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1 Introduction 

1.1 Laser beam welding – a keystone of fully automated 

production 

As a joining process in fully automated production, laser beam welding is becoming 

increasingly important. This technology offers the potential to achieve high quality 

and productivity for a safe and efficient production with a high degree of automation 

in the coming years (WEBSTER ET AL. 2014). An essential prerequisite for the 

employment of the novel process in industrial manufacturing is the feasibility of 

assuring and consistently documenting the product quality. With the joining 

processes typically being located at a late stage of the value chain, e.g., in the 

production of electrical energy storage systems, very low defect rates must be 

achieved (KAMPKER & NOWACKI 2014, pp. 57 ff.). Inline process monitoring systems 

can be employed to detect low-quality joints caused by irregularities in the welding 

process. The acquired data offers great potential for reducing rejects by improving 

and stabilizing production processes. Efficient and close-to-process utilization of the 

data requires inline control systems (KATAYAMA 2020, p. 135). By their employ-

ment, the transition from the detection to the prevention of insufficient product 

quality can be accomplished. 

1.2 Challenges, objectives and approach 

Laser beam welding is characterized by a highly concentrated energy input on a 

confined area due to the high radiation intensity used as a heat source. Consequently, 

the component to be welded is exposed to a low total energy input, resulting in a small 

heat-affected zone (HAZ) during the joining process compared to other fusion 

welding processes. Above a threshold intensity of the laser radiation, the evaporation 

temperature of metallic materials is exceeded. The result is the formation of a so-

called keyhole maintained by the escaping metal vapor and the high pressure inside 
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the capillary. The deep penetration welding process is characterized by a high 

efficiency, since the laser radiation is reflected by the keyhole walls multiple times 

and is partially absorbed during each impact (SIMONDS ET AL. 2018). However, the 

high temperature gradients lead to dynamic fluctuations in the welding process due 

to a decrease from the evaporation to the ambient temperature in a range of a few 

millimeters. If these instabilities lead to a collapse of the keyhole, spatter ejection or 

a change in the penetration depth can result (VOLPP & VOLLERTSEN 2016). For many 

technical applications, a constant weld depth is essential. Figure 1 shows three 

different scenarios for the weld depth exemplified by a weld seam in overlap 

configuration. In case a), no fusion of the two layers is achieved, as the upper joining 

partner is not fully penetrated. Many applications require case b), in which a complete 

attachment of the subjacent joining partner is achieved without a full penetration of 

the lower joining partner. Case c) shows a contrary situation to case a), as the joining 

partners are completely penetrated. Damage to the component or a vulnerable area 

below can result. Particularly, welding configurations, where full penetration welding 

should be avoided, often have vulnerable areas on the backside of the welding zone, 

e.g., battery cells or electronic components.  

The weld depth control for deep penetration laser beam welding (DPLW) has been 

the subject of research for many years. In this context, the development of a precise 

and real-time capable method for the inline measurement of the weld depth is 

essential. A possible solution is based on an interferometric measurement principle, 

Optical Coherence Tomography (OCT), in which a measuring laser beam is directed 

coaxially to the processing laser beam to the process zone (BAUTZE & KOGEL-

HOLLACHER 2014). The keyhole depth 𝑑𝑘 can be measured with a frequency of 

several kilohertz and an axial accuracy in the range of a few micrometers. The sensor 

signal is strongly influenced by the dynamic fluctuations of the keyhole, by the mate-

rial of the components to be joined and by the process parameters. The result is an 

inherent challenge regarding the interpretation of the OCT measurement signal.  
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Figure 1: Cross-sectional illustration of a laser welding process for joining two 

components in an overlap configuration; a) insufficient weld depth; b) 

desired weld depth; c) full penetration of both joining partners 

In the scope of this thesis, an inline weld depth control is to be developed. It is based 

on a numerical simulation of the melt pool geometry and on flexible and adaptive 

data processing methods for the keyhole measurement signal. A profound understan-

ding of the measuring method and the process-determining variables in DPLW must 

be gained to use the signal of an OCT sensor as an input signal for controlling the 

weld depth. First of all, the optimal OCT data-set structure is analyzed as a function 

of the material of the components to be joined and the process parameters during 

welding with a continuously emitting, i.e., a continuous-wave (cw) laser beam source. 

Besides that, a numerical simulation model is employed to investigate the relationship 

between the measurable depth of the keyhole and the resulting weld depth. A 

deviation between these two quantities results from a melt layer below the keyhole 

(cf. Figure 1). The influences on the OCT signal and the thickness of the melt layer 

are the basis for interpreting the keyhole depth measurement regarding the weld 

depth. Machine Learning (ML) methods are used for the regression of structured data. 

In addition to a well-understood input signal, precise knowledge of the possible reac-

tions to actively influence the weld depth is required to control the DPLW process. 

For this purpose, ML-methods are used to evaluate the relationships between the 

process parameters and the weld depth. To apply ML-methods for processing inline 

measurement data, extensive training data-sets are to be obtained. Computed 

Tomography (CT) images of welding samples provide a consistent data-set, which 

can be used in a comparison with the inline evaluated weld depths as reference data. 

The gained knowledge forms the basis for developing a weld depth control for 

DPLW. 
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1.3 Structure of the thesis 

This publication-based thesis is divided into six chapters. After the introduction, 

chapter 2 provides the fundamentals contributing to understanding the DPLW 

process and the control of the weld depth based on inline process monitoring data. It 

includes laser material processing, inline weld depth measurement, Artificial 

Intelligence (AI) methods for data processing and control architectures for industrial 

processes. In chapter 3, the state of the art is presented. The focus is on inline weld 

depth measurement in DPLW, ML-methods for data processing and numerical weld 

pool simulation. Chapter 4 describes the research approach, which includes the 

scientific objectives of this thesis, the methodological approach, the assignment of 

the embedded publications and the experimental set-up. The scientific results, which 

were presented in five scientific publications, are summarized and distinguished from 

the state of the art in chapter 5. The publications include the knowledge gained on 

interpreting the OCT keyhole depth measurement signal, the weld pool simulation 

results and the fundamentals and implementation of inline weld depth control. In 

chapter 6, the results are summarized and discussed, followed by an outlook on 

possibilities for weld depth control advancement. 

 

 



2.1 Chapter overview 

 5 

2 Fundamentals 

2.1 Chapter overview 

This chapter, dedicated to the fundamentals, is divided into five sections. In section 

2.2, laser material processing basics are provided, followed by a description of the 

inline weld depth determination during laser beam welding in section 2.3. The basics 

of Artificial Intelligence for data processing in industrial environments are explained 

in section 2.4. A detailed discussion of industrial process control strategies is given 

in section 2.5.  

Based on an explanation of the scientific terminology regarding laser material 

processing in sub-section 2.2.1, sub-section 2.2.2 describes the fundamental 

properties of laser radiation. Sub-section 2.2.3 addresses the generation of laser 

radiation and the technical principles of a laser beam source. The interactions between 

laser radiation and matter, which are the basis for the use of laser radiation in 

materials processing, are discussed in sub-section 2.2.4. Particular emphasis is 

devoted to aspects with relevance for process control. 

Sub-section 2.3.1 focuses on possibilities for inline process monitoring of laser beam 

welding. An overview of process monitoring systems in broad scope is followed by 

an in-depth discussion of methods for the acquisition of measurement data in the 

process zone during laser beam welding. Based on this, sub-section 2.3.2 describes 

the principles of keyhole depth measurement using Optical Coherence Tomography. 

Sub-section 2.4.1 gives an overview of Machine Learning methods for data pro-

cessing. In sub-section 2.4.2, Neural Networks are discussed. In particular, 

approaches suitable for the analysis of OCT measurement data are addressed in detail. 

An overview of methods for industrial process control is given in sub-section 2.5.1. 

Based on this, fuzzy-based control approaches are described in sub-section 2.5.2. A 

summary of the fundamentals is presented in sub-section 2.6. 
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2.2 Laser material processing 

2.2.1 General remarks 

The term laser is an acronym for light amplification by stimulated emission of 

radiation, describing the physical process of amplifying radiation by stimulated 

emission. In this section, the laser technology and the basics of laser welding are 

explained. For further information on these topics, reference is made to the works of 

POPRAWE (2005), HÜGEL & GRAF (2009) and GRAF (2015). 

2.2.2 Characteristics of laser radiation 

The wave-particle duality can describe the propagation of electromagnetic radiation. 

According to the model, a light beam can be described both as an infinitesimal, recti-

linearly propagating beam (ray optics) and as a superposition of radially propagating 

waves (wave optics) (DIMITROVA & WEIS 2008). As a combination of the described 

domains, the Gaussian beam is a suitable model for the description of laser light pro-

pagation. The following explanation refers to a beam in the fundamental Transverse 

Electromagnetic Mode 𝑇𝐸𝑀00 with a radially symmetric intensity distribution that 

corresponds to the Gaussian bell curve (BLIEDTNER ET AL. 2013, pp. 33–34).  

Figure 2 shows a Gaussian beam with the essential geometrical quantities describing 

the laser beam propagation properties. Since, in theory, light has an infinite 

propagation, a convention for the expansion of a laser beam is needed. The radial 

propagation limit of the beam is defined as the radius 𝑟 at which the intensity 𝐼 is as 

low as the value of 𝐼 𝑒2⁄  with respect to the maximum intensity 𝐼00 in the center of 

the beam (HÜGEL & GRAF 2009, p. 22). Coherence is an essential property of laser 

radiation, which implies a linear and directed propagation of the radiation. 

Furthermore, an ideal (coherent and high-quality) laser beam has one discrete 

frequency, i.e., one characteristic wavelength 𝜆. The wavelength significantly 

influences the geometric properties of propagating laser radiation. The beam radius 

in the focal point 𝑤0 is preferably used to describe the geometric properties of the 

laser beam: 
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Figure 2: Caustics of a Gaussian laser beam with optical parameters for beam 

characterization; based on EICHLER & EICHLER (2010, p. 235) 

𝑤0 = √
𝜆 𝑧𝑟
𝜋

 (2-1) 

Distant to the focal plane, the beam diameter expands along the beam axis. The 

distance at which the cross-sectional area doubles compared to the beam area at the 

beam waist is described by the Rayleigh length 𝑧𝑟:  

𝑧𝑟 =
𝜋𝑤0

2

𝜆
 (2-2) 

The beam radius 𝑤 can be described as a function of the position 𝑧 along the 

propagation axis:  

𝑤(𝑧) =  𝑤0√1 + (
𝑧

𝑧𝑟
)
2

 (2-3) 

At the Rayleigh length the radius 𝑤(𝑧𝑟) has the specific value 𝑤𝑟. The focusing 

property of a laser beam, i.e., the product of the focus radius and the divergence angle, 

is specified by the beam parameter product (BPP): 

𝐵𝑃𝑃 = 𝑤0 ∙ 𝜃 (2-4) 

The expansion of a laser beam along the propagation axis is described by the 

divergence angle 𝜃: 

𝜃 =
𝜆

𝜋 ∙ 𝑤0
 (2-5) 

Compared to the ideal Gaussian beam, which offers the highest attainable focusing 

possibility, the quality of a laser beam is described by the beam quality factor 𝑀²:  

I00

I

I00

zr

θ

w0

wr

r

beam radius w(z)

lens

Gaussian

intensity

distribution
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𝑀2 =
𝜋

𝜆
∙ 𝑤0 ∙ 𝜃 (2-6) 

It represents the ratio of the BPP of the considered beam to the BPP of an ideal 

Gaussian beam of the same wavelength. In addition to the fundamental mode 𝑇𝐸𝑀00, 

there are several higher modes with multiple maxima in the radial intensity 

distribution. The result is a flat intensity distribution for a high number of 

superimposed modes and an increased focal diameter compared to the 𝑇𝐸𝑀00. Beam 

sources emitting radiation in the fundamental mode are called single-mode (SM) 

beam sources. They have a higher beam quality than multi-mode (MM) beam sources, 

in which the radiation is composed of multiple superimposed modes. 

2.2.3 Generation of laser radiation 

A resonator is used in a laser beam source to generate laser radiation by exciting a 

laser-active medium by light of a specific wavelength. The resonator, whose 

schematic structure is shown in Figure 3, determines the basic properties of the laser 

beam. Essential elements of a resonator are two mirrors, the laser-active medium and 

the pumping source. While the laser-active medium primarily determines the laser 

radiation wavelength, the beam profile results mainly from the mirror arrangement.  

Independent of the resonator design, the generation of laser radiation is based on the 

stimulated, i.e., technically induced emission. The required energy must be supplied 

to the laser-active medium by an external energy supply, referred to as a pumping 

source. The semi-transparent mirror contributes to maintaining the energetically 

excited state in the resonator. It allows only a defined fraction of the radiation to be 

transmitted, while the reflected fraction stimulates the laser-active medium.  

The physical fundamentals of absorption and emission are explained by the Bohr 

model of the atom, according to which atoms have discrete energy levels and always 

aspire to the state of lowest energy. By adding energy, excited states are reached, 

which corresponds to an over-occupation of a higher energy level on the atomistic 

scale. The emission of radiation is always preceded by absorption. Excitation only 

occurs through radiation providing the appropriate energy, i.e., if the radiation energy 

introduced is equal to the energetic difference between two energy states. Naturally 

occurring radiation results from spontaneous emission. By incident radiation, an atom 

can be excited to a higher energy level. When the excited atom falls back to the lower 

energy level, an undirected photon is emitted. It is characteristic that the lower energy 

level is always over-occupied in thermal equilibrium (RENK 2012, p. 55).  
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Figure 3: Schematic representation of a laser resonator for the generation of laser 

radiation; based on TRÄGER (2012, p. 643) 

In contrast, the stimulated emission in a laser beam source requires an inversion of 

the occupation at the respective energy levels of the atoms in the laser-active medium. 

To obtain the inverted occupation state, a major fraction of the atoms has to be in the 

excited energy state, i.e., the excited state has to be overoccupied. This can be 

achieved by applying energy to the atoms with a pumping process. The resulting 

inverted state is an essential prerequisite for the generation of laser radiation 

(GRAF 2015, pp. 142–143). When no energy is supplied by a pump source, the 

electrons are in the state of lowest energy 𝐸1. If a photon of the frequency 𝑓12 hits an 

atom or molecule, the hit particle changes to a higher energy state 𝐸2. The transition 

from the ground state to the excited state follows the energy conservation principle: 

𝐸2 −𝐸1 = h ∙ 𝑓12 (2-7) 

Thereby, a photon of energy h ∙ 𝑓12 is retracted from the light and the intensity of the 

light decreases. From equation 2-7 follows that energy can occur only as an integer 

manifold of the Planck constant h. Particles in the excited state fall back into the 

ground state after a specific time. With a spontaneous emission, a photon of the 

energy h ∙ 𝑓12 is emitted. However, if a particle in the excited state is hit by a light 

quantum again, it falls to a lower energy state while energy is released. This so-called 

stimulated emission releases significantly more light quanta, which results in usable 

laser radiation with high energy, coherence and a uniform direction. (HÜGEL & 

GRAF 2009, pp. 50 ff.; RENK 2012, pp. 55 ff.; GRAF 2015, pp. 153 ff.)  

laser pumping source

semi-transparent mirrorfully reflective mirror

resonator

laser beam

laser-active medium
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2.2.4 Interaction of the laser beam and the material 

For this work, laser radiation was used as a heat source for the welding of metals, i.e., 

for forming a cohesive joint between metallic components by melting and intermixing 

the materials in the area of the weld joint. An essential requirement is that the work-

pieces partially absorb the laser radiation. Depending on the material, the laser inten-

sity in the interaction zone, the laser radiation wavelength and the traversing speed of 

the spot, different process regimes can be distinguished (KATAYAMA 2020, pp. 25–

26). These are depicted in Figure 4 in a simplified representation. At a low beam 

intensity, the workpiece is only heated by the absorbed part of the laser radiation 

without melting. The workpiece volume potentially modified by the heat of the laser 

process is referred to as the heat-affected zone (HAZ)2. Above a threshold intensity 

at which sufficient energy is absorbed by the material, the melting temperature 𝑇𝑚 is 

exceeded. In the heat conduction welding regime, a lenticular melt pool is formed 

due to the absorption of radiation energy on the workpiece surface. A further increase 

of the beam intensity results in exceeding the evaporation temperature 𝑇𝑣 in the 

interaction zone. A vapor capillary (keyhole) is then formed within the melt pool, 

within which the laser beam is reflected multiple times. Due to the evaporation of the 

material, the pressure within the keyhole increases, causing an increase in its volume. 

Within the expanding vapor capillary, the amount of energy absorbed by the 

workpiece and the weld depth increase with the intensity. The resulting process 

regime is referred to as deep penetration laser beam welding (DPLW).  

Fundamental to the efficiency of a process are the interaction processes of a laser 

beam with the material. In a simplified description, absorption, reflection and 

transmission can occur (ALLMEN & BLATTER 1995). Neither reflected nor 

transmitted radiation contribute to the heating of the material and can be summarized 

as power loss. The absorptivity represents the proportion of the energy absorbed by 

the workpiece when the laser impacts the workpiece surface only once. In contrast, 

the total absorption coefficient 𝛼𝑎𝑏𝑠 describes the fraction of the energy absorbed in 

the interaction zone, when considering multiple laser-material interactions. 

 
2 The heat-affected zone (HAZ) is a non-molten area of the workpiece in proximity to the process zone that 

potentially undergoes a change in the material properties as a result of the heat exposure during the welding 

process. 
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Figure 4: Process regimes of laser beam welding for an increasing radiation 

intensity; a) heating; b) heat conduction welding; c) deep penetration 

welding; based on KATAYAMA (2020, p. 25) 

Considering the conservation of energy, a simple equation for the absorption, 

reflection and transmission can be obtained (BÖCKH & WETZEL 2014, p. 204; 

DAHOTRE & HARIMKAR 2008): 

1 =  𝛼𝑎𝑏𝑠 + 𝜌 + 𝜏 (2-8) 

The fractions of reflected and transmitted radiation energy are represented by the 

reflection coefficient 𝜌 and the transmission coefficient 𝜏. Subsequently, the power 

balance for laser beam welding with the total laser power 𝑃𝐿, the absorbed power 

share 𝑃𝑎𝑏𝑠, the reflected power share 𝑃𝑟𝑒𝑓𝑙 and the transmitted power share 𝑃𝑡𝑟𝑎𝑛𝑠 can 

be derived (BEYER 1995, p. 27): 

𝑃𝐿 = 𝑃𝑎𝑏𝑠 + 𝑃𝑟𝑒𝑓𝑙 + 𝑃𝑡𝑟𝑎𝑛𝑠 (2-9) 

For a DPLW process conducted on metallic material, absorption and reflection are 

the main interaction processes, while the transmission is typically not relevant. As 

described above, the deep penetration welding regime is characterized by a keyhole. 

