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Abstract: Space weather describes varying conditions between the Sun and Earth that can degrade
Global Navigation Satellite Systems (GNSS) operations. Thus, these effects should be precisely and
timely corrected for accurate and reliable GNSS applications. That can be modeled with the Vertical
Total Electron Content (VTEC) in the Earth’s ionosphere. This study investigates different learning
algorithms to approximate nonlinear space weather processes and forecast VTEC for 1 h and 24 h in
the future for low-, mid- and high-latitude ionospheric grid points along the same longitude. VTEC
models are developed using learning algorithms of Decision Tree and ensemble learning of Random
Forest, Adaptive Boosting (AdaBoost), and eXtreme Gradient Boosting (XGBoost). Furthermore,
ensemble models are combined into a single meta-model Voting Regressor. Models were trained,
optimized, and validated with the time series cross-validation technique. Moreover, the relative
importance of input variables to the VTEC forecast is estimated. The results show that the developed
models perform well in both quiet and storm conditions, where multi-tree ensemble learning outper-
forms the single Decision Tree. In particular, the meta-estimator Voting Regressor provides mostly
the lowest RMSE and the highest correlation coefficients as it averages predictions from different
well-performing models. Furthermore, expanding the input dataset with time derivatives, moving
averages, and daily differences, as well as modifying data, such as differencing, enhances the learning
of space weather features, especially over a longer forecast horizon.

Keywords: machine learning; ensemble learning; ionosphere; Vertical Total Electron Content (VTEC)
forecasting; space weather

1. Introduction

Space weather is recognized as the greatest risk to the Global Navigation Satellite
System (GNSS) [1]. As our society is heavily dependent on GNSS applications that require
high-precision positioning, navigation, and timing, it is urgently necessary to develop
advanced forecasting methods of the space weather impact on GNSS in order to mitigate
the catastrophic consequences of this hazard. The impact of space weather and ionosphere
on GNSS signals can be estimated from GNSS observations in the form of the Slant Total
Electron Content (STEC) [2–4], which is proportional to the relative ionospheric delay of GNSS
signals. STEC is usually mapped to the vertical TEC (VTEC) by approximating the ionosphere
as a single layer model, assuming that all free electrons are concentrated within a shell of in-
finitesimal thickness. VTEC exhibits latitudinal and longitudinal variations, diurnal, seasonal,
semi-annual, and sunspot cycle variations, as well as coupling effects [5–7]. Furthermore,
space weather can produce intense, irregular ionosphere variabilities, which can be difficult
to model with traditional mathematical approaches and to properly minimize in positioning
solutions, degrading positioning and navigation performances [8–11]. A complex chain of
physical and dynamical space weather processes between the Sun, the interplanetary space,
the Earth’s magnetic field, and the ionosphere must be taken into account when model-
ing and forecasting these disturbances in the ionosphere. However, we have a limited
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understanding of these coupled processes and often do not have defined functions that can
describe them precisely. On the other hand, artificial intelligence and machine learning
offer a new possibility to learn these relationships directly from data, discover the hidden
relationships and find functions that describe space weather processes.

Machine learning is today one of the most rapidly growing areas [12]. It is suitable
for problems that are too complex or vast for traditional approaches, or for which there
is no known solution at all, by offering a new possibility of learning directly from data,
as opposed to traditional modeling approaches of explicitly defining rules/functions to
describe relationships and patterns in data [13]. Recently, machine learning methods have
been attracting considerable interest in many technical and scientific fields, including
space weather research [14] with a focus on modeling the nonlinear relations that can
describe the underlying physical behavior of the system. The previous machine learning
applications to the VTEC mostly include deep learning with artificial neural network (ANN).
Different ANN architectures were proposed such as feed-forward ANN [15–17], recurrent
ANN such as popular Long Short-Term Memory (LSTM) [18–20] and combined with
convolution (LSTM-CNN) [21,22], Encoder-Decoder LSTM Extended (ED-LSTME) [23],
neural network autoregressive with external input (NARX) [24,25], conditional Generative
Adversial Network (cGAN) [26], as well as Adaptive Neuro-Fuzzy Inference System
(ANFIS) [27,28]. Only a few of the earlier work applied machine learning methods outside
of deep learning, such as Gradient Boosting Decision Tree (GBDT) [27], eXtreme Gradient
Boosting (XGBoost) [29], Support Vector Machine (SVM) [30] and nearest neighbour [31].

To represent the impact of solar activity on VTEC, the solar radio flux F10.7 is usually
used as an input to a machine learning model, while less often sunspot number or EUV
index. Some studies also introduced the solar zenith angle alongside the F10.7 index.
Geomagnetic activity is usually represented with Kp index and/or Ap index, Dst index
and auroral electrojet indices, or time-weighted Ap, Kp and Dst indices. Diurnal VTEC
variations are commonly modeled with hour of day, while day of year is used for extracting
seasonal VTEC variations. Additionally, input data include information on previous
VTEC values. Furthermore, geographic coordinates and geomagnetic latitude are also
incorporated when developing a single model for different VTEC grids/regions. However,
some studies have different approaches, for instance, using spherical harmonics [18],
Taylor series expansion [16] or principal components of VTEC as input [28]. Moreover,
there are models developed solely on VTEC input and output data, such as [31]. VTEC
data were usually extracted from Global Ionosphere Maps (GIM) such as CODE [15,30],
IGS [24,32], UPC-IonSAT [31] or calculated directly from raw GNSS observations, such as
from the CORS (Continuous Operating Reference Stations) observations [16]. Previous
studies demonstrate that the input data selection for a machine learning model significantly
influences the model prediction, and consequently its accuracy. The temporal resolution of
VTEC machine learning models is often 1 h.

Current state of research is mostly related to short-time forecasting from 1 h forecasting,
such as in [15], to 1-day, such as in [24,33], and 2 day forecasting [31].

Regarding the spatial extent of the studies, forecasting was mostly performed for a
single or few GNSS stations or grids. In addition, some studies have been done for regional,
such as [16,17], and global modeling, such as [31]. For the training, various data lengths
were used, from less than 1 year, several years until covering one or two solar cycles.
However, most of the discussed studies used 2 to 3 years of data length. Ruwali et al. [22]
and Srivani et al. [19] observed that deep learning VTEC models increase their accuracy
significantly with increasing training dataset length.

Regarding the VTEC model performance, the RMSE for 1 h VTEC forecast in low-
latitudes ranges from 2 to 5 TECU with different learning algorithms and different levels of
solar activity [21,25,27,30]. For the mid-latitude 1 h VTEC forecast, RMSE is about 1.5 TECU
in 2018 [30], while 1 day VTEC forecast has an RMSE of 4 TECU in high solar activity
and 2 TECU in low solar activity [32]. Accuracy of the 1 day VTEC forecast globally is
about 3 to 5 TECU depending on the models and level of solar activity [24,26,31]. The
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machine learning VTEC models outperform the traditional linear methods, such as the
empirical orthogonal function (EOF) [34] and the autoregressive integrated moving average
(ARIMA) method [20]. Moreover, the global XGBoost VTEC model provides a lower RMSE
of around 1 TECU than the ANN model in 2017 [29]. The GBDT VTEC model outperforms
ANN and LSTM VTEC models by about 6% during high solar activity [27]. The largest
errors in machine learning VTEC models have been observed for the equatorial anomaly
region and space weather events. Overall, the results of previous studies demonstrate that
machine learning can find nonlinear patterns in the data and outperforms traditional linear
modeling methods.

Previous Research Gaps and Our Contribution

A review of previous work reveals that most machine learning VTEC approaches
have been proposed for different types of ANN, i.e., deep learning methods. However,
there are many other methods in the field of machine learning which has either not been
investigated or have been limited discussed. The probable reason for this gap is that
deep learning methods have been widely known as the ground-breaking methods today
in various fields such as automotive driving, speech-recognition. However, as a matter
of fact, it can be claimed that other machine learning methods have significantly good
performance in the analysis of small datasets, whereas deep learning is often incapable of
performing this task and tend to easily overfit the data [35]. The capabilities of different
types of machine learning methods have not been so far explored nor used widely for
VTEC modeling. Previous results [27,29] confirm remarkably well performance of such
machine learning methods for VTEC forecast, much better than neural networks. This is
probably due to the issue of the limited training dataset, where other machine learning
methods outperform deep learning methods. These machine learning methods have been
less commonly discussed in the overall previous VTEC studies, which are predominantly
based on deep learning. In addition, we realized that this limited number of studies was
restricted to a few machine learning methods. On the other hand, deep learning methods
are already studied in detail in numerous papers, and they also require “big data” in order
to exploit their full potential, as already reported [19,22], as they are often overparametrized,
which tends to overfit the data [35]. As a result, a model can correspond too closely to the
training data to the extent that it negatively impacts the model performance on new data,
i.e., reducing its ability to generalize. Moreover, the complexity of using deep learning
methods was another motivation for selecting a more simple approach to the problem of
VTEC forecasting.

Therefore, we want to bridge this gap and perform studies in direction of exploring
new learning algorithms for VTEC forecast. In this context, we introduce new methods for
VTEC forecast such as Random Forest and Adaptive Boosting (AdaBoost) (Section 2.3.2),
while GBDT and XGBoost have been so far reported in only one paper each [27,29]. More-
over, we combine different models into a meta-ensemble via Voting Regressor to produce a
model of higher accuracy with improved generalization (Table 1).

