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Abstract

The accuracy of seismic simulations largely depends on a correct description of the media in
which seismic waves propagate. Sampling material parameters only at each mesh element’s
barycenter supposedly leads to different kinds of systematic errors in the simulation output.
Homogenization has proven to be an effective means of properly averaging distributions
of rapidly varying coefficients over arbitrary areas or volumes. This thesis proposes a
homogenization approach for distributions of material parameters in elastic, viscoelastic and
poroelastic media. The technique is derived and evaluated on a variety of mesh geometries
and parameter configurations. In general, it is found to be useful, even though some scenarios
and coefficients do not obviously benefit from homogenization. Compared to the state of
the art implementation in SeisSol, homogenization produces results of at least equal or
superior accuracy at hardly any added cost. Especially in scenarios involving layered material
distributions, the homogenized approach delivers outputs that are much more in line with
the expected results.

Die Genauigkeit seismischer Simulationen hängt maßgeblich von einer korrekten Beschreibung
der Materialien ab, in denen sich Erdbebenwellen ausbreiten. Werden die Materialparameter
nur im Volumenschwerpunkt jedes Gitterelements abgetastet, ist mit verschiedenen Arten
von systematischen Fehlern bei den Simulationen zu rechnen. Die Homogenisierung bietet
sich als geeignetes mathematisches Instrument an, um Verteilungen von stark variierenden
Koeffizienten über beliebige Flächen oder Volumina zu mitteln. In dieser Arbeit wird ein
Ansatz zur Homogenisierung für Verteilungen von Materialparametern in elastischen, viskoe-
lastischen und poroelastischen Materialien vorgestellt. Das Verfahren wird hergeleitet und
auf verschiedenen Gittern und Konfigurationen der Parameter untersucht. Es erweist sich
grundsätzlich als sinnvoll, wenngleich einige Szenarien und Koeffizienten nicht spürbar von
der Homogenisierung profitieren. Im Vergleich mit der aktuellen Implementierung in SeisSol
liefert die Homogenisierung Ergebnisse mit mindestens gleicher oder besserer Genauigkeit
bei vernachlässigbaren zusätzlichen Kosten. Insbesondere bei unstetigen Verläufen der
Materialparameter errechnet der homogenisierte Ansatz Resultate, die wesentlich besser mit
den erwarteten Ergebnissen übereinstimmen.
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3.2.3 Viscoelastic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.4 Poroelastic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Introduction to Gaussian Quadrature . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Evaluation of Results 27
4.1 Seismic Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 SCEC TPV5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 WP2 LOH1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Layered Density Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Coarse Layer Separation . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Fine Layer Separation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Periodic Density Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Sine Density Distribution . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.2 Cosine Density Distribution . . . . . . . . . . . . . . . . . . . . . . . 41
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1 Introduction

On a large time scale, the overall risk of suffering physical or material damage from the
destruction caused by an earthquake at an arbitrary place is comparably low. However, in
some geologically exposed areas, seismic activity occasionally leads to devastating losses
of human life and property. Particularly in developing regions, this might be related to
an insufficient political awareness of the risks associated with earthquakes or merely to a
lack of financial resources to protect against it. Therefore, the natural hazard imposed by
earthquakes is investigated by seismology in order to understand, model and predict the
impacts of seismic activity. This provides a better baseline for evaluating different scenarios
to guide investments and raise the awareness of hazards among the population.
The Japanese policy for the forecast of seismic events in the second half of the 20th century
serves as an example of an unsuccessful attempt to predict the dynamics of earthquakes
[SW03, Section 1.2]. Albeit serious doubts expressed by seismologists, a great effort has
been put into establishing a mechanism to predict earthquakes which assumed that seismic
activity is preceded by some recordable signs. At the latest when the severe quake in Kobe
occurred without prior notice in 1995, it was clear that this theory is no longer tenable.
Consequently, it is crucial to enhance the accuracy of seismic simulations wherever possible.
Only then can they provide a reliable means of assessing the risks of living and building in a
certain area.
On that note, this thesis introduces a homogenization technique for coefficients used to
describe solid materials for the simulation of seismic wave propagation in SeisSol. The
homogenization approach will be derived mathematically, implemented and evaluated based
on actual simulation results. This includes a detailed comparison against the existing
implementation. The idea for this concept goes back to LeVeque [LeV04, Section 9.14] who
describes an approach for the homogenization of rapidly varying coefficients based on an
analogy to acoustic media. He provides an example of wave propagation in discontinuous,
layered materials which is also relevant for seismic applications.
In the context of seismic simulations, some important terms need to be defined upfront. A
homogenization technique tries to form a proper average of an arbitrary coefficient c that
is distributed over one or more dimensions [Sé20]. The distribution is usually assumed to
be heterogeneous. Therefore, in the simplest case, a coefficient is sampled at N points xi
and averaged arithmetically. In real applications, often more complex ways of averaging a
particular coefficient are required. Equation 1.1 [Sé20] shows how the sum converges to a
volume integral for N → ∞,

1

N

N∑
i=1

c(xi) −−−−→
N→∞

1

V

∫
V
c(x) dx. (1.1)

On a computer, however, it holds N < ∞ and a volume average needs to be approximated
numerically by a weighted sum of discrete samples. The coefficients that are to be homoge-
nized within this work describe certain properties of solid materials. Therefore, they will be
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1 Introduction

referred to as material parameters throughout this thesis. The propagation of seismic waves
will be discussed for elastic, viscoelastic and poroelastic media only.
A seismic source or fault denotes the location at which an earthquake originates. It may be
approximated as point-shaped, known to be planar or have an irregular shape. A receiver is
a spot at or below the earth’s surface where seismic waves can be recorded.
Up to now, material parameters in SeisSol have been averaged by taking their value at
each mesh element’s barycenter. It is clear, however, that this technique does not take into
account most of the actual material parameter distribution inside an element’s volume. It is
unable to resolve complex parameter profiles that may be rapidly changing within a single
element. This provides reason to believe that the material parameters used for simulations
in SeisSol might be subject to some systematic errors for certain configurations.
As a result, it is suspected that the output generated by SeisSol is not as accurate as it could
be using homogenization. Thus, the approach proposed in this thesis has the potential to
enhance the precision of seismic simulations. This allows to better understand how seismic
waves propagate in certain media. As indicated in the beginning, more accurate predictions
of hazards associated with earthquakes are crucial to reliably forecast risks for certain regions.
Insurance providers, for example, would also benefit from a more precise base for calculating
their rates and own risks.
Therefore, the research question this work tries to answer is whether homogenization of
rapidly varying material parameters can increase the accuracy of seismic simulation out-
puts. Two hypotheses are formulated to help answer this question: First, it is suspected
that barycenter averaging leads to systematic errors for certain distributions of material
parameters. Moreover, we assume that homogenization can only deliver results of at least
equal or superior accuracy than the state of the art. That is, also considering the higher
computational effort, it should not be harmful to employ the homogenization approach.
The main matter is structured in four parts. Chapter 2 provides a theoretical background
to the calculation and simulation of seismic wave propagation. It focuses on the elastic wave
equations, how to derive and solve them. Seismic waves and different kinds of materials as
well as the SeisSol simulator will also be detailed. Chapter 3 moves on to explain the numer-
ical homogenization approach for material parameters. This includes both its mathematical
derivation and implementation in SeisSol code using numerical quadrature. The simulation
results obtained for different scenarios and parameter distributions using the novel approach
will be compared against the base implementation and discussed in Chapter 4. This allows
to draw certain conclusions about the hypotheses and the research question given above.
Conclusions will be presented in Chapter 5.
With regard to the methodology employed for this work, especially numerical quadrature
needs to be highlighted. It is a method to numerically compute integrals as found in the
homogenization formulas. Section 3.3 gives a detailed account of quadrature. Furthermore,
the homogenization approach will be implemented in SeisSol using C++ code. Working
with SeisSol and analyzing seismograms generated by the simulator also forms an essential
part of this thesis.
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2 Simulation of Seismic Wave Propagation

Before proceeding to examine and evaluate the homogenization technique for material
parameters, it will be necessary to review some fundamentals of seismic wave propagation
and simulation. In the first section, the focus is on building a mathematical foundation of
seismic wave theory. Section 2.2 explains a numerical solution to the elastic wave equations
and their application in the SeisSol simulator.

2.1 Introduction to Seismic Wave Theory

The section below introduces to material elasticity and the corresponding concepts of stress
and strain. Based on that, the elastic wave equations will be discussed and important
properties of seismic waves will be presented. A reference of the different types of materials
relevant for this thesis will also be given.

2.1.1 Stress and Strain

LeVeque [LeV04, Section 2.12] explains that when a solid undergoes a small deformation as
a result of an external force, the theory of linear elasticity can be applied. It assumes that
the restoring forces in the material are approximately linear to the degree of deformation.
Correspondingly, a solid is called elastic if it returns to its original state after all forces have
been removed. Larger deformations may cause chemical bonds inside the material to be
rearranged. This leads to the solid yielding, resulting in a permanent or plastic deformation.
Even higher load can result in structural failure of the material.
In the following, let us consider a point inside a three-dimensional solid material at a reference
location (x1, x2, x3). Following LeVeque [LeV04, Section 2.12], its location depending on
the reference coordinates at time t is (X1(x1, x2, x3, t), X2(x1, x2, x3, t), X3(x1, x2, x3, t)).
This allows to define the deformation vector

u(x1, x2, x3, t) =

u1(x1, x2, x3, t)u2(x1, x2, x3, t)
u3(x1, x2, x3, t)

 =

X1(x1, x2, x3, t)
X2(x1, x2, x3, t)
X3(x1, x2, x3, t)

−

x1x2
x3

 . (2.1)

The resulting particle velocity v is the time derivative of the deformation,

v =
∂u

∂t
. (2.2)

Deformation leads to extension or contraction within a solid which can be described as a
strain. LeVeque [LeV04, Section 2.12] introduces the deformation gradient

∇u =


∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

 =


∂X1
∂x1

− 1 ∂X1
∂x2

∂X1
∂x3

∂X2
∂x1

∂X2
∂x2

− 1 ∂X2
∂x3

∂X3
∂x1

∂X3
∂x2

∂X3
∂x3

− 1

 . (2.3)
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2 Simulation of Seismic Wave Propagation

Only the symmetric part of ∇u will be considered in order to remove rotational motion of
the solid. This results in the 3 x 3 strain tensor

ϵ =
1

2
(∇u+ (∇u)T ) =

ϵ11 ϵ12 ϵ13
ϵ21 ϵ22 ϵ23
ϵ31 ϵ32 ϵ33

 . (2.4)

Strain causes stress which represents a material’s effort to return to its original form as a
result of the deformation. It can also be expressed in terms of a stress tensor

σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 (2.5)

where the first index i of σij denotes the plane with normal vector ei on which traction is
exerted in the direction of ej [SW03, Section 2.3]. Stein and Wysession [SW03, Section 2.3]
move on to explain that σ11, σ22, σ33 are called normal stresses as they describe traction
normal to a plane. The stress tensor is symmetric and all components off the diagonal are
known as shear stresses. These describe traction within a plane.
Figure 2.1 shows the components of the stress tensor attached to the respective planes of an
infinitely small cube they act upon.

Figure 2.1: Components of the stress tensor at an infinitely small cube. Source: [AHH+21]

Stress relates to strain via Hooke’s law which LeVeque [LeV04, Section 22.1] gives by

σij =
3∑

k,l=1

Cijklϵkl. (2.6)

Considering symmetry of the stress tensor and isotropic materials only, C simplifies to a 6 x
6 matrix [LeV04, Section 22.1]. It mediates between stress and strain via linear combinations

4



2.1 Introduction to Seismic Wave Theory

of the Lamé parameters λ and µ as seen in Equation 2.7.

σ11
σ22
σ33
σ12
σ23
σ13

 =



λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ





ϵ11
ϵ22
ϵ33
ϵ12
ϵ23
ϵ13

 (2.7)

2.1.2 Seismic Waves

Based on the ideas of stress and strain, the propagation of seismic waves in elastic media can
be described. Therefore, the elastic wave equations will be derived for the three-dimensional
case following LeVeque [LeV04, Section 22.1].
Using the definition of the strain tensor as well as Newton’s second law, a set of equations
for wave motion follows to be

∂ϵ11
∂t

− ∂v1
∂x1

= 0

∂ϵ22
∂t

− ∂v2
∂x2

= 0

∂ϵ33
∂t

− ∂v3
∂x3

= 0

∂ϵ12
∂t

− 1

2

(
∂v2
∂x1

+
∂v1
∂x2

)
= 0

∂ϵ23
∂t

− 1

2

(
∂v2
∂x3

+
∂v3
∂x2

)
= 0

∂ϵ13
∂t

− 1

2

(
∂v1
∂x3

+
∂v3
∂x1

)
= 0,

(2.8)

ρ
∂v1
∂t

− ∂σ11
∂x1

− ∂σ12
∂x2

− ∂σ13
∂x3

= 0

ρ
∂v2
∂t

− ∂σ12
∂x1

− ∂σ22
∂x2

− ∂σ23
∂x3

= 0

ρ
∂v3
∂t

− ∂σ13
∂x1

− ∂σ23
∂x2

− ∂σ33
∂x3

= 0.