Within this cavity, multiple laser radiation reflections occur at the capillary wall. Due 

to the repeated impingement of the laser radiation, the proportion of absorbed energy 

increases compared to heat conduction welding, where the laser radiation interacts 

with the material only once at the workpiece surface (KATAYAMA 2020, p. 20). 

Figure 5 schematically shows the resulting propagation of laser radiation within a 

keyhole. A high temperature gradient from the vaporization temperature inside the 

keyhole to the temperature of the base material is inherent to the deep penetration 

heat-affected zone

laser beam

melt pool keyhole

increasing intensity of the laser beam

a) heating b) heat conduction welding c) deep penetration welding
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welding process. The resulting temperature field within the process zone causes a 

melt layer surrounding the keyhole (KARKHIN 2019, p. 289). The weld depth 𝑑𝑤 

results from the keyhole depth 𝑑𝑘 and the thickness of the melt layer 𝑡𝑙. 

 

Figure 5: Schematic illustration of a DPLW process with an exemplary propagation 

path of laser radiation within the keyhole 

2.3 Weld depth evaluation  

2.3.1 General remarks 

In automated manufacturing, monitoring systems for product quality are installed 

along the process chain. Process steps with a significant influence on the mechanical 

or optical properties of weld seams are usually inspected (SCHAUMBERGER ET 

AL. 2019). The central terms related to process monitoring in laser material 

processing are explained in the following. A distinction between the methods can be 

made by the timing of the process monitoring information relative to the machining 

process. In general, process monitoring methods can be divided into four groups 

(DAGGE ET AL. 2009): 

▪ Inline  

▪ Online 

▪ Atline 

▪ Offline 
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A measurement method is referred to as inline if the sensor technology is located 

close to the process and continuously provides measurement data from the process 

zone during an ongoing process (cf. Figure 6 (a)). The measurement results can be 

used directly for immediate data evaluation and process control. An advantage of the 

inline measurement is the continuous correlation of the obtained information with the 

specified characteristics of the process or the product. As the data acquisition and 

processing is generally fully automated, there is no need for manual inspection of the 

component. With inline process monitoring, a higher effort must be devoted to the 

calibration of the systems, because process influences directly affect the sensors 

involved and disturbing influences from the process zone must be considered. 

(KESSLER 2006, pp. 17–18) 

Online process monitoring, like inline monitoring, is performed automatically during 

the process runtime. However, selected test specimens are extracted from the 

production line and measured in a bypass to the main production line (cf. Figure 6 

(b)). To avoid a delay in the production process, the cycle time for measuring the 

specimens in the bypass must be shorter than the cycle time of the production process. 

Consequently, the information obtained can be used to control the process flow. In 

general, online monitoring is more cost-intensive than inline process monitoring, 

since an additional test line has to be established. (KESSLER 2006, pp. 15–16)  

In contrast to continuous inline and online techniques, atline process monitoring is 

performed discontinuously and remotely from the process. Due to the decoupling of 

the inspection and the process, the state of the machining process can change during 

the analysis (cf. Figure 6 (c)). In atline testing, the workpiece or sample is extracted 

manually and analyzed, for example, with this technique in a laboratory close to 

production. In most cases, specially designed instruments are used to test the samples 

rapidly. The process flow can be adjusted manually based on the information 

obtained. (KESSLER 2006, p. 15) 

Offline analysis of the process is another discontinuous procedure in which a work-

piece or sample is manually transferred to a remote testing site (cf. Figure 6 (d)). As 

a result, direct process control is not possible with this technique. The inspection 

frequency is determined manually, which requires expert knowledge. This is crucial 

for ensuring a correct process flow. An advantage of offline process monitoring is the 

high flexibility in the occasional performance of complex testing tasks. 

(KESSLER 2006, p. 15)  
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Figure 6: Classification of process monitoring methods; a) inline monitoring; b) 

online monitoring; c) atline monitoring; d) offline monitoring 

The following sub-section focuses on inline process monitoring systems, since for 

the efficient use of measurement data in a closed control loop with direct feedback to 

the process, the shortest possible delay between the acquisition of measurement data 

on the process state and the feedback of reaction variables is required. 

2.3.2 Inline process monitoring of laser beam welding 

Process monitoring is of central importance in laser beam welding to ensure weld 

seam quality. The welding area can be divided into three observation domains: the 

pre-process zone, the process zone and the post-process zone (cf. Figure 7).  

Pre-process zone 

The pre-process zone comprises the unprocessed material with geometric features 

that provide a reference for the positioning of the weld seam. Among the 

characteristics are, for example, sheet edges in welding zones or markings (STADTER 

ET AL. 2019). Sensor systems used in the pre-process zone mainly employ non-

contact, camera-based measurement principles. For example, the light section method 

projects one or more laser lines laterally onto the component and captures their 
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reflection with a camera coupled in the beam path (LEE & NA 2002). An offset in the 

line image indicates a sheet edge. Another sensor solution is the gray image 

evaluation with a camera and coaxial illumination. The gray images show a 

characteristic pattern of shaded areas and highlights caused by reflection at the sheet 

edge. Utilizing image processing, the sheet edge position can be determined and used 

inline for the path correction of the processing laser beam. (PURTONEN ET AL. 2014) 

Process zone 

The laser beam used for processing hits the material in the process zone, usually 

causing a melt pool and sometimes a keyhole. Instabilities in the keyhole or the melt 

flow directly influence the subsequent welding results (AALDERINK ET AL. 2007). 

Due to the high difference in brightness between the keyhole and the surrounding 

material as well as the high dynamics in the melt pool, process observation is difficult. 

For these reasons, cameras or photodiodes with a high dynamic range and a high 

temporal resolution are typically used. A method for analyzing the melt pool is 

recording the process emissions by photodiodes (YOU ET AL. 2013). If the threshold 

values of the measurement signal, predetermined with reference measurements of 

high- and low-quality welds, are exceeded, irregularities of the welding process can 

be detected and correlated to seam defects.  

Post-process zone 

The weld seam can be observed in the post-process zone, in which superficial 

connection defects, pores and other irregularities can occur (VALAVANIS & 

KOSMOPOULOS 2010). Camera systems with a detection wavelength in the visible or 

near-infrared (IR) spectral range are mainly used to detect defective areas on the weld 

seam surface. For this purpose, the light section method is also frequently used. A 

projection laser is moved along the seam bead, detecting superficial defects.  

Another approach aims at analyzing the cooling behavior of the weld seam by active 

or passive thermography. Based on temperature distributions with a deviation from a 

reference, a locally insufficient connection between the sheets can be observed 

(SRAJBR ET AL. 2011). Melt pool ejections and pores can be detected by a changed 

thermal radiation characteristic. Nearly all post-process seam evaluation methods are 

performed in the offline mode in cost-intensive test stations (HEBER ET AL. 2013; 

STENBERG ET AL. 2017). 
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Figure 7: Spatial assignment of the observation domains for the inline monitoring 

of a laser beam welding process; a) pre-process zone; b) process zone; c) 

post-process zone 

The measurement methods presented in this section cover a wide range of the sensor 

systems available on the market. They all can primarily be used in a single process 

observation domain, i.e., either in the pre-process, process or post-process zone. The 

following sub-section covers the fundamentals of Optical Coherence Tomography, 

which can be used to observe the pre-process, process and post-process zones. Of 

particular interest for this work is the ability to detect the depth of the keyhole in the 

process zone. 

2.3.3 Optical Coherence Tomography for keyhole depth 

measurement 

Based on a modification of the optical interferometer design proposed by Michelson, 

Optical Coherence Tomography (OCT) has been established as a method for high 

precision distance measurements. OCT is a common term for the technical applica-

tion of the principle of Low Coherence Interferometry (LCI). An absolute path length 

difference between the reference and the measurement distance can be determined by 

substituting the single-mode light source of a Michelson-interferometer with a wide-

band laser beam source. The measuring principle is based on the interference pattern 

that is created by the interference of the measuring and the reference beam (DREXLER 

& FUJIMOTO 2015). Since 1991 OCT has been a well-established measurement 

technique in ophthalmology, that is used to obtain topographic scans of the eye 

(HUANG ET AL. 1991). It has been proven that already a fraction of the reflected 

radiation in the order of 10−10 of the incident optical power is sufficient for a robust 
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distance measurement. With regard to the design, OCT sensors operating in the 

Frequency Domain (FD) and in the Time Domain (TD) can be distinguished. With 

FD-OCT sensors, a significantly reduced acquisition time for topographic scans is 

possible compared to TD-OCT sensors. The sensitivity of the FD-OCT is superior to 

that of TD-OCT (CHINN ET AL. 1997). As a result, high-precision measurements with 

a temporal resolution of several kilohertz are possible. Figure 8 shows the optical set-

up with the essential components (a) and the arrangement of the measurement and 

the reference beam path (b) for an FD-OCT.  

Fundamentals of an FD-OCT 

An FD-OCT is characterized by a fixed reference path free of moving parts. Since no 

mirror adjustment is necessary, the acquisition rate of distance measurement points 

is only limited by the detector array sampling rate. The spectral analysis of the inter-

ference between the reference beam and the measuring beam is performed with the 

help of a spectrometer. Based on the polychromatic illumination, the complex electric 

field 𝐸𝐼 can be described: 

𝐸𝐼 = 𝑠(𝑘, 𝜔)𝑒
𝑖(𝑘𝑧−𝜔𝑡) (2-10) 

Here, 𝑠 is the amplitude of the electric field, defined as a function of the wave-

number 𝑘 and the angular frequency 𝜔. The coordinate in the direction of beam 

propagation is represented by 𝑧 and the time by 𝑡. With a wavelength-independent 

splitting ratio of the beam splitter of 0.5, the electric fields in the reference path 𝐸𝑅 

and in the measurement path 𝐸𝑆 can be determined (DREXLER & FUJIMOTO 2015, p. 

71): 

𝐸𝑅 =
𝐸𝑖

√2  
𝑟𝑅𝑒

𝑖2𝑘𝑧𝑅 ,    𝐸𝑆 =
𝐸𝑖

√2
∑𝑟𝑆𝑛𝑒

𝑖2𝑘𝑧𝑆𝑛

𝑁𝑟

𝑛=1

 (2-11) 

For the case of transparent media, multiple reflections 𝑛 at the positions 𝑧𝑆𝑛 and the 

respective 𝑛-discrete power reflectivities 𝑅𝑆𝑛 = |𝑟𝑆𝑛|
2 with the 𝑛-discrete intensity 

reflectivities 𝑟𝑆𝑛 at the sample and the intensity reflectivities 𝑟𝑅 at the reference 

reflector are considered. The photocurrent in the detector 𝐼𝐷 results from the 

superposition of the electric fields from the reference and the measurement path 

(DREXLER & FUJIMOTO 2015, p. 72): 

𝐼𝐷(𝑘, 𝜔) =
𝜌𝑠
2
〈|𝐸𝑅 + 𝐸𝑆|〉

2 (2-12) 
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Here, 𝜌𝑠 describes the responsitivity of the sensor. The integration over the response 

time of the detector 〈⋯ 〉, i.e., the time average (DREXLER & FUJIMOTO 2015, p. 72)  

〈𝑓〉 = lim
𝑇→∞ 

1

2𝑇
∫ 𝑓(𝑡)𝑑𝑡,
𝑇

−𝑇

 (2-13) 

quantifies together with equations 2-10 and 2-11 the temporally invariant terms of 

the detector current 𝐼𝐷(𝑘) (DREXLER & FUJIMOTO 2015, p. 73): 

𝐼𝐷(𝑘) =
𝜌𝑠
4
[𝑆(𝑘)(𝑅𝑅 + 𝑅𝑆1 + 𝑅𝑆2 +⋯)]

+
𝜌𝑠
4
[𝑆(𝑘)∑√𝑅𝑅𝑅𝑆𝑛(𝑒

𝑖2𝑘(𝑧𝑅−𝑧𝑆𝑛) + 𝑒−𝑖2𝑘(𝑧𝑅−𝑧𝑆𝑛))

𝑁𝑟

𝑛=1

]

+
𝜌𝑠
4
[𝑆(𝑘) ∑ √𝑅𝑆𝑛𝑅𝑆𝑚(𝑒

𝑖2𝑘(𝑧𝑆𝑛−𝑧𝑆𝑚) + 𝑒−𝑖2𝑘(𝑧𝑆𝑛−𝑧𝑆𝑚))

𝑁𝑟

𝑛≠𝑚=1

] 

(2-14) 

Here, 𝑅𝑅 describes the power reflectivity at the reference reflector. As a function of 

the central wavenumber 𝑘, the spectral power 𝑆(𝑘) of light sources typically used for 

FD-OCT can be simplified. With the assumption of a Gaussian spectrum, the spectral 

power can be described (DREXLER & FUJIMOTO 2015, p. 73): 

𝑆(𝑘) = 〈|𝑠(𝑘, 𝜔|2〉 =
1

Δ𝑘√𝜋
𝑒
−[
𝑘−𝑘0
Δ𝑘

]
2

 (2-15) 
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Here, Δ𝑘 is the spectral bandwidth of the light source. To determine the distance 𝑧𝑠, 

the following relationship applies in the case of discrete reflections 𝑁𝑟 (DREXLER & 

FUJIMOTO 2015, p. 76): 

√𝑅𝑆(𝑧𝑆) = ∑√𝑅𝑆𝑛

𝑁𝑟

𝑛=1

𝛿(𝑧𝑆 − 𝑧𝑆𝑛) (2-16) 

The inverse Fourier transformation of equation 2-13 provides the axial position of the 

reflection planes, i.e., their distance to the reference plane. 

  

 

Figure 8: Schematic structure of an OCT sensor for process monitoring in laser 

material processing; a) optical components of an OCT sensor and their 

integration into a laser processing optics; b) illustration of the beam 

paths of an OCT sensor; based on DONGES & NOLL (2015, pp. 236–238) 
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Characteristics of the OCT measurement signal 

Figure 9 (a) shows an exemplary detector signal of an FD-OCT and the corresponding 

signal after Fast Fourier Transformation (FFT) (cf. Figure 9 (b)). In the plot, two 

reflections in the measurement path are considered, one in the reference plane and 

one approximately in the middle of the OCT measurement range. It is relevant for the 

technical application of an FD-OCT that only relative distances between the reference 

and other reflection planes can be determined. Thus, the measurement signal does not 

contain any absolute information about the occurrence of the reflections before or 

after the reference plane, i.e., there is an upper and a lower measuring range providing 

identical distance information. The relative position of the measurement to the 

reference plane must be technically verified to avoid measurement errors. A detailed 

mathematical derivation of the appropriate simplifications considering the OCT 

measurement principle is described by DREXLER & FUJIMOTO (2015). For a 

comprehensive description of measurement parameters as a function of optical 

properties, reference is made to TOMLINS & WANG (2005).  

By OCT, high-frequency distance measurements to a high number of reflection 

planes can be performed. The technique is used to measure the keyhole depth 𝑑𝑘 in 

laser beam welding by combining an OCT sensor according to the concept shown in 

Figure 10 with a laser welding system. Within the technical implementation, specific 

enhancements are introduced to the set-up. The reference axis is adjustable in its 

length so that the reference plane's axial position can be displaced relative to the re-

flection planes of the sample. Also, the measuring beam is divided by a beam splitter 

to obtain reflections from the component surface and the keyhole. The respective 

arrangement of the measuring and processing beams is shown in Figure 10 (a). 

 

Figure 9: a) Typical signal of an FD-OCT detector as a function of the 

wavenumber 𝑘 and b) Fourier-transformed signal; based on DONGES & 

NOLL (2015, p. 241) 
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Typically, a large portion of the measuring beam power is directed coaxially to the 

processing beam into the keyhole opening on the workpiece surface. The unabsorbed 

part is reflected towards the processing optics after traveling along the propagation 

path inside the capillary and can be detected by the OCT sensor. The radiation direc-

ted to the workpiece surface next to the process zone is also partially reflected. It 

provides a second distance value in the Fourier-transformed OCT signal. The differ-

ence between the two path lengths provides the keyhole depth. A reference can be 

obtained by detecting the component surface, considering surface irregularities.  

OCT for keyhole depth measurement 

An exemplary OCT signal for a keyhole depth measurement during DPLW is shown 

in Figure 10 (b). Here, a considerable difference in the signal characteristics of the 

keyhole compared to the surface signal is apparent. The keyhole distance values show 

a strong fluctuation over time and are scattered in the z-direction. In contrast, the 

surface signal shows a low scattering. This variation is due to process dynamics and 

multiple reflections during the keyhole depth signal evaluation. 

 

Figure 10: OCT for measuring the keyhole depth in DPLW; a) arrangement and 

propagation of measurement and processing laser beams; b) signal 

from the keyhole depth measurement with surface reference and 

keyhole signal 
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Resulting from fluid dynamic effects, changes of the keyhole geometry in the welding 

process lead to changes in the propagation path length (DORSCH ET AL. 2017). Given 

the various influences on the measurement signal characteristics, such as process 

parameters, material or penetration depth, no clear conclusion about the weld depth 

can be drawn from the depth signal without subsequent data processing and 

interpretation.  

For the inline interpretation of the high-frequency OCT-signal for the weld depth, 

computationally efficient data processing methods are required. The process influ-

ences on the signal, which have a significant impact on the reliability of the evalu-

ation, pose a further challenge. Besides conventional signal filters, Artificial Intelli-

gence and, in particular, Machine Learning (ML) methods offer proven potential for 

signal interpretation (ERTEL 2016, p. 257). The fundamentals of ML, together with 

the architectures of algorithms suitable for processing sensor signals, are discussed in 

the following section. 

2.4 Artificial Intelligence for data processing 

2.4.1 Overview of Machine Learning algorithms 

Artificial Intelligence (AI) is a discipline of computer science. It describes the attempt 

to imitate the human decision-making behavior to create autonomously acting sys-

tems within a hardware or software environment. The objective is to develop an in-

telligent behavior that allows a system to make autonomous decisions within defined 

constraints (ERTEL 2016, p. 191). Figure 11 shows a selection of human capabilities 

that can be simulated with AI. Machine Learning (ML) is a subfield of AI represen-

ting the human ability to learn from observations and experiences. It includes algo-

rithms for recognizing patterns and regularities in data-sets to derive forecasts for 

data previously unknown to the system. Artificial knowledge is generated in a 

learning phase, in which experience is made available to the ML-system as a training 

basis (MARSLAND 2014, pp. 4–5). ML-algorithms learn iteratively from a fixed data-

set in contrast to conventional programming approaches. Thus, patterns in the 

database can be detected even if the algorithm is not specifically instructed to search 

for regularities. ML-methods can be divided into the three categories unsupervised 

learning, supervised learning and reinforcement learning, depending on the form of 
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the input variables and the desired output (cf. Figure 11) (SHALEV-SHWARTZ & BEN-

DAVID 2014, pp. 22–24).  

