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Abstract 
Transfer RNAs (tRNAs) are adapter molecules that bridge the gap between RNA and protein 

during translation where they supply amino acids to the growing polypeptide chain. It has been 

suggested that tRNA abundance and the stoichiometry of their extensive modifications is 

dynamically regulated in different cell contexts, and defects in abundance or modifications are 

linked to neurological disease and cancer. While the impact cell context-specific tRNA 

regulation on translation speed, co-translational folding of proteins, and proteome integrity has 

been suggested, technical limitations to methods for global tRNA quantitation have impeded 

these analyses. 

Two main challenges exist for high-throughput sequencing-based technologies in 

generating snapshots of cellular tRNA profiles: 1) cDNA synthesis by reverse transcriptases 

(RTs) during sequencing library generation is impeded by prevalent Watson-Crick face 

nucleotide modifications and tRNA secondary structure, resulting in abortive cDNA synthesis, 

tRNA coverage biases, and inaccurate abundance estimation. 2) High levels of gene 

duplication and sequence similarity amongst eukaryotic tRNA genes complicates 

unambiguous, high-resolution, and accurate read alignment and transcript quantitation. 

Current tRNA sequencing technologies have yet to fully overcome these two challenges, 

especially evidenced by the lack of robust computational pipelines and algorithms tailored to 

tRNA sequencing data analysis. Furthermore, a lack of detailed protocols, documentation, and 

community support has hindered the progress of library generation methods and 

computational tools alike. 

In this thesis, I introduce modification-induced misincorporation tRNA sequencing (mim-

tRNAseq), which overcomes challenges to tRNA sequencing and facilitates the investigation 

of previously intractable questions in tRNA biology. In chapter 2, the development and testing 

of the mim-tRNAseq method is described. mim-tRNAseq includes an optimized workflow for 

library generation with a highly processive RT (TGIRT) that enables readthrough of almost all 

common Watson-Crick face modifications, mitigating coverage and transcript abundance 

estimation biases. In combination, the open-source mim-tRNAseq computational package 

allows the customizable, user-friendly analysis of coverage, abundance, charging fractions, 

and modification identity and stoichiometry in a single command. Several novel algorithms 

and concepts in the package allow for drastically improved read alignment to clustered tRNAs 

while retaining transcript-level resolution for abundance and modification analysis. 

By comparing to existing methods, and confirmation with experimental evidence, we 

show the accuracy and improved resolution of mim-tRNAseq in quantifying transcripts and 

modifications compared to other methods. Interestingly, we show that despite extensive tRNA 

transcript regulation amongst human cell types, abundances of anticodon pools remain stable. 
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With improved modification analysis, we also find a striking interdependence of modifications 

at distinct tRNA positions, giving insight into structural determinants of tRNA modifications. 

Chapter 3 describes a detailed protocol for the implementation and use of mim-tRNAseq, 

assisting users with all steps of the protocol, and providing useful tips, alternatives, and a 

troubleshooting guide. I describe upgrades to the read deconvolution algorithm, which offer 

further improvements to accuracy and resolution of transcript-level analyses. Various outputs 

and quality-control metrics are described to help users in optimizing library generation and 

customization of the analysis steps. 

The mim-tRNAseq computational package represents the first open-source, 

comprehensive toolkit for tRNA sequencing analysis with extensive documentation, 

community-support, and ongoing development. For these reasons, mim-tRNAseq is expected 

to be widely adopted for studying new aspects of tRNA biology, and will see future 

improvements that extend its functionality and accuracy further.  
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Zusammenfassung 
Transfer-RNAs (tRNAs) sind Adaptermoleküle, die während der Translation die ein Bindeglied 

zwischen RNA und Protein darstellen, indem sie Aminosäuren für die wachsende 

Polypeptidkette bereitstellen. Es wurde vermutet, dass die Häufigkeit und die Stöchiometrie 

von tRNAs durch ihre umfangreichen Modifikationen in verschiedenen Zellkontexten 

dynamisch reguliert wird und dass Defekte in der Häufigkeit oder bei den Modifikationen mit 

neurologischen Erkrankungen und Krebs in Verbindung gebracht werden. Es wurden 

zahlreiche Hypothesen aufgestellt, um die Auswirkungen zellkontextspezifischer tRNA-

Regulierung auf die Translationsgeschwindigkeit, auf die co-translationale Faltung von 

Proteinen und auf die Integrität des Proteoms zu erklären, allerdings haben technische 

Beschränkungen bei Methoden zur globalen tRNA-Quantifizierung diese Analysen erschwert. 

Bei der Erstellung von Momentaufnahmen von zellulären tRNA-Profilen mit Hilfe von 

Hochdurchsatz-Sequenzierungstechnologien gibt es zwei große Herausforderungen: 1) Die 

cDNA-Synthese durch Reverse Transkriptasen (RTs) während der Generierung von 

Sequenzierproben wird durch die vorherrschenden Modifikationen an der Watson-Crick 

Basenpaarung und die tRNA-Sekundärstruktur behindert, was zu einer unvollständigen 

cDNA-Synthese, einer verzerrten tRNA Coverage und einer ungenauen Schätzung der 

Abundanz führt. 2) Das hohe Maß an Genduplikation und Sequenzähnlichkeit zwischen 

eukaryotischen tRNA-Genen erschwert ein eindeutiges, hochauflösendes und genaues Read-

Alignment und die Quantifizierung von Transkripten. 

Die aktuellen tRNA-Sequenzierungstechnologien müssen diese beiden 

Herausforderungen noch vollständig bewältigen, was insbesondere durch den Mangel an 

robusten Rechenpipelines und Algorithmen für die Analyse von tRNA-Sequenzierungsdaten 

belegt wird. Darüber hinaus sind detaillierte Protokolle, Dokumentationen und die 

Unterstützung durch die Gemeinschaft mangelhaft und haben den Fortschritt der 

Methodenentwicklung zur Herstellung von Sequenzierproben und Analyseprogrammen 

gleichermaßen behindert. 

In dieser Arbeit stelle ich die „modification-induced tRNA sequencing“ (mim-tRNAseq) 

vor, die die Herausforderungen der tRNA-Sequenzierung überwindet und die Untersuchung 

von bisher unlösbaren Fragen der tRNA-Biologie erleichtert. In Kapitel 2 wird die Entwicklung 

und Erprobung der mim-tRNAseq-Methode beschrieben: mim-tRNAseq umfasst einen 

optimierten Arbeitsablauf für die Generierung von Sequenzierproben mit einer hochgradig 

prozessiven RT (TGIRT), die das Lesen fast aller gängigen Watson-Crick- Modifikationen 

ermöglicht und damit die Datenverzerrungen bei der Schätzung von Coverage und 

Transkriptmenge vermindert. In Kombination mit unserem Open-Source-Rechenpaket 

ermöglicht mim-tRNAseq die anpassbare, benutzerfreundliche Analyse von Coverage, 
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Abundanz, Menge an geladenen Aminosäuren sowie Identität und Stöchiometrie der 

Modifikationen in einem einzigen Befehl. Zahlreiche neue Algorithmen und Konzepte in dem 

Paket ermöglichen ein drastisch verbessertes Read-Alignment auf geclusterte tRNA, während 

zugleich die Auflösung auf Transkript-Ebene für die Analyse von Abundanz und 

Modifikationen beibehalten wird. 

Durch Vergleiche mit bestehenden Methoden und durch labortechnische Experimente 

zeigen wir die Genauigkeit und verbesserte Auflösung von mim-tRNAseq bei der 

Quantifizierung von Transkripten und Modifikationen im Vergleich zu anderen Methoden. 

Interessanterweise konnten wir zeigen, dass trotz der umfangreichen Regulierung von tRNA-

Transkripten in verschiedenen menschlichen Zelltypen die Häufigkeiten der Anticodon-Pools 

stabil bleibt. Mit einer verbesserten Modifikationsanalyse finden wir auch eine auffällige 

Abhängigkeit von Modifikationen an verschiedenen tRNA-Positionen, die Einblicke in 

strukturelle Determinanten von tRNA-Modifikationen geben. 

Kapitel 3 beschreibt ein detailliertes Protokoll für die Implementierung und Verwendung 

von mim-tRNAseq. Es unterstützt die Benutzer bei allen Schritten des Protokolls und bietet 

nützliche Tipps, Alternativen und eine Anleitung zur Fehlerbehebung. Ich beschreibe 

Upgrades für den Read-Dekonvolution-Algorithmus, die weitere Verbesserungen bei der 

Genauigkeit und Auflösung von Analysen auf Transkript-Ebene bieten. Es werden 

verschiedene Ergebnisse und Metriken zur Qualitätskontrolle beschrieben, die den Benutzern 

bei der Optimierung der Erstellung von Sequenzierproben und der Anpassung der 

Analyseschritte helfen. 

Das Analysepaket mim-tRNAseq ist das erste umfassende Open-Source-Toolkit für die 

tRNA-Sequenzierungsanalyse mit umfangreicher Dokumentation, Community-Unterstützung 

und kontinuierlicher Weiterentwicklung. Aus diesen Gründen ist zu erwarten, dass mim-

tRNAseq in großem Umfang für die Untersuchung neuer Aspekte der tRNA-Biologie 

eingesetzt wird und in Zukunft weitere Verbesserungen erfahren wird, die die Funktionalität 

und Genauigkeit weiter ausbauen. 
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Introduction 
Transfer RNAs (tRNAs) are short, abundant, noncoding RNA that supply amino acids to the 

growing polypeptide chain during translation. In this regard, they function as the adapter 

between RNA and protein as they selectively base pair to codons in mRNA sequence via their 

anticodons. Due to structural constraints that permit tRNA accommodation in empty ribosomal 

A-sites during translation, mature tRNA transcripts are typically 76 – 90 nucleotides in length 

and conform to cloverleaf secondary structures and L-shaped tertiary structures1. To aid in 

conferring this structure, tRNA nucleotide modifications are both the most numerous and most 

diverse of any cellular RNA species2. However, these modifications also confer additional 

functionality to tRNAs that assist in decoding, wobble pairing, and frame maintenance during 

translation, and therefore also range in essentiality for normal function and cell physiology3–6.  

tRNAs are classified into 21 isotypes, based on which of the 21 amino acids (including 

selenocysteine) they carry to the ribosome during translation. Furthermore, due to the 

degeneracy of the genetic code, tRNAs of a particular isotype usually contain isoacceptors 

that possess different anticodons yet are charged with the same amino acid. Further still, 

tRNAs sharing an anticodon but differing in sequence elsewhere are known as isodecoders. 

In eukaryotic genomes, it is also not uncommon that multiple copies of a particular tRNA gene 

exist. This multiplicity results in fairly expansive and diverse tRNA gene sets in eukaryotes, 

ranging from 275 tRNA genes in yeast, to ~600 in human, and up to ~8600 in zebrafish7. 

Given their central role in translation, and requirement in high abundance, tRNAs were 

long assumed to be ubiquitously expressed. With the advent of quantitative methods such as 

microarrays8,9 and high-throughput sequencing10–14, investigators quickly learned that tRNA 

regulation in multicellular organisms is more complex than originally thought; differential 

expression amongst tRNA anticodon pools might be concordant with changing codon demand 

in divergent transcriptomes15, numerous sources of evidence in multiple species also point to 

precise regulation at the transcript level, even among those sharing anticodons10,11, and even 

transcription of identical tRNA genes has been shown to be variable within an organism16,17. 

Still, little is understood regarding the function of tRNA regulation. Isodecoders that 

“read” the same codon in mRNA sequence are seemingly redundant, at least at the level of 

translation, yet they are often differentially regulated. Does sequence variation outside of the 

anticodon also impact the dynamics of translation, or is this regulation a byproduct of gene 

duplication, evolution, silencing, and pseudogenization? More intriguing still are the 

mechanisms underlying this regulation, which mostly remain unclear. 

The importance of tRNA expression, structure, modification, aminoacylation, and nearly 

all other levels of tRNA biogenesis and quality control, are underscored by the plethora of 

diseases and abnormal physiology that result from dysregulation of these processes 
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(reviewed in 18–21). Additionally, promising technologies aimed at using tRNAs as therapies for 

protein synthesis-related disorders reveal the utility and power that tRNAs possess as 

biotechnological targets in human health22,23. 

However, questions regarding fundamental tRNA biology remain unanswered, 

particularly those pertaining to their regulation. Advances in this regard have been hindered 

by technical challenges in global, accurate quantitation of tRNA pools in eukaryotes. These 

challenges stem from the multiplicity of tRNA genes, as well as their modifications, which 

disrupt reverse transcription - an essential and central step in high-throughput sequencing 

library generation. Optimization of tRNA sequencing methods has been an active area of 

research in the last decade, however many biases and shortcomings remain to be solved. 

This is particularly true for computational methods tailored to suit the analysis of tRNA 

sequencing datasets, which so far have been lacking in the field. 

This chapter briefly describes the basic biology of tRNA. This is contextualized by current 

literature on the importance of tRNAs in human health and tRNA-based therapy, and the need 

for accurate methods to measure their abundance and modifications to further understand 

complex pathophysiology. Lastly, the status quo of global tRNA quantitation methods is 

explored, with focus on the complications that both biochemical and computational methods 

have faced so far. 

tRNA structure and biogenesis 
Structure 

Mature tRNA transcripts consist of conserved stem-loop elements that can be depicted as the 

canonical cloverleaf-like secondary structure (Figure 1A). The acceptor stem is formed 

between the 5’ and 3’ end and is covalently linked to its corresponding amino acid at the 

conserved 3’-CCA tail. In a 5’ to 3’ direction, this stem is followed by the D-arm, the anticodon 

stem-loop that harbors the anticodon, the variable loop, and the T-arm. The D-arm gets its 

name from its conserved dihydrouridine modifications that confer tertiary structural elements 

to the tRNA. Similarly, the T-arm, or TYC arm, contains conserved thymidine, pseudouridine 

(symbolized by Y), and cytosine residues1. The variable loop is the only part of the tRNA with 

some variability in length that is not conserved across all tRNAs. The stem-loops fold onto 

themselves forming the conserved L-shaped tertiary structure of tRNAs (Figure 1B), with one 

arm formed by the acceptor stem and the T-arm, and the other by the anticodon stem and the 

D-arm. 
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Due to this conserved secondary structure, tRNAs also have a canonical numbering 

system for nucleotide positions along their length, from 1 – 76 (Figure 1A)24. This facilitates 

easy reference to specific elements, including modification positions. For example, the 

anticodon is always in positions 34 – 36 and the 3’-CCA tail is at 74 – 76. Importantly, the 

discriminator base at position 73 is required for recognition specificity and charging of the 

tRNA by its correct aminoacyl tRNA synthetase (aaRS)25. 

 
Transcription 

In eukaryotes, all tRNAs are transcribed by the 17-subunit RNA polymerase III (RNAPIII) 

complex to produce tRNA precursor transcripts (pre-tRNA; Figure 2A). Apart from tRNAs, 

RNAPIII is also responsible for the transcription of a limited set of other short, non-coding 

RNAs including ribosomal 5S RNA, the U6 small nuclear RNA (snRNA) required for the 

spliceosomal complex, 7SL RNA of the signal recognition particle complex (SRP), among a 

growing list of additional targets26. 

As with all polymerases, RNAPIII recruitment and transcription is mediated by 

transcription factors (TFs) and a variety of promoter elements that recruit them. Three classes 

of RNAPIII promoters exist, named type 1 – 3; type 1 promoters are found exclusively in 5S 

rRNA genes and contain an internal control region (ICR), consisting of the A- and C-box 

Figure 1 Basic tRNA structure. 
(A) Secondary structure of tRNA showing the typical cloverleaf form. Various structural elements are indicated; 
from 5’ to 3’; Acceptor stem, D-arm, anticodon stem-loop, variable loop, and acceptor stem. Also highlighted are 
the conserved canonical base positions for important elements, such as the anticodon (34 – 36), discriminator base 
(73), CCA tail (74 – 76), and multiple well-conserved modified nucleotide positions (e.g., 9, 32, 34, 37, 58). AA – 
amino acid. 
(B) Tertiary molecular structure of S. cerevisiae tRNA-Phe (PDB; 1EHZ) showing typical L-shaped structure. Colors 
are consistent with structural elements in (A). 
Adapted from Berg and Brandl (2021)137. 
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promoter elements, which recruit TFIIIA and TFIIIC27. Type 2 promoters are those found in 

tRNA genes, are also located internally, and consist of an A- and B-box that recruit TFIIIC28,29. 

Lastly, type 3 promoters, which are vertebrate-specific, contain external 5’ TATA-box and 

proximal sequence element (PSE) promoters upstream of the transcriptional start site (TSS)31. 

The PSE is recognized and bound by the snRNA activating protein complex (SNAPc)30,31. 

Successful recruitment and binding of the TFs in all three cases leads to the recruitment of 

the common TFIIIB and subsequent recruitment of RNAPIII complex and transcription 

initiation. 

tRNA gene transcription begins with the binding of TFIIIC to the internal A- and B-box 

elements using two domains that are separated by a flexible linker (Figure 2A)32. This 

flexibility affords TFIIIC the ability to bind variably spaced A- and B-boxes accounting for 

difference in variable region length, and the subset of tRNAs with introns. TFIIIC binding is 

thought to be transient, but is required for the recruitment of the multi-subunit TFIIIB upstream 

of the TSS, which binds far more stably and can facilitate multiple rounds of transcription 

reinitiation33. Finally, tRNA transcription is terminated at a stretch of at least five T residues, 

and is dependent on three subunits of RNAPIII34,35. Because of this affinity and stability, 

regulation of TFIIIB recruitment by modulation of its interaction with DNA and TFIIIC by other 

proteins (e.g., Dr1, RB, p107, p130, and p53) may be an important level of regulation for tRNA 

gene transcription (reviewed in 36,37). 

 
Processing, modification and aminoacylation 

Pre-tRNA transcripts require nuclear processing to function as mature tRNA in translation 

(Figure 2A). La protein binds the poly(U) tract at pre-tRNA 3’ ends to aid in correct pre-tRNA 

folding and to protect it from 3’ exonuclease activity. Meanwhile, the 5’ leader sequence is 

removed by the conserved RNase P ribozyme, and 3’ trailer sequences are cleaved by RNase 

Z following the discriminator base at position 73. 3’ end maturation is completed by the CCA 

adding enzyme, which post-transcriptionally and without template, adds the CCA tail to 

eukaryotic tRNA ends. This enzyme is also responsible for the repair of truncated CCA ends. 

It has been hypothesized that global tRNA 3’ truncation, which also globally reduces 

aminoacylated tRNA proportions, might serve as a rapid and efficient way to globally inhibit 

translation in stress conditions38. However, this remains an open question. Intron-containing 

tRNAs are recognized by the tRNA splicing endonuclease (TSEN) complex for intron removal. 

tRNAs are the most modified RNA in any cell, with on average ~12 of their 76 nucleotides 

receiving chemical modifications. Over 100 different types of modifications have been 

detected in tRNAs so far, while human cytosolic tRNAs contain at least 39 of these21. 

Modifications in the body of the tRNA often regulate their structural stability2. However, 

modifications at position 34, the first nucleotide of the anticodon that pairs with the third 
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position of the codon, is often modified with a variety of modifications that can enable or limit 

wobble base pairing of tRNAs to non-cognate codons (Figure 1A)3. Therefore, these 

modifications are important regulators controlling the stringency as well as the flexibility of 

tRNAs to accurately decode more than one codon without error. Position 37 outside of the 

anticodon is also often highly modified and is known to regulate decoding. These modifications 

can stabilize the pairing of tRNA position 36 with the first nucleotide of the codon, thereby 

reducing frameshifting and increasing fidelity during translation4,39. 

tRNA charging with amino acids is carried out by aminoacyl tRNA synthetases (aaRS). 

Generally, one aaRS is specific for one amino acid, and recognizes one group of isoacceptors. 

There are exceptions, however, for example SerRS serylates both serine and selocysteine 

tRNAs40. This recognition is dependent on identity elements, which often include the anticodon 

and discriminator base at position 73, as well as other single nucleotides and nucleotide pairs 

in some cases41. Importantly, the ribosome does not select tRNAs based on the amino acid 

they are charged with. This permits incorrectly charged tRNAs to misincorporate amino acids 

into the nascent polypeptide, which can severely impact protein function and proteostasis in 

general. 

 
Mechanisms of tRNA regulation 

Since early discoveries using microarrays8,9, and the subsequent development of high-

throughput sequencing-based technologies that allow quantitation of cellular tRNA pools10–

12,14, the conundrum of context-specific tRNA regulation in multicellular eukaryotes has 

puzzled investigators. In general, there is some contention in the field regarding the function 

and requirement (if any) for the specific regulation of individual tRNA transcripts in different 

cell contexts or stress. 

Gingold et al. suggested that proliferating and differentiating cell types have distinct 

transcriptomes with distinct synonymous codon usages, and that the expressed tRNA 

anticodon pools within these cells are matched to meet their unique cellular codon demands15. 

Contrary to this, it has been shown that despite divergent protein-coding gene expression 

between mouse brain and liver tissue, relative codon demand remains stable. Furthermore, 

tRNA gene expression in these same tissues measured by RNAPIII ChIP-seq, generating 

maps of occupancy for the RNA polymerase, also revealed stable anticodon pools despite 

drastically different transcriptional programs in these cells16. 
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Since a minority of mRNA transcripts from coding genes show tissue- or cell-type 

specific expression in most cases42, global estimates of synonymous codon usage might 

remain stable when considering all transcripts in a sample. Perhaps optimized codon demand 

in a subset of context-specific transcripts impacts their translation more drastically than other 

housekeeping or ubiquitously expressed genes by ensuring their codon usage more closely 

Figure 2 tRNA transcription, maturation, and regulation. 
(A) Brief overview of tRNA biogenesis and maturation. Transcription occurs in the nucleus via recruitment of the 
transcription factors TFIIIC and TFIIIB, resulting in RNA polymerase III (RNAPIII) recruitment and tRNA 
transcription. tRNA leader and trailer sequence removal, and in some organisms, intron removal occurs in the 
nucleus, along with the addition of some modifications. tRNAs are exported for aminoacylation to occur, and may 
be reimported for final addition of specific modifications. Functional, mature, and charged tRNAs can participate in 
translation by binding with codons in mRNA sequence once loaded into an empty ribosomal A-site. 
(B) tRNA transcriptional regulation is partly regulated by chromatin dynamics, accessibility, and histone 
modification. Actively transcribed tRNAs have been associated with nucleosome-free regions (NFRs), and specific 
histone 3 lysine modifications which also mark RNA polymerase II coding genes for active transcription (top panel). 
Conversely, inactive tRNAs are associated with condensed heterochromatin (both facultative and constitutive), and 
are marked with known repressive histone marks (lower panel)43. 
(C) MAF1 acts as the only known global RNAPIII-specific repressor. Under normal growth, and in certain cell types, 
MAF1 is phosphorylated by mTOR at one or more of its three main phospho-sites, leading to its inability to interact 
with, and repress RNAPIII. Under stress conditions, nutrient deprivation, and in certain differentiated cell types, 
mTOR is inactivated leading to MAF1 dephosphorylation and activation such that it is able to repress RNAPIII 
recruitment to tRNA genes. 
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matches the availability of tRNAs. At the gene and transcript level, however, tRNA differential 

regulation is well-established. Mechanisms of this regulation are an area of continued interest, 

while the function of this regulation - especially in light of stable anticodon expression - is far 

less clear. 

 

Mechanisms of RNAPIII regulation at tRNA genes 
Growing evidence shows that epigenetic modifications influence chromatin state and RNAPIII 

transcription similarly to that seen for RNAPII transcription at protein-coding genes (Figure 
2B; reviewed in 43). For example, expressed tRNAs are found in nucleosome-free regions 

(NFRs) that are flanked up- and downstream by nucleosomes44,45 and they exhibit histone 

modifications associated with active transcription and open chromatin, such as H3K4me1/2/3, 

H3K9ac and H3K27ac (Figure 2B). By contrast, inactive tRNAs are found in heterochromatic 

regions marked by repressive histone modifications such as H3K27me2/3 and H3K9me3 

(Figure 2B)46,47. Changing chromatin states across development, differentiation, or under 

different stress conditions surely contributes to the regulation of tRNA genes, yet the factors 

regulating these states remain unknown. 

What is less clear is the extent that sequence-dependent mechanisms contribute to tRNA 

transcriptional regulation. The A- and B-box promoters overlap with strongly conserved 

structural elements in the D- and T-arms28, and show little variation in sequence even between 

sets of tRNAs that are constitutively bound by RNAPIII and those that are lowly occupied or 

unoccupied46,48. Furthermore, although the TATA-box-binding protein (TBP) required by all 

eukaryotic RNAPs is a subunit of TFIIIB, the presence of a TATA-like element in tRNA 

upstream regions seems to be specific to only some eukaryotes including plants49, insects50, 

and the fission yeast Schizosaccharomyces pombe51,52, while animal sequences are 

heterogenous with no discernible motifs found in these regions so far. Despite this, even tRNA 

gene copies that produce identical transcripts have shown variable RNAPIII occupancy, 

possibly implicating divergent upstream sequence and TFIIIB affinity underlying this 

regulation53. Perhaps the use of newer technologies, such as neural convolutional networks 

(CNNs) combined with high-resolution occupancy maps in multiple cell or tissue types54 can 

accurately model and predict upstream motifs underlying the regulation of tRNA genes. 

 

The general RNAPIII repressor, MAF1 
So far, the protein MAF1 remains the most well-characterized general repressor of RNAPIII 

(Figure 2C)55. MAF1 is highly conserved in eukaryotes from yeast to humans, and its activity 

as a RNAPIII repressor is dependent on phosphorylation status36. Only dephosphorylated 

MAF1 is able to bind RNAPIII and repress transcription56. In human, the mammalian target of 

rapamycin (mTOR) kinase is responsible for the phosphorylation of MAF1 at three main 
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phosphorylation sites during normal growth conditions57. Phosphorylated MAF1 is inactive and 

destabilized, while under stress conditions or nutrient deprivation, MAF1 is dephosphorylated 

and is able to inhibit transcription (Figure 2C; reviewed in 36). 

The structural basis of MAF1 interaction with RNAPIII has recently suggested the 

possible mechanism underlying MAF1 repression58,59. Active MAF1 binds the RNAPIII subunit 

RPC1 at the clamp domain, and overlaps with the interaction domain of the TFIIIB subunit, 

BRF1. This explains why MAF1 and TFIIIB binding to RNAPIII is mutually exclusive, and 

proposes that TFIIIB recruitment of RNAPIII to tRNA loci is inhibited by MAF1 occupancy59,60.  

Despite advances in understanding MAF1-mediated repression, the differences in 

responsiveness of certain tRNA subsets to MAF1 remains elusive. In yeast, a so-called 

“housekeeping” set of tRNAs exists, which are apparently less sensitive to MAF1 repression 

and environmental signals, and proposes more complex mechanisms underlying regulation61. 

This suggests a combinatorial effect of chromatin dynamics, MAF1-mediated silencing, and 

potential, unknown sequence-dependent mechanisms underlying the heterogenous 

regulation at different tRNA loci. 

tRNA in health, disease, and therapeutics 
A multitude of pathologies and diseases are associated with tRNA-related defects in 

eukaryotes, underpinning the need for accurate methods to globally analyze tRNA repertoires. 

Understanding the nature and mechanism of complex tRNA synthesis and turnover is 

essential in understanding their role in complex disease phenotypes, and in guiding novel 

treatments and therapies. tRNA-related defects often present in a surprisingly tissue-specific 

manner; for example, defects in tRNA expression, modifications, aminoacylation, and 

processing have often been linked to abnormal phenotypes and development in neural cell 

types, and even to neuropsychiatric disease (reviewed in 19), underscoring the increased 

susceptibility of specific tissues and cell types to tRNA-related defects62. The exact 

mechanism of this phenomenon remains unclear and an active area of research in the field, 

particularly in the context of treatment and tRNA-based therapies. 

tRNA-related pathology research has implicated nearly all major steps of tRNA 

synthesis, maturation, and turnover in the cause of disease, emphasizing the requirement for 

tight control over each of these processes and their essentiality in multicellular eukaryotes. 

Briefly reviewed below are some examples of such abnormalities in tRNA abundance and 

modifications, with the focus on highlighting various mechanisms that tRNA-related 

abnormalities result in complex and context-specific phenotypes. Novel therapeutic avenues 

exploiting tRNAs are also briefly discussed. 
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Perturbed tRNA regulation and expression 

Despite the relatively stable anticodon pools between different cell types, tRNA isodecoders 

show surprising context-specific expression, implicating their role outside of functional 

redundancy with other members of a given isodecoder family8,10–12. In some cases, the limited 

expression of only one or a few isodecoders in a specific cellular context prevents 

compensation of potentially deleterious tRNA dysregulation by other isodecoders. The 

abundance of a highly CNS-specific tRNA-Arg-UCU in mouse, n-Tr20 (tRNA-Arg-TCT-4–1), 

is significantly reduced in a specific genetic background with a SNP in this gene (Figure 3A)63. 

This isodecoder is one of five for this particular family but accounts for ~60% of the expression 

of tRNA-Arg-UCU in mouse brain tissue. The decreased abundance of n-Tr20 in the mutant 

background, combined with a loss-of-function GTPBP2 mutation, causes significant ribosome 

stalling at AGA codons in mouse brain tissue that cannot be resolved. This leads to eIF2a 

phosphorylation, the activation of the integrated stress response (ISR), and a global decrease 

in translation resulting in significant neurodegeneration and death within two months after birth 

(Figure 3A)63,64.  

Surprisingly, transgenic expression of any of the other isodecoders rescues the 

phenotype of n-Tr20 loss, suggesting that the abundance of individual tRNA isodecoders and 

their sequence outside of the anticodon is not as important as the overall abundance of tRNAs 

with the same anticodon64. This is in line with the reproducible observation that anticodon 

pools are stably expressed despite significant isodecoder regulation. 

This result highlights that tRNA regulation acts to fine-tune translation in a tissue-specific 

manner. Even when tRNA abundance is not perturbed, silent SNPs (sSNPs) that cause 

synonymous codon changes in mRNA may result in the use of a rare isoacceptor and have 

knock-on effects on translation and protein structure acquisition. Indeed, this phenomenon 

has been linked to aberrant protein cotranslational folding and function in a tRNA-

concentration dependent manner, relevant to cystic fibrosis in humans65. 

