed states
by tensor networks (chapter 4). However, these results were never published. They
do not fit into chapter 4 because eventually we chose the Rényi entanglement of
purification as our criterion of approximability, not the Rényi mutual information.

In section C.1 we discuss the definition of the Rényi mutual information, settling
on its version with the sandwiched Rényi relative entropy. Then in section C.2
we calculate the Rényi mutual information for a generic bipartite pure state. In
section C.3 we use the result from section C.2 to prove the inequality between the
Rényi mutual information and the Rényi entanglement of purification, analogous
to equation (2.41). In section C.4 we calculate to which does the Rényi mutual
information reduces on classical systems and in section C.5 we prove the Rényi
mutual information area law for classical matrix-product density operators.

C.1 Definition
The Rényi mutual information is a generalizatation of the mutual information
(2.30) to the Rényi setting. We require this quantity to have some of the following
properties:

• When applied to pure states, it should reduce to twice the Rényi entropy
of the reduced state, just like mutual information reduces to von Neumann
entropy on pure states.

• It should be non-negative and it should be non-increasing under quantum
channels applied to both systems (data processing inequality).

• It should be defined for α ∈ (0, 1)∪ (1,+∞) and the limit α→ 1 should give
the (von Neumann) mutual information.

The naïve way to do this generalization would be just to turn the von Neumann
entropies in the definition of mutual information (2.30) into Rényi entropies, i.e.

Iα(A : B)ψ ?= Sα(ρA) + Sα(ρB)− Sα(ρAB). (C.1)
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However, this generalization loses several crucial properties of the mutual
information. It may sometimes be negative [163] and it is not non-increasing under
quantum channels anymore.

To amend that, we instead generalize a different definition of the Rényi mutual
information. Recall that there are four other alternative definitions of mutual
information (2.31)–(2.34). It is standard to use the definition (2.32) and replace
the relative entropy with the Rényi relative entropy [164]:

Iα(A : B)ψ = min
σB

Dα(ρAB||ρA ⊗ σB). (C.2)

Unfortunately for us, there are several definitions of the Rényi relative entropy.
The first one was introduced by Petz [165]:

Dα(ρ||σ) = 1
α− 1 log Tr

{
ρασ1−α

}
. (C.3)

While this can be defined for any α ∈ [0, 1) ∪ (1,∞), it obeys the data processing
inequality only for α ∈ [0, 1) ∪ (1, 2] [165]. A different Rényi relative entropy
generalization is called the sandwiched Rényi relative entropy:

D̃α(ρ||σ) = 1
α− 1 log Tr

{(
σ

1−α
2α ρσ

1−α
2α

)α}
. (C.4)

This quantity obeys the data processing inequality for α ∈ [1/2, 1) ∪ (1,∞) [166].
These two quantities were later even further generalized into a two parameter
family of relative entropies [167]

Dα,z(ρ||σ) = 1
α− 1 log Tr

{(
σ

1−α
2z ρ

α
z σ

1−α
2z

)z}
. (C.5)

In the rest of this chapter, we define our Rényi mutual information with
the sandwiched Rényi relative entropy. For more discussion about the various
definitions of the Rényi mutual information, see Scalet et al. [102].

C.2 Rényi Mutual Information for Pure States
As was shown in example 5, for pure states, the mutual information reduces to
twice the von Neumann entropy of the reduced density matrices. In this section
we investigate whether the same holds for the Rényi mutual information. Start
with a pure state ρAB = |ψ⟩ ⟨ψ|AB and its reduced density matrices ρA, ρB.

As a bipartite pure state, |ψ⟩ has a Schmidt decomposition

|ψ⟩AB =
∑
i

√
λi |ai⟩ |bi⟩ , (C.6)

where {|ai⟩}i and {|bi⟩}i are orthonormal bases on the two parts of the system. As
density matrices, ρAB and ρA may be written as:

ρAB = |ψ⟩ ⟨ψ| =
∑
i,j

√
λiλj |ai⟩ , |bi⟩ ⟨aj| ⟨bj| (C.7)

ρA = TrB |ψ⟩ ⟨ψ| =
∑
i

λi |ai⟩ ⟨ai| . (C.8)
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We slowly start plugging in the formula for the Rényi mutual information (C.2)
using the sandwiched Rényi relative entropy (C.4), starting with(