(2.9)

The equations in 2.8 can be derived from the relation between ϵ and the deformation u
defined in Equations 2.3 and 2.4. For the fourth equation, for example, the reasoning is

ϵ12 =
1

2

(
∂X1

∂x2
+

∂X2

∂x1

)
⇔ ∂ϵ12

∂t
=

1

2

(
∂X1

∂x2∂t
+

∂X2

∂x1∂t

)
=

1

2

(
∂u1
∂x2∂t

+
∂u2
∂x1∂t

)
=

1

2

(
∂v1
∂x2

+
∂v2
∂x1

)
(2.10)
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2 Simulation of Seismic Wave Propagation

The final step results from Equation 2.2. For the three equations in 2.9, we apply Newton’s
second law to an infinitely small element to obtain the net forces in all spatial directions as

Fi = ρ
∂vi
∂t

=
3∑

j=1

∂σij
∂xi

. (2.11)

The equations of motion from 2.8 need to be inserted into the expressions for the six
components of σ from Equation 2.7. Forming their time derivative results in

∂σ11
∂t

− (λ+ 2µ)
∂v1
∂x1

− λ
∂v2
∂x2

− λ
∂v3
∂x3

= 0

∂σ22
∂t

− λ
∂v1
∂x1

− (λ+ 2µ)
∂v2
∂x2

− λ
∂v3
∂x3

= 0

∂σ33
∂t

− λ
∂v1
∂x1

− λ
∂v2
∂x2

− (λ+ 2µ)
∂v3
∂x3

= 0

∂σ12
∂t

− µ

(
∂v2
∂x1

+
∂v1
∂x2

)
= 0

∂σ23
∂t

− µ

(
∂v2
∂x3

+
∂v3
∂x2

)
= 0

∂σ13
∂t

− µ

(
∂v1
∂x3

+
∂v3
∂x1

)
= 0.

(2.12)

Equations 2.9 and 2.12 together are called the elastic wave equations.
LeVeque [LeV04, Section 2.12] recalls that there are two types of seismic waves, namely P
and S waves which stands for either ”primary” and ”secondary” or ”pressure” and ”shear”
waves. Their main difference is the direction of oscillation in relation to the direction the
wave propagates in. A P wave compresses and stretches the material along the path it
travels while S waves cause the material to move perpendicular to it [KBH02, Section 3.3].
This is illustrated in Figure 2.2.

Figure 2.2: Oscillations caused by P and S waves relative to their direction of propagation.
Source: [KBH02]

Both types of waves travel at different speeds which Kearey et al. [KBH02, Section 3.3]

6



2.1 Introduction to Seismic Wave Theory

give by

vp =

√
K + 4

3µ

ρ
=

√
λ+ 2µ

ρ
, vs =

√
µ

ρ
. (2.13)

The velocity of S waves is independent of the bulk modulus K because an S wave causes no
compression [SW03, Section 2.4]. In general, P waves travel faster than S waves because the
elastic moduli K and µ are usually positive. The resulting difference in time between the
arrivals of P and S waves at receivers allows to locate the source of an earthquake.
When a wave hits an interface in a layered medium, a reflected and a transmitted wave are
generated [KBH02, Section 3.6]. For P waves, additional reflected and transmitted S waves
occur as shown in Figure 2.3.

(a) Reflected and transmitted P and S waves
for P wave hitting a material interface.

(b) Reflected and transmitted P waves and
associated incidence angles.

Figure 2.3: Reflected and transmitted P and S waves generated when a P wave hits a material
interface. Source: [KBH02]

Kearey at al. [KBH02, Section 3.6] argue that the directions of the newly generated waves
follow Snell’s law. For the relation between angles enclosed with the vertical and speeds in
two neighboring layers it holds that

sin θ1
sin θ2

=
v1
v2

. (2.14)

As a result, the P wave is reflected at the same angle at which it hit the interface. Both
the reflected and transmitted S waves have a lower angle enclosed with the vertical than
the incoming P wave due to their overall lower velocity. The angle of the refracted P wave
depends on v2.

2.1.3 Seismic Faults

An earthquake generally originates at a fault. A fault is an area of fractures between
neighboring solid blocks in the ground [Uni22]. This allows the blocks to move along the
fault. It is characterized by the angle it encloses with the earth’s surface, called the dip, and
the direction in which movement occurs along the fault, named slip. Using these definitions,
faults can be divided into three categories [Uni22]:

1. Normal fault: Downward slip of the block above the fault

7



2 Simulation of Seismic Wave Propagation

2. Reverse (thrust) fault: Upward slip of the block above the fault

3. Strike-slip fault: Both blocks slide horizontally along the fault

Stein and Wysession [SW03, Section 2.3] note that, as a good approximation, a fault
originates along the plane with the highest shear stress in a solid.

2.1.4 Materials and Parameters

In the following, the materials a solid may be composed of will be divided into several
categories based on their macroscopic structure. The kinds of materials relevant for this
thesis are elastic, viscoelastic and poroelastic media. Plastic and anisotropic materials will
be briefly addressed in Chapter 5. They will not be investigated further.

Elastic Materials

As was mentioned in Subsection 2.1.1, purely elastic media behave according to the theory
of linear elasticity. Like a spring in the one-dimensional case, a three-dimensional elastic
solid experiences restoring forces linear to its deformation [LeV04, Section 2.12]. The elastic
approximation is valid only up to a certain point beyond which any material suffers lasting
deformation.
Elastic media can be described by means of elastic moduli. These express different relations
of certain components of stress to the resulting strain. Kearey et al. [KBH02, Section 3.2]
provide definitions of the elastic moduli:

• Young’s modulus E describes elongation of a material when a force is applied in
longitudinal direction. This is accompanied by tapering of the solid perpendicular to
the direction of longitudinal strain. Poisson’s ratio ν relates lateral and longitudinal
strain for this mode of deformation.

• Under pressure, a volume is compressed along all axes. Here the bulk modulus K gives
the ratio of volumetric stress and strain.

• The second Lamé parameter µ is also called shear modulus. It captures how rigidly a
material responds when a shear stress is applied [SW03, Section 2.3].

• The axial modulus Ψ is less relevant. Similar to Young’s modulus, it relates longitudinal
stress and strain, but without lateral contraction.

Figure 2.4 provides a vivid description of the elastic moduli.
Stein and Wysession [SW03, Section 2.3] explain that in seismic applications, however, the
properties of elastic media are mostly characterized by the Lamé parameters λ and µ only.
Together with density ρ, they provide a complete description of elastic behavior. The first
Lamé parameter λ has no physical interpretation. According to Stein and Wysession, it
relates to the other elastic moduli via

λ = K − 2

3
µ =

Eν

(1 + ν)(1− 2ν)
. (2.15)

8



2.1 Introduction to Seismic Wave Theory

Figure 2.4: Visualizations of the elastic moduli. (a) Young’s modulus, (b) bulk modulus, (c)
shear modulus, (d) axial modulus. Source: [KBH02]

Viscoelastic Materials

Viscoelastic media combine viscous and elastic characteristics. In seismology, the description
of viscoelasticity relies on the elastic parameters λ, µ and ρ as well as on additional quality
factors Qp and Qs for P and S waves, respectively. They are also known as ”seismic Q”.
Morosov [Mor19] argues that multiple interpretations and analogies exist to capture the
meaning of seismic Q. They all agree on the fact that Qp and Qs are used to model the
attenuation of seismic waves. The most vivid definition is that of ”intended interpretational
Q” [Mor19]. It identifies the need to consider wave decay in viscoelastic media as a result of
heterogeneities like fractures, aquifers or different temperatures in the material. This causes
some of the energy contained in seismic waves to be dissipated by friction.
We speak of ”intended” because this interpretation is not helpful to quantify seismic Q. No
physical quantity exists to measure for example the degree of fracturing of a rock. Therefore,
other theories exist which assign the quality factor a mathematical meaning. Morosov names
an analogy to a resonator or an interpretation of Q as the complex argument of the bulk
modulus K in the frequency domain. It is difficult, however, to make assumptions about
the frequency domain prior to an actual simulation run.

Poroelastic Materials

Porous media can be described by the theory of poroelasticity. Poroelastic materials have
both a solid and a fluid component. In contrast to viscoelastic media, the viscous phase is
always arranged regularly in form of a pore space that permeates the solid and contains a
fluid [WGU+22, Section 3.1].
Wolf et al. [WGU+22, Section 3.1] list the parameters used to describe poroelastic materials.
The densities of the solid and the fluid phase, ρS and ρF , are considered separately. The
same applies to the bulk moduli KS and KF . The Lamé parameters λM and µM govern
the elastic behavior of the solid part. It is also referred to as the solid matrix, hence the
subscript M . Wolf et al. identify four more coefficients specific to poroelastic media:

• The matrix permeability κ describes the resistance the fluid faces as it passes through
the pores.

9



2 Simulation of Seismic Wave Propagation

• Matrix porosity Φ denotes the share of the entire volume taken up by the pores.

• Two points in the fluid phase are not connected via a straight link but through the
pores which have an irregular shape. Therefore, the matrix tortuosity T captures the
ratio of the length of a connection via pores to the direct link between two points in
the fluid medium.

• Fluid viscosity ν is a well known parameter used to describe how rigidly a liquid
responds to deformation.

Overview of Materials and Parameters

The table below provides a reference to the material parameters actually used for the
description of different media in SeisSol. For elastic materials, for example, only density and
both Lamé parameters are used. As discussed above, these are sufficient to fully describe
elastic behavior.

Parameter Description Elastic Viscoelastic Poroelastic

ρ Density • • •
λ 1. Lamé Parameter • • •
µ 2. Lamé Parameter • • •

Qp/s Seismic Q •
K Bulk Modulus •
κ Matrix Permeability •
Φ Matrix Porosity •
T Matrix Tortuosity •
ν Fluid Viscosity •

Table 2.1: Overview of material parameters and their relevance for elastic, viscoelastic and
poroelastic media. For the latter, density and bulk modulus are considered
separately for the fluid and solid phases of a medium.

2.2 Solution to the Elastic Wave Equations

Turning now to the usage of the elastic wave equations in seismic simulations. The first
subsection presents the ADER-DG scheme as a numerical solution to the elastic wave
equations. It is followed by an introduction to the SeisSol simulator and its interaction with
the easi library used to initialize material parameters.

2.2.1 ADER-DG Numerical Scheme

In order to simulate seismic wave propagation, a numerical solution to the elastic wave
equations is required. Following Dumbser and Käser [DK06], the Arbitrary high-order
DERivatives (ADER) approach combined with the Discontinuous Galerkin (DG) discretiza-
tion scheme will be applied to the three-dimensional elastic wave equations. The ADER-DG
approach allows for an arbitrarily high accuracy of the solution. It is a single-step scheme
and does not depend on intermediate calculations like for example Runge-Kutta. Since its

10
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entire derivation is rather complex, ADER-DG will be presented in a simplified way.
At the heart of DG is its ability to handle discontinuities at the boundaries between neigh-
boring elements [KP21, Chapter 1]. It introduces the concept of numerical fluxes between
elements to compensate for the error that would otherwise occur without forcing continuity.
Dumbser and Käser move on to explain that the DG approach approximates the solution
for each tetrahedral element by means of polynomial basis functions Φl(x) up to degree N .
For the numerical solution Q to the elastic wave equations it holds

Q(x, t) =
N∑
l=1

Q̂l(t)Φl(x) (2.16)

where Q is approximated as a linear combination of time-independent basis functions Φl(x)
with space-independent degrees of freedom Q̂l(t).
The elastic wave equations can also be expressed as a single term

∂Q

∂t
+A

∂Q

∂x1
+B

∂Q

∂x2
+ C

∂Q

∂x3
= 0 (2.17)

using matrices A, B and C. We multiply above equation by a test function Φk and form its
integral over a tetrahedral volume V , which yields∫

V
Φk

(
∂Q

∂t
+A

∂Q

∂x1
+B

∂Q

∂x2
+ C

∂Q

∂x3

)
dV = 0

⇔
∫
V
Φk

∂Q

∂t
dV +

∫
V
Φk

(
A
∂Q

∂x1
+B

∂Q

∂x2
+ C

∂Q

∂x3

)
dV = 0.