Conversely, changes to the abundance or function of anticodon pools can have drastic 

effects on codon-biased translation66. This phenomenon has been noticed numerous times in 

various cancers67,68. For example, overexpression of tRNA-Glu-UUC and tRNA-Arg-CCG 

leads to augmented translation of transcripts enriched in their cognate codons, driving pro-

metastatic programs in breast cancer68. Furthermore, a meta-analysis of tRNA expression 

profiles in The Cancer Genome Atlas across 31 cancer types found that, in general, 

dysregulated tRNA expression is widespread in cancer67. This was also complemented by 

increased expression of tRNA aminoacyl synthetases and modification enzymes, indicating 

that multiple steps of tRNA biosynthesis are upregulated in cancers, driving the biased 

translation of oncogenic transcripts. 
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Although there are some studies investigating the ramifications on health and disease of 

mutations in tRNA genes, mutations in these sequences are generally under very strong 

purifying selection. Interestingly, the 5’ flanking region of ~20 bp upstream of tRNA genes 

show the highest rates of sequence variation69. Little is known about the sequence 

dependence of TFIIIB binding to upstream regions, and although some evidence suggests 

that mutations in upstream regions can affect human tRNA gene expression in HeLa cells70, 

direct testing of this hypothesis has not been addressed. Perhaps variability in upstream 

regions can affect transcription, however the mechanism and potential effects of this remain 

unknown. 

 
tRNA modification abnormalities 

Nucleoside modifications in mature tRNA are required to confer multiple functions and 

structural properties to these essential molecules, from providing stability2, to enabling wobble 

pairing and modulating the decoding capacities during anticodon-codon base pairing3, and 

regulating reading frame maintenance of the ribosome during translation39,71. Therefore, it is 

Figure 3 Abnormalities in tRNA abundance or modification status affect translation and normal physiology. 
(A) Mutations in tRNA genes can lead to lowered expression, for example a mutation in n-Tr20 in B6J mice. This 
isodecoder is highly neuronal-specific and constitutes ~60% of all tRNAArgUCU expression in these tissues. Loss of 
this tRNA in a GTPBP2 loss-of-function background results in significant ribosome pauses at AGA codons, 
activation of the integrated stress response (ISR) via eIF2a phosphorylation, and neurodegeneration. Adapted 
from Kapur et al. (2020)64. 
(B) Defective tRNA modifications at position 34 of the anticodon can alter the decoding capacity of some tRNAs. 
Show are examples of uridine 34 loss (left) affecting CAA and AAA decoding resulting in toxic protein 
aggregation73–75, and how inosine 34 (I34) allows wobble decoding for C and A nucleotides in the first codon 
position (right). Adapted from Nedialkova et al. (2015) 75 and Suzuki (2021)21. 
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not surprising that some modification defects result in serious phenotypic manifestations with 

diverse mechanisms, often referred to collectively as “modopathies”21,72. 

Modification defects resulting in impediments to translation have been extensively 

studied and documented for cytosolic tRNAs. For example, loss of wobble position 34 

modifications such as 5-methoxycarbonylmethyluridine (mcm5U34) and 5-

methoxycarbonylmethyl-2-thiouridine (mcm5s2U34) have been shown to impair codon-specific 

translation, resulting in protein aggregation and proteotoxic stress (Figure 3B)73–75. 

Deficiencies in mcm5U34 are also linked to the occurrence of familial dysautonomia76, a 

genetic disorder affecting survival and development of neurons in the autonomic and sensory 

nervous system. Deficiency of conserved wybutosine (yW) derivatives at tRNA position 37, 

specifically in eukaryotic tRNA-Phe has been found in a variety of cancers77–79. Hypomodified 

tRNA-Phe induces -1 frameshifting in ribosomes causing mRNA nonsense-mediated decay 

(NMD) of transcripts80, potentially underlying the mechanism of disease. In eukaryotes, all 

eight tRNAs with an adenosine at the wobble position 34 are deaminated to produce inosine81. 

This is crucial to ensure wobble pairing with U, C or A in the third position of the codon, and 

removal of I34 modifications is not viable, highlighting the essentiality of inosine for correct 

decoding (Figure 3B)5,6. 

Some of the most notable tRNA modopathies studied so far result from defects in 

mitochondrial tRNA modifications. A set of 22 tRNA species are encoded entirely within the 

mitochondrial genome (mt-tRNAs), and are essential for the decoding and translation of the 

13 mitochondrial-encoded oxidative phosphorylation (OXPHOS) complex polypeptides, 

essential for cellular ATP production. Therefore, defects in mitochondrial protein synthesis can 

result in severe phenotypes, especially in high-energy-consuming cell types and tissues. 

Indeed, tRNA modification defects that result in perturbed function have been shown to 

result in complex phenotypic manifestations (reviewed in 82). Two of the most well-studied 

pathogenic mutations in mt-tRNAs, namely 3243A>G (within MT-TL1, encoding mt-tRNA-Leu-

UUR) and 8344A>G (within MT-TK, encoding mt-tRNA-Lys), which together account for ~85% 

of all mt-tRNA-related mitochondrial disease, both present with disrupted taurine modification 

levels at the wobble position 34 of the tRNA82,83. In the case of the 3243A>G mutation, 5-

taurinomethyluridine (tm5U) hypomodification at position 34 significantly affects this tRNAs 

ability to decode UUG codons84. Ribosome profiling experiments show reduced translation 

speed and mitoribosome accumulation at these codons85. Consequently, biosynthesis of a 

subunit of the respiratory chain complex I, ND6, is reduced in patients with the mutation86. 

This gene has the highest usage of UUG codons amongst all 13 mitochondrially encoded 

proteins. About 80% of patients with mitochondrial encephalomyopathy, lactic acidosis and 

stroke- like episodes (MELAS), a severe maternally-inherited nervous and muscular disorder, 

present with this particular mt-tRNA-Leu-UUR 3243A>G mutation87. 
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Similarly, 8344A>G in mt-tRNALys results in decreased 5-taurinomethyl-2-thiouridine 

(tm5s2U) modification at the wobble position84. However, the loss of this modification enables 

superwobbling and potential misreading of asparagine codons AAC and AAU by this lysine 

tRNA, and subsequent amino acid misincorporation88. Additionally, defective aminoacylation 

and altered abundance of the mature tRNA, along with modification defects, have all been 

shown to contribute to the strong translational defects of mitochondrial transcripts and 

manifest as myoclonus epilepsy, ragged-red fibers (MERRF) syndrome in some patients with 

the mutation89,90. 

These examples illustrate the diverse mechanisms underlying tRNA modification 

deficiency-linked disorders. The importance and pervasiveness of tRNA modifications means 

that epitranscriptomic investigation in these molecules is of increasing interest for investigators 

seeking to understand cause, effect and mechanism of tRNA modification perturbations. High-

throughput next-generation sequencing has already been applied in numerous ground-

breaking ways to globally assess modification status and abundance in RNA molecules91–93, 

however various technical challenges have so far limited sensitivity and accuracy of these 

methods94. Nevertheless, by overcoming these challenges it is foreseeable that generating 

personalized “epi-tRNAomes” may become feasible, and could act as new tools for patient-

specific diagnosis and treatment in human health and disease95. 

 
tRNAs in therapeutics 

Leveraging tRNAs for therapy has generated significant biotechnological interest recently22. 

Of particular interest has been the repurposing of suppressor tRNAs (sup-tRNAs) as treatment 

for inherited diseases, such as β-thalassemia, muscular dystrophy, Rett syndrome, and cystic 

fibrosis (Figure 4)96–99. Sup-tRNAs arise naturally in some species by mutations in tRNA 

anticodons, allowing them recognize a stop codon instead100. This can facilitate nonsense 

mutation readthrough that would otherwise be detrimental. Instead, an amino acid is 

incorporated at the premature stop codon mitigating translation termination by preventing 

release factor (RF) binding. This concept is now being utilized for the design and delivery of 

custom sup-tRNAs targeted to overcome nonsense-induced diseases in humans, which 

collectively account for up to 11% of inherited disease (Figure 4)101. 

Indeed, one study that characterized a library of all possible tRNAs capable of 

suppressing premature termination codons, called anticodon-edited tRNAs (ACE-tRNAs)97, 

has been licensed by Tevard Biosciences in its aim to design therapeutic agents for Dravet 

syndrome, among others. Dravet syndrome, a rare form of epilepsy, is sometimes caused by 

nonsense mutations in the sodium channel gene SCN1A causing premature stops102, 

implicating sup-tRNAs as prime candidates for treatment. 
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However, most-often the disease is caused by heterozygous loss-of-function mutations 

in SCN1A. For these patients, Tevard is working on using a combination of three “enhancer” 

tRNAs, specifically tailored to the codon usage of SCN1A, which are apparently able to double 

protein production from the functional copy of the gene22. This technology highlights a way in 

which tRNAs might be exogenously administered to exploit the codon optimality of genes 

involved in disease, and thereby increase protein expression from functional alleles. 

One concern with sup-tRNA therapies is the off-target readthrough of native stop codons. 

However, ribosome dynamics, RNA binding protein recognition, and genomic context at native 

stop codons seem to discourage readthrough by sup-tRNAs compared to nonsense stops 

upstream97. In other words, native stop codons, having been evolved for the specific task of 

terminating translation, might be much better targets to catalyze termination than errors that 

lead to missense stops upstream. Other challenges to these therapies include a suitable 

delivery system, however, recombinant adeno-associated virus (rAAV) systems have already 

shown promise in this regard103. Efficiently returning protein abundance to normal levels 

without overexpressing them to toxic quantities also remains a concern. Despite these 

challenges, tRNA-based therapies have seen significant recent academic and industry interest 

and have a growing compendium of research that bolsters their efficacy in the treatment of 

genetic disorders. 

Figure 4 Schematic representation of suppressor tRNA (sup-tRNA) activity in premature termination codon 
(PTC) readthrough as therapeutic targets for disease. Mutations that cause PTCs in coding transcripts result 
in premature termination to translation, production of non-functional, truncated protein products and can result in 
mRNA degradation through the nonsense-mediated decay (NMD) pathway (top). Nonsense and PTC-induced 
diseases account for ~11% of inherited human disease. Leveraging suppressor tRNAs can mitigate nonsense 
codon termination of translation and relieve disease symptoms (bottom). Anticodons of functional, aminoacylated 
tRNAs are edited to read and decode stop codons, for example UAG. This leads to PTC readthrough, amino acid 
incorporation, and functional protein products. 
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In a recent example, investigators found that disease-causing variants of glycyl-tRNA 

synthetases (GlyRS) cause the enzyme to sequester tRNA-Gly but not release it, leading to 

translation defects and Charcot-Marie-Tooth peripheral neuropathy104. Accordingly, ribosome 

pausing at cognate codons and activation of the integrated stress response was noted in motor 

neurons in mice. Strikingly, transgenic overexpression of tRNA-Gly rescued protein synthesis 

in flies and mice, and attenuated neuropathic phenotypes104.  

tRNA isodecoder expression is dynamic and cell-context specific, and therefore tRNA-

based therapies, such as those described above, can have variable efficacies depending on 

these expression profiles. A high-resolution, accurate method for generating snapshots of the 

tRNA landscape in an affected sample could certainly guide the choice for therapeutic tRNA 

targets. Isodecoders encoding the correct amino acid and expressed to the desired level to 

enable nonsense readthrough as engineered sup-tRNAs could be identified, or tRNAs with 

pathogenically low expression or availability that would benefit from exogenous tRNA 

expression or administration could be determined. 

Methods for tRNA transcriptome and modification 

profiling 
Understanding the regulation, expression, aminoacylation and modification status of tRNAs 

has proven extremely useful in discovering the basic biology and contribution of each of these 

factors to normal tRNA function and the causal links to abnormal tRNA-dependent physiology. 

As such, developing methods enabling investigators to globally query tRNA abundance and 

modification status have become a focus in the field in the last decade. However, due to their 

structure, heavily modified status, and high levels of redundancy and duplication, the process 

of developing methods for quantifying the levels of individual tRNAs in cells has been fraught 

with technical challenges. 

Initially, before next-generation sequencing (NGS) was widely accessible and affordable, 

hybridization-based microarray approaches were used to quantify cellular tRNA pools in 

bacteria and human tissues and cell lines8,9,105. This method relies the hybridization of two 

sets of fluorescently labeled tRNA extracts from different samples to a set of distinct DNA 

probes, allowing relative tRNA quantification between samples. This method poses several 

problems for accurate quantitation; firstly, a difference of at least eight nucleotides is needed 

to prevent cross-hybridization of similar tRNAs to a probe8. In eukaryotes, extensive tRNA 

gene sequence similarity means that tRNAs can differ by only one nucleotide, even between 

isoacceptors for a specific amino acid7, severely limiting the accuracy and resolution of 

hybridization-based approaches for quantitation of unique tRNA transcripts. Secondly, 
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hybridization efficiency is hampered further by pervasive Watson-Crick face nucleotide 

modifications present in all tRNA transcripts. 

Because of these limitations, focus was shifted to improving the efficiency of tRNA 

quantitation by high-throughput sequencing (tRNA-seq). On the one hand, tRNA-seq is well 

suited to tRNA quantitation; it overcomes the necessity for nonspecific probes and semi-

quantitative nature of hybridization-based techniques. Furthermore, read length produced by 

NGS approaches is limited by its chemistry to ~200nt, and while potentially limiting for other 

longer RNA species (e.g., protein-coding transcripts or long-noncoding RNA [lncRNA]), 

mature tRNA are only 70 – 90nt long. At least theoretically, this means full tRNA transcripts 

can be sequenced as individual reads by this approach, negating the requirement for 

assembling transcripts from multiple reads computationally prior to quantitation. 

 
Technical challenges to current tRNA-seq methods 

Developments in tRNA-seq methods have faced several challenges specific to the 

characteristics of tRNA molecules and their organization in eukaryotic genomes. Stable 

secondary structure and Watson-Crick modifications pose physical barriers that block RT 

(Figure 5A), resulting in short, prematurely terminated cDNA molecules with coverage bias at 

the 3’ end of tRNAs where RT is primed (Figure 5B; right). This is especially problematic 

considering different tRNA transcripts have different distributions and stoichiometries of 

modifications, resulting in differences in RT efficiency and, therefore, differences in 

quantitation accuracy among them. While, computationally, extensive tRNA sequence 

similarity and multicopy gene families in eukaryotes result in significant read alignment 

ambiguity when attempting to map sequence reads back to tRNA transcripts. These 

challenges and potential solutions are discussed in detail below. 

 

Reverse transcription and efficient cDNA synthesis 
Some significant advances have overcome impediments to generating cDNA libraries from 

tRNA to varying degrees. The enzymatic removal of some tRNA modifications in demethylase-

thermostable group II intron RT tRNA sequencing (DM-tRNA-seq)10, and AlkB-facilitated RNA 

methylation sequencing (ARM-seq)14 has been used to prevent premature termination of RT. 

E. coli AlkB is a dealkylating enzyme, which has been shown to remove some of the most 

common and conserved tRNA base methylations, such as N1-methyladenosine (m1A), often 

found at position 58 in many eukaryotic tRNAs, and N3-methylcytosine (m3C) found at position 

32 of five tRNA isoacceptors106–108. Some of the most conserved and prevalent Wastson-Crick 

face modifications in eukaryotic tRNAs are shown in Figure 5A. An engineered version of 

AlkB with an amino acid mutation, AlkB D135S, able to additionally remove N1-

methylguanosine (m1G), has been used in combination with wild-type AlkB to increase the 
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removal of RT-impeding modifications10. More recently, another AlkB mutant D135S/L118V 

has shown extended activity in removing N2,N2-dimethylguanosine (m2
2G)109. 

However, modification removal poses several concerns; although improvements have 

been made via engineered forms of AlkB, there is still significant variation in demethylase 

efficiency amongst modification types and amongst different tRNA transcripts10,109. This 

certainly leads to RT biases for transcripts with less Watson-Crick face modifications, or those 

that are better substrates for AlkB and its engineered forms. Furthermore, without a 

comparative approach requiring multiple sequencing libraries per sample (i.e., with and 

without enzyme treatment) and complex data analysis of sequence datasets110, removal of 

such modifications prohibits their analysis and quantitation in endogenous tRNA pools.  

Other approaches to relieving blocks to RT include tRNA fragmentation by partial alkaline 

hydrolysis in Hydro-tRNAseq12,111,112. This method aims to generate multiple smaller RNA 

fragments from tRNA transcripts prior to cDNA synthesis to negate effects of tRNA secondary 

structure on RT efficiency. In an alternative approach, YAMAT-seq13 and QuantM-seq11 

attempt to improve RT adapter ligation efficiency and recovery of full-length cDNA transcripts 

from intact tRNA transcripts. By exploiting the conserved single-stranded 3’-CCA ends of 

functional, mature tRNA, these methods utilize double-stranded adapters with overhangs that 

are splint-ligated to tRNA 5’ and 3’ ends simultaneously. These methods do not try to account 

for modification-induced stops to RT, and therefore either result in libraries of short reads from 

prematurely aborted cDNA synthesis, or an enrichment of lowly modified transcripts where 

premature stops to RT are less likely. 

The most promising development in tRNA library generation, specifically in optimizing 

the RT reaction, has been in the utilization of a thermostable group II intron RT (TGIRT) for 

highly processive cDNA synthesis at elevated temperatures (Figure 5B; left)113–115. Group II 

introns are a class of bacterial retroelement that propagate through a host genome by a 

method known as retrohoming116. This requires accurate synthesis of cDNA from the mobile 

intron element, which is typically highly structured and >2 kb long, requiring high fidelity and 

processivity from the RT. 

Additionally, unlike more common retroviral RTs, these enzymes were found to have 

template-switching abilities, allowing them to switch from RNA-DNA hybrid primers to new 

RNA templates, facilitating linking target RNA to an adapter amenable for sequencing without 

the need for potentially biased ligation reactions113. These features led to the use of TGIRT 

for generation of full-length cDNA from highly structured and modified tRNA with reduced 

propensity for stops during RT, subsequently shown somewhat effective in methods such as 

TGIRT-seq and DM-tRNAseq10,113,114. Despite this, the efficiency of the RT reaction with 
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TGIRT has still been shown to be relatively low and highly variable on modified, endogenous 

tRNA pools10. 

 

Modification analysis using misincorporation signatures 
The processivity of TGIRT also improved on previous attempts in investigating, predicting, and 

measuring misincorporation-inducing modifications in tRNA molecules110,117. Typically, 

modifications at the Watson-Crick face of nucleotides physically impede commonly used RTs 

of retroviral origin and result in much lower levels of misincorporation. However, increased 

processivity of novel RTs, such as TGIRT, have shown promise in increased modification 

readthrough, often resulting in significant misincorporation at modified positions (Figure 5B; 

left). 

The benefit is twofold; a larger proportion of cDNA representing full-length tRNA 

transcripts is generated, reducing the typical 3’ sequence coverage bias seen with standard 

RTs such as SuperScript III12,14 and resulting in a more representative sequencing library. 

Secondly, modifications can be identified and studied as sites showing sequence 

polymorphism, or mismatch to the reference sequence. Despite this, current methods using 

Figure 5 Challenges to tRNA reverse transcription and modification analysis. 
(A) Schematics representing common barriers to reverse transcriptases in generating cDNA including tRNA 
secondary structure, and prevalent and conserved Watson-Crick face nucleotide modifications. Several well-known 
and conserved modifications that posing significant blocks to RT are illustrated. m1G: N1-methylguanosine; m22G 
: N2,N2-dimethylguanosine; m3C: N3-methylcytosine; I: inosine; yW: wybutosine; m1A: N1-methyladenosine. 
(B) cDNA synthesis with TGIRT improves modification readthrough, resulting in reads with misincorporations at 
Watson-Crick face modified sites (left). More common retroviral RTs are less processive and are less able to 
readthrough modifications, resulting in hard stops to RT and 3’ coverage bias. 
(C) Difficulties with accurate tRNA modification calling and analysis resulting from non-templated nucleotide 
additions by RTs (black box; left) and misalignment to similar tRNA references (asterisks indicate sequence 
differences between references; right). In both cases, risk of false identification of modified sites may result from 
mismatch profiles that present as potential misincorporations. True misincorporation signatures from modified sites 
indicated with orange dot. 
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TGIRT relieve only a proportion of stops to RT from modified sites, requiring the combined 

analysis of misincorporation and RT stop frequency for modification abundance estimation110. 

RT stops may arise from multiple sources however, such as RNA structure and degradation, 

and might also represent imprecise positions of modifications along an RNA transcript. 

Enabling efficient readthrough, and removing the need for analysis of stops would significantly 

improve the accuracy of modification identity and stoichiometry analysis. 

Even with improved readthrough, leveraging misincorporations for modification analysis 

is often not as simple as searching for mismatches. Many experimental, sequencing, and read 

alignment artifacts and biases can result in false positive identification of modified sites, and 

reduced signal:noise ratios making accurate modification calling difficult (Figure 5C)117,118. For 

example, RTs are prone to non-templated nucleotide addition at cDNA 3’ ends, which can be 

falsely identified as misincorporation signatures (Figure 5C; left)119–121. An initial 

misincorporation-based map of m1A modifications in the human transcriptome found nearly 

500 putative modified sites122. However, reanalysis of this data found that ~10% of these sites 

might represent true modifications, while up to 50% were falsely identified non-templated 

additions at cDNA 3’ ends123.  

Another significant proportion of these false positives in this study likely arose from 

misalignment of reads containing misincorporations to an incorrect reference (Figure 5C; 

right). Short-read alignment algorithms that attempt to find the best positional match for a 

sequencing read in a reference sequence space can have a particularly arduous task with 

reads containing mismatches. This is complicated by the numerous sources and frequencies 

of mismatches in reads, which include; modified RNA residues that induce misincorporations 

(to varying degrees and proficiency depending on RT choice and reaction conditions), innate 

error rates of reverse transcriptases (∼1×10−4)124,125, and NGS sequencing platforms such as 

Illumina (per-base error of 1×10−2 - 1×10−3)126, to name a few. These extra sources of variation 

can be difficult to distinguish from true modification-induced mismatches. In the case of tRNAs, 

where gene redundancy and similarity, and the propensity for misalignment is high, such 

cases often present with highly homozygous mismatches at unexpected positions along tRNA 

genes (Figure 5C; right) 

Despite this, progress has been made in identifying sources of bias and error, and in 

developing potential solutions using computational methods for RNA modification detection in 

sequencing datasets118,127,128. For example, it is now known that modification-induced 

misincorporations are rarely characterized by the misincorporation of only one other 

nucleotide, with the exception of inosine, which is always read as guanosine (G) during 

sequencing. Instead, complex signatures are frequently seen that may be modification, 

sequence-context, and reaction condition-specific. One method, high-throughput annotation 

of modified ribonucleotides (HAMR)129, uses a binomial test for significance on mismatch 
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frequencies at individual positions of annotated RNAs using aligned RNA-seq data. HAMR 

tests a conservative null hypothesis that only the true genotype can be biallelic. This means 

that sites that look like heterozygous and homozygous SNPs are excluded from being called 

as significant, and only misincorporations present as composite signatures of multiple 

misincoporated nucleotides are considered129. 

tRNA modification analysis, in comparison to RNA modification analysis in other RNA 

types, is especially complicated for two primary reasons: 1) low sequence diversity and high 

duplication rates amongst tRNA genes7 result in significant difficulties in unambiguous 

alignment, increasing misalignment and spurious mismatch calling. 2) As the most modified 

RNA in any cell, expected misincorporations at Watson-Crick face modifications range 

between 0 and ~7 per tRNA molecule in human, for example108. This requires significantly 

elevated fidelity and processivity during RT, and additional care in computational analysis and 

interpretation, which, for the most part have been lacking so far117. These factors bolster the 

requirement for optimized sequencing library preparation protocols, and dedicated 

computational tools and algorithms tailored to the processing and analysis of complex tRNA 

sequencing datasets. 

 
Computational challenges to tRNA sequencing data analysis 

Advances in tRNA-seq methodology have primarily focused on the biochemistry associated 

with producing bias-free, representative cDNA libraries from purified tRNA pools for 

sequencing purposes. Very little emphasis has been placed on the concurrent development 

of appropriate computational tools and statistical frameworks needed to extract estimates of 

abundance, modification, charging, and general metrics of library quality control (QC) from the 

resulting datasets, while addressing the particularities of tRNA-seq data. 

This oversight in algorithm and computational method development has resulted in the 

use of more routine analyses of tRNA sequencing datasets, such as those used for 

transcriptome analysis10,11. These are prone to biases when analyzing tRNA-seq data that are 

not as great a concern for other datasets, particularly with regards to alignment using popular 

short-read alignment algorithms (Figure 6). Two of the major unaddressed concerns for tRNA-

seq data analysis include; 1) generating appropriate sequence references that minimize 

redundancy and ambiguity in read alignment while maintaining resolution for tRNA transcripts, 

and 2) handling reads with numerous misincorporations at modified tRNA sites (and terminally 

added non-templated nucleotides from RT activity) without resulting in significant data loss.  

 

tRNA reference choice for alignment 
The choice of reference sequences for sequencing data alignment can have pronounced 

effects on the accuracy and sensitivity of the aligner, the proportion of usable or “mappable” 
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data, and the resolution of quantitation130. Aligning reads to the full set of predicted tRNA 

genes would ideally offer the best resolution and most informative results. However, in 

eukaryotes, redundancy of tRNA gene sequences at conserved structural elements, gene 

duplication, low sequence diversity within and between isodecoder families (Figure 6A), and 

significant processing of pre-tRNA transcripts (Figure 2A) all contribute to the difficulty 

associated with unambiguously aligning reads derived from mature tRNA to one locus of 

origin, most often resulting in multi-mapping reads130,131. 

Of course, the biological question and library generation protocol must be considered 

when deciding on an appropriate reference, and this should guide the choice. For example, 

limiting the reference to only mature, intronless tRNA sequences lacking 5’ leader and 3’ trailer 

sequences can be extremely beneficial for accuracy and speed, but will not be informative if 

one wishes to investigate pre-tRNAs. In this case, genomic tRNA sequences with flanking 

sequence, or even a full genome reference would be more appropriate. Additionally, 

eukaryotic tRNAs are appended with the conserved 3’-CCA tail post-transcriptionally while 

some archaeal and most eubacterial CCA ends are genomically encoded132, a factor that 

needs to be considered when designing a reference to ensure efficient alignment at tRNA 3’ 

ends. 

Potentially the most advantageous approach to reduce alignment ambiguity and multi-

mapping has been through tRNA clustering, wherein similar tRNA sequences are collapsed 

and used as alignment references129–131. This is particularly effective in reducing redundancy 

in complex eukaryotic genomes where whole-genome duplication, tRNA gene duplication, and 

tRNA pseudogenization are more pronounced. For example, in human, the reference genome 

hg38 includes 620 predicted tRNA genes7. Collapsing identical mature tRNA transcripts 

results in 424 unique sequences, of which 72 represent duplicate tRNAs with tRNA-Asp-GTC-

2 being the largest with 11 loci throughout the genome producing identical mature tRNAs. In 

zebrafish, this redundancy is compounded, potentially by an extra whole-genome duplication 

event in fish relative to other vertebrates133, resulting in 8,676 predicted high-confidence tRNA 

genes, excluding ~12,000 potential pseudogenes and low-scoring repetitive elements7. These 

8,676 only produce 3,180 unique tRNA transcripts. An astounding 955 of these represent 

duplicated sequences (Figure 6A). 

Although collapsing identical tRNAs has become a popular strategy10,11,14,110,130, it is 

often still not enough to reduce multimapping or misalignment between highly similar tRNA 

sequences. In human, a tRNA-Ser-IGA isodecoder (containing an inosine at position 34; I34) 

and a tRNA-Ser-UGA isodecoder only differ by one nucleotide at position 34 in the anticodon 

(Figure 6B). Even though these tRNAs decode different codons, their sequence is similar 

enough to easily allow reads from one to be misaligned to the other, especially because 

mismatch tolerance offered by short read aligners is often position-agnostic. More lenient  
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Figure 6 Eukaryotic tRNA gene organization and similarity, and implications for computational analysis 
of tRNA-seq data. 
(A) Predicted tRNA gene sets in Homo sapiens and Danio rerio and their organization into unique transcript-
producing loci, and anticodon families. Numbers given in parentheses are genes which produce duplicate tRNA 
transcripts. 
(B) Sequence similarity between the four isodecoders of Ser-TGA and Ser-AGA in Homo sapiens. Only one 
nucleotide difference exists between two of the isodecoders from different anticodon families which can cause 
misalignment and incorrect abundance estimation. Orange dots: misincorporations; Blue text: mismatches to 
other isodecoders. 
(C) Two main considerations for computational analysis of tRNA-seq data include reference choice (left) 
pertaining to clustering parameters of tRNA genes, and alignment sensitivity (right) with regards to handling of 
mismatches in tRNA reads.  
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clustering, with lower sequence identity thresholds perform much better, but suffer from 

clustering tRNAs with different anticodons together (for instance, the Ser-IGA and Ser-UGA  

sequences discussed above), requiring complex analysis of cross-mapping for predictions of 

anticodon-level quantitation129,130. So far, no method provides efficient clustering of tRNA 

genes with the ability to restore transcript-level resolution from cluster-aligned sequencing 

data. Such a method would combine reduced alignment ambiguity with transcript-level 

resolution of tRNA abundance. 

 

Misincorporation-sensitive alignment 
Given the promise of RTs such as TGIRT to read through and misincorporate at Watson-Crick 

face modified residues, it is surprising that no method so far attempts to account for these 

position-specific mismatches that ultimately hinder alignment. Most popular short-read 

aligners, such as Bowtie134, Bowtie 2135, and even newer, more robust algorithms such as 

STAR136, often only allow a specific number of mismatches per read independent of their 

position. Furthermore, this mismatch tolerance is designed to account for low-frequency errors 

introduced during cDNA synthesis, PCR, or sequencing, and natural heterogeneity in genomic 

sequence among individuals. This tolerance is therefore unsuited for the additional and 

prevalent level of misincorporations introduced at modified sites (Figure 6C).  

Since misincorporations and true sequence diversity between tRNAs are both treated 

indiscriminately as mismatches during alignment, simply increasing mismatch tolerance to 

account for misincorporations is also not suitable. In this scenario, mismatches between 

different tRNAs that should not be tolerated might be allowed, increasing misalignment. This 

problem could be further compounded in the scenario of clustered tRNA genes where 

members of a cluster are represented by a parent or as a consensus sequence (Figure 
6C)129,130. During alignment to this representative sequence, additional mismatches are 

expected where members of the cluster differ. These should also be specifically tolerated, in 

combination with misincorporations, but should again not lead to misalignment due to high 

mismatch tolerance outside of these sites. 

Lastly, RTs are well-known to introduce non-templated nucleotide additions at read 

ends119–121. During alignment, these should also be considered and appropriately handled. In 

particular, these might be soft-clipped during alignment, such that they do not count towards 

the total mismatch tolerance or interfere with modification analysis. 

Accounting for these sources of variation separately from misincorporations at 

modified sites is crucial in retaining qualitative and quantitative information about modifications 

for their analysis downstream, and to permit correct handling of alignments to clustered 

references. It would also allow separate control of mismatch tolerance to minimize 

multimapping and misalignment. However, no method to date attempts to regulate alignment 
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at misincorporation sites by implementing novel alignment algorithms, or repurposing one 

better suited to dynamically control mismatch tolerance. Furthermore, this has certainly not 

been considered within the context of clustered references and the challenges associated with 

the resulting alignment information.

Outline of this thesis 
Global analysis and quantitation of eukaryotic tRNA pools by sequencing remains a challenge, 

both biochemically during library construction, and with regards to computational methods and 

tools for the analysis of the resulting datasets. Progress in such methods, however, is crucial 

for understanding multiple facets of tRNA biology that have so far been intractable and 

hindered by inaccurate and biased methodology. Open questions, whose investigation can be 

aided by improved quantitation methods, include; evaluating the extent of tRNA transcript, 

anticodon pool, and modification regulation between different cell types, tissues, or disease 

contexts; understanding the functional and biological relevance of regulation at each of these 

levels; investigating how such changes globally impact translation and proteostasis; clarifying 

the mechanisms underlying tRNA-related pathologies, and how treatment and therapy can be 

targeted and tailored for the best outcome. 