ρ
1−α
2α
A ⊗ 1B

)
ρAB

(
ρ

1−α
2α
A ⊗ 1B

)
(C.9)

=
(∑

l

λ
1−α
2α
l |al⟩ ⟨al|

)∑
i,j

√
λiλj |ai⟩ |bi⟩ ⟨aj| ⟨bj|

(∑
k

λ
1−α
2α
k |ak⟩ ⟨ak|

)
(C.10)

=
∑
l,i,j,k

λ
1−α
2α
l

√
λiλjλ

1−α
2α
k |al⟩ |bi⟩ ⟨bj| ⟨ak| δjkδli (C.11)

=
∑
i,j

(λiλj)
1

2α |ai⟩ |bi⟩ ⟨aj| ⟨bj| ≡ ρ′
AB. (C.12)

Here we defined ρ′
AB to simplify notation in the future. Then we can write

Iα(A : B)ψ = min
σB

{ 1
α− 1 log Tr

[(
1⊗ σ

1−α
2α
B

)
ρ′
AB

(
1⊗ σ

1−α
2α
B

)]α}
. (C.13)

Now we’re facing the optimization over all possible σB matrices. To simplify
the task, we use lemma 4.

Lemma 4. The optimal matrix σB is diagonal in the {|bi⟩}i basis.

Proof. First note that the state ρ′
AB is an unnormalized pure state

ρ′
AB = |ζ⟩ ⟨ζ| for |ζ⟩ =

∑
i

λ
1

2α
i |ai⟩ |bi⟩ . (C.14)

Assume a general density matrix σB = ∑
k µk |ck⟩ ⟨ck|. For now we fix the coefficients

µk and just optimize over the basis {|ck⟩}k. After applying the matrix 1⊗ σ
1−α
2α
B to

the state |ζ⟩ we get

σ
1−α
2α
B |ζ⟩ =

∑
i,k

λ
1

2α
i µ

1−α
2α
k |ai⟩ |ck⟩ ⟨ck|bi⟩ ≡ |ζ ′⟩ . (C.15)

The normalization of the vector |ζ ′⟩ is

⟨ζ ′|ζ ′⟩ =
∑
i,k,j,l

λ
1

2α
i µ

1−α
2α
k λ

1
2α
j µ

1−α
2α
l ⟨ck|bi⟩ ⟨bj|cl⟩ ⟨aj|ai⟩ ⟨cl|ck⟩ (C.16)

=
∑
ik

λ
1
α
i µ

1−α
α

k | ⟨ck|bi⟩ |2. (C.17)

So overall we have

Tr
[(

1⊗ σ
1−α
2α
B

)
ρ′
AB

(
1⊗ σ

1−α
2α
B

)]α
= Tr (|ζ ′⟩ ⟨ζ ′|)α (C.18)

= Tr
(
|ζ ′⟩ ⟨ζ ′|
⟨ζ ′|ζ ′⟩

)α
⟨ζ ′|ζ ′⟩α (C.19)

= ⟨ζ ′|ζ ′⟩α . (C.20)
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We want to choose such σB (specifically, the basis {|bi⟩}i) so that this value is
minimized. Define Mki = | ⟨ck|bi⟩ |2. This is a doubly-stochastic matrix, i.e. a
matrix of non-negative entries such that each row and column sums up to 1.
Doubly-stochastic matrices are a convex hull of permutation matrices. Note that

⟨ζ ′|ζ ′⟩ =
∑
ik

λ
1
α
i µ

1−α
α

k Mki (C.21)

is a linear function of the entries of Mki. The extreme of a linear function on
a convex set is attained in one of the points of its convex hull. Those are the
permutation matrices, which correspond to the case where the basis {|ck⟩}k is
equal to {|bi⟩}i up to permutation of elements. So we see that for any fixed set of
eigenvalues µk, the optimal matrix σB is be diagonal in the {|ci⟩}i basis.