(2.18)

Equation 2.18 is integrated by parts while we introduce a numerical flux Ψk as explained
above to obtain∫

V
Φk

∂Q

∂t
dV +

∫
∂V

ΦkΨk dS −
∫
V

∂Φk

∂x1
AQ+

∂Φk

∂x2
BQ+

∂Φk

∂x3
CQdV = 0. (2.19)

Inserting an expression for the flux Ψk between two neighboring elements leads to a large
term for the DG formulation which we omit here for the sake of brevity. It is computationally
efficient to substitute the irregular tetrahedral volume by that of a reference tetrahedron.
This allows to evaluate and store some of the integrals contained in the DG expression once
for an entire simulation run.
Additionally, the ADER time-discretization needs to be performed. By applying the Cauchy-
Kowalevski procedure in the transformed ξηζ-system with rearranged matrices A∗, B∗ and
C∗, one obtains

∂Q

∂kt
= (−1)k

(
A∗ ∂

∂ξ
+B∗ ∂

∂η
+ C∗ ∂

∂ζ

)k

Q. (2.20)

Dumbser and Käser develop the solution to Equation 2.17 in a Taylor series which yields

Q(x, t) =
N∑
k=0

tk

k!

∂Q(x, 0)

∂kt
. (2.21)
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Inserting Equation 2.20 into Equation 2.21, the time-derivatives can be replaced by space-
derivatives. Moreover, we insert Equation 2.16 to get the result

Q(x, t) =
N∑
k=0

tk

k!
(−1)k

(
A∗ ∂

∂ξ
+B∗ ∂

∂η
+ C∗ ∂

∂ζ

)k

Q(x, 0)

=
N∑
k=0

tk

k!
(−1)k

(
A∗ ∂

∂ξ
+B∗ ∂

∂η
+ C∗ ∂

∂ζ

)k

Q̂l(0)Φl(x).

(2.22)

The final idea is to evaluate the Taylor series from Equation 2.22 at time t+ τ to obtain a
solution for an advanced time step τ .

2.2.2 SeisSol and easi

The homogenization approach for material parameters developed in this thesis is imple-
mented in the SeisSol simulation package. SeisSol is a ”scientific software for the numerical
simulation of seismic wave phenomena and earthquake dynamics” [Tea22d]. At the heart
of SeisSol is an implementation of the ADER-DG solution to the elastic wave equations
presented in the previous subsection.
The corresponding documentation [Tea22c] highlights its most important features: The
software uses meshes composed of tetrahedral elements to model highly complex three-
dimensional topography and seismic fault geometries. The ADER-DG approach allows for
an arbitrarily high order of accuracy in both space and time. SeisSol can handle all kinds of
elastic as well as plastic and anisotropic materials. Two- and three-dimensional output can
be generated and visualized for the evolution of multiple parameters over time. If receivers
are defined, SeisSol generates artificial seismograms at their locations. The SeisSol code is
open-source and available on GitHub [Tea22b].

SeisSol is designed for a highly parallelized execution, typically on high-performance com-
puting clusters. Therefore, it relies on MPI combined with OpenMP to form a hybrid
parallelization scheme [Tea22c]. The Message Passing Interface (MPI) is a standard that
defines communication between multiple processes [BM06, Section 3.3]. The processes
exchanging messages may be part of a single machine and / or distributed over multiple
nodes. This can be used as a means of implicit synchronization to split up and coordinate
the execution of tasks between different processes [Mar21].
OpenMP, on the contrary, is an API which allows to instruct a suitable compiler to apply
multi-threading to certain parts of code via dedicated pragmas [BM06, Section 3.4]. Apart
from threading features integral to a programming language’s standard library, a program
may be parallelized using either MPI or OpenMP exclusively. Under certain circumstances,
however, it can be beneficial to combine both concepts and form a hybrid approach [INT17,
Section 1]. This is possible by connecting multiple nodes via a common MPI interface
and simultaneously parallelizing the tasks executed on every single node using OpenMP
directives.
A noticeable advantage of combining MPI with OpenMP is a reduced memory consumption
because of the administrative overhead required by MPI to keep processes aware of the data
handled by others [INT17, Section 2.1]. Replacing MPI processes on a node by OpenMP
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2.2 Solution to the Elastic Wave Equations

threads which share their memory can help reduce the overhead. Moreover, it is possible to
achieve better scaling performance at high node counts with hybrid MPI and OpenMP for
some applications [INT17, Section 2.2]. Nonetheless, scaling of this approach is also limited
at some point due to the overhead caused by parallelization. SeisSol shows high scaling
performance for realistic scenarios on modern HPC systems [KUU+21, Section 6.3].
Like any type of parallel programming, a successful usage of OpenMP and MPI requires code
that is suitable for parallelization in the first place. A program needs to be studied carefully
to avoid for example race conditions or idle OpenMP threads consuming performance in
sections which can only be run sequentially anyway [INT17, Section 3].

SeisSol uses the easi library to initialize a multi-dimensional rheological model. The easi
documentation [Uph22] explains how a model is generated: The overall aim is to assign a
vector of material parameters to an arbitrary point in space. Applied to SeisSol, this means
that prior to the actual simulation every mesh element needs to be assigned a vector of
parameters. It is used as a constant description of the material characteristics for the entire
volume occupied by an element. easi allows to define and connect maps and filters in YAML
files. A combination of them is used to model a function which returns material parameter
values for certain points in space.
Listing 2.1 contains an exemplary easi model to showcase the use of maps and filters with
the help of the easi documentation [Uph22]. The Any filter in line 1 accepts all points and
represents a root node. The GroupFilter only allows points which are tagged with 6,7 or 8
in the mesh. These are assigned constant values for the elastic material parameters ρ, µ
and λ using a ConstantMap. All other points are processed in the FunctionMap in line 10. It
defines ImpalaJIT [Fas22] functions for all three material parameters depending on a point’s
coordinates. More types of maps and filters are available.

1 !Any
2 components :
3 − ! GroupFi l ter
4 groups : [ 6 , 7 , 8 ]
5 components : ! ConstantMap
6 map :
7 rho : 2500 .0
8 mu: 0 .0
9 lambda : 1 .96 e10

10 − ! FunctionMap
11 map :
12 rho : return 1600 . + 59.5∗pow(y , 1 . / 3 . ) ;
13 mu: return 0 . ;
14 lambda : return pow(260 . + 30∗ s q r t ( y ) , 2 . ) ∗ (1600 . + 59 .5∗pow(y , 1 . / 3 . ) ) ;

Listing 2.1: easi example 5 function.yaml. Source: [Tea22a]

For later reference it should be noted that SeisSol interacts with easi models by means of
corresponding classes. The easi :: Component class represents an easi model loaded and parsed
from a YAML file. A seissol :: initializers :: QueryGenerator defines the points at which material
parameters should be retrieved. They are stored in an easi :: Query. An easi :: Component can
be evaluated using the query which yields the desired output of material parameters.
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3 Numerical Homogenization Approach

In the following pages, the mathematical background developed for the homogenization of
elastic and viscoelastic material parameters alongside its implementation in SeisSol will be
presented. Poroelasticity will be covered in theory only.
First, the existing implementation used for averaging parameters will be given as a reference,
followed by a detailed account of the newly derived homogenization approach. Furthermore,
an introduction to Gaussian quadrature in the context of evaluating integrals for homoge-
nization is provided. These theoretical considerations form the basis for application of the
actual homogenization technique in SeisSol code in the final section.

3.1 Current Approach

As indicated previously, material parameters used to be sampled at a single point per element,
namely at its barycenter b. For non-regular tetrahedra with vertices v0 = [x0, y0, z0]

T ,
v1 = [x1, y1, z1]

T , v2 = [x2, y2, z2]
T , v3 = [x3, y3, z3]

T as encountered in terrain meshes, the
barycenter location can be calculated as

b =

xbyb
zb

 =

x0+x1+x2+x3
4

y0+y1+y2+y3
4

z0+z1+z2+z3
4

 . (3.1)

While this approach delivers exact results for homogeneous media, it is subject to errors
of increasing severity for any more complex parameter distribution. It will be shown in
Chapter 4 that such cases include, among others, layered materials with discontinuities and
some parameter distributions described by trigonometric functions.

1 e a s i : : Query s e i s s o l : : i n i t i a l i z e r s : : ElementBarycentreGenerator : : generate ( )
const {

2 std : : vector<Element> const& elements = m meshReader . getElements ( ) ;
3 std : : vector<Vertex> const& v e r t i c e s = m meshReader . g e tVe r t i c e s ( ) ;
4
5 e a s i : : Query query ( e lements . s i z e ( ) , 3) ;
6 for (unsigned elem = 0 ; elem < e lements . s i z e ( ) ; ++elem ) {
7 // Compute barycentre f o r each element
8 for (unsigned dim = 0 ; dim < 3 ; ++dim) {
9 query . x ( elem , dim) = v e r t i c e s [ e lements [ elem ] . v e r t i c e s [ 0 ] ] . coords [ dim ] ;

10 }
11 for (unsigned ver tex = 1 ; ver tex < 4 ; ++vertex ) {
12 for (unsigned dim = 0 ; dim < 3 ; ++dim) {
13 query . x ( elem , dim) += v e r t i c e s [ e lements [ elem ] . v e r t i c e s [ ver tex ] ] .

coords [ dim ] ;
14 }
15 }
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16 for (unsigned dim = 0 ; dim < 3 ; ++dim) {
17 query . x ( elem , dim) ∗= 0 . 2 5 ;
18 }
19 /∗ . . . ∗/
20 }
21 return query ;
22 }

Listing 3.1: Generation of an easi query using barycenter sampling. Source: SeisSol,
ParameterDB.cpp, ll. 59-81

Listing 3.1 shows calculation of the barycenter of all elements contained in a terrain mesh
following Equation 3.1. The results are entered into a new easi query which is returned.
Upon evaluation of the easi query at a later stage, parameter values are fetched and stored
in the material parameter database without further processing.
In contrast to this rather simple yet often imprecise approach, a more sophisticated technique
for averaging material parameters will be presented in the next section.

3.2 Homogenization Approach

In the following, we will move on to describe in greater detail how the steps required for
homogenization of material parameters in elastic, viscoelastic and poroelastic media can be
derived. The respective parameters to be averaged have been introduced in Subsection 2.1.4.

3.2.1 Elastic Media

In the case of elastic materials, only three material parameters need to be averaged, namely
the density ρ as well as the Lamé parameters λ and µ. A bar above a coefficient denotes a
parameter’s homogenized value.
For homogenization of ρ within a mesh element, LeVeque [LeV04, Section 9.14] and Moczo
et al. [MKV+02, p. 6] consider it sufficient to use its arithmetic average to obtain the
average material density

ρ̄ =
1

|V |

∫
V
ρ(x) dx. (3.2)

LeVeque uses an analogy to acoustic wave propagation. Therefore, he proposes an approach
using a harmonic average for the bulk modulus K, which can also be applied to the shear
modulus µ [LeV04, Section 9.14]. In order to show that this substitution is valid, let us
consider the stress-strain relation

σ = Kϵ (3.3)

which rewrites to Hooke’s law as

ϵ =
1

K
σ. (3.4)

LeVeque applies an arithmetic average to the strain ϵ within the integral boundaries
[xi− 1

2
, xi+ 1

2
]. Replace this by an arbitrary tetrahedron volume V and use Equation 3.4 to
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obtain

ϵ̄ =
1

|V |

∫
V
ϵ(x) dx

=

(
1

|V |

∫
V

1

K(x)
dx

)
σ

=
1

K̄
σ.

(3.5)

The three-dimensional extensional and shear stress-strain relations for elasticity are also
given by LeVeque [LeV04, Section 22.1]:

ϵ11 =
1

E
σ11 −

ν

E
σ22 −

ν

E
σ33

ϵ22 = − ν

E
σ11 +

1

E
σ22 −

ν

E
σ33

ϵ33 = − ν

E
σ11 −

ν

E
σ22 +

1

E
σ33,

(3.6)

ϵ12 =
1

2µ
σ12, ϵ23 =

1

2µ
σ23, ϵ13 =

1

2µ
σ13. (3.7)

With the same reasoning as for acoustics in Equation 3.5 as well as the analogy of Equation 3.4
to Equation 3.7 apart from a constant factor of 1

2 , it is justified to apply a harmonic average
to µ to obtain the average shear modulus

1

µ̄
=

1

|V |

∫
V

1

µ(x)
dx. (3.8)

It is slightly more complex to derive a homogenized first Lamé parameter λ. LeVeque
[LeV04, Section 22.1] recalls the relationship between shear modulus µ, Young’s modulus E
and Poisson ratio ν to be

µ =
E

2(1 + ν)
(3.9)

⇔ 1

2µ
=

1 + ν

E
. (3.10)

Rephrase Equation 3.6 and use Equation 3.10 to obtain

ϵii =
1 + ν

E
σii −

ν

E
(σ11 + σ22 + σ33)

=
1

2µ
σii −

ν

E
(σ11 + σ22 + σ33)

(3.11)

for i ∈ {1, 2, 3}. Averaging Equation 3.11 yields

1

2µ̄
σii −

ν̄

Ē
(σ11 + σ22 + σ33)

=

(
1

|V |

∫
V

1

2µ(x)
dx

)
σii −

(
1

|V |

∫
V

ν(x)

E(x)
dx

)
(σ11 + σ22 + σ33), (3.12)
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which can be reduced to calculate the homogenized ratio of ν and E using its arithmetic
average as

X :=
ν̄(x)

Ē(x)
=

1

|V |

∫
V

ν(x)

E(x)
dx. (3.13)

LeVeque [LeV04, Section 22.1] gives the relationships between E as well as ν and Lamé
parameters λ, µ as

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

1

2

(
λ

λ+ µ

)
. (3.14)

For the ratio of ν and E it follows that

ν(x)

E(x)
=

λ(x)

2µ(x) (3λ(x) + 2µ(x))
. (3.15)

It remains to insert Equation 3.15 into 3.13 and to solve for λ̄ to obtain

X =
λ̄

2µ̄
(
3λ̄+ 2µ̄

)
⇔ λ̄ = 2µ̄X

(
3λ̄+ 2µ̄

)
⇔ λ̄ (1− 6µ̄X) = 4µ̄2X

⇔ λ̄ =
4µ̄2X

1− 6µ̄X
.