This thesis focuses specifically on addressing outstanding hurdles to tRNA-seq 

methodology through the development of novel methods targeted specifically at overcoming 

these issues. Furthermore, we aim to provide useful, open-source resources for such 

workflows in the form of a user-friendly computational tool with documentation, a detailed step-

by-step protocol, troubleshooting guide and in-depth updates and enhancements to the 

computational package, and active community support. With respect to computational 

packages for tRNA-seq, such resource availability, transparency, and community engagement 

has not been implemented so far, but offers opportunities for enhancements, custom 

functionality, and problem solving through interaction with users and other experts in the field.  

Chapter 2 focusses on the development of the modification-induced misincorporation 

tRNA sequencing (mim-tRNAseq) method. Introduced here are crucial optimizations to many 

steps in library generation, most importantly the reverse transcription reaction with TGIRT. An 

accompanying computational package is presented, which combines features of tRNA 

clustering, misincorporation-sensitive alignment, and a novel deconvolution algorithm able to 

restore transcript-level resolution to cluster-aligned reads. Comparisons to other available 

methods provide evidence supporting the improved accuracy and sensitivity of mim-tRNAseq, 

while metrics for alignment and coverage show superior modification readthrough and 

alignment sensitivity. Investigations of differential transcript abundance highlight important 

tRNA regulation in multicellular eukaryotes. Furthermore, functionality for detailed modification 
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analysis is presented, wherein quantitative rigor is shown using yeast modification-deficient 

strains. Strikingly, these analyses highlight the interdependence of modifications at distinct 

sites, hinting at the complexity of modification pathways for tRNA transcripts. 

Chapter 3 details a step-by-step protocol for the use of mim-tRNAseq, from RNA 

isolation, to data analysis. Furthermore, expected analysis outcomes are covered, which 

describe various data outputs and visualizations and how to utilize these for optimization and 

quality control. Since the initial release of mim-tRNAseq key updates to cluster deconvolution 

have been implemented and are described here. Lastly, typical problems and errors with their 

matching solutions are described to further improve accessibility of the method. 

Chapter 4 summarizes the work in this thesis and provides a general discussion on the 

context, impact, and future prospects of the work.
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Overview 
tRNA abundance and modification status is critical for regulating efficient mRNA decoding and 

ensuring efficient protein synthesis. Defects and perturbations to these properties have been 

linked to cancer invasion, neurodevelopmental disorders, and problems with cellular 

differentiation. Surprisingly, defects in tRNA biogenesis and regulation show heterogeneity in 

tissue vulnerability, implicating the composition of tRNA pools in diverse cell types in the 

maintenance of proteome integrity. However, investigations into tRNA regulation and 

modification status, and their biological significance, have been hindered by technical 

limitations to global quantitation methods. Extensive modifications on the Watson-Crick face 

of many tRNA residues and their secondary structure act as physical barriers to reverse 

transcription (RT), which limits the accuracy of quantitation by high-throughput sequencing 

methods, while gene duplication and sequence similarity complicates computational analysis. 

To overcome these hurdles, we developed modification-induced misincorporation tRNA 

sequencing (mim-tRNAseq), which combines an optimized workflow for library generation 

from cellular tRNA, and a computational package for the analysis of the resulting data. The 

library generation protocol facilitates extensive modification readthrough at common Watson-

Crick face modifications that pose as blocks to RT. This results in a majority of reads 

representing full-length tRNA transcripts, eliminating much of the coverage bias present in 

other methods. 

The computational analysis pipeline introduces multiple novel algorithms for the accurate 

alignment of tRNA reads, including adjustable tRNA clustering, misincorporation-sensitive 

alignment, and read deconvolution that restores transcript-level resolution to quantitation and 

modification analysis. Moreover, the package allows easy customization of many parameters, 

allowing users to tailor the analysis to their organism of interest and their specific dataset, and 

facilitates the “one-click” analysis of tRNA coverage, abundance, charging fractions, and 

differential expression and modification status. 

We show the efficacy of mim-tRNAseq in yeast, fly, and human cells and show the 

improvements of the method by extensive comparison to DM-tRNAseq, hydro-tRNAseq, and 

QuantM-tRNAseq. We demonstrate the accuracy and sensitivity of mim-tRNAseq to detect 

differences in tRNA transcript abundance, modification identity and stoichiometry, and 

differences in charging. Distinct misincorporation signatures and near-perfect linear 

regression in calibration curves of expected versus observed modification stoichiometry 

further bolster the efficacy of the modification detection and analysis pipeline of mim-tRNAseq. 

Using mim-tRNAseq to investigate dynamics in eukaryotic tRNA pools we find:  

i) a dramatic heterogeneity of tRNA pools among three human cell lines (K562, 

HEK293T, and hiPSC); 
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ii) large differences in modification stoichiometry among individual tRNAs from four 

eukaryotic species;  

iii) a surprising interdependence of modifications at distinct sites within the same 

tRNA molecule. 

 

Contribution: With advice and feedback from Danny Nedialkova, I conceptualised and 

implemented all computational analyses and workflows, including the design, programming, 

and maintenance of the mim-tRNAseq package. Data analysis and visualisation was 

performed jointly by myself and Danny Nedialkova, as was writing of the first draft of the 

manuscript. All subsequent reviews and edits to the manuscript were jointly shared between 

all three authors.  
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Abstract  
Measurements of cellular tRNA abundance are hampered by pervasive blocks to cDNA 

synthesis at modified nucleosides and the extensive similarity among tRNA genes. We 

overcome these limitations with modification-induced misincorporation tRNA sequencing 

(mim-tRNAseq), which combines a workflow for full-length cDNA library construction from 

endogenously modified tRNA with a comprehensive and user-friendly computational analysis 

toolkit. Our method accurately captures tRNA abundance and modification status in yeast, fly, 

and human cells, and is applicable to any organism with a known genome. We applied mim-

tRNAseq to discover a dramatic heterogeneity of tRNA isodecoder pools among diverse 

human cell lines and a surprising interdependence of modifications at distinct sites within the 

same tRNA transcript.  
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Introduction 
Transfer RNAs (tRNAs) are short, abundant molecules required for translating genetic 

information into protein sequence. The composition of cellular tRNA pools is critical for efficient 

mRNA decoding and proteome integrity. tRNA expression is dynamically regulated in different 

tissues and during development1–4, and defective tRNA biogenesis is linked to neurological 

disorders and cancer5. 

Nevertheless, the regulation of tRNA levels and its physiological significance remain 

under-appreciated due to a lack of accurate, high-resolution methods for tRNA quantitation. A 

major challenge is posed by the stable structure and pervasive Watson-Crick face 

modifications, which block reverse transcriptase (RT)6. Library generation workflows without 

a strategy for overcoming RT blocks yield mostly short reads due to premature RT stops at 

modified sites, as for instance in QuantM-tRNAseq7. Hybridization-based approaches can 

circumvent the need for cDNA synthesis, but they can only distinguish tRNAs differing by at 

least eight nucleotides1. This limitation is problematic given the extensive sequence similarity 

among tRNA transcripts, which can differ by a single nucleotide even if they read different 

codons8. Strategies to overcome structure- and modification-induced RT barriers have 

included tRNA fragmentation9–11, the use of a thermostable template-switching RT in 

thermostable group II intron RTsequencing (TGIRT-seq and DM-tRNAseq)12–14, and 

enzymatic removal of some base methylations in AlkB-facilitated RNA methylation sequencing 

(ARM-seq) and DM-tRNAseq14,15. 

While these methods have improved tRNA representation in sequencing libraries, 

several limitations remain. First, all of these methods relieve only a fraction of RT blocks, which 

can bias recovery towards tRNA subsets with few modified sites or those that are better 

substrates for demethylation in vitro. Second, removing modifications eliminates information 

about their presence and stoichiometry, which could be inferred from signatures of RT stops 

and misincorporations6,12–14,16–21. RNA modification profiling based solely on misincorporation 

signatures would be advantageous, as RT stops can also arise from RNA degradation or 

structure. Conditions that enable readthrough of Watson-Crick face modified sites while 

abrogating stops, however, have not been described for any RT so far22. A variant of the HIV-

1 RT with improved readthrough of N1-methyladenosine (m1A) was recently derived by protein 

evolution23, but whether it can also overcome any of the other types of RT-blocking tRNA 

modifications is unknown.  

The computational analysis of tRNA sequencing data also presents significant 

challenges that are often overlooked. The number of predicted tRNA anticodon families in 

different genomes ranges from 33 in M. hominis to 57 in humans, with many tRNAs encoded 
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by multiple gene copies. In eukaryotes, there is also considerable sequence variation among 

tRNAs with identical anticodons, which becomes more pronounced with increasing organismal 

complexity24. While the 41 tRNA anticodon families in budding yeast comprise 54 distinct tRNA 

transcripts, ~400 unique tRNA molecules can be potentially produced in human cells8. Some 

can have tissue-specific functions even in the presence of closely related isodecoders (tRNAs 

that share an anticodon but differ in sequence elsewhere)2.  

The exceptional degree of tRNA sequence similarity can undermine alignment accuracy, 

particularly for short reads resulting from premature RT stops7 or tRNA fragmentation9,10. The 

problem is compounded by multiple mismatches between tRNA-derived reads and the 

genomic reference that arise from RT misincorporation during modification readthrough. 

Current alignment approaches allow mismatches at any position of a read7,9,10,12–14,25, which 

can decrease mapping accuracy for nearly identical tRNAs. The total number of mismatches 

is also limited in some approaches, which can eliminate reads from highly modified tRNAs. 

Computational tool choice can thus substantially impact measurements of tRNA abundance 

and modification.  

Here, we present a novel workflow that overcomes the experimental and computational 

hurdles to quantitative tRNA profiling through modification-induced misincorporation tRNA 

sequencing (mim-tRNAseq). We combine a sensitive method for cDNA library construction 

from endogenously modified tRNAs with a new computational framework for read alignment, 

data analysis and visualization. By identifying conditions that enable efficient RT readthrough 

of modified sites, we achieve uniform sequence coverage of tRNA pools from yeast, fly, and 

human cells while retaining modification signatures. In parallel, we developed a 

comprehensive and user-friendly computational toolkit, which yields measurements of tRNA 

abundance, charging fractions, and modification profiles with unprecedented accuracy and 

resolution. mim-tRNAseq identified a wide variation in tRNA isodecoder abundance among 

different human cell lines and an interdependence among tRNA modifications at distinct sites. 

As our workflow is sensitive, robust, and applicable to any organism with a known genome, 

we anticipate it will help shed new light on previously intractable aspects of tRNA biology.

Design 
Efficient sequencing library generation from native eukaryotic tRNA pools 

To develop a method for high-resolution tRNA quantitation, we focused on improving the 

efficiency of full-length cDNA synthesis from endogenously modified tRNAs by TGIRT. This 

enzyme can attach adapter sequences to RNA by template switching26, which circumvents 

potential hindrances to 3’ adapter ligation and RT posed by tRNA structure12–14. TGIRT can 

also read through a subset of Watson-Crick face modifications more efficiently than other 
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commercial RTs18, albeit with reduced fidelity12–14. Despite these advantages, RT stops at 

modified sites in tRNA are still pervasive in TGIRT-mediated reactions14,16 and cDNA yield is 

extremely low14,27.  

As TGIRT is active in a wide range of conditions26, we asked whether its efficiency on 

tRNA templates can be further improved. To test this, we first purified tRNA pools from S. 

cerevisiae and human K562 cells by gel size selection of 60-100 nt RNAs from total RNA. We 

then used these, along with a synthetic unmodified E. coli tRNA-Lys-UUU, in template-

switching TGIRT reactions. The cDNA yield from all templates was minimal under conditions 

previously used for tRNA sequencing (450 mM salt, 60oC)12–14, but dramatically improved at 

lower temperatures and salt concentration (Figure 1A). While a considerable fraction of 

cDNAs we obtained were full-length, some RT stops still occurred, and larger products 

potentially derived from two tRNA molecules linked by template switching were also present 

(Figure 1A). To circumvent these issues and the known sequence bias of TGIRT during 

template switching28, we introduced DNA adapters at the 3’ end of tRNA with T4 RNA ligase 

Figure 1 An optimized workflow for full-length cDNA library construction from eukaryotic tRNA pools. 
(A) Schematic of template-switching TGIRT reactions primed by an RNA/DNA duplex with a single-nucleotide 3’ 
overhang and a gel image of cDNA products from endogenously modified tRNA pools from S. cerevisiae (Sc), 
K562 cells (Hs) or a synthetic unmodified tRNA (Syn) at different reaction temperatures and salt concentration. 
Red: reaction conditions previously used for tRNA library construction; asterisks: premature stops to cDNA 
synthesis; hash: potential products from end-to-end linkage of tRNAs. 
(B) Schematic of the mim-tRNAseq library generation workflow. Top gel image: 3’ adapter ligation reactions with 
four barcoded adapters. Ligation efficiency was measured by normalizing input tRNA band intensity to that in 
reactions where Rnl2trKQ was omitted. Bottom gel image: comparison of cDNA yield in short (1 h) or extended (16 
h) primer-dependent TGIRT RT on a mix of adapter-ligated tRNA pools from S. cerevisiae and human K562 and 
HEK293T cells. See also Figure S1 and Methods. 



Chapter 2 Design  

 48 

2. We reasoned that the stable structure of mature tRNAs would not pose a challenge, as their 

3’ ends contain the stretch of at least two unpaired nucleotides that is required for efficient 3’ 

adapter ligation29. To further minimize potential bias and enable sample pooling prior to RT, 

we designed four barcoded adapters with limited potential to co-fold with tRNA, and confirmed 

they can be ligated to size-selected yeast tRNA pools with 89% - 95% efficiency (Figure 1B). 

Pooled adapter-containing tRNA samples were then subjected to primer-dependent RT with 

TGIRT in a low-salt buffer at 42oC. Strikingly, we found that extending the reaction time 

eliminated nearly all premature RT stops on endogenously modified yeast and human tRNAs 

(Figure 1B) without compromising template integrity (Figure S1A). The primer for cDNA 

synthesis contained a 5’ RN dinucleotide to ensure efficient cDNA circularization30,31 prior to 

PCR amplification with KAPA HiFi Polymerase, which exhibits minimal bias for fragment 

length or GC content32. This optimization enabled us to construct Illumina sequencing libraries 

starting from as little as 50 ng of endogenously modified tRNA with only five to six PCR cycles, 

minimizing sample input requirements and amplification bias.  

 
A comprehensive computational framework for tRNA sequencing data analysis 

We reasoned that the increase in full-length cDNA reads would reduce alignment ambiguity. 

However, given TGIRT’s low fidelity at modified sites, we expected many tRNA-derived reads 

to contain multiple mismatches to the reference genome. Another source of mismatches are 

non-templated nucleotides added to 3’ cDNA ends by TGIRT and other RTs26,33. Such read 

extensions are penalized by most algorithms, but can be recognized and dynamically 

processed (“soft-clipped”) by some. We therefore asked how two short-read aligners 

commonly used for tRNA analysis – Bowtie34 and Bowtie 235 - would perform on a tRNA 

sequencing dataset from human HEK293T cells obtained with our improved library 

construction protocol (Figure 1B).  

We first generated a non-redundant reference of 420 mature tRNA transcripts from 596 

curated nuclear- and mitochondrial-encoded tRNA genes retrieved from GtRNAdb and 

mitotRNAdb8,36 (Figure 2A and Methods). Alignment was performed with Bowtie or Bowtie 2 

with parameters previously used for tRNA sequencing analysis12–16. Bowtie end-to-end 

alignment allows a maximum of three mismatches to the reference at any position. Its inability 

to distinguish modification-induced misincorporations from other mismatches can lead to data 

loss for highly modified tRNAs, or misalignment for highly similar tRNAs. Indeed, only 25% of 

reads from our HEK293T tRNA library aligned with Bowtie, with a third of those mapping to 

multiple tRNA references (Figure 2A). Trimming a fixed number of nucleotides from 5’ read 

ends prior to alignment, which can remove non-templated nucleotides, expectedly improved 

mapping rates (Figure S1B). The variable length of non-templated additions, however, makes 



Chapter 2 Design  

 49 

such a trimming approach imprecise, and many trimmed reads still failed to align or were multi-

mapped (Figure S1B).  

In contrast, Bowtie 2’s lack of mismatch restrictions and ability to soft-clip read ends 

make it seem more suited for tRNA read mapping. High mismatch tolerance, however, 

compounds the problem of misalignment: while Bowtie 2 increased alignment rates of our 

HEK293T-derived dataset to 82%, most mapped reads (85%) could not be assigned to a 

single reference (Figure 2A). Multi-mapping rates were similarly high when human QuantM-

tRNAseq data were aligned using Bowtie 2 with the published settings7 (85%, Figure S1C). 

These high rates of data loss indicate that standard read alignment approaches are poorly 

suited to the complexity of tRNA sequencing data, with consequences for the accuracy of all 

downstream analyses.  

Given these limitations, we reasoned that an accurate tRNA read analysis workflow 

requires solutions to two main challenges: alignment bias against reads with modification-

induced misincorporations, and multi-mapping of reads from nearly identical tRNAs. To tackle 

Figure 2 The mim-tRNAseq computational pipeline: a comprehensive framework for tRNA sequencing data 
analysis.  
(A) Bowtie and Bowtie 2 alignment strategies and mapping statistics for a tRNA library from HEK293T cells 
constructed with the mim-tRNAseq workflow (n = 1). 
(B) Outline of the mim-tRNAseq computational pipeline. 
(C) Alignment statistics of HEK293T data (as in (A); n =1) using the mim-tRNAseq pipeline. 
(D) Uniquely aligned read proportions for inosine 34 (I34) and uridine 34 (U34)-containing Ser and Pro tRNA 
isoacceptors using the three alignment strategies on a HEK293T dataset. 
(E) Distribution of uniquely aligned reads among tRNA isotypes in published datasets and mim-tRNAseq from 
HEK293-derived cell lines (hydro-tRNAseq and QuantM-tRNAseq: HEK293 T-Rex Flp-IN; DM-tRNAseq control or 
AlkB-treated (+AlkB) and mim-tRNAseq library construction: HEK293T). Proportions were obtained from published 
counts per tRNA (“publ”) or after re-analysis of the datasets with the mim-tRNAseq pipeline (“new”). tRNA families 
that carry the same amino acid (isotypes) are sorted by the number of RT barriers annotated in MODOMICS 
(decreasing from top to bottom; greyscale: isotypes without MODOMICS annotation). See also Figure S1 and 
Methods. 
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the first issue, we took advantage of the comprehensive annotation of tRNA modifications in 

MODOMICS37, and utilized this data to enable position-specific mismatch tolerance during 

alignment (Figure 2B top panel). To achieve this, we chose GSNAP, an aligner designed for 

detecting complex variants in sequencing reads38. Unlike most other algorithms, GSNAP 

considers alignments to a reference and an alternate allele equally in SNP-tolerant alignment 

mode while also effectively soft-clipping read ends. To address multi-mapping, we devised a 

strategy to cluster reference sequences by a sequence identity (ID) threshold. Given that 

many reads still map to multiple references with the commonly used strategy of clustering only 

completely identical tRNA genes14,16,25 (ID=1, Figure 2A), we reasoned that alignment 

ambiguity could be decreased by lowering the sequence ID threshold. To maintain isoacceptor 

resolution, we chose to only cluster tRNA transcripts that share an anticodon regardless of 

sequence ID.  

Based on these premises, we developed a new computational workflow to suit the 

intricacies of tRNA sequencing data (Figure 2B and Methods). To generate an alignment 

reference, mature tRNA transcript sequences are matched to MODOMICS to index all known 

modified sites, and clustered by anticodon according to sequence ID. Reads are aligned to 

the resulting indexed reference using GSNAP in SNP-tolerant mode. Unannotated potentially 

modified sites are detected by a mismatch rate of >10% and included in an updated index, 

followed by re-alignment of all reads with a more stringent tolerance to mismatches outside of 

modified sites to further boost alignment accuracy. To restore single-transcript resolution for 

subsequent analyses, we developed a deconvolution algorithm that assigns cluster-aligned 

reads to unique tRNA species (Figure 2B middle panel and Methods). For this, each cluster 

is assessed for single-nucleotide differences that distinguish unique tRNA sequences, based 

on which each read is separated from the cluster “parent” and assigned to an individual 

transcript. Analysis of coverage, 3’ CCA, differential tRNA abundance, and modification 

profiling are then performed after read deconvolution (Figure 2B bottom panel). The entire 

computational framework for tRNA read alignment, analysis, and visualization is packaged in 

an open-source tool with a command-line interface and a broad set of customizable 

parameters.  

This computational workflow dramatically improved both the efficiency and accuracy of 

tRNA read alignment. Both clustering and SNP tolerance at modified sites prevented data loss 

for defined tRNA subsets. A cluster ID of 0.95 maximized unique transcript resolution and 

minimized multi-mapping for human tRNAs (Figure S1D), yielding 86% uniquely mapped and 

only 2.5% ambiguously aligned reads (Figure 2C). Multi-mapping rates were five-fold higher 

when only completely identical tRNA transcripts were clustered, resulting in data loss for 

selected tRNAs (e.g. tRNA-Asn-GTT-2 and tRNA-Pro-AGG-1, Figure S1D,E). Aligning 

without SNP tolerance had similar effects, particularly for transcripts with inosine at position 
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34 (I34), which is encoded as an A but yields a G in cDNA libraries. The number of reads 

mapping to tRNA-Val-AAC, for example, increased by 300-fold in SNP-tolerant mode, and 

virtually all of these contained a G34 (Figure S1F,G). This high mismatch rate at I34 also 

presented obvious challenges for Bowtie and Bowtie 2. Almost no reads mapped to the I34- 

containing tRNA-Ser-AGA and tRNA-Pro-AGG with these algorithms, while many were 

assigned to tRNA-Ser-UGA and tRNA-Pro-UGG instead (Figure 2D). The same dramatic 

under-representation of tRNA-Ser-AGA and tRNA-Pro-AGG was evident in published counts 

for QuantM-tRNAseq libraries, which were generated by Bowtie 2 local alignment (Figure 
S1H). By contrast, our computational workflow yielded a more balanced representation of 

these four tRNA species for both mim-tRNAseq (Figure 2D) and QuantM-tRNAseq libraries 

(Figure S1H). The choice of read alignment parameters can thus yield very different tRNA 

abundance estimates 

Results 
The mim-tRNAseq workflow alleviates tRNA sequencing bias  

To benchmark our workflow, we used mim-tRNAseq to analyze HEK293T tRNAs and 

compared our results to those published for the same cell type with DM-tRNAseq14, and from 

the closely related HEK293 T-Rex Flp-IN line39 obtained with hydro-tRNAseq10 or QuantM-

tRNAseq7. To distinguish experimental from computational differences, we also re-analyzed 

the published datasets using our computational pipeline (Figure 2B). Reads from tRNA 

isotypes with a single known barrier to RT37 were substantially overrepresented in DM-

tRNAseq (tRNA-Val, 19%-21%) and hydro-tRNAseq (tRNA-Gly, 30%) compared to our 

dataset (~6%). In QuantM-tRNA-seq, tRNA-Arg comprised 16% of published tRNA counts 

versus 3.5% in hydro-tRNAseq, 7–9% in DM-tRNAseq, and 9% in our dataset. This isotype 

over-representation persisted regardless of analysis method (Figure 2E; “publ” vs “new”), 

suggesting it originated during library construction. By contrast, tRNA-Tyr, which has five 

known RT-blocking modifications, comprised ~4% of mapped reads in our dataset versus only 

1% for published hydro-tRNAseq and DM-tRNAseq counts, and 0.3% for QuantM-tRNAseq. 

This under-representation was largely relieved when DM-tRNAseq and QuantM-tRNAseq 

datasets were re-analyzed with our computational pipeline (Figure 2E). Thus, mim-tRNAseq 

recovers highly modified tRNAs more efficiently than current methods through a combination 

of advances in library construction and data analysis. 

 
mim-tRNAseq improves tRNA coverage and abundance estimates 

We extended our analysis to single-cell and multicellular eukaryotes by preparing mim-

tRNAseq libraries from exponentially growing S. cerevisiae and S. pombe, as well as D. 
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melanogaster BG3-c2 cells and human induced pluripotent stem cells (hiPSC) with a normal 

karyotype. We determined the optimal cluster ID threshold as 0.90 for budding yeast and 0.95 

for fission yeast, Drosophila, and human tRNA pools (Figure S1D and S2A). These settings 

yielded between 85% and 91% of uniquely mapped reads (Figure 3A), with a median of 65% 

- 83% full-length ones (Figure 3B, C). By contrast, unique alignment rates were lower for 

datasets from DM-tRNAseq, QuantM-tRNAseq, and for libraries we generated with the 

standard TGIRT protocol (Figure S2B). tRNA coverage in those datasets also had substantial 

3’ end bias, consistent with RT stops at modified sites (Figure S2, C-E). Accordingly, unique 

tRNA transcripts were represented by a median of < 11% and 6% full-length reads in DM-

tRNAseq and QuantM-tRNAseq, respectively (Figure S2, F-H).  

Most reads in mim-tRNAseq datasets mapped to cytosolic tRNA, with mitochondrial 

tRNA fractions ranging from 0.5% in budding yeast to 3% in hiPSC (Figure S2I). Importantly, 

nearly all mapped reads (>96%) spanned the post-transcriptionally added 3’ CCA stretch 

(Figure S3A-D), indicating they originate from mature tRNA. This was not due to bias towards 

A-ending RNA species, as our workflow accurately captured the 3:1 ratio of two synthetic E. 

coli tRNA-Lys-UUU tRNAs with either 3’-CCA or 3’-CC spiked in prior to library construction. 

cDNA circularization also did not introduce appreciable length bias, since tRNA coverage after 

Figure 3 mim-tRNAseq improves quantitative analysis of tRNA pools in cells from diverse eukaryotes. 
(A) Alignment statistics for mim-tRNAseq datasets from the indicated cell types. Bars and labels indicate average 
values, dots show individual sample values (n = 2). 
(B) Metagene analysis of scaled sequence coverage across nuclear-encoded tRNA isotypes ordered per sample 
by differences between 3' and 5’ coverage (decreasing order from top to bottom; n = 1). Y-axis values normalized 
to the second-to-last bin from the 3’ end. Each x-axis bin represents 4% of tRNA length. Indicated are major known 
barriers to RT. 
(C) Box plots of full-length fraction per tRNA transcript in datasets from (B) (center line and label, median; box 
limits, upper and lower quartiles; whiskers, 1.5x interquartile range). 
(D) Correlation plots of unique tRNA gene copy number and corresponding proportion of uniquely aligned tRNA 
reads in single replicates (same samples as (B)) from S. cerevisiae, S. pombe, D. melanogaster BG3-c2 cells, 
and hiPSC. Solid blue lines: linear regression model; shaded gray: 95% CI. See also Figure S2 and Figure S3. 
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alignment mirrored initial cDNA size (Figure 3B and 1A). Moreover, circularization sequence 

context is very similar for all cDNAs, as most have a stretch of 1 to 3 non-templated Ts at their 

5’ ends, corresponding to non-templated A added to cDNA 3’ ends by TGIRT (Figure S3E,F), 

which were effectively soft-clipped during GSNAP alignment. Indeed, nucleotide frequencies 

downstream of non-templated nucleotides were highly similar to those obtained by aligning 

the 5’ ends of catalogued tRNA transcripts (Figure S3E,F).  
We asked whether these experimental and computational advances would enable more 

accurate tRNA quantitation. We first sought to compare our measurements of absolute tRNA 

abundance to data obtained with an orthogonal, hybridization-based approach. Absolute RNA 

quantification by e.g. Northern blotting or arrays requires highly specific probes and careful 

comparisons of signal in serial sample dilutions to calibration curves with known target 

amounts. The design of specific probes for tRNAs, however, is extremely challenging: even 

with full-length probes, a difference of at least 8 nucleotides is required to avoid cross-

hybridization1,40. Probe design is particularly problematic for human tRNA pools, which can 

contain >400 tRNA species from 57 anticodon families. Since the major tRNA transcript for 

each anticodon family can differ between cell types2, probe selection can unduly influence 

measurement accuracy. By contrast, the 41 anticodon families of S. cerevisiae consist of only 

54 tRNA species, and most major anticodon variants differ sufficiently in sequence to be 

distinguished by hybridization. We therefore compared fluorescence intensity measurements 

for 39 out of the 41 budding yeast anticodon families obtained by direct hybridization to a tRNA 

microarray41 to the fraction of reads mapping to those anticodon families in mim-tRNAseq 

datasets. This comparison yielded a Pearson’s r=0.75 (p=3.8 x 10-8), corroborating the 

quantitative nature of mim-tRNAseq (Figure S3G). 

The main regulatory elements for tRNA transcription are intrinsic and overlap with 

conserved structural regions of mature tRNAs, and it remains unclear how selective tRNA 

gene expression is achieved in metazoans2–4. In rapidly growing yeast cells, however, nearly 

all tRNA loci are transcribed42,43. tRNA gene copy number thus positively correlates with the 

abundance of tRNA anticodon families during exponential growth measured by hybridization 

(R2 = 0.47 in microscale thermophoresis44 and R2=0.60 in tRNA microarray41). We leveraged 

mim-tRNAseq’s superior resolution to probe this relationship at the level of individual tRNA 

transcripts (Figure 3D). We obtained the highest correlation between gene copy number and 

tRNA abundance reported so far (adjusted R2 = 0.92 for S. cerevisiae and 0.91 for S. pombe, 

p< 3.71 x 10-30), further underscoring the quantitative nature of mim-tRNAseq. This correlation 

decreased substantially for S. cerevisiae libraries from budding yeast generated by template-

switching in otherwise identical RT conditions (R2 = 0.61, Figure S3H, I), consistent with 3’ 

sequence preferences of TGIRT in this set-up28. An even more drastic reduction was seen in 
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S. cerevisiae libraries generated with Superscript III (R2 = 0.31), which displayed substantial 

3’ end coverage bias despite high rates of unique read alignment (Figure S3H, J, K). 

The correlation between gene copy number and tRNA abundance was also lower in 

Drosophila BG3-c2 cells (adjusted R2 = 0.79) and hiPSC (adjusted R2 = 0.62). The values 

were similar regardless of whether we used copy numbers for all predicted human tRNA genes 

or only the high-confidence tRNA gene set (Figure S3L). These findings are consistent with 

differential tRNA gene usage in distinct cell types1–4 and highlight that mechanisms beyond 

gene copy number shape metazoan tRNA pools. 

 

mim-tRNAseq captures differences in tRNA abundance and aminoacylation  

To establish whether mim-tRNAseq can accurately detect differences in tRNA abundance, we 

first compared the tRNA pools of karyotypically normal hiPSC to those in two aneuploid human 

cell lines (K562 and HEK293T). Of the 368 cytosolic tRNA species resolved quantitatively by 

mim-tRNAseq, 205 were undetectable in one or more cell lines (≤0.005% of tRNA-mapped 

reads). Remarkably, more than half of the detectable tRNAs were differentially expressed, 

some by up to three orders of magnitude (adjusted p<0.05, Figure 4A and Table S1). By 

contrast, the relative levels of tRNAs with a given anticodon differed by only up to 1.7-fold 

among the three cell lines (Figure 4B). Of the 47 tRNA anticodon families passing our 

detection threshold, 11 differed in abundance between HEK293T cells and hiPSC and 21 

differed in abundance between K562 cells and hiPSC (Figure 4B and Table S1). Each cell 

line exhibited a distinct pattern of tRNA expression, with differences being more pronounced 

for low-abundance transcripts (Figure 4C; base mean expression given by line plot in 

rightmost panel). These data suggest that different cell types can converge on similar 

anticodon pools via distinct tRNA transcript subsets, possibly through the relatively stable 

expression of major tRNA isodecoders3. 