The way the data are partitioned and the model is validated can introduce additional
bias into the machine learning model as it influences its architecture and parameter selection.
Previous studies implemented simple hold-out validation or the classic k-fold validation
technique. In the hold-out procedure, the data are divided into subsets of fixed data points:
training data (mainly comprising 70% to 90% of the dataset), while the remaining part of
the data is equally divided into validation and test datasets. On the other hand, in the
k-fold cross-validation data are randomly partitioned into k equally sized folds containing
different training and validation data points in each iteration. K-fold cross-validation
is shown to be more accurate than the simple holdout method, because it can reduce
variance and hence, decrease the overfitting problem [36]. However, if observations are
temporally dependent, the simple k-fold cross-validation can be problematic and should
be modified [37], since the training and validation samples are no longer independent.
Ghaffari Razin and Voosoghi [28], however, used different testing method of splitting
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24 VTEC values each day in 12 values for training (1, 3, 5, . . . , 23 UT) and 12 for testing
(2, 4, 6, . . . , 24 UT). This approach is also problematic for temporally dependent VTEC,
leading to simple interpolation of VTEC values, and furthermore, dataset contamination,
when training data are not carefully distinguished from validation or testing data. Because
of these reasons, we are not following previous approaches.

We propose a more appropriate approach for time-series forecasting by modifying
classic k-fold cross-validation into time series cross-validation. In the modified version,
we apply rolling cross-validation to VTEC forecasting, which is more suitable for a time-
series problem, by following [38]. Contrary to the standard k-fold cross-validation, here
the VTEC model is not trained on subsequent observations and forecasted on previous
(past) observations. This would result in past data being predicted using the model that
is trained on future (i.e., subsequent) data. It makes no sense to use the values from the
future to forecast values in the past. In addition, we want to avoid looking into the future
when training the model. Furthermore, when using the classic k-fold method for VTEC
forecasting, the models are trained on observations prior to and after specific time periods
and then forecasting is performed for time periods in between. This represents also the
interpolation of datapoints between the time frames for which the model was trained. It
can lead to more optimistic results and introduce bias in model selection and architecture,
as already mentioned. In VTEC forecasting, there is a temporal dependency between
observations, and this relationship needs to be preserved during validation/testing. Time
series cross-validation preserves a temporal dependency, where a model is evaluated on a
rolling basis using many data folds (Section 2.4.1).

Furthermore, a new set of input data is introduced. Reviewing previous work we
noticed that a similar set of input features has been mostly used. In this study, the input
data are expanded with new observations, such as solar wind plasma speed, index of the
interplanetary magnetic field, as well as derived features of first and second derivatives and
moving averages (Table 1). Since the machine learning model accuracy is highly dependent
on the data, we gave special attention and consideration to the selection and derivation
of appropriate input features that can precisely describe complex VTEC variations. In
addition, systematic analysis, selection and preparation of input data, and selection of data
timeframes in a way to enhance machine learning model performance are addressed and
pointed out in the paper, especially for learning rare space weather events (Section 3.1).
Furthermore, daily differences of input and output data are estimated and machine learning
models for VTEC forecast have been trained for the first time on differences, besides the
original data (Section 2.1). Machine learning performance on differences (de-trended data)
is discussed compared to the original dataset (Section 3). This study also discusses the
contributions of input predictors to the VTEC forecast.

To sum up, this paper presents a novel approach for forecasting VTEC and space
weather impact, with the following main contributions and innovations:

1. Machine learning methods of bagging and boosting are introduced for the VTEC
forecasting problem.

2. Tree-based learning algorithms are applied to overcome the deficiencies of the com-
monly used deep learning approaches to VTEC forecasting in terms of complexity,
“big data” requirements, and highly parameterized model (prone to overfitting the
data). Here, we adopted learning algorithms for VTEC forecasting that are simple,
fast to optimize, computationally efficient, and usable on a limited dataset.

3. Moreover, we introduce an ensemble meta-model that combines predictions from mul-
tiple well-performing VTEC models to produce a final VTEC forecast with improved
accuracy and generalization than each individual model.

4. Time series cross-validation method is proposed for VTEC model development to
preserve a temporal dependency.

5. Additional VTEC-related features are added, such as first and second derivatives, and
moving averages. Special attention is also paid to time period selection and relations
within the data to have more space weather examples and near-solar maximum
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conditions, as well as to enable learning and forecasting of complex VTEC variations,
including space weather-related ones.

6. Machine learning models are trained and optimized solely using daily differences
(de-trended data) along the models with original data.

7. The relative contribution of the input data to the VTEC forecast is analyzed to pro-
vide an insight into what the model has learned, and to what extent our physical
understanding of important predictors has increased.

Table 1. Overview of input and output data for machine learning models.

Input Data (Time Moment: i) Output Data (i + 1 h, i + 24 h)

Day of year (DOY)
Hour of day (HOD)
Sunspot number (R)

Solar radio flux (F10.7)
Solar wind (SW) plasma speed

Interplanetary magnetic field (IMF) Bz index VTEC
Geomagnetic field (GMF) Dst index (10°70°, 10°40°, 10°10°)

GMF Kp index·10
AE index

VTEC (10°70°, 10°40°, 10°10°)
EMA of VTEC over previous 30 days

EMA of VTEC over previous 4 days (96 h)
First VTEC derivative (VTEC′)

Second VTEC derivative (VTEC′′)

During this study, the following questions were raised:

1. Can other, simpler learning algorithms than ANN capture diverse VTEC variations
for 1 h and 24 h VTEC forecasts?

2. Can ensemble meta-model achieve better performance than a single ensemble member?
3. How can VTEC models be improved in terms of data and input features? Also, does

the new input dataset bring new information to the VTEC model?
4. Can data modification, such as differencing, enhance the VTEC model learning and

generalization?

2. Methodology

The VTEC model based on machine learning “learns” directly from the historical data
or given examples, which can be understood as past experiences. Learning is achieved by
optimizing the performance of a machine learning algorithm for a task of VTEC prediction,
which presents the prediction of a continuous variable, commonly referred to as regression
in machine learning.

2.1. Data Selection and Preparation

Machine learning is based on data. Therefore, they are impacting the performance of
machine learning algorithms to a big extent. Thus, when developing a machine learning
model, it is essential to select and prepare data in a way that enables model learning. In
addition, the data have to be representative of new cases that may arise in practice in order
to generalize well.

In this paper we use supervised learning, where the set of measurements of both input
and output data need to be clearly specified and prepared, known as training data, in order
to construct the prediction function. Let us define a training sample of vector xi and an
output yi = F(xi) at time stamp i with i = 1, 2, . . . , N as in Equation (2). Whereas, the
vectors xi can be interpreted as the rows of the N × P predictor matrix X, the columns
represents the input variables x̃p with p = 0, 1, 2, . . . , P− 1. The components xi,p of the
N × 1 column vector x̃p = [x1,p, x2,p, . . . , xN,p]

T represent a time series of the pth input
variable. A series of N observations (xi, yi) was prepared for the training and the cross-
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validation, from January 2015 to December 2016, while the test dataset covers the period
from January 2017 to December 2017. The VTEC values for three grid points at high-latitude
(10°, 70°), mid-latitude (10°, 40°), and low-latitude (10°, 10°) were extracted from the Global
Ionosphere Maps (GIM) of CODE (Center for Orbit Determination in Europe), while
data of solar and magnetic activity were obtained from NASA/GSFC’s OMNIWeb [39].
Therefore, VTEC from GIM CODE was assumed to be the ground truth in this study.
Three grid points for VTEC values were selected along the same longitude (10°) in order
to represent latitudinal VTEC variations corresponding to different ionosphere regions
(low- mid- and high-latitude), alongside other VTEC variabilities. In addition, the hour
of the day (HOD) and the day of the year (DOY) were added as input to model the VTEC
temporal dependencies. In addition, new input quantities were calculated, such as the
exponential moving average (EMA), and first and second time derivatives of VTEC, denoted
as VTEC′ and VTEC′′. Forecasting is performed for 1 h and 24 h in the future (Equation (2)).
Table 1 provides an overview of the data. Separate models were developed for each grid
point and each forecast horizon. The dataset for training and cross-validation (January
2015–December 2016) comprises of totally 17,544 examples, while the test dataset (January–
December 2017) contains 8760 examples. Datasets were prepared with 1 h temporal
resolution.

X =


xT

1
xT

2
. . .
xT

N

 =


x0,1, x1,1, . . . , xP−1,1
x0,2, x1,2, . . . , xP−1,2

. . .
x0,N , x1,N , . . . , xP−1,N

 =


DOY1, HOD1, . . . , VTEC′′1
DOY2, HOD2, . . . , VTEC′′2

. . .
DOYN , HODN , . . . , VTEC′′N

, (1)

X =
[
x̃0, x̃1, . . . , x̃P−1

]
,

y = VTEC(i + t) =


y1
y2
. . .
yN

 =


VTEC1+t
VTEC2+t

. . .
VTECN+t

,

where t = 1 for the 1 h forecasting and t = 24 for the 24 h forecasting, for abbreviations see
Table 1.