(3.16)

3.2.2 Alternative Calculation of 1. Lamé Parameter

The first Lamé parameter λ can also be derived in a simpler way. In this regard, Moczo
et al. [MKV+02, p. 12] point out the relationship between the bulk modulus K and Lamé
parameters µ and λ,

K = λ+
2

3
µ. (3.17)

Harmonic averaging yields

X :=
1

K̄(x)
=

1

|V |

∫
V

1

λ(x) + 2
3µ(x)

dx (3.18)

=
1

λ̄(x) + 2
3 µ̄(x)

. (3.19)

It remains to solve above equation for λ̄ to obtain a simpler result compared to deriving λ̄
from the averaged ν

E :

λ̄ =
1

X
− 2

3
µ̄. (3.20)

Running simulations on elastic media with rapidly varying λ shows how both approaches
deliver virtually equivalent results.
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3.2.3 Viscoelastic Media

Above calculations for elastic media can be readily extended to also cover the viscoelastic
case featuring additional parameters Qp and Qs. As it has been explained in Subsection 2.1.4,
these denote seismic quality factors of P and S waves.
In order not to exceed the scope of this thesis, we apply an arithmetic average for homoge-
nization of these parameters,

Q̄ =
1

|V |

∫
V
Q(x) dx. (3.21)

As it will be seen in the evaluation of the corresponding results, this turns out to be an
appropriate choice since the effect of homogenization on Qp and Qs is negligible compared
to barycenter averaging.

3.2.4 Poroelastic Media

Poroelastic media represent another possible structure of soil that is relevant for seismic
simulations. For homogenization of these materials, all of the respective material parameters
presented in Subsection 2.1.4 need to be properly averaged.
Both the solid and the fluid density, ρS and ρF , can be homogenized using an arithmetic
average as for the previously discussed materials. Equation 3.2 gives the correct homoge-
nization formula for an arbitrary density distribution. Similarly, the Lamé parameters µM

and λM can be averaged using Equations 3.8 and 3.16, respectively.
For the solid and fluid bulk moduli, KS and KF , LeVeque [LeV04, Section 9.14] uses a
harmonic average to obtain the homogenized bulk modulus

K̄ =

(
1

|V |

∫
V

1

K(x)
dx

)−1

. (3.22)

Moreover, Cheng [Che16, Section 1.2] gives the overall bulk modulus K of a porous medium
by

K =

(
1

KS
+

Φ

KF

)−1

(3.23)

where Φ denotes the matrix porosity. It is used to weight the fluid bulk modulus by the
fraction of the total volume occupied by the fluid.
A poroelastic medium is also characterized by its matrix permeability κ. Multiple models
exist to average permeability for different layouts of heterogeneous porous materials. Glover
and Luo [GL20, Section 6.2] propose an arithmetic average in case the different material
phases are arranged side by side in the direction of flow. Should the permeabilities be
connected in series instead, a harmonic average is preferred. If no assumptions can be made
about flow direction or composition of the porous material, a geometric average of the phases’
permeabilities is proposed. All means are weighted by the volume fractions occupied by the
different materials.
Regarding matrix porosity Φ, an arithmetic average seems to be a sound choice. Glover
and Luo [GL20, Section 3] calculate mean porosity values for binary grain mixtures using
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spherical approximations for the grains. They consider two cases where either many small
grains fit between large ones or large grains displace smaller ones. The homogenization of
both can be generalized best using an arithmetic average.
Zharbossyn et al. [ZBB+20, Section 2.1] also use an arithmetic average for the approximation
of tortuosity T of a ternary particle mixture in a porous medium. In our application, T
describes the ratio of the length of a connection via pores to the direct link between two
points in the medium. The mean of two distances is calculated using its arithmetic average.
Therefore, its application to the homogenization of matrix tortuosity is reasonable, too.
Grunberg and Nissan [GN49] provide a formula for the averaging of viscosity for a liquid
mixture consisting of two components,

ν̄ = x1 ln ν1 + x2 ln ν2 (3.24)

where xi denotes the molar mass fraction and νi the viscosity of the i-th component. This
can be generalized to a continuous viscosity distribution which yields the homogenized fluid
viscosity

ν̄ =
1

|V |

∫
V
ln ν(x) dx. (3.25)

In summary, it has been shown that all three elastic material parameters can be homogenized
by use of arithmetic and harmonic averages in Equations 3.2, 3.8 and 3.16. For ρ̄ and µ̄
simple averaged expressions have been derived while for λ̄ an additional step via ν

E was
necessary. Arithmetic averaging of the viscoelastic parameters Qp and Qs has been proposed
and an alternative means of calculating a homogenized λ̄ was provided. For all poroelastic
material parameters a homogenization approach has been given as well.

3.3 Introduction to Gaussian Quadrature

As indicated in the previous section, homogenized computation of material parameters
requires the evaluation of multiple integrals per element. Material parameters are given as
functions of up to three dimensions and, in general, no assumptions can be made about
their distributions. Consequently, it will be necessary to compute the numerical values of
their integrals using a suitable quadrature technique.
The basic idea of numerical integration is the approximation of a definite integral of an
arbitrary function f(x) using a weighted sum of values of f at certain points xk called nodes.
Stroud [Str74, Section 3.1] defines the general quadrature problem as∫ b

a
w(x)f(x) dx =

n∑
k=0

λkf(xk) + E[f ], (3.26)

where

w(x) : weight function,

λk : weights,

xk : nodes,

E[f ] : approximation error.
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For computational purposes E[f ] will be ignored since it is unknown. Thus, Equation 3.26
becomes an approximation, ∫ b

a
w(x)f(x) dx ≈

n∑
k=0

λkf(xk). (3.27)

Stroud assumes that the integral exists and that f(x) is defined at xk, k ∈ {0, . . . , n}.
This is required to choose the nodes and weights in any possible way that minimizes
the approximation error. Several approaches exist for a suitable choice of x0, . . . , xn and
λ0, . . . , λn resulting in different degrees of Equation 3.27. A quadrature formula of degree d
results in E[f ] = 0 for all polynomials of degree ≤ d, and E[f ] ̸= 0 for higher polynomial
degrees [Str74, Section 3.1].
For the purpose of this thesis we will focus on Gaussian quadrature. Stroud [Str74, Section
3.6] elaborates that a Gaussian quadrature formula has the same form as Equation 3.27 at
degree 2n− 1 which is the highest possible degree for n nodes. The nodes are chosen to be
the roots of an orthogonal polynomial Pn(x). For the choice of Pn again several approaches

exist, among which the Jacobi polynomials Pα,β
n (x) are used in the implementation. The

resulting quadrature formula for [a, b] = [−1, 1] and w(x) = (1−x)α(1+x)β where α, β > −1
is called Gauss-Jacobi quadrature. It has the form∫ 1

−1
(1− x)α(1 + x)βf(x) dx ≈

n∑
k=0

λkf(xk), (3.28)

where x0, . . . , xn are the roots of the n-th Jacobi polynomial. For λ0, . . . , λn multiple
formulations exist. See for example Brzezinski [Brz18, p. 3] or Hale and Townsend [HT13,
p. 2] for a formula which slightly differs from the one used in SeisSol. The simulator uses

λk = −2n+ α+ β + 2

n+ α+ β + 1

(n+ α)!(n+ β)!

(n+ α+ β)!(n+ 1)!

2α+β

Pα,β ′
n (xk)P

α,β
n+1(xk)

. (3.29)

In order to use Gauss-Jacobi quadrature for the homogenization of material parameters
in SeisSol, it has to be applied to a three-dimensional integral over a tetrahedral mesh element.

Stroud [Str71, Section 2.4] proposes a corresponding approximation for an integral of
a function f(x, y, z) over a tetrahedral volume. In our case f represents a material parameter
distribution. We substitute the integrand by a monomial which can be integrated exactly,

I :=

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
f(x, y, z) dzdydx =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
xαyβzγ dzdydx. (3.30)

Stroud applies the transformation

x = u

y = v(1− u)

z = w(1− v)(1− u),

(3.31)

which has the Jacobian determinant of

J = (1− u)2(1− v). (3.32)
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3.3 Introduction to Gaussian Quadrature

Let us apply above equations to Equation 3.30 in order to obtain

I =

∫ 1

0

∫ 1

0

∫ 1

0
(1− u)β+γ+2(1− v)γ+1uαvβwγ dudvdw. (3.33)

Above equation can be divided into three separate integrals, namely

Iu :=

∫ 1

0
(1− u)2(1− u)β+γuα du =

∫ 1

0
(1− u)2f(u) du, (3.34)

Iv :=

∫ 1

0
(1− v)(1− v)γvβ dv =

∫ 1

0
(1− v)g(v) dv, (3.35)

Iw :=

∫ 1

0
wγ dw =

∫ 1

0
h(w) dw. (3.36)

Now Gauss-Jacobi quadrature can be applied using β = 0 for all equations as well as α = 2
for Equation 3.34, α = 1 for 3.35 and α = 0 for 3.36. This results in quadrature points xu,
xv, xw as well as weights λu, λv, λw for all three dimensions.
Stroud composes a conical product out of the resulting quadrature points and weights to
obtain the final points x and weights λ as

xi,j,k =

 xui,j,k

xvi,j,k(1− xui,j,k
)

xwi,j,k
(1− xui,j,k

)(1− xvi,j,k)

 , (3.37)

λi,j,k = λui,j,k
λvi,j,kλwi,j,k

. (3.38)

Using Equations 3.37 and 3.38, Equation 3.30 can be evaluated numerically for a material
parameter function f over a tetrahedral mesh element.
Listing 3.2 shows the implementation of Stroud’s approach in SeisSol, which will be used in
Section 3.4.

1 inl ine void TetrahedronQuadrature (double (∗ po in t s ) [ 3 ] , double∗ weights ,
unsigned int n) {

2 /∗ . . . ∗/
3
4 auto po int s0 = std : : vector<double>(n) ;
5 auto po int s1 = std : : vector<double>(n) ;
6 auto po int s2 = std : : vector<double>(n) ;
7
8 auto weights0 = std : : vector<double>(n) ;
9 auto weights1 = std : : vector<double>(n) ;

10 auto weights2 = std : : vector<double>(n) ;
11
12 // Get the Gauss−Jacobi p o s i t i o n s and weights .
13 GaussJacobi ( po int s0 . data ( ) , weights0 . data ( ) , n , 2 , 0) ;
14 GaussJacobi ( po int s1 . data ( ) , weights1 . data ( ) , n , 1 , 0) ;
15 GaussJacobi ( po int s2 . data ( ) , weights2 . data ( ) , n , 0 , 0) ;
16
17 // Sh i f t and r e s c a l e p o s i t i o n s because Stroud
18 // i n t e g r a t e s over [ 0 , 1 ] and gaujac o f num. r e c i p e s
19 // con s i d e r s [ −1 ,1 ] .
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3 Numerical Homogenization Approach

20 for ( s i z e t i = 0 ; i < n ; ++i ) {
21 po int s0 [ i ] = 0 .5 ∗ po int s0 [ i ] + 0 . 5 ;
22 po int s1 [ i ] = 0 .5 ∗ po int s1 [ i ] + 0 . 5 ;
23 po int s2 [ i ] = 0 .5 ∗ po int s2 [ i ] + 0 . 5 ;
24
25 weights0 [ i ] = 0 .5 ∗ 0 .5 ∗ 0 .5 ∗ weights0 [ i ] ;
26 weights1 [ i ] = 0 .5 ∗ 0 .5 ∗ weights1 [ i ] ;
27 weights2 [ i ] = 0 .5 ∗ weights2 [ i ] ;
28 }
29
30 for ( s i z e t i = 0 ; i < n ; ++i ) {
31 for ( s i z e t j = 0 ; j < n ; ++j ) {
32 for ( s i z e t k = 0 ; k < n ; ++k) {
33 const auto curIndex = i ∗ n ∗ n + j ∗ n + k ;
34 po in t s [ curIndex ] [ 0 ] = po int s0 [ i ] ;
35 po in t s [ curIndex ] [ 1 ] = po int s1 [ j ] ∗ (1 − po int s0 [ i ] ) ;
36 po in t s [ curIndex ] [ 2 ] = po int s2 [ k ] ∗ (1 − po int s1 [ j ] ) ∗
37 (1 − po int s0 [ i ] ) ;
38 weights [ curIndex ] = weights0 [ i ] ∗ weights1 [ j ] ∗ weights2 [ k ] ;
39 }
40 }
41 }
42 /∗ . . . ∗/
43 }

Listing 3.2: Computation of quadrature points and weights for tetrahedral volumes. Source:
SeisSol, Quadrature.h, ll. 156-211

In lines 13 - 15 Gauss-Jacobi quadrature is applied to Equations 3.34 - 3.36 with the corre-
sponding choices for α and β. As previously stated, Gauss-Jacobi quadrature approximates
integrals over [a, b] = [−1, 1]. Consequently, the resulting quadrature points and weights
need to be rescaled since Stroud’s approach assumes [a, b] = [0, 1]. The conical product is
constructed in lines 30 - 41, which yields the desired points and weights for quadrature over
a tetrahedral volume.