From lemma 4 we know that we should consider σB = ∑n
k µk |bk⟩ ⟨bk| (with the

optimal values of µk unknown so far). From the proof of lemma 4 we know that
we can write (

1⊗ σ
1−α
2α
B

)
σAB

(
1⊗ σ

1−α
2α
B

)
= |ζ ′⟩ ⟨ζ ′| (C.22)

for
|ζ ′⟩ =

n∑
i

µ
1−α
2α
i λ

1
2α
i |ai⟩ |bi⟩ (C.23)

with the norm
⟨ζ ′|ζ ′⟩ =

n∑
i

µ
1−α

α
i λ

1
α
i . (C.24)

Therefore we have

Tr
[(

1⊗ σ
1−α
2α
B

)
σAB

(
1⊗ σ

1−α
2α
B

)]α
= Tr (|ζ ′⟩ ⟨ζ ′|)α = ⟨ζ ′|ζ ′⟩α , (C.25)

which makes the minimization over σB look like

Iα(A : B)ψ = min
{µi}i

1
α− 1 log

[
n∑
i

µ
1−α

α
i λ

1
α
i

]α
(C.26)

= min
{µi}i

α

α− 1 log
n∑
i

µ
1−α

α
i λ

1
α
i . (C.27)

Now we need to extremize ∑n
i µ

1−α
α

i λ
1
α
i (minimize for α > 1 and maximize for

α < 1). This is a problem for the Lagrange coefficients method with the constraint∑
l µl − 1 = 0. We define

f(µ1, ..., µn) =
n∑
i

µ
1−α

α
i λ

1
α
i , (C.28)

g(µ1, ..., µn) =
n∑
i

µi − 1, (C.29)

so that the Lagrangian is

L = f(a1, ..., an)− νg(a1, ..., an) (C.30)
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and we get

0 = ∇µ1,...,µn,νL =



(
1−α
α

)
µ

1−2α
α

1 λ
1
α
1 − ν

...(
1−α
α

)
µ

1−2α
α

n λ
1
α
n − ν

−g(µ1, ..., µn)

 . (C.31)

For α = 1/2, this reduces to the following set of equations:

0 =


λ2

1 − ν
...

λ2
n − ν

−g(µ1, ..., µn)

 . (C.32)

This is impossible to satisfy unless all of the λi’s are identical, which is a trivial case.
Hence for α = 1/2, the Lagrange multipliers method does not find any stationary
point.

For α ̸= 1/2 we express µi as

µi =
(

να

1− α

) α
1−2α

λ
1

2α−1
i ∀i ∈ {1, ..., n}. (C.33)

To enforce g(µ1, ..., µn) = 0, we choose the Lagrange multiplier ν such that

µi = λ
1

2α−1
i∑n
l λ

1
2α−1
l

∀i ∈ {1, ..., n}. (C.34)

This is one stationary point of the Lagrangian and therefore a possible solution.
The function f(µ1, ..., µn) is a sum of individual functions which we can call

fi(µ1, ..., µn) = µ
1−α

α
i λ

1
α
i . For α ∈ (0, 1/2) ∪ (1,+∞), these individual functions are

convex and so is their sum. For α ∈ (1/2, 1) they are concave and so is their sum.
This implies that for α ∈ (0, 1/2) ∪ (1,+∞), the stationary point is the global
minimum of the function f , while for α ∈ (1/2, 1), it is the maximum.

The formula for the Rényi mutual information looks like (C.27)

Iα(A : B)ψ = min
{µi}i

α

α− 1 log
n∑
i

a
1−α

α
i λ

1
α
i . (C.35)

Logarithm is a monotonic function, which will have no influence on the position
of the minimum or maximum. However, the term α

α−1 flips the sign of the entire
expression for α ∈ (0, 1/2) ∪ (1/2, 1), thus converting the global maximum for
α ∈ (1/2, 1) into a global minimum and vice versa for α ∈ (0, 1/2).