In supervised learning, expert knowledge in the form of hypotheses is provided to 

the algorithm in the training phase as a support for decision-making with the aim that 

the trained ML-algorithm can imitate the procedure in the application phase 

(CARNEIRO ET AL. 2007). With supervised models, regression and classification 

problems can be solved (JAIN ET AL. 1999). Unsupervised learning does not provide 

the algorithm with a basis for decision-making. Therefore, the training is carried out 

without previously known target values and without a reward for correct decisions, 

which means that the algorithm must independently identify correlations and 

regularities in the training data-set (NIEBLES ET AL. 2008). The learned behavior can 

be used to solve classification and data compression problems in the application 

phase. Fundamentally, the algorithm learns how to decide which non-specified 

category the individual elements of a data-set are to be assigned to (NOROOZI & 

FAVARO 2016). In dimension reduction, relevant data elements are separated from 

irrelevant elements. Reinforcement learning represents a further possibility for 

training ML-algorithms. A so-called agent is responsible for independent decision-

making. The agent's goal is to maximize the positive reward it receives for a correct 

decision. Based on the rewards received, the algorithm independently approximates 

a utility function that describes the value of a condition at a certain point in time 

(MNIH ET AL. 2015).  

 

Figure 11: Overview of AI disciplines with a focus on ML-methods; based on 

SHALEV-SHWARTZ & BEN-DAVID (2014) 
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2.4.2 Artificial Neural Networks 

This sub-section describes the fundamentals of Artificial Neural Networks (ANNs), 

representing a major category of AI-algorithms. ANNs can be applied to all 

subgroups of AI (cf. Figure 11). In the following, special consideration will be given 

to ANNs for use in ML. 

Structure of Artificial Neural Networks 

Artificial neurons are biologically inspired mathematical models. They consist of 

activation functions connected in layers mimicking human neural systems. The input 

variables 𝑥𝑖 scaled with weighting factors 𝑤𝑖 enter a propagation function 𝛴. The 

output of this function is the network input 𝑛𝑒𝑡𝑖, which in turn feeds the activation 

function 𝜑𝑎. The activation function determines the output value 𝑥𝑜 of the artificial 

neuron. If necessary, a threshold value 𝜃𝑝 is imposed. The combination of artificial 

neurons allows for the creation of ANNs, where neurons are arranged in consecutive 

layers. The layers inside the network, which are not located at the input or the output, 

are called hidden layers. Classical ANNs typically have a small number of hidden 

layers (ERTEL 2016; MACKAY 2011).  

Feed-Forward Neural Networks 

Network architectures with a strictly forward-oriented information flow are referred 

to as Feed-Forward Neural Networks (FFNNs). Figure 12 presents the overall 

structure of an FFNN and the design of an artificial neuron. However, various other 

neuron connections can be established within and between the layers. Depending on 

the connection layout, the activation of an artificial neuron can act as input to the 

artificial neurons of the following layer, to itself or to the preceding layers. Some of 

the specialized network architectures are explained in the following. 

Frequently used activation functions are the step function, the semi-linear activation 

function and the tangent hyperbolic function. For the step function, a threshold value 

𝜃𝑝 is defined. The neuron provides a constant output of 1 only if the net input value 

𝑛𝑒𝑡𝑖 from the propagation function is equal to or higher than the threshold value. For 

a net input value smaller than the threshold, the output value is 0. The semi-linear 

activation function propagates the net value itself in a defined range around the 

threshold. Outside the linear interval, either the values 0 or 1 are passed as output. 

The tangent hyperbolic function converts any net inputs to values between -1 and 1. 

Thus, the activation functions have the purpose of exchanging output values ranging 

from -1 to 1 between the neurons. 
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Figure 12: Structure of an FFNN with eight neurons (numbered from 1 to 8), two 

hidden layers and internal structure of an artificial neuron 

An essential characteristic of ANNs is the ability to gain knowledge based on training 

data. The training process is designed iteratively and aims at minimizing the deviation 

between the output value of the ANN and a predefined target value. After each 

training run, the output of an ANN is compared to the target values from the training 

data-set. Subsequently, the error, commonly expressed as the root mean square error 

(RMSE), of the training results is calculated. If the error exceeds a defined maximum 

value, i.e., the termination criterion, a backpropagation algorithm is activated, which 

calculates new values for the weights 𝑤𝑖𝑗. Adjusting the weighting factors ensures a 

reduction in the RMSE across all results in the following run. Until the termination 

criterion is reached, an iterative process is performed to adjust the weights for the 

execution of the training runs. (KRAMER 2009, pp. 128–133) 

Deep Neural Networks 

Deep Neural Networks (DNNs) refer to an ANN architecture that has become well-

known through the extraordinary success of algorithms such as AlphaGO by the 

company DeepMind (SILVER ET AL. 2016). A characteristic feature of DNNs is a 

large number of hidden layers between the input and the output layers. While 

conventional ANNs usually contain two to three hidden intermediate layers, DNNs 

often consist of well over 100 layers. The main difference compared to conventional 

FFNNs is the ability of DNNs to work directly with unprocessed raw data and learn 

from complex data-sets, referred to as Deep Learning. DNNs require very large data-

sets and powerful computers for training but potentially can reach superior accuracy. 

They independently extract features from the data and directly deliver the prediction 

result (LECUN ET AL. 2015). This learning behavior is referred to as end-to-end 

learning. DNNs play a significant role in speech and image recognition 

(ERTEL 2016). 

 

1

2

3

4

5

input

layer

7

8

output

layer

hidden layers

neuron 6

𝑛𝑒𝑡 

𝑤  

𝑤  

𝑤  

propagation

function

activation

function 𝜑

𝑎 

output

weighting

factors



2 Fundamentals 

 26 

Convolutional Neuronal Networks 

Convolutional Neural Networks (CNNs) are based on a Deep Learning architecture 

and are used especially for processing image data. In contrast to classical neural 

networks, that require input data in the form of a vector, CNNs can directly process 

two-dimensional data such as the pixel matrix of an image (TURAGA ET AL. 2010). A 

CNN essentially consists of an alternating sequence of filters (convolutional layers) 

and aggregation layers (pooling layers), merged into a classical ANN. The filters and 

the aggregation layers are only connected to a limited extent. Each neuron of the 

hidden layer of the ANN uses only a small contiguous area of pixels as input. Thus, 

a CNN processes an image as a unit but considers a multitude of small areas for 

classification. This approach ensures that, for example, the rotation or position of an 

object in the image does not influence the classification (DÖRN 2018, p. 131). 

Recurrent Neuronal Networks 

FFNNs, as previously described, are generally unsuitable for processing sequential 

data, since, in the computational flow, each processing step is performed indepen-

dently of the previous one. Consequently, no regularities or commonalities between 

temporally staggered inputs can be detected in the data. FFNN are stateless and are 

defined by the parameterization and the input vector (ZHANG ET AL. 2015).  

By extending the FFNN architecture, neural networks can be employed for 

processing sequential data-sets such as time series. An example of an adapted 

structure are Recurrent Neural Networks (RNNs), which have an internal state 

influencing future computational steps. The difference between RNNs and FFNNs is 

the feedback of the output into a neuron of the same or of a previous layer at the 

transition to the next time step (GOODFELLOW ET AL. 2016; CONNOR ET AL. 1994). 

Figure 13 shows the structure of an RNN and the sequence of feedback. Analogous 

to the FFNN, an RNN can be composed of multiple layers. Due to the temporal 

variability of the internal state of an RNN, a temporal component is added to the 

optimization algorithm. The modification also has to be considered in the training of 

the RNN, which typically requires the employment of a Backpropagation-through-

time (BPTT) algorithm (WERBOS 1990). 

During the training of multilayer ANNs, such as RNNs, the weighting factors in the 

neurons are adjusted beginning from the output, i.e., against the data flow direction. 

In this process, a learning experience may not reach the layers located closer to the 

input. The connection of activation functions may correspond to a repeated 

multiplication with values between 0 and 1 or values > 1, respectively, causing the  
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returned weighting values to approach zero or infinity. An RNN is often subject to 

vanishing or exploding gradients with increasing network complexity. Two 

approaches to solving this problem have been established. First, a non-gradient-based 

training algorithm can be used. Examples are the heuristic approximation method of 

simulated cooling and discrete error feedback (BENGIO ET AL. 1994), the introduction 

of an explicit time delay or the introduction of time constants (MOZER 1992). The 

second approach involves an extension of the network architecture to a Long-Short-

Term-Memory-RNN (LSTM-RNN), according to HOCHREITER & SCHMIDHUBER 

(1997). LSTM-RNNs are used to preserve the error returned during training over time 

and across layers, reducing the risk of vanishing and exploding gradients. An LSTM 

element consists of an artificial neuron interconnected with additional elements called 

gates (GERS ET AL. 2000): 

▪ Input gate: An input gate determines the extent to which new information 

flows into the cell. 

▪ Forget gate: A forget gate determines the extent to which a value is forgotten 

in the cell. 

▪ Output gate: An output gate determines the extent to which the value in the 

cell is passed to the next module in the chain. 

With this architecture, the information in a neuron can be remembered or forgotten. 

Activation functions are used to decide what information is to be stored, overwritten 

or erased. However, unlike digital storage on computers, these gates are designed to 

be analog. Analog gates are necessary for the differentiability of subsequent error 

feedback. Like the nodes of an FFNN, the LSTM modules block or route information 

based on the signal weighting. The output of the module is multiplied by the internal 

weights. Through the learning process, both the internal weights of the module and 

the external weights between modules are adjusted. (HOCHREITER & 

SCHMIDHUBER 1997)  

 

Figure 13: Structure of an RNN with two hidden layers and an information feedback 

loop 
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RNNs and LSTM-RNNs are well suited for processing sequential data. Thus, the 

influences of short- and long-term trends in sensor data can be distinguished and 

considered in the data interpretation. 

With the help of the previously described ML approaches, it is possible to process 

data with high efficiency and superior accuracy compared to conventional data 

processing approaches. That potential can be used, e.g., in the interpretation of sensor 

signals from process monitoring systems, such as an OCT sensor for keyhole depth 

measurement. Due to the rapid evaluation of incoming signals, information about the 

process state can be made available almost in real-time. It can be utilized as an input 

variable for a closed-loop control system. The underlying fundamentals and concepts 

of process control are described in the following section. 

2.5 Control strategies for industrial processes 

2.5.1 Overview of process control strategies 

The main objective in control engineering is to influence the behavior of technical 

systems and especially of temporally fluctuating processes to achieve the desired 

response. The selection of the controlled variables within a system significantly 

influences the functionality of a control system. They must be selected with the aim 

that their modification allows a precise and efficient adaptation of the process 

variables to specified setpoints or setpoint curves (KIENDL 1997, p. 10). Since the 

control variable is based on determining the deviation between the setpoint and the 

actual value, a control loop is formed. Both variables are compared cyclically and the 

deviation is minimized (LUNZE 2020, pp. 1–3). The independent reaction of a 

controller can increase the degree of automation of a technical system by reacting to 

temporally changing influences on the system. This results in increased operator 

comfort, enhanced productivity of technical systems and improved product quality. 

The behavior of a motor-driven rod pendulum can exemplify the operation principle 

of a closed-loop control (cf. Figure 14 (a)). As a first step, all input and output 

variables of the dynamic system must be determined. Depending on the system 

complexity, defined by the number of input and output variables, a suitable method 

for system characterization is selected. The determining factors are the time variances 

occurring during the measurement of the variables and the linearity of the system 

behavior. A rod pendulum is a non-linear, time-variant system with one input 

variable, the motor torque 𝑀, and one output variable, the angle 𝜑. Assuming that 
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only the gravitational force 𝐹𝐺 = 𝑚 ∙ 𝑔 is applied to the pendulum, the rest position 

𝜑 = 0 can be determined. To displace the pendulum, a torque 𝑀 has to be applied to 

the rod by the motor. This torque is induced by applying a motor current 𝐼𝑀𝑜𝑡. If the 

output variable 𝜑 is to be varied over a period of time, an offset can be applied to the 

value of the manipulated variable 𝑀 in the actuator by a control system. Due to the 

design of the physical system, the actuating variable 𝑀 is coupled to the output 

variable 𝜑. Figure 14 (b) shows the resulting open chain of action from the motor 

torque 𝑀 to the deflection angle of the rod pendulum 𝜑.  

In contrast to an open control chain, in a closed-loop system the output variable of 

the technical system, in this case the angle 𝜑, is recoupled in a control loop. In the 

event of unforeseen disturbance variables 𝑧 acting on the system, the resulting angle 

𝜑 differs from the reference angle 𝜑𝑟𝑒𝑓. For the resulting error 𝑒 = 𝑥𝑠 − 𝑥𝑐, the 

controller must generate an output variable 𝑢𝑅, which causes the error 𝑒 to converge 

to zero. Depending on the functional relationship  

𝑢𝑅 = 𝐹(𝑒(𝑡)), (2-17) 

which is established by the controller between the error 𝑒 and the controller output 

variable 𝑢𝑅, the success of the control operation is determined (KIENDL 1997, p. 7).  

 

Figure 14: Rod pendulum as a physical system for the illustrative description of a 

closed-loop control; a) physical relationships in the system; b) open 

chain of action for the control of the deflection angle 
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Figure 15 shows the basic structure of a control loop with a pilot control3 and a closed-

loop controller. The reference variable 𝑤 is converted to a setpoint variable 𝑢𝑆 and to 

an expected output variable 𝑥𝑆 by the pilot control system. In the process, the mani-

pulated variable 𝑢 is converted into the controlled variable 𝑥𝑐 by the system dynamics 

involving the occurring disturbance variable 𝑧𝑐. To determine the error, which is used 

for the generation of controller output variable 𝑢𝑅, the sensor-based acquisition of the 

output variable 𝑥𝑐 is essential (FÖLLINGER ET AL. 2013, pp. 1–3). 

In general, four different requirements apply to the design of a control system 

regarding the behavior of the control loop. Optimum control systems aim at the 

highest possible fulfillment of all quality criteria. (LUNZE 2020, p. 353) 

Stability: A dynamic system is called transmission-stable if it can calculate a limited 

output signal for each limited input signal. Transmission stability is also called 

Bounded-Input-Bounded-Output-stability (BIBO-stability).  

Interference compensation and setpoint tracking: A control loop must have the 

ability to track the controlled variable as precisely as possible in relation to the 

reference variable when the influence of the disturbance variable 𝑧𝑐 is low.  

Dynamics: A specific dynamic relationship is required between the reference vari-

able, the disturbance variable and the controlled variable. The step response can char-

acterize the approximation of the controlled variable to the reference variable in case 

of a deviation from the setpoint position. A fast approach and a low overshooting 

behavior are usually required. An example of the response of a controlled variable 𝑥𝑐 

to an abrupt change in the reference variable 𝜑𝑟𝑒𝑓 is shown in Figure 15 (b). The 

overshoot represents the exaggeration of the controlled variable regarding the 

setpoint, and the regulation time is the duration until the controlled variable has 

stabilized in the settling tolerance. 

Robustness: A control loop must be designed with regard to a robust behavior, which 

is present when changes in the parameters of the controlled system caused by external 

influences or errors in the system model have a low influence on the behavior of the 

dynamic system. (LUNZE 2020, pp. 353–357)  

 
3 A pilot control refers to an element of a control loop applying a value to the reference variable that is 

independent of the states of the controlled system and resulting measurements (FÖLLINGER ET AL. 2013) 
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For the design of a technical control system, a given system model is generally used 

as a basis. The model is a simplified representation of the system, which covers all 

essential characteristics and behaviors. Different modeling approaches can be used to 

identify the system, which essentially differ in the required background knowledge 

of the system structure. How well the model structure and its parameters are 

determined is essential, since they describe the system behavior. (BOHN & 

UNBEHAUEN 2016) 

White-Box model: The model structure is determined from known physical 

properties. No measurements or experiments are required to determine the model, 

since both the model structure and the parameters (e.g., masses in Newtonian 

mechanics) are known or given by the system design. Consequently, the White-Box 

model represents a theoretical approach. (BOHN & UNBEHAUEN 2016, p. 242)  

Black-Box model: Black-Box models are used if no knowledge of the model 

structure is available or existing previous knowledge is not applicable. General 

approximation approaches help to derive the model structure. Model parameters are 

not based on physical quantities and are determined by system identification methods 

from measured input and output data. (BOHN & UNBEHAUEN 2016, pp. 242–243) 

Gray-Box model: Gray-Box models combine approaches of White- and Black-Box 

modeling. The model equations are partly derived from physical laws or preliminary 

considerations. The unknown parameters occurring in the model equations are 

 

Figure 15: Structure of a control loop; a) closed-loop control with pilot control;  

b) settling process of the output value by a controller for an abrupt 

change of the setpoint value 
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determined by a system identification on the basis of measured input and output data. 

(BOHN & UNBEHAUEN 2016, p. 243) 

For the control of linear, time-invariant systems (LTI systems), it is common to use 

linear controllers (LUNZE 2020, p. 111). Standardized procedures exist for the design 

of these control systems. Like the systems to be controlled, these control systems can 

be represented with transfer functions. By determining the zeros, linear factors can 

be obtained from the transfer functions. Different basic types of controllers are 

available, composed of proportional (P), integral (I) and differential (D) components. 

The transfer functions are represented by linear factors in the frequency domain. The 

individual factors serve different purposes in influencing the controller behavior: 

▪ P-component: The proportional component of the controller leads to a 

proportional amplification of the control deviation. This causes a fast approach 

of the controlled variable to the reference variable (LUNZE 2020, p. 413). 

▪ I-component: The integrating behavior of the I-component is required to 

achieve steady-state accuracy in the control loop. The dynamics are low 

compared to the P-component (LUNZE 2020, p. 413). 

▪ D-component: The differential component reacts to a change in the control 

deviation over time. As a result, a strongly filtered signal of the controlled 

variable is required to prevent destabilization of the system by short-term high-

frequency disturbance signals (LUNZE 2020, p. 413). 

P-, PI-, PD- and PID-controllers are mostly used in practical application. Analytical 

and heuristic methods can be used to determine the controller parameters. As an 

analytical method, the controller design based on the pole-zero diagram can be 

applied. By specifically influencing the position of the pole and zero points of the 

closed-loop transfer function, the stability or properties such as the closed-loop 

damping can be influenced. If no model of the circuit is available, heuristic methods 

can be used. The controller parameters are searched for experimentally and itera-

tively. It should be noted that often only low requirements on the quality of the control 

loop can be met. In addition, the controlled system must have high stability in order 

to allow for experiments at the outer limits of the process stability range 

(LUNZE 2020). 

Proceeding from the fundamentals of control engineering, the following section 

focuses on rule-based control concepts and in particular on the group of fuzzy 

controllers. Such controllers are preferably used when no mathematical model of the 

controlled system can be determined.  
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2.5.2 Fuzzy control  

The operation of a fuzzy4 controller is adapted from human behavior in reacting to 

occurring disturbances. For this purpose, a process model is represented with the aid 

of a large number of verbal rules, whereby a high degree of transparency can be 

created even for complex and multi-criteria problems. 