3.4 Implementation

In the previous sections, a new homogenization approach for elastic and viscoelastic material
parameters as well as mathematical prerequisites regarding numerical quadrature have been
defined. In the following, their actual implementation in SeisSol will be detailed.
All homogenization functionality is realized inside a new ElementAverageGenerator class. Just
like the basic ElementBarycentreGenerator it inherits from QueryGenerator and thus provides
methods for the generation and evaluation of an easi query. Additionally, it needs members
for storing and handling quadrature points and weights as well as element volumes. The
desired quadrature degree is controlled via two macros and was chosen to be 4 in all
simulations generated for this thesis, which results in 43 = 64 quadrature points per element.

1 #define QUADDEG 4
2 #define NUMQUADPOINTS (QUADDEG ∗ QUADDEG ∗ QUADDEG)

Listing 3.3: Quadrature degree macros.
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3.4 Implementation

1 class s e i s s o l : : i n i t i a l i z e r s : : ElementAverageGenerator : public s e i s s o l : :
i n i t i a l i z e r s : : QueryGenerator {

2 public :
3 expl ic it ElementAverageGenerator (MeshReader const& meshReader ) ;
4 virtual e a s i : : Query generate ( ) const ;
5 std : : vector<double> elementVolumes ( ) ;
6 std : : vector<double> getElemVolumes ( ) const { return m elemVolumes ; } ;
7 std : : array<double , NUMQUADPOINTS> getQuadratureWeights ( ) const { return

m quadratureWeights ; } ;
8 private :
9 MeshReader const& m meshReader ;

10 std : : vector<double> m elemVolumes ;
11 std : : array<double , NUMQUADPOINTS> m quadratureWeights ;
12 std : : array<std : : array<double ,3> , NUMQUADPOINTS> m quadraturePoints ;
13 } ;

Listing 3.4: ElementAverageGenerator class declaration.

In order to calculate homogenized parameter values in a three-dimensional space, it is
generally required to divide by the corresponding volume which specifies the integral bounds.
In this application, parameters are integrated over tetrahedral elements with vertices as
defined in Section 3.1. Their volume is known to be calculated as

V =
1

6
|(v1 − v0) · ((v2 − v0)× (v3 − v0))|. (3.39)

Element volumes are computed step by step using Equation 3.39 during initialization of the
ElementAverageGenerator class as shown in Listing 3.5.

1 std : : vector<double> s e i s s o l : : i n i t i a l i z e r s : : ElementAverageGenerator : :
elementVolumes ( ) {

2 /∗ Local d e c l a r a t i o n s ∗/
3 // Compute a := ( v 1−v 0 ) , b := ( v 2−v 0 ) and c := ( v 3−v 0 )
4 for (unsigned elem = 0 ; elem < e lements . s i z e ( ) ; ++elem ) {
5 for ( int i = 0 ; i < 3 ; ++i ) {
6 a [ i ] = v e r t i c e s [ e lements [ elem ] . v e r t i c e s [ 1 ] ] . coords [ i ] − v e r t i c e s [

e lements [ elem ] . v e r t i c e s [ 0 ] ] . coords [ i ] ;
7 b [ i ] = v e r t i c e s [ e lements [ elem ] . v e r t i c e s [ 2 ] ] . coords [ i ] − v e r t i c e s [

e lements [ elem ] . v e r t i c e s [ 0 ] ] . coords [ i ] ;
8 c [ i ] = v e r t i c e s [ e lements [ elem ] . v e r t i c e s [ 3 ] ] . coords [ i ] − v e r t i c e s [

e lements [ elem ] . v e r t i c e s [ 0 ] ] . coords [ i ] ;
9 }

10 // Cross product
11 bxc [ 0 ] = b [ 1 ] ∗ c [ 2 ] − b [ 2 ] ∗ c [ 1 ] ;
12 bxc [ 1 ] = b [ 2 ] ∗ c [ 0 ] − b [ 0 ] ∗ c [ 2 ] ;
13 bxc [ 2 ] = b [ 0 ] ∗ c [ 1 ] − b [ 1 ] ∗ c [ 0 ] ;
14 // Dot product
15 for ( int i = 0 ; i < 3 ; ++i ) {
16 elemVolumes [ elem ] += a [ i ] ∗ bxc [ i ] ;
17 }
18 elemVolumes [ elem ] = abs ( elemVolumes [ elem ] ) / 6 ;
19 return elemVolumes ;
20 }
21 }

Listing 3.5: Computation of tetrahedral element volumes.
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3 Numerical Homogenization Approach

Apart from element volumes, quadrature points and weights are computed during construc-
tion, too. Listing 3.6 shows how this relies on the TetrahedronQuadrature method already
present in SeisSol. It implements the computation of quadrature points and weights for a
reference tetrahedron of edge length 1 according to the approach presented in Section 3.3.

1 s e i s s o l : : i n i t i a l i z e r s : : ElementAverageGenerator : : ElementAverageGenerator (
MeshReader const& meshReader )

2 : m meshReader (meshReader )
3 {
4 // Generate subpo ints and weights in r e f e r e n c e te t rahedron us ing Gaussian

quadrature
5 double quadraturePoints [NUMQUADPOINTS ] [ 3 ] ;
6 double quadratureWeights [NUMQUADPOINTS] ;
7 s e i s s o l : : quadrature : : TetrahedronQuadrature ( quadraturePoints ,

quadratureWeights , QUADDEG) ;
8 /∗ I n i t i a l i z e const c l a s s members with r e s u l t s ∗/
9 // I n i t i a l i z e element volumes

10 m elemVolumes = elementVolumes ( ) ;
11 }

Listing 3.6: ElementAverageGenerator constructor.

Generation of an easi query in ElementAverageGenerator involves an additional step compared
to the barycentered implementation.
For each element, NUM QUADPOINTS points instead of just one have to be sampled. The
TetrahedronQuadrature method used in Listing 3.6 returns quadrature points inside a reference
tetrahedron of edge length 1 as illustrated in Figure 3.1. These have to be transformed to
global coordinates for all tetrahedra using the corresponding transformation method already
present in SeisSol as seen in Listing 3.7, line 12. The results are stored and grouped in a
matrix inside the easi query.

1 e a s i : : Query s e i s s o l : : i n i t i a l i z e r s : : ElementAverageGenerator : : generate ( ) const {
2 std : : vector<Element> const& elements = m meshReader . getElements ( ) ;
3 std : : vector<Vertex> const& v e r t i c e s = m meshReader . g e tVe r t i c e s ( ) ;
4
5 // Generate query us ing subpo ints f o r each element
6 e a s i : : Query query ( e lements . s i z e ( ) ∗ NUMQUADPOINTS, 3) ;
7
8 // Transform subpo ints to g l oba l coo rd ina t e s f o r a l l e lements
9 for (unsigned elem = 0 ; elem < e lements . s i z e ( ) ; ++elem ) {

10 for (unsigned i = 0 ; i < NUMQUADPOINTS; ++i ) {
11 std : : array<double , 3> xyz {} ;
12 s e i s s o l : : t r ans f o rmat i ons : : tetrahedronReferenceToGlobal ( /∗ Ver t i c e s ∗/ ,

m quadraturePoints [ i ] . data ( ) , xyz . data ( ) ) ;
13 for (unsigned dim = 0 ; dim < 3 ; ++dim) {
14 query . x ( elem ∗ NUMQUADPOINTS + i , dim) = xyz [ dim ] ;
15 }
16 // Group
17 query . group ( elem ∗ NUMQUADPOINTS + i ) = elements [ elem ] . group ;
18 }
19 }
20
21 return query ;
22 }

Listing 3.7: Generation of an easi query for homogenization.
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3.4 Implementation

Figure 3.1: Barycenter (red) and subpoints (black) for quadrature degree 2 inside a reference
tetrahedron of edge length 1.

The added homogenization functionality seamlessly integrates with the existing easi query
evaluation code. The given query generator is dynamically downcast to its actual implemen-
tation at runtime. In case an ElementAverageGenerator is supplied, homogenization is applied.
Otherwise, the parameter values are stored directly in the material parameter database.

1 i f ( const ElementAverageGenerator∗ gen = dynamic cast<const
ElementAverageGenerator∗>(&queryGen ) ) {

2 /∗ Homogenization ∗/
3 } else {
4 // Usual behavior without homogenization
5 for (unsigned i = 0 ; i < numPoints ; ++i ) {
6 m mater ia ls−>at ( i ) = s e i s s o l : : model : : E l a s t i cMa t e r i a l ( e l a s t i cMa t e r i a l s [ i

] ) ;
7 }
8 }

Listing 3.8: Dynamic cast to choose between homogenized and normal implementations.

Listing 3.9 shows the homogenization branch represented by line 2 in Listing 3.8. std

:: vector<ElasticMaterial> materialsMean contains the homogenized material parameter values.
Quadrature weights need to be upscaled by a factor of element volume

reference volume with a reference

tetrahedron volume of 1
6 . Gaussian quadrature is applied for each parameter by implementing

Equation 3.27 using the points and weights obtained from the TetrahedronQuadrature method.
Lines 8 and 9 show quadrature of Equations 3.2 and 3.8 respectively. Line 11 implements
quadrature of Equation 3.15 inserted into 3.13.

1 /∗ Local d e c l a r a t i o n s ∗/
2
3 // Approximate element volume i n t e g r a l s us ing Gaussian quadrature
4 for (unsigned i = 0 ; i < numPoints ; ++i ) {
5 // Sca l e up quadrature weights by ( element volume / r e f e r e n c e volume )
6 double quadWeight = 6 ∗ elemVolumes [ i / NUMQUADPOINTS] ∗ quadratureWeights [

i % NUMQUADPOINTS] ;
7 // In t e g r a t e rho and (1 / mu)
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3 Numerical Homogenization Approach

8 materialsMean [ i / NUMQUADPOINTS] . rho += e l a s t i cMa t e r i a l s [ i ] . rho ∗
quadWeight ;

9 materialsMean [ i / NUMQUADPOINTS] .mu += 1 / e l a s t i cMa t e r i a l s [ i ] .mu ∗
quadWeight ;

10 // In t e g r a t e (nu / E) to obta in lambda
11 vERatioMean [ i / NUMQUADPOINTS] += e l a s t i cMa t e r i a l s [ i ] . lambda / (2 ∗

e l a s t i cMa t e r i a l s [ i ] .mu ∗ (3 ∗ e l a s t i cMa t e r i a l s [ i ] . lambda + 2 ∗
e l a s t i cMa t e r i a l s [ i ] .mu) ) ∗ quadWeight ;

12 }

Listing 3.9: Computation of homogenized material parameters - 1.

The resulting integrals are divided by the respective element volumes and in case of har-
monic averages, the reciprocal is taken. It remains to compute the homogenized λ̄ using
Equation 3.16 and to store the results in the material parameter database as shown in
Listing 3.10.