We validated the changes in relative abundance by Northern blotting for two tRNA 

species: tRNA-Arg-UCU-4 and tRNA-Gly-CCC-2, which differ sufficiently from their 

isodecoders to avoid probe cross-hybridization, and represent tRNAs with a low and high 

abundance. tRNA-Arg-UCU-4 and its mouse ortholog are highly expressed in the central 

nervous system and are also present at low levels in HEK293T cells2,45. mim-tRNA seq 

detected 6 to 8-fold lower levels of tRNA-Arg-UCU-4 in K562 and hiPSCs versus HEK293T 

(Table S1) and a similar 5 to 10-fold decrease was observed by Northern blotting (Figure 
4D,E). Differential abundance estimates by mim-tRNAseq and Northern blotting were also 

highly concordant for the abundant tRNA-Gly-CCC-2 (~1% of tRNA-mapped reads; Figure 
4D,E).  
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We then confirmed the ability of mim-tRNAseq to accurately measure tRNA 

aminoacylation. Charged tRNAs have periodate-resistant 3’ ends and can be quantified as a 

fraction of tRNAs with 3’-CCA versus 3’-CC following oxidation and β-elimination46. We 

compared mim-tRNAseq data from oxidized tRNA of wild-type yeast and a trm7Δ strain, which 

has a tRNA-Phe-GAA charging defect47. This defect was evident by a 2.5-fold decrease in 3’-

CCA proportions for both tRNA-Phe-GAA isodecoders in tRNA pools from trm7Δ cells in the 

Figure 4 mim-tRNAseq accurately captures differential tRNA expression and aminoacylation with single-
transcript resolution. 
(A) Differential expression analysis of unique tRNA transcripts in HEK293T and K562 relative to hiPSC. Axes 
represent log-transformed normalized read counts from DESeq2, with significant down- and up-regulation in 
hiPSCs indicated with closed orange and green triangles, respectively (FDR adjusted one-sided Wald test p-value 
≤ 0.01, n = 2). 
(B) Differential expression analysis as in (A) for counts per tRNA anticodon family. 
(C) Left panel: hierarchically clustered expression heatmap showing scaled z-score of normalized unique transcript 
counts in HEK293T, K562 and hiPSC (n = 2). Middle panels: differential expression for HEK293T and K562 relative 
to iPSC (values: log2 fold-changes; bar plots: numbers of up- and down-regulated genes in green and orange, 
respectively). Right panel: base mean normalized per tRNA transcript across all samples. 
(D) Northern blot analysis of tRNA-Arg-UCU-4 and tRNA-Gly-CCC-2 in HEK293T, K562, and hiPSC (n = 2, 
matched samples to those used for mim-tRNAseq). Band intensities were quantified by densitometry and 
normalized to the mean value for HEK293T. 
(E) Relative abundance of tRNA-Arg-UCU-4 and tRNA-Gly-CCC-2 in HEK293T, K562 and hiPSCs measured by 
mim-tRNAseq (C) or Northern blotting (D), normalized to the mean value for HEK293T (n = 2, matched samples). 
(F) tRNA charging analysis in wild type and trm7Δ S. cerevisiae. Charged tRNA are represented by proportion of 
reads with 3’-CCA ends (light green, in %). Light green bars and tRNA-Phe-GAA labels: average charged tRNA 
fractions (% CCA; n = 3). See also Table S1 and Figure S3. 
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absence of other changes in aminoacylation status (Figure 4F). Thus, mim-tRNAseq enables 

the sensitive and accurate quantitation of differences in tRNA abundance or charging. 

 

Improved readthrough facilitates the discovery and annotation of Watson-Crick 

face tRNA modifications 

Mismatches to reference and/or premature RT stop signatures are frequently used to detect 

Watson-Crick face RNA modifications6,12–14,16–21, but their analysis is prone to both 

experimental and computational artefacts48. Since tRNA-derived reads are particularly 

misalignment-prone with standard algorithms (Figure 2A,D), this could impact the accuracy 

of modification calling.  

By contrast, mim-tRNAseq abrogated nearly all RT stops and yielded reproducibly high 

levels of mismatches coinciding with frequently modified tRNA positions (Figure 5A). We 

quantified the extent of readthrough at annotated Watson-Crick face tRNA modifications by 

calculating the proportion of aligned reads extending past a given position. We then took the 

minimum value in a 3-nucleotide window centered around it to avoid readthrough 

overestimation. The median readthrough values we obtained with this approach were ~100% 

at the most common RT barriers in tRNA such as m1A, N1-methylguanosine (m1G), N2,N2-

dimethylguanosine (m2
2G), and N3-methylcytosine (m3C), as well as bulkier modifications like 

wybutosine (yW) and other wyosine derivatives (Figure 5B). All 162 annotated Watson-Crick 

face modifications in tRNA from budding yeast (100%) and 232 out of the 250 annotated ones 

in human tRNA (93%) had a readthrough efficiency of >80% (Table S3). This is due to both 

experimental and computational advances, as readthrough was much lower in libraries 

generated with standard TGIRT conditions or in DM-tRNAseq (Figure S4A,B). By contrast, 

there was a large variation in bypass of the same modification type in different tRNAs in 

libraries made with Superscript IV (Figure S4C).  

The only RT blocks remaining in mim-tRNAseq were at rare hypermodified positions. 

These include 2-methylthio-derivatives of A37 (ms2t6A/ms2i6A in human cytosolic tRNA-Lys-

UUU and 3-4 mitochondrial tRNAs in Drosophila and human cells) and rare stretches of two 

modified sites (m2
2G26/27 and 20/20a N3-(3-amino-3-carboxypropyl)-uridines (acp3U); Figure 

5B; Figure S2I and Figure S4D-E). These few remaining RT stops do not impact tRNA 

quantitation, as the cDNA fragments derived from them are sufficiently long (39-56 nt) long for 

unambiguous read alignment with our pipeline.  
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We then examined whether different modifications are marked by specific signatures of 

nucleotide misincorporation. This can depend on the processivity and fidelity of an RT, the 

reaction conditions, and the sequence context of the modified site12,13,17,18,20. Signature 

analysis is especially challenging when RT stops are pervasive, since mismatches at read 

ends stemming from non-templated nucleotide addition during RT may manifest as 

misincorporation and lead to spurious modification calls48. As mim-tRNAseq enables near-

complete modification readthrough (Figure 5B), we examined misincorporation patterns at 

annotated sites as a function of modification type and sequence context. We found distinct 

and highly reproducible misincorporation signatures at specific modifications (Figure 5C). The 

ones at m1G, m2
2G, and m3C were largely independent of sequence context, whereas those 

at m1A and acp3U were influenced by the upstream template nucleotide (Figure 5C). We also 

observed distinct signatures for wyosine derivatives, inosine and N1-methylinosine (m1I), 

where the tRNA sequence space is not sufficiently large to explore the impact of sequence 

context. In contrast, misincorporation signatures of Superscript IV were much less specific for 

distinct modifications, with a high prevalence of T mismatches regardless of modification type 
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Figure 5 Near-complete modification readthrough in mim-tRNAseq datasets enables modification 
discovery and annotation. 
(A) Average proportion of stops (red) and misincorporation rates (blue) per nucleotide for all tRNA unique 
transcripts (n = 2) in S. cerevisiae, S. pombe, D. melanogaster BG3-c2 cells, and hiPSC. X-axis: canonical tRNA 
position at major sites with known RT barriers. 
(B) RT readthrough per annotated modification aggregated for cytosolic and mitochondrial tRNA from the four 
species. 
(C) Box plots of misincorporation signatures for annotated modified sites as in (B) (center line, median; box limits, 
upper and lower quartiles; whiskers, 1.5x interquartile range). Signatures stratified by upstream context (rows) and 
modification type (columns); proportion per nucleotide scaled to total misincorporation at this site. 
(D) Box plot of misincorporation signature at G37 of tRNA-Phe-GAA from WT and trm7Δ S. cerevisiae (n = 3). 
(E) Modified site discovery by mim-tRNAseq (“new”) compared to misincorporation-inducing modified sites 
previously annotated in MODOMICS (“annot.”). Labels indicate percentage of newly detected sites relative to 
annotated ones. See also Figure S4 and Table S2. 
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(Figure S4F). A recent comparison of thirteen RTs found a similar lack of distinguishable 

signatures for m1G and m2
2G22. 

To validate the specificity of these signatures, we compared misincorporation patterns at 

G37 in tRNA-Phe-GAA from WT and trm7Δ yeast (Figure 5D). The conversion of m1G37 to 

yW in this tRNA requires 2’-O-methylation of C32 and G34 by Trm749. Accordingly, the 

misincorporation signature at G37 in tRNA-Phe-GAA from trm7Δ cells was distinct from that 

in WT (Figure 5D) and nearly identical to that of m1G in our aggregate analysis (Figure 5C).  

This remarkable consistency enables the use of misincorporation signatures not only for 

mapping RNA modifications, but also for predicting their identity. We therefore probed our 

datasets from S. cerevisiae, S. pombe, Drosophila BG3-c2 cells, and human cells for 

misincorporation-inducing modifications not annotated in MODOMICS. Such sites were 

identified by a mismatch frequency of >10% and the presence of a distinct misincorporation 

signature to limit spurious modification calls due to genomic misannotation or SNPs. 

Modification type was then predicted by combining information on the canonical tRNA position, 

nucleotide identity, and misincorporation signature in comparison to known sites (Figure 5C). 

Performing this analysis with single-transcript resolution revealed many uncatalogued 

modifications (Figure 5E; Table S2), including 30 sites in S. cerevisiae and 358 sites in human 

tRNAs, despite comprehensive existing annotation. Discovery rates were higher in poorly 

annotated species such as S. pombe and D. melanogaster. Our predictions generally agreed 

with prior annotation of modified sites based on RT stops and/or misincorporations (Table S2), 

with some important differences. First, we identified one m1G9 site, two m2
2G26 sites, and 

seven m1A58 sites in tRNAs from S. pombe, which had not been detected by hydro-tRNAseq9. 

Second, we found no detectable misincorporation at G37 in human tRNA-Pro-AGG or C47d 

in human tRNA-Ser-AGA and tRNA-Ser-CGA, although these positions have been annotated 

as m1G37 and m3C47d, respectively9,16. These differences likely result from our workflow’s 

improved resolution of nearly identical tRNAs, since human tRNA-Pro-UGG and tRNA-Ser-

UGA contain m1G37 and m3C47d, respectively (Figure 2D and Figure S5C). These data 

demonstrate that mim-tRNAseq can map potentially modified tRNA sites and predict 

modification identity with high sensitivity and specificity. 

 

Accurate quantitation of RNA modification stoichiometry based on misincorporat-

ion rates  

Proportions of RT stops and/or misincorporations are widely used to estimate tRNA 

modification levels9,10,16,19, but whether such measurements are quantitative is unknown. 

Misincorporation rates at individual modified positions in mim-tRNAseq datasets varied 

remarkably across tRNA species (Figure 6A) despite efficient readthrough (Figure 5B and 
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Figure S5). To test whether this variation reflects modification stoichiometry, we sequenced 

endogenously modified tRNA from wild-type and mutant yeast lacking m1G9 (trm10Δ)50 or 

m2
2G26 (trm1Δ)51 pooled in defined ratios prior to library construction. Misincorporations were 

predictably absent at G9 or G26 sites in samples from the knockout strains. Strikingly, their 

rates had a near-perfect linear correlation to initial pooling ratios in mixed samples (R2 = 0.97, 
Figure 6B, C). Mismatch proportions in mim-tRNAseq datasets thus accurately reflect the 

stoichiometry of m1G and m2
2G, and possibly all other misincorporation-inducing modified 

tRNA bases. Calibration curves with endogenously modified tRNAs are not feasible for all 

misincorporation-inducing modifications (Figure 5B), however, as some of them are essential 

for cell viability52,53. 

These findings enabled us to profile modified tRNA fractions with single-transcript 

resolution in cells from four eukaryotic species. Misincorporation rates were ~100% at all 

instances of I34 and of wyosine derivatives at position 37, suggesting these modifications are 

present in stoichiometric levels (Figure 6D and Figure S6A). We observed a similar trend for 

m2
2G26, with a clear separation between a majority of fully modified tRNAs and a very small 

number of transcripts with 10-30% misincorporation. By contrast, the modified fractions of 

m1G, m3C, and m1A varied substantially among individual tRNAs independently of sequence 

context (Figure 6D, Figure S6A,B). Instances of very high misincorporation were detectable 

for all three modifications (m1A: 100%; m3C: 94%; m1G: 88%), indicating that mim-tRNAseq 

can capture high stoichiometry at these sites if it is present (Figure 6D, Table S3). However, 

some tRNAs seem to contain these modifications at sub-stoichiometric levels. Sub-

stoichiometric m3C32 and m1G37 are consistent with the regulatory rather than structural roles 

of modifications within the tRNA anticodon loop. The stoichiometry of m1G37 measured by 

mim-tRNAseq ranged from 14% to 80% in tRNAs from the four eukaryotic species (Table S3). 

In bacteria, m1G37 in tRNA-Pro-UGG and tRNA-Pro-GGG aids in reading frame 

maintenance54,55. Eukaryotic cells, however, lack tRNA-Pro-GGG due to toxicity from its high 

miscoding capacity56. A recent study estimated m1G37 stoichiometry in bacterial tRNA-Pro-

UGG by primer extension at 68% in E. coli and 73% in Salmonella enterica57. Our workflow 

estimated m1G37 stoichiometry at 53% in yeast tRNA-Pro-UGG and 72% for tRNA-Leu-UAA 

(Table S3). Gel-based primer extension assays with AMV RT, which is blocked by m1G, were 

consistent with these measurements (Figure S5D,E), providing an orthogonal validation of 

mim-tRNAseq modification stoichiometry estimates.  
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In contrast to the regulatory roles of anticodon loop modifications, m1A58 is important for 

the maturation and stability of initiator tRNA-Met in yeast53 and may play a similar role in other 

eukaryotic tRNA species. A sequence comparison of budding yeast tRNAs with high or low 

m1A58 levels revealed no notable differences, however, indicating that sequence alone is 

unlikely to be a major determinant of modification stoichiometry at this position (Figure S6C). 
To examine whether the stoichiometry of misincorporation-inducing tRNA modifications 

differs in distinct cell types or states, we calculated log odds ratios of misincorporation 

proportions across all tRNA positions (see Methods). There were very few statistically 

significant changes when comparing mim-tRNAseq datasets from hiPSCs and HEK293T or 

K562 cells (Figure S6D, E), suggesting most tRNAs are modified to a similar extent in these 

cell lines. A comparison of datasets from WT and trm10Δ or trm1Δ yeast, however, revealed 

the striking precision of our approach in detecting transcripts with large reductions in m1G9 or 

m2
2G26 (Figure S6F, G). Unexpectedly, in trm1Δ yeast cells that lack m2

2G26, there were 

also differences in modification levels at other tRNA sites. These included a 3- to 6.5-fold 

Figure 6 Misincorporation rates in mim-tRNAseq reflect modification stoichiometry. 
(A) Global heatmap of average misincorporation proportions in S. cerevisiae per unique tRNA transcript with 
coverage above 2000 reads (n = 2; top bar graph: mean misincorporation per position; right bar graph: number of 
sites per transcript with detectable misincorporation signatures in ≥10% of reads spanning that position). 
(B) Relative misincorporation proportions at G9 in samples from wild-type (WT) S. cerevisiae and trm10Δ (lacking 
m1G9) or mixes thereof (filtered for clusters with ≥10% misincorporation in WT and scaled to WT proportion; solid 
blue line: linear regression model; shaded gray: 95% CI). 
(C) Analysis as in (B) but for misincorporation at G26 in samples from WT S. cerevisiae or trm1Δ (lacking m22G26). 
(D) Misincorporation proportions per canonical nucleotide position and identity (aggregated per species; e2: 
second nucleotide of variable loop). 
(E) Significant changes in misincorporation rates in trm1Δ relative to WT S. cerevisiae (FDR-adjusted Chi-square 
p-value ≤ 0.01, log2 fold-change≥0.5; n=1). See also Figure S5 and Figure S6, and Table S3. 
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increase in m1G9 levels in four tRNAs (tRNA-Lys-CUU-1, tRNA-Thr-AGU-1, tRNA-Arg-CCU-

1, tRNA-Asn-GUU-1) and a 2.4-fold decrease in m3C32 of tRNA-Ser-UGA-1 (Figure 6E and 
Figure S6G). m1G9 levels in tRNA-Lys-CUU-1 and tRNA-Thr-AGU-1 also increase upon 

Trm10 overexpression in yeast58. Sequence comparisons between tRNAs with increased 

versus unchanged m1G9 levels in trm1Δ cells indicate that a U7:A66 pair rather than G7:C66 

pair may be linked to m1G9 hypermethylation in the absence of m2
2G26 (Figure S6H). These 

findings reveal an interdependence between Watson-Crick face modifications at distinct tRNA 

sites, and suggest that their stoichiometry is determined by structural features. 

Discussion 
The abundance, charging, and modification status of individual tRNA species can differ in 

distinct cellular environments. Measuring these properties on a global scale, however, has not 

been feasible due to technical limitations. No library construction method so far allows the 

efficient reverse transcription of these highly modified RNAs, while the lack of computational 

tools suited to the complexity of tRNA sequencing data has been another major 

methodological gap.  

We describe conditions that permit near-complete tRNA modification readthrough by 

TGIRT, dramatically improving cDNA yield and the fraction of full-length products from tRNA 

templates. All but one rare tRNA modification roadblock are resolved by mim-tRNAseq, which 

alleviates the bias of existing tRNA quantification methods towards low-modified tRNAs 

species. Our library construction protocol circumvents the need to purify enzymes for 

modification removal14 or RT23, which can introduce unwanted variation. We also describe 

multiple conceptual advances in the analysis of tRNA sequencing data, including the use of 

modification annotation, which permits position-specific mismatch tolerance during read 

alignment. Collectively, these advances enable the efficient and accurate mapping and 

analysis of tRNA-derived reads with single-transcript resolution.  

One poignant example of the substantial improvements in our computational workflow 

concerns tRNAs with I34, which is essential for wobble pairing during decoding. Inosines are 

interpreted as cytosines during RT, resulting in the stoichiometric presence of G in sequencing 

reads. When using Bowtie or Bowtie 2 to align tRNA datasets from human cells, we found that 

reads with G34 were frequently mapped to nearly-identical tRNA isoacceptors with U34. Such 

misalignment can have wide-ranging implications, since it would not only skew abundance 

estimates, but can also lead to spurious conclusions about tRNA modification status and 

stoichiometry. These findings highlight the importance of both sensitivity and accuracy of read 

alignment in the context of analyzing tRNA transcriptomes.  
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The robust misincorporation signatures deposited by TGIRT reveal the location, type, 

and stoichiometry of Watson-Crick face base modifications in tRNA. Calibration 

measurements of observed versus expected modified fractions in existing approaches for 

sequencing-based modification analysis are either lacking14,19 or display a non-linear 

relationship23, likely because of persistent RT stops. By contrast, mim-tRNAseq enables 

efficient readthrough of almost all tRNA modifications, while modification identity is also 

discernible by highly specific misincorporation patterns. Improved readthrough permits 

accurate measurements of modification stoichiometry from misincorporation rates alone, 

evident from calibration curves with near-perfect linear regression for m1G and m2
2G (R2 = 

0.97). Performing this calibration with mixtures of endogenously modified tRNA pools shows 

that our entire workflow is free of bias towards low-modified tRNAs.  

Remarkably, we find that while some tRNA positions are almost always fully modified 

(e.g. m2
2G26 and I34), others are sub-stoichiometric in some tRNA species. This is in line with 

a model in which some modifications are deposited because of overlapping substrate 

specificities in RNA modification enzymes59. Indeed, methylation at G9 in some yeast tRNAs 

is enhanced when they lack m2
2G26, while methylation of C32 is decreased, suggesting that 

a conformational change upon m2
2G26 loss60 might change the affinity of other modification 

enzymes for individual tRNAs. 

In summary, mim-tRNAseq is a sensitive and accurate start-to-finish technique for 

quantitation of tRNA abundance and charging, which also reports on the presence and 

stoichiometry of misincorporation-inducing RNA modifications. The robust library construction 

workflow and the easy-to-use and freely available computational toolkit make mim-tRNAseq 

broadly applicable for studying key aspects of tRNA biology in a range of organisms and cell 

types. Our experimental workflow can also be implemented for the discovery and quantitation 

of modified sites in other RNA species. 

 

Limitations 

mim-tRNAseq currently reports on the presence and stoichiometry of those Watson-Crick face 

tRNA modifications that elicit robust misincorporation during RT with TGIRT. Various protocols 

for chemical treatment of the “RT-silent” modifications (e.g. pseudouridine, 5-methylcytosine, 

7-methylguanosine) have been developed to enable their detection via misincorporation61. 

Combining them with mim-tRNAseq can expand the modification range detectable in a single 

sequencing reaction. Our stoichiometry measurements for m1G and m2
2G were validated with 

mixtures of endogenously modified tRNA pools from wild-type and modification-deficient 

strains, but such validation is not feasible for modifications essential for cell viability. Finally, 
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mim-tRNAseq requires low starting material, but is not compatible with single-cell tRNA 

profiling. 

STAR Methods 
Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Commercial Reagents  
mTeSR1 STEMCELL 

Technologies 
Cat# 85850 

Micro Bio-Spin P30 columns, RNase-free BioRad Cat# 7326251 
Glycogen Ambion Cat# AM9510 
T4 Polynucleotide Kinase New England Biolabs Cat# M0201L 
T4 RNA ligase 2 (truncated KQ) New England Biolabs Cat# M0373L 
SUPERase In Ambion Cat# AM2694 
TGIRT InGex Cat# TGIRT50 
Superscript III Invitrogen Cat# 18080044 
AMV RT Promega Cat# M9004 
CircLigase ssDNA ligase Lucigen Cat# CL4115K 
KAPA HiFi DNA Polymerase Roche Cat# KK2102 
DNA Clean&Concentrator-5 PCR purification 
kit 

Zymo Research Cat# D4013 

Immobilon NY+ Millipore Cat# INYC00010 

Deposited Data 
Raw and analyzed sequencing data  This paper GEO: GSE152621 
DM-tRNAseq raw data for H. sapiens 
HEK293T 

Zheng at al.14 GEO: GSE66550 

Hydro-tRNAseq raw data for H. sapiens 
HEK293 T-Rex Flp-IN 

Gogakos et al.10 GEO: GSE95683 

QuantM-tRNAseq raw data for H. sapiens 
HEK293 T- Rex Flp-IN 

Pinkard et al.62 GEO: GSE141436 

Experimental Models: Cell Lines  
D. melanogaster BG3-c2 cells P. Becker, LMU N/A 
HEK293T cells O. Griesbeck, MPIN N/A 
HPSI0214i-kucg_2 cells Kilpinen et al.63; 

ECACC 
Cat# 77650065 

Experimental Models: Organisms/Strains  
S. cerevisiae: strain BY4741 Euroscarf N/A 
S. cerevisiae: strain BY4741 trm1∆::kanMX Euroscarf N/A 
S. cerevisiae: strain BY4741 trm7∆::kanMX Euroscarf N/A 
S. cerevisiae: strain BY4741 trm10∆::kanMX Euroscarf N/A 
S. pombe: strain ED668 h+ S. Braun, LMU N/A 

Oligonucleotides 
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REAGENT or RESOURCE SOURCE IDENTIFIER 
RNA sequences, primers for library 
construction, and probes for primer extension 
and Northern blotting, see Table S4 

This paper N/A 

Software and Algorithms 
mim-tRNAseq v0.2.5.6 This paper https://github.com/nedialkova-

lab/mim-tRNAseq 

Bowtie v1.2.2 Langmead et al.34 http://bowtie-
bio.sourceforge.net/index.shtml 

Bowtie2 v2.3.3.1 Langmead and 
Salzberg35 

http://bowtie-
bio.sourceforge.net/bowtie2/ind
ex.shtml 

GSNAP v2019-02-26 Wu and Nacu38 http://research-
pub.gene.com/gmap/ 

Samtools v1.11 Li et al.64 http://samtools.sourceforge.net/ 

Bedtools v2.29.2 Quinlan and Hall65 https://bedtools.readthedocs.io/
en/late 

BLAST+ v2.9.0 Camacho et al.66 https://blast.ncbi.nlm.nih.gov/Bl
ast.cgi?PAGE_TYPE=BlastDoc
s&DOC_TYPE=Download 

Infernal v1.1.2 Nawrocki and Eddy67 http://eddylab.org/infernal/ 

usearch v10.0.240_i86linux32 Edgar68 https://www.drive5.com/usearch 

R/DESeq2 v1.26.0 Love et al.69 https://bioconductor.org/packag
es/release/bioc/html/DESeq2.ht
ml 

R/ComplexHeatmap v2.2.0 Gu et al.70 https://www.bioconductor.org/p
ackages/release/bioc/html/Com
plexHeatmap.html 

Python/Biopython v1.70 Cock et al.71 https://biopython.org/ 

Other   
Detailed protocol for mim-tRNAseq library 
construction 

This paper Methods S1 

 
Resource Availability 

Lead Contact 

Please direct any requests for further information or reagents to the Lead Contact, Danny 

Nedialkova (nedialkova@biochem.mpg.de). 

 

Materials Availability 
This study did not generate new unique reagents. 
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Data and Code Availability 
Raw sequencing data have been deposited in the Gene Expression Omnibus (accession 

number: GSE152621). The mim-tRNAseq computational pipeline is available under a GNU 

public License v3 at https://github.com/nedialkova-lab/mim-tRNAseq. A package description 

and installation guide are available at https://mim-trnaseq.readthedocs.io/.  

 
Experimental Model and Subject Details 

Cell Lines and Strains 

S. cerevisiae cells (BY4741 wild-type, trm7∆, trm1∆ and trm10∆) were grown in yeast extract-

peptone-dextrose (YPD) medium. S. pombe cells (ED668 h+, ade6-M216 ura4-D18 leu1-32) 

were cultured in yeast Extract with supplements (YES). Overnight cultures were diluted to an 

optical density 600 (OD600) of 0.05, grown at 30oC at 250 revolutions per minute, and 

harvested at OD600=0.5 by rapid filtration and snap-freezing in liquid nitrogen. D. melanogaster 

BG3-c2 cells were cultured at 26oC in Schneider’s Drosophila Medium (Gibco) supplemented 

with 10% fetal calf serum, 1% penicillin/streptomycin, and 10 µg/ml human insulin. HEK293T 

cells were grown at 37oC and 5% CO2 in DMEM supplemented with 10% fetal bovine serum 

(Sigma Aldrich). The HPSI0214i-kucg_2 human induced pluripotent stem cell line (obtained 

from HipSci63) was cultured at 37oC and 5% CO2 in mTeSR1 (STEMCELL Technologies). 

K562 cells were grown at 37oC and 5% CO2 in RPMI 1640 supplemented with 10% fetal calf 

serum and 2mM L-Glutamine. 

 
Method Details 

RNA isolation 

RNA from Drosophila BG3-c2, HEK293T, and human iPS cells was isolated with Trizol (Sigma 

Aldrich) according to the manufacturer’s instructions. For total RNA isolation from yeast, 

frozen cells were resuspended in 100 mM sodium acetate pH=4.5, 10 mM EDTA pH=8.0, 1% 

SDS (1 ml per 50 OD600 units). An equal volume of hot acid phenol (pH=4.3) was added, and 

the cell suspension was vortexed vigorously followed by incubation at 65oC for 5 min (S. 

cerevisiae) or 45 min (S. pombe) with intermittent mixing. After addition of 1/10 volume 1-

Bromo-3-chloropropane (BCP, Sigma Aldrich), samples were centrifuged at 10,000 x g for 5 

min and the aqueous phase was transferred to a new tube. Following an additional round of 

hot acid phenol/BCP and a round of BCP only extraction, RNA was precipitated from the 

aqueous phase by the addition of 3 volumes of ethanol. Pellets were washed in 80% ethanol, 

briefly air-dried, and resuspended in RNase-free water. For RNA isolation from yeast under 

conditions that preserve tRNA charging, frozen cells were resuspended in ice-cold 100 mM 

sodium acetate pH=4.5, 10 mM EDTA pH=8.0. One volume of cold acid phenol (pH=4.3) was 
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added and cells were lysed with 500 µm-diameter glass beads by three rounds of vortexing 

for 45 sec with a 1-min incubation on ice in between. One-tenth volume of BCP was then 

added and the samples were centrifuged at 10,000 x g/4oC for 5 min, followed by a second 

round of cold phenol-BCP and one round of BCP-only extraction. RNA was ethanol-

precipitated from the aqueous phase and pellets were washed in 80% ethanol containing 50 

mM sodium acetate, pH=4.5, briefly air-dried, and resuspended in 50 mM sodium acetate 

pH=4.5, 1 mM EDTA pH=8.0. RNA concentration was determined with NanoDrop and 

samples were frozen at -80oC in single-use aliquots. 

 

RNA oxidation and β-elimination 

To measure tRNA charging levels, RNA oxidation and β-elimination were performed as 

described46 with minor modifications. 25 µg of total RNA were resuspended in 10 mM sodium 

acetate pH 4.5 and oxidized by the addition of freshly prepared NaIO4 to a final concentration 

of 50 mM in a 58-µL volume for 30 min at 22°C. The reaction was quenched by addition of 6 

µL 1 M glucose for 5 min at 22°C. RNA was purified with Micro Bio Spin P30 columns (BioRad) 

followed by two rounds of ethanol precipitation in the presence of 0.3M sodium acetate 

pH=4.5. Pellets were resuspended in 20 µL RNAse-free water and β-elimination was 

performed by addition of 30 µl 100 mM sodium borate pH=9.5 (freshly prepared) for 90 min at 

45°C. RNA was recovered with Micro Bio Spin P30 columns followed by ethanol precipitation, 

resuspended in RNAse-free water, quantified on a NanoDrop, and stored at -80oC in single-

use aliquots. 

 

tRNA purification by gel size selection 

Two synthetic RNA standards corresponding to E. coli tRNA-Lys-UUU with intact 3’-CCA (5’-

GGGUCGUUAGCUCAGUUGGUAGAGCAGUUGACUUUUAAUCAAUUGGUCGCAGGUUC

GAAUCCUGCACGACCCACCA-3’) or a 3’-CC (5’-GGGUCGUUAGCUCAGUUGGUAGAG 

CAGUUGACUUUUAAUCAAUUGGUCGCAGGUUCGAAUCCUGCACGACCCACC-3’) were 

added to 5 - 10 µg of total RNA in a 3:1 molar ratio at 0.06 pmol/µg, followed by incubation at 

37oC in 50 mM Tris-HCl pH=9.0 to deacylate tRNAs. Deacylation was omitted for samples 

subjected to oxidation and β-elimination. Total RNA was subsequently dephosphorylated with 

10U T4 PNK (NEB) at 37oC for 30 min and purified by ethanol precipitation in 0.3M sodium 

acetate pH=4.5 with 25 µg glycogen (Ambion) as a carrier. RNA was resolved on a denaturing 

10% polyacrylamide/7M urea/1xTBE gel alongside Low Range ssRNA marker (NEB) and 

visualized with SYBR Gold. Species migrating at the size range of mature tRNAs (60 – 90 nt) 

were excised and gel slices were crushed with disposable pestles. Low-retention tubes and 

tips (Biotix, Axygen) were used for all subsequent steps of sequencing library construction to 
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maximize nucleic acid recovery. Following addition of 400 µl gel elution buffer (0.3M sodium 

acetate pH=4.5, 0.25% SDS, 1mM EDTA pH=8.0), the gel slurry was incubated at 65oC for 

10 min, snap-frozen on dry ice, and thawed at 65oC for 5 min. RNA was eluted overnight at 

room temperature with continuous mixing. Gel pieces were removed with Costar Spin-X 

centrifuge tube filters and RNA was recovered from the flow-through by ethanol precipitation 

in the presence of 25 µg of glycogen. This protocol typically recovers 5-10% of total RNA in 

the 60 – 90 nt fraction, consistent with estimates of tRNA proportions in cells72. 

