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Abstract

Estimating the solar potential of roof areas suitable for photovoltaic panels can be aided by
artificial neural networks identifying roof segments and their orientation in remote sensing
imagery. A primary factor limiting the performance of such neural networks is the availability
of training data, which is commonly generated in a time-consuming manual labeling process.
In this project, a method was developed that uses roof positional information from existing
semantic 3D city models to generate datasets of orthophoto crops of buildings with roof seg-
ment labels. The method was applied to create a large dataset of more than 120 000 samples
from buildings in urban and rural regions in Bavaria. A convolutional neural network (CNN)
was trained on this and four other, smaller datasets, including one consisting of more than
1800 manually labeled samples of a Bavarian town created from Google satellite imagery.
This allowed a detailed performance comparison with respect to source, quality and amount
of the data, and identification of benefits and drawbacks of training data derived from 3D
city models. Overall, the results indicate a clear improvement in segmentation performance
when the CNN is trained on the extended dataset. However, the CNNs also showed a consid-
erable degree of specialization on the data source they were trained on: While the extended
dataset did help the CNN’s ability to generalize to images from a different data source (Google
satellite imagery) to a limited extent, the strongest improvements were seen with aerial im-
ages from the same source. This and other findings discussed in this report offer potential
for further investigations.
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1 Introduction

Photovoltaic (PV) energy plays an important role in global efforts to move beyond the fossil
era and towards a future of sustainable energy production. The requirement of large sur-
face areas for PV module deployment is a key characteristic of sunlight as renewable energy
source. Roof areas constitute one pool of potentially suitable surfaces that is not yet fully
exploited: In the European Union, up to 24.4% of the electricity demand could be provided
by rooftop PV systems (Bódis et al., 2019). Development of inexpensive and widely applicable
approaches to estimate roof solar potential facilitates further expansion of rooftop PV.

Work by Melius et al. (2013) and Freitas et al. (2015) gives a comprehensive overview of
existing approaches that use solar radiation algorithms combined with a variety of geospatial
analysis methods based for instance on Light Detection and Ranging (LiDAR) data, monocular
or stereo remote sensing imagery, or cadastre data. Generally, solar potential is assessed
in a hierarchical manner, where physical, geographic, technical, economic, and even a social
potential can be distinguished (Izquierdo et al., 2008). Novel approachesmake use of artificial
neural networks to estimate roof solar potential from aerial imagery (Lee et al., 2019; Castello
et al., 2021; Krapf et al., 2021). This has the main advantage over LiDAR-based approaches that
the required data are less expensive in acquisition and more widely available (Xu et al., 2018),
allowing cost-efficient assessment even in remote and less well surveyed areas. In these
applications, the neural network is usually responsible for the step that requires identification
of outline, orientation and potentially also slope of roof segments in two-dimensional remote
sensing imagery. This task is an area of research in itself: Zhao et al. (2022) trained a graph
neural network for this purpose, Muftah et al. (2021) use a sequence of models performing a
classification and a semantic segmentation step, followed by further processing, with the aim
to derive 3D buildingmodels. Related tasks include the detection of roof areas (e. g., Qin et al.,
2019; Collier et al., 2021) and the classification of roof types from the images. Other projects
use similar approaches to detect solar panels from remote sensing imagery and automatically
create databases of existing solar deployments (Yu et al., 2018; Castello et al., 2019; Hoog et
al., 2020; Mayer et al., 2020; Rausch et al., 2020; Costa et al., 2021).

Willenborg et al. (2018) have developed a tool that estimates roof solar potential based on
semantic 3D city models following the CityGML specification (Kolbe, 2009). Kemmerzell (2020)
and Krapf et al. (2021), on the other hand, designed and trained two convolutional neural
networks (CNNs) that use semantic segmentation to identify roof segments and superstruc-
tures, respectively, and used the results in their method to determine economic PV potential.
A factor limiting the improvement of a neural network’s ability to identify roof segments is
the availability of training data, which is usually generated manually in a time-consuming an-
notation process. Prior to this project, the CNN was trained using a dataset of 444 training
samples that was also used by Lee et al. (2019). While the network delivered reasonably good
results, Kemmerzell (2020) noted several shortcomings with respect to the dataset. It is quite
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homogeneous in several aspects: It covers a limited variety of roof types, mainly single house
roofs and larger flat roofs. The contained images all come from the same geographic region
and are uniform in exposure, season, shadow length, and general quality. As a result, the
trained network performs subpar in situations where roofs appearing in the imagery deviate
in their characteristics from the roofs present in the training dataset, or if the light conditions
and image quality are different. A possible solution to this problem would be an extension of
the training dataset.