1 // Divide by volumes to obta in parameter mean va lue s and s t o r e them in
m mater ia l s

2 for (unsigned i = 0 ; i < numElems ; ++i ) {
3 materialsMean [ i ] . rho /= elemVolumes [ i ] ;
4 materialsMean [ i ] .mu /= elemVolumes [ i ] ;
5 vERatioMean [ i ] /= elemVolumes [ i ] ;
6 // Harmonic average i s used f o r mu, so take the r e c i p r o c a l
7 materialsMean [ i ] .mu = 1 / materialsMean [ i ] .mu;
8 // Derive lambda from averaged mu and (nu / E)
9 materialsMean [ i ] . lambda = (4 ∗ pow( materialsMean [ i ] .mu, 2) ∗ vERatioMean [ i ] )

/ (1 − 6 ∗ materialsMean [ i ] .mu ∗ vERatioMean [ i ] ) ;
10
11 m mater ia ls−>at ( i ) = s e i s s o l : : model : : E l a s t i cMa t e r i a l ( materialsMean [ i ] ) ;
12 }

Listing 3.10: Computation of homogenized material parameters - 2.

This chapter has reviewed all key aspects of a numerical homogenization approach for
material parameters in the context of seismic simulations. In the first section, the state of
the art has been introduced as a simple but insufficiently accurate means of approximating
complex parameter distributions. The mathematical foundations for homogenization have
been presented in Section 3.2. In the following section, Gaussian quadrature has been defined
and applied in an approach by Stroud to compute the numerical value of integrals over
tetrahedral volumes. Based on these prerequisites, the final section has been dedicated to
the implementation of the homogenization approach in SeisSol.
In the chapter that follows, the simulation results generated using homogenized material
parameters will be presented and evaluated compared to results obtained using the existing
implementation.
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4 Evaluation of Results

In the following pages, the numerical homogenization approach for material parameters will
be validated and benchmarked on a variety of seismic examples. All simulations are based
on either the Southern California Earthquake Center (SCEC) TPV5 scenario [Sou05a] or
the SISMOWINE WP2 LOH1 [Sei06] point source example. The following section gives a
brief introduction to both cases and their usage for the purpose of this thesis.

4.1 Seismic Scenarios

With regard to the seismic scenarios employed during testing, it should be noted that some
simulations rely on the predefined meshes and material files while others use strongly altered
versions of them. This serves to highlight certain cases where the base implementation is
particularly inaccurate or subject to systematic errors. Only the default scenarios will be
detailed upfront. Where changes to the underlying meshes and / or material configurations
have been made, these will be referred to in the respective sections.

4.1.1 SCEC TPV5

TPV5 features a ”vertical right-lateral strike-slip planar fault that resides in a halfspace”
[Sou05a]. The problem specification moves on to explain that rupture is allowed on the fault
plane whose lateral and bottom edges are represented by strength barriers. The nucleation
point is centered on the fault and framed by a small square nucleation patch. The nucleation
patch has an initial shear stress higher than the initial static yield stress which leads to
nucleation and onset of failure across the fault plane [Sou05a].
Two square patches are located between the nucleation patch and both of the fault’s lateral
boundaries. They feature higher and lower initial shear stress conditions, respectively, than
the remaining part of the fault [Sou05a]. The exact geometry is illustrated in Figure 4.1.

(a) 3D overview of TPV5 geometry featuring the
planar fault.

(b) TPV5 fault geometry including patches and
fault receiver locations.

Figure 4.1: Views of SCEC TPV5 overall and fault geometries. Source: [Sou05b]
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4.1.2 WP2 LOH1

The WP2 LOH1 scenario is divided into a homogeneous half-space and a thin layer with
different material properties on top. The earthquake originates at a point source inside the
half-space, slightly below the top layer [Sei06].

Figure 4.2: 3D overview of WP2 LOH1 geometry. Source: [Sei06]

Turning now to the evaluation of simulations conducted using above seismic scenarios.

4.2 Layered Density Distributions

The section below aims to compare the performance of homogenization against the current
barycenter approach using multiple discontinuous, layered density distributions. In the
first subsection, the material interfaces are widely spaced. The second subsection tries to
eliminate the effects of reflections at material boundaries by using a very fine separation
instead.

4.2.1 Coarse Layer Separation

In the following, a single setup is used to run a set of four simulations in both a TPV5 and
a WP2 LOH1 scenario.
Figure 4.3 shows the layered density distribution developed for this purpose. The corre-
sponding easi file keeps the Lamé parameters constant and varies density in increments of
400 kg

m3 every 2 km of depth. It starts at 1200 kg
m3 at the earth’s surface and increases up to

4000 kg
m3 at 16 km. There the stepped progression starts again at 1200 kg

m3 and stops at a
depth of 30 km. Below, density remains constant.
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4.2 Layered Density Distributions

Figure 4.3: Density distribution over depth for the layered density profiles of TVP5 and
WP2 LOH1.

The objective is to compare the performance of homogenization on an unstructured,
comparatively low-resolution mesh against the base implementation running on both the
same and other preferential mesh configurations. These include the unstructured mesh
at a higher resolution as well as a mesh with planar interfaces aligned with the material
boundaries. The latter ensures that no elements are intersecting any material boundaries.
This yields an exact result at any mesh resolution.

SCEC TPV5

Table 4.1 details the element resolutions in different areas of the three mesh types for TPV5.
”Coarse” denotes the unstructured, low-resolution mesh. ”Fine” refers to the same mesh
at a higher resolution and ”Layered” describes the mesh with material aligned layers. The
columns contain the edge length of tetrahedra in the unstructured volume, on the fault
plane and on the nucleation patch. The overall resolution increases from coarse over layered
to fine.

Normal Length [m] Fault Length [m] Patch Length [m]

Coarse
25 · 104 600

300Layered
200

Fine 25 · 103

Table 4.1: Element edge lengths for three different configurations of TPV5.

Figure 4.4 gives an impression of the layered TPV5 scenario in the Gmsh finite element
mesh generator [GR09]. The interface boundaries on the outside surfaces and on the centered
fault are visible. In the meshed 2D view, one can see how the elements’ edges are aligned
with the interfaces and do not intersect them, also on the fault. It shows the higher resolution
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nucleation patch at the center of the fault as well. Nucleation occurs close to the earth’s
surface and we are interested in the solution at the surface. Therefore, the lower halfspace
of the TPV5 environment is less relevant for the comparison of wave propagation and thus
not layered. The easi configuration assumes constant material parameters in this area.

(a) 3D view of layered TPV5 sce-
nario in Gmsh.

(b) Cross-section at the fault of layered TPV5 scenario
with mesh output in Gmsh.

Figure 4.4: 3D view and cross-section of layered TPV5 scenario in Gmsh.

With respect to the errors induced by the different mesh configurations, the base im-
plementation running on a layered mesh can be considered the exact result. All material
parameters are constant between neighboring interfaces. Since no element intersects an
interface, no averaging needs to be performed and the material parameters inside every cell
are correct.
For the remaining setups it holds that errors generally only occur for all elements intersecting
a material boundary. In these cases, some kind of averaging is required.
The largest error is to be expected from the base implementation on a coarse mesh. Since
an element’s barycenter is located in either of both layers, either of the corresponding values
for density will be sampled. Only the homogenized implementation is able to consider the
proportions of an element below and above an interface. This yields a proper average of an
accuracy proportional to the quadrature degree selected.
The base implementation running on a fine mesh should deliver more accurate results than
on the coarse mesh because the overall element edge length is lower. As a result, more
yet smaller elements have intersections with material boundaries. This should result in an
inaccurate density being sampled for a lower fraction of the entire volume.

Figure 4.5 contains the particle velocity output at receiver 4 for all simulation setups
detailed above. Figure 4.6 gives a close-up view for one second at the same receiver. In
general, one can see that all four curves do not deviate significantly from each other for
the majority of time. Nonetheless, especially in some areas with strong fluctuations the
divergence is larger.
It is striking that the solid and dashed curves for the base and homogenized implementations
on a coarse mesh almost perfectly line up at all times. At 2000m per layer, the interfaces are
far apart. As a result, even on the coarse mesh the number and size of elements intersecting
a material boundary is relatively low. The associated approximation error for density of
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these elements has virtually no visible impact on wave propagation.
However, both curves still deviate from the exact solution in some areas. This suggests that
there might be differences in the reflection and transmission of waves at material boundaries
between both meshes. The different arrangement of elements might have a greater impact
on the reflection characteristics than the averaging of density itself.
A higher mesh resolution, however, does not seem to be helpful either. Especially between
6.6 s and 7.0 s in Figure 4.6, the dotted curve from the base implementation on a fine mesh
deviates even more from the layered mesh result. Again, this hints at the relevance of
reflection and transmission behavior of waves for the accuracy of results.
In summary, homogenization of density does not deliver better results than the barycenter
implementation in this layered material setup of TPV5. Even without homogenization, the
results are already very accurate most of the time. A potential improvement does not seem
to be achievable via better averaging of density. Instead, the reflection characteristic of
waves at material boundaries is likely to have a greater impact. At the same time, a higher
resolution mesh leads to the curves diverging further away from the desired result. All other
receivers support the above findings.

(a) Velocity in x-direction at rec. 4. (b) Velocity in y-direction at rec. 4.

(c) Velocity in z-direction at rec. 4.

Figure 4.5: TPV5 velocity output at receiver 4 for layered density on 2 km thick layers.
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(a) Velocity in x-direction at rec. 4. (b) Velocity in y-direction at rec. 4.

(c) Velocity in z-direction at rec. 4.

Figure 4.6: TPV5 detailed velocity output at receiver 4 for layered density on 2 km thick
layers.

WP2 LOH1

As indicated previously, the same experiment is repeated in a WP2 LOH1 scenario. It
adopts the density distribution from Figure 4.3 without change. Moreover, the same types
of mesh configurations but with different element sizes are available.
Table 4.2 contains the element resolutions of the meshes used for WP2 LOH1. Here, the
second and third columns contain the resolutions inside and outside the refined box of LOH1.
”Coarse” and ”Layered” share the same element edge lengths because this results in the
minimum possible number of elements. ”Fine” uses the preconfigured settings.

Normal Length [m] Box VIn [m] Box VOut [m]

Coarse
50000 2000 30000

Layered

Fine 5000 200 3000

Table 4.2: Element edge lengths for three different configurations of WP2 LOH1.

In Figure 4.7 one can see the layered WP2 LOH1 mesh in Gmsh. It has only about half
the depth of TPV5. As a result, the interfaces divide almost the entire volume into sections
of 2 km thickness. Characteristic of WP2 LOH1 is its additional 1 km thick layer right below
the earth’s surface. Again, the elements’ edges in the 2D view are nicely aligned with the
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interfaces. The 3D view also shows the point source at its center and close to the surface.

(a) 3D view of layered WP2 LOH1
scenario in Gmsh.

(b) Cross-section of layered WP2 LOH1 scenario with
mesh output in Gmsh.

Figure 4.7: 3D view and cross-section of layered WP2 LOH1 scenario in Gmsh.

Similar results compared to the TPV5 case can be expected. The base implementation
running on a layered mesh will produce an exact density approximation for having no elements
intersecting any material boundaries. The TPV5 run has shown no major differences in
outputs between the other setups, which is likely to be similar for WP2 LOH1.

(a) Velocity in x-direction at rec. 8. (b) Velocity in y-direction at rec. 8.

(c) Velocity in z-direction at rec. 8.

Figure 4.8: WP2 LOH1 velocity output at receiver 8 for layered density on 2 km thick layers.
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The curves in Figure 4.8 for the particle velocity at receiver 8 are largely congruent.
Figure 4.9 gives a more detailed view of one second at this receiver. Just like with TPV5,
the strongest divergence between all solutions is visible when their curves are spiking.
Interestingly, the homogenized implementation generates a curve that is more offset from the
base implementation on a coarse mesh for WP2 LOH1. It is closest of all to the layered mesh
result at and around the peak in velocity at 2.05 s in x- and y-directions. For the remainder
of time, all solutions are again too similar to make out any one that best approaches the
ideal result. However, analogously to TPV5 the dotted curve for the base implementation
on a fine mesh seems to be the most inaccurate for the majority of time.
Due to the overall higher element size of WP2 LOH1, it might be more relevant to properly
average density for elements intersecting material boundaries. The barycenter implementation
is not able to produce accurate velocity outputs at both low and high mesh resolutions.
At a higher resolution, differences in reflection and transmission of the wave at material
boundaries are noticeable. This leads to more frequent over- and undershooting of the exact
solution. Notice for example the smaller peaks on the dotted curves at 2.15 s which are not
present on the other outputs.

(a) Velocity in x-direction at rec. 8. (b) Velocity in y-direction at rec. 8.

(c) Velocity in z-direction at rec. 8.

Figure 4.9: WP2 LOH1 detailed velocity output at receiver 8 for layered density on 2 km
thick layers.

In this subsection, multiple simulations featuring different mesh setups and a layered
density material have been run in two different scenarios. It has been shown that the
possible improvements using homogenization of material parameters are rather limited for
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wide material layers. The second simulation using WP2 LOH1 has suggested a weak link
may exist between mesh element size and a more accurate solution using homogenization
compared to the barycenter approach.
The following sections will move on to investigate some more specifically constructed cases
to highlight the areas in which homogenization can bring more significant improvements.