Fuzzy controllers feature several advantages over classical control engineering 

approaches: (SCHNEIDER 2008, pp. 377–378) 

▪ No mathematical process model is required for the controller design. 

▪ Linear and non-linear fuzzy controllers5 have a high degree of transparency. 

▪ A large number of possible influences during parameterization results in a high 

flexibility of fuzzy controllers. 

▪ Qualitative information, e.g., expert knowledge that cannot be formulated 

mathematically, can be embedded in the controller design. 

The following main disadvantages of fuzzy controllers can be stated: 

(SCHNEIDER 2008, pp. 377–378) 

▪ A standard design procedure is not available. 

▪ For non-linear fuzzy controllers, a stability investigation based on 

mathematical methods is challenging. 

▪ Fuzzy controllers require comparatively high computing power. 

The basic principle of fuzzy control includes the three operations of fuzzification, 

inference and defuzzification. Prior to a detailed description of these operations, the 

two main fuzzy control concepts are introduced using examples. Fuzzy models are 

based on a model description using indistinct quantities, so-called fuzzy sets (BOHN 

& UNBEHAUEN 2016, p. 321). A simple fuzzy controller, referred to as a Mamdani 

controller, uses rules of the following form (SCHRÖDER & BUSS 2017, pp. 871–873): 

 

  

 
4 Fuzziness is defined as the uncertainty of the membership of states to a category. According to set theory, the 

membership of a state to a category depends on a probability function. 
5 A fuzzy controller is considered non-linear if the defuzzified output of the controller is a non-linear function 

of the inputs (YING ET AL. 1990). 



2 Fundamentals 

 34 

     IF 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 1 = 𝑡𝑒𝑟𝑚 𝐴𝑘1 

          AND 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 2 = 𝑡𝑒𝑟𝑚 𝐴𝑘2 

          AND 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 3 = 𝑡𝑒𝑟𝑚 𝐴𝑘  

          … 

          OR 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛 = 𝑡𝑒𝑟𝑚 𝐴𝑘𝑛 

THEN 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑡𝑒𝑟𝑚 𝐵𝑙   

(2-18) 

A Sugeno fuzzy controller, on the other hand, uses fuzzy rules to merge the results of 

several conventional control laws 𝑦 = 𝑓𝑙(𝑥1, 𝑥2, … , 𝑥𝑛) and represents a hybrid 

concept between conventional control and fuzzy control (SCHRÖDER & BUSS 2017, 

pp. 871–873): 

     IF 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 1 = 𝑡𝑒𝑟𝑚 𝐴𝑘1 

          AND 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 2 = 𝑡𝑒𝑟𝑚 𝐴𝑘2 

          AND 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 3 = 𝑡𝑒𝑟𝑚 𝐴𝑘  

          … 

          OR 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛 = 𝑡𝑒𝑟𝑚 𝐴𝑘𝑛 

THEN 𝑦 = 𝑓𝑙(𝑥1, 𝑥2, … , 𝑥𝑛) 

(2-19) 

Prior to explaining the operations of fuzzification, inference and defuzzification in a 

fuzzy controller, the theory of fuzzy sets is discussed in detail. 

Fuzzy sets 

The fuzzy logic is based on the fuzzy sets. It is therefore a characteristic of the fuzzy 

sets proposed by ZADEH & ALIEV (2019) that a binary distinction does not determine 

the inclusion or non-inclusion of an element, e.g., the state of a system, in a set. In 

classical set theory, on the other hand, a set 𝑥 is determined entirely by the 

specification of all elements: 

𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}  (2-20) 

The elements 𝑎1, 𝑎2, . . . , 𝑎𝑛 are characterized by the membership function 𝜇𝐴(𝑥): 

𝜇𝐴(𝑥) = {
1 𝑓𝑜𝑟 𝑥 ∈ 𝐴
0 𝑓𝑜𝑟 𝑥 ∉ 𝐴

  (2-21) 

Accordingly, an element 𝑥 either belongs to a set 𝐴 or not. However, in a fuzzy set, 

the characteristic function can have values in the interval [0,1], assigning a degree of 

set membership to an element. This method of the set definition is called fuzzy logic. 
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Fuzzification 

Fuzzification is understood as converting a sharp input value into a non-sharp 

description. The degrees of membership, described by the functions 

𝜇𝐴1(𝑥), 𝜇𝐴2(𝑥), … , 𝜇𝐴𝑛(𝑥), are assigned to the respective input value. In the design 

of a fuzzy controller, the definition of the terms 𝐴1, … , 𝐴𝑛 (cf. equation 2-20) and 

their sets of significance with the membership functions have a great influence on the 

control behavior. First, the number of terms must be defined, depending on how 

detailed the range of values is to be subdivided. The terms are often referred to as 

negative-big via zero to positive-big. Secondly, the type of membership function must 

be chosen. The most common types are trapezoidal or triangular membership 

functions. Figure 16 shows a selection of different types of membership functions. 

The third step is to arrange the membership functions to cover the whole range of 

allowed values. The membership functions should overlap to an appropriate degree 

to model the transition between terms. (SCHRÖDER & BUSS 2017, pp. 873–876) 

Inference 

Applying the rules to the fuzzy input variables is called inference. Usually, the rules 

have the form as shown in equation 2-18. Any logical operator (e.g., AND, OR, NOT) 

can be used to define the rule preconditions. Usually, an AND operation is initially 

used for a rule, while the individual rules are often linked with OR operators. 

(SCHRÖDER & BUSS 2017, p. 875) 

Defuzzification 

After inference, the values of the output variables are available in a fuzzy form. How-

ever, to control an actuator, the degrees of validity must be translated back into sharp 

values. The step of selecting a valid and explicit output value is called defuzzification. 

Essentially, two methods exist for this purpose: the center-of-area (or center-of-

gravity) method and the center-of-maxima method (SCHRÖDER & BUSS 2017, 

pp. 379–382). As a result of the inference, a discrete spectrum of recommendations 

is provided. The center-of-area method compromises the recommended actions of 

individual rules when interpreting the inference results. The center-of-maxima 

method was developed based on the center-of-area method and offers the advantage 

of reduced computational effort. For a control system, a trade-off is often appropriate. 
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Figure 16: Examples of membership functions for the fuzzy description of input 

variables in a fuzzy control system 

Both methods are shown in Figure 17 for an exemplary progression of the 

membership as a function of the output value 𝑥. The maximum-based method 

provides the most significant output value. This is especially convenient when fuzzy 

modules are not used as controllers but for process monitoring to determine whether 

certain events are present or not. (KIENDL 1997, p. 25) 

Design of a fuzzy control system 

For the design of a fuzzy control system, no standardized procedure exists. 

Commonly, empirical knowledge about a process is introduced into the controller in 

the form of rules. This design strategy is used mainly for controlled systems with a 

high degree of complexity, unknown internal operating mechanisms or an 

insufficiently accurate process model. In this way, a controlled system can be 

represented and optimized based on experiments (KIENDL 1997, p. 27). Alternatively, 

known process data can be used to set up a fuzzy model of the controlled system. 

This model can then serve as the basis for controller design by representing the 

desired behavior of the control system. Modeling from the data can be based, for 

example, on the characterization of a correlation between the manipulated variable 𝑢 

and the controlled variables 𝑥 with 𝑢 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛). Also, a signal or image 

analysis of the result of the controlled system can be evaluated according to 

characteristics of different features and their connection with the manipulated 

variable 𝑢. (KIENDL 1997, p. 27) 
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Figure 17: Methods of defuzzification; a) center-of-area method; b) center-of-

maxima method 

2.6 Concluding remarks 

In this chapter, laser material processing basics were presented at the beginning 

(section 2.2). Properties of laser radiation were described, followed by an explanation 

of the principle of laser beam generation. Based on this, the beam-material 

interactions relevant to laser beam welding were discussed. Subsequently, the 

fundamentals of inline weld depth determination were provided in section 2.3, which 

included a classification of process monitoring methods and a description of the 

operation principle of OCT. A summary of AI-methods was presented in section 2.4, 

which included a description of the integration of ML into AI and a summary of the 

function of ANN. Finally, the required basics of control engineering for industrial 

processes were summarized (section 2.5). Following an overview of general control 

strategies, fuzzy control was described in detail. The fundamentals presented in 

sections 2.2 to 2.5 describe the functioning of the individual components of a laser 

system with inline weld depth control. Particular attention was given to the processing 

steps of signals that must be passed through from acquisition to controller 

intervention by the actuator system. Based on the described framework, the state of 

the art in process monitoring and control is presented in chapter 3. 

 

output variable →output variable →
25 50 1000 75

0

1

25 50 1000 75

1

0

d
e

g
re

e
o

f

m
e

m
b

e
rs

h
ip

→

d
e
g

re
e

o
f

m
e

m
b

e
rs

h
ip

→

a) b)



2 Fundamentals 

 38 

 

 

 



3.1 Chapter overview 

 39 

3 State of the Art 

3.1 Chapter overview 

Numerous methods for monitoring laser beam welding processes exist, as described 

in sub-section 2.3.2. These approaches usually aim at ensuring the quality of joints 

and help to detect deviations of the production process from the desired operation. 

Particularly in automated laser welding systems with high throughput rates, sensor-

based monitoring of the processes plays an increasingly important role. An essential 

property of welded joints is their mechanical strength, which is primarily determined 

by the weld cross-section and accordingly by the weld depth. Several research 

activities have addressed the inline detection of this property during DPLW. The 

approach employed in this dissertation aims at using the signal from an inline keyhole 

depth measurement to control the weld depth. Detected deviations of the measured 

depth from a given value can be compensated by adjusting the process parameters. 

An interpretation algorithm based on ML-methods allows to determine the weld 

depth from the OCT keyhole depth measurement signals. The resulting depth value 

serves as an input variable of a process control, with fuzzy control as an architectural 

concept. 

Chapter 3 provides an overview of the state of the art in process monitoring and 

control of laser beam welding processes. Section 3.2 discusses the sensing of process 

variables in laser material processing. Approaches to OCT employment in DPLW are 

discussed in section 3.3. The focus is on the acquisition of measured variables in the 

keyhole area, i.e., in the process zone. Approaches to process control in laser beam 

welding are presented in section 3.4, while section 3.5 summarizes the current state 

of research and identifies the need for action. 
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3.2 Process monitoring in laser material processing 

For process monitoring in laser beam welding, a wide range of sensor systems can be 

employed to detect, e.g., physical effects related to the process stability or the product 

quality. Cameras, photodiodes, pyrometers, microphones or distance measuring 

systems are used. In the following, relevant scientific works, which use the sensor 

technologies mentioned above for monitoring, will be discussed in detail. A 

comprehensive overview of process monitoring and quality assurance in laser 

material processing beyond the presented work is provided by STAVRIDIS ET AL. 

(2018) and PURTONEN ET AL. (2014). 

An investigation of different sensors and measurement principles for process 

monitoring in laser beam welding has been carried out by STRITT ET AL. (2016). To 

generate data for an evaluation and gain a higher understanding of the process, 

welding tests were performed on copper, steel and aluminum specimens. Bead on 

plate welds of individual materials and linear welds for joining two sheets of different 

materials in an overlap configuration were investigated. In the experiments, a high-

speed camera, an inline X-ray device, an OCT sensor, a pyrometer and an IR camera 

were evaluated regarding their suitability for process monitoring. The data obtained 

was analyzed for typical weld defects, such as pores and hot cracks. Using a high-

speed camera, defects on the surface and spatter formation during the welding process 

of the case-hardening steel 16CrMn5 were detected. A relationship was found 

between the number and the direction of weld spatters and the welding speed. At a 

low processing speed of 1 m/min, small spatters occurred without a preferred 

direction. In contrast, at high feed rates around 10 m/min, large spatters detached 

against the welding direction (STRITT ET AL. 2016, p. 5). Thermographic images from 

an IR camera during welding of AA6014 aluminum sheets near the edge of the 

specimen provided a further insight. The temperature difference between the center 

of the specimen and the sheet edge was larger when hot cracks occurred. The indirect 

methods investigated by STRITT ET AL. (2016) were associated with uncertainty in 

concluding on the stability of the welding process. Direct measurement methods, such 

as an OCT-based measurement of the keyhole depth, were shown to be more precise 

and allowed for conclusions, e.g., on the stability of the welding process. 

YOU ET AL. (2014) used a camera-based monitoring system combined with an 

ultraviolet filter and a bandpass filter for the visible wavelength range in their work. 

The objective was to relate specific characteristics of weld fumes and weld spatter to 

weld quality by analyzing the images regarding the gray levels of spatters. Welding 
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tests were performed on type 304 stainless steel at three different feed rates. For the 

characterization of weld spatters, static and dynamic features were defined and 

combined in a feature vector, including, for example, the radius and the trajectory. 

An image processing algorithm was developed to track weld spatters detaching from 

the process zone. It was shown that the detachment of large spatters from the weld 

pool leads to seam defects. The knowledge gained can be used to implement camera-

based quality monitoring. The work of YOU ET AL. (2014) focused on a correlation 

between weld spatter/vapor and weld quality. A similar objective was pursued by 

HAUBOLD ET AL. (2017) and HAUBOLD & ZAEH (2019). They were able to detect 

spatter in the process zone with the aid of a high-speed camera system observing 

coaxially to the laser beam. The measuring frequency was in the kHz range, enabling 

spatters to be evaluated in terms of direction and speed based on the gray-scale image 

data. Significant parameter dependence of the spatter formation was demonstrated. 

Welding process monitoring based on the measurement of optical and acoustic 

emissions in the process zone was investigated by SHEVCHIK ET AL. (2019). For 

detecting optical emissions and the back reflection of laser radiation, the welding 

optics were equipped with three photodiodes with different wavelength measuring 

ranges. The acoustic sensor, sampling at a rate of 10 MHz, was mounted on the 

workpiece close to the process zone. Welding tests were carried out on samples of 

Ti6Al4V. Based on metallographic cross-sections, the processed samples were 

divided into sections without a weld seam, sections with a heat conduction weld, 

sections with a defect-free deep penetration weld and sections with a porous deep 

penetration weld. The experimental results were used to label the recorded sensor 

data for classification. Raw data processing and feature extraction were performed 

using wavelet analysis. The features were defined as the relative energies of the 

extracted narrow frequency bands. SHEVCHIK ET AL. trained a Laplacian Graph 

Support Vector Machine (LapSVM) for the quality assurance in laser beam welding 

based on multi-sensor inline process monitoring. The classification accuracy of the 

developed LapSVM was above 85.9 % and decreased with an increase in the weld 

depth. The overall classification accuracy was improved with sensor data fusion of 

acoustic and optical measurements. It was also shown that a wavelet transformation 

of the raw signals offers advantages in data cleansing and transformation by removing 

noise from the input data and adapting the processing to the given signals. 

Correlations between the sensor data and the weld depth could not be identified. 

YUSOF ET AL. (2020) investigated the determination of the weld depth in pulsed laser 

beam welding based on airborne noise emission measurements from the process. To 

generate measurement data as a reference for the studies, 22MnB5 steel sheets were 
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welded in a butt weld configuration. A microphone placed close to the process zone 

was utilized to detect acoustic emissions from the process zone, ranging from 20 Hz 

to 12 kHz. Welding tests were performed using a fiber laser with pulse durations 

between 2 ms and 6 ms. Stepwise regression analysis was applied to determine 

relevant features from the acoustic recordings and generate training data for ML-

models. YUSOF ET AL. identified, among others, the standard deviation of the acoustic 

amplitudes, the laser peak power and the pulse duration as relevant features for 

characterizing the welding process. In particular, the laser peak power and the pulse 

duration impacted the characteristics of the resulting acoustic emissions. Higher pulse 

durations induced a more prolonged sound emission due to an extended absorption 

time of the laser radiation in the workpiece. A multiple linear regression model, 

accounting for the above-mentioned variables, and an FFNN were trained to predict 

the weld depth based on the above-mentioned characteristics. The regression model 

achieved an average accuracy of 92.87 % for the prediction of the weld depth. The 

FFNN with a hidden layer containing 10 neurons was able to predict the weld depth 

with an average accuracy of 95.92 %. A measurement of acoustic emissions from the 

process zone can be classified as an indirect measurement method for determining 

the weld depth. An inline data analysis was not implemented by the authors. 

BOLEY ET AL. (2019a) investigated the observation of the weld depth in DPLW of 

steel using an X-ray tube and a high-speed camera. The specimens were welded from 

a top position while the weld was laterally scanned with X-ray radiation. Using a 

scintillator, the X-rays were converted into visible light and recorded with a high-

speed camera at a sampling rate of 1 kHz. The presented experimental set-up allowed 

to evaluate weld seam features in the dimensional range from 100 μm to 1 mm. 

Parameter influences of the X-ray transmission on the image quality and the 

information obtained about the process were investigated. As a result of edge blurring 

in the images, caused by the set-up of the imaging system, the keyhole walls appeared 

elongated and the opening on the surface was magnified. A further disturbance factor 

was added to the images in form of the noise of the image amplifier. Ultimately, an 

influence of the signal-to-noise ratio on the image quality was determined, 

concluding that high spatial resolution can only be achieved if the signal can be 

separated from the noise. The method can be assigned to the direct measurement 

systems for determining the weld depth in laser beam welding.  

Interim conclusion 

Various studies on the monitoring of laser material processing have been presented 

in recent years. In particular, in the field of inline monitoring, a wide variety of 
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sensors and combinations of sensors have been used to record process conditions. In 

most cases, indirect measurement methods have been employed, requiring extensive 

subsequent processing steps to utilize the measurement signals. The dominant goal 

of the research activities was to increase process understanding by correlating 

measurement signals with the properties of the manufactured components. Particular 

attention was paid to the development of data evaluation approaches with the 

increasing use of ML-methods. 

3.3 Optical Coherence Tomography in laser beam welding  

OCT is particularly advantageous for process monitoring in close proximity or within 

the process zone, as the measurement method is not influenced by process emissions 

and offers high temporal and spatial measurement resolution. The distance 

information obtained with OCT can be used for various purposes and provides high 

accuracy information independent of irradiation during laser material processing 

(FRASER 2011). STADTER ET AL. (2019) used an OCT distance measurement to 

position the focal point during remote laser beam welding relative to a joining gap 

detected in the pre-process zone (cf. Figure 7). Furthermore, STADTER ET AL. (2020b) 

derived quality predictions for welds from topographic scans of weld surfaces that 

can be detected in the post-process zone.  

OCT also offers a possibility for the direct and inline determination of the keyhole 

depth in DPLW. One of the first OCT-based process monitoring systems was used to 

characterize a laser ablation process. The works of WIESNER ET AL. (2010), WEBSTER 

ET AL. (2010) and WEBSTER ET AL. (2014) focused on inline monitoring of the 

ablation rate, the surface finish and the quality of processed components. 