In an attempt to leverage synergies between the methods used by Willenborg et al. (2018)
and Krapf et al. (2021), the present study project has two goals: First, to investigate whether
and how roof positional information from semantic 3D city models can be used to derive
training data for a neural network that identifies roof segments in aerial images. This would
enable the generation of a vastly extended dataset based on available 3D city data, thereby
avoiding the extensive manual labeling process. Special attention must be paid to evalua-
tion of quality and consistency of training samples created this way. Second, the developed
method shall be used to automatically generate datasets of training samples for several ge-
ographic scenarios, then train CNNs for each scenario and compare their performance both
among each other and to a CNN that was trained only on a smaller, manually labeled dataset.
A research questions is posed as follows: Does the ability of a given convolutional neural net-
work to identify roof segments improve when the training dataset is extended with samples
that were generated automatically from aerial imagery and roof positional information from
semantic 3D city models? It can be subdivided into the following, falsifiable hypotheses:

1. Roof positional information from 3D city models can be extracted and used to label the
corresponding roof areas in aerial or satellite images.

2. The automatically generated labels are accurate enough in outlining the roofs to allow
effective training of the neural network.

3. Training the neural network with the extended and less homogeneous dataset delivers
superior performance compared to the original hand-labeled dataset.

Following this introduction, at first a short overview of the theoretical background is given.
Then, the data and methods that were used are introduced and the results are presented and
discussed.
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2 Theoretical background

2.1 CityGML

Kolbe (2009) introduces CityGML as a data modeling standard for semantic 3D city and land-
scapemodels. It represents spatial objects on five different levels of detail (LoD0 to LoD4) and
comprises information on their geometry, semantics, topology, and appearance. The family
of ISO 19100 standards (ISO, 2015) provides the data model for the semantic information,
whereas Unified Modeling Language (UML) is used to define object oriented models of spatial
features and thus enables hierarchical structures of generalization and aggregation. All city
objects are derived from the parent class _CityObject, where the underscore indicates that it
is an abstract class, which again is a subclass of the basic GML class _Feature. All instances of
_CityObject then constitute the CityModel of class FeatureCollection. Further, the city objects
are subdivided into several thematic categories such as Building, CityFurniture, Transporta-
tion, Vegetation, or WaterBody. The geometries of city objects are described by boundary
representation (B-rep), where solids are defined by an aggregation of their bounding sur-
faces, as opposed to a representation by volumetric primitives as applied in constructive
solid geometry (CSG).

The feature class _AbstractBuilding and its relations with other classes are of particular
interest for this project because its constituent boundary surfaces of class _BoundarySurface
include those of class RoofSurface, which were utilized to extract information on the geo-
graphic position and extent of roof segments. Figure 1 shows a UML diagram of _Abstract-
Building and some of its relations to other classes. A more comprehensive representation
can be found in the OGC CityGML Encoding Standard (Open Geospatial Consortium, 2012).

2.2 3D City Database

Storage of and access to 3D building data in this project was handled using the CityGML stan-
dard in an implementation as 3D City Database (3DCityDB) in PostGIS. 3DCityDB is an open-
source implementation of the CityGML schema for use with spatially enhanced relational
database management systems (SRDBMS), in this case PostgreSQL with PostGIS extension,
and ORACLE Spatial (Yao et al., 2018). It also comprises several software tools that enable
data import, export, analysis and visualization in accordance with CityGML. Within the scope
of this project, a PostGIS-based 3DCityDB was used in a Docker environment with the software
DBeaver as administration tool.