Firstly, the data were preprocessed and prepared with an 1 h time sampling. A
few missing values encountered are replaced with the average value of a previous and
subsequent value. Some data were not provided as 1 h samples, such as F10.7 and R (24 h
samples) and Kp (3 h samples). There, values were interpolated with the previous one, as it
is done at the OMNIWeb. Afterwards, two approaches followed:

1. After preprocessing, the data (xi, yi) for i = 1, 2, . . . , N are used for the machine
learning algorithm. In this paper this dataset is referred as non-differenced data.

2. Data (except HOD, DOY, EMA and the time derivatives) are time-differenced (∆xi, ∆yi)
by calculating the difference between an observation at time t + 24 h and an observa-
tion at time step i, i.e., ∆xi = xi+24− xi and ∆yi = yi+24− yi. Differencing was used to
reduce temporal dependence and trends, as well as, stabilize mean of the dataset [38],
by reducing daily variations. In this paper this dataset is referred as differenced data.
Values of EMA and time derivatives were calculated from differenced VTEC. At the
end, predicted VTEC differences were reconstructed by adding up the VTEC values
from the previous day.

2.2. Supervised Learning

Supervised learning can be seen as the function estimation or predictive learning
problem. The learning task can be stated as follows: given the values of an input vector
xi (predictor or the independent variable) the aim is to find an approximation F̂(xi) of
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the function F(xi) which maps the input xi to the output yi (response or the dependent
variable) and provides a prediction denoted by ŷi as

yi + ei = ŷi = V̂TEC(i+t) = F̂(xi) (2)

xi = [DOYi, HODi, Ri, F10.7i, SWi, Bzi, Dsti, Kpi, AEi,

VTECi, VTECEMA(30)i, VTECEMA(4)i, VTEC′i , VTEC′′i ]
T

where ei is an error. F̂(·) refers to the approximation function of the nonlinear relationship
between the output value of the VTEC forecast and the input vector considering solar,
interplanetary and geomagnetic indices, as well as the previous VTEC values. This function
is unknown, and is therefore, approximated by optimizing learning algorithms for the task
of VTEC forecasting. Using prepared training samples of input and an output in Equation
(2), an approximation F̂(xi) of the function F(xi) is estimated by minimizing the value of
objective (loss) function L. Employed objective function in this study is the squared error

L =
1
N

N

∑
i=1

e2
i =

1
N

N

∑
i=1

(yi − ŷi)
2. (3)

In this way, the function that describes the input/output relationship is modified as a
response to differences between the real VTEC value yi and generated VTEC prediction ŷi.
This represents learning by examples commonly referred as learning or training phase [35].

2.3. Tree-Based Machine Learning Algorithms

Tree-based algorithms are conceptually simple, but powerful machine learning meth-
ods that can perform well on both small and large datasets to solve linear and nonlinear
modeling problems. Several tree-based machine learning algorithms have been applied in
this study, namely Regression tree and ensemble learning such as Random Forest, eXtreme
Gradient Boosting (XGBoost), and Adaptive Boosting (AdaBoost).

2.3.1. Regression Trees

Decision trees can be classified based on the type of output variable as classification
(categorical output) and regression (numerical output) trees. Within this study, the re-
gression tree was grown on the training data using recursive binary splitting. A small
regression tree with a depth of 3 is shown in Figure 1 for ease of illustration. There, the tree
for VTEC nowcasting was grown using time information, solar and geomagnetic indices as
input, and VTEC as output.

Each regression tree model can be formally expressed as

T(X; Θ) =
J

∑
j=1

γj(X ∈ Rj) (4)

with a set of parameters Θ = {γj, Rj}J
j=1. {Rj}J

1 are disjoint regions that collectively
cover the space of all joint values of the input variables X from Equation (4). The regions
represent nodes in Figure 1. The parameters of a single tree are the coefficients {γj}J

1 and

the quantities that define the boundaries of the regions {Rj}J
1 such as the splitting variables

xl and the values of those variables (split points) s that splits the nodes of the tree. Since the
regions are disjoint, Equation (4) is equal to

T(X) = γj. (5)
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Figure 1. A small decision tree (maximum depth is 3) for VTEC nowcasting (10°10°) based on input
data of temporal information, solar and magnetic activity, and output of VTEC. Inputs x̃p are denoted
by the indices 0, 1 and 3, which correspond to DOY, HOD and F10.7 index, respectively. Since the tree
is small, it takes into account only inputs that have the highest impact on VTEC. Growing a larger
tree will result in more nodes that can consider other inputs as well.

The approach begins at the top of the tree, called the root node, as presented in Figure 1.
At this point all observations belong to a single region R. The root node in Figure 1 contains
14,036 observation samples. The mean VTEC value γ of all observations within the region
R is 17.642 TECU. The decision splitting in the rote node is given as x̃1 ≤ 6.5, which
represents the split point, while input variable x̃1, representing HOD, is splitting variable
of the region R. The input space is then divided into two distinct and non-overlapping
regions R1 (where the condition is True, i.e., x̃1 ≤ 6.5) and R2 (where condition is False, i.e.,
x̃1 > 6.5). Therefore, considering a splitting variable x̃p with p = 1, 2, . . . , P− 1 and split
point s, two splitting regions can be defined, based on a decision splitting, as [35]

R1(p, s) = {X | x̃p ≤ s}, R2(p, s) = {X | x̃p > s}. (6)

The splitting variable (x̃p) and split point s are found in a way to solve [35]

min
l,s

[min
γ1

∑
xp,i∈R1(p,s)

(yi − γi)
2 + min

γ2
∑

xp,i∈R2(p,s)
(yi − γi)

2] (7)

for any choice xl and s, the inner minimization is solved by

γ1 =
1
N ∑

xi∈R1(p,s)
yi, γ2 =

1
N ∑

xi∈R2(p,s)
yi. (8)

The procedure continues further down on the tree, so that the input space, which
covers all joint values of the predictor variable X, is divided into J distinct and non-
overlapping regions R1,R2,. . . ,RJ . This means that the space of the input variables is
successively split, i.e., a node is divided into two sub-nodes or regions further down on the
tree. A sub-node that is divided into further sub-nodes is called a decision node. The values
in each of rectangle (Figure 1) represent the mean VTEC output γj of the yi falling into
region Rj as in Equation (8). A tree stops growing when a node has fewer than a minimum
number of observations needed for splitting. This node represents the terminal node or
leaf. As can be seen, a decision tree is a simple and highly interpretable method, easily
visualized by a two-dimensional graphic, representing an example of a white-box model.

2.3.2. Ensemble Learning

The goal of ensemble learning is to combine predictions of several simple models or
base learners, such as an J-node regression tree, to improve generalizability and robustness
over a single model. Popular ensemble methods include bagging and boosting.
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Random Forest [40] represents a modification of the so-called bagging or bootstrap
aggregation technique, which builds a large collection of de-correlated trees and then
averages them (Figure 2). When building each tree, a random sample of v input variables
is considered as split candidates from a full set of p inputs. Since the forecasting of time
series is performed, each new training set is drawn without replacement from the original
training set. Thus, a single regression tree Tb (for b = 1, 2, . . . , B) is grown by recursively
repeating the following steps for each tree node until the minimum node size is reached:

1. Select random sample of v input variables from the full set of p variables;
2. Find the best splitting variable and split point among the v input variables;
3. Split the node into two sub-nodes.

This procedure is applied to all B trees. The function can be expressed as an average
of all B trees

F̂(xi) =
1
B

B

∑
b=1

T(xi; Θb), (9)

where Θb characterizes the bth tree in terms of splitting variables, cutpoints at each splitting
node and terminal node values. Breiman [40] demonstrated that randomness and diversity
in trees construction lead to lower generalization error and an overall better model with
reduced variance.

In the boosting method, the trees are grown sequentially using the information from
previously grown trees with modified version of the training data (Figure 2). Each boosted
tree can be expressed as

Fm(xi) = Fm−1(xi) +
Jm

∑
y=1

γjm(xi ∈ Rjm), (10)

while the final model can be represented as a sum of such trees

F̂(xi) = FM(xi) =
M

∑
m=1

T(xi; Θm) = FM−1(xi) +
JM

∑
y=1

γjM(xi ∈ RjM) (11)

for the set of regions and constants Θm = {Rjm, γjm}Jm
1 . Fm−1(xi) represents the previous

model, while left side of Equation (11) represents the current tree.
In the AdaBoost [41], the data are modified by applying weights w1, w2, . . . , wN to

each of the training examples (xi, yi) (Figure 2). In the first step, all weights are initial-
ized to wi =

1
N , i.e., the data are trained in the usual manner. For each successive step

m = 2, 3, . . . , M, weights are modified individually and the training is repeated using the
weighted observations. More specifically, at step m, the weights increase for the wrongly
predicted observations in the previous step, while the weights for correctly predicted ob-
servations decrease. Therefore, observations that are difficult to predict receive increasing
attention as iterations proceed. In the end, weighted predictions from all trees, i.e., steps,
are combined to produce the final prediction as in Equation (11).