4.2.2 Fine Layer Separation

As was pointed out in Subsection 2.1.2, only part of a seismic wave is transmitted while the
remainder is reflected at a material boundary. Reflection only occurs if the distance between
material layers is higher than the wavelength.
Therefore, another experiment is conducted with material layers of alternating density
separated considerably tighter than the average element size. On a large scale, the material
can be considered nearly homogeneous. The objective is to compare both implementations’
capability to resemble the nearly homogeneous density profile at a low level of wave reflections.
Three simulations are run on a standard WP2 LOH1 scenario at a fixed mesh resolution.
It uses an elastic material configuration with density alternating between ρmin = 2000 kg

m3

and ρmax = 4000 kg
m3 every 50m in z-direction. Listing 4.1 shows a suitable easi setup with

fixed Lamé parameters and a floored sin-function used to periodically alternate density with
depth.

1 ! FunctionMap
2 map :
3 rho : return 2000 + f l o o r ( s i n (0 .062831853071796 ∗ z ) + 1) ∗ 2000 ;
4 mu: return 30000000000;
5 lambda : return 20000000000;

Listing 4.1: easi configuration for alternating density on 50m thick layers.

As a reference, a third simulation uses the base implementation and the constant average
density of 3000 kg

m3 .
Let us recall from Subsection 2.1.2 that the velocities of P and S waves are given by

vp =

√
λ+ 2µ

ρ
, vs =

√
µ

ρ
. (4.1)

vs is always smaller than vp. Therefore, vs needs to be minimized by inserting the maximum
density that occurs which yields

vs,min =

√
µ

ρmax
=

√√√√3.0 · 1010 N
m2

4000 kg
m3

= 2738.61
m

s
. (4.2)

Empirical analysis of the spectra of the three simulations in Figure 4.10 shows that frequency
components above 50Hz can be considered negligible.
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Figure 4.10: WP2 LOH1 frequency spectra for alternating density on 50m thick layers.

The resulting minimum wavelength is given by

λs,min =
vs,min

fmax
=

2738.61m
s

501
s

= 54.77m (4.3)

which is greater than the chosen layer thickness.

(a) Velocity in x-direction at rec. 1. (b) Velocity in y-direction at rec. 1.

(c) Velocity in z-direction at rec. 1.

Figure 4.11: WP2 LOH1 velocity output at receiver 1 for alternating density on 50m thick
layers.

Figure 4.11 shows material velocities at receiver 1 in all three spatial directions. Compared
to the homogenized implementation and the base implementation using a constant average
density, the base implementation on the layered material stands out due to high-amplitude
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oscillations. The homogenized and base average curves for v and w tend towards 0 while
the base implementation shows diffuse fluctuations.
An element’s barycenter is located in a layer with either of the two possible values for density.
As a result, the density sampled for an element by the base implementation is subject to a
systematic error of +/− 33.3% of the average value. This can lead to a material boundary
between two neighboring elements with different wave speeds. As indicated above, the
wave is partially reflected in all directions at these interfaces. The oscillations in particle
velocity are a visible result of these reflections. Moreover, they prove incapacity of the
barycenter implementation to resolve discontinuities in material parameter distributions
below the size of an element. The homogenized implementation delivers results very close to
the base implementation with a constant average density by using multiple sampling points
per element.
Particle velocities at receiver 19 are depicted in Figure 4.12, which substantiates above
findings from the analysis of Figure 4.11. Strong oscillations in the barycenter implementation
output are present consistently across all receivers. Nonetheless, the homogenized results at
receiver 19 also contain some more visible fluctuations compared to receiver 1. This can
be attributed to the fact that the accuracy of homogenization depends on the number of
quadrature points. In the setup used here at 64 samples per element, homogenized densities
still differ from the exact average by up to 5%. As a result, minor discontinuities in density
are present in the homogenized output, too.

(a) Velocity in x-direction at rec. 19. (b) Velocity in y-direction at rec. 19.

(c) Velocity in z-direction at rec. 19.

Figure 4.12: WP2 LOH1 velocity output at receiver 19 for alternating density on 50m thick
layers.
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Moving on now to investigate some deficiencies of the barycenter implementation compared
to homogenization for material parameters described by continuous periodic functions.

4.3 Periodic Density Distributions

So far this chapter has focused on discontinuous, layered density distributions only. The
following section will compare and discuss the performance of homogenization for material
parameter distributions described by trigonometric functions. These are used in place of
low-order polynomials with the advantage of being able to adapt their periodicity to mesh
layer thickness.
In all simulations, a layered TPV5 scenario at a mesh resolution slightly lower than that from
Subsection 4.2.1 is employed to compare the homogenized against the base implementation.
The reasoning behind the low resolution is that apart from the higher resolution area around
the fault, it can be observed that this way there is just one layer of elements between two
mesh interfaces in most of the generated volume. Even though elements are structured
irregularly in the actual mesh, it still holds that for a single layer of tetrahedra each of the
enclosing interfaces contains at least one of each element’s vertices. Also see the top-left and
top-right corners in the previous layered TPV5 mesh from Figure 4.4b) for a two-dimensional
visualization of such an arrangement.

4.3.1 Sine Density Distribution

A first simulation run uses an elastic material configuration with density given by

ρ(z) = 5000
∣∣∣sin( π

2000
z
)∣∣∣+ 500. (4.4)

Listing 4.2 shows the corresponding easi configuration with fixed Lamé parameters and a
| sin(z)|-function used to periodically alter density with depth.

1 ! FunctionMap
2 map :
3 rho : return 5000 ∗ abs ( s i n (0 .001570796326795 ∗ z ) ) + 500 ;
4 mu: return 32038120320;
5 lambda : return 32043759360;

Listing 4.2: easi configuration for periodic density using | sin(z)|.

It can be seen in Figure 4.13 that half of the sine’s period length coincides with a mesh layer
of 2000m thickness.
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4.3 Periodic Density Distributions

Figure 4.13: Density distribution for the first 10 km of depth using a | sin(z)| function on a
layered TPV5 scenario.

Also taking into account the above preliminary remarks regarding the mesh layout, let us
look at a simple example to consider what to expect from the results:
We visualize a reference tetrahedron with edge length scaled up to 2000m so that it just fits
between two interfaces. The element’s volume is calculated using Equation 3.39 as

Vref =
1

6

∣∣∣∣∣∣
20000

0

 ·

 0
2000
0

×

 0
0

2000

∣∣∣∣∣∣ = 1.3̄ · 109m3. (4.5)

Considering Equation 4.4, the element’s average density is given by

ρ̄ref =
1

|Vref |

∫ 2000

0

∫ 2000−x

0

∫ 2000−x−y

0
ρ(z) dzdydx

=
4.45274 · 1012

1.3̄ · 109
kg

m3

= 3339.55
kg

m3
.

(4.6)

The barycenter z-component of such an element is located at 1
4 or 3

4 of its height, depending
on its orientation. In both cases, if the element is located between interfaces i and i+ 1, the
density sampled for this element by the base implementation is calculated as

ρb,ref = ρ(2000i+ 500) = ρ(2000i+ 1500) = 4035.53
kg

m3
(4.7)

which is higher than the averaged result from Equation 4.6.
Again, this is a contrived example to show the offset of barycentered compared to homogenized
density for a regular tetrahedron in a single-layered element structure. In the real, more
irregular mesh, varying barycenter locations contribute to a better averaging out of the
density. Moreover, homogenized averaging relies on numerical quadrature and does not
compute exact results, too. Therefore, the difference in density should be less pronounced in
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the actual simulation. Indeed, the median ratio of homogenized ρ to barycenter ρ for all
elements in this simulation run is measured at 0.9567 compared to the predicted ratio of
ρ̄ref
ρb,ref

= 0.8275.

(a) Velocity in x-direction at rec. 2. (b) Velocity in y-direction at rec. 2.

(c) Velocity in z-direction at rec. 2.

Figure 4.14: TPV5 velocity output at receiver 2 for periodic density using | sin(z)|.

Figure 4.14 contains the last four seconds of velocity output at receiver 2. As expected,
there is a minor yet ever-increasing lateral offset between both curves. The wave moves
slightly faster when using the homogenized implementation owing to the difference in
material density explained above. As predicted by Equation 4.1, a wave propagates faster
through a less dense medium. Other than that, the overall congruence of both curves is
remarkable as well. This may be an indication of similar material boundaries between
elements resulting from both implementations. Most likely only few neighboring elements
are assigned substantially different density values in both versions.
Particle velocities at receiver 5 can be seen in Figure 4.15. These are consistent with the
above findings from the analysis of Figure 4.14. In fact, all receivers show a lateral shift
between both curves for all recorded parameters with the homogenized wave propagating
faster. At receiver 5, the offset of up to around 0.25 s seems to be even larger than at receiver
2. This suggests that the former is located further away from the fault.
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(a) Velocity in x-direction at rec. 5. (b) Velocity in y-direction at rec. 5.

(c) Velocity in z-direction at rec. 5.

Figure 4.15: TPV5 velocity output at receiver 5 for periodic density using | sin(z)|.

4.3.2 Cosine Density Distribution

Figure 4.16: Density distribution for the first 10 km of depth using a cos(z) function on a
layered TPV5 scenario.
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The experiment from the previous subsection is repeated using

ρ(z) = 2500 cos
( π

1000
z
)
+ 3000 (4.8)

as a density function. The mesh remains unchanged and the easi setup is analogous to
Listing 4.2. This time, the density distribution uses no absolute value and a full cosine
period length coincides with a mesh layer of 2000m thickness as illustrated in Figure 4.16.
Similar assumptions hold about the expected results compared to Subsection 4.3.1. Because
of the reduced period length and roughly inverse density curve compared to Figure 4.13, the
offset between the resulting wave outputs should be inverted, too.
As presumed, the median ratio of homogenized ρ to barycenter ρ for all mesh elements
is 1.1268. This is higher than the inverse of the same ratio observed in Subsection 4.3.1
which may be caused by the more compressed shape of a full cosine period instead of a half
absolute sine period for density between two interfaces.

(a) Velocity in x-direction at rec. 6. (b) Velocity in y-direction at rec. 6.

(c) Velocity in z-direction at rec. 6.

Figure 4.17: TPV5 velocity output at receiver 6 for periodic density using cos(z).

Looking at Figure 4.17, the last four seconds of particle velocity recorded at receiver 6
can be analyzed. A less clear result emerges in relation to the output from the previous
subsection. The base and homogenized curves are less coherent overall which could be
associated with reflections at different material boundaries in both setups.
Nonetheless, a lateral shift between the curves of both implementations is evident most of
the time. For example at around 8.0 s the solid curve has a spike in velocity in x-direction
which is shifted about half a second to the right for the homogenized velocity. The following
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parts of both u-curves are very similar and keeping the offset. The v- and w-curves display
some minor yet regular phase shift between both implementations, too. This trend supports
the results from the previous experiment. In this case, though, the base version’s systematic
error for single layers of elements between two mesh interfaces seems to be overlaid by some
other unknown effects.

This section has attempted to provide a performance comparison of the homogenized
implementation against the barycenter approach for continuous periodic functions used to
model material density. A density distribution based on a | sin(z)| function in Subsection 4.3.1
has shown a lateral offset in wave velocity between both implementations. It has been
identified as an effect related to single layers of mesh elements as a result of the low mesh
resolution. It stands to reason that averaging material parameters only at a single point per
element leaves the larger part of a complex parameter distribution out of consideration. The
experiment has been repeated using a different trigonometric function in Subsection 4.3.2.
This second simulation was able to confirm the initial results only to some extent because of
overlaying effects present when using a cos(z) function for density.

4.4 Variation of Lamé Parameters

Moving on now to also perform validation and testing of homogenized Lamé parameters.
The simulations done for this purpose are very similar to those from Subsection 4.3.1. Again,
the same layered low-resolution TPV5 scenario is used. Equation 4.4 is adapted to deliver
values in the appropriate range for λ and µ, which results in

λ(z) = µ(z) = 5 · 1010
∣∣∣sin( π

2000
z
)∣∣∣+ 5 · 109. (4.9)

In the easi file shown in Listing 4.3, density remains constant while Equation 4.9 is used to
model λ and µ.

1 ! FunctionMap
2 map :
3 rho : return 2760 ;
4 mu: return 50000000000∗ abs ( s i n (0 .001570796326795∗ z ) ) + 5000000000;
5 lambda : return 50000000000∗ abs ( s i n (0 .001570796326795∗ z ) ) + 5000000000;

Listing 4.3: easi configuration for periodic Lamé parameters using | sin(z)|.