Therefore for α ∈ (1/2, 1) ∪ (1,+∞) we have found a density matrix σB which
minimizes the expression for mutual information. The mutual information will
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then be

Iα(A : B)ψ = α

α− 1 log
∑
i λ

1
2α−1
i(∑

k λ
1

2α−1
k

) 1−α
α

(C.36)

= α

α− 1

log
∑
i

λ
1

2α−1
i − log

(∑
k

λ
1

2α−1
k

) 1−α
α

 (C.37)

= α

α− 1 log
∑
i

λ
1

2α−1
i + log

∑
k

λ
1

2α−1
k (C.38)

= 2α− 1
α− 1 log

∑
i

λ
1

2α−1
i (C.39)

= 2 · 1
1− 1

2α−1
log

∑
i

λ
1

2α−1
i (C.40)

= 2S 1
2α−1

(A). (C.41)

This means that the Rényi mutual information turns into the Rényi entropy for
pure states, but with different α. The mapping α → 1

2α−1 maps the interval
(1/2,+∞) into (0,+∞) with 1 being the fixed point. This is another indication
that for our Rényi mutual information, only α > 1/2 is relevant.

C.3 Entanglement of Purification and Rényi Mutual
Information

As was mentioned in section 2.3.1, the regular entanglement of purification is
bounded from the bottom by half the mutual information,

Ep(ρAB) ≥ 1
2I(A : B)ρ. (C.42)

Here we prove that the same holds for the Rényi mutual information and the Rényi
entanglement of purification (defined in equation (2.51)). Assume that |Ξα⟩AA′BB′

is the purification of ρAB that achieves the minimum Rényi entropy in the definition
of the Rényi entanglement of purification. We have

2Eα
p (ρAB) = 2Sα(TrAA′ |Ξα⟩ ⟨Ξα|) = I 1+α

2α
(AA′ : BB′)Ξ ≥ I 1+α

2α
(A : B)ρ. (C.43)

The second equality comes from the equation (C.36). The inequality follows from
the fact that the mutual information (for α ≥ 1/2, which is guaranteed here) is
contractive under local quantum channels (including the partial trace).

C.4 Rényi Mutual Information for Classical Systems
In this section we examine how the Rényi mutual information behaves when the
system in question is classical i.e. with density matrix diagonal in the computational
basis.
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We start by changing our perspective from diagonal density matrices to classical
probability distributions (and correspondingly relabelling the eigenvalues from λ
to p):

ρAB =
∑
i,j

pij |ij⟩ ⟨ij| , (C.44)

ρA = TrB ρAB =
∑
i,j

pij |i⟩ ⟨i| ≡
∑
i

pi |i⟩ ⟨i| . (C.45)

Importantly for mutual information calculations, now the matrix ρAB commutes
with ρA ⊗ 1.

Lemma 5. The optimal matrix σB is diagonal in the {|j⟩}j basis.

Proof. First assume a general density matrix σB

σB =
∑
j

qj |ej⟩ ⟨ej| . (C.46)

with some eigenvalues qj and eigenvectors |ej⟩. The Rényi mutual information has
the form

Iα(A : B)ρ = min
σB

D̃α(ρAB||ρA ⊗ σB). (C.47)

For α ∈ [1/2, 1)∪(1,+∞) the Rényi relative entropy is contractive under completely
positive trace-preserving linear maps applied to both of its arguments [166]. We
will take advantage of that with the map

N (·) = idA ⊗
(∑

i

|i⟩ ⟨i| · |i⟩ ⟨i|
)
B

, (C.48)

which is a decohering map on the B subsystem (acting as identity on the A
subsystem). We then have

D̃α(ρAB||ρA ⊗ σB) ≥ D̃α(N (ρAB)||N (ρA ⊗ σB)) (C.49)
= D̃α(ρAB||ρA ⊗

∑
i

|i⟩ ⟨i|σB |i⟩ ⟨i|). (C.50)

We see that if we replace the density matrix σB simply by its diagonal (which is
what we are doing by applying the map N , the relative entropy does not increase.
Therefore if we want to minimize D̃α(ρAB||ρA ⊗ σB) over all density matrices σB,
we may choose to only consider matrices diagonal in the computational basis.