 

 3’ adapter ligation 

50 to 200 ng of gel-purified tRNA was ligated to one of four adapters with distinct barcodes 

(I1:5’-pGATATCGTCAAGATCGGAAGAGCACACGTCTGAA/ddC/-3’; 

 I2:5’-pGATAGCTACAAGATCGGAAGAGCACACGTCTGAA/ddC/-3’; 

 I3:5’-pGATGCATACAAGATCGGAAGAGCACACGTCTGAA/ddC/-3’; 

 I4:5’-pGATTCTAGCAAGATCGGAAGAGCACACGTCTGAA/ddC/-3’; barcodes italicised; 

underlined sequence complementary to RT primer). The adapters are blocked by the 3’ chain 

terminator dideoxycytidine to prevent concatemer formation, and 5’- phosphorylated to enable 

pre-adenylation by Mth RNA ligase prior to ligation31. Ligation was performed for 3 hours at 

25°C in a 20-µl reaction volume containing pre-adenylated adapter and RNA substrate in a 

4:1 molar ratio, 1x T4 RNA Ligase Reaction Buffer, 200 U of T4 RNA ligase 2 (truncated KQ; 

NEB), 25% PEG 8000, and 10 U SUPERase In (Ambion). Ligation products were separated 

from excess adapter on denaturing 10% polyacrylamide/7M urea/1xTBE gels. Bands 

migrating at 95-125 nt were excised and ligation products were recovered from crushed gel 

slices. 

 

Reverse transcription 
All reactions contained 125 nM primer, 125 nM template and 500 nM TGIRT (InGex) or 200 

U Superscript III (Invitrogen). To prime reverse transcription in template-switching reactions, 

a synthetic RNA/DNA duplex with a single-nucleotide 3’ overhang was generated by annealing 

an RNA oligonucleotide (5’-GAGCACACGUCUGAACUCCACUCUUUCCCUACACGACGCU 

CUUCCGAUCU-3’) to a DNA oligonucleotide (5’-pRAGATCGGAAGAGCGTCGTGTAGGGA 

AAGAGTGGAGTTCAGACGTGTGCTCN-3’). The DNA oligonucleotide contained a 

phosphorylated A/G followed by a random nucleotide at its 5’ end, which is a preferred 

substrate for CircLigase used in subsequent cDNA circularization30,31. For primer-dependent 

reverse transcription reactions, adapter-ligated tRNA and RT primer (5’-pRNAGATCGGAAGA 

GCGTCGTGTAGGGAAAGAG/iSp18/GTGACTGGAGTTCAGACGTGTGCTC-3’; underlined 

sequence complementary to 3’ adapter, 5’-RN to ameliorate potential biases during 
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circularization) were mixed in MAXYMum Recovery™ PCR Tubes (Axygen), denatured at 

82oC for 2 min and annealed at 25oC for 5 min in a Thermocycler. TGIRT reactions were 

assembled in a 20-µl final volume by combining template and primer with 10 U SUPERase In, 

5 mM DTT (from a freshly made 100 mM stock) and manufacturer-recommended TGIRT 

buffer (20 mM Tris-HCl pH=7.6, 450 mM NaCl, 5 mM MgCl2) or low salt buffer (50 mM Tris-

HCl pH=8.3, 75 mM KCl, 3 mM MgCl2). After TGIRT addition, samples were pre-incubated at 

reaction temperature for 10 min (primer-dependent reactions) or 22oC for 30 min (template-

switching reactions), initiated by addition of dNTPs to a final concentration of 1.25 mM, and 

incubated in a Thermocycler for 1 hour or 16 hours. For Superscript III RT, template and primer 

were denatured at 75oC for 5 min and chilled on ice, and reverse transcription was performed 

in the presence of 1X First-Strand Buffer, 5 mM DTT, 0.5 mM dNTPs, 10 U SUPERase In, 

and 200 U Superscript III (Invitrogen) at 57oC for 60 min.  

Template RNA was subsequently hydrolyzed by the addition of 1 µl 5M NaOH and 

incubation at 95oC for 3 min and reaction products were separated from unextended primer 

on denaturing 10% polyacrylamide/7M urea/1xTBE gels. Gels were stained with SYBR Gold, 

the region between 60 and 150 nt was excised and cDNA was eluted from crushed gel slices 

in 400 µl 10 mM Tris-HCl pH=8.0, 1 mM EDTA at 70oC/2000 rpm for 1 hour in a Thermoblock, 

followed by ethanol precipitation in 0.3M sodium acetate pH=5.5 in the presence of 25 µg 

glycogen.  

 

cDNA circularization and library construction PCR 

Purified cDNA was circularized with CircLigase ssDNA ligase (Lucigen) in 1x reaction buffer 

supplemented with 1 mM ATP, 50 mM MgCl2, and 1M betaine for 3 hours at 60oC, followed 

by enzyme inactivation for 10 min at 80oC. One-fifth of circularized cDNA was directly used 

for library construction PCR with a common forward (5’-AATGATACGGCGACCACCGAGATC 

TACACTCTTTCCCTACACGACGCT*C-3’) and unique indexed reverse primers (5’-

CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCAGACGTGT*G-3’, 

asterisks denote a phosphorothioate bond and NNNNNN corresponds to the reverse 

complement of an Illumina index sequence). Amplification was performed with KAPA HiFi 

DNA Polymerase (Roche) in 1x GC buffer with initial denaturation at 95oC for 3 min, followed 

by five to six cycles of 98oC for 20 sec, 62oC for 30 sec, 72oC for 30 sec at a ramp rate of 

3oC/sec. PCR products were purified with DNA Clean&Concentrator 5 (Zymo Research) and 

resolved on 8% polyacrylamide/1xTBE gels alongside pBR322 DNA-MspI Digest (NEB). The 

130-220 bp region of each lane was excised and DNA was eluted from crushed gel slices in 

400 µl water with continuous mixing at room temperature overnight. After ethanol precipitation 

in 0.3M sodium acetate pH=5.5 and 25 µg glycogen, libraries were dissolved in 10 µl 10 mM 
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Tris-HCl pH=8.0, quantified with the Qubit dsDNA HS kit, and sequenced for 150 cycles on 

an Illumina NextSeq platform. 

 

Northern blotting 

Two micrograms of total RNA were resolved on denaturing 10% polyacrylamide/7M 

urea/1xTBE gels. RNA was transferred to Immobilon NY+ membranes (Millipore) in 1xTBE for 

40 min at 4mA/cm2 on a TransBlot Turbo semi-dry blotting apparatus (Bio-Rad) and 

crosslinked at 0.04 J in a Stratalinker UV crosslinker. Membranes were incubated at 80oC for 

one hour and pre-hybridized in 20 mM Na2HPO4 pH=7.2, 5xSSC, 7% SDS, 2x Denhardt, 40 

µg/ml sheared salmon sperm DNA at 55oC for 4 hours. The buffer was exchanged and 10 

pmol 5’-end 32P-labelled probe (Arg-UCU-4: 5’-CGGAACCTCTGGATTAGAAGTCCAGCGCG  

CTCGTCC-3’; Gly-CCC-2: 5’-CGGGTCGCAAGAATGGGAATCTTGCATGATAC-3’) was 

added, followed by hybridization at 55oC overnight. Membranes were washed three times in 

25 mM Na2HPO4 pH=7.5, 3xSSC, 5% SDS, 10x Denhardt, once in 1xSSC, 10% SDS, and 

exposed to PhosphorImager screens, which were subsequently scanned on a Typhoon FLA 

9000 (GE Healthcare). Band intensity was quantified with ImageQuant (GE Healthcare).  

 

Primer extension analysis of m1G37 

The extent of RT arrest at m1G37 in tRNA-Leu-UAA and tRNA-Pro-UGG from S. cerevisiae 

was quantified via primer extension with AMV RT, an enzyme with low processivity at this 

modification22. The primers were designed to enable a 4-nucleotide extension to m1G37 

(tRNA-Leu-UAA: 5’-CGCGGACAACCGTCCAAC-3’; tRNA-Pro-UGG: 5’-TGAACCCAGGGCC 

TCT-3’) and end-labeled with γ-32P-ATP. 3 µg of total RNA from exponentially growing cells 

was mixed with 1 pmol end-labeled primer and incubated at 95oC for 3 min followed by slow 

cooling to 37oC. RT reactions were assembled by adding 15 U AMV RT (Promega), 0.5 mM 

dNTPs, 20U SUPERase In (Ambion) and 1X AMV RT buffer in a 5-µl volume. Following 

incubation at 37oC for 45 min, reactions were stopped by addition of 5 µl 2X RNA loading dye 

(47.5% Formamide, 0.01% SDS, 0.01% bromophenol blue, 0.005% Xylene Cyanol, 0.5 mM 

EDTA), boiled at 95oC for 5 min, and resolved on a denaturing 15% PAA/7M urea/1X TBE gel. 

The gel was exposed at -80oC to a PhosphorImager screen, which was scanned on a Typhoon 

FLA 9000 (GE Healthcare). Band intensity was quantified with ImageQuant (GE Healthcare).  

 
Quantification and Statistical Analysis 

Read preprocessing 

Sequencing libraries were demultiplexed using cutadapt v2.573 and a fasta file (barcodes.fa) 

of the first 10 nt for the four different 3’ adapters (see 3’ adapter ligation above). Indels in the 
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alignment to the adapter sequence were disabled with --no-indels. Following demultiplexing, 

reads were further trimmed to remove the two 5’-RN nucleotides introduced by circularization 

from the RT primer with -u 2. In both processing steps, reads shorter than 10 nt were discarded 

using -m 10. Example commands for demultiplexing and 5’ nucleotide trimming: 
cutadapt --no-indels -a file:barcodes.fa -m 10 -o mix1_{name}_trim.fastq 

.gz mix.fastq.gz 

cutadapt -j 40 -m 10 -u 2 -o mix1_barcode1_trimFinal.fastq.gz mix1_ 

barcode1_trim.fastq.gz 

 

Modification indexing and clustering 

mim-tRNAseq uses modification data from MODOMICS37 to guide accurate alignment of short 

reads from tRNAs. A prepackaged set of data is available for S. cerevisiae, S. pombe, C. 

elegans, D. melanogaster, M. musculus, H. sapiens and E. coli, and can be specified with the 

--species parameter. For other organisms, mim-tRNAseq requires a fasta file of predicted 

genomic tRNA sequences (-t) and a tRNAscan-SE “out” file containing information about tRNA 

introns (-o), both of which should be obtained from GtRNAdb8 or from running tRNAscan-SE74 

on the genome of interest. Lastly, a user-generated sample input file is required which contains 

two tab-separated columns specifying the path to trimmed tRNA-seq reads in fastq format, 

and the experimental condition of each fastq file. Additionally, a mitochondrial tRNA fasta 

reference is supplied with the prepackaged data inputs listed above, or may be supplied (-m) 

for custom genomes as a fasta file obtained from mitotRNAdb36. mim-tRNAseq automatically 

removes nuclear-encoded mitochondrial tRNAs (nmt-tRNAs) and tRNA species with 

undetermined anticodons (where applicable), generates mature, processed tRNA sequences 

(with appended 3’-CCA if necessary, 5’-G for tRNA-His, and spliced introns), and fetches 

species-matched MODOMICS entries accordingly. Transcript sequences are then matched to 

MODOMICS entries using BLAST in order to index all known instances of residues modified 

at the Watson-Crick face within each tRNA. An additional modifications file for modifications 

reported in the literature but not yet added to MODOMICS may be supplied and is 

automatically processed by the pipeline (e.g. I34 annotation9,75). tRNA clustering is enabled 

with the --cluster parameter, which utilizes the usearch --cluster_fast algorithm68 to cluster 

tRNA sequences by a user-defined sequence identity threshold (customizable with --cluster-

id). Regardless of the chosen threshold, only tRNAs sharing an anticodon are clustered to 

maintain isoacceptor resolution in cases where tRNA transcripts differ by a single nucleotide 

in the anticodon. The clusters are re-centered based on the number of identical sequences, 

and this is used to re-cluster and improve the selection of a representative centroid/parent 

sequence for each cluster (https://www.drive5.com/usearch/manual7/recenter.html). 

Polymorphisms between cluster members are recorded, and mismatches at these sites during 
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alignment are tolerated, but they are not included in misincorporation analysis for modified 

sites. Since inosine is interpreted as a G during reverse transcription, annotated inosines are 

changed to G in tRNA reference sequences. 

 

Read alignment and modification discovery 

After clustering, reads are aligned using GSNAP to the representative centroid cluster 

sequences of mature tRNA transcripts. By enabling SNP-tolerant alignment with --snp-

tolerance, the indexed modified sites are treated as pseudo-SNPs to allow modification-

induced mismatches at these sites in a sequence- and position-specific manner. Soft-clipping 

during alignment in combination with the GSNAP parameter --ignore-trim-in-filtering=1 

ensures that non-templated nucleotide extensions are not counted as mismatches during 

alignment. Mismatch tolerance outside of indexed SNPs is controlled using the --max-

mismatches parameter, where an integer of allowed mismatches per read can be provided, or 

a relative mismatch fraction of read length between 0.0 and 0.1 can be supplied (default 0.1). 

If --remap is specified, then misincorporation analysis is performed and new, unannotated 

modifications are called where --misinc-thresh (total misincorporation proportion at a residue; 

default is 0.1 or 10%) and --min-cov (minimum total coverage for a cluster) regulate the calling 

of new modifications, which exclude mismatch sites between cluster members appearing as 

misincorporations in this analysis. The existing SNP index is then updated with these new 

sites, and realignment of all reads is performed with a mismatch tolerance set using --remap-

mismatches. New potential inosine sites are classified for position 34 where a reference A 

nucleotide is misincorporated with a G in 95% or more total misincorporation events. Both --

remap and --max-mismatches are extremely useful for detecting unknown modifications in 

poorly annotated tRNAs, subsequently allowing more accurate and efficient read alignment, 

which improves the results of all downstream analyses. Users should consider a low mismatch 

tolerance during remap to avoid inaccuracy resulting from lenient alignment parameters. We 

recommend a relative mismatch fraction of 0.075 during remapping (--remap-mismatches 

0.075). Only uniquely mapped reads are retained for post-alignment analyses. 

 

Read deconvolution 

This process aims to recapitulate the single-transcript resolution of --cluster-id 1 (see above), 

but with the alignment accuracy and decreased multi-mapping achieved at lower --cluster-id 

values. The deconvolution algorithm first searches each cluster of tRNA reference sequences 

for single-nucleotide differences that distinguish among those. For this, each nucleotide in a 

reference sequence is assessed for uniqueness at that position when compared to all other 

reference sequences in the cluster. If a nucleotide is unique in position and identity for a 
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specific tRNA reference in the cluster, it is catalogued. Then, after alignment, each read is 

assessed for mismatches to the cluster parent to which it was aligned. These are then scanned 

individually to find potential matches to the previously catalogued set for the cluster which can 

distinguish unique tRNA references. Based on the presence and identity of a unique 

distinguishing mismatch, a read is then be assigned to a specific tRNA reference within a 

cluster. Depending on the organism and/or cluster ID threshold, unique distinguishing 

mismatches may not always be present for all tRNA references in a cluster. Reads without 

distinguishing mismatches remain assigned to the cluster parent, which is then marked as not 

fully deconvoluted. Using this algorithm, uniquely aligned reads are assigned to individual 

tRNA sequences in the reference (where possible) before any of the downstream analyses 

detailed below. For differential expression analyses of reads summed per tRNA anticodon, 

read deconvolution is not necessary and therefore not performed. 

 

Modification, RT stop, readthrough and 3’ CCA end analyses 

Following read deconvolution, all other mismatched positions for the read are extracted from 

alignment records in bam files, and converted into positions relative to the unique transcript to 

which the read was assigned (or the cluster parent if definitive assignment is not possible). 

The identity of the misincoporated nucleotide is recorded to enable signature analysis, and 

the counts of mismatches for each of the four nucleotides for all reads with the 

misincorporation are normalized relative to total read coverage at that position. Stops during 

reverse transcription are extracted from the alignment start position of each read relative to 

the reference (5’ read ends correspond to cDNA 3’ ends during RT) and normalized to total 

read counts for the unique tRNA. Similarly, readthrough for each position is calculated as the 

fraction of reads that stop at a position relative to read coverage at each position (as opposed 

to stop proportions which are normalized to total tRNA read coverage). This value is then 

subtracted from one to estimate the proportion of reads per position that extend beyond that 

site, and the minimum value in a 3-nucleotide window centered around the modification is 

recorded. Using a 3-nucleotide window ensures that potential variance in the position at which 

the RT stalls due to the modification is accounted for. Taking the minimum value of 

readthrough for these 3 nucleotides reduces the likelihood of readthrough overestimation. 

Misincorporation, stop data, and readthrough per unique tRNA sequence, per position are 

output as tab-separated files, and global heatmaps showing misincorporation and stop 

proportions across all unique tRNA sequences are plotted per experimental condition. 

Misincorporation signatures are also plotted for well-known conserved modified tRNA sites (9, 

20, 26, 32, 34, 37 and 58) separated by upstream and downstream sequence context to 

assess potential factors influencing misincorporation signatures. Lastly, the dinucleotide at the 
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3’ ends of reads is quantified, so long as the read aligns to the conserved 3’-CCA tail of the 

reference. Proportions of transcripts with absent 3’ tails, 3’-C, 3’-CC and 3’-CCA are calculated 

per unique tRNA sequence and plotted pairwise between conditions for quantitation and 

comparison of functional tRNA pools, or tRNA charging fractions in periodate oxidation 

experiments. 

 

Post-alignment analyses 

The cluster deconvolution algorithm allows coverage analysis, novel modification discovery 

and read counting for tRNA quantitation to be done at the level of unique tRNA sequences. 

Coverage is calculated as the depth of reads at all positions across a tRNA sequence and 

plotted using custom R scripts. Cytosolic tRNAs with low read coverage can be filtered at the 

coverage analysis step by supplying a minimum coverage threshold to --min-cov. Unique 

tRNA sequences filtered out here are excluded from all downstream analyses, except 

differential expression analysis by DESeq269 where all unique tRNA sequences are included. 

Normalized coverage (read fraction relative to library size) is plotted per sample in 25 bins 

across gene length in a metagene analysis. Normalized coverage is also scaled relative to the 

second last bin to account for potential differences in 3’ CCA intactness. Read counts per 

unique tRNA sequence are summed to calculate read counts per isoacceptor family (all tRNAs 

sharing an anticodon). These counts are subsequently used by a DESeq2 pipeline for count 

transformations, sample distance analysis using distance matrix heatmaps, PCA plots, and 

differential expression analysis at the level of isoacceptor families and unique tRNA transcripts 

(only for completely resolved clusters). In the case that only one experimental condition is 

supplied, or if there are no replicates for one or more conditions, differential expression 

analysis is not performed on these samples, but a normalized counts table is still produced for 

investigations into tRNA abundance.  

 

Data analysis with the mim-tRNAseq package 

The following parameters were used for the analysis of mim-tRNAseq generated sequencing 

datasets (see mimseq --help or https://mim-trnaseq.readthedocs.io/en/latest/intro.html for full 

explanations of parameters): 

 

S. cerevisiae: --cluster --cluster-id 0.90 --snp-tolerance --min-cov 2000 --
max-mismatches 0.1 --control-condition Exp --cca-analysis --remap --remap-

mismatches 0.075 
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S. pombe: --cluster --cluster-id 0.95 --snp-tolerance --min-cov 2000 --max-
mismatches 0.1 --control-condition Exp --cca-analysis --remap --remap-

mismatches 0.075 

 

D. melanogaster: --cluster --cluster-id 0.95 --snp-tolerance --min-cov 2000 -
-max-mismatches 0.1 --control-condition bg3 --cca-analysis --remap --remap-

mismatches 0.075 

 

H. sapiens: --snp-tolerance --cluster --cluster-id 0.95 --min-cov 2000 --max-
mismatches 0.1 --control-condition kiPS --cca-analysis --remap --remap-

mismatches 0.075 

 

tRNA read alignment with Bowtie and Bowtie 2 

To test previously used alignment strategies as in DM-tRNAseq14 or ARM-seq15, a non-

redundant set of reference human tRNA transcripts was created by fetching the full set of 610 

predicted tRNA genes for human genome hg19 from GtRNAdb8 and the 22 mitochondrially 

encoded human tRNA genes from mitotRNAdb36. Following intron removal and addition of 3’ 

CCA (for nuclear-encoded transcripts) and 5’-G (for tRNA-His), a curated set of 596 genes 

(excluding anticodon/isotype mismatch and nuclear-encoded mitochondrial tRNAs) were 

collapsed into 420 unique sequences. Corresponding Bowtie and Bowtie 2 indices were built 

from this set of references. Bowtie alignment was performed with a maximum of 3 allowed 

mismatches per read (-v 3), filtering for uniquely aligning reads (-m 1) and ensuring the best 

alignment from the best stratum (i.e. reads with the least number of mismatches) were 

reported (--best --strata). Bowtie 2 alignments were performed in very sensitive local mode (-

-very-sensitive --local) and up to 100 alignments per read were allowed (-k 100). Read quality 

scores were ignored for alignment score and mismatch penalty calculation (--ignore-quals) 

with increased penalties for ambiguous characters (“N”) in reference or read (--np 5). Output 

alignments in SAM format were reordered to match read order in input fastq file (--reorder). 

The alignment commands for both algorithms are given below: 
 

bowtie -v 3 -m 1 --best --strata --threads 40 -S  

 

bowtie2 --local -x -k 100 --very-sensitive --ignore-quals --np 5 --reorder 

-p 40 -U  

 

QuantM-tRNAseq data for HEK293 T-Rex Flp-IN cells downloaded from the NCBI Gene 

Expression Omnibus repository was adapter-trimmed and analyzed with Bowtie 2 as 

described7: 
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bowtie2 --local --score-min G,1,8 -D 20 -R 3 -N 1 -L 10 -i S,1,0.5 

 

Sequence logo analysis 

Alignment files for uniquely aligned reads from human HEK293T and S. cerevisiae cells were 

utilized to generate frequency plots of untemplated nucleotide additions by TGIRT, and 5’ 

sequence logos in each sample. Briefly, CIGAR strings for each unique alignment were 

assessed for GSNAP soft-clipped nucleotides representing untemplated additions. The 

number of additions per read were recorded and plotted as frequency histograms. Since a 

total of 3 additions or less were present in >90% of reads analyzed, we generated sequence 

logos using the Python package Logomaker76 for these reads using soft-clipped residues and 

the first 10 nucleotides after them. For the logo representing all catalogued tRNA genes, we 

used mature tRNA transcript sequences from each genome present in GtRNAdb, and 

generated a multiple sequence alignment of these using Infernal67. A sequence logo was then 

generated from the first 11 nucleotides of each aligned tRNA transcript (in order to include G-

1 for tRNA-His, plus 10 additional nucleotides as in the uniquely aligned read logo above). 

 

Differential modification analysis 

To test for global differential modification between two conditions, first, misincorporation 

proportion and coverage data generated by mim-tRNAseq were used to calculate absolute 

counts of modified and unmodified bases per position for each resolved tRNA transcript. Then, 

log odds ratios (logOR) were calculated for each position, x, as follows: 

𝑙𝑜𝑔𝑂𝑅! 	= 	𝑙𝑜𝑔 )
𝑀"/𝑀#

𝑈"/𝑈#
-	

where Ma and Mb are the counts of modified nucleotides at position x in condition a and b, and 

Ua and Ub are the counts of unmodified nucleotides at position x in condition a and b, 

respectively. Significance for each logOR was determined with chi-square tests using the 

respective modified and unmodified nucleotide counts for each condition in a two-dimensional 

contingency table for the Pearson’s chi-square test. Correction for multiple testing was 

performed with the FDR method. Following significance tests, logOR values were filtered for 

FDR-adjusted p-values ≤ 0.01, absolute log2 fold-changes ≥ 1, and total misincorporation at 

the given position of 10% or more in at least one of the conditions to ensure only sites with 

high-confidence misincorporation levels are kept. The resulting logOR were used in 

generating heatmaps for individual contrasts between cell types or experimental conditions. 
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Supplemental information 

  

Figure S1 Development and optimization of the mim-tRNAseq workflow. Related to Figure 1 and Figure 2. 
(A) Stability of linker-ligated tRNA from S. cerevisiae cells in TGIRT reactions. The reactions were assembled in 
the absence of dNTPs and stopped by addition of gel loading buffer immediately after assembly (0 h) or following 
incubation at 42°C for 1 h or 16 h and visualized by SYBR Gold staining after separation on a 10% denaturing 
polyacrylamide gel. 
(B) Alignment statistics of HEK293T tRNA with Bowtie and Bowtie 2 after trimming 3 nucleotides from 5’ read ends 
(n = 1). 
(C) Alignment statistics of published HEK293 T-Rex Flp-IN tRNA data from QuantM-tRNAseq, aligned using Bowtie 
2 and collapsed unique tRNA sequences with the published settings (Pinkard et al., 2020). 
(D) Unmapped read proportion, multi-mapping read proportion, and resolution of unique tRNA transcripts by the 
deconvolution algorithm with different cluster identity (ID) thresholds for tRNA from HEK293T (n = 1). 
(E) Fraction of reads uniquely mapped to deconvoluted tRNA transcripts with optimized cluster ID for humans 
(0.95) versus a collapsed non-redundant reference (cluster ID = 1). 
(F) Fraction of reads uniquely mapped to tRNA anticodon families in HEK293T data with and without GSNAP SNP-
tolerance. 
(G) Read coverage for HEK293T tRNA-Val-AAC analyzed with and without GSNAP SNP-tolerance. Y-axis shows 
coverage in read counts. X-axis shows tRNA-Val-AAC reference sequence. Mismatches in aligned reads depicted 
by stacked bar-plots for each mismatch position. 
(H) Comparison of read proportions for inosine 34 (I34) and uridine 34 (U34)-containing serine (Ser) and proline 
(Pro) isoacceptors in HEK293 T-Rex Flp-IN tRNA data from QuantM-tRNAseq using published counts, or counts 
obtained after re-analyzing the same data with the mim-tRNAseq computational pipeline (n = 1). 
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Figure S2 mim-tRNAseq improves resolution, coverage, and full-length transcript recovery. Related to Figure 3. 
(A) Unmapped read proportion, multi-mapping read proportion, and resolution of tRNA transcripts with different cluster ID 
thresholds for tRNA sequencing data from S. cerevisiae, S. pombe, and D. melanogaster BG3-c2 cells (n = 1). 
(B) Alignment statistics for tRNA sequencing data from HEK293-derived cell lines generated under the indicated RT reaction 
conditions (n = 1) or using published QuantM-tRNAseq datasets (n = 2). All data analyzed with the mim-tRNAseq pipeline. 
(C - E) Metagene analysis of scaled sequence coverage across nuclear-encoded human tRNA isotypes in libraries 
generated under the RT reaction conditions given in panel labels (C) or published DM-tRNAseq (D) and QuantM-tRNAseq 
(E) datasets. All analyses were performed with the mim-tRNAseq computational pipeline. 
(F - H) Box plot of full-length fraction per tRNA transcript in datasets from (C - E) (center line and label, median; box limits, 
upper and lower quartiles; whiskers, 1.5x interquartile range). 
(I) Metagene analysis of scaled sequence coverage across mitochondrially encoded tRNA isotypes (one-letter amino acid 
code) in mim-tRNAseq data from the indicated cells. Isotypes in all plots are ordered per sample by differences between 3' 
and 5’ coverage (decreasing order from top to bottom; n = 1). Y-axis values normalized to the second-to-last bin from the 
3’ end. Each x-axis bin represents 4% of tRNA length. Indicated are annotated nuclear and mitochondrial tRNA 
modifications known to pose barriers to RT. 
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Figure S3 Improved tRNA quantification accuracy with mim-tRNAseq. Related to Figure 3. 
(A - D) tRNA 3’-CCA completeness measured by mim-tRNAseq in datasets from S. cerevisiae (A), S. pombe (B), D. 
melanogaster BG3-c2 cells (C), and hiPSC (D). Average proportion of reads aligning to 3’ ends of unique tRNA transcripts 
are shown by different bar colors. Individual proportions per sample indicated by dots (n = 2). 
(E) Sequence logo analysis of uniquely aligned HEK293T reads aligned to soft-clipped untemplated 3’ TGIRT additions 
(top panel; frequency of additions in bar plot insert), and multiple sequence alignment of unique tRNA transcripts in the 
hg19 genome (bottom panel). 
(F) Sequence logo analysis as in (E) but using S. cerevisiae uniquely aligned tRNA reads (top) and unique tRNA transcripts 
from the sacCer3 genome (bottom). 
(G) Correlation plots of S. cerevisiae tRNA expression measured using the mim-tRNAseq method and Cy3 fluorescence 
from published microarray data (n=1, Pearson's correlation coefficient and p-value; Tuller et al., 2010). 
(H) Alignment statistics for S. cerevisiae libraries prepared with TGIRT template-switching RT reaction (left), and 
SuperScript III RT reaction (right). 
(I) Correlation plot of S. cerevisiae unique tRNA transcript abundance to tRNA gene copy number using TGIRT template-
switching reaction for cDNA synthesis. 
(J) Same as (I) but for libraries prepared with SuperScript III RT. 
(K) Metagene analysis of scaled sequence coverage across nuclear-encoded tRNA isotypes for libraries from S. cerevisiae 
prepared with SuperScript III RT. 
(L) Correlation plots of unique tRNA gene copy number and corresponding proportion of aligned reads from hiPSC tRNA 
using the GtRNAdb high-confidence tRNA gene set for the H. sapiens hg19 genome assembly as an alignment reference. 
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Figure S4 RT readthrough, stop, and misincorporation signature analysis at modified sites. Related to Figure 5  
(A - C) RT readthrough per annotated Watson-Crick face modification using tRNA sequencing data from HEK293T cells 
generated with primer-depended RT by TGIRT in manufacturer-recommended conditions (A) or from publicly available DM-
tRNAseq (B) without (left) and with (right) AlkB demethylation, and QuantM-tRNAseq data (C). All data analyzed with mim-
tRNAseq computational pipeline. Modified sites filtered for misincorporation ≥ 10% and nucleotide coverage ≥ 2000 reads 
(note that acp3U was excluded due to insufficient coverage). 
(D - E) Global heatmaps of average proportions of stops to RT for each unique tRNA transcript with coverage above 2000 
reads in tRNA sequencing data from D. melanogaster BG3-c2 cells (left panels; n = 2) and hiPSC cells (right panels; n = 2) 
for cytosolic (D) and mitochondrial (E) tRNAs. Top bar graph indicates mean read proportion that stop at each position, right 
bar graph indicates number of sites of RT stops per transcript, where a stop is counted if more than 10% of the reads do not 
extend past that position. Column labels show canonical tRNA positions. 
(F) Boxplots of misincorporation signatures for annotated modified sites in published human QuantM-tRNAseq data analyzed 
with the mim-tRNAseq computational pipeline (n = 2, center line, median; box limits, upper and lower quartiles; whiskers, 
1.5x interquartile range). Signatures stratified by upstream context (rows) and modification type (columns); proportion per 
nucleotide scaled to total misincorporation. 
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Figure S5 Modification stoichiometry estimates in tRNA from diverse eukaryotes. Related to Figure 6 
(A - C) Global heatmaps of average misincorporation proportions in S. pombe (A), D. melanogaster BG3-c2 cells (B), and hiPSC 
(C) for each unique tRNA transcripts with coverage above 2000 reads (n = 2). Top bar graph indicates mean misincorporation 
at each position, right bar graph indicates number of sites of misincorporation per transcript, where a misincorporation is counted 
if at least 10% of the reads have a detectable mutation signature at that position. Column labels show canonical tRNA positions. 
(D) Primer extension analysis of m1G37 in tRNA-Leu-UAA and tRNA-Pro-UGG with AMV RT using total RNA from S. cerevisiae 
(n = 3). % m1G37 was calculated by dividing the band intensity of the primer stop at position 37 by the sum of all stops (indicated 
with asterisks) and read-through to position 1. 
(E) Comparison of misincorporation rates measured by mim-tRNAseq (n = 2) and RT stop fractions measured by primer 
extension (n = 3) at m1G37 in tRNA-Leu-UAA and tRNA-Pro-UGG from S. cerevisiae. 
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Figure S6 Determinants of tRNA modification status and stoichiometry in yeast and human cells. Related to Figure 6. 
(A - B) Misincorporation proportions at annotated (dark grey) and mim-tRNAseq-predicted (light gray) sites with Watson-Crick 
face modifications in tRNA transcripts from the four species used in this study. Panels are separated by modification type and 
upstream nucleotide (A) or downstream nucleotide (B) relative to RT direction. X-axis labels indicate the canonical tRNA position 
of the modification. 
(C) Sequence logos of aligned tRNA transcripts from budding yeast with low (< 50%; n = 18) or high (> 50%; n = 32) 
misincorporation at m1A58 sites. The main tRNA structural domains are labeled. X-axis indicates canonical tRNA positions. 
(D - E) Global heatmaps of log odd ratios (logOR) of average misincorporation in unique tRNA transcripts in HEK293T vs hiPSC 
(D) and K562 vs hiPSC (E) (n = 2). 
(F -G) logOR heatmaps as in (C) and (D) for budding yeast trm10Δ vs WT (F) and trm1Δ vs WT (G) (n = 2). All logOR values 
in heatmaps (D - G) filtered for significance (Chi-square FDR-adjusted p-value ≤ 0.01) and effect size (average misincorporation 
log2 fold-change ≥ 0.5) for sites detected as modified by mim-tRNAseq. Column names show canonical tRNA position. 
(H) Sequence logos of aligned tRNA transcripts with m22G26, in which misincorporation at m1G9-modified sites was significantly 
increased (upper panel; n = 4) or did not change (lower panel; n = 6) in trm1Δ datasets. 
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Overview 
Since its initial release, mim-tRNAseq underwent significant and continual development, 

upgrades, and functionality additions. Some of this development was prompted from the 

strong community-based input we received, particularly via the GitHub repository page for the 

package. In addition, we received many questions and requests about mim-tRNAseq 

installation, usage, and troubleshooting. 