A comprehensive discussion of the technical implementation of keyhole depth meas-

urement based on OCT was provided by BAUTZE & KOGEL-HOLLACHER (2014), 

BAUTZE ET AL. (2015), KOGEL-HOLLACHER ET AL. (2014), KOGEL-HOLLACHER ET 

AL. (2017) and BLECHER ET AL. (2014). Various commercially available sensor 

systems were described, mostly integrated into fixed optics systems. The potentials 

of a weld depth control based on an evaluated OCT signal were presented in the 

context of the studies from JI ET AL. (2015) and KOGEL-HOLLACHER ET AL. (2016). 

FETZER ET AL. (2017) used an OCT system with a sampling rate of 70 kHz for process 

monitoring of a welding process and an arbitrary waveform generator to modulate 

the laser power. Besides that, a set-up for generating high-speed X-ray images with 
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an acquisition frequency of 1 kHz, analogous to the experimental set-ups used by 

ABT ET AL. (2011), HEIDER ET AL. (2013) and BOLEY ET AL. (2019a), was employed. 

For data generation, FETZER ET AL. produced bead on plate welds on aluminum, 

copper and mild steel specimens at a constant feed rate. The laser power was 

sinusoidally modulated. The object of evaluation was the change in the keyhole depth 

in response to the power input and the keyhole's response to a periodical change of 

the laser power. As part of the analysis, the recorded data from the OCT system and 

the X-ray aperture were synchronized and superimposed. An 80th percentile filter was 

used in a 1 ms time frame after matching the X-ray radiographs to evaluate the OCT 

signal for the above-described materials. It was obtained that the keyhole depth 

followed the sinusoidal oscillation of the laser power. At modulation frequencies 

above 25 Hz, the amplitude of the weld penetration depth response decreased and was 

out of phase with the power modulation. The keyhole depth's non-linear hysteresis6 

behavior resulted in an abrupt decrease in keyhole depth at a moderate decrease in 

laser power. In steel and copper welding, the keyhole depth change followed the 

power modulation less accurately than for the welding of aluminum. 

DORSCH ET AL. (2017) investigated the effect of the process parameters laser power, 

feed rate and focus diameter on the OCT signal during the detection of the keyhole 

depth based on welding experiments with mild steel, high-alloy steel, duplex steel 

and aluminum. Longitudinal cross-sections were prepared from the specimens and 

the weld depth was measured manually using a microscope. The OCT signal for 

welding duplex steel had the highest signal quality, i.e., low signal noise. The signal 

was highly scattered for aluminum due to an unstable keyhole behavior. The OCT 

data deviated within 5 % around the real weld depth for all investigated materials and 

feed rates except for the measured data at 1 m/min, where significantly more 

fluctuations occurred. A broad and shallow keyhole was formed for spot diameters 

of the processing laser above 600 μm. In this case, the OCT signal, which was highly 

distorted due to multiple reflections, e.g., at the keyhole wall, could not be interpreted. 

Based on the investigations, an ideal measuring range was found for the employed 

fixed optics as a function of the laser power, the feed rate and the OCT measuring 

beam position relative to the keyhole opening. Extending the work of DORSCH ET AL. 

(2017), BLECHER ET AL. (2014) investigated different materials. Compared to steel 

and titanium, a significantly higher scattering, i.e., a wider distribution of the 

measured values in the depth direction, of the OCT signal was found for the keyhole 

depth measurement during the welding of aluminum. Therefore, it can be concluded 

 
6 Hysteresis is the dependence of the state of a system on its history. It can be a dynamic lag between an input 

and an output of a system that depends on the variation frequency of the input. (BROKATE 2012, pp. 1–2). 
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that the measurements on aluminum require additional effort in the signal 

interpretation to acquire a precise value for the keyhole depth compared to other 

materials. 

MITTELSTÄDT ET AL. (2019) focused on developing a method for raw data processing 

of the OCT-based keyhole depth signal and correlating the findings to the welding 

process parameters. Welding tests were performed with varying laser power on 

samples of the mild steel 1.0122 and of the aluminum alloy AA5083. The analysis of 

the recorded OCT data was carried out in offline mode. A 95th percentile filter with a 

window width of 750 data points was first selected to prefilter the raw depth data. 

Adjusting the percentile filter parameters to the characteristics of the materials used 

and the welding process parameters allowed for an increase in the evaluation accuracy 

of the data for the weld depth. Subsequently, a histogram evaluation7 was developed 

for the raw data. The OCT measurement domain was divided into intervals in the first 

step. A histographic evaluation of the frequency of the depth values within the OCT 

signal of each interval provided a local maximum, which correlated with the keyhole 

depth. The histogram evaluation was applied to the aluminum alloy and mild steel 

welding for the feed rates of 3 – 12 m/min. The deviation from the experimentally 

determined weld depth, determined by micrographs, was about 10 %. Regarding the 

robustness of the histogram evaluation, it was found that the accuracy of the depth 

evaluation correlated with the significance of the maximum in the histogram. The 

method could only be used for inline data processing to a limited extent and the 

accuracy was strongly dependent on the OCT signal quality.  

BOLEY ET AL. (2019b) developed a statistical data processing method for the OCT 

signal in keyhole depth measurement. To find a valid and robust filtering method, 

welding experiments were conducted on mild steel, copper and aluminum. As the 

first step of data processing, the OCT data was divided into noise and significant 

measurement points based on a histogram analysis and a Poisson probability 

distribution. For the histographic analysis of the OCT measurement points, a static 

threshold was found to distinguish noise from valid measurement points. Using a 

Poisson distribution, a probability threshold for noise was identified for the second 

segmentation approach. OCT measurement points in the range of the expected weld 

depth or the surface range were assigned a significantly lower probability of 

belonging to noise than measurement points in other depth ranges. Further 

investigations were conducted using probability-based segmentation. Welding tests 

 
7 In the histogram evaluation, the frequency distribution of the measured values is considered in the depth 

direction. The distribution is discretized in intervals and a depth value is determined by setting a threshold 

value. 
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were performed on aluminum and mild steel specimens to confirm the findings. By 

correlating the OCT data with longitudinal sections from the welding tests, an error 

smaller than 5 % in comparison to the real weld depth was demonstrated. 

SOKOLOV ET AL. (2020) presented an OCT-based weld depth evaluation approach, 

which was identified as a prerequisite for a subsequent weld depth control in remote 

laser beam welding. A fillet weld process on aluminum components with variations 

in the gap size between the joining partners was investigated. The employed optics 

were equipped with a beam scanning module to superimpose a sinusoidal motion in 

the sheet plane on the feed motion. As a result, the melt pool could be widened and 

increased energy input into the upper sheet was achieved with a laser power 

modulation. A key objective of the work was to find an ideal placement of the OCT 

measuring-beam relative to the sinusoidally propagating keyhole. For this purpose, 

various measuring beam positions were tested and evaluated based on characteristic 

values and as a function of varying gap sizes between the components to be joined. 

Regarding the process influences on the OCT keyhole depth measurement, it was 

shown that the OCT signal contained information about the depth of the keyhole and 

its shape resulting from shape-specific reflections.  

HOLLATZ ET AL. (2020b) investigated the keyhole depth measurement using an OCT 

sensor for laser micro-welding, i.e., welding of thin components with high-brilliance 

laser radiation. A scanner-based system was employed to deflect the processing 

beam. Chromatic aberration8 and the intensity loss of the measurement radiation in 

the optical set-up posed a challenge for the OCT keyhole depth measurement. 

HOLLATZ ET AL. (2020b) focused on small focal diameters and shallow penetration 

depths in stainless steel welding. The OCT data was analyzed for the weld penetration 

depth using two data processing approaches. A percentile filter, the most common 

processing method for OCT keyhole depth data, was compared to a Kalman filter on 

the measured data. It was shown that an OCT system combined with scanning optics 

is capable of measuring the keyhole depth during a laser micro-welding process. The 

percentile evaluation showed higher average accuracy for the calibrated parameter 

range, while the Kalman approach provided higher robustness against fluctuations. 

Measurement errors occurred due to the optical set-up of the scanner-based system 

and the small keyhole diameter.  

ALLEN ET AL. (2020) investigated the correlation between the keyhole geometry and 

laser beam absorption by comparing a keyhole depth measurement based on OCT 

 
8 Chromatic aberration is an optical effect resulting from the wavelength dependence of the refractive index of 

optical lenses. 
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with the reflected power detected by an integrating sphere in the beam path. It was 

shown that based on these two metrics, the heat conduction and the keyhole regime 

in laser beam welding were differentiated precisely. The formation of the vapor 

capillary and the increased weld depth were correlated with a higher absorption of 

the processing laser beam due to multiple reflections reaching absorption rates greater 

than 90 %. Similar findings were also obtained by SIMONDS ET AL. (2018). Regarding 

the behavior of absorption and weld depth with increasing intensity of radiation, the 

initial rapid growth of depth and absorption was followed by a steady-state behavior 

of absorption and slow growth of depth. The experimental results allowed 

quantification of the relationship between the absorption and the keyhole depth. The 

approach allows to validate the results of ray-tracing simulations, as conducted by 

STADTER ET AL. (2020a). They can be interpreted in terms of the keyhole geometry 

and the number of reflections. The results are supported by the findings of 

CUNNINGHAM ET AL. (2019) on the parameter dependence of the keyhole geometry 

in DPLW. In summary, it was shown that the energy coupling is very sensitive to the 

weld pool geometry, especially in the early stages of keyhole formation. 

Interim Conclusion 

Due to the independence of the measurement of process emissions and due to the high 

measurement frequencies, Optical Coherence Tomography already is an established 

method for inline monitoring of laser material processing. The high number of 

published papers underlines that OCT is of technical relevance, especially for 

detecting the keyhole depth in laser beam welding. This characteristic significantly 

influences the quality of welds and cannot be measured directly with other process 

monitoring methods to date. 

Many studies have been published on the advancement of measurement 

instrumentation and the validation of measurements to qualify industrial production 

technology. Besides that, some practical approaches have been described to facilitate 

the applicability of the technology. Commonly, the keyhole depth and the weld depth 

are considered equivalent, which leads to inaccuracies of measurement results due to 

the neglect of melt pool influences. The existing approaches have to be adapted and 

parameterized very precisely to the respective processing task. To date, no flexible 

and parameter-independent approach exists for determining the weld depth based on 

an OCT keyhole depth measurement. 
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3.4 Process control in deep penetration laser beam welding 

This section describes the state of the art on the control of the weld depth in DPLW. 

FRASER (2012) elaborated in his work that a robust and reliable inline measurement 

of the weld depth forms the basis for controlling the welding process, which is 

characterized as sensitive to disturbances and stochastically fluctuating. The ability 

to achieve a constant weld depth according to a preset value is considered an essential 

requirement to improve the applicability of the DPLW process in a wide range of 

industrial use cases. ABT (2017) also described the DPLW process as stochastic and 

non-linear, making robust control of the process essential for an industrial 

application.  

BLUG ET AL. (2012) presented a control strategy for a full penetration hole (FPH) 

process, i.e., a process in which the keyhole breaks through the lower joining partner's 

rear side, forming a hole. Using a CNN, a feedback control variable was computed 

from coaxial inline high-speed camera images of the keyhole opening and the 

surrounding melt pool. The process control was designed to compensate for 

stochastically occurring variations of the penetration in aluminum welding. The 

detection rate of an FPH9 in a defined time interval was used as the controlled 

variable. A two-stage control loop was implemented based on the detected signal, 

combining a fast and a slowly reacting component. The fast component controlled 

the laser power, as proposed by BLUG ET AL. (2011). If the required FPH occurrence 

rate was not achieved, the laser power was increased immediately by a fixed 

correction value. If the FPH rate was too high, the power was reduced. This 

compensated for variations within the process. Besides that, a limited power range 

was defined within which the laser power was varied. The slower part in the control 

loop avoided instabilities due to the dynamic and non-linear process behavior. If the 

controller tended to exceed or to fall below the defined limits over a longer time 

interval, the permissible power range was adjusted. An exemplary course of the laser 

power with the power limits adjusted over time is shown in Figure 18. With the 

presented approach, an increase of the weld seam quality and a stabilization of the 

process was achieved. 

 
9 The detection rate of an FPH is defined as the frequency at which full penetration of the joining partners can 

be observed over time. Due to the dynamics of the melt pool, no stationary aperture is formed. 
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Figure 18: Exemplary representation of the controller reaction of BLUG ET AL. 

(2012) based on an adaptive limitation of the laser power 

BARDIN ET AL. (2005) used a P-controller to ensure constant full penetration welding 

of two sheets in an overlap configuration. Features, e.g., the image brightness, from 

preprocessed camera images were used as the sensor signals. Based on the image 

brightness in the keyhole region, a full penetration of the joining partners was 

detected. The operating point of the controller was quantified experimentally by 

identifying the difference in brightness between the keyhole and the melt pool for a 

desired process parameter range. The minimum brightness was found in the keyhole 

area with complete penetration of the joining partners. In this case, only a small 

amount of light was reflected due to the backside opening in the keyhole area. The 

brightness maximum occurred in the melt pool region, where strong reflection 

appeared at the smooth surface of the molten metal. A linear adjustment of the laser 

power was performed based on the control deviation of the existing intensity at the 

minimum from the specified operating point. BARDIN ET AL. (2005) found that the 

penetration depth and the laser power are not linearly correlated. So a range of 

validity was defined for the control based on the sheet thicknesses. Linear control of 

the penetration depth based on the laser power was possible within this range. 

However, the control is limited to through-welds at stepwise or linearly increasing 

workpiece cross-sections.  

BIRNESSER (2011) used an optical sensor signal for process control. The measuring 

beam of a spectrometer with a sensitivity in the IR wavelength range was coupled 

coaxially to a processing beam to observe optical process emissions. A direct 

correlation of the measurement signals with seam parameters, such as the weld depth, 

was found. The ranges with a linear relationship between the intensity of the 

spectrometer signal, the seam characteristics and the laser power were determined 

experimentally. Digital filtering with infinite impulse response (IIR filter) of the 
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spectrometer signal was applied to control the weld depth as a function of the laser 

power. The control deviation was calculated from the filtered value and an externally 

specified setpoint. The deviation was passed to a proportional-integral-differential-

controller (PID-controller) with empirically specified control parameters and the 

laser power as the manipulated variable. However, the procedure description did not 

clarify which criteria were used to select the control parameters and how they affect 

the control behavior. The transition from a pilot control to closed-loop control in 

DPLW resulted in a reduction of the standard deviation of the weld depth by up to 

75.3 %. In addition, the focal position and the feed rate were varied experimentally. 

Using closed-loop control, the detrimental effect of contamination of the optic's 

protective window could not be corrected, since the contamination influenced the 

actual laser beam intensity at the workpiece and the detected process emissions.  

KONUK ET AL. (2011) focused on the relationship between the keyhole depth and the 

electron temperature above the process zone to control the weld depth. The depth was 

determined based on an optical sensor system, detecting spectrally resolved emissions 

of the process plasma. A constant electron temperature was experimentally identified 

as the operating point of the controller, which served as a reference point for the 

control deviation. A proportional-integral-controller (PI-controller) was used to 

regulate the weld depth by adjusting the laser power. However, it was identified that 

the electron temperature correlated with the weld depth and was also sensitive to the 

shielding gas composition and the gap between the joining partners in an overlap 

configuration. For this reason, the relationship between the weld depth and the 

temperature signal had to be identified and calibrated specifically for the 

experimental set-up used. The evaluation of the controller was based on the 

connection of two welded plates with full penetration, while an exact value could not 

be determined for the weld depth based on the presented method due to the indirect 

sensor concept. 

Comprehensive approaches to process control based on camera images of the process 

zone in scanner-based laser beam welding were presented by KOS ET AL. (2019) and 

KOS ET AL. (2020). They illuminated the process zone with laser radiation at a 

wavelength of 810 nm ± 10 nm and evaluated the images of a camera arranged 

laterally to the welding optics with regard to differences in brightness caused by the 

joint geometry. The obtained information on the joint position was used as an input 

variable for a seam tracking control. Additionally, power control for remote laser 

welding was introduced. The acquisition of the in-situ variable, i.e., the image 

brightness, as the basis of the control was founded on the detection of the area of the 

interaction zone using the above-described camera unit. Based on experimental 
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investigations, a correlation between the area of the interaction zone and the weld 

depth was found, showing a linear behavior for a partially penetrating process in the 

keyhole regime. The laser power, which was calculated using the identified 

correlation, was used as input to a PI-control loop. Furthermore, a descriptive model 

for the power-area correlation was developed for different feed rates and material 

thicknesses of the considered AlSi steel. A control deviation of less than 7 % of the 

target value was achieved during the validation tests. 

BOLLIG ET AL. (2005) employed diode-based sensors detecting process emissions in 

the NIR wavelength range as input for a process control. Based on the signals 

generated in the course of experimental process investigations, they developed a 

model-based predictive control for the weld depth in DPLW. An approximation 

model of the keyhole created by MICHEL (2004) served as a basis, which offered a 

limited computational efficiency in its original design. Hence, the model was 

approximated as a time-varying, linear autoregressive-with-exogenous-input (ARX) 

model for implementation in the model-based control system, allowing a controller 

frequency of 500 Hz to be achieved. The predictive component of the control was 

used to generate target values for the laser power to control the weld depth. This 

resulted in a quality function that weighted the expected control deviation of the 

estimated output variable as a target value function. The underlying mathematical 

minimization problem was convex for the selected controller parameterization and 

provided an explicit solution according to BOLLIG ET AL. (2005). This resulted in a 

linearly approximated controller validated around an operating point based on the 

feed rate modulation.  

STORK GENANNT WERSBORG (2010) focused on using expert knowledge in 

manufacturing to deal with high-quality welding tasks. An intelligent process control 

was presented for an efficient implementation of this knowledge. A sensor data 

fusion, composed of acoustic signals, photodiode signals and recordings from a 

coaxial camera, was used as the input variable for the controller. ML-methods, such 

as a multi-layer FFNN, were employed to implement abstract expert knowledge into 

a control loop for a steel welding process. The knowledge was then used to control 

the laser power in situations that were unknown to the controller. In total, sensor 

signals were recorded for ten welds. These were passed to an FFNN as a training 

basis with an expert-based visual classification of incorrectly set or suitable laser 

power for the welding task. In a second step, the learned expert knowledge was used 

to control the laser power. The output of the FFNN was a quality parameter based on 

the sensor signals and the expert knowledge. With the help of the control deviation, 

resulting from the quality parameter and the corresponding target quality value, a 
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classical PID-controller was employed to regulate the laser power. A control 

frequency of 100 Hz with a transient response within the first 100 cycles was 

achieved. However, it was found that the use of FFNN is not ideally suited for 

learning how to perform welds on unknown workpieces from the accumulated expert 

knowledge.  