Gradient boosting offers a generalization of boosting to an arbitrary differentiable
objective function in Equation (3). In the first step, a tree is trained on the original training
data. Then for i = 1, 2, . . . , N the gradient is computed as [35]

− gim = −[ ∂L
∂F(xi)

] F=Fm−1 . (12)

For the squared error loss, the negative gradient represents the residual between the
original and the estimated output −gim = yi − Fm−1(xi). For each successive iteration
(m = 2, . . . , M), a regression tree is fitted to the residuals gim (from the previous iteration)
within terminal regions Rjm (j = 1, 2, . . . , Jm) (Figure 2). Afterwards, the function is updated
as in Equation (10). XGBoost [42] is an optimized gradient boosting algorithm that applies
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shrinkage technique as the regularization strategy to avoid overfitting. This is implemented
by scaling the contribution of each tree by a factor 0 ≤ ν < 1 in Equation (10) as

Fm(xi) = Fm−1(xi) + ν ·
Jm

∑
y=1

γjm(xi ∈ Rjm), (13)

where the parameter ν represents the learning rate of the boosting procedure.

Figure 2. Diagrams of bagging and boosting methods.
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Voting Regressor is an ensemble meta-estimator that comprises several machine learn-
ing models and averages their individual predictions across all models to form a final
prediction. This method is useful for a set of well performing models to compensate for
their individual weaknesses in order to build a single model that can better generalize.

It is often useful to provide information about the underlying relationships between
the inputs and the outputs of the model to improve understanding of what the model has
learned. Using tree-based methods, it is possible to easily estimate the relative importance
or contribution of each input variable to forecasted VTEC. Proposed by [43], it is calculated
as the improvement in minimization of the objective function as a result of using input
variable xl to split the node within a tree. The relative importance of a variable xl is then
calculated as the sum of such improvements overall all internal nodes, for which it was
chosen as the splitting variable. For a collection of decision trees {Tm}M

1 , the relative
importance is averaged over all trees.

2.4. Model Selection and Validation

Parameters, such as the splitting variable and the value of the splitting point, are
estimated from data during the learning phase using an optimization algorithm, as already
discussed. However, every learning algorithm has certain parameters, known as hyperpa-
rameters, that cannot be estimated from data, but need to be tuned for a given modeling
problem. Hyperparameters determine the model architecture and control the model com-
plexity. Their optimal values depend on the data and the problem. They are typically found
by trying different combinations and evaluating the performance of each model. However,
the residual sum of squares on the training data cannot be used to determine their values,
since that would reduce the ability of a model to generalize future data. Therefore, we used
three sets of data, namely the training set (to train the model), validation (to measure the
model performance and optimize its parameters/hyperparameters), and test set (used only
at the end to estimate the generalization error). In this way, we selected the most optimal
(hyper)parameters and provided a measure of the overall reliability and accuracy of the
proposed machine learning models.

2.4.1. Time Series Cross-Validation

Since observations are temporally dependent, we applied the time series cross-validation
technique to preserve a temporal dependency, where a model is trained, optimized, and
evaluated on a rolling basis using many data folds. For reliable performance evaluation, a
large number of folds should be adopted [44]. The data are divided into two folds at each
iteration: a training set and cross-validation set (Figure 3). The model is trained on the
training set, while the (hyper)parameters, that minimize the RMSE, are found using the
cross-validation set. The training set consists only of observations that occurred prior to
observations that form the cross-validation set. The cross-validation data from the previous
iteration are included as part of the next training data set and subsequent data points are
forecasted. The final metric is calculated as the average of the RMSE obtained in each
cross-validation iteration.

Figure 3. Evaluation of model performance using time series cross-validation with 20 folds to prevent
overfitting and evaluate model performance in a robust way. The final metric is calculated as the
average RMSE of every cross-validation iteration.
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2.4.2. Model Architecture

Hyperparameters of tree-based models, that commonly need to be optimized, are
the maximum depth of the tree (max_depth), number of trees in ensemble learning
(n_estimators), the value of learning rate (in boosting), etc. The size of a tree controls
the complexity of the model. Too large tree results in a more complex model that can overfit
the training data, and consequently may not generalize well. The size v = 6 (max_features)
of the random subsets of input variables is considered when splitting a node to introduce
randomness in tree construction in order to improve the accuracy and reduce the overfitting
problem. The lower size of v reduces the correlation between any pairs of trees in Random
Forest and hence, reduces overfitting. However, if there are only a few relevant variables
out of many, v should be set to a higher value, so that the algorithm can find the relevant
variables. For XGBoost, smaller values of learning rate ν (more shrinkage) result in a lower
test error but require a larger number of iterations m [45]. Moreover, data are subsampled
for every tree to further prevent overfitting. Optimal hyperparameters and the range of
values used to search optimal values for hyperparameters are provided in Table 2, where
min_samples_split and min_samples_leaf are the minimum number of samples required
in an internal node and leaf node, respectively. Similar values for hyperparameters were
found for the global XGBoost VTEC model in [29], namely 100 trees, a maximum tree depth
of 6, and a learning rate of 0.1.

Table 2. Hyperparameters of developed machine learning models.

Model Selected Hyperparameters Range of Search

max_depth = 5–8 [4, 5, 6, 7, 8, 9, 10, 15, 20]
Decision Tree min_samples_split = 10–20 [2, 5, 10, 15, 20]

min_samples_leaf = 10 [2, 5, 10, 15, 20]

max_features = 6 [4, 5, 6, 7, 8]
max_depth = 8–10 [4, 6, 8, 10, 12, 15, 20]

Random Forest min_samples_split = 10 [2, 5, 10, 15, 20]
min_samples_leaf = 5 [2, 5, 10, 15, 20]

n_estimators = 300 [50–500] interval of 50

AdaBoost max_depth = 6–8 [3, 4, 5, 6, 7, 8, 9, 10, 15]
n_estimators = 50 [50, 100, 150, 200, 300]

max_depth = 4–6 [3, 4, 5, 6, 7, 8, 9, 10, 15]
XGBoost n_estimators = 100 [50, 100, 150, 200, 300]

learning_rate = 0.1 [0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3]
subsample = 0.5 [0.3, 0.5, 0.7, 1]

Individual models were trained for each grid point and each forecast window, i.e.,
six models were developed for each machine learning method in Table 3. A total of
72 models were developed: 36 for non-differenced data and 36 for differenced data. Learn-
ing algorithms were implemented in the Python programming language using Scikit-learn
library [46].

Table 3. Overview of developed VTEC machine learning models.

Abbreviation Machine Learning Model Approach

DT Decision (Regression) Tree Single tree
RF Random Forest Bagging ensemble
AB AdaBoost Boosting ensemble

XGB XGBoost Boosting ensemble
VR1 Random Forest, AdaBoost & XGBoost Meta-ensemble
VR2 Random Forest & XGBoost Meta-ensemble
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Figure 4 depicts a flowchart of the VTEC machine learning model development. Based
on its performance on training and validation data, the model was optimized in terms
of hyperparameters and data. In the case of high bias, the model with an approximation
function is not complex enough, and therefore, it underfits the data. As the model com-
plexity increases, the variance tends to increase, while the bias tends to decrease, which
results in a decrease in training error (Figure 5). However, too much complexity leads to
an increase in the validation error and consequently to a large test error due to overfitting
(high variance). The aim is to find a balanced model that neither learns from the noise
(data overfitting) nor makes poor assumptions about the data (data underfitting). The final
model complexity is chosen in a way to trade off bias with variance, i.e., balance bias with
variance to minimize the validation error and, consequently, the test (generalization) error.
High bias was fixed by adding new input features and increasing the values for max_depth,
max_features, n_estimators. The high variance was addressed by decreasing the values for
max_depth, max_features, n_estimators, learning_rate, subsample, as well as increasing
the values for min_samples_split and min_samples_leaf (Table 2).

Figure 4. Flowchart of VTEC machine learning model development from data exploration, selection,
and preparation to training and cross-validation until the final machine learning model with the
target approximation function is not found. The model is optimized in terms of its performance. Poor
performance on training and validation data is the result of high bias, while poor performance on
validation data is the result of high variance. They can be solved by increasing or decreasing the
model complexity, respectively. The final machine learning model can be used to forecast VTEC on
new input data.
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Figure 5. Training and validation/test errors as a function of model complexity. Optimal model
complexity yields a balanced model that has neither large bias (data underfitting) nor large variance
(data overfitting).

The training and validation time with 20-folds for the single Decision Tree model is
under 5 s, while it increases for the ensemble learning models from 30 s for XGBoost to
about 5 min for Random Forest (Table 4). Overall, their execution time is under 5 min,
while the testing time is less than one second for each of the models, demonstrating the
computational efficiency of the proposed models.

Table 4. Execution time in seconds of the VTEC models using NVIDIA Tesla P100 GPU with 16 GB
memory.

Machine Learning Model Training and Validation Testing
(s) (s)

DT 2–4 <0.01
RF 300–330 ∼0.30
AB 65–85 ∼0.10

XGB 30–40 ∼0.05
VR1 ∼250 ∼0.35
VR2 ∼200 ∼0.25

3. Results
3.1. Exploratory Data Analysis

Exploratory data analysis is performed to identify significant patterns and correlated
data, as well as to summarize their properties to support the selection of input data for
the machine learning model. It is important to prepare a suitable dataset for learning
algorithms to enable the learning of important features for VTEC forecasting. Our goal was
to create training data with enough relevant and not too many irrelevant inputs and also
not too much correlated input data. These properties can be verified with the correlation
matrix between the input and the output data (Figure 6).