This encouraged the development of a detailed, peer-reviewed protocol for both the mim-

tRNAseq library generation steps, and the usage of the mimseq computational package. In 

this manuscript, step-by-step details can be found for the complete process for sequencing 

and analysis of eukaryotic tRNA pools, with example data analysis pertaining to human cell-

derived data from the original publication. Furthermore, additional attention is paid to detailing 

critical steps and possible alternatives throughout the process. The most common errors and 

inefficiencies, with potential solutions are discussed in the troubleshooting guide. 

We utilize this opportunity to describe the major updates to mim-tRNAseq, specifically 

the computational package in its current form (version 1 and above), and explain the significant 

algorithmic changes to cluster deconvolution and its impact on the improved accuracy and 

sensitivity of mim-tRNAseq. Expected outcomes are discussed, with focus on the most crucial 

outputs and plots from mimseq to enable quality control at both the library generation and 

computational analysis steps of the protocol. 

In the spirit of open-source, community-driven development of robust methods and 

computational packages, we envision that the mim-tRNAseq protocol will further aid its use 

and improvement over time. Moreover, protocols such as this are crucial for combatting the 

ongoing reproducibility crisis in the biological sciences. 

Contribution: All updates to the mim-tRNAseq computational package, including 

algorithms, data processing, and visualisation were jointly conceptualised by Danny 

Nedialkova and myself and implemented by me. Both Danny Nedialkova and I shared writing, 

review and editing of the manuscript. More specifically, I wrote the original draft of all 

computational steps of the protocol, expected outcomes, details regarding updates to 

deconvolution, and problems and solutions pertaining to computational analyses. All data 

visualisations and figures were prepared by Danny Nedialkova and me.  
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Summary 
Quantifying tRNAs is crucial for understanding how they regulate mRNA translation, but is 
hampered by their extensive sequence similarity and premature termination of reverse 

transcription at multiple modified nucleotides. Here, we describe the use of modification-induced 
misincorporation tRNA sequencing (mim-tRNAseq), which overcomes these limitations with 

optimized library construction and a comprehensive toolkit for data analysis and visualization. We 
outline algorithm improvements that enhance the efficiency and accuracy of read alignment and 

provide details on data analysis outputs using example datasets. 
For complete details on the use and execution of this protocol, please refer to Behrens et al. 

(2021)1.
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Before you begin 
mim-tRNAseq consists of an optimized protocol for cDNA library construction from eukaryotic 

tRNA pools and a suite of computational tools for the analysis, quantitation, and visualization 

of the resulting high-throughput sequencing data. It is based on the efficient synthesis of full-

length cDNAs from tRNA transcripts with a thermostable group II intron reverse transcriptase 

(TGIRT) in reaction conditions that enable the readthrough of nearly all nucleotide 

modifications. To account for extensive sequence similarity among eukaryotic tRNA genes 

and the nucleotide misincorporations in cDNA introduced at modified tRNA sites by TGIRT, 

we developed the mim-tRNAseq computational toolkit, which includes multiple novel 

algorithms that are specifically tailored to the analysis of tRNA-derived sequencing data. 

Details of the development and optimization of mim-tRNAseq can be found in the original 

publication1 and in the package documentation (https://mim-trnaseq.readthedocs.io/en/latest). 

Here, we describe in detail the steps required to implement the library generation and 

data analysis workflow, starting with samples from cultured human cell lines. We also present 

an updated v1.1 of the mim-tRNAseq toolkit, which contains improvements to various aspects 

of the computational workflow that increase the accuracy and efficiency of data analysis. 

 
Note: For all computational steps throughout the protocol, commands to be entered on the 

command line are given in text boxes (starting with “>”) along with comments describing the 

function of the command (starting with “#”). 

 
Preparation of the mim-tRNAseq toolkit environment 

Timing: 1 h 

Before use, the computational toolkit needs to be installed. The package (named mimseq) is 

available on bioconda (https://bioconda.github.io/recipes/mimseq/README.html), GitHub (htt 

ps://github.com/nedialkova-lab/mim-tRNAseq), and archived on Zenodo (https://doi.org/10. 

5281/zenodo.6694873). 

 

Note: We strongly recommend using the conda package and environment manager to install 

the package with all of its dependencies from the bioconda channel. 

 
Note: The GitHub repository is a useful source of community discussion, issues and solutions, 

and requested upgrades and functionality (see Issues tab). 
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Note: The toolkit has been tested extensively on multiple Linux-based servers and computing 

clusters. We recommend a Linux server with at least 32GB of memory and 8 CPU cores. 

These requirements will change depending on the number of samples and size of the datasets 

and tRNA reference, as will the processing time required by mimseq. Although running mimseq 

on a personal computer is theoretically possible, and multi-processing is customizable before 

runtime, we have not tested this. 

 

1. Retrieve and install miniconda. 

 

After running the second command, follow the on-screen prompts and accept the defaults 

(unless otherwise required). 

Following installation, restart the shell session by reconnecting to the remote server in 

order to activate the conda installation. 

 

2. Initialize and configure the mimseq environment. 

 

3. Install mamba. 

 
4. Use mamba to install mimseq and all dependencies. 

 

# Download miniconda 
> wget https://repo.anaconda.com/miniconda/Miniconda3-py39_4.10.3-
Linux-x86_64.sh 
 
# Run the installation script 
> bash Miniconda3-py39_4.10.3-Linux-x86_64.sh 

# Create the mimseq environment with the correct Python version 
> conda create -n mimseq python=3.7 
 
# Activate the environment 
> conda activate mimseq 
 
# Configure environment channels 
> conda config --add channels conda-forge 

> conda install -c conda-forge mamba 

 

> mamba install -c bioconda mimseq 
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5. usearch is not available on conda and needs to be installed manually. 

 
Note: Exporting the usearch binary to a user-specific path as in the last command of Step 5 
is temporary and needs to be done for every new terminal session for that user. It is 
recommended to add the command to the user’s .bashrc file (or similar), or preferably to have 
your system administrator add usearch to a global PATH location (see above, where usearch 
is copied to /usr/local/bin). 

 
6. Test your mimseq installation by determining the version and printing the help. Output 

should look like the screenshots in Figure 1. Please ensure you have installed mimseq 

v1.1 or newer.  

 
Preparation of cell or tissue samples for total RNA isolation 

Timing: days (depending on the organism, developmental stage, and cell or tissue 
type) 
7. Culture cells in an appropriate medium or collect tissue samples according to the purpose 

of the experiment. 

 

CRITICAL: Extra care should be taken when working with animals, as post-mortem RNA 

degradation can occur rapidly in some tissue types (Richter et al., 2022). Dissection should 

be performed as quickly as possible, and tissue samples should be snap-frozen in liquid 

nitrogen and stored at −80°C. 

# Download and unzip usearch 
> wget https://drive5.com/downloads/usearch10.0.240_i86linux32.gz 
> gunzip usearch10.0.240_i86linux32.gz 
 
# Make binary executable and rename 
> chmod +x usearch10.0.240_i86linux32 
> mv usearch10.0.240_i86linux32 usearch 

 
# If root access is available then copy the binary into an accessible PATH 
location, for example: 
> cp usearch /usr/local/bin 

# However, if this is not possible, add the path to the usearch binary to 
your PATH variable 
> export PATH=$PATH:full/path/to/usearch 

 
# where “full/path/to/usearch” should be replaced by the path to the 
usearch binary that was just unzipped and modified. 

> mimseq --version 
> mimseq --help 
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Oligonucleotide ordering 
Timing: 1 h – days (depending on supplier) 

8. Order spike-in RNA, 3′ adapter, reverse transcription (RT), and library construction 

oligonucleotides (Table S1). 

 

CRITICAL: Since the library construction protocol is susceptible to the presence of 

ribonucleases, the spike-in, 3’ adapter, and RT oligonucleotides should be of RNase-free 

HPLC purity grade. 

 
Note: The E. coli tRNA-Lys-UUU tRNA is a suitable spike-in for eukaryotic samples as it differs 

sufficiently in sequence from eukaryotic tRNAs to avoid read misalignment. Other tRNA 

sequences can be substituted, provided that care is taken to ensure that no cross-mapping of 

sample reads to the spike-in reference will occur. 

 

Figure 1 Testing mimseq environment and installation. 
(A) Running mimseq --version displays the mimseq logo and version number, which should be higher than v1.1. 
(B) mimseq --help displays the help documentation on mimseq parameters. 
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Note: The custom 3’ adapter oligonucleotides should contain a 5’ phosphate, which is 

necessary for 5’ adenylation, and should be blocked with 3’ dideoxycytidine (or an alternative 

blocking group) to prevent self-ligation. The invariable 5’ GAT sequence of each adapter 

ensures an identical sequence context at the tRNA-adapter ligation junction (all mature tRNAs 

end with a single-stranded 3’ CCA, or a mixture of 3’ CCA and 3’ CC depending on their 

charging status after periodate oxidation and β-elimination). A 5-nt barcode (I1–I8) is present 

at positions 4–8. This enables the pooling of up to eight samples before reverse transcription, 

which reduces sample input requirements and reagent costs. 

 

CRITICAL: The eight barcoded 3’ adapter oligonucleotides in Table S1 were specifically 

designed to minimize the potential for secondary structure formation, which interferes with 

ligation2. The use of other 3’ adapters may result in decreased ligation efficiency to mature 

tRNAs and should be carefully evaluated first. 

 
Note: The RT oligonucleotide contains a 5’ phosphate necessary for cDNA circularization by 

CircLigase followed by an RN dinucleotide, which mitigates potential sequence biases in this 

reaction3,4. 

 
CRITICAL: Reverse primers for PCR library construction should contain a unique 6-nt index 

sequence (denoted with NNNNNN) to discriminate between different libraries loaded on the 

same flow cell. Indexes should differ by at least 2 nucleotides to avoid demultiplexing errors. 

 
CRITICAL: All primers for library construction PCR should contain a phosphorothioate bond 

between the last two nucleotides at the 3’ end to prevent their degradation by the KAPA HiFi 

Polymerase, which has a strong 3’-5’ exonuclease activity. The use of unmodified 

oligonucleotides results in poor cDNA amplification in step 131. 

 
3’ adapter preadenylation 

Timing: 2 h 
9. Set up a 3’ adapter preadenylation reaction as in McGlincy and Ingolia4. 

 

3’ adapter preadenylation reaction 

Reagent Final concentration Amount 

10 × 5′ DNA Adenylation 
Reaction Buffer 1 × 2 µL 

ATP (1 mM) 0.1 mM 2 µL 
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Mth RNA Ligase (50 μM) 5 μM 2 µL 

Barcoded 3’ adapter (one of I1-
I8) (100 µM) 6 µM 1.2 µL 

RNase-free water n/a 12.8 µL 

Total n/a 20 L 

 
10. Incubate the reaction at 65°C for 1 h, followed by an incubation at 85°C for 5 min. 

11. Add 30 μL RNase-free water and purify the pre-adenylated adapter with the Zymo Oligo 

Clean & Concentrator kit according to the manufacturer’s protocol. Elute in 6 μL RNase-

free water. 

12. Preadenylated adapters can be stored at −20°C for several months. 

 
Note: To prepare a larger batch of a pre-adenylated 3’ adapter, set up several reactions and 

pool them prior to step 11. 

Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Chemicals, peptides, and recombinant proteins 
TRIzol Reagent Thermo Fisher Scientific Cat#15596026 
1-bromo-3-chloropropane Sigma Aldrich Cat#B9673 
Formamide, deionized Sigma Aldrich Cat# F9037 
Acrylamide/Bis 19:1, 40% (w/v) 
solution 

Thermo Fisher Scientific Cat#AM9022 

Urea Sigma Aldrich Cat#U1250 
UltraPure TBE buffer (10 ×) Thermo Fisher Scientific Cat#15581044 
1,4-Dithiothreitol Thermo Fisher Scientific Cat#R0862 
Sodium dodecyl sulphate  Sigma Aldrich Cat#74256 
Sodium acetate Sigma Aldrich Cat#S7545 
Magnesium chloride Sigma Aldrich Cat#M2670 
Sodium chloride Sigma Aldrich Cat# S7653 
Potassoum chloride Sigma Aldrich Cat#P9541 
EDTA Sigma Aldrich Cat#E5134 
Sodium periodate Sigma Aldrich Cat#311448 
Sodium tetraborate decahydrate Sigma Aldrich Cat#B3545 
Ethanol Sigma Aldrich Cat#51976 
Glycogen Thermo Fisher Cat#AM9510 
Low Range ssRNA ladder New England Biolabs Cat#N0364S 
T4 Polynucleotide Kinase New England Biolabs Cat#M0201L 
T4 RNA ligase 2, truncated KQ 
(200U/µL) 

New England Biolabs Cat#M0373L 
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REAGENT or RESOURCE SOURCE IDENTIFIER 
SUPERase•In RNase Inhibitor 
(20U/µL) 

Thermo Fisher Scientific Cat#AM2694 

TGIRT InGex Cat#TGIRT50 
CircLigase ssDNA ligase Lucigen Cat#CL4115K 
KAPA HiFi DNA Polymerase 
(1U/µL) 

Roche Cat#KK2102 

Critical commercial assays 
5´ DNA Adenylation Kit New England Biolabs Cat#E2610L 
Micro Bio-Spin 30 Columns, 
RNase-free 

Bio-Rad Cat#326251 

Costar Spin-X® Centrifuge Tube 
Filters, 0.22 µm 

Corning Life Sciences Cat#8160 

SYBR Gold Nucleic Acid Gel Stain Thermo Fischer Scientific Cat# S11494 
DNA Clean & Concentrator-5 kit Zymo Research Cat#D4013 
Oligo Clean & Concentrator kit Zymo Research Cat#D4060 
Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Cat#Q32854 

Deposited data 
mim-tRNAseq data from HEK293T 
and K562 cells 

Behrens et al.1 GEO: GSE152621 

Oligonucleotides 
Oligonucleotides, RNA sequences 
and primers for library construction 

Behrens et al.1, and this paper; 
see Table S1 

www.doi.org/10.17632/vy8z394
gfh.1 

Software and algorithms 
mim-tRNAseq v1.1.6 Behrens et al.1 GitHub: 

https://github.com/nedialkova-
lab/mim-tRNAseq 
Zenodo:  
https://doi.org/10.5281/zenodo.
6694873 

cutadapt v3.5 Martin5 https://cutadapt.readthedocs.io/
en/stable/ 

GSNAP v2019-02-26 Wu and Nacu6 http://research-
pub.gene.com/gmap/ 

Samtools v1.14 Li et al.7 http://samtools.sourceforge.net/ 
Bedtools v2.30.0 Quinlan and Hall8 https://bedtools.readthedocs.io/

en/late 
BLAST v2.10.1+ Camacho et al.9 https://blast.ncbi.nlm.nih.gov/Bl

ast.cgi?PAGE_TYPE=BlastDoc
s&DOC_TYPE=Download 

Infernal v1.1.4 Nawrocki and Eddy10 http://eddylab.org/infernal/ 
usearch v10.0.240_i86linux32 Edgar11 https://www.drive5.com/usearch

/ 
R/DESeq2 v1.34.0 Love et al.12 https://bioconductor.org/packag

es/release/bioc/html/DESeq2.ht
ml 

R/ComplexHeatmap v2.10.0 Gu et al.13 https://www.bioconductor.org/p
ackages/release/bioc/html/Com
plexHeatmap.html 

Python/Biopython v1.79 Cock et al.14 https://biopython.org/ 
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REAGENT or RESOURCE SOURCE IDENTIFIER 
Other 
Low Range ssRNA ladder New England Biolabs Cat#N0364S 
pBR322 DNA-MspI Digest New England Biolabs Cat#N3032S 
Disposable homogenizer pestles for 
1.5 ml tubes 

VWR Cat#47747-358 

 

Materials and equipment 

Denaturing urea polyacrylamide gel, 10%   

Reagent Final concentration Amount 

TBE (10 ×) 1 × 1 mL 

Urea 7 M 4.2 g 

Acrylamide/Bis 19:1, 40% (w/v) solution 10% 2.5 mL 

RNase-free water N/A make up to 10 mL 

APS (10%) 0.05% 50 μL 

TEMED 0.5% 50 μL 
Total N/A 10 mL 

Prepare freshly before use   

 

2 × RNA loading Buffer 

Reagent Final concentration Amount 

TBE (10 ×) 1 × 1 mL 
Formamide 85% 8.5 mL 
SDS (10%) 0.05% 50 µL 
EDTA (0.5 M) 0.5 mM 100 µl 
RNase-free water n/a 350 µL 
Total n/a 10 mL 
Store at ambient temperature for up to three months or at -20oC for up to two years. 

 

RNA gel extraction buffer 

Reagent Final concentration Amount 

Sodium acetate, pH=4.5 (3 M) 300 mM 1 mL 
SDS (10%) 0.25% 250 µL 
EDTA (0.5 M) 1 mM 200 µl 
RNase-free water n/a 9.55 mL 
Total n/a 10 mL 
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Aliquot in small batches to minimize RNase contamination risk. Store at ambient 
temperature for up to a year. 

 

TGIRT reaction buffer 

Reagent Final concentration Amount 

Tris-HCl, pH=8.3 (1 M) 50 mM 50 µL 
KCl (3 M) 75 mM 25 µL 
MgCl2 (1 M) 3 mM 3 µL 
RNase-free water n/a 922 µL 
Total n/a 1 mL 
Aliquot and store at -20oC for up to two years. 

 

Sodium periodate solution 

Reagent Final concentration Amount 

Sodium periodate 500 mM 0.106 g 
RNase-free water n/a 1 mL 
Total n/a 1 mL 
Prepare freshly before use. 

 

Sodium tetraborate solution 

Reagent Final concentration Amount 

Sodium tetraborate 
decahydrate, pH=9.5 

100 mM 0.38 g 

RNase-free water n/a 10 mL 
Total n/a 10 mL 
Prepare freshly right before use. Dissolve in 7 mL water, adjust pH to 9.5 with 5M NaOH, 
and make up to 10 mL with water. 

 

CRITICAL: To minimize the risk of RNase contamination, wear gloves during all experiments 

and change them frequently. Freshly purified Milli-Q water (Millipore) is sufficiently free of 

RNases for all steps of the protocol. Avoid using DEPC as it can inhibit some enzymatic 

reactions. Use RNase-free plasticware, low binding microtubes, and low-retention long filter 

pipette tips in all steps. Do not autoclave plasticware or buffers. RNases can be removed from 

glassware used for storing larger volumes of buffers (e.g., 1× TBE) by baking at 180°C–220°C 

for several hours. 

 
CRITICAL: Sodium periodate, sodium tetraborate, acrylamide in solution, TRIzol, 1-bromo-3-

chloropropane, formamide, DTT, and SDS are toxic and harmful. Wear appropriate personal 
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protective equipment (goggles, gloves, lab coat) and follow institutional guidelines for handling 

and disposal. 

 
Alternatives: TRIzol and acrylamide/bis (19:1, 40%) can be replaced with equivalent reagents 

from other commercial sources. 

 
Alternatives: Handcast denaturing gels can be substituted with commercially available pre-

cast ones (e.g., 10% Novex™ TBE-Urea Gels from Thermo Fisher Scientific). 

Step-by-step method details 
Total RNA isolation under mild acidic conditions 

Timing: 2–3 h 

This section describes total RNA isolation from cultured mammalian cells under conditions 

that preserve tRNA charging. 

 

CRITICAL: Working at low pH and maintaining samples at <4°C is essential for preserving 

tRNA charging. Avoid processing more than 8 samples at a time to decrease handling time. 

 
Alternatives: If quantitation of tRNA charging is not of interest for the research question, total 

RNA can be extracted with the standard TRIzol protocol or other protocols or commercial kits 

that efficiently recover RNAs of <200 nt in length. In this case, proceed directly to step 46. 

 
Note: RNA yield varies substantially depending on sample source, organism and cell type, 

and growth conditions. Commonly used human cell lines typically yield 15–30 μg of total RNA 

per 1 × 106 cultured human cells with TRIzol-based protocols. 

 
Note: In our hands, RNA isolation with column-based commercial kits can lead to significant 

sample loss and poor recovery of small RNAs. We recommend avoiding the use of such kits, 

particularly when starting with low cell numbers. 

 

1. Carefully aspirate all culture medium. 

2. Add 1 mL of TRIzol Reagent per 1 × 105–1 × 107 cells directly to the culture dish. 

3. Pipet the lysate up and down several times to homogenize and transfer to a 1.5 mL 

microfuge tube. 

4. Snap-freeze samples on dry ice or in liquid nitrogen. 
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Pause point: Samples can be stored at −80°C for several months. 
 
5. Thaw samples at room temperature (20°C–26°C). 

6. Incubate at room temperature for 5 min to dissociate nucleoprotein complexes. 

7. Add 0.2 mL of 1-bromo-3-chloropropane (BCP) per 1 mL of TRIzol Reagent used for lysis, 

then securely cap the tube. 

8. Vortex briefly and incubate for 2 min at room temperature (20°C–26°C). 

9. Centrifuge the sample for 15 min at 12,000 × g at 4°C in a pre-chilled centrifuge. 

10. Place tubes on ice. Transfer the aqueous phase containing the RNA to a new 1.5 mL 

microfuge tube. 

11. Add 0.5 mL of BCP per 1 mL of TRIzol Reagent used for lysis, then securely cap the tube. 

Vortex briefly. 

12. Centrifuge the sample for 5 min at 12,000 × g at 4°C. 

13. Place samples on ice. Transfer the aqueous phase containing the RNA to a new 2 mL 

microfuge tube. 

14. Precipitate RNA by adding the following amounts per 1 mL of TRIzol Reagent used for 

lysis: 

a. 25 μg glycogen. 

b. 100 μL 3 M sodium acetate (pH=4.5). 

c. 1.25 mL of ice-cold 100% ethanol. 

15. Vortex well and incubate at −20°C for at least 30 min. 

 

Pause point: Samples can be stored at −20°C indefinitely. 
 
CRITICAL: The use of ethanol instead of isopropanol for RNA precipitation improves the 

recovery of RNAs <200 nt in length. 

 
16. Centrifuge for 20 min at 12,000 × g at 4°C. 

17. Carefully remove the supernatant with a 1-mL pipette tip. 

18. Add 1 mL of ice-cold 80% ethanol containing 50 mM sodium acetate, pH=4.5. 

19. Vortex the sample briefly, then centrifuge for 5 min at 7,500 × g at 4°C. 

20. Carefully remove the supernatant with a 1-mL pipette tip. 

21. Briefly spin down and remove all remaining liquid with a 10-μL pipette tip. 

22. Air-dry the pellet for 2–3 min. 

23. Resuspend in 30 μL 50 mM sodium acetate (pH=4.5), 1 mM EDTA per 1 mL of TRIzol 

Reagent used for lysis. 

24. Measure RNA concentration on a NanoDrop or an equivalent UV spectrophotometer. 
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Pause point: Aliquot and store at −80°C for up to six months. Avoid repeated freeze-thaw 
cycles. 

 
Note: We recommend assessing the integrity of the extracted total RNA on a TapeStation 

system or by electrophoresis on a 10% denaturing polyacrylamide gel (steps 56–65). The 

tRNA cluster should be clearly visible at 60–100 nt and there shouldn’t be any smearing that 

is indicative of RNA degradation. 

 
Periodate oxidation and	β-elimination 

Timing: 4–6 h 

The 3’ ends of tRNAs that carry an amino acid are protected from periodate oxidation. When 

followed by β-elimination, this treatment leads to the removal of the 3′ nucleotide in uncharged 

tRNAs. The proportion of transcripts that end with 3′-CCA versus those that end with 3′-CC 

after periodate oxidation and β-elimination can thus be used to quantify the fraction of 

aminoacylated tRNA molecules15,16. 

 
CRITICAL: This part of the protocol requires total RNA isolated under mild acidic conditions 

as input. 

 

Note: The starting concentration of RNA in the oxidation reaction should be 0.25–1 μg/μL. 

 

25. Assemble the oxidation reaction in 1.5-mL microfuge tubes. 

Oxidation reaction 

Reagent Final concentration Amount 

10 μg total RNA 0.5 μg/μL X μL 

10 mM sodium acetate, pH=4.5 N/A 20 - X μL 

500 mM sodium periodate (freshly prepared) 50 mM 2.2 μL 
Total N/A 22 μL 

 

26. Incubate for 30 min at 22°C in a Thermoblock. 

 

Note: During the incubation time, prepare one Micro Bio Spin-30 column per sample 

according to the manufacturer’s protocol. 

 

27. Stop reaction by adding 2.4 μL 1 M glucose. Incubate for 5 min at 22°C in a Thermoblock. 
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28. Clean up reactions with Micro Bio Spin-30 columns according to the manufacturer’s 

protocol. The recovered volume will be ∼25 μL. 

29. To each tube, add: 

a. 65 μL RNase-free water. 

b. 10 μL 3 M sodium acetate (pH=4.5). 

c. 25 μg glycogen. 

d. 300 μL ice-cold 100% ethanol. 

30. Vortex well and incubate at −20°C for at least 30 min. 

 

Pause point: Samples can be stored at −20°C indefinitely. 

 

31. Precipitate RNA by centrifuging for 30 min at 16,000 × g at 4°C. 

32. Carefully remove the supernatant with a 1-mL filter pipette tip. Briefly spin down and 

remove all residual liquid with a 10-μL filter pipette tip. 

33. Resuspend pellets in 20 μL RNase-free water. 

34. To perform β-elimination, mix the RNA with 30 μL freshly prepared 100 mM sodium 

tetraborate (pH=9.5). 

35. Incubate at 45°C for 90 min in a Thermoblock. 

 
Note: During the incubation time, prepare one Micro Bio Spin-30 column per sample 

according to the manufacturer’s protocol. 

 

36. Clean up reactions with Micro Bio Spin-30 columns according to the manufacturer’s 

protocol. The recovered volume will be ∼50 μL. 

37. To each tube, add: 

a. 35 μL RNase-free water. 

b. 10 μL 3 M sodium acetate (pH=4.5). 

c. 25 μg glycogen. 

d. 300 μL ice-cold 100% ethanol. 

38. Vortex well and incubate at −20°C for at least 30 min. 

 
Pause point: Samples can be stored at −20°C indefinitely. 

 
39. Precipitate RNA by centrifuging for 30 min at 16,000 × g at 4°C. 

40. Carefully remove the supernatant with a 1-mL filter pipette tip. Briefly spin down and 

remove all residual liquid with a 10-μL filter pipette tip. 
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41. Air-dry pellet for 2–3 min. 

42. Resuspend pellets in 15 μL RNase-free water. 

43. Measure RNA concentration on a NanoDrop or an equivalent spectrophotometer. 

 
CRITICAL: The column purification and RNA precipitation steps are necessary to prevent 

carry-over of sodium periodate and sodium tetraborate. These reagents can inhibit the 

enzymatic removal of the RNA 3′ phosphate resulting from β-elimination with T4 

polynucleotide kinase (PNK) in steps 49–56. This will lead to an underrepresentation of reads 

from uncharged tRNA in the final sequencing library and thus an overestimation of charged 

tRNA fractions. 

 
Spike-in addition and tRNA deacylation 

Timing: 1 h 

The spike-in RNA added in this step is intended to be used as an internal control for 3′-CCA 

quantitation. This is achieved by adding two synthetic tRNAs that differ by a single nucleotide 

at the 3’ end (E.coli tRNA-Lys-UUU-CCA and tRNA-Lys-UUU-CC; for sequences, see Table 

S1) in a 3:1 ratio to total RNA. 
 

Alternatives: Spike-in addition can be omitted if measurements of charging fractions are not 

performed. 

 
Note: Following library construction and analysis by mimseq, the relative quantities of each 

spike-in RNA can be checked in the CCA plots to ensure the expected 3:1 ratio is recovered. 

 

Note: We have successfully constructed tRNA sequencing libraries starting with 0.5 μg of total 

RNA. If input amounts are not limiting, we recommend starting with 2.5–5 μg of total RNA. 

 

44. Dilute 2.5 μg total RNA in 18 μL RNase-free water in a 1.5-mL tube. 

45. Add 0.75 μL of synthetic E.coli tRNA-Lys-UUU-CCA (7.5 ng/μL) and 0.75 μL of 

synthetic E.coli tRNA-Lys-UUU-CC (2.5 ng/μL). 