2.3 Convolutional neural networks

Convolutional neural networks (CNNs) are a category of artificial neural networks for deep
learning that uses convolutional layers (Lecun et al., 1998). Generally, an artificial neural
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Figure 1: UML diagram of the CityGML feature class _AbstractBuilding and some of its depen-
dencies. From Kolbe (2009).
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network for deep learning is comprised of a series of layers where each linearly manipulates
an input 𝑥 with weights 𝑊 and a biases 𝑏 and then subjects it to a non-linear activation
function before passing the output on to the next layer (Goodfellow et al., 2016). By choosing
appropriate dimensions for the weight matrix, the output dimension of each layer can be
controlled. Thereby, the output of the final layer can be mapped to a problem of interest,
for instance, a classification problem with a certain number of classes. The introduction of
a distance measure or loss function that quantifies the deviation of the delivered outputs
from the desired outputs enables the optimization of the network’s parameters (weights and
biases) with respect to the loss and, thus, minimize it. This is called training or learning and
will, given a sufficient number of iterations, appropriate network architecture, optimization
technique, and input training data, allow the network to generalize from the training data to
other, previously unseen data to solve the problem under consideration.

In a fully connected layer, for an input 𝑥 of dimension (𝑚, 1) and a desired output 𝑦 of
dimension (𝑛, 1), a weight matrix 𝑊 of dimension (𝑛,𝑚) and a bias 𝑏 of dimension (𝑛, 1) are
required. Further, a scalar, non-linear activation function 𝑓(𝑥) is used:

𝑦 = 𝑓(𝑊𝑥 + 𝑏) (2.1)

Accordingly, every single input value is assigned 𝑛 weights for the 𝑛 output values it con-
tributes to. This can be problematic in certain applications for several reasons: For large
inputs (e. g., high resolution images) and deep networks with many layers, the number of
trainable parameters and the associated memory requirement and computational effort can
become exceedingly large. Moreover, such a network can be prone to over-fitting because
its capacity allows it to memorize the input. One solution for these problems is the use of
convolutional layers.

As opposed to the matrix multiplication performed in a fully connected layer, the convo-
lution operation uses a smaller set of weights, referred to as the kernel, to process the entire
input. Each output value is a weighted average of several neighboring input values. Following
Goodfellow et al. (2016), the two-dimensional discrete convolution can be expressed as:

𝑂(𝑥, 𝑦) = (𝐾 ∗ 𝐼)(𝑥, 𝑦) = ∑
𝑑𝑥
∑
𝑑𝑦
𝐾(𝑑𝑥, 𝑑𝑦)𝐼(𝑥 − 𝑑𝑥, 𝑦 − 𝑑𝑦) (2.2)

Here, 𝐼 is the input, 𝐾 is the convolution kernel, and 𝑂 is the output. Figure 2 demonstrates
this graphically. In practice, this corresponds to the application of an image filter that has
learnable weights to an image. For RGB images with three color channels, in fact, a three-
dimensional convolution is computed. Compared to fully connected layers, the number of
parameters is significantly reduced.

CNN architectures have proven to be particularly successful in computer vision tasks, such
as image classification or semantic segmentation (Schmidhuber, 2015). Apart from convolu-
tion layers they also utilize other layer types such as pooling and upsampling layers.
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Figure 2: Basic principle of a two-dimensional convolution of an input with a kernel. Note that
the output has smaller dimensions compared to the input. This can be avoided by padding
the input with additional values. From Goodfellow et al. (2016).
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3 Data and methods

3.1 Generation and structure of datasets

3.1.1 Data sources

The automatically labeled dataset of roof segments was derived from 3D city data available
at level of detail 2 (LoD2). The manually labeled dataset was created using Google satellite
imagery that was retrieved by means of the Google Maps Static API. Because these images
are not orthorectified, the 3D city data that was to be used in the automated labeling process
would not exactly match the roof segments in the Google data. For this reason, orthorectified
aerial imagery from the Bavarian Surveying and Mapping Authority (BVV, Bayerische Vermes-
sungsverwaltung) was used that aligns well with the 3D city data from the same source. These
orthophoto crops were obtained from a Web Map Service provided by the BVV.

3.1.2 Selection of study areas and scenarios for comparison

In this section and in table 1, all training scenarios used for comparison of neural network
performance are described. A dataset of manually labeled roof segments was available from
previous investigations: It comprises roof-centered crops of Google satellite images and cor-
responding label files for 1878 buildings with 4473 roof segments in the town of Wartenberg
in Upper Bavaria. This dataset served as the baseline for all comparisons.