Using the non-differenced data (Figure 6, top left), a weak positive and negative linear
relationship between VTEC and the time information, hour and DOY, respectively, can be
noticed. A weak to a moderate positive relationship can be seen between VTEC and solar
indices (R and F10.7). The relationship to the solar wind and magnetic activity data (Bz,
Dst, AE) indicates a very weak to no relationship at all. On the other hand, the relationship
between differenced VTEC and the time information disappears and there is a very weak
relationship with solar indices (Figure 6, bottom left). However, the relationship between
differenced VTEC and differenced data of solar wind and magnetic activity increased. The
relationship between VTEC(t) with VTEC(t + 1 h) and VTEC(t + 24 h) is very high positive
for non-differenced data, while for differenced data is high positive for VTEC(t + 1 h) and
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low positive for VTEC(t + 24 h). The heatmap for periods of strong and severe geomagnetic
storms (Kp ≥ 7) reveals a weak to moderate relationship between VTEC and all input
data (Figure 6, right). The relationship to data of solar wind speed, Bz, Kp, and AE is
significantly increased. These relationships are not visible in the heatmap over the entire
training period (Figure 6, left) as these events are rare and unrepresented in the dataset
(Figure 7). However, during the space weather event, it becomes apparent that these data
are relevant and should be taken into account. The VTEC prediction during space weather
events is clearly a case of unrepresented classes, i.e., data imbalance, where space weather
events are in minority compared to the quiet period.

Figure 6. Correlation matrix between the model input and ground-truth VTEC. Top: non-differenced
data, bottom: differenced data. left: training data (2015–2016), right: training data for Kp ≥ 7.
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Figure 7. Percentage of Kp data with the values Kp < 3, 3 ≤ Kp < 4, 4 ≤ Kp < 5, and Kp ≥ 5
denoting quiet, moderate, active and storm conditions, respectively, in the geomagnetic field, over
solar cycle 24 (2009–2019) (top left) and for years 2015, 2016 and 2017 (bottom). Top right: Number of
hours of the Kp data with values Kp≥ 5 vs. the maximum values of the sunspot number R and the
solar radio flux F10.7 (both referring to the right y-axis) from 2009 to 2019.

As highlighted in Figure 7 (top left), 85% of the 3 h Kp data from 2009 to 2019 indicates
quiet conditions in the geomagnetic field, while only 2% of the Kp data have reached an
index of 5 or higher. This indicates that geomagnetic storms are strongly underrepresented
and occur rather rarely, leading to imbalanced examples. On the other hand, these examples
are of special interest as they contain useful knowledge and important information for
forecasting purposes. Machine learning boosting algorithms have been shown to be suitable
for applications with imbalanced data [47]. The number of geomagnetic storm conditions
(Kp ≥ 5) was the highest in the years after the solar maximum (reached in April 2014),
i.e., from 2015 to 2017, and in 2012, before the solar maximum (Figure 7, top right). Years
2015 and 2016 have more of these events than other years (Figure 7, bottom). In addition,
they are near the solar maximum. Therefore, they have been chosen for training and cross-
validating the models to have more examples of storm events and near-solar maximum
conditions. The subsequent year 2017 is selected for testing as it includes the strongest
storm of solar cycle 24 (in September 2017). In the training dataset, there are 99 days with
reported Kp ≥ 5, with 56 days in 2015 and 43 days in 2016. In the test dataset, Kp ≥ 5
applies for 37 days.

3.2. K-Fold Selection for Cross-Validation

To achieve optimal results, the appropriate k-fold size was analyzed with respect to the
accuracy of two machine learning models, namely Decision Tree and Random Forest. For
the analysis VTEC is predicted for high-latitude, mid-latitude and low-latitude ionospheric
regions using the varying k-fold sizes: k = (6, 10, 20, 30, 40, 50) (Figure 8). The graph to
the left presents the RMSE for cross-validation and test datasets with Decision Tree and
Random Forest for 6 and 20 folds. The low-latitude VTEC forecast (RMSE) is improved
for about 1 TECU by increasing the k-fold size from 6 to 20, while the RMSE for the high
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and mid-latitude VTEC is similar for both k-folds. Only for Decision Tree, a slight RMSE
degradation for the high-latitude VTEC is observed for test data with 20 folds, which may
be due to overfitting as a single tree tends to overfit the data. However, the improvement in
the low-latitude VTEC is significantly higher. The graph to the right illustrates the RMSE as
a function of the number of k-folds for the low-latitude VTEC, where k = 20 folds appear to
be optimal. The low-latitude VTEC has more complex variations, such as those due to the
equatorial anomaly. Using a smaller k-fold size, the model is trained and cross-validated
with larger data samples in a single k-fold with a smaller number of iterations. In that case,
it may overlook some VTEC variations that are not much represented in the single split. By
increasing the k-folds size, the model is trained on smaller data subsets with more iterations.
Thus, the signal can be learned better. However, too large k-fold will result in very small
data subsets that can lead to overfitting during training, resulting in higher RMSE on the
cross-validation set, as for k = 50. Similar behavior is observed for the boosting models.
However, the goal is to neither overfit nor underfit the data. From Figure 8 it is apparent
that k = 20 folds are optimal for a 2-year cross-validation period (2015–2016).

Figure 8. Number of time series k-folds splits as function of RMSE. Left: RMSE for Decision Tree
(DT) and Random Forest (RF) on cross-validation and test datasets for k = 6 and 20. Right: RMSE for
the RF model on coss-validation data for k = 6, 10, 20, 30, 40, 50.

RMSE on training and cross-validation data sets is presented for each k-fold for the
model VR1 in Figure 9. Training curves are mostly constant after the 5th fold, while cross-
validation curves are changing more significantly. The training set is small in the first folds,
which results in lower RMSE during training, as it is easier to fit the smaller dataset. On
the other hand, the larger RMSE values are for cross-validation, as such a small training
data set is not representative. While increasing the number of k-folds, the training data set
becomes larger, which slightly increases RMSE during training, while decreasing RMSE
during cross-validation. Thus, the largest errors for the cross-validation are mostly in the
first 5 folds. After the 10th fold, RMSE values of cross-validation are similar to RMSE
values of training or even smaller as k further increases. The average RMSE values for
training and cross-validation for all k-folds are summarized in the bar graphs in Figure 9.
Differences in RMSE between training and cross-validation are larger for non-differenced
data than for differenced data. Differenced data have a lower training RMSE, while the
cross-validation RMSE is mostly similar between differenced and non-differenced data.
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Figure 9. RMSE on training and validation data from 1st to 20th k-fold (left). The bar graph represents
the average RMSE for all 20 k-folds (right). Top: 1-h, bottom: 24 h forecast. Results are provided for
the model VR1 for both non-differenced and differenced (diff.) data.

3.3. Relative Importance of Input Variables to VTEC Forecast

Relative importance of the input variables for the 1 h and 24 h VTEC forecasts using
non-differenced and differenced data for the period 2015–2016 is estimated (Figure 10),
including an analysis for geomagnetic activity conditions (Kp ≥ 5) (Figure 11).

The results demonstrate that the previous VTEC information as an input variable has
the largest contribution to the VTEC prediction. Its significance for non-differenced data
is about 60%, while for differenced data it is from 60% to 70% for 1 h and 30% to 50% for
24 h forecasts (Figure 10). Another important input variables for non-differenced data are
exponential moving averages, especially over the last four days (96 h). On the other hand,
time-derivatives of VTEC are more important for 1 h forecast with differenced data, in
particular the first derivative. For 24 h forecast with differenced data, exponential moving
averages have higher importance. For the high-latitude ionospheric region (10°70°), the
second derivative has also a higher contribution. For models with non-differenced data,
other dominant input variables are temporal information (hour and DOY), followed by
solar activity data (F10.7 index), while other variables (solar wind and magnetic field)
have little or no influence on the VTEC forecast. In the case of differenced data, on the
other hand, the contribution of the temporal information decreased. At the same time, the
contribution of other input variables increased, namely solar wind speed (SW) and indices
of magnetic field (AE, Kp, Dst, Bz). Their significance is larger for 24 h forecasts.

During geomagnetic storm conditions, the relative importance of input variables,
describing the solar activity, solar wind, and magnetic activity, increased for almost all
ionospheric regions, especially for non-differenced data, while the contribution of previous
VTEC value mostly decreased (Figure 11). In addition, the contribution of the first time
derivative for non-differenced data increased. It is especially interesting to see the higher
significance of the AE index for high-latitude, the Kp index for mid-latitude, and the Dst
index for low-latitude ionospheric regions for differenced data, having in mind that these
indices are measured in those regions.



Remote Sens. 2022, 14, 3547 19 of 34

Figure 10. Relative importance of input variables to VTEC forecast estimated from the Random Forest
models. Results are presented for 1 h forecast with non-differenced data (first row) and differenced
data (second row), and for 24 h forecast with non-differenced data (third row) and differenced data
(fourth row) for high-latitude (left), mid-latitude (middle) and low-latitude (right) VTEC.
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Figure 11. Relative importance of input variables to VTEC forecast for geomagnetic storm conditions
(Kp ≥ 5) estimated from the Random Forest models. Results are presented for 1 h forecast with
non-differenced data (first row) and differenced data (second row), and for 24 h forecast with non-
differenced data (third row) and differenced data (fourth row) for high-latitude (left), mid-latitude
(middle) and low-latitude (right) VTEC.