 
Note: If starting with RNA that has been subjected to periodate oxidation and β-elimination, 

the next step is not necessary; proceed directly to step 49. 

 
46. Add 1.5 μL of 1 M Tris-HCl (pH=9.0) and 0.5 μL SUPERase·In. 
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47. Mix and incubate at 37°C for 45 min to deacylate tRNA. 

48. Proceed to step 49. 

 
Note: This step ensures the presence of a free 3’ OH group in tRNAs, which is a prerequisite 

for efficient ligation of a 3’ adapter in step 50. Although most tRNAs in total RNA samples 

isolated using standard protocols are likely to be deacylated, the stability of the acyl linkage 

can vary by an order of magnitude for different aminoacyl-tRNAs17. 

 

RNA 3’ dephosphorylation 

Timing: 1.5 h 

This step entails the enzymatic removal of RNA 3′ phosphates resulting from β-elimination. 

 

Note: We also perform this reaction when starting with total RNA that has not been subjected 

to oxidation and β-elimination. This serves to ensure that tRNAs with 3’ ends cleaved during 

stress18 or as a result of ribosome-associated quality control19 are also represented in 

sequencing libraries. 

 

49. Assemble the following reaction in a 1.5-mL microfuge tube: 

RNA 3′ end dephosphorylation reaction 

Reagent Final concentration Amount 

Total RNA 0.025–0.1 μg/μL X μL 

10 × T4 PNK buffer 1 × 10 μL 

T4 PNK (10 U/μL) 5 U/μL 1 μL 

SUPERase·In (20 U/μL) 5 U/μL 0.5 μL 

RNase-free water N/A 88.5 -X μL 
Total N/A 100 μL 

 

50. Incubate at 37°C for 45 min. 

51. To each tube, add: 

a. 10 μL 3 M sodium acetate (pH=4.5). 

b. 25 μg glycogen. 

c. 300 μL ice-cold 100% ethanol. 

52. Vortex well and incubate at −20°C for at least 30 min. 

 

Pause point: Samples can be stored at −20°C indefinitely. 

 



Chapter 3 Step-by-step method details  

 105 

53. Precipitate RNA by centrifuging for 30 min at 16,000 × g at 4°C. 

54. Carefully remove the supernatant with a 1-mL filter pipette tip. Briefly spin down and 

remove all residual liquid with a 10-μL filter pipette tip. 

55. Resuspend pellets in 5 μL RNase-free water. 

56. Add 5 μL 2 × RNA loading buffer without dyes. 

 
CRITICAL: Commonly used dyes such as xylene cyanol or bromophenol blue can co-migrate 

with RNA or DNA fragments of interest. Their co-purification with nucleic acids after gel 

extraction may interfere with downstream enzymatic reactions. Therefore, we recommend that 

these dyes be present only in the loading buffer added to marker samples or in empty wells. 

 
Purification of tRNA from total RNA by gel size selection 

Timing: 30 min–1 h 

Transfer RNAs are 70–90 nt in length and run as a discrete cluster on denaturing 10% 

polyacrylamide gels. Gel size selection of 60–100 nt RNAs is a cost-effective approach to 

purify mature, intact tRNAs from total RNA preparations and to separate them from other 

highly abundant short RNAs with a similar size (e.g., 5S rRNA, 5.8S rRNA, snRNAs) or 

potential tRNA fragments and degradation intermediates, which would co-elute in small RNA 

fractions obtained by column-based commercial kits. 

 
Note: The presence of RNA transcripts with substantially fewer RT-blocking modifications that 

tRNAs may result in their preferential use as templates for cDNA synthesis in steps 102–107. 

 

57. Briefly soak glass plates in 1% SDS and rinse with RNase-free water. 

58. Cast a 10% denaturing polyacrylamide gel and let it polymerize for 30 min to 1 h. 

59. Place gel in an appropriate tank and pre-run at 20 mA in 1 × TBE for at least 30 min. 

 
Note: Pre-running is critical for heating up urea-containing polyacrylamide gels, which aids 

RNA denaturation, and for removing excess urea from the wells, which can otherwise lead to 

band distortion. 

 

60. Prepare gel size marker by mixing 1 μL NEB Low Range ssRNA ladder with 4 μL RNase-

free water and 5 μL 2 × RNA loading buffer supplemented with xylene cyanol (0.005%) 

and bromophenol blue (0.01%). 

61. Denature ladder and samples from step 30 at 90°C for 3 min and place immediately on 

ice. 
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62. Turn off the gel tank power supply. 

63. Rinse gel wells to remove excess urea immediately before loading. 

64. Load ladder and samples on gel and run at 20 mA until the bromophenol blue from the 

marker sample reaches the bottom of the gel. 

65. Place gel in an RNAse-free container with SYBR Gold (1:10 000) in 1× TBE for 3 min on 

a platform shaker. 

 
Note: Longer staining periods do not improve signal substantially and may result in fuzzy 

bands and sample loss. 

 
66. Place gel on a clean foil on top of a blue light transilluminator to visualize RNA (for an 

example, see Figure 2A). 

 
CRITICAL: Visualization of total RNA on a denaturing gel is a useful indicator of RNA quality. 

Transfer RNAs, 5S rRNA, and 5.8S rRNA should be visible as discrete bands. Band smearing 

is indicative of RNA degradation, which can occur during sample collection and/or RNA 

isolation. 

 
67. Use a clean scalpel blade to cut out the gel region corresponding to tRNA (∼60–100 nt). 

68. Place the gel fragment in a 1.5-mL microfuge tube. 

69. Elute RNA from gel slice (steps 70–83, resuspend the pellet in 8 μL RNAse-free water). 

 
Elution of RNA from gel slices 

Timing: 30 min - overnight 
Inefficient recovery of RNA from gel slices is a major source of sample loss in sequencing 

library construction workflows that require gel size selection. We optimized this step to 

Figure 2 Typical gel images of key steps during mim-tRNAseq library construction. 
Gel regions to be excised are indicated by a red bracket. 
(A) Total RNA after Step 66. 
(B) Adapter-ligated tRNA after Step 92. 
(C) cDNA after successful reverse transcription in steps 105–113. 
(D) Library DNA after step 135. 
(E) cDNA after suboptimal reverse transcription in steps 105–113. 
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increase the yield of eluted RNA from ∼20% in the classical “crush and soak” method20 to 

∼70%–80%. 

 

70. Crush gel slice with a disposable 1.5-mL tube pestle. 

71. Add 400 μL RNA gel extraction buffer. 

72. Incubate tubes at 65°C for 10 min and 2000 rpm in a Thermoblock. 

 
Alternatives: Gel slurry can also be incubated at 65°C in a water bath. In this case, mix slurry 

by inverting tubes several times every 2–3 min. 

 
73. Snap-freeze gel slurry on dry ice or in liquid nitrogen. 

74. Thaw gel slurry at 65°C for 5 min and 2000 rpm in a Thermoblock. 

75. Elute RNA overnight at room temperature with gentle mixing on a rotating wheel. 

 
CRITICAL: Omitting the freeze-thaw cycle substantially decreases RNA elution efficiency. 

 
Alternatives: An incubation time of ∼2 h at room temperature in the final step is sufficient to 

achieve an elution efficiency of 40%–50%. 

 
76. Remove gel pieces by centrifuging slurry through a SpinX filter at 10,000 × g for 30 s. 

77. Transfer flow-through to a new 1.5-mL microfuge tube. 

78. Add 25 μg glycogen and 1 mL ice-cold 100% ethanol. 

79. Vortex well and incubate for at least 30 min at −20°C. 

 
Pause point: Samples can be stored at −20°C indefinitely. 

 
80. Precipitate RNA by centrifuging for 30 min at 16,000 × g at 4°C. 

81. Carefully remove the supernatant with a 1-mL filter pipette tip. Spin down briefly and 

remove all residual liquid with a 10-μL tip. 

82. Air-dry pellets for 2–3 min and resuspend in the indicated volume of RNase-free water. 

83. Measure RNA concentration on a Nanodrop or an equivalent spectrophotometer. 

 
Pause point: Samples can be stored at −80°C for several months. 

 

Adapter ligation to tRNA 3’ ends 

Timing: 4 h 
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This step adds a barcoded 3’ adapter oligonucleotide (Table S1) to tRNAs to serve as a 

priming site for cDNA synthesis by TGIRT. 

 

CRITICAL: Select a distinct barcoded adapter (I1 to I8) for each sample that will be pooled 

prior to reverse transcription. 

 
CRITICAL: Use block design21 to minimize the potential for differences between samples to 

be confounded by technical variation. For example, do not pool all replicates of a control 

condition in RT reaction 1 and all replicates of a treatment condition in RT reaction 2. 

 
84. Assemble the 3’ adapter ligation reaction. 

3’ adapter ligation reaction 

Reagent Final concentration Amount 

Gel-purified tRNA (100 ng) 0.2 μM 5 μL 

Pre-adenylated 3′ adapter (20 μM) 1 μM 1 μL 

50% PEG-8000 12.5% 10 μL 

10 × T4 RNA ligase buffer 1 × 2 μL 

T4 RNA ligase 2, truncated KQ (200 U/μL) 10 U/μL 1 μL 

SUPERase·In (20 U/μL) 1 U/μL 1 μL 
Total N/A 20 μL 

 

CRITICAL: The 50% PEG-8000 stock solution is very viscous, which impacts pipetting 

accuracy. Inaccurate pipetting can decrease 3’ adapter ligation efficiency, which strongly 

depends on the concentration of PEG-80003. For best results, equilibrate the 50% PEG-8000 

stock solution at room temperature and pipet slowly and/or or use wide bore pipette tips. PEG-

8000 should be added to each reaction tube separately rather than being included in a master 

mix. 

 

85. Mix each reaction by carefully pipetting the entire volume up and down several times. 

86. Incubate at 25°C for 3 h. 

87. Pool reactions from samples with different barcodes and purify adapter-ligated tRNA with 

Zymo Oligo Clean & Concentrator kit according to the manufacturer’s protocol. 

88. Elute in 10 μL RNase-free water. 

89. Add 10 μL 2 × RNA loading buffer without dyes. 

90. Prepare a 10% denaturing polyacrylamide gel and a ladder sample as in steps 57–60. 
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91. Denature ladder and samples from step 88 at 90°C for 3 min and place immediately on 

ice. 

92. Separate ligation products from excess adapter by running samples on the gel as in steps 

62–65. 

93. Cut out bands corresponding to adapter-ligated tRNA (∼110–125 nt, for example see 

Figure 2B) and put each gel fragment in a clean, low-biding RNase-free tube. 

94. Recover adapter-ligated tRNA from gel slices as in steps 70–83. 

 
CRITICAL: Reverse transcription by TGIRT is inhibited by trace amounts of ethanol. Ensure 

that all liquid is removed after precipitating adapter-ligated tRNA. 

 
95. Resuspend pellets in 2.5 μL RNase-free water per sample pooled in step 87. 

96. Measure RNA concentration on a Nanodrop or an equivalent spectrophotometer. 

 
Pause point: Samples can be stored at −80°C for several months. 

 
Alternatives: The gel purification step to remove excess 3′ adapter (steps 92–94) can be 

replaced by 5′-deadenylase treatment followed by digestion of the unligated adapter with the 

5′–3′ ssDNA exonuclease RecJ22. This alternative substantially increases the cost of library 

construction and is very inefficient in our hands. 

 
Primer-dependent reverse transcription of tRNA pools with TGIRT 

Timing: 30 min – overnight 

 
In this step, adapter-ligated tRNA pools are used as templates for primer-dependent cDNA 

synthesis by TGIRT, an engineered version of a bacterial group II intron-encoded reverse 

transcriptase23,24, under reaction conditions that we optimized to favor tRNA modification 

readthrough. 

 

CRITICAL: TGIRT cannot be substituted with commercially available reverse transcriptases 

of retroviral origin (e.g., ProtoScript II, SuperScript IV) since these enzymes have a much 

lower readthrough efficiency of modified sites in tRNAs. 

 
Alternatives: Other group II intron- or retroelement-encoded enzymes such as MarathonRT25 

and an engineered version of the B. mori R2 retroelement reverse transcriptase26 have also 

been reported to efficiently read through RNA modifications27,28. These enzymes are not 



Chapter 3 Step-by-step method details  

 110 

commercially available at this time, and protocols for their use may need to be further 

optimized for tRNA templates. 

 

97. Prepare 100 mM DTT fresh from powder (0.0154 g/mL in RNase-free water). 

98. Pre-warm a Thermocycler block at 82°C. 

99. Assemble the primer hybridization reaction in a low-binding PCR tube: 

RT reaction: primer hybridization 

Reagent Final concentration Amount 

Adapter-ligated tRNA (100 ng) N/A X μL 

RT primer (1.25 μM) N/A 2 μL 

RNase-free water N/A 10 – X μL 
Total N/A 12 μL 

 

Note: Including a control reaction with only unligated 3′ adapter as a template can be useful 

to gauge RT efficiency, as the RT primer binds to the last 15 nucleotides of the 34 nt-long 

adapters. The product of this control reaction can be used as a marker during the size 

selection of cDNA products on the gel in step 113. 

 

100. Denature at 82°C for 2 min and incubate at room temperature for 5 min. 

101. In the meantime, pre-warm a Thermocycler block at 42°C (with lid temperature at 

48°C). 

102. Assemble the RT reaction by mixing the adapter-ligated tRNA:RT primer duplexes with 

the following components: 

RT reaction 

Reagent Final concentration Amount 

Adapter-ligated tRNA:RT primer 125 nM 12 μL 

5 × TGIRT Reaction Buffer 1 × 4 μL 

DTT (100 mM; freshly prepared) 0.5 mM 1 μL 

SUPERase·In (20 U/μL) 1 U/μL 1 μL 

TGIRT-III (10 μM) 500 nM 1 μL 
Total N/A 19 μL 

 

103. Mix each reaction by pipetting the entire volume up and down several times. 

104. Incubate at 42°C for 10 min in a Thermocycler. 

105. Add 1 μL 25 mM dNTPs to each tube. 

106. Mix each reaction by pipetting the entire volume up and down several times. 
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107. Incubate at 42°C for 16 h in Thermocycler. 

 
CRITICAL: Incubation times as short as 1 h can yield a substantial proportion of full-length 

cDNA products from tRNA pools with lower modification frequency and complexity, e.g., from 

budding or fission yeast. An extended reaction time, however, is particularly important for the 

efficient recovery of cDNA from tRNAs with multiple RT-blocking modifications, which is 

characteristic of many human tRNAs. The integrity of tRNA templates is not compromised 

under these reaction conditions1. 

 

CRITICAL: Efficient cDNA synthesis from endogenously modified tRNA requires a molar 

excess of TGIRT, so we highly recommend adhering to the template:TGIRT molar ratios 

described here. 

 

CRITICAL: TGIRT is inhibited by trace amounts of ethanol. Ensure that all residual liquid is 

removed after precipitation of adapter-ligated tRNA in step 94. 

 

108. Pre-warm a Thermocycler block at 95°C. 

109. Add 1 μL 5 M NaOH to each reverse transcription reaction. 

110. Incubate at 95°C for 3 min to hydrolyze the RNA template. 

111. Add 20 μL 2 × RNA loading buffer to each reaction. 

112. Denature cDNA at 95°C for 5 min and place samples immediately on ice. 

113. Separate cDNA from unextended RT primer by running reactions alongside NEB Low 

Range ssRNA ladder (and optionally the 3′ adapter-only control reaction) on a 10% 

denaturing gel as in steps 57–65. 

114. Excise the entire gel region above the unextended RT primer (or adapter-only RT 

product), which will correspond to all cDNA lengths derived from tRNA reverse 

transcription (for an example, see Figure 2C). 

115. Put each gel fragment in a new 1.5 mL microfuge tube. 

116. Crush gel slice with a disposable plastic pestle. 

117. Add 400 μL 10 mM TE, pH=8.0, and snap-freeze gel slurry on dry ice or in liquid 

nitrogen. 

118. Incubate gel slurry for 1 h at 70°C/2000 rpm in a Thermoblock to elute cDNA. 

 

CRITICAL: Omitting the freeze-thaw cycle substantially decreases cDNA elution efficiency. 

 

119. Remove gel pieces by centrifuging slurry through a SpinX filter at 10,000 × g for 30 s. 

120. Transfer flow-through to a new 1.5-mL microfuge tube. 
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121. Add 25 μg glycogen, 40 μL 3 M NaCl, and 1 mL ice-cold 100% ethanol. 

122. Vortex well and incubate for 30 min on ice. 

 
Pause point: Samples can be stored at −20°C indefinitely. 

 

123. Pellet DNA by centrifuging for 30 min at 4°C and 16,000 × g. 

124. Carefully remove the supernatant with a 1-mL pipette tip. Briefly spin down and remove 

all remaining liquid with a 10-μL pipette tip. 

125. Resuspend pellets in 5.5 μL water and proceed with cDNA circularization. 

 

Pause point: Samples can be stored at −20°C for several weeks. 

 
Circularization of cDNA 

In this step, cDNA is circularized with CircLigase to provide a template for library construction 

by PCR. 

 

126. Pre-warm a Thermocycler block at 60°C (lid temperature of 65°C). 

127. Assemble cDNA circularization reaction in a low-binding PCR tube: 

cDNA circularization reaction 

Reagent Final concentration Amount 

Gel-purified cDNA n.d. 5.5 μL 

Betaine (5 M) 1 M 2 μL 

10 × CircLigase buffer 1 × 1 μL 

ATP (1 mM) 0.05 mM 0.5 μL 
MnCl2 (50 mM) 2.5 mM 0.5 μL 
CircLigase ssDNA Ligase (100 U/ μL) 5 U/ μL 0.5 μL 
Total N/A 10 μL 

 

128. Mix each reaction well by pipetting up and down. 

129. Incubate at 60°C for 3 h in a Thermoblock. 

130. Incubate at 80°C for 10 min to inactivate the enzyme. 

 

Pause point: Circularized cDNA can be stored at −20°C for several weeks. 
 

CRITICAL: We do not recommend using CircLigase II as it has much lower ssDNA 

circularization efficiency in comparable library construction protocols3. 
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Note: Under the reaction conditions in step 102, TGIRT adds one to three non-templated 

adenosines to the 3′ ends of most cDNAs1, resulting in a nearly identical 5ʹ – 3′ circularization 

sequence context. 

 
Library construction PCR 

Timing: 30 min–1 h 

The circularized single-stranded cDNA is used as a template for the construction of a double-

stranded DNA library with an appropriate structure for sequencing on Illumina platforms. 

 
CRITICAL: Use reverse library PCR primers with distinct 6-nt indexes to amplify different 
libraries that will be sequenced on the same flow cell. 
 

131. Set up a 50-μL PCR reaction to construct libraries from circularized cDNA. 

Library construction PCR reaction 

Reagent Final concentration Amount 

Circularized cDNA n.d. 2 μL 

dNTPs (10 mM) 0.3 mM 1.5 μL 

Forward library construction primer (10 μM) 0.5 μM 2.5 μL 

Reverse library construction primer (10 μM) 0.5 μM 2.5 μL 

5 × KAPA HiFi GC buffer 1 × 10 μL 

KAPA HiFi DNA Polymerase (1 U/μL) 0.05 U/μL 0.5 μL 

PCR-grade water N/A 31 μL 
Total N/A 50 μL 

 

CRITICAL: The use of other DNA polymerases or buffers can result in the preferential 

amplification of cDNAs with a shorter length or lower GC content29, which introduces bias in 

tRNA abundance measurements. 

 

Note: Circularized cDNA does not need to be purified prior to PCR amplification if its volume 

does not exceed 10% of the final PCR reaction volume. 

 

132. Amplify for 4–6 cycles at a ramp rate of 3°C/second with the following settings: 

PCR cycling conditions 

Steps Temperature Time Cycles 

Initial Denaturation 95°C 3 min 1 

Denaturation 98°C 20 s 4–6 cycles 
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Annealing 62°C 30 s 

Extension 72°C 30 min 

Hold 16°C forever 
 

Note: When performing RT of adapter-ligated tRNA and cDNA circularization according to 

steps 97–130, we find that 4–5 PCR cycles are sufficient to obtain DNA libraries of 2–5 nM, 

which is within the optimal concentration range for Illumina sequencing platforms. If more than 

6 PCR cycles are necessary to achieve this yield, we recommend increasing the starting 

amount of circularized cDNA template in the PCR reaction or optimizing the reverse 

transcription reaction (see problem 1). Performing further PCR amplification will exacerbate 

bias as small differences in amplification efficiency of DNAs with different length and GC 

content will accumulate over multiple PCR cycles29,30. 

 

133. Purify PCR products with Zymo DNA Clean & Concentrator kit according to the 

manufacturer’s instructions. 

134. Elute in 12 μL 10 mM Tris-HCl, pH=8.0. 

135. Use 2 μL to measure DNA concentration with the Qubit dsDNA HS kit. 

 

Note: The DNA concentration of samples is too low to be accurately quantified by UV 

spectrophotometry. 

 

Note: This step efficiently separates the double-stranded DNA libraries (210–225 bp) from 

PCR buffer components, excess dNTPs, and unused PCR primers (which are ∼50 nucleotides 

and therefore below the retention cut-off). Primer removal will be less efficient if longer 

oligonucleotides are used for PCR. In this case, libraries should be purified by size selection 

on a non-denaturing polyacrylamide gel22. Prior to electrophoresis, we recommend that DNA 

clean-up is performed as in step 133 since the presence of the KAPA HiFi GC buffer causes 

band distortion. For an example of a typical gel image of a DNA library, see Figure 2D. 

 

Pause point: Purified DNA can be stored in low-binding tubes at −20°C indefinitely. 
 

136. Assess DNA size and purity by non-denaturing polyacrylamide gel electrophoresis on 

an 8% non-denatring polyacrylamide gel. 

 

Alternatives: Library size can be analyzed on a High Sensitivity D1000 ScreenTape on an 

Agilent 2200 TapeStation Nucleic Acid System. 
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CRITICAL: If purifying libraries by gel size selection, we recommend cutting out fragments of 

∼150 bp to ∼230 bp in length. This will ensure the inclusion of fragments resulting from 

premature termination of cDNA synthesis at (hyper)modified sites. These fragments may not 

be visible as discrete bands after SYBR Gold staining of RT or library PCR samples (Figure 
2C and Figure 2D) since they originate from the very few remaining RT roadblocks in a small 

subset of tRNA transcripts (e.g., ms2t6A37 in human tRNA-Lys-UUU). Failure to include these 

fragments in the sequencing run, however, will lead to underestimating the abundance of the 

tRNAs that give rise to them. 

 
Library sequencing on Illumina platforms 

The libraries generated with this protocol should be sequenced on an Illumina platform with a 

single-end run of >=100 bp. The minimal sequencing read length can be determined by adding 

12 nt to the longest predicted tRNA transcript in the organism of interest. This accounts for the 

supplementary sequences added during library construction and required for demultiplexing 

samples pooled prior to reverse transcription. 

 

Note: Given the high quality scores of single-end reads with a length of 100–150 nucleotides 

on current Illumina platforms, paired-end sequencing is not required for the analysis of tRNA-

derived libraries. 

 

137. Pool and dilute sequencing libraries according to the requirements of your preferred 

Illumina sequencing provider. 

 

Note: The common range of starting library concentration prior to cluster generation on 

Illumina sequencing platforms is 1 nM–4 nM. 

 

Note: For NextSeq 550, the loading concentration of tRNA libraries to achieve an optimal 

cluster density (∼220 k/mm2) is 2 pM. 

 

Note: Most organisms encode only a few hundred tRNA transcripts and the libraries 

generated with this protocol consist almost exclusively of tRNA-derived reads. We, therefore, 

find that a sequencing depth of 3–5 million reads per sample is sufficient for most analyses. 

This should be scaled by the number of individual samples pooled prior to reverse 

transcription, i.e., 40 million reads for a library that contains eight samples, each with a unique 

barcoded 3′ adapter. 
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Demultiplexing and	adapter trimming of sequencing reads 

Timing: 30 min–1 h 

Using fastq files as an input, library demultiplexing and trimming extra sequences at the 3′ and 

5′ added during library construction is performed with cutadapt v3.5 (or newer). 
 

138. Prepare a file of barcodes for demultiplexing. 

 

Note: barcodes.fa should be a fasta-formatted file with one user-selected header and 

sequence per barcoded adapter used in library construction. To ensure an efficient match to 

sequences in reads, we extend the sequence to 10nt (instead of only the 5nt barcode 

sequence itself). Therefore, each sequence in the file contains the common 5′-GAT sequence 

+ unique barcode + CA-3ʹ. Below is an example of barcodes.fa: 

 

Note: The names of the barcodes in barcodes.fa can be chosen freely and will be present in 

the names of the demultiplexed fastq files. 

 

139. Demultiplex fastq files with the following command: 

 

Note: This command uses a for loop to process each fastq file similarly. First, we create a 

filename variable $fn for more appropriate output file names lacking the file type extension 

and any other uninformative information (the basename command might need to be modified 

depending on the naming conventions of your files). Cutadapt is then used to quality-trim each 

# Example barcodes.fa file for demultiplexing 
>I1 
GATATCGTCA 
>I2 
GATAGCTACA 
>I3 
GATGCATACA 
>I4 
GATTCTAGCA 

# Demultiplex each sample fastq file using barcodes.fa 
 
> for i in *.fastq.gz 

do fn=$(basename $i .fastq.gz) 
cutadapt --no-indels -q 30,30 --trimmed-only -j 10 -a 
file:barcodes.fa -m 10 -o $fn'_{name}_trim.fastq.gz' $i 1> 
$fn'_log.txt' 

done 
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read end with a threshold of 30 (-q 30,30) before demultiplexing according to barcodes.fa. 

Additionally, we discard trimmed reads shorter than 10 nt (-m 10) and prohibit indels in 

matches to barcode sequence (--no-indels). 

 

Note: All reads of >= 100 nt should contain an adapter sequence since mature tRNAs are 

<=90 nts, and so only reads with a detected adapter which have been trimmed are kept (--

trimmed-only). 

 

CRITICAL: Adjust -j to a suitable number of processors for demultiplexing according to your 

system capabilities. 

 

Note: An output log.txt file will be produced for each sample processed above (with 1> 

$fn’_log.txt’). We highly recommend assessing these files for trimming efficiency. Typically, 

the vast majority of reads should contain barcodes and adapters (as described above), and 

so the “Reads with adapters” value reported in the log should reflect that (i.e., at least 80% of 

reads containing adapters). Low values may suggest issues in library construction, because 

of e.g., the presence of no-insert libraries due to low RT efficiency. 

 

140. Trim the two additional nucleotides introduced at the 5′ of reads following cDNA 

circularization. 

 

Optional: Demultiplexing and trimming are now complete. However, you may wish to rename 

the “trimFinal.fastq.gz” files according to the samples they represent. For this, a table of which 

samples were multiplexed during library preparation, and which barcodes were used for each 

is useful to track which final trimmed fastq file represents each sample and/or condition. 

 
Preparing mimseq input files 

Timing: 15 min – days for custom references 

Optional: Building custom references for mimseq:  

mimseq contains pre-generated input files for multiple reference genomes. These are 

named using the first letter of the genus and the first three of the species. For example, Homo 

# Trim 2x 5’ random nucleotides 
 
> for i in *trim*.fastq.gz 

do fn=$(basename $i trim.fastq.gz) 
cutadapt -j 10 -m 10 -u 2 -o $fn'_trimFinal.fastq.gz' $i  

done 
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sapiens is given as Hsap. For a complete list of available species, please see the -s/--

species section of the mimseq help page (mimseq --help) or the corresponding section in 

the documentation (https://mim-trnaseq.readthedocs.io/en/latest/start.html#pre-built-referenc 

es). These references also contain the sequence for the synthetic E. coli tRNA-Lys-UUU 

spike-in that is added in step 45 (http://gtrnadb.ucsc.edu/genomes/bacteria/Esch_coli_K 

_12_MG1655/genes/tRNA-Lys-TTT-1-1.html). 

 

Note: For species without pre-generated references, custom input files can be given. Ideally, 

the species will have predicted tRNAs on GtRNAdb (http://gtrnadb.ucsc.edu/). This data can 

be downloaded, and the respective tRNA fasta file and intron information file (.out file) can be 

specified to mimseq with -t and -o, respectively. If available, mitochondrial and/or plastid 

tRNA sequences (in the case of plant species) from the mitochondrial tRNA database 

(mitotRNAdb; http://mttrna.bioinf.uni-leipzig.de/mtDataOutput/) and PtRNAdb (http://14.139 

.61.8/PtRNAdb/index.php) can be given in space-separated format with -m. Plastid 

sequences, in the case of plant species, can also be specified with -m. 

 

Note: tRNAScan-SE2.031 can be used to predict tRNA genes de novo and to generate the 

outputs used in mimseq. 

 

CRITICAL: The formatting of output files and tRNA names must follow the convention as in 

GtRNAdb files and other mimseq prebuilt references. As an example, see the S. cerevisiae 

sacCer3 reference (https://github.com/nedialkova-lab/mim-tRNAseq/tree/master/mimseq/dat 

a/sacCer3-eColitK). 

 

Note: The use of custom input files for species not currently included in mimseq has not been 

extensively tested and might lead to errors at runtime. See troubleshooting problem 3 for 

advice on how to overcome those. 

 

Note: For species that have pre-built references in mimseq, or once the necessary inputs have 

been generated, the only input file needed for mimseq operation is one that specifies the 

sample data. This is a tab-separated file with two columns; the first specifies the path to the 

trimmed fastq files from step 3, and the second specifies the condition or treatment group of 

the sample. 

 

Note: From here on, protocol details are given in reference to running the example data 

present in the mimseq GitHub repository (https://github.com/nedialkova-lab/mim-tRNAseq; 
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see mimseq_hek_1.fastq.gz, mimseq_hek_2.fastq.gz, mimseq_k562_1.fastq.gz, mimseq_k5 

62_2.fastq.gz and sampleData_HEKvsK562.txt). These data are a subset of human HEK293T 

and K562 data generated in the original publication1. 

 

141. Create and save sample data tab-separated text file. 

 
Running mimseq 

 Timing: 15 min–1 h 

 

The mimseq pipeline and its most important parameters are schematically outlined in Figure 
3. 

Running the mimseq command only requires that the sample data input file is specified 

last. All other parameters can occur in any order. 

 

142. Customize [optional] parameters. 

./mimseq_hek_1.fastq.gz  HEK293T 

./mimseq_hek_2.fastq.gz  HEK293T 

./mimseq_k562_1.fastq.gz K562 

./mimseq_k562_2.fastq.gz K562 
 

usage: mimseq [options] sample data 

Figure 3 Schematic of the mimseq computational pipeline 
Highlighted are the main customizable parameters and the analysis steps they affect. See text in running mimseq 
and mimseq --help for detailed parameter descriptions. 
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Note: Listed below are the major customizable parameters that should be considered. 

This is not an exhaustive list; please see mimseq --help for all parameters. Parameters 

that are required are indicated. 

 

a. -n: Experiment name. Output files and indices will have this prefix. REQUIRED. 

b. --out-dir: Output directory name. This directory cannot exist. If it does, for example, 

from a previous mimseq run, please remove it and rerun mimseq. Default is the current 

directory. 

c. --species or -t, -o and -m: Select species/genome of interest (see https://mim-

trnaseq.readthedocs.io/en/latest/start.html#pre-built-references), or specify input files 

(see preparing mimseq input files). REQUIRED; either --species, or -t and -o. 

d. --control-condition: Specify the condition you would like to use as the control. All 

comparisons in DESeq2 and differential modification analysis will be reported relative 

to the control. This must match one of the conditions listed in the sample data file 

exactly. REQUIRED. 

e. --threads: Total available processors to use during analysis (particularly alignment). 