For a first comparison scenario, an automatically labeled dataset of the same town was
to be created. This would allow identification of differences in the underlying data sources
and their quality, and their effects on the neural network’s ability to determine roof seg-
ments. Since the 3D city data is structured in a spatial grid, four cells that cover the town of
Wartenberg were selected. These contain 2835 buildings with 6071 roof segments. The higher
number of buildings and roof segments compared to the manually labeled set mainly stems
from their different definition in the 3D city model with a finer subdivision. The differences
in these numbers compared to the manual dataset were explored in further detail and are
explained in section 4.1.2. To control for the number of training samples and its effect on the
neural network performance, in a second scenario, another automatically labeled dataset
was generated, this time centering the training samples at the building centroids from the
manual dataset, resulting in an equal number of buildings (and thus, training samples) as for
the manual dataset.

For the third comparison scenario, areas from different parts of southern Bavaria were
selected with the aim to maximize the diversity of building types present in the data. The
Regional Statistical Spatial Typology for Mobility and Transport Research (RegioStaR) by the
German Federal Ministry of Transport and Digital Infrastructure (BMVI, Bundesministerium
für Verkehr und digitale Infrastruktur) was used for this purpose, and in particular, the com-
bined regional statistical spatial type RegioStaR 17 (BMVI, 2018). Areas with a total of 123 050
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Table 1: Training scenarios and corresponding numbers of buildings.

ID Scenario name Abbreviation Number of buildings

0 Wartenberg manual wb_m 1878
1 Wartenberg automatic wb_a 2835
2 Wartenberg automatic (manual centroids) wb_a@m 1878
3 Bavaria automatic bv_a 125 885
4 Wartenberg manual + automatic wb_m+a 4713

buildings were selected that are distributed as follows: 58 580 buildings from central Mu-
nich (types 111 metropolis and 112 large city from regional type 11 metropolitan urban region),
30 808 buildings from the regional towns of Erding and Freising (type 113 medium-sized city
from regional type 11 metropolitan urban region), and 33 662 buildings from a large rural area
southwest of Munich (types 225 small-town area, village area and 224 urban area from re-
gional type 22 peripheral rural region). The training samples from the automatically labeled
Wartenberg dataset were added, totaling 125 885 buildings in this scenario.

In a fourth and final comparison scenario, the two datasets of Wartenberg (manually and
automatically labeled) were combined. Since these two were generated based on different
data sources (see section 3.1.1), their imagery differs in qualitative aspects and their labels,
too, may exhibit systematic differences. It is the aim of this scenario to examine to what
extent a neural network trained only on one of these two types of datasets specializes on
them or is able to generalize to the other type of dataset, compared to a network that was
trained using data from both generation procedures. Figure 3 shows buildings and areas of
the Bavaria dataset. Appendix B also contains similar plots for the other training scenarios.

3.1.3 Processing and extraction of 3D city data

All 3D city data were available in GML format following the CityGML specification and, at
first, imported into a 3DCityDB instance of a PostgreSQL database running the PostGIS ex-
tension. Then, several processing steps were performed on the database: First, all roof
segments contained in the respective dataset were obtained by joining the tables building,
thematic_surface, and surface_geometry. For each building, the corresponding thematic sur-
faces are stored in the table thematic_surface, which again references the concrete surface
geometries in the table surface_geometry. Within the table thematic_surface, roof surfaces
are identified by the attribute objectclass_id assuming the value 33. Second, for each roof
segment, its azimuth (orientation in the horizontal plane) and slope were computed in de-
grees based on its corresponding surface geometry’s normal vector. Finally, the required
attributes for all segments were exported as comma-separated-value (CSV) file for further
processing in Python. Table 2 lists and describes these attributes. Listing 1 shows the SQL
query that was used to obtain the described information.
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Listing 1: SQL query used to obtain roof segment data from 3DCityDB.