3.4. Accuracy Performance of Machine Learning Models

The RMSE and correlation coefficients for cross-validation, test, and geomagnetic
storm (7–10 September 2017) datasets for the 1 h and 24 h forecasts with different machine
learning models, namely Decision Tree and ensemble learning (Random Forest, AdaBoost,
XGBoost and Voting Regressors), using two types of data (non-differenced and differenced)
are presented in Figure 12. The period of the severe geomagnetic storm (7–10 September
2017) covers the main and recovery phase of the storm. In addition, an overview of the
RMSE for the year 2017 and for the storm in September 2017 is shown in Table 5.
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Figure 12. The RMSE and correlation coefficient (Corr.) for cross-validation (first column), test
(second column) and geomagnetic storm (7–10 September 2017) (third column) datasets, for 1 h and
24 h forecast horizons for Decision tree (DT), Random forest (RF), Adaboost (AB), XGBoost (XGB)
and two Voting regressor models (VR1 and VR2). Models trained of differenced data are marked with
“diff” The evaluation on the test dataset is a measure of the models’ generalization to new examples.

The RMSE for the cross-validation dataset is higher than for the test dataset because
the training period (2015–2016) includes larger absolute VTEC values as it is closer to
the solar maximum (in April 2014). The RMSE is about twice higher for 1 day forecast
than for 1 h forecast for all the models. The VTEC forecast with a single Decision Tree
tends to have the highest RMSE and the lowest correlation coefficients for all datasets.
Ensemble learning improved the accuracy. The lowest RMSE is mostly achieved with the
Random Forest, XGBoost and Voting Regressor models. During the severe geomagnetic
storm in September 2017, the RMSE is about 0.3 to 0.5 times higher for the 1 h forecast and
0.7 to 1 times higher for the 24 h forecast than for the entire test year 2017 (Table 5). The
boosting method provided the lowest RMSE during the space weather event (XGBoost
in particular), demonstrating its usefulness for predicting rare events. From the cross-
validation and test results (Figure 12) it can be seen that the lower RMSE for the mid- and
low- latitudinal ionospheric regions for 1 h and 24 h forecasts mainly have models trained
on differenced data. This can be also observed for the high-latitude ionosphere for the 24 h
forecast. The correlation coefficients are above 90% for the 1 h and 24 h forecast horizons
for the training and cross-validation dataset (2015–2016), while the correlation coefficients
for the test dataset (2017) are above 90% for the 1 h and above 85% for the 24 h forecast
horizons. For the year 2017, the lowest RMSE for the high-latitude VTEC is 0.54 TECU
and 1.6 TECU for the 1 h forecast (non-differenced data) and the 24 h forecast (differenced
data), respectively (Table 5). The lowest RMSE for VTEC in the mid-latitude is 0.86 TECU
and 1.86 TECU for the 1 h (differenced data), and the 24 h (non-differenced data) forecast
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horizons, respectively. The highest accuracy of the VTEC forecast for the low-latitude
region is the RMSE of 1.09 TECU and 2.15 TECU for the 1 h and 24 h forecast horizons,
respectively, both with differenced data.

On the other hand, during the storm, models trained on non-differenced data have a
smaller RMSE and a higher correlation coefficient for the 1 h forecast, while for the 24 h
forecast the smallest RMSE and the highest correlation coefficients are mostly for models
with differenced data. Correlations between the ground-truth VTEC and predicted VTEC
for the storm test period are from 90% for the 1 h forecast, while for the 24 h forecast they
are from 55% (the highest 73%), 72% (the highest 81%) and 94% (the highest 95%) for the
high-latitude, mid-latitude, and low-latitude ionospheric regions, respectively. For the
1 h forecast, the highest correlation coefficients are achieved with Voting Regressor and
non-differenced data, while for the 24 h forecast the highest correlation coefficients are
with boosting methods (AdaBoost and XGBoost) and differenced data. The lowest RMSE
for the high-latitude VTEC is 0.71 TECU and 1.67 TECU for the 1 h (non-differenced data)
and 24 h (differenced data) forecast, respectively (Table 5). In terms of the mid-latitude
VTEC, the lowest RMSE is 1.18 TECU and 3.29 TECU for the 1 h (non-differenced data)
and 24 h (differenced data) forecast, respectively. The low-latitude VTEC forecast achieved
the lowest RMSE of 1.12 TECU and 3.96 TECU for the 1 h (non-differenced data) and 24 h
(non-differenced and differenced data) forecast, respectively.

Table 5. Overview of RMSE for different machine learning models for test period of year 2017 and
severe geomagnetic storm 7–10 September, 2017 for high-latitude (10E 70N), mid-latitude (10E 40N)
and low-latitude (10E 10N) VTEC. The subscript diff. indicates models trained on differenced data.
The maximum and minimum values of the RMSE are marked in red and green, respectively.

DT RF AB XGB VR1 VR2

70N, 40N, 10N 70N, 40N, 10N 70N, 40N, 10N 70N, 40N, 10N 70N, 40N, 10N 70N, 40N, 10N

2017 RMSE (TECU) RMSE (TECU) RMSE (TECU) RMSE (TECU) RMSE (TECU) RMSE (TECU)

1 h
0.75, 1.18, 1.79 0.54, 0.92, 1.20 0.60, 0.98, 1.31 0.59, 0.92, 1.17 0.59, 0.95, 1.18 0.58, 0.93, 1.14

1 hdiff.
0.76, 0.96, 1.19 0.70, 0.87, 1.10 0.71, 0.92, 1.14 0.69, 0.86, 1.10 0.68, 0.86, 1.09 0.69, 0.86, 1.09

24 h
1.28, 2.15, 2.55 1.06, 1.86, 2.20 1.15, 1.95, 2.26 1.15, 1.96, 2.25 1.11, 1.91, 2.17 1.11, 1.92, 2.21

24 hdiff.
1.18, 2.08, 2.22 1.08, 1.89, 2.15 1.12, 1.96, 2.17 1.10, 1.89, 2.17 1.08, 1.89, 2.15 1.08, 1.88, 2.15

7–10 September

1 h
0.89, 1.48, 1.62 0.73, 1.31, 1.29 0.74, 1.37, 1.20 0.76, 1.18, 1.12 0.72, 1.23, 1.16 0.71, 1.19, 1.17

1 hdiff.
1.10, 1.55, 1.66 0.94, 1.52, 1.58 0.99, 1.53, 1.63 1.00, 1.40, 1.49 0.88, 1.42, 1.52 0.91, 1.44, 1.51

24 h
2.10, 4.12, 4.29 1.77, 3.95, 3.95 1.89, 3.92, 4.23 1.95, 3.87, 4.04 1.90, 3.84, 4.01 1.86, 3.87, 3.96

24 hdiff.
2.12, 4.09, 4.10 1.87, 3.57, 4.08 1.67, 3.29, 4.09 1.77, 3.29, 3.96 1.76, 3.41, 4.02 1.78, 3.39, 4.00

The relative RMSE change with respect to the persistence (naive) forecast is presented
in Figure 13. The persistence model considers that the VTEC(i + t) is equal to the VTEC(i),
where t takes values of 1 and 24 for the 1 h and 24 h forecasting, respectively, i.e., we
assume the state of the frozen ionosphere with respect to the previous hour or previous
day. Persistence forecast is the most common baseline method to measure the forecast
performance in supervised machine learning, as well as, in data-driven, physics-based and
traditional statistical VTEC forecasting [24,31,48–50]. The models for the 1 h forecast of the
low-latitude VTEC have reduced RMSE of about 60% for the test period and about 70%
during the geomagnetic storm with respect to the baseline. The relative RMSE reductions
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with respect to the persistence forecast are up to 20%, near 40%, and around 60% for
the high-, mid-, and low- latitude VTEC points, respectively, for the 1 h forecast with a
non-differenced RF model. For the 24 h forecast, the machine learning models have a
lower RMSE by 10–25%, 15–25%, and 5–10% for the high-, mid-, and low- latitude VTEC
points, respectively. For the 1 h forecast of the high-latitude VTEC, the RMSE is increased
when using differenced data. However, in the case of the 24 h forecast, the models with
differenced data mostly forecast the high-latitude VTEC by 5% to 10% lower RMSE than
the models with non-differenced data. In addition, they improve the 1 h and 24 h mid- and
low-latitude VTEC forecasts by about 2–5% with respect to the models with non-differenced
data in 2017. For the storm period, models with non-differenced data provide 1 h forecast
for the VTEC points at high-, mid-, and low-latitudes with an RMSE of about 10–15% lower
than the models with differenced data. On the other hand, for the longer (24-h) forecast,
the models with differenced data mostly outperform the models with non-differenced
data, especially during the storm, when the relative RMSE decrease is up to 10% for the
high-latitude VTEC and 10% to 15% for the mid-latitude VTEC. The differences in the
low-latitude 24 h VTEC forecast are smaller (<4%) between different models and data.

Figure 13. Relative RMSE change with respect to the persistence (naive) forecast. Top: 1 h forecast,
bottom: 24 h forecast. Left: test data (2017), right geomagnetic storm (7–10 September 2017). Models
trained of differenced data are marked with “diff.”.