An advanced approach to an intelligent laser welding architecture using a DNN and 

reinforcement learning was provided by GÜNTHER ET AL. (2015). A self-learning and 

self-improving architecture combining two different ML-methods was presented to 

address the difficulties of non-linearity and stochastic behavior in a laser welding 

process. A DNN was employed to extract significant characteristics from high-

resolution camera data and photodiode signals. The features extracted form sensor 

data, e.g., the gray value distribution of coaxially captured camera images, were fed 

to a learning algorithm that predicted process-specific quantities from the signal 

characteristics. A control strategy was developed based on this prediction and the 

process characteristics. The authors demonstrated a novel process monitoring and 

control architecture that combines methods for observing the process, mapping 

system behavior to a process model and a process control strategy. The authors, 

however, only presented a methodology whose individual building blocks, such as 

the control, were tested in offline mode and simulation-based. A real-time capable 

experimental set-up of the architecture could not be shown. 

Interim conclusion 

The control of laser welding processes represents a high potential for a wide range of 

applications. Scrap and rework can be reduced and the quality of the products can be 

increased. Several approaches have been pursued to control certain process variables 

based on measurable data and derived information about the process. The non-

linearity of the laser welding process poses a challenge, because it causes difficulties 

in setting up sufficiently accurate models for the controlled systems. As a result, 

classical control approaches are in many cases only valid for very limited parameter 

ranges. Increased flexibility is offered by experience-based control methods, which 

are inspired by the behavior of a human operator and use expert knowledge as the 

basis for controller interventions. An additional increase in flexibility and accuracy 

of controlled systems can be achieved by using ML-methods. They can be used, e.g., 

for the processing and interpretation of sensor signals, which then form the input 

variables of a controller. 
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3.5 Conclusions and need for action 

Building on the fundamentals described in chapter 2, an overview of the state of the 

art in process monitoring and process control for laser beam welding was provided in 

chapter 3. In section 3.2, an overview of approaches for measuring process conditions 

in laser material processing was given, focusing on inline monitoring of laser beam 

welding processes. Several works address the enhancement of process knowledge. 

High-frequency measurement data was used to gain information about parameter 

influences on the process stability and the process result. Camera-based approaches 

and methods for acquiring process emissions in discrete wavelength ranges 

predominate. High-speed cameras attached to the laser processing optics via optical 

interfaces were employed to capture images from the process zone, e.g., to track the 

melt pool dynamics or weld spatter formation. Photodiodes were used to measure the 

process emissions. Thus, metrics such as the back-reflected laser radiation or the 

process glow were recorded. The data obtained were often related to process 

instabilities and weld defects by comparing signal values with a reference value thus 

obtaining deviations. Recent work in the field of process monitoring predominantly 

focused on improving data evaluation and interpretation approaches as well as on 

data validation. Furthermore, approaches to combine different sensor systems have 

been published to improve the robustness of process monitoring systems.  

Section 3.3 focused on the application of OCT in laser material processing. Various 

interferometric distance measurement techniques for process monitoring have been 

explored in this field, which can be classified according to the evaluation of signals 

in the time and in the frequency domain. With the availability of robust FD-OCT 

sensors, this measurement technique was integrated into laser processing optics. 

Some approaches combined the distance measurement unit with a deflection unit for 

the measuring beam to acquire surface profiles near the process zone (cf. sub-section 

2.3.3). The data could be used, e.g., to track the joint gap during welding or the weld 

surface in the post-process zone. Since process emissions do not influence OCT 

measurements in the laser processing of metals, the detection of quantities such as 

the keyhole depth in DPLW was enabled. Several studies have focused on the 

increase in signal understanding. Process parameter influences on the OCT signal in 

keyhole depth measurement were identified and quantified. Further work focused on 

interpreting the signal for the weld depth using statistical methods and signal filters, 

e.g., percentile filters. However, no published research approach accounts for the 

dependence of the keyhole depth measurement signal on process parameters and 

boundary conditions when interpreting the signal in terms of the weld depth. A 
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challenge in the parameterization of weld depth evaluation methods is the high effort 

for obtaining reference data. Hence, within the framework of the existing approaches 

for inline weld depth evaluation, only solutions with a limited range of validity, i.e., 

restricted adaptability to process parameter variations, were developed. 

An overview of control approaches to laser beam welding was given in section 3.4. 

Considerable work has been devoted to the full penetration process, in which the aim 

is to achieve a full penetration weld of two joining partners in an overlap 

configuration. In all existing approaches, the weld depth control is mainly based on 

the acquisition of indirect process variables. Correlations between the weld depth and 

indirect process variables such as process light or acoustic process emissions were 

used as input variables for controllers. Some published works describe the application 

of linear controllers. Since no universal physical model of the laser welding process 

has been established to date, existing control approaches have limited validity and 

can only be used for specific applications. Additionally, the interpretation of indirect 

measurement variables often led to reduced precision. The potential of ML-methods 

to obtain a controlled variable has been shown in few works so far. Nevertheless, the 

validity ranges of the developed methods have been extended compared to classical 

control approaches. A closed-loop control system based on OCT keyhole depth 

measurement has not been described in the literature to date. Fuzzy control (cf. sub-

section 2.5.2) of the weld depth has also not been considered so far and its 

applicability has only been demonstrated for the full penetration welding process.  

In the following, the identified research deficit is summarized. The remarks refer to 

the state of the art at the respective time of publication of the scientific results as 

described in chapter 5 of this dissertation. 

▪ Few studies describe the signal characteristics of OCT-based keyhole depth 

measurement. It is known that process parameters and process boundary 

conditions influence the signal. However, these influences have not yet been 

quantified nor implemented within the signal interpretation. The weld depth 

evaluation is currently based on keyhole depth measurements and is subject to 

complex and time-consuming parametrization for specific applications. It is 

only valid for the calibrated processing range. 

▪ In existing approaches for determining the weld depth based on keyhole depth 

measurements, the melt layer surrounding the keyhole during the welding 

process is not considered. The melt layer thickness depends on a parameter-

specific offset between the measurable keyhole depth and the weld depth, 

which cannot be detected with OCT.  
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▪ Existing control approaches predominantly apply physical or analytical 

models of the laser beam welding process. The validity of these approaches is 

typically limited to linear relationships between the process parameters and 

the responses, available only for small ranges with linear behavior. A method 

for describing a large-scale parameter range for a heavily non-linear system 

has not yet been established in the field of laser beam welding.  

▪ No weld depth control is available for DPLW, which features simple 

adaptability to changing processing conditions. 

The identified research deficits substantiate the need for action and motivate the 

foundation of the research approach presented in chapter 4. 
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4 Research Approach 

4.1 Chapter overview 

This chapter presents the scientific objectives and the research approach of this thesis. 

The state of the art, described in chapter 3, serves as a fundamental basis. In section 

4.2, the overall objective is outlined, which provides the framework for the derivation 

of the sub-objectives. These sub-objectives (SO) are embedded into a methodology 

in section 4.3. The integration of the five publications, representing the scientific 

content of this thesis, is also illustrated in section 4.3. The experimental set-up used 

to generate the scientific results is described in section 4.4. 

4.2 Scientific objectives 

This thesis focuses on the overall objective to enable the control of the weld depth in 

DPLW based on the inline measurement of the keyhole depth. For this purpose, a 

method for interpreting the OCT keyhole depth measurement signal for the actual 

weld depth is developed, supported by a numerical weld pool simulation. A high 

quality of laser welds must be ensured and scrap and rework due to a weld depth 

deviating from a target value need to be reduced. It was essential to investigate and 

quantify the process influences on the OCT signal using statistical approaches. In 

addition, the real-time evaluation of the measurement signal had to be investigated, 

which can be executed on an industrial control system. The execution sequence of 

the program had to be optimized in order to ensure a quick response of the process 

control. From these requirements, a total of six sub-objectives can be derived, which 

are listed in the following. 
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SO1: Characterization of the process influences on the OCT signal  

The influences of the process parameters on the OCT signal had to be quantified 

and conditioned for subsequent use in OCT data interpretation. Thereby, the 

general applicability of OCT for the measurement of the keyhole depth in 

DPLW over a wide parameter range and especially for challenging process 

conditions had to be proven.  

SO2: Quantification of the melt layer thickness  

An OCT sensor allows to determine the keyhole depth during DPLW. However, 

the weld depth is relevant for the process design. Consequently, the geometric 

correlation between the two quantities, characterized by a melt layer below the 

keyhole, had to be investigated. 

SO3: Acquisition method for training and test data for the weld depth evaluation 

A method for acquiring the weld depth along weld samples had to be 

developed. In addition, a method for the temporal and spatial correlation of the 

real weld depth with the OCT measurement signal and the processing 

parameters was to be found. Based on this, reference data-sets were to be 

created, showing the correlation between the OCT signal and the weld depth. 

SO4: Evaluation of the weld depth as a function of the processing conditions 

A method was to be found to determine the weld depth from an OCT keyhole 

signal. Process parameters, signal characteristics and the melt layer thickness 

had to be considered. 

SO5: Identification and specification of the process behavior as a function of 

the process parameters 

The influence of the process parameters, i.e., laser power and feed rate, on the 

weld depth had to be investigated. Thereby, also the fluctuation of the weld 

depth was to be statistically examined. The results were to be incorporated into 

a process model describing the welding process in terms of depth and stability.  

SO6: Development of a weld depth control  

A weld depth control was to be implemented, selecting a set of start parameters 

with high stability based on the target depth. The aim was a dynamic adjustment 

of the parameters during the welding process in order to keep the weld depth 

within a defined tolerance range.  
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4.3 Methodology and integration of the publications 

This section describes the methodology for addressing the scientific objectives 

outlined in section 4.2. According to the individual scientific focus, the author's 

publications are assigned to the fields of action within the methodology. Figure 19 

summarizes the methodology and the association of the publications (P), while a 

detailed discussion of the scientific results is provided in section 5.2. 

 

Figure 19: Methodical approach and thematic classification of publications P1 to 

P5 regarding the sub-objectives (SO) defined in section 4.2 
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this reason, it is necessary to investigate the influences of process parameters and 

boundary conditions on the characteristics of the keyhole depth signal within the 

scope of an experimental study. In particular, process parameters that have a direct 

influence on the stability and geometry of the keyhole are to be varied. These include 

the line energy10, the focus diameter, the angle of incidence of the processing laser 

beam relative to the workpiece surface and the material of the workpiece. Following 

the investigations of DORSCH ET AL. (2016) and DORSCH ET AL. (2017), keyhole depth 

measurement signals are to be recorded under variation of the specified parameters 

and evaluated by statistical methods. A model of the characteristics of the OCT signal 

is to be derived from this. The OCT signal characterization results are presented in 

publication P1 and address SO1 as outlined in the methodical approach. 

Numerical simulation of deep penetration laser beam welding 

In addition to the understanding of the signal, the description of the physical relation-

ship between the observable keyhole depth and the resulting weld depth represents an 

essential aspect of the inline weld depth evaluation. For this reason, the thickness of 

the melt layer surrounding the keyhole during the welding process must be determi-

ned. Since an inline measurement of the keyhole and melt pool geometry demands 

considerable experimental effort (VÄNSKÄ ET AL. 2013), a 3D-FEM model is requi-

red to calculate the weld pool geometry. Process variables that are difficult to measure 

need to be calculated, taking physical boundary conditions into account. An overview 

of existing simulation approaches is given by SVENUNGSSON ET AL. (2015). The 

simulation model should be embedded in an optimization loop to derive the keyhole 

geometry based on metallographic sections. In the optimization loop, a reduction of 

the deviations between the metallographically determined and the calculated melt 

pool geometry should be achieved by an iterative adjustment of the modeled heat 

source geometry. A correlation between the process parameters and the melt layer 

thickness below the keyhole needs to be found from the calculation results. The 

results of the numerical study are presented in publication P2 and refer to SO2. 

Determination of the weld depth 

Building on the results of the publications P1 and P2, the keyhole signal of the OCT-

based keyhole depth measurement is to be evaluated in inline mode regarding the 

weld depth. First, suitable data processing methods have to be identified that meet the 

requirements of the process and the laser welding system employed. Subsequently, 

 
10 Line energy is defined as the ratio of laser power to feed rate, describing the energy input per length unit into 

the weld seam. 
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evaluation algorithms need to be developed, parameterized and implemented on a 

real-time data processing system. In addition, interfaces should be provided, by 

means of which both the signal characteristics (P1) and the melt layer thickness (P2) 

can be considered to evaluate the weld depth. The research results are summarized in 

publication P5 and address SO4. Since typically large amounts of reference data are 

required for robust parameterization of process monitoring systems, a method should 

be found to generate high-quality reference data. It is necessary to correlate the data 

with the position along a weld sample in order to investigate the relationship between 

the process result and the measurement signals at selected positions. This method 

represents the achievement of SO3 and is the main content of publication P4. 

Modeling of the process behavior 

To define reaction options in the process for controlling the weld depth, the 

dependence of the weld depth on the process parameters must be quantified. In the 

first step, the process parameters that significantly influence the weld depth and that 

are suitable for the integration into a control loop must be evaluated. Based on these 

findings, the effects of the parameters on the weld depth and its variance are to be 

evaluated in experimental investigations. On this basis, a method for a significant 

reduction of the experimental effort in the evaluation of the process behavior is to be 

developed. The established method will be used to create a process model for the 

DPLW process. This work addresses SO5 and is summarized in publication P3. 

Inline weld depth control 

As described in SO4 (section 4.2), the weld depth evaluated in inline mode is to be 

embedded in a closed-loop control system. The first step is to identify a suitable 

controller architecture. It is essential that a low effort is required for the controller 

parameterization and that the non-linear behavior of the laser beam welding process 

can be compensated robustly. In addition, a fast response to process fluctuations must 

be ensured. Therefore, reaction times must be considered when changing the laser 

power 𝑃𝐿 and the feed rate 𝑣𝑤. The selected controller architecture should then be 

implemented on a demonstrator system and tested with a focus on robustness and 

reaction time. The results, which address SO6, are presented in P5. In the control 

loop, which is schematically outlined in Figure 20, all SOs are incorporated. Thus, 

the results of the publications P1 to P5 are combined into an overall methodology. 
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4.4 Experimental set-up 

Within the scope of the experimental investigations in this work, a laser beam welding 

system was used, which was developed for the specific purpose of inline weld depth 

control. The system is characterized by a full-time synchronization between signals 

of a process monitoring system and the control signals of the significant influencing 

components. The core of the set-up is the programmable logic controller (PLC), 

which processes all measurement and control signals and provides them with a time 

stamp. The process control system is implemented within the PLC, which allows the 

process parameters to be adapted to the measured control variables. A fixed optics 

(YW52, Precitec GmbH, Germany) is used. A 3-axis computerized numerical control 

(CNC11) system controls the component movement and the positioning of the welding 

optics at a maximum speed of 12 m/min (cf. Figure 21). It serves to adjust the distance 

between the focal point and the component and to move the component relative to 

 
11 CNC refers to an approach for controlling machine tools with multiple axes that simultaneously perform 

interpolated movements. 

 

Figure 20: Structure of the weld depth control loop and assignment of the Sos to 
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the fixed operating point of the optics. Three synchronous servo motors are used for 

the axis movements, which return their respective positions to the controller in real-

time. The data obtained can be used, for example, to determine the actual feed rate of 

the component in the x-y-plane, which may deviate slightly from the specified value 

due to external influences. A continuous-wave (cw) multi-mode fiber laser (FL080, 

ROFIN-SINAR Laser GmbH, Germany) provides the laser radiation for the 

processing and is guided to the optics by an optical fiber. The laser beam source is 

also integrated into a control loop, in which it receives a power setpoint from the 

control system and returns the actual value. In addition, an OCT-based inline process 

monitoring system (IDM 1.1, Precitec GmbH, Germany) is integrated into the 

welding system. It measures the distance between the processing optics and a specific 

point on the component. The principle of OCT and the integration into the welding 

optics were explained in detail in sub-section 2.3.3. The OCT sensor transmits 

distance values in the form of an analog signal to the PLC (Beckhoff Automation 

GmbH, Germany), which records the process monitoring signals and synchronizes 

them with an internal clock to all other recorded process variables. Figure 21 shows 

the schematic structure of the laser beam welding system and the information flows 

transmitted in the form of light, digital signals or analog signals.  

 

Figure 21: Experimental set-up used in this work with the signal flows between the 

individual components 
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The technical data of the laser beam source, the laser processing optics, the OCT 

sensor and the PLC are summarized in Table 4-1.  

For the radiographic inspection of the weld specimens, a microfocus X-ray computed 

tomography (µCT) system was used. The system features the ability to acquire three-

dimensional images of a specimen with a voxel resolution, the three-dimensional 

equivalent of the image pixel resolution, in the range of 10 µm. The sample, which is 

mounted on a rotatable fixture, is rotated 360 degrees in fine angular increments 

during measurement. The rotation is interrupted at each angular position and an image 

of the sample is recorded. The individual images are referred to as projections and 

their reconstruction generates a three-dimensional data-set. The voxel resolution is 

determined by the distance of the sample 𝑙𝑠 and by the distance of the detector screen 

𝑙𝑑 to the radiation source. For the analysis of metal samples, the measuring radiation 

is generated in the CT tube and guided towards the sample with the accelerating 

voltage. As the radiation passes through the sample, it is attenuated and the resistance 

of a sample determines the degree of attenuation. Using a weld seam specimen as an 

example, the X-rays are attenuated less when passing through a porous area in the 

weld seam sample than when passing through a fully solid metal body. After passing 

through the sample, the partially attenuated radiation is converted into visible light 

when it hits the detector screen. The light pattern at the screen is captured by a camera, 

with the images forming the basis for reconstructing the 3D-data. Figure 22 shows 

the basic set-up of a µCT system and the parameters of the system used. 

 

 

 

Figure 22: Schematic set-up of a microfocus X-ray computed tomography system 

(µCT) and measurement parameters for the radiographic inspection of 

weld samples 
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Laser beam source (FL080, ROFIN-SINAR Laser GmbH, Germany) 

operating mode continuous-wave 

max. output power 8 kW 

fiber core diameter 100 µm 

wavelength  1070 ± 10 nm 

beam parameter product (BPP) ≤ 4 mm ∙ mrad (multi-mode) 

Processing optics (YW52, Precitec GmbH, Germany) 

image ratio 1:1 

focal diameter of the processing beam 100 µm 

OCT sensor (IDM 1.1, Precitec GmbH, Germany) 

max. measurement frequency 70 kHz 

wavelength 1550 ± 20 nm 

focal diameter of the measurement beam  50 µm 

max. power 20 mW 

PLC system (CP3219-0020, Beckhoff Automation GmbH, Germany) 

processing frequency 3.4 GHz 

number of processor cores 2 

automation software TwinCat 3, Beckhoff 

Table 4-1: Technical data of the laser beam source, the laser processing optics, the 

OCT sensor and the PLC 
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5 Research Findings 

5.1 Chapter overview 

Based on the methodological approach presented in section 4.3, this chapter outlines 

the scientific results obtained in the context of this work. The results are described in 

the form of short recapitulations of the author's publications in section 5.2. Following 

the summary of each publication, a brief review of the individual author's 

contributions to the scientific result is provided. Section 5.3 presents a review of the 

scientific results with reference to the state of the art. 