1 select
2 b . id as ” b_id ” ,
3 sg . id as ” sg_id ” ,
4 degrees (
5 st_azimuth (
6 st_makepoint (0 , 0) ,
7 s t_ rota te (
8 st_force2d ( c i tydb . normalvector_norm ( sg . geometry ) ) ,
9 pi ( )
10 )
11 )
12 ) as ” azimuth ” ,
13 90 + degrees (
14 c i tydb . slope_from_normv ( c i tydb . normalvector_norm ( sg . geometry ) )
15 ) as ” slope ” ,
16 st_force2d ( sg . geometry ) as ” geometry ”
17 from bui ld ing b , thematic_surface ts , surface_geometry sg
18 where
19 b . id = ts . bu i ld ing_ id and
20 ts . ob jec tc lass_ id = 33 and
21 sg . root_id = ts . lod2_mult i_surface_id and
22 sg . geometry i s not nu l l ;

Table 2: Attributes included in database CSV export of roof segments required for further
processing.

Attribute name Description Source of information

b_id Building ID (identical for all seg-
ments of the same building)

Given in source 3D city data

sg_id Surface geometry / roof segment ID
(unique)

Given in source 3D city data

azimuth Horizontal orientation of the roof
segment in degrees

Derived from surface geometry’s
normal vector

slope Vertical orientation of the roof seg-
ment in degrees

Derived from surface geometry’s
normal vector

geometry Geometry of the roof segment as
well-known text (WKT)

Given in source 3D city data
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3.1.4 Generation of training samples

Generation of training samples from orthophotos and 3D city data. The table of roof seg-
ments (structure see table 2) was processed further in Python. Depending on their azimuth
and slope, roof segments were assigned to one of 17 classes: Sloped roofs were categorized
into 16 orientation classes, subdividing the 360° range into 22.5° slices (N, NNE, NE, ENE, E,
ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, and NNW), and flat roofs into another separate
class. All other areas were labeled as background, amounting to a total of 18 different se-
mantic classes (see table 3).

A single sample for training of the neural network in the present application was to consist
of a building-centered 3-channel color image showing the roof and a single-channel image
containing the labels, with pixel values between 0 and 17 corresponding to the 18 semantic
classes. For each building in a scenario’s dataset, a 256 ⋅ 256 px orthophoto-cropwas retrieved
from a Web Map Service (see section 3.1.1) centered to the building centroid. The geographi-
cal extent of this crop was then used to rasterize the corresponding roof segment polygons,
assign the respective class values, and store them as label image file. The BVV orthophotos
were available at a ground resolution of 0.2mpx−1.

Table 3: Semantic classes of training samples: Background, 16 orientation classes with az-
imuth ranges, 1 flat roof class.

Class name ID Azimuth range [°]
Min Max

Background 0 − −
N 1 −11.25 11.25
NNE 2 11.25 33.75
NE 3 33.75 56.25
ENE 4 56.25 78.75
E 5 78.75 101.25
ESE 6 101.25 123.75
SE 7 123.75 146.25
SSE 8 146.25 168.75
S 9 168.75 191.25
SSW 10 191.25 213.75
SW 11 213.75 236.25
WSW 12 236.25 258.75
W 13 258.75 281.25
WNW 14 281.25 303.75
NW 15 303.75 326.25
NNW 16 326.25 348.75
Flat 17 − −
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Adaptation of training samples from manually labeled dataset. The manually annotated
training samples of Wartenberg were originally structured slightly differently and therefore
adapted tomatch the structure of the automatically generated data. First, the semantic labels
were created using the same classification, but the pixel-level class values were different and
had to be mapped to the class values used here. Second, the manual Wartenberg samples
were originally generated at a resolution of 512 ⋅ 512 px. To match both pixel and ground res-
olution of the BVV orthophotos used with 3D-city-data-derived labels, each training sample
in the hand-labeled dataset was scaled down to 256 ⋅ 256 px, which corresponds to a ground
resolution of about 52.7m or 0.2mpx−1. Label images were resized using nearest neighbor
interpolation to ensure conservation of pixel values.

3.1.5 Execution of data split

For each training scenario, the corresponding dataset was split into three subsets: One for
neural network training, one for validation during training, and one for testing, i. e., perfor-
mance evaluation of the final model. Working with geospatial data, several considerations
had to be made with respect to the approach to split the data. It was central to these con-
siderations that the training samples were generated in a building-centered manner, showing
buildings in the image center, as opposed to a grid-based dataset.

