

An introduction to the preCICE coupling library

ECCOMAS 2022

Frédéric Simonis Technical University of Munich

9th June 2022

11 12

```
initializeSolver(); //e.g. setup and partition mesh

while (not simulationDone()){ // time loop
   dt = beginTimeStep(); // e.g. compute adaptive dt
   solveTimeStep(dt);
}
```



```
initializeSolver(); //e.g. setup and partition mesh
precice::SolverInterface precice("FluidSolver","precice-config.xml",rank,size);

p_dt = precice.initialize();
while (not simulationDone()){ // time loop

dt = beginTimeStep(); // e.g. compute adaptive dt

solveTimeStep(dt);

}
```



```
initializeSolver(); //e.g. setup and partition mesh
precice::SolverInterface precice("FluidSolver","precice-config.xml",rank,size);

p_dt = precice.initialize();
while (not simulationDone()){ // time loop

s_dt = beginTimeStep(); // e.g. compute adaptive dt
dt = min(p_dt, s_dt);
solveTimeStep(dt);

}
```



```
initializeSolver(); //e.g. setup and partition mesh
precice::SolverInterface precice("FluidSolver", "precice-config.xml", rank, size);

p_dt = precice.initialize();
while (not simulationDone()){ // time loop

s_dt = beginTimeStep(); // e.g. compute adaptive dt
dt = min(p_dt, s_dt);
solveTimeStep(dt);

p_dt = precice.advance(dt);
}

p_dt = precice.advance(dt);
}
```



```
initializeSolver(); //e.g. setup and partition mesh
precice::SolverInterface precice("FluidSolver", "precice-config.xml", rank, size);

p_dt = precice.initialize();
while (precice.isCouplingOngoing()){ // time loop

s_dt = beginTimeStep(); // e.g. compute adaptive dt
dt = min(p_dt, s_dt);
solveTimeStep(dt);

p_dt = precice.advance(dt);
}

p_dt = precice.advance(dt);
}
```



```
initializeSolver(); //e.g. setup and partition mesh
precice::SolverInterface precice("FluidSolver","precice-config.xml",rank,size);
precice.setMeshVertices();
p_dt = precice.initialize();
while (precice.isCouplingOngoing()){ // time loop

s_dt = beginTimeStep(); // e.g. compute adaptive dt
dt = min(p_dt, s_dt);
solveTimeStep(dt);

p_dt = precice.advance(dt);
}

p_dt = precice.advance(dt);
}
```



```
initializeSolver(); //e.g. setup and partition mesh
precice::SolverInterface precice("FluidSolver", "precice-config.xml", rank, size);
precice.setMeshVertices();

p_dt = precice.initialize();
while (precice.isCouplingOngoing()){ // time loop
    precice.readData();
    s_dt = beginTimeStep(); // e.g. compute adaptive dt
    dt = min(p_dt, s_dt);
    solveTimeStep(dt);
    precice.writeData();
    p_dt = precice.advance(dt);
}
```


Selling points of preCICE

- Multiple ready-to-use solver adapters (OpenFOAM, FEniCS, CalculiX, SU2, deal.ii)
- 2. Minimally-invasive coupling
- 3. Coupling of arbitrarily many components
- Baked-in scalability
- Robust quasi-Newton coupling
- 6. Free open-source software
- 7. Extensive high-quality documentation
- 8. Growing user community

How to get started?

- Quickstart: precice.org/quickstart
- Tutorials: precice.org/tutorials
- User documentation on the website: precice.org/docs
- Open source: github.com/precice
- Need help?
 - Discourse forum: precice.discourse.group
 - Gitter chatroom: gitter.im/precice

Ouickstart

Summary: Install preCICE on Linux (e.g. via a Debian package) and couple an OpenFOAM fluid solver (using the OpenFOAM-preCICE adapter) with an example rigid body solver in C++.

C) Edit me 🗹

This is the first step you may want to try if you are new to preCICE: install preCICE and some solvers, and run a simple coupled case.

To get a feeling what preCICE does, watch a short presentation [2], a longer talk on the fundamentals [2], or click through a tutorial in your browser [2].

Installation

Get and install preCICE. For Ubuntu 20.04 (Focal Fossa), this is pretty easy: download
 install our binary package by clicking on it or using the following commands:

wget https://github.com/precice/precice/releases/download/v2.4.0/libprecice2_2.4.0_ focal.deb sudo ant install ./libprecice2_2.4.0 focal.deb

- Are you using something else? Just pick what suits you best on this overview page .
- Facing any problems? Ask for help ...
- 2. We will use OpenFOAM here and in many of our tutorial cases, so install OpenFOAM 🔀:

Core Team 2022

- Technical University of Munich, SCCS (since < 2008)
 - Hans-Joachim Bungartz
 - Gerasimos Chourdakis
 - Benjamin Rodenberg
 - Frédéric Simonis
- University of Stuttgart, SGS (since 2013)
 - Miriam Schulte
 - Kyle Davis
- University of Stuttgart, US3 (since 2021)
 - Benjamin Uekermann
 - Ishaan Desai
 - David Schneider

Tutorials New cases and solvers

Bindings Julia github.com/precice/PreCICE.jl

Adapters Elmer github.com/precice/elmer-adapter
FeniCSX github.com/precice/fenicsx-adapter
Two-scale coupling manager github.com/precice/micro-manager

New tutorial: channel transport

Tutorials New cases and solvers
Bindings Julia github.com/precice/PreCICE.jl

Adapters Elmer github.com/precice/elmer-adapter
FeniCSX github.com/precice/fenicsx-adapter
Two-scale coupling manager github.com/precice/micro-manager

New tutorial: channel transport

Tutorials New cases and solvers

Bindings Julia github.com/precice/PreCICE.jl

Adapters Elmer github.com/precice/elmer-adapter

FeniCSX github.com/precice/fenicsx-adapter

Two-scale coupling manager github.com/precice/micro-manager

New tutorial: channel transport

Tutorials New cases and solvers

Bindings Julia github.com/precice/PreCICE.jl

Adapters Elmer github.com/precice/elmer-adapter

FeniCSX github.com/precice/fenicsx-adapter

Two-scale coupling manager github.com/precice/micro-manager

New tutorial: channel transport

Major news!

preCICE workshop 2022

Major news!

preCICE v2: A sustainable and user-friendly coupling library[version 1; peer review: awaiting peer review]

Open Research Europe 2022

 $\verb"doi.org/10.12688/open reseurope.14445.1"$

Roadmap

Gerasimos Chourdakis Extendable and modular system tests Geometric multi-scale data mapping

Kyle Davis More robust and efficient quasi-Newton acceleration

Ishaan Desai Adaptive and flexible macro-micro coupling software

Boris Martin Cell-based linear interpolation for volumetric coupling

Benjamin Rodenberg Waveform relaxation for multi-rate coupling and higher-order time stepping

David Schneider Solver-based data mapping to take advantage of higher-order shape functions Partition-of-Unity RBF data mapping for very large problems

Frédéric Simonis Adaptive-dynamic coupling meshes and run-time remeshing Support multiple SolverInterface instances simultaneously

Summary

Flexible & easy: Couple your own solver with any other, by adding a few lines to

your code

Ready: Out-of-the-box support for many solvers

Fast: Fully-parallel, peer-to-peer, designed for HPC

Stable: Implicit coupling, accelerated with quasi-Newton

Multi-coupling: Couple more than two solvers

Free: LGPL3, source on GitHub

+: documented, tested, supported by a growing community

precice.org

github.com/precice

y @preCICE_org

precice.discourse.group & gitter.im/precice