5.2 Recapitulation of the embedded publications 

5.2.1 P1: “Inline Weld Depth Measurement for High Brilliance 

Laser Beam Sources Using Optical Coherence Tomography” 

Publication P1 “Inline Weld Depth Measurement for High Brilliance Laser Beam 

Sources Using Optical Coherence Tomography” (SCHMOELLER ET AL. 2019) 

describes the fundamental influences on the measurement signal when acquiring the 

keyhole depth by Optical Coherence Tomography. A MM fiber laser and a SM fiber 

laser were used for the investigations. The fixed optics employed were equipped with 

a coaxial OCT sensor. A beam splitter was used to direct one fraction of the OCT 

radiation into the keyhole and another fraction onto the component surface adjacent 

to the process zone. The keyhole depth was determined from the differences between 

the two lengths (cf. Figure 8). The work described in P1 was focused on the 

characterization of the signal component recorded from the keyhole. The results 

presented for the keyhole depth measurements were compared to metallographic 

cross-sections from which the corresponding weld depth was measured by using a 

microscope. The characteristics of the OCT signal were evaluated using statistical 
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parameters, e.g., the variance and the relative frequency of the measurements in the 

depth direction (cf. Figure 23), i.e., the normalized frequency of occurring weld depth 

values along each of the examined weld seams in the labeled areas.  

In an experimental study, the influences of the angle of incidence, the sample material 

and the weld geometry on the quality of the sensor signal were investigated. When 

using a multi-mode fiber laser beam source with a focal diameter of 320 μm, the 

measurements showed a strong material-dependent behavior. For the copper alloy 

C10200, a signal with low scattering and a high signal density in the weld depth range 

was detected. Measurements on the aluminum alloy AA6082 showed a much more 

pronounced scattering of the OCT signal in the depth direction (cf. Figure 23). In 

addition, the position of the signal region with the highest relative frequency of depth 

measurement points was shifted towards the component surface. Regarding the angle 

of incidence, it was shown that a more stable measurement signal was obtained for a 

piercing12 process configuration than for a dragging13 configuration. By varying the 

feed rate and the laser power, it was possible to investigate the influence of the weld 

depth on the measurement signal for otherwise identical process boundary conditions. 

It was shown that an increase of the weld depth led to an approximately linear 

increase in signal noise. The knowledge of the measurement signal properties gained 

in the study was then applied to laser beam welding using a single-mode fiber laser 

with a spot diameter of 55 μm. With about 50 μm, the OCT measurement beam 

diameter was only slightly smaller than that of the single-mode processing beam, 

leading to increased requirements on the positioning accuracy of the measurement 

beam and the signal evaluation. A wide variety of tests were performed to determine 

the limits of the measurement method. An approximately linear increase in signal 

noise over the weld depth was also demonstrated for the single-mode process for 

copper and aluminum. The deviation of the detectable keyhole depth to the real weld 

depth increased with the weld depth.  

The results showed that the application of OCT enables the inline monitoring of the 

weld depth with multi-mode and single-mode laser beams. In addition, process 

influences on the signal were identified, such as material-specific weld pool dynamics 

and characteristic reflection and absorption properties. The publication contributed to 

a fundamental understanding of the OCT-signal during the keyhole depth measure-

ment, which is the foundation for a reliable signal interpretation. 

 
12 In a piercing welding configuration, the welding optics are tilted against the feed direction. As a result, the 

laser beam predominantly interacts with the non-melted material. 
13 In a dragging welding configuration, the welding optics are tilted in the feed direction. As a result, the laser 

beam predominantly impinges the melt pool. 
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Figure 23: OCT-based keyhole depth measurement signals for the aluminum alloy 

AA6082 (left) and the copper alloy C10200 (right) with histographic 

evaluation of the signal distribution in the depth direction in the areas 

a) and b); based on SCHMOELLER ET AL. (2019) 

Author's contribution 

Maximilian Schmoeller and Christian Stadter collaborated on developing the idea for 

OCT signal characterization as a function of the process boundary conditions. 

Maximilian Schmoeller performed the analysis and interpretation of the data. The 

manuscript was written by Maximilian Schmoeller and edited by Christian Stadter, 

Stefan Liebl and Michael F. Zaeh. All authors discussed and commented on the scien-

tific approach and the results during the preparation of the publication. Maximilian 

Schmoeller presented the results in a lecture at the International Congress on 

Applications of Lasers and Electro-Optics (ICALEO) in Orlando, FL, USA in 2018. 

Table 5-1 lists the contributions of the author of this dissertation to publication P1. 

 concept content manuscript total 

M. Schmoeller 90 % 70 % 80 % 80 % 

Table 5-1: Contributions of the author to the conception, the development of the 

contents and the manuscript of publication P1 
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5.2.2 P2: “Numerical Weld Pool Simulation for the Accuracy 

Improvement of Inline Weld Depth Measurement Based on Optical 

Coherence Tomography” 

Publication P2 "Numerical Weld Pool Simulation for the Accuracy Improvement of 

Inline Weld Depth Measurement Based on Optical Coherence Tomography" 

(SCHMOELLER ET AL. 2020b) presented a numerical simulation model for the 

calculation of the melt pool geometry in DPLW.  

A calibrated numerical simulation model was employed to describe the geometry of 

the melt pool as a function of the process parameters. The melt layer thickness below 

the keyhole was determined from the calculation results. This dimension represents 

the geometric difference between the weld depth and the keyhole depth, measured 

using Optical Coherence Tomography. The model presented was based on LIEBL ET 

AL. (2017). The heat source was modeled by a geometric approximation of the 

keyhole geometry and by applying the evaporation temperature to the capillary wall. 

The feed rate was implemented by a material flow with a constant velocity around 

the stationary keyhole geometry. The material parameters mass density 𝜌𝑚, specific 

isobaric heat capacity 𝑐𝑝, thermal conductivity 𝜆𝑡ℎ and dynamic viscosity 𝜇𝑑𝑦𝑛 were 

formulated as a function of temperature. In the approximation of the temperature 

functions, special consideration was given to numerical stability to achieve high 

computational efficiency of the model.  

The geometrical parameters of the heat source shape, i.e., the keyhole shape, were 

adjusted using a genetic algorithm (GA) in several successive computational runs. 

The goal of the GA was to minimize the deviation between the simulated melt pool 

geometry and the corresponding metallographic cross-sections. When reaching a 

termination criterion, i.e., a maximum permissible deviation between simulation and 

reality, the optimization was terminated. By this approach, the keyhole geometry, 

which is difficult to measure experimentally, was calculated based on the 

metallographically determined melt pool contour. The laser power as the governing 

measure for the weld depth was indirectly considered, since the heat source only 

incorporates the evaporation temperature and the keyhole geometry (cf. Figure 24). 

The main advantage of that approach lies in its flexible applicability in the case of an 

adjustment of the process parameters due to a calculation and optimization time of 

approx. 3 h under the given boundary conditions (i.e., available computing 

resources14). Usually, within the genetic optimization by applying the GA, at least 

 
14 Technical data of the simulation computer used: CPU: INTEL® Xeon® CPU E5-1650 v4 with 6 cores at 

3.60 GHz each; RAM: 64 Gb; Operating system: Windows® Server 2012 R2 Standard (64 Bit) 
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five epochs with ten individuals each, i.e., at least 50 models, were calculated. The 

procedure of the genetic adaptation of the keyhole geometry is shown in Figure 24. 

The experimental investigations for the generation of metallographic cross-sections 

as an optimization and validation basis were carried out for the presented results with 

a fixed optics welding system combined with a multi-mode fiber laser. The focal 

diameter of the laser beam was about 320 µm at a wavelength of 1070 nm. Within a 

parameter range suitable for welding the aluminum alloy AA6082, the influences of 

the feed rate and the laser power on the melt layer thickness were investigated.  

A small parameter dependence of the calculated melt layer thickness was found for 

the evaluated process parameter range. The correlation between the keyhole depth 

and the melt pool depth was used as an input variable for interpreting the keyhole 

depth measurement for the weld depth. Thus, the accuracy of the evaluation 

algorithms could be increased, since an uncertainty in the measurement caused by the 

melt layer thickness was considered. The results showed that a layer thickness of 

about 300 μm had to be considered for the investigated parameter range, which 

corresponded to a high multiple of the absolute accuracy of an OCT-based 

measurement system. Furthermore, it was shown that the melt layer thickness 

corresponded approximately to the focus diameter of the processing laser beam. 

Expanding on these relationships provides room for further research. 

 

Figure 24: Procedure of the genetic variation of the keyhole geometry in the 3D-

FEM model to minimize the deviation between the calculated and the 

actual melt pool cross-section; based on SCHMOELLER ET AL. (2020b) 
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Author's contribution 

Maximilian Schmoeller developed the idea of the numerical simulation of the melt 

pool to characterize the melt layer thickness. Maximilian Neureiter supported the 

development of the simulation model and the optimization algorithm in the 

framework of a student project, which was supervised and guided by Maximilian 

Schmoeller. The manuscript was written by Maximilian Schmoeller and edited by 

Maximilian Neureiter, Christian Stadter and Michael F. Zaeh. All authors commented 

on the results of the publication. Maximilian Schmoeller presented the results in a 

lecture at the International Congress on Applications of Lasers and Electro-Optics 

(ICALEO) in Orlando, FL, USA in 2019. The contributions of the author of this 

dissertation to publication P2 are listed in Table 5-2. 

 concept content manuscript total 

M. Schmoeller 80 % 60 % 70 % 70 % 

Table 5-2: Contributions of the author to the conception, the development of the 

contents and the manuscript of publication P2 
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5.2.3 P3: “Investigation of the Influences of the Process 

Parameters on the Weld Depth in Laser Beam Welding of AA6082 

Using Machine Learning Methods” 

In the publication P3 "Investigation of the Influences of the Process Parameters on 

the Weld Depth in Laser Beam Welding of AA6082 Using Machine Learning 

Methods" (SCHMOELLER ET AL. 2020a), a process model for laser beam welding of 

the aluminum alloy AA6082 was presented. The objective was to efficiently model 

the process behavior to correlate the process-determining parameters laser power and 

feed rate with the weld depth based on ML. A Variational Autoencoder (VAE) 

combining a neural encoder with a neural decoder served as the basis for the process 

model. From observations consisting of metallographically determined weld depths 

and the corresponding process parameters, the encoder network calculated a set of 

latent15 factors that were completely independent of each other. The latent factors are 

equivalent to the knowledge gained from the observations made by the encoder 

network. HIGGINS ET AL. (2017) proposed adding a hyperparameter 𝛽 to the cost 

function of a VAE. It supports the learning with greater independence of the 

probability distributions in the latent factors. As a result, each latent factor represents 

a unique input data aspect. 

For predicting the weld penetration depth as a function of the process parameters, the 

strictly forward-directed architecture of a Beta-Variational Autoencoder (𝛽-VAE) 

proposed by ITEN ET AL. (2020) and building on the results of HIGGINS ET AL. (2017) 

is well applicable. In P3, this architecture was extended to include an additional input 

layer of the decoder. It allowed for generating a generative response for a predicted 

weld depth 𝑑𝑤 in the output layer. In the chosen architecture, the input layer was a 

vector [𝒅𝑤
𝑘 ]𝑘∈{1,...,𝑁} = [⋮] of 𝑁 experimentally determined weld depths generated 

with the parameters 𝑃𝐿 and 𝑣𝑤. The parameter layer consisted of the process 

parameters for which the weld penetration depth is to be predicted. The input vector 

𝒅𝒘 was required to contain statistically validated information about the weld 

penetration depth within a parameter range for the training of the 𝛽-VAE. For 

instance, the information on the real weld depth can be obtained from longitudinal 

metallographic sections or from multiple metallographic cross-sections along the 

welding direction.  

A total of 63 parameter combinations were used to verify the methodology. The laser 

power 𝑃𝐿 was set between 400 W and 1400 W and the feed rate 𝑣𝑤 was set between 

 
15 A latent factor cannot be measured directly. However, one or more latent factors described by the test results 

can be extracted from a variety of test results, i.e., the observable factors. 
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4 m/min and 10 m/min including the limits in both cases. The parameter 

combinations with a laser power of 400 W and 1400 W, i.e., the outlying domains, 

were not used for training but served to verify the extrapolation validity of the 

approach. For each parameter combination, the weld depths were determined using 

30 cross-sections. Since no equivocal position along the weld seam was assignable to 

the cross-sections, a parameter vector without time dependence had to be used. This 

precluded any parameter variation during the welding process aiming at an increase 

in efficiency, since otherwise a geometric relation would have to be established 

between the measurement data and their recording position along the weld seam. For 

the prediction of the weld depths, the 𝛽-VAE was activated with a random series of 

40 out of 49 test points from the training domain and with the corresponding 

parameter combinations. The remaining 9 points were used as test data set, which 

was expanded with the outlying domains at 400 W and 1400 W laser power. The weld 

depth prediction results for the considered parameter range are shown in Figure 25(a). 

Figure 25(b) depicts the corresponding prediction accuracies based on the root mean 

square error (RMSE) associated with the respective test points. 

An extensive database enabled the training of a 𝛽-VAE and the interpretation of the 

learned generative factors for the weld depth. The transient process behavior during 

laser deep penetration welding could be modeled with high accuracy (cf. Figure 25 

(b)) using the 𝛽-VAE. Based on the trained network, a prediction of the weld depth 

was performed for test parameter sets thus far unknown to the network. 

Consequently, the results were used as a basis for experience-based process control, 

which can be realized by OCT-based keyhole depth measurement.  
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Figure 25: Results of the weld depth prediction using a 𝛽-VAE; mean values of 

predictions for 400 W – 1400 W laser power and 4 m/min – 10 m/min 

feed rate; corresponding deviations of predictions from test data 

represented by the root mean square error (RMSE); based on 

SCHMOELLER ET AL. (2020a) 

Author's contribution 

As part of his scientific work, Maximilian Schmoeller defined the requirements for 

the model to describe the behavior of the DPLW process. In the development of the 

model architecture based on ML, Maximilian Schmoeller was supported by Markus 

Wagner as part of a student project. Christian Stadter supported the model 

development and the planning and execution of experiments. Maximilian Schmoeller 

wrote the manuscript, which was then edited by Markus Wagner, Christian Stadter 

and Michael F. Zaeh. All authors discussed and commented on the results. 

Maximilian Schmoeller presented the results in an online lecture at the 11th CIRP 

Conference on Photonic Technologies (LANE) in 2020. The contributions of the 

author of this dissertation to publication P3 are listed in Table 5-3. 

 Concept content manuscript total 

M. Schmoeller 80 % 60 % 70 % 70 % 

Table 5-3: Contributions of the author to the conception, the development of the 

contents and the manuscript of publication P3 
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5.2.4 P4: “A Novel Approach for the Holistic 3D-Characterization 

of Weld Seams – Paving the Way for Deep Learning Based 

Process Monitoring” 

The challenges in obtaining high-quality and comprehensive training data for ML 

approaches in laser beam welding process monitoring are addressed in the publication 

P4 “A Novel Approach for the Holistic 3D-Characterization of Weld Seams – Paving 

the Way for Deep Learning Based Process Monitoring” (SCHMOELLER ET AL. 2021). 

Based on a microfocus X-ray computed tomography set-up (µCT) to inspect metallic 

samples, a method to evaluate three-dimensional (3D) measurements of an internal 

weld seam geometry for the aluminum alloy AA2219 was developed. From the scans, 

extensive information was obtained on the weld geometry, on internal defects and on 

the relationships between the process parameters and the weld properties. The 

evaluation procedure is illustrated in Figure 26. 

The methodology for 3D weld characterization was composed of three consecutive 

operations. An X-ray-based measurement method was qualified to acquire raw data 

in the first step. Subsequently, the results were used to develop an evaluation routine 

for the 3D-assessment of the geometric characteristics of welds. The acquired 

geometric features were evaluated in the third step for their dependence on the 

process parameters and correlated with sensor signals from inline process monitoring 

systems, e.g., OCT keyhole depth measurements.  

To qualify the measurement system, welding tests were carried out on aluminum 

alloys with different microstructures, material compositions and manufacturing 

methods. Based on SCHAFF ET AL. (2017), it was presumed that a significant change 

in microstructure due to the welding process could result in a detectable change in 

the attenuation of X-rays passing through a specimen. Measurements on the 

aluminum alloy AA2219 allowed a complete visualization of the weld geometry 

inside the specimen. The acquisition parameters of the µCT system were evaluated 

for the measurement resolution. With a voxel size of 7.7 µm edge length, a high 

contrast of the molten and resolidified material compared to the base material and a 

good detectability of seam defects such as cracks was achieved.  

In an extensive series of tests based on the design of the experiments of publication 

P3, the weld defects, classified as pores and cracks, were studied and the three-dimen-

sional weld contour over a length of 12 mm per specimen was evaluated. Referenced 

to the specimen surface, the weld penetration depth was determined. Since the 

maximum weld penetration depth was not always located in the center of the weld, 
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the three-dimensional characterization offers the advantage over longitudinal cross-

sections that measurement errors due to those characteristics can be avoided. 

Based on the three-dimensional weld characterization results, a method was 

developed for the local and temporal correlation of geometric weld features with the 

measurement signals from inline process monitoring systems such as an OCT sensor. 

For this purpose, the weld specimens were provided with a reference notch before the 

test execution. In the keyhole depth measurement signal from the OCT sensor, the 

notch resulted in a characteristic pattern. Due to the complete and temporally 

correlated closed-loop acquisition of all sensor signals, axis positions and velocities, 

the notch, which was detectable in the OCT signal and the µCT images, was used as 

a reference. Thus, comprehensive comparative data, i.e., experimental reference date, 

for the weld penetration depth and other weld properties were made available for the 

sensor signals.  

 

Figure 26: Procedure for the 3D weld seam characterization based on microfocus 

X-ray computed tomography (µCT) with a focus on the determination 

of the weld depth values over the feed direction; based on SCHMOELLER 

ET AL. (2021) 

 
 
 
  

 
 

                    

                  

           

 

 

 

                           

             

 

 
 

                     

                  

 

 
 

         

          

                      

              

  

  

     



5 Research Findings 

 78 

The overall goal of publication P4 was to obtain a detailed database of weld 

characteristics that can significantly improve the evaluation accuracy of inline 

process monitoring systems. By reliably correlating sensor signals with process 

results, the data obtained could be used to train different models based on various ML 

approaches. With the help of extensive data-sets, it is also possible to use DNN 

architectures that require substantial amounts of training data. These are available, as 

the result of the measurements is a quasi-continuous course with a high temporal and 

local resolution of the weld depth with a voxel size of 7.7 µm.  