Machine learning performance depends highly on data and, therefore, data should be
prepared in a way to enhance learning. Figure 14 shows the VR1 model improvement by
including the inputs such as exponential moving averages and time derivatives of VTEC.
First, models were trained with the first ten input data in Table 1, i.e., without exponential
moving averages and time derivatives, denoted as Data1. Later those inputs are added to
improve learning, referred to as Data2. For both non-differenced and differenced data, the
RMSE is reduced (by 0.2 to 0.5 TECU) as additional inputs of moving averages and time
derivatives are added.
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Figure 14. The RMSE for cross-validation (left), test (mid) and geomagnetic storm (right) datasets
for 1 h (top) and 24 h (bottom) forecasts for the VR1 model. Models trained with differenced data are
marked with “diff”. Data2 refers to data in Table 1, while Data1 comprises Data2 excluding inputs of
EMA, VTEC′ and VTEC′′.

Further, differenced and undifferenced data were combined, where exponential mov-
ing averages and time derivatives were calculated from non-differenced VTEC, to forecast
non-differenced VTEC (Figure 15). The analysis was done for the XGBoost model, because
it is fast compared to other models (Table 4), while accuracy is comparable between the
models (Table 5). The RMSE for the 1 h VTEC forecast for test data including the severe
geomagnetic storm is similar for models with non-differenced data and data combination.
For the 24 h forecast, the RMSE for mid- and low-latitude VTEC with data combination is
lower than for the non-differenced data, while more similar to the RMSE for differenced
data (Figure 15). Data combination for forecasting non-differenced VTEC improved the
model accuracy compared to the non-differenced data for the 24 h forecast and during the
space weather event.

Figure 15. The RMSE for test dataset (right) and geomagnetic storm (7–10 September 2017) (left) for
1 h (top) and 24 h (bottom) forecasts for the XGBoost model. Models trained using differenced data
are marked with “diff”, while “combination” denotes differenced and non-differenced data together,
where exponantial moving averages and time derivatives are calculated from non-differenced VTEC,
while the model output is non-differenced VTEC.
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Values of VTEC from machine learning models and GIM CODE VTEC were analyzed
in more detail for the severe space weather event in September 2017 (Figure 16, left)
including their differences (Figure 16, right).

Figure 16. Left: VTEC values from machine learning models and ground truth VTEC from GIM
CODE for the severe geomagnetic storm (7–11 September 2017). Right: Differences between VTEC
from machine learning models and GIM CODE VTEC. From top to bottom: 1 h forecast with
non-differenced data, 1 h forecast with differenced data, 24 h forecast with non-differenced data,
24 h forecast with differenced data, Dst index, and Kp index ·10. The yellow arrow denotes the
sudden storm commencement (SSC) time, while the purple arrows point to two Dst minima, which
correspond to the maximum phase of the geomagnetic storms.

The CMEs with earthward trajectories were emitted from the Sun on 4 and 6 September
2017 [51]. The first CME arrived on 6 September at about 23:43 UT leading to moderate
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geomagnetic conditions on 7 September (Figure 16). The solar wind shock from the second
CME, originating from the intense X9.3 solar flare of September 6, caused a sudden storm
commencement (SSC) at about 23 UT on 7 September. This led to severe geomagnetic
storms in September with the maximum value of Kp = 8. The main phase of the storm was
characterized by the two pronounced minima of Disturbance storm time (Dst) index at
about 1:00 and 14 UT on 8 September. Afterward, the recovery phase started and lasted for
about 3 days until 11 September [51]. Shortly after SSC, there is a sudden VTEC increase in
high latitude. This peak is reproduced in a 1 h forecast and slightly in a 24 h forecast with
differenced data. The largest differences are visible for the 1 day forecast for low-latitude
VTEC on 8 September, i.e., during the maximum intensity of geomagnetic storms. On the
other hand, 1 h forecast much better adapts to rapid changes in the ionosphere and can
reproduce sudden intense variations during this space weather event. On 10 September,
both 1 h and 1 day forecasts stabilize and have much lower differences from the ground
truth during the recovery storm phase and a decrease in VTEC values. Overall, differences
for the 1 h forecast are up to about 5 TECU, while for the 24 h forecast they are about twice
as high, i.e., up to 10 TECU for all three latitudinal regions during sudden and intense
irregular VTEC variations resulting from the space weather event. Figure 17 presents
the scatter plot of the predicted and ground truth (GIM CODE) VTEC for the datasets
from January 2015 to December 2016 (training) and January-December 2017 (testing) for
the VR1 model. The highest correlations between predicted and GIM VTEC in test data
mostly have the models with differenced data, while having lower correlation coefficients
for training data than models with non-differenced data. This suggests that models with
non-differenced data show a slightly better fit during training than models with differenced-
data, resulting in a slightly lower correlation for test data. VTEC forecast (green) from the
VR1 model for 1 h and 24 h are shown as time series in Figure 18, and as 2D maps as a
function of DOY and HOD in Figure 19 for year 2017. It is interesting to observe that the
models trained on non-differenced data overestimate the lowest VTEC values, particularly
for the high-latitude grid point (Figure 18). In contrast, the models trained with differenced
data are able to predict the lowest VTEC values. Sudden VTEC peaks are better captured
with the 1 h forecast models than 24 h forecast models (Figures 18 and 19). Daily, seasonal
and semi-annual VTEC variations are well predicted with the VR1 model (Figure 19). The
maximum absolute differences between the GIM CODE and VR1 model are about 4 TECU
for high-latitude and 7 TECU for the mid- and low-latitude points for the 1 h forecast,
while for the 24 h forecast they are up to 8 TECU for high-latitude and to 12 TECU for
the mid- and low-latitude points. However, most of the time, the differences are within
1 and 2.5 TECU for the 1 h forecast and within 2.5 and 5 TECU for the 1 day forecast for
the high-latitude and mid-/low-latitude grid points, respectively. 1 day predicted GIM
CODE (C1PG) provides VTEC with mostly lower values than the final GIM CODE and
VR1 model (Figure 19). In addition, the GIM C1PG is mostly unable to predict VTEC peaks
with the maximum absolute differences from the final GIM CODE up to 9 TECU, 17 TECU,
and 14 TECU for high-, mid-, and low-latitude grid points.
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Figure 17. Predicted VTEC by the VR1 models vs. ground truth VTEC for training and cross-
validation (blue) and test (green) datasets. First row: 1 h forecast with non-differenced data,
second row: 1 h forecast with differenced data, third row: 24 h forecast with non-differenced data,
fourth row: 24 h forecast with differenced data for high-latitude (left), mid-latitude (middle) and
low-latitude (right) VTEC grid points.
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Figure 18. Forecasted VTEC by the VR1 model (green) and ground truth VTEC (orange) during year
2017. Top: 1 h, bottom: 24 h forecast. Left: non-differenced data, right: differenced data.

Figure 19. Upper panel left: VR1 model 1 h forecast (top) with non-differenced data (left) and dif-
ferenced data (right), corresponding VTEC differences (dVTEC = VTECGIM −VTECVR1) (bottom).
Upper panel right: VR1 model 24 h forecast (top) with non-differenced data (left) and differ-
enced data (right), dVTEC (bottom). Bottom panel left: 1 day predicted GIM CODE (C1PG) (left),
dVTEC = VTECGIM −VTECC1PG (right). Bottom panel right: GIM CODE.
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4. Discussion

The relative importance of the input variables shows that the VTEC forecast with non-
differenced data is mostly based on previous VTEC values, temporal information (h), and
solar index (F10.7), especially for mid- and low- latitude VTEC. The contribution of other
variables (solar wind speed, Bz, AE, Kp, Dst) is extremely small in those models or is not
represented at all. The reason can be the strong correlations of VTEC(t) with VTEC(t + 1 h)
and VTEC(t + 24 h) and with temporal information. In addition, the correlation between
solar activity indices (F10.7 and R) and VTEC is much higher for non-differenced data than
for differenced data. On the other hand, the correlations between VTEC, and solar wind,
and magnetic activity increase for differenced data, leading to their higher contributions to
the VTEC forecast. As a result, the models trained on differenced data use almost all of the
input data for forecasting VTEC, especially during storm periods.

The performance of machine learning models is slightly different for non-differenced
and differenced data. Using differenced data, the RMSE for cross-validation and test
datasets are mostly consistent between different ensemble models. On the other hand,
the differences between the models with the non-differenced data are more pronounced.
Models with differenced data provided mostly better results on the test dataset for both the
1 h and 24 h forecast. During space weather events, improvements are observed over the
longer forecasting horizon.

Ensemble learning improved the VTEC forecast from about 25% to 50% over the
single tree. Larger improvements are visible for models with non-differenced data. Using
differenced data there is less disagreement between Decision Tree and ensemble models.
This suggests that differentiation facilitated learning of structural patterns in the data even
using less optimal models such as Decision Tree. During the storm event, ensemble learning
majorly improves forecast, especially over the 24 h forecasting horizon.