In Subsection 4.3.1, a systematic overestimation of density by the base implementation has
been observed. A corresponding error can also be expected for the Lamé parameters. Unlike
density which is considered in the denominator of the wave speed Equations 4.1, λ and µ
are in its enumerator. This should lead to a reverse displacement of particle velocity curves
compared to Figure 4.14 and Figure 4.15 where the homogenized wave propagates faster.
In contrast to density, a harmonic average is used for the homogenization of µ. Averaging λ
is even more complex. Thus, it will be particularly interesting to compare the coherence of
waves from both implementations apart from their expected lateral offset.
The median ratio of homogenized µ to barycenter µ and λ, respectively, is 0.5889 which is
the highest discrepancy in all simulations so far.
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(a) Velocity in x-direction at rec. 2. (b) Velocity in y-direction at rec. 2.

(c) Velocity in z-direction at rec. 2.

Figure 4.18: TPV5 velocity output at receiver 2 for periodic Lamé parameters using | sin(z)|.

The curves in Figure 4.18 illustrating particle velocity at receiver 2 are less congruent
than those from previous experiments. As expected, a phase shift is present at some points
in time. Between 3 - 5 s and from 7 s the homogenized wave lags behind the curve from
the base implementation in x-direction. Similarly, between 6 - 8 s in y-direction the wave
output using the barycenter implementation propagates faster. In z-direction, no clear trend
is discernible.
In fact, the results are too cluttered in all spatial directions for the majority of time to make
out any systematic difference between both curves. The more complex ways of averaging the
Lamé parameters might contribute to more fundamental differences in the results generated
by both approaches. This is most apparent at 8 - 10 s in x-direction where there is some
major difference between the absolute values of both curves.

4.5 Variation of Viscoelastic Parameters

In this section, the effect of homogenization on the averaging of seismic quality factors in
viscoelastic media will be investigated.
We reuse the unstructured WP2 LOH1 scenario described in Subsection 4.2.1 to run two
simulations for the base and homogenized averaging of seismic Q. It features a viscoelastic
material distribution with constant density and constant Lamé parameters. Qp alternates
between 80 and 120, Qs between 240 and 320 every 50m of depth. The easi configuration
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required for this setup can be seen in Listing 4.4.

1 ! FunctionMap
2 map :
3 rho : return 3000 ;
4 mu: return 30000000000;
5 lambda : return 20000000000;
6 Qp: return 80 + f l o o r ( s i n (0 .062831853071796 ∗ z ) + 1) ∗ 40 ;
7 Qs : return 240 + f l o o r ( s i n (0 .062831853071796 ∗ z ) + 1) ∗ 80 ;

Listing 4.4: easi configuration for alternating seismic Q on 50 m thick layers.

Seismic Q factors have no direct impact on a wave’s velocity or reflection characteristics. As
explained in Subsection 2.1.4, Qp and Qs determine the dissipation behavior of P and S waves.
Accordingly, one would expect a high level of overall coherence between both simulation
results. Since the physical material parameters ρ, λ and µ are set to be homogeneous, diffuse
kinds of reflections at potential material boundaries should be rare. Instead, variations in
wave amplitudes are likely to be the main differences between both versions.

(a) Velocity in x-direction at rec. 1. (b) Velocity in y-direction at rec. 1.

(c) Velocity in z-direction at rec. 1.

Figure 4.19: WP2 LOH1 velocity output at receiver 1 for alternating seismic Q on 50m
thick layers.

The resulting wave velocity outputs at receiver 1 can be seen in Figure 4.19. Both imple-
mentations deliver virtually identical curves in x-direction. As expected, some differences in
wave amplitude are visible in the other spatial directions while the waves themselves are
highly coherent. At first glance, it looks like the homogenized wave output is slightly more
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attenuated, especially during the first 1.5 s in z-direction. While this is true especially for
some areas with isolated peaks like this, there are other points in time where the dashed
curve overshoots the solid one, too.
Therefore, a definite statement on the impact of homogenization on the resulting wave output
for varying viscoelastic parameters is not possible. It is worth mentioning, though, that just
like for density in Subsection 4.2.2, the homogenized seismic Q values here represent more
of an average of the discrete values alternating every 50m. The base implementation always
uses either of the two possible values for Qp and Qs, respectively. Consequently, the seismic
Q factors sampled for an element by the barycenter implementation always deviate upwards
or downwards from the average. This might be an important factor in the deviations in
amplitude between both curves, even though no regularity can be found.

(a) Velocity in x-direction at rec. 19. (b) Velocity in y-direction at rec. 19.

(c) Velocity in z-direction at rec. 19.

Figure 4.20: WP2 LOH1 velocity output at receiver 19 for alternating seismic Q on 50m
thick layers.

Figure 4.20 presents particle velocities for the same setup recorded at receiver 19. The
results are nearly identical for all three spatial directions. However, it should be noted that
oscillations at this receiver are rare compared to those in y- and z-directions at receiver 1.
In summary, the effect of homogenization of seismic Q on the resulting wave output seems
to be rather negligible. With a similar alternating material distribution for density, major
errors in the base velocity output have been shown in Subsection 4.2.2. For Qp and Qs,
however, the arithmetic averaging presented in Subsection 3.2.3 seems to be a reasonable
trade-off between physical accuracy and implementation effort. Nonetheless, a potentially
more precise homogenization of seismic Q will be briefly addressed in Chapter 5.
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Within the scope of this thesis, a homogenization technique for material parameters in
seismic simulations has been derived. It compares with the state of the art approach using
barycenter averaging to approximate the values of material parameters per element.
Based on numerical quadrature, the homogenization approach has been successfully in-
tegrated into the SeisSol simulator. Its entire functionality fits into the existing code
structure by means of a new QueryGenerator subclass. Material parameters are initialized
after a mesh has been loaded and before the actual simulation starts. As a result, the more
sophisticated computation of material parameters has virtually no impact on runtime perfor-
mance. It scales only with the amount of mesh elements and the number of quadrature points.

In the first place, the homogenization approach for material parameters has proven to
be correct. No major deviations from the respective expected or known exact results have
been observed for all simulations conducted in the context of this work. Furthermore,
the homogenization technique produces more accurate results in multiple cases where the
barycenter approach is subject to systematic errors.
For thin material layers of alternating density in Subsection 4.2.2, the benefit from ho-
mogenization is most apparent. The homogenized approach generates results very close to
the exact reference output with only minor fluctuations. However, strong oscillations in
particle velocity output are visible when using the base implementation. They occur due
to reflections at material boundaries between elements. Homogenization helps to better
average out the parameter values sampled for elements stretching across multiple layers. It
can be concluded that the homogenized approach is capable of producing results of equal or
superior accuracy at a lower mesh resolution than the state of the art.
Using a discontinuous density profile with wide layers like in Subsection 4.2.1, other impor-
tant insights can be gained. For both TPV5 and WP2 LOH1, the base implementation on
a fine mesh yields the most inaccurate results. It frequently overshoots the exact curves
and shows oscillations which are not present on the other outputs. Instead, the smaller
element size creates more material boundaries between neighboring elements. Consequently,
a higher resolution mesh not necessarily leads to more accurate and especially smoother
output curves. Moreover, the homogenized approach best approximates the exact result
in the WP2 LOH1 scenario. Particularly around points with spikes in the seismograms,
homogenization sets itself apart from the barycenter approach and closely follows the output
generated using a layered mesh.
For continuous material profiles like the ones used in Section 4.3, barycenter averaging shows
to be incapable of resolving more complex parameter distributions below the size of an
element. This gives rise to an ever-increasing phase shift in particle velocity output compared
to the homogenized implementation that uses multiple sampling points per element. In
Section 4.4, however, homogenization of the Lamé parameters leads to some more irregular
differences from the results generated by the base implementation. It is difficult to determine
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which of both outputs represents the more accurate result since we cannot identify any
systematic deviation. Technically, homogenization computes better averages and should
therefore be considered the superior solution. Under that assumption, this might be the
most significant result because it reveals some fundamental errors induced by barycenter
averaging which would require further investigation to fully understand them.
Unlike the elastic material parameters, seismic quality factors do not seem to benefit from
homogenization. At least, the experiments outlined in Section 4.5 are not able to evoke
an environment in which a noticeable error using barycenter averaging would occur. As
expected, some differences in wave amplitude could be observed between both implementa-
tions. These have been too small, though, to have any significant effect associated with them.
Anyway, the homogenized implementation generally samples more averaged out parameter
values. In theory, this should yield a more exact result for elements extending over multiple
layers.

With respect to the research question given in the beginning, it can be concluded that it is
generally sensible to apply homogenization of material parameters in seismic simulations.
Especially in scenarios involving layered material distributions, the homogenized approach
allows for greatly improved averaging of material parameter values. Nonetheless, other sce-
narios and parameters have been found which do not obviously benefit from homogenization.
Regardless of the accuracy gained in a particular seismic scenario, the effect of homogeniza-
tion comes at virtually no added cost. Additionally, no scenario is conceivable in which the
homogenized approach is subject to an error not committed by the existing implementation.
Therefore, in practice, the accuracy of seismic simulations can only benefit from homogenized
material parameters.

Future work in this area may focus on the implementation of homogenization for poroelastic
and anisotropic materials. In Subsection 3.2.4, a homogenization approach for all poroelastic
material parameters used in SeisSol has been derived. In most cases, simple arithmetic
or harmonic averages have been identified as the correct means of averaging. No complex
calculations like for the first Lamé parameter seem to be necessary. This thesis does not
further pursue the investigation of poroelastic materials. This is because the need to conceive
promising scenarios and evaluate results for all of the added parameters would go beyond
the scope of this work. Similarly, the anisotropic case features yet more material parameters
which have not been discussed so far. Homogenization of these parameters requires extensive
additional work.
Furthermore, it has been indicated in Subsection 3.2.3 that the choice of an arithmetic
average for seismic quality factors is just a first approximation. It serves to provide an
initial assessment of the effect of homogenization on seismic Q. As discussed above, the
homogenized particle velocity output did not substantially differ from the results obtained
using the existing implementation. It is unlikely that a more accurate homogenization
approach would yield very different results in these particular scenarios. Nonetheless, other
environments might be conceived which are more suited to show systematic errors in the
seismic output related to barycenter averaging of seismic Q. In that case, the work of Kristek
and Moczo [KM03] is a suitable starting point for an extension of the homogenization
approach to viscoelastic media. Additional work will be necessary to prepare and implement
their findings about homogenization of seismic Q in SeisSol.
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[Mar21] Martin Čuma. Hybrid MPI/OpenMP Programming. https://www.chpc.utah.
edu/presentations/images-and-pdfs/mpi-openmp21f.pdf, 2021. Accessed:
2022-07-06.

[MKV+02] Peter Moczo, Jozef Kristek, Vaclav Vavrycuk, Ralph Archuleta, and L. Halada.
3D Heterogeneous Staggered-Grid Finite-Difference Modeling of Seismic Motion
with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities.
Bulletin of the Seismological Society of America, 92(8):3042–3066, 2002.

[Mor19] Igor B. Morozov. Mechanics of Seismic Q. CSEG RECORDER, 44(1):20–24,
2019.

[Sei06] Seismic Wave Propagation and Imaging in Complex Media: A European Network
(SPICE). Problem WP2 LOH1. http://www.sismowine.org/model/WP2_LOH1.
pdf, 2006. Accessed: 2022-06-05.

[Sou05a] Southern California Earthquake Center (SCEC). TPV5. https://strike.scec.
org/cvws/download/TPV5_forwebsite.pdf, 2005. Accessed: 2022-06-05.

[Sou05b] Southern California Earthquake Center (SCEC). Views of TPV5 Over-
all and Fault Geometries. https://strike.scec.org/cvws/download/

faultstationsTPV5.pdf, 2005. Accessed: 2022-06-05.

[Str71] Arthur H. Stroud. Approximate Calculation of Multiple Integrals. Prentice-Hall
Series in Automatic Computation. Prentice-Hall, 1971.

[Str74] Arthur H. Stroud. Numerical Quadrature and Solution of Ordinary Differential
Equations, volume 10 of Applied Mathematical Sciences. Springer, 1974.

53

https://www.chpc.utah.edu/presentations/images-and-pdfs/mpi-openmp21f.pdf
https://www.chpc.utah.edu/presentations/images-and-pdfs/mpi-openmp21f.pdf
http://www.sismowine.org/model/WP2_LOH1.pdf
http://www.sismowine.org/model/WP2_LOH1.pdf
https://strike.scec.org/cvws/download/TPV5_forwebsite.pdf
https://strike.scec.org/cvws/download/TPV5_forwebsite.pdf
https://strike.scec.org/cvws/download/faultstationsTPV5.pdf
https://strike.scec.org/cvws/download/faultstationsTPV5.pdf


Bibliography

[SW03] Seth Stein and Michael Wysession. An Introduction to Seismology, Earthquakes,
and Earth Structure. Wiley-Blackwell, 2003.
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