Author's contribution 

Maximilian Schmoeller and Christian Stadter collaborated on developing the idea for 

the three-dimensional characterization of welds using microfocus X-ray computed 

tomography. Both authors planned and performed the experiments and analyzed and 

interpreted the data together. Christian Stadter and Maximilian Schmoeller prepared 

the manuscript, which was edited by Michael Kick, Christian Geiger and Michael F. 

Zaeh. All authors commented on the results. Table 5-4 summarizes the contributions 

of the author of this dissertation to publication P4. 

 concept content manuscript total 

M. Schmoeller 50 % 40 % 40 % 40 % 

Table 5-4: Contributions of the author to the conception, the development of the 

contents and the manuscript of publication P4 

5.2.5 P5: “Inline Weld Depth Evaluation and Control Based on 

OCT Keyhole Depth Measurement and Fuzzy Control” 

Publication P5 "Inline Weld Depth Evaluation and Control Based on OCT Keyhole 

Depth Measurement and Fuzzy Control" (SCHMOELLER ET AL. 2022) describes the 

inline evaluation of keyhole depth measurement signals obtained from an OCT sensor 

based on ML and the fuzzy-based control of the weld depth. The foundation for the 

weld penetration depth evaluation, which provides the input signal for the control, 

was described in publications P1, P2 and P4. The fuzzy controller is based on the 

process model from publication P3. The focus of P5 was on the compensation of weld 

penetration depth changes as a result of changing process boundary conditions. 

The basis of the process control is a precise evaluation of the weld depth. For this 

purpose, the raw signal of the OCT keyhole depth measurement was interpreted to 
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gain the weld depth based on an FFNN. The input variables considered in the 

evaluation were: 

▪ The OCT signal from the keyhole, 

▪ the OCT signal from the component surface as a reference, 

▪ the OCT signal characteristics, 

▪ the process parameters laser power, feed rate, focus diameter and angle of 

incidence of the laser beam, 

▪ the material of the joining partners and 

▪ the melt layer thickness for the corresponding process parameters. 

The reference data from publication P4 formed the basis for the training. To ensure a 

small time offset between the signal detection and the controller response, both the 

data evaluation and the process control were implemented on a real-time capable 

industrial PLC system. The corresponding time delays of all the data processing and 

control loop components were characterized in publication P5. The reaction of the 

process controller to a deviation of the actual value took three calculation cycles in 

the control system used, which corresponds to a delay time of 3 ms. This temporal 

component included the acquisition and processing of the OCT data. As a result, the 

reaction time of the controller was negligible compared to the reaction time of the 

laser beam source to a change in the target power, which is approx. 20 ms. 

The process control was validated for an overlap joint. A disturbance to the process 

was applied by a sudden change of the upper joining partner's thickness. This allowed 

for a defined change in the weld depth to be caused externally, which was 

compensated for by the controller for all investigated parameter combinations. The 

controller intervention was considered successful if the desired weld depth could be 

reattained within a length of 5 mm in the lower joint partner. An exemplary data-set 

with the progressions of the inline-evaluated weld depth used as the controlled 

variable as well as the desired and the actual laser power are shown in Figure 27. The 

deviation of the actual laser power from the desired laser power results from a delay 

caused by the laser beam source response.  
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Figure 27: Exemplary illustration of a controlled process with a comparison of the 

inline-determined weld depth, as well as the target (desired) and actual 

laser power; based on SCHMOELLER ET AL. (2022) 

Author's contribution 

Maximilian Schmoeller developed the idea of an inline weld depth determination 

based on ML and the concept of a fuzzy control of the weld depth. Tony Weiss 

contributed to developing the data processing method as part of his student project. 

Korbinian Goetz and Christian Bernauer supported the development of the process 

control. Christian Stadter advised on the implementation of the OCT data analysis. 

The manuscript was written by Maximilian Schmoeller and reviewed by Christian 

Stadter and Michael F. Zaeh. All authors commented on the results. The contributions 

of the author of this dissertation to publication P5 are listed in Table 5-5. 

 concept content manuscript total 

M. Schmoeller 80 % 60 % 50 % 65 % 

Table 5-5: Contributions of the author to the conception, the development of the 

contents and the manuscript of publication P5 
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5.3 Discussion of the findings 

This section briefly discusses the results of publications P1 to P5. The knowledge 

gained in each of these publications is compared with exemplary work from the state 

of the art. As shown in Figure 28, the work within this dissertation can be assigned 

to the three central research areas process characterization, process monitoring and 

process control. 

Process characterization in this context describes the process behavior analysis in 

DPLW. A distinction can be made between experimental and model-based methods. 

The aim is to determine the relationship between the weld pool or the weld seam 

geometry and the process parameters. Process monitoring includes the inline 

acquisition and interpretation of information about the weld depth. Indirect and direct 

sensor approaches can be distinguished for the acquisition of measurement data. With 

indirect methods, a correlation is established between a measurable process variable 

and a non-measurable target variable. Direct measurement methods such as OCT for 

keyhole depth measurement can detect the target variable. A differentiation in filter 

methods and interpretation approaches can be made regarding the evaluation of 

process monitoring signals. Process control describes the weld depth control based 

on inline measurements of process variables. Here, classical controller architectures, 

i.e., linear controllers, contrast with fuzzy controllers. In addition, three target 

variables can be identified. Some research approaches deal with controlling the 

stability of a full penetration process and others try to control the weld depth or the 

process stability in a partial penetration process. 

The publication P1 of this dissertation can be assigned to the category process 

monitoring. It describes the dependence of the OCT signal during the keyhole depth 

measurement on process parameters and boundary conditions. As shown in 

section 3.3, a basic understanding of the influences of the observed process on the 

appearance of the keyhole depth measurement signal was not available prior to this 

thesis. The works of DORSCH ET AL. (2017) and BOLEY ET AL. (2019b) consider 

similar aspects but with specific objectives for the application of the OCT sensor 

technology and with limited ranges of applicability. Their works aim to describe the 

influence of individual aspects on the signal. Thus, they underline the importance of 

a detailed investigation of the influencing factors as a basis for a precise inline 

determination of the weld depth using an OCT-based keyhole depth measurement. In 

particular, the systematic variation of essential process parameters and the subsequent 

stochastic description of the OCT signal in P1 go beyond the state of the art. 
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Figure 28: Classification of the publications P1 to P5 of this dissertation relative 

to the state of the art and assignment to the research categories process 

characterization, process monitoring and process control 

Furthermore, it was shown in P1 that even for small focal diameters of the laser beam, 

resulting in small vapor capillary diameters, measurements of the keyhole depth are 

possible. In the measurements, the focal diameter was approx. 10 % larger than the 

diameter of the OCT measurement spot. Building on publication P1, SOKOLOV ET AL. 

(2020) were able to show a significant dependence of the OCT signal on the position 

of the measuring beam relative to the keyhole opening. By describing and quantifying 

influences on the keyhole depth measurement signal, publication P1 meets SO1, 

defined in section 4.2.  
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Publication P2, which can be assigned to the field of process characterization (cf. 

Figure 28), significantly helped to increase the accuracy of weld penetration depth 

determination based on a keyhole depth measurement. For this purpose, the physical 

relationship between the measurable depth of the keyhole and the melt pool depth, 

i.e., the resulting weld depth, was established. The depth difference, which results 

from a melt layer around the keyhole during welding, has only been indirectly 

accounted for in existing approaches of inline weld depth determination within the 

calibration of the signal evaluation. In P2, however, it was shown that the melt layer 

thickness has dimensions in the range of the processing laser's focal diameter. There-

fore, taking it into account when interpreting the keyhole depth signal with respect to 

the weld depth can contribute to a significant increase in accuracy and robustness. 

The basic structure of the numerical model was developed by LIEBL ET AL. (2017), 

who performed an FEM simulation of a double-focus welding process. In particular, 

modeling the heat source as a geometric imitation of a keyhole with an evaporation 

temperature boundary condition on the capillary wall was well suited for calculating 

the melt layer thickness. The genetic optimization of the keyhole geometry proposed 

in P2 has not been considered in the literature prior to this thesis work. It was possible 

to prove the applicability of such an approach to the geometry of a keyhole. Thus, P2 

contributed to the fulfillment of SO2 (cf. section 4.2).  

Building on an experimental study, the modeling of process behavior in DPLW was 

investigated as part of P3. A method for process characterization (cf. Figure 28) was 

developed to determine the dependence of the weld depth and its stability on the laser 

power and the feed rate. A similar objective was pursued by CASALINO ET AL. (2016), 

who used an FFNN to evaluate the influences of shielding gas and feed rate on the 

pore formation and the weld geometry. LUO & SHIN (2015) also considered the 

parameter dependence of the weld depth in laser beam welding of steel and applied 

an FFNN and an RNN for the evaluation. The described approaches were well suited 

to represent the process behavior as a mathematical function with validity in the 

trained parameter range. The method based on ML in P3 goes beyond the state of the 

art, as a high accuracy and extrapolation capability of the weld penetration depth 

prediction can be achieved with reduced experimental effort. Thus, P3 represents a 

solution for SO5. 

The accuracy of a weld depth evaluation based on the OCT keyhole depth 

measurement strongly depends on the available reference data. In particular, if ML-

methods are used, an extensive training database must be at hand. P4 represents a 

method for obtaining extensive and precise reference information about the weld 

depth in laser welding of aluminum. A non-destructive method using microfocus X-
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ray computed tomography was developed that allowed for a three-dimensional 

acquisition of the weld depth geometry inside a specimen. Available literature was 

limited to 3D-characterization of defects such as pores and cracks in welds on a 

microscopic scale (HAMADE & BAYDOUN 2019; EARL ET AL. 2019). SCHAFF ET AL. 

(2017) performed a 3D-characterization of the microstructure of the joining partners 

in friction stir welding. However, the measurements were allocated to the 

macroscopic range due to a limited measurement resolution of the X-ray dark field 

CT. The method in P4 represents an advancement relative to the state of the art, as it 

enables a precise 3D-measurement of welds without destructive testing for the first 

time. Hence, the requirements from SO3 were fulfilled within the scope of P4. 

The results of P5 can be assigned to the areas of process monitoring and process 

control. A closed-loop weld penetration depth determination and control was 

presented. For determining the weld depth from the OCT data, the signal 

characteristics (P1) and the melt layer thickness (P2) were considered. The depth was 

calculated based on an RNN with the training data from P4. A related approach to 

inline data evaluation was presented by GÜNTHER ET AL. (2015). They recorded 

camera and diode data during the process and used it for downstream process control. 

The weld depth control presented in P5 is fuzzy-based. Other control approaches used 

classical linear controllers, which have limited validity ranges due to the non-linearity 

of most of the dependencies of the laser welding process (BARDIN ET AL. 2005; 

BIRNESSER 2011; STORK GENANNT WERSBORG 2010; KOS ET AL. 2020). By 

combining inline evaluation of OCT signals with a weld depth control, P5 addressed 

SO4 and SO6. 
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6 Summary and Outlook 

6.1 Summary 

Laser beam welding is a suitable joining process for applications with high demands 

on mechanical stability and seam quality. It is mainly used in applications requiring 

a low heat input by the welding process into the components to be joined. One 

application example of laser beam welding is contacting battery cells to produce 

electrical energy storage modules. For this application, the welding process has to be 

carried out in an overlap configuration with only one-sided accessibility of the joining 

area. A reliable joining operation must be ensured to enable an automated production 

process. On the one hand, the joints must have a sufficient connection interface, 

which is decisive for the mechanical strength and the electrical conductivity. On the 

other hand, the permissible weld depth must not be exceeded to avoid damaging the 

joining partners and underlying components.  

One way to achieve the desired weld seam properties in DPLW is the inline control 

of the weld depth. Thereby, a non-conforming process can be excluded while quality 

documentation can be carried out in real-time. Various measuring systems can obtain 

information about the process state during laser beam welding. For example, camera 

systems are used to acquire images of the process zone. Systems for detecting process 

emissions, i.e., the characteristic radiation of a process or the back reflection of laser 

radiation from the processing zone, can also provide information on the processing 

conditions. To determine the weld depth from the acquired signals, correlations 

between the measured data and the corresponding depth must be found. Hence, such 

methods are referred to as indirect measurement systems. In contrast, the keyhole 

depth can be directly measured during welding based on an interferometric 

measurement, called Optical Coherence Tomography. The measurement radiation is 

guided coaxially through the welding optics into the process zone, i.e., the keyhole, 

where it is reflected. A length difference is determined between the reflected 

measuring radiation and a reference signal from the component surface. The result is 
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distance information at measurement frequencies in the kilohertz range. The acquired 

signal is strongly dependent on the process boundary conditions and parameters. In 

addition, a difference between the keyhole and the weld depth results from a melt 

layer below the keyhole. Its thickness can be calculated numerically. After the 

keyhole depth signal has been interpreted in terms of the weld depth, considering the 

melt layer thickness, it can be used as an absolute value for process control. 

The chapter on the state of the art in this thesis covers approaches in the field of laser 

material processing, with a detailed discussion of process monitoring (cf. section 3.2), 

the application of Optical Coherence Tomography (cf. section 3.3) and process 

control (cf. section 3.4). The identified need for action can be summarized as follows: 

▪ The influences of the process parameters on the OCT keyhole depth measure-

ment signal are commonly neglected when determining the weld depth. In that 

case, the determination was only valid for a limited range of process 

parameters. Hence, a quantitative model of the influencing variables on the 

OCT keyhole depth signal as a function of process parameters and boundary 

conditions needed to be derived.  

▪ The melt layer enclosing the keyhole during DPLW leads to an offset between 

the measurable keyhole depth and the weld depth. This deviation must be 

considered when determining the weld depth based on keyhole depth 

measurements. 

▪ The basis of flexible process control for laser beam welding is a description of 

the process behavior with a wide range of validity. An efficient and real-time 

capable prediction model for the weld depth as a function of process 

parameters needed to be determined from this. 

▪ A weld depth control for DPLW needed to be developed based on the keyhole 

depth measurement. It is characterized by simple parameterization and flexible 

adaptability to changing process boundary conditions. 

The scientific approach of this work includes the quantitative description of the OCT 

keyhole depth signal as a function of the process parameters (cf. sub-section 5.2.1) 

and the FEM-based determination of the melt layer thickness around the keyhole (cf. 

sub-section 5.2.2). Furthermore, the process behavior during DPLW (cf. sub-section 

5.2.3) as well as a method for the comprehensive three-dimensional characterization 

of the weld seam geometry in the inner area of weld seam samples (cf. sub-section 

5.2.4) is described. These individual aspects of the research approach are combined 

in an inline weld depth control loop (cf. sub-section 5.2.5). For each considered 

aspect, an enhancement compared to the state of the art was achieved (cf. section 5.3). 
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Of particular importance is the method for three-dimensional characterization of weld 

geometries inside the component, based on microfocus X-ray computed tomography. 

The high-resolution data-sets can provide information about the relationship between 

the process dynamics and resulting quality characteristics of welds, such as weld 

defects or penetration depth variations. In addition, the availability of reference data 

for welding processes, which was previously difficult to generate, is the basis for 

significant improvements in the accuracy of process monitoring systems, as 

demonstrated by the OCT data evaluation in sub-section 5.2.5. 

6.2 Outlook 

Based on the findings within the framework of this thesis, several advancement 

potentials can be identified, which are described in the following. 

Joint geometry of the components 

The experimental investigations in the publications, presented in the sub-sections 

5.2.1 to 5.2.5, were performed using bead on plate welds. This simplification was 

made to avoid interference of the OCT signal with the joint geometry and to 

investigate the keyhole depth measurement signal systematically. One way to extend 

the applicability of weld depth control to the reliable and flexible welding of two 

components is to consider the joint geometry when determining the weld depth. For 

this purpose, the algorithm for interpreting the OCT signal must be modified and 

extended to include the joint geometry as an input variable. This step also includes 

investigating the geometric influences on the signal characteristics as described in 

sub-section 5.2.1, without considering the joint geometry. Another aspect to be 

examined for this purpose is the influence of the position of the OCT measurement 

spot relative to the opening of the keyhole. The dedicated characterization and 

consideration of this influencing variable have already been shown by SOKOLOV ET 

AL. (2020) and SOKOLOV ET AL. (2021) to join two sheet metal components in a fillet 

weld configuration. The approach can be extended to other joint geometries in further 

studies. 

Material adaptability 

In publication P1 (cf. sub-section 5.2.1), the influence of the material on the OCT 

signal characteristics during keyhole depth measurement was investigated. However, 

the subsequent publications focused on the aluminum alloys AA6082 (cf. sub-
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sections 5.2.2, 0 and 5.2.5) and AA2219 (cf. sub-section 5.2.4). This limitation was 

introduced based on the results of sub-section 5.2.1. The measurement of the keyhole 

depth in aluminum, compared to copper, presents a greater challenge due to the high 

scattering of the OCT signal within the keyhole. Future studies may enable OCT-

based weld penetration depth evaluation and control for other materials such as steel 

or copper. In addition, the weld depth is an important process variable for 

manufacturing components with dissimilar metals to be joined. For example, 

aluminum and copper components are typically welded in an overlap configuration, 

with laser radiation coupled to the aluminum component. High joint-strengths can be 

achieved if a low degree of intermixing of the materials is achieved, as this avoids 

the formation of brittle intermetallic phases (HOLLATZ ET AL. 2020a). The targeted 

penetration into the overlying aluminum component can be ensured with weld depth 

control. An indication of the correct penetration depth may also be provided by the 

change in OCT signal characteristics induced by the keyhole reaching the copper 

component.  

Technology integration 

The technological platform for the introduced weld depth control is a fixed optics 

system with an integrated OCT sensor system. In industrial applications like car-body 

or battery-storage production, fixed-optics are widely used. However, for brilliant 

laser radiation with small focal diameters and high intensity, galvanometer scanning 

optics are preferred for industrial applications, since they allow for a highly dynamic 

deflection of a laser beam. To achieve a widening of the weld seam in a stable 

processing regime, additional oscillation trajectories of the focal point can be 

superimposed on the feed motion along the weld seam (SCHWEIER ET AL. 2016). 

Various technical enhancements are necessary to employ weld depth control in a 

scanner welding system. In particular, a highly dynamic positioning of the OCT 

measurement spot relative to the focal point of the processing laser is required, since 

the relative positioning accuracy of the measurement and the processing spot depends 

on the accuracy of the scanner system. Consequently, a calibration method for the 

measuring system must be provided to position the OCT focal point over the entire 

processing field of the scanning optics. 
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