Regarding different machine learning models, Voting Regressor meta-ensemble mod-
els provided the lowest RMSE and the highest correlation coefficients. The lowest RMSE
values provided are 0.6, 0.9, and 1.1 TECU for the high-, mid-, and low-latitude VTEC,
respectively, for the 1 h forecast. For the 24 h forecast, the RMSE is about twice higher,
resulting in 1.1, 1.9 and 2.1 TECU for the high-, mid- and low-latitude VTEC, respectively.
During the severe storm in September 2017, the lowest RMSE is 0.7, 1.2 and 1.2 TECU for
the high-, mid-, and low-latitude 1 h VTEC forecast, respectively, with Voting Regressor
models. For the 24 h forecast horizon, the RMSE is higher, reaching 1.8, 3.4 and about
4 TECU for the high-, mid- and low-latitude VTEC, respectively. During the storm, the
RMSE for the 24 h mid-latitude VTEC forecast with AdaBoost and non-differenced data is
3.9 TECU, while for the differenced data is 3.3 TECU. This shows an improvement of more
than 0.50 TECU during the severe storm when the model is trained on the differenced data.
Other ensemble models show similar results. Our ensemble learning models provide the
high-latitude VTEC forecast (10°, 70°) with a lower RMSE than the LSTM model in [20],
i.e., around 1 TECU and 2 TECU for the 1 h and 24 h forecast, respectively, during the
September 2017 storm. The LSTM model [20] for the high-latitude VTEC forecast (138°, 57°)
resulted in an RMSE of about 5 TECU during storm events (−150 nT ≤ Dst ≤ −100 nT).
The feed-forward ANN provides a mid-latitude VTEC forecast with an average RMSE of
about 5 TECU during geomagnetic storms [34], while our best performing Voting Regressor
model provides the 1 h and 24 h mid-latitude VTEC forecasts with an RMSE of 1.20 and 3.40
TECU, respectively, during the severe geomagnetic storm. In 2017, its mid-latitude VTEC
forecast is below 1 TECU, being better than the SVM model in 2018 (RMSE 1.5 TECU) [30].
The 1 day mid-latitude VTEC forecast values with our models have RMSE below 2 TECU
which is in line with the LSTM model performance in 2016 [32]. The 1 h low-latitude VTEC
forecast from the Voting Regressor model has twice lower RMSE (about 1.1 TECU) in 2017
than the LSTM-CNN models in 2016 [22] and in 2018 [21] and slightly better (for 0.4 TECU)
than the SVM model in 2018 [30]. The GBDT model provides 1 h low-latitude VTEC
forecasting with an RMSE of about 3 TECU in 2015 and 3–4 TECU during the geomagnetic
storm [27]. Our XGBoost model has RMSE below 1.5 TECU for the 1 h low-latitude VTEC
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forecast during severe storm. Moreover, our XGBoost model provides the VTEC forecast
for three ionospheric grid points with the mean RMSE below 1 and 2 TECU for the 1 h and
24 h forecast horizons, respectively, in 2017, and about 3 TECU for 24 h forecast during
the September 2017 storm. The XGBoost model [29] has a global average RMSE of around
2.5 TECU in 2017, while during the September storm has a higher RMSE of about 8 TECU.
The autoregressive neural network model [24] provides the 1 day global VTEC forecast
with an RMSE from 3.4 to 5.1 TECU from May 2017 to February 2018, while the cGAN
model [26] has an RMSE of about 1.74 TECU from 2017 to 2018. The nearest neighbour [31]
resulted in an RMSE of about 4 TECU in 2015 and 2 TECU in 2018. Our ensemble learning
models have the average RMSE for three ionospheric regions below 2 TECU for the 1 day
forecast from January to December 2017. It should be taken into account that the discussed
studies use different datasets for forecasting VTEC for different locations or regions during
similar or different time periods.

5. Conclusions

This paper presents the development of machine learning models for ionosphere
VTEC forecasting exploiting different learning algorithms from single Decision Tree to
ensemble learning. The approach is presented for three grid points of different latitudes
along the same longitudinal band. Of course, the presented methodology can be extended
to cover larger regions by training the models on VTEC data from different grid points. The
models are data-driven, gaining insights and knowledge from the data describing the solar
activity, solar wind speed, interplanetary and Earth’s magnetic field, and the ionosphere.
In addition, a time series cross-validation method is implemented and the impact of the
different sizes of k-folds on the VTEC forecasting is analyzed, especially for the low-latitude
region. The study has further investigated the performance of machine learning models in
terms of the data, where original and transformed data were used. The second approach
was a differentiation with respect to values of the previous day to remove/reduce trends
related to daily variations.

Looking at the different models, combining a large number of trees in an ensemble,
such as Random Forest and boosting, significantly improve the accuracy and even outper-
form a single Decision Tree solution. The optimal accuracy and generalization are achieved
by combining tree-based ensemble models in a meta-model of Voting Regressor. The use of
differenced data instead of original data results in an RMSE improvement of more than
0.5 TECU for 24 h forecast during a severe storm. Such improvements are also visible for
the 1 h and 24 h forecasts in 2017. Only in the case of the 1 h VTEC forecast during the
storm, the models with non-differenced data perform clearly better, i.e., have a smaller
RMSE value. Including additional input such as exponential moving averages and time
derivatives further reduces the RMSE by up to 0.5 TECU. Relative RMSE decrease with
respect to the persistence (naive) forecasting is from 15% to more than 70% for the 1 h
forecast, and from 5% to 25% for the 24 h forecast. Differences to the final GIM CODE are
mostly within 2.5 TECU for the 1 h forecast, and within 5 TECU for the 1 day forecast.

Based on these results, we can answer the questions raised at the beginning of this paper:

1. The new, proposed learning VTEC models can capture variations in electron content
consistent with ground truth for both 1 h and 1 day forecasts.

2. The ensemble meta-models (VR1 and VR2) improve the VTEC forecasting over each
individual model in the ensemble and deliver optimal results.

3. Including additional input features, such as moving averages and time derivatives, is
beneficial to increase the accuracy of the models.

4. Data modification in the form of differencing enhances the VTEC model performance
for a longer (24-h) forecast, including a geomagnetic storm.

The proposed VTEC models have perspectives to be used as a useful source of infor-
mation for single-frequency GNSS users to mitigate the ionospheric delay and thereby,
directly reduce the ionospheric range error. For instance, the final GIM CODE improves
3D single-frequency position estimates by about 5.5 m, 1 m, and 2.5 m on average in high-,
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mid-, and low-latitude regions, respectively, compared to the real-time available Klobuchar
model [52]. However, considering that the final GIMs are usually provided with a time de-
lay of 1–2 weeks, and the rapid GIMs with 1–2 days [53], their application in real-time is not
possible. There are also ultra-rapid GIMs provided with latency of 2–3 h [54] and real-time
(RT) GIMs [53,55]. The accuracy of RT GIMs is typically worse than final, post-processed
GIMs due to the shorter span of observations, higher noise in carrier-to-code leveling, and
difficulty in carrier ambiguity estimation in real-time processing mode [53]. Considering
that 1 TECU corresponds to 0.162 m in L1 signal delay, differences between our developed
models and the GIM CODE of 1 and 2.5 TECU for the high-latitude, and 2.5 and 5 TECU
for the mid-/low-latitude grid points for the 1 h and 1 day forecast, respectively, result in
L1 delay difference of about 0.2 m to 0.8 m. This suggests that our 1 h and 1 day VTEC
forecast models are expected to improve the GNSS position estimates much more than the
Klobuchar model in the studied locations. Thus, forecasted VTEC information can be used
to support positioning applications. For a regional or global application, the models should
of course be spatially expanded. For operational purposes, the model needs to use VTEC
input from the rapid or RT GIMs or estimate it directly from GNSS observations.

The study shows promising results for the application of tree-based ensemble machine
learning for VTEC forecasts. This approach has the potential to forecast VTEC in different
ionospheric regions during quiet and storm periods. In further work, we plan to extend the
models to additional locations to forecast VTEC at the regional or global level. Furthermore,
the results support the idea of data importance, which is the core of machine learning and
one of the major drivers of machine learning performance. Therefore, future studies will
concentrate on further data exploration and modification in order to find the most optimal
dataset from which the model can learn, especially over longer forecasting horizons and
during space weather. The integration of additional input data that can further characterize
space weather in a form useful for learning is intended. In addition, models with longer
forecast horizons and multi-epoch predictions are to be developed. An investigation that
includes more space weather events will be undertaken and the results should be validated
for the latest time period as a new solar cycle is progressing. Another point of interest is
the comparison with the neural network-based approach that has so far mainly been used
in the area of ionospheric VTEC forecasting. To achieve an objective comparison, the same
datasets should be used, and testing should be carried out for the same time period and
locations. In addition, the uncertainty of VTEC predictions needs to be quantified, such as
in [33], in order to better define the efficiency of the models, provide trustworthy results,
and increase the reliability of the VTEC predictions.
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Abbreviations
The following abbreviations are used in this manuscript:

AdaBoost Adaptive Boosting
AB AdaBoost
DOY Day Of Year
HOD Hour Of Day
DT Decision Tree
GIM Global Ionosphere Map
GNSS Global Navigation Satellite System
LSTM Long Short-Term Memory
r correlation coefficient
RMSE Root Mean Square Error
RF Random Forest
SW Solar Wind speed
TECU Total Electron Content Unit
VTEC Vertical Total Electron Content
VR Votting Regressor
XGBoost eXtreme Gradient Boosting
XGB XGBoost
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