Thanks to lemma 5, the matrices ρAB and ρA ⊗ σB are diagonal in the same
basis, therefore they commute. That allows us to significantly simplify the formula
for the mutual information:
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Iα(A : B)ρ = min
{qk}k

1
α− 1 log Tr

{[
(ρA ⊗ σB) 1−α

2α ρAB(ρA ⊗ σB) 1−α
2α

]α}
(C.51)

= min
{qk}k

1
α− 1 log Tr

{[
(ρA ⊗ σB) 1−α

α ρAB
]α}

(C.52)

= min
{qk}k

1
α− 1 log Tr

{
(ρA ⊗ σB)1−αραAB

}
(C.53)

= min
{qk}k

1
α− 1 log

∑
i,j

(piqj)1−αpαij. (C.54)

Now our goal is to find the optimal set {qj}j. Our goal is to extremize the
function

f({qk}k) =
∑
i,j

(piqj)1−αpαij. (C.55)

As before, we want to minimize it for α > 1 and maximize it for α < 1 because of
the 1

α−1 factor. We have the constraint that g({qk}k) = ∑
j qj − 1 = 0.

Again, we use the Lagrange multipliers method. The Lagrangian is

L = f({qk}k)− νg({qk}k) =
∑
i,j

(piqj)1−αpαij − ν
(∑

k

qk − 1
)

(C.56)

and its gradient is

0 = ∇q1,...,qn,νL =


(1− α)∑i p

1−α
i q−α

1 pαi1 − ν
...

(1− α)∑i p
1−α
i q−α

n pαin − ν∑
k qk − 1

 . (C.57)

The first n rows in (C.57) can be rearranged into

qj =
[

(1− α)∑i p
1−α
i pαij

ν

] 1
α

. (C.58)

The constraint requires that the qj’s sum to 1. The Lagrange coefficient ν must
therefore be set to satisfy this constraint:

ν = (1− α)
∑

j

(∑
i

p1−α
i pαij

) 1
α

α , (C.59)

which gives

qj =

[∑
i p

1−α
i pαij

] 1
α

∑
k

[∑
l p

1−α
l pαlk

] 1
α

. (C.60)

As a solution of the Lagrange multipliers method, this point is a stationary point
of the mutual information. The objective function

f({qk}k) =
∑
i,j

(piqj)1−αpαij (C.61)
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is convex for α ∈ (1,∞) and concave for α ∈ (0, 1), so for α ∈ (1,∞) the stationary
point is a minimum while for α ∈ (0, 1) it is a maximum. Since the form of the
mutual information is

Iα(A : B)ρ = min
{qk}k

1
α− 1 log f({qk}k), (C.62)

we know that the stationary point is the minimizing point for all α.
Now substituting Qj = ∑

i p
α
ijp

1−α
i , we can express the mutual information as

Iα(A : B)ρ = 1
α− 1 log

∑
j

Qjq
1−α
j (C.63)

= 1
α− 1 log

∑
j

Qj

 Q
1/α
j∑

kQ
1/α
k

1−α

(C.64)

= 1
α− 1 log

∑
j

Q
1/α
j(∑

kQ
1/α
k

)1−α (C.65)

= 1
α− 1 log

∑
j

Q
1/α
j(∑

kQ
1/α
k

)1−α (C.66)

= α

α− 1 log
(∑

k

Q
1/α
k

)
(C.67)

= H1/α({Qk}k), (C.68)

where Hα is the classical Rényi entropy. Note that this is a slight abuse of notation
because the Qk’s do not sum up to 1, so they are not a valid probability distribution.

C.5 Area Law for Classical Matrix Product Density
Operators

A classical system ρAB = ∑
i,j pij |ij⟩ ⟨ij| is a 2-site matrix product density operator

(MPDO)1 with bond dimension D if and only if the matrix pij has rank D. This
can be seen by using the fact that a matrix with rank D can be written as a sum
of D matrices of rank 1, which is equal to the MPDO representation. If we prove
the area law for 2-site MPDOs, it will automatically hold for multi-site MPDOs
as well, since we can always interpret all the sites on one side of the cut as just a
single site (of correspondingly higher physical dimension).

Consider that the matrix pij has rank D. We want to bound the mutual
information between the two parts of the system. We will do that by bounding
the max-mutual information

Imax(A : B) = min
{qj}j

log max
ij

pijq
−1
j p−1

i . (C.69)

1See definition 19 for the definition of a matrix product (density) operator
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Before we can do that, we need to calculate the optimal qj. We get that from the
limit α→ +∞ applied to formula (C.60), which yields

qj = maxi pij/pi
N

, where N =
∑
j

max
i
pij/pi. (C.70)

The formula for the max-mutual information (C.69) is effectively looking for the
largest entry of the matrix

pijq
−1
j p−1

i = N
pij/pi

maxi pij/pi
≤ N (C.71)

with the indices i and j denoting the rows and columns of the matrix.
Thus our goal is to bound N . First assume that the matrix pij has rank 1.