This decision was made for various reasons: It was thought to best reflect the real-world
application of the neural network model in identification of roof segments of concrete build-
ings where they would appear in the image center. Further, it would ensure that most build-
ings could be depicted fully within the geographic bounds of their training sample, whereas
in a grid-based dataset, the likelihood of buildings cut off at the image edges is, on average,
higher. However, it follows from this approach that each building, or parts of it, can appear
in several training samples in the frequent case that a sample’s extent includes neighboring
buildings for which another sample is generated. This is relevant for the data split because
the validation and test sets should not contain samples or even parts thereof from the train-
ing set.

Therefore, a geographic data split was performed as follows: Within the data region, sev-
eral positions were chosen for both the test and validation set along with a specific number
of buildings to be selected around each of these positions. First, around each test position,
this pre-defined number of buildings was identified within a circular area whose radius was
determined iteratively. These buildings were then subtracted from the main dataset. To en-
sure that the datasets are entirely disjoint, i. e., that no parts of buildings contained fully or
partially in the test set are depicted in any of the other sets, all buildings intersecting the
extent of the samples selected for the test set were also subtracted from the main dataset.
Based on the remaining buildings, the identical procedure was then repeated for the chosen
validation positions to find the buildings for the validation set. After that, all remaining build-
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ings comprised the training set. Because of the approach that was used to ensure that the
datasets are disjoint, the number of training samples is not equal to the difference between
the total number of samples and the number of validation and test samples.

Table 4 shows numerical information on the data splits as they were applied for each
of the different scenarios. For the Wartenberg scenarios (IDs 0, 1, 2, and 4), three positions
were selected for both the validation and test sets. Sizes of validation and test set were
chosen to be about 10% of the total number of samples. As described in section 3.1.2, the
Bavaria dataset (ID 3) consists of data from several regions. A total of 11 positions for each
validation and test set were selected and distributed across these regions: 4 in the rural area
southwest of Munich, 3 in the central Munich area, and 2 each in Erding and Freising. For
each region, the number of validation and test set samples were chosen to be about 5% of
the respective region’s total number of samples. Table 5 gives an overview of this. Figure 3
gives a graphical representation of the data split with training, validation, and test set areas
for the Bavaria dataset. The same representation for the other training scenarios and close-
ups of the Bavaria dataset subregions can be found in appendix B.

Table 4: Data splits as performed for each of the scenarios. Numbers of samples in training,
validation and test sets, and number of geographical positions fromwhich validation and test
samples were selected.

Scenario Number of samples Number of positions
ID Abbreviation Total Training Validation Test Validation Test

0 wb_m 1878 1364 180 180 3 3
1 wb_a 2835 2085 270 270 3 3
2 wb_a@m 1878 1364 180 180 3 3
3 bv_a 125885 111462 6270 6270 11 11
4 wb_m+a 4713 3449 450 450 3 3

Table 5: Distribution of validation and test set samples across the regions in the Bavaria
dataset. (Excluding the samples from wb_a that were added for training.)

Bavaria dataset Number of samples
region Total (relative) Test Validation Per position Positions per set

Rural Bavaria 33662 (0.27) 1620 1620 540 3
Munich 58580 (0.48) 2880 2880 720 4
Erding, Freising 30808 (0.25) 1500 1500 375 4

All 123050 (1.00) 6000 6000



3 DATA AND METHODS 13

Figure 3: Data split of the Bavaria dataset with areas containg training (train), validation (val),
and test data. Visible areas: Freising in the very north, Erding in the very east, two areas in
Munich centrally, sparsely populated rural area in the south-west.
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3.2 Semantic segmentation of roof segments

3.2.1 Neural network architecture and hyperparameters

For each scenario, a convolutional neural network (CNN) was trained for 40 epochs (20 epochs
in the case of the Bavaria dataset). An extensive process of manual hyperparameter tuning
was conducted to optimize the training results (see appendix A for details). It lead to the
following settings for the final training runs: A U-Net architecture (Ronneberger et al., 2015)
with a ResNet-152 backbone (He et al., 2016) consistently delivered the best results. Several
loss functions designed to handle highly imbalanced class distributions (e. g., in the auto-
matically labeled Wartenberg dataset, 79% of all pixels belong to the background class) were
explored (Jadon, 2020; Sugino et al., 2021), and the categorical focal loss was found to deliver
the best results. Due to hardware limitations and the depth of the network, batch size could
only be set as high as 8 samples. Learning rate was set to 10−4 and decreased by a factor of
10 whenever a plateau was reached during training.

3.2.2 Data augmentation

To decrease overfitting and improve the network’s ability to generalize, the training data was
augmented in several ways during training. Randomly applied augmentations methods were:
Resizing and shifting, addition of Gaussian noise, change of brightness, contrast, saturation,
and gamma value, sharpening, and blurring.

Further, with a probability of 0.5, training samples were subdivided into a regular 2-by-2
or 3-by-3 grid, and the grid cells then were shuffled. Although this can disrupt the topolog-
ical structure of the depicted roofs, in first experiments it appeared to improve the model’s
performance in terms of IoU on the respective test set, indicating that the benefits of more
complexly structured training data on model performance outweigh any potential drawbacks
stemming from disordered roof topology. However, further exploration of this augmentation
method (three training runs with identical settings each with and without the method) did
not yield conclusive results as to whether it actually helps to improve performance. Because,
at that point, all models had already been trained with this augmentation method enabled
and at least no deterioration in performance could be detected due to it, it was decided to
continue working with the obtained models. Also, even though the mentioned investigation
did not indicate an improvement on average, it is noteworthy that each training run was per-
formed twice, once with and once without this augmentation method, and in every case the
model trained with this method performed better than the other (in terms of the employed
performance measure as described in the following).
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3.2.3 Neural network performance evaluation

For final evaluation of model performance, intersection over union (IoU) was used as a mea-
sure of comparison, which is defined as the ratio of true positives to the sum of true positives
(TP), false positives (FP), and false negatives (FN). Several distinctions can be made as to how
IoU is computed from raw neural network output, i. e., results of the final softmax function.

First, IoU can be derived either directly from the softmax values or after application of
an argmax function that interprets the softmax outputs as probabilites and sets the value of
the most likely class to 1 and all other classes to 0 for each pixel. A third possibility is to not
simply assign the class with the highest probability to a pixel, but only to do so if a threshold
probability (e. g., 0.5) is exceeded, assigning no class if this is not the case.

Second, there is a distinction between IoU on dataset level and on image level. On the
image level, IoU can be computed either by taking the average of all class IoU values in the
image (”macro”) or by summing up TP, FP, and FN numbers over all classes and therefrom
deriving total image IoU (”micro”). A similar distinction applies for the dataset level IoU: It
can be computed either by taking the average of all image IoU values (”macro”) or by summing
up TP, FP, and FN numbers over all images and only then computing overall IoU (”micro”). In
the latter case, the summing up of TP, FP, and FN may be done class-wise (image-level macro)
or without distinguishing classes (image-level micro). This leads to a total of four ways to
compute overall IoU, depending on which approach is selected for the image and dataset
level. They are here referred to as, e. g., ”micro/macro” (image-level approach/dataset-level
approach). Three further distinctions must be made:

1. In the macro case on the image level, when averaging over the single class IoU values,
one may also choose to weight them by their support, i. e., the true class frequency
(equaling the sum of TP and FN). This reduces the importance given to classes that are
underrepresented in the image, which may or may not be desired in imbalanced class
scenarios, where some classes may cover only small areas of samples. For instance, a
class that appears in only a very small fraction of the image and that is falsely or not pre-
dicted by the model has an IoU of zero. Without weighting, this will disproportionately
affect overall IoU, even if other, more frequent classes are predicted well. Conversely, if
the most frequent class (e. g., background) is predicted very well and weighting is used,
this will result in a good IoU even if the model performs poorly on the other classes.
It is clear that the choice whether to use weighting here also affects the results of a
dataset-level IoU computed using the macro/macro approach.

2. Again in the macro case on the image level, there are two possible ways to deal with
classes that do not appear in a sample and whose absence is predicted correctly, i. e.,
both intersection and union are zero