Please scale according to resource availability on your server/computer. 

f. --cluster-id: Cluster identity threshold for tRNA clustering, between 0 and 1. This is a 

genome-specific parameter that needs to be determined for the specific needs of the 

user. Generally, a good choice will maximize uniquely mapping reads and minimize 

multi-mapping reads with little compromise to total deconvoluted sequences. In our 

experience, this value usually lies between 0.90 (e.g., yeast tRNAs) and 0.97 (human 

tRNAs). 

 

Note: When analyzing your own data for the first time, we recommend performing several 

mimseq runs with –cluster-id set to 0.90, 0.93, 0.95, 0.97, or 1, and otherwise identical 

settings. Inspect alignment rate plots and deconvoluted transcript fractions printed in the 

log file to identify the optimal settings for your datasets, biological question, and organism 

of interest. A --cluster-id 1 run is equivalent to the commonly used tRNA read alignment 

strategy of collapsing multi-copy tRNA genes into a single reference. In our experience, 

this results in up to 25% of multi-mapping reads, depending on the organism. 

 

g. --deconv-cov-ratio: Threshold of the required ratio between coverage at 3′ end and 

mismatch used for deconvolution. Coverage reductions greater than the threshold will 

result in non-deconvoluted sequences. This should be adjusted according to the 
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general coverage quality of your libraries (see plots in the cov/ output folder and 

expected outcomes). Low sequence coverage at 5′ ends with a high --deconv-cov-

ratio will result in more non-deconvoluted sequences. 

h. --max-mismatches and --remap-mismatches: Controls the proportion of mismatches 

allowed as a fraction of read length in the first and second round of alignment, 

respectively (excluding known and predicted modification sites). Due to new 

modification detection after the first round of alignment, it is generally advisable to 

reduce --remap-mismatches relative to --max-mismatches to reduce spurious and 

inaccurate read alignment in the second round. Setting either parameter higher 
than 0.1 is not advisable! 

 
Note: When analyzing your own data for the first time, we recommend performing several 

mimseq runs with --max-mismatches set to 0.075 or 0.1 and --remap-mismatches set to 0.05 

or 0.075 and otherwise identical settings. Inspect alignment rate plots and deconvoluted 

transcript fractions printed in the log file to identify the optimal settings for your datasets, 

biological question, and organism of interest. 

 

i. --min-cov: Minimum coverage per unique tRNA after deconvolution required for 

inclusion in coverage plots, modification analysis, and 3′-CCA analysis. This can be a 

fraction of total mapped reads between 0 and 1 or an integer representing absolute 

coverage. Note that all clusters are included for differential expression analysis with 

DESeq2. Default = 0.0005 (0.05% mapped reads). 

j. --max-multi: Maximum number of bam files to process simultaneously. Increasing this 

number reduces processing time but increases total memory usage. Default is 3, 

maximum is the total number of samples. 

 
Note: Processing too many files at once can cause termination of mim-tRNAseq due to 

insufficient memory. If mim-tRNAseq fails during coverage calculation, lower this parameter. 

 

k. --misinc-thresh: Required fraction of reads per cluster or transcript containing a given 

mismatch to pass the novel modification detection threshold. Default is 0.1, i.e., 10% 

of cluster/transcript aligned reads must contain a given mismatch to call a new 

modification. 

 

143. Run mimseq. 
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Note: An example of a mimseq command is given below using the example data in the 

GitHub repository. This utilizes the Hsap (hg38) reference with clustering at 97% 

sequence identity, allows 10% mismatches per read length on round 1 of alignment, and 

subsequently 7.5% on realignment, and filters all tRNAs with less than 0.05% total 

mapped reads from plots. 

 

Note: The above command will utilize the example data supplied in the GitHub 

repository. Please download the four fastq files and sampleData_HEKvsK562.txt file if 

you want to reproduce this analysis. 

 
Cluster deconvolution 

By clustering tRNAs within an anticodon family by a sequence identity threshold, reads are 

aligned to a representative cluster parent, which substantially reduces multi-mapping for reads 

from nearly identical tRNA transcripts1. To restore single-transcript resolution for subsequent 

analyses, we developed a cluster deconvolution algorithm which reassesses aligned reads 

and reassigns them to tRNA transcripts based on mismatch patterns to the cluster parent 

sequence. 

 

Note: Since the original publication, we have introduced several major updates to the cluster 

deconvolution algorithm (Figure 4A). Since v0.3, the set of all mismatches between each 

unique tRNA transcript and the cluster parent are considered, rather than single mismatches 

as in earlier versions. From the full set of mismatches, unique 3′ subsets are determined, and 

aligned reads are searched for these mismatches to reassign them to unique transcripts within 

a cluster. This theoretically allows the distinction and deconvolution of all unique tRNA 

transcripts. When analyzing tRNA pools from an organism that encode a high number of highly 

similar tRNA transcripts, such as mammals, a small proportion of clusters, or particular 

transcripts within a cluster, cannot be deconvoluted due to three main reasons (Figure 4B): 

 

• A small subset of clusters may still exhibit 3′ coverage bias due to modifications that 

induce stops to RT, such as the rare ms2t6A/ms2i6A [1]. Complete deconvolution of 

reads for such clusters might not be possible if coverage is significantly lower at 

mismatches required for deconvolution than at the 3′ end of the tRNA. To overcome 

this, the --deconv-cov-ratio parameter can be used to set a threshold for this difference 

> mimseq --species Hsap --cluster-id 0.97 --threads 15 --min-cov 0.0005 -
-max-mismatches 0.075 --control-condition HEK293T -n hg38_test --out-dir 
hg38_HEK239vsK562 --max-multi 4 --remap --remap-mismatches 0.05 
sampleData_HEKvsK562.txt 
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in coverage (see running mimseq). Coverage at positions required for deconvolution 

not passing this threshold will result in the transcript being marked as not 

deconvoluted. 

Figure 4 Fundamental principles of the new cluster deconvolution algorithm 
(A) Schematic representation of deconvolution methodology. For each cluster, the set of mismatches distinguishing 
each transcript is found. For each set, the minimal unique subsets are found, from which the most 3′ subset is 
chosen. Reads are assessed individually for these mismatches in order to assign them to a member transcript 
within a cluster. 
(B) Schematic representation of conditions when clusters or transcripts cannot be deconvoluted. Either coverage 
at a required mismatch is too low (left), the mismatch is a potentially modified site (middle), or >10% parent 
assigned reads contain mismatches to the parent. 
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• Some tRNA transcripts are only distinguishable from the parent by positions that might 

also be modified sites (for example, G26 or A58). In these cases, it is impossible to tell 

if a mismatch in a read is due to mismatches between cluster members or if it is due 

to misincorporations at the modified nucleotide. Such tRNA transcripts (and the parent 

of the cluster) are also labeled as not deconvoluted. 

• Thirdly, reads that cannot be assigned to a transcript within a cluster are by default left 

assigned to the parent sequence. In very rare cases, these parent-assigned reads also 

contain mismatches that do not pass our modification calling criteria, which indicates 

that they might not originate from the parent transcript either. If 10% or more parent-

assigned reads contain such mismatches, the entire cluster is not deconvoluted. 

 

Transcripts that are not deconvoluted are grouped and their count and modification data are 

aggregated. These are then renamed to provide information on which transcripts remain  

clustered, and are treated similarly to other single transcripts for differential expression 

analysis, modification profiling, and other downstream analyses (Figure 4B). For further 

information on non-deconvoluted transcripts and clusters, please refer to the 

annotation/∗unsplitClusterInfo.txt output file. 

 

Expected outcomes 

There are a number of expected outcomes from the mimseq computational pipeline that can 

be used as quality control (QC) for your experiment or to guide further optimizations to the 

library construction protocol and/or the parameters used for running mimseq. Below are 

examples and details of these outputs. Please refer to the package documentation for a 

description of the full set of mimseq outputs (https://mim-trnaseq.readthedocs.io/en/latest/outp 

ut.html). 

 

Alignment (see	align/	folder) 

An important QC step is ensuring that the majority of sequencing reads are aligned uniquely 

to the reference of choice, with minimal multi-mapping reads. To assess this, see 

mapping_stats.txt, and Remap_alignstats.pdf if --remap is enabled, or Primary_alignstats.pdf 

otherwise. 

 

Note: If --remap is enabled, each library will have two entries in the text file, the first 

representing the results from the first round of alignment, while those labeled “∗∗ NEW 
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ALIGNMENT ∗∗” indicate statistics after realignment. Please only assess the new alignment 

results. 

 

For eukaryotic tRNA libraries constructed with our workflow, there should be >70% uniquely 

mapped reads and <5% multi-mapped reads (Figure 5). Many factors can influence these 

fractions, including various aspects of library preparation (RNA integrity, 3′ adapter ligation, 

RT, and cDNA circularization efficiency), the organism and tRNA reference, and the stringency 

of alignment (mismatch allowance). Please consider all of these aspects when troubleshooting 

low read mappability. 

 

Coverage and full-length transcript proportions (see	cov/	and	mods/	folders) 

Our optimized RT protocol (steps 97–107) reduces RT stops at modified tRNA sites by 

promoting misincorporation. This should lead to a high proportion of full-length reads and 

reduced 3′ end bias in libraries. An easy way to assess this is by looking at the metagene plots 

for total normalized coverage per library scaled to the 3′ end in cov/coverage_byaa_norm_scal 

ed.pdf (Figure 6A). For the test data, there is consistently more than 62.5% cumulative 

coverage at tRNA 5′ ends, indicating efficient readthrough of modifications and a majority of 

full-length transcripts. Full-length transcript proportions can also be assessed by looking at 

mods/RtstopTable.csv. Here, you should see a high level of reads that stop (proportion 

column) for each tRNA transcript close to the 5′ end (canon_pos value close to 1, or 0 for 

Figure 5 Alignment statistics for sample human dataset 
Shown are the uniquely mapping, multi-mapped, and unmapped read proportions per library after realignment (if 
enabled with --remap as in step 142 - 143). 
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tRNA-His). This is also visually represented in the “RT stops” heatmaps for each condition 

(top plot in mods/∗comb_heatmap.pdf; Figure 6B). 

 

Note: The --min-cov parameter will influence the filtering of tRNA transcripts with low 

coverage. In the heatmap below (Figure 6B), only filtered transcripts are displayed. If you 

notice many transcripts in these plots with noisy stop and misincorporation data, please check 

the value used for --min-cov and the proportion of stops and misincorporations for these 

transcripts and their counts in the counts/ output folder. Raising the --min-cov threshold might 

help filter out these noisy, low coverage transcripts. 

 

Figure 6 Quality control for tRNA coverage and full-length transcripts 
(A) Metagene plots of coverage per nuclear-encoded tRNA isotype in each library specified in the sample data 
input file. Coverage is normalized to total mapped reads and scaled to the second last bin. See 
cov/coverage_byaa_norm_scaled.pdf. 
(B) Global heatmaps of average proportions of stops to RT per canonical tRNA position for each unique tRNA 
transcript with coverage above 0.005 (as per --min-cov) in tRNA sequencing data from human K562 cells (n = 2). 
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Normalized tRNA counts and replicate clustering (see	DESeq2/) 

If your samples include replicates, DESeq2 is automatically run using your desired --control-

condition as a basis for comparison. Ideally, replicates would show high similarity to each 

other with regards to DESeq2 variance stabilizing transformed tRNA count data12 to ensure 

high sensitivity for calling differentially expressed transcripts and anticodon pools (isodecoder/ 

and anticodon/ sub-directories, respectively; see vst-transformedCounts.csv for transformed 

count data). Here, it is useful to assess the Euclidean distance between the samples (qc-

sampledists.png; Figure 7A), which should be low between replicates. Replicates should also 

cluster well, especially on principal component 1 in the PCA plots based on normalized count 

data for tRNA transcripts (isodecoder/qc-pca.png; Figure 7B). Poor clustering between 

samples might indicate biological variation in the samples (e.g., due to heterogeneity in cell-

type composition of tissues) or large technical variation during library preparation and 

sequencing. 

 

CRITICAL: We advise against using spike-in tRNAs for global-scaling data normalization and 

absolute tRNA quantification. The overall RNA content per cell, as well as the fraction of total 

RNA composed of tRNA, can vary substantially among different tissues, cell types, and growth 

conditions due to many biological factors32. These differences can unduly influence the 

number of reads mapping to the spike-in in each library, as the spike-in is added to a fixed 

amount of total RNA rather than to a fixed number of cells. 

 

Note: If statistical power is low, which may be the case for more heterogeneous samples such 

as tissues, we recommend increasing the number of biological replicates rather than the 

sequencing depth33. Higher sequencing coverage may still be beneficial in specific cases, e.g., 

Figure 7 Assessing replicate similarity with variance stabilizing transformed (vst) tRNA count data from 
DESeq2 
(A) Distance matrix representing pairwise Euclidean distance for each pair of samples. 
(B) Principal component analysis (PCA) plot using the first two principal components from tRNA isodecoder 
analysis. Percent variance explained by each principal component is given in axis titles. 
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when analyzing misincorporation patterns at modified sites in low-abundance tRNA 

transcripts. 

Limitations 

We have successfully used mim-tRNAseq to profile tRNA abundance, aminoacylation, and 

modification status in samples from a wide range of eukaryotic organisms such as yeast, flies, 

plants, mouse tissues, and human cell lines. The experimental workflow is applicable to any 

organism, though it may require some optimization depending on the type and frequency of 

tRNA modifications present in the sample. We have successfully generated high-quality 

libraries starting with as little as 0.5 μg of total RNA. The protocol is currently not compatible 

with ultra-low input samples or single-cell methodologies. 

The computational pipeline has a degree of customization to allow the user to fine-tune 

the analysis to their particular needs and can also be used with tRNA sequencing datasets 

generated with other tRNA library construction protocols. It is designed for single-end 

sequencing reads and currently does not work on paired-end ones. However, since mature 

tRNAs are <= 100 nt in length, paired-end data are unnecessary. Finally, mim-tRNAseq is 

currently not designed for investigating pre-tRNAs, but this functionality is currently under 

development. 

 

Troubleshooting 

Problem 1 

Low yield of full-length cDNA after reverse transcription. 

 

Potential solution 
Performing reverse transcription of adapter-ligated tRNA under low-salt conditions and for an 

extended time is critical for obtaining a high proportion of full-length cDNA molecules. 

Typically, more than 50% of the RT primer is extended, and the major cDNA products visible 

on gel are full-length (Figure 2C). Efficient reverse transcription is critically important for 

minimizing amplification bias during library construction PCR. 

Poor reverse transcription manifests as the extension of only a small fraction of the RT 

primer (Figure 2E) or the presence of shorter cDNA fragments detectable as dominant and 

discrete bands on gel1.There are two potential causes for this: i) ethanol carry-over from 

template precipitation, which can inhibit reverse transcription, and ii) loss of TGIRT activity 

upon prolonged storage. We, therefore, recommend purifying adapter-ligated tRNA with the 

Zymo Oligo Clean & Concentrator after step 96. This can be done routinely if sample input 
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amounts are not limited. In addition, we have observed that TGIRT can lose activity when 

stored for more than 3 months at −20°C. We recommend −80°C for prolonged enzyme storage 

while avoiding repeated freeze-thaw cycles. 

 
Problem 2 

When running mimseq, the step Analyzing misincorporations and stops to RT, and analyzing 

3′ ends produces the following: 

 

Potential solution 
This error is often caused by an empty or sparse misincorporation table 

(mods/mismatchTable.csv). This might result from very poor alignment. First, check that 

adapter trimming has been done correctly by analyzing cutadapt logs (steps 138 – 140). 

Validate your trimming approach on another dataset, or by manually trimming reads at both 

ends to ensure some alignment. 

 
Problem 3 

When running mimseq, errors occur during “tRNA processing (Processing tRNA 

sequences…)” or shortly after. For example: 

 

Potential solution 
This usually indicates problems with your input reference files (see preparing mimseq input 

files). You have most likely specified custom input files with -t, -o, and/or -m. If these files are 

not present on GtRNAdb (http://gtrnadb.ucsc.edu/) for your species of interest, please ensure 

that the header for each sequence in the fasta file of genomic tRNAs is formatted exactly the 

same as those from in the mimseq pre-built indices. An example can be found here; pay close 

IndexError: Too many levels: Index has only 1 level, not 2 

ID = re.search("tRNAscan-SE ID: (.*?)\).|\((chr.*?)-
",seqIO_dict[seqIO_record].description).groups() 
AttributeError: 'NoneType' object has no attribute 'groups' 

tRNA_dict[seq]['anticodon'] = anticodon = re.search('.tR(NA|X)-.?-(.*?)-
', seq).group(2) 
AttributeError: 'NoneType' object has no attribute 'group' 
 

anticodon = seq_parts[4] 
IndexError: list index out of range 
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attention to the order of information, the number of fields separated by spaces, the naming 

convention for tRNA genes, and the tRNAScan-SE ID given in parentheses that matches the 

corresponding entry in the out file (specified with -o). 

 
Note: If mitochondrial and/or plastid sequences are specified with -m, these also require 

specific formatting that is distinct from the nuclear genomic file as they match the format 

provided by the mitotRNAdb (http://mttrna.bioinf.uni-leipzig.de/mtDataOutput/). If formatting is 

incorrect, mimseq will produce an error similar to the third error above. See an example here 

for correct formatting; again, pay close attention to the number of fields per sequence header 

(i.e., 5) and the use of “|” as a field separator. In this case, the first field specifying the ID can 

be any user-chosen value. The third field is a unique species code, which is unused by mimseq 

but must be present. 

 
Problem 4 

Running mimseq fails at the alignment step with a non-zero exit status 9 error during GSNAP 

alignment: 

 

Potential solution 
These errors occur when mimseq tries to run GSNAP for read alignment. In this case, the 

align.log file in the align/ folder can be very useful for debugging. Most commonly, there is an 

error in the path to the trimmed fatsq files supplied in the sample data file (see preparing 

mimseq input files). Carefully check these paths to make sure they point to files that exist. In 

this case, the log file will show something such as the following: 

 
Other possibilities include incorrect GSNAP version installations. Please ensure that GSAP 

version 2019-02-26 is installed by typing “gsnap --version” in the terminal within your mimseq 

environment. With newer versions, an error will be produced due to changes in parameters 

available in the gsnap command: 

subprocess.CalledProcessError: Command '['gsnap', '--gunzip', '-D', 

'hg38_HEK239vsK562/Hsap_tRNAgenome', '-d', 'Hsap_tRNAgenome', '-V', 

'hg38_HEK239vsK562/Hsapsnp_index', '-v', 

'hg38_diff_modificationSNPs'...]' returned non-zero exit status 9. 

Cannot open gzipped file ./mimseq_k562_.fastq.gz 

 

gsnap.avx512: unrecognized option '--ignore-trim-in-filtering' 
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Problem 5 

Samples show low uniquely mapped read proportions in align/mapping_stats.txt. 

 

Potential solution 
This problem may arise for several reasons. First, reassess your read trimming step and 

ensure that the correct barcodes and adapter sequences were specified in barcodes.fa. Check 

that the proportions of reads trimmed in the log files are as expected (>80% reads with 

adapters) and that not too many reads were excluded because they were too short. A high 

proportion of short reads may indicate poor modification readthrough during RT or too many 

PCR cycles during library construction, resulting in overamplifying short cDNA fragments. 

Ensure that RT is performed with templates of high purity and with a fresh enzyme batch, and 

minimize PCR cycles. 

Secondly, check that your alignment and realignment mismatch allowance (Step 142-

143) is not too stringent. Try raising these values and assessing how this impacts the 

alignment statistics for each alignment round. Be cautious not to raise these values too much 

as this may cause misalignment and spurious modification calling (see mods/predictedMods 

.csv). 

Lastly, evaluate if you have contamination of other RNA types in your sample, such as 

rRNA or snoRNA. This may result from RNA degradation during sample collection and/or RNA 

isolation (Steps–1 - 12) or from imprecise cutting out of tRNA-containing gel fragments Step 

38 (Figure 2A). Align trimmed reads to the full genome of the species of interest and assess 

areas and gene features with high read coverage to identify potential contaminants and 

optimize RNA isolation and/or tRNA size selection accordingly. 

 
Problem 6 

Spike-in sequences other than E. coli tRNA-Lys-UUU (Table S1) are used during library 

generation and spike-in addition. 

 

Potential solution 
mimseq reference files can be easily edited to include new sequences of interest. The only 

requirement is that the formatting of the sequence header is maintained as in other tRNA 

references.  

 

There are two methods to achieve this: 

1. The reference fasta files can be downloaded from GitHub (https://github.com/ 

nedialkova-lab/mim-tRNAseq/tree/master/mimseq/data), edited, and specified to 
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mimseq with -t. Please note that the corresponding intron information .out file also 

needs to be specified with -o and can also be downloaded from the link above. 

2. The reference files included in your local installation of mimseq can be directly 

modified. To find the location of these, activate your mimseq environment, determine 

the location of the mimseq executable file, and use this path to find the included data/ 

folder. For example: 

 

 
In this case, the prebuilt references will be found in 

 

The appropriate reference folder can be found here, and the fasta file within can be edited and 

saved. 

This is more problematic if something goes wrong as the mimseq master files would have 

been permanently changed. However, this method does allow you to specify the reference 

simply with the --species parameter.  

In both cases, if an unspliced intron-containing spike-in is used, there will need to be a 

matching entry in the corresponding .out file with a matching tRNAScan-SE ID number to 

ensure correct splicing. 

 

Resource availability 
Lead contact 
Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the lead contact, Danny D. Nedialkova (nedialkova@mpg.de). 

 
Materials availability 
This study did not generate new unique reagents.  

 
Data and code availability 
The mim-tRNAseq computational pipeline is available under a GNU public License v3 on 

GitHub (https://github.com/nedialkova-lab/mim-tRNAseq), Zenodo (https://doi.org/10.5281/ 

zenodo.6694873) and on Bioconda. The accession number for the sequencing data reported 

in the original publication is GSE152621. Example analyses presented here are based on a 

subset of the replicate HEK293T and K562 data (GSM4618859, GSM4618860, GSM4618861, 

# find mimseq executable 

> which mimseq 

/home/drew/anaconda3/envs/mimseq/bin/mimseq 

 

/home/drew/anaconda3/envs/mimseq/lib/python3.7/site-packages/mimseq/data/ 
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GSM4618862) which are available in the GitHub repository. A package description and 

installation guide are available at https://mim-trnaseq.readthedocs.io/en/latest/. 

Supplementary Table S1 containing oligonucleotides, RNA sequences and primers for library 

construction can be found on Mendeley Data (www.doi.org/10.17632/vy8z394gfh.1). 
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Open-source and community-driven development 

within the mim-tRNAseq framework 
Despite over 60 years since their initial discovery1, many aspects of tRNA biology remain 

elusive. Their unique structural and chemical attributes remain difficult barriers to overcome 

in advancing deep-sequencing technology for their quantitation and analysis. However, their 

abundance, complex life-cycle, and pivotal role in translation emphasise the need to further 

understand the fundamental biology of these RNA species and the unique avenues for 

application in therapy and biotechnology. 

This work represents the development of a new state-of-the-art methodology, mim-

tRNAseq, for global tRNA transcriptome analysis in eukaryotes. We show that previous 

barriers to library generation and computational analysis are overcome. Moreover, specific 

focus is placed on the computational methods largely overlooked until now. This work, 

therefore, details not only the development and application of mim-tRNAseq in a more 

traditional research format2, but also the development of a detailed step-by-step protocol and 

guide for the use of mim-tRNAseq3. Furthermore, highlighted are important updates to the 

mim-tRNAseq computational package, various sources of documentation, version control and 

code annotation, and a platform for the community to raise issues and request functionality. 

These kinds of protocols and extensive documentation and coding practices are generally 

lacking in all of biological research, contributing to the reproducibility crisis and the lack of 

continued use and maintenance of many computational tools over time4. 

So far, mim-tRNAseq has seen active use in the community, evidenced by the numerous, 

productive exchanges on the GitHub repository, which have led to error debugging, new 

functionality implementation, and multiple technical contributions from users and members of 

the community. Furthermore, the original publication2 has been referenced extensively, 

stressing its applicability and performance as a tool for transcriptome-wide tRNA analysis. 

This level of interest clearly exemplifies the requirement for innovative tools to guide innovative 

discovery in biology. 

Accuracy and precision of quantitative methods 
Although multiple methods for quantitation of tRNA pools exist, the underlying statistical nature 

of such measurements should always be tested and verified. In this regard, various 

terminology and statistics can be used for describing the nature of the data and how closely it 

represents the ground truth of the quantity intended to be measured. Accuracy and precision 

are sometimes used synonymously in the literature, although, strictly speaking, these two 

terms refer to different characteristics of measured quantities5. Accuracy is the closeness of a 
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measurement to the true value of what it is that should be measured, and relates to systematic 

error or bias. While precision is the reproducibility or closeness of measurements from 

independent trials under similar conditions, and relates to variable error. Therefore, precise 

measurements can be inaccurate when they do not reflect the true nature of the quantity. 

Similarly, a method may more accurately estimate a quantity with more variance between 

measurements, and may therefore be less precise.  

Ideally, both high precision and accuracy are desired, but which value makes a method 

more valid? One can argue that consistent precision, despite the accuracy, may make a 

method reliable6, although its measurements may be reliably incorrect. Precision then has 

downstream implications for statistical tests. For example, in testing differential expression 

between tRNA transcripts and anticodon pools, sensitivity can be significantly increased when 

replicates are more precisely measured, resulting in increased detectability of differential 

expression at low fold-changes. However, if the underlying measurements of tRNA abundance 

are inaccurate, then how valid and meaningful are the differential expression results anyway? 

Classifying measurements as precise is relatively straightforward; various measures of 

similarity or distance and clustering can be employed. For expression data, a Euclidean 

distance matrix, hierarchically clustered heatmap of normalized expression, or a PCA or other 

dimensionality reduction method can very quickly show the preciseness of measurements and 

similarity within experimental groups. Such quality control is important to show that the method 

performs similarly time and time again.  

Accuracy, on the other hand, is far more difficult to show. Demonstrating the accuracy, 

or perhaps estimating the extent of error of measured quantities is certainly essential. 

Orthogonal methods such as Northern blots can validate individual measurements of RNA 

abundance from sequencing data. Internal controls and spike-in RNA can help investigators 

understand sources of bias and show the accuracy of the method on a more global scale. 

Similarly, for computational methods, in silico simulated datasets in which RNA abundances 

are known can help test computational biases. Moreover, extensive testing of wet-lab 

approaches by analysis with the same computational tools, or testing of different 

computational tools by analyzing the same input data, can be invaluable in understating 

unique sources of bias and drawing conclusions about accuracy of each method. 

In chapter 2, several of the above methods were employed; E. coli tRNA-Lys-UUU 

oligonucleotides with variable 3’ ends are spiked-in directly after RNA isolation in known 

concentrations to test biases in all subsequent library generations steps, and in alignment and 

quantitation at the computational level, Northern blots verified the trends seen in differential 

expression analysis in various human cell types, tRNA from modification-deficient yeast 

strains were mixed in known concentrations to test the accuracy of modification abundance 

estimation, and mim-tRNAseq was extensively tested against other methods, both in the lab 
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and computationally. Such rigorous testing of both accuracy and precision is crucial in method 

development, and should be discussed extensively along with known limitations and 

remaining biases to ascertain the validity of the method. 

Perspectives and outlook 
The utility of the unprecedented resolution, accuracy, and precision of mim-tRNAseq has 

multiple applications in research and discovery. Utilizing the comprehensive nature of mim-

tRNAseq, investigators can be informed when implementing interventions and therapeutic 

innovations that require a careful understanding of the balance among tRNA anticodon pools. 

Indeed, a recent study utilized mim-tRNAseq to assess potential perturbations to tRNA 

homeostasis following suppressor tRNA (sup-tRNA) administration in a mouse model7. The 

authors show that successful readthrough of the premature termination codon (PTC) by the 

sup-tRNA mitigated the disease phenotype, while mim-tRNAseq results showed that relative 

abundances of tRNAs at the anticodon level remain unchanged, and charging efficiency of the 

parental isodecoder remains highly efficient in the presence or absence of treatment with the 

sup-tRNA7.  

The mim-tRNAseq package allows the simultaneous analysis of multiple characteristics 

of the tRNA pool, not only abundance and aminoacylation levels. The study of modifications 

in all RNA types has seen increased interest in research and biotechnology recently8–11, with 

many studies aiming to understand if modifications change upon stress, differentiation, or 

within disease context, how these changes are elicited, and the effect of such changes. mim-

tRNAseq implements transcript-level resolution analysis of modification stoichiometry. We 

validate these measurements for select modifications, showing their accuracy. Of course, 

mim-tRNAseq is limited to Waston-Crick face modifications, and validation of modification 

abundance has not been carried out on an extensive set of modifications either. However, one 

promising avenue for development would be to extend mim-tRNAseq capability to analyze 

modifications other than those in tRNA, such as mRNA and rRNA. 

In the biotechnology space, many companies are now interested in RNA modifications 

as targets for human health and disease. Storm therapeutics (www.stormtherapeutics.com), 

for example, aims to use small molecule inhibitors against RNA-modifying enzymes. In this 

way, alterations to the epitranscriptome may act as therapeutics agents – a treatment method 

already demonstrated for myeloid leukemia12. Storm therapeutics is currently using high-

throughput mass-spectrometry for the detection and quantitation of RNA modifications in 

different samples13. However, issues of sensitivity, cost, and difficulty in retaining sequence 

context information with mass spectrometry-based methods may implicate more sensitive, 
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cheaper, and higher resolution sequencing-based methods such as mim-tRNAseq as effective 

complementary methods to aid in the examination of the epitranscriptome. 

Single-cell RNA sequencing (scRNA-seq) presents another exciting area of research that 

is currently under active development, particularly with regards to computational analysis14. In 

this approach, RNA from single cells is sequenced to generate gene expression profiles from 

each cell, removing the masking effect of gene expression dynamics in subpopulations of cells 

typically present in bulk RNA sequencing. This technology holds incredible promise for 

unprecedented spatial and temporal resolution of RNA abundance dynamics at the individual 

cell level, giving investigators insight into the subtle differences that underlie cell-type cell 

heterogeneity.  

In the future, scRNA-seq can be further improved to overcome some remaining hurdles. 

Limited cellular RNA from individual cells makes measuring low abundance transcripts 

challenging, and generally leads to high uncertainty in quantitative measurements15. 

Amplification of such material, for example with PCR, which is common in RNA-seq library 

generation, adds noise to the data. Moreover, adding more resolution to experiments 

increases dimensionality of the resulting data matrices, which require more complex and 

scalable models and analysis frameworks14,15. However, as solutions to these challenges are 

developed, single-cell sequencing for tRNA becomes an enticing prospect to increase the 

resolution and our understanding of complex regulation of eukaryotic tRNA pools. Although 

recent studies have begun to use single-cell technology to study tRNA regulation, such as 

querying chromatin state around tRNA genes in mouse and human tissues with single-cell 

ATAC-seq (scATAC-seq)16, single-cell measurements of tRNA abundance have not yet been 

performed, but surely will provide insights into many unanswered questions regarding tRNA 

biology and translation control.
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