Therefore pij = aibj for some non-negative sets of values {ai}i, {bj}j (which we
can understand as a row and column vector) and consequently pi = ai

∑
j bj.

N =
∑
j

max
i

pij
pi

=
∑
j

max
i

aibj
ai
∑
k bk

=
∑
j

bj∑
k bk

= 1. (C.72)

Now assume that the matrix pij has rank D. We can use the following lemma:

Lemma 6. Any matrix of rank D with non-negative elements can be written as a
sum of D rank 1 matrices:

pij =
D∑
k=1

aki b
k
j , (C.73)

where aki b
k
j is the ij-th element of the k-th rank 1 matrix and all the numbers

{aki }i,k and {bkj}j,k are non-negative.

Proof. Say that the matrix pij has n columns. That means that its rows as vectors
live in a vector space of n-dimensional real vectors. Moreover, they are all elements
of the convex cone (which we call C from now on) of vectors with non-negative
elements. The convex cone C is the conical hull of the standard basis elements
(1, 0, 0, ...), (0, 1, 0, ...), ...

Consider the convex hull of the standard basis elements. This is an (n − 1)-
dimensional simplex (hereafter referred to as S) with the standard basis elements
as vertices. Any non-zero vector in C lies on S after normalization in the 1-norm
(for vectors).

The fact that the matrix pij has rank D means that its rows span a D-
dimensional subspace (hereafter called Z) of the n-dimensional vector space. Since
the non-zero rows of pij lie in C, we know that their normalized versions lie on S,
which implies that Z intersects S. On the other hand we know that the origin lies
on Z, but not on the affine hull of S.

The affine hull of S is an (n− 1)-dimensional hyperplane obtained by taking
all of the affine combinations of the elements of S. Z is a D-dimensional plane
that contains some elements not contained in the affine hull of S, but it does
contain at least D linearly-independent elements which are in the affine hull of
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S. Therefore the intersection of these two planes must be a plane with dimension
D − 1. Hereafter we call this plane P .

Consider the intersection of P and S. This is an intersection of a (D − 1)-
dimensional plane with an (n− 1)-dimensional simplex. This set can be at most
(D − 1) dimensional simplex (hereafter called Q). Therefore there exist (at most)
D vectors such that Q is the convex hull of them. Call these vectors {bk}Dk=1. Note
that

{bk}Dk=1 ⊂ Q ⊂ S (C.74)
so they have non-negative components.

Recall the definition of Q:

Q = P ∩ S = [Z ∩ (affine hull of S)] ∩ S = Z ∩ S. (C.75)

This implies that the normalized versions of the non-zero rows of pij lie in Q (as
they lie in both S and Z). That means that the normalized versions of the non-zero
rows of pij can be expressed as a convex combination of {bk}Dk=1. That means that
their un-normalized versions can be expressed as a conical combination of {bk}Dk=1.
Let’s call the coefficients for the i-th row {aki }Dk=1. Then we can write

pij =
D∑
k=1

aki b
k
j (C.76)

for {aki }i,k and {bkj}j,k non-negative.

Now we can write

N =
∑
j

max
i

pij
pi

(C.77)

=
∑
j

max
i

∑D
k=1 a

k
i b
k
j∑D

m=1 a
m
i

∑
l b
m
l

(C.78)

≤
∑
j

D∑
k=1

max
i

aki b
k
j∑D

m=1 a
m
i

∑
l b
m
l

(C.79)

≤
∑
j

D∑
k=1

max
i

aki b
k
j

aki
∑
l b
k
l

(C.80)

=
D∑
k=1

∑
j

bkj∑
l b
k
l

(C.81)

=
D∑
k=1

1 = D. (C.82)

Here the first inequality comes from switching the sum over k with the maximization
over i. The second inequality comes from omitting all but the k-th element of the
sum over m in the denominator. This can be done because all the terms there are
non-negative.

Thus the Rényi mutual information for a classical MPDO with bond dimension
D is bounded by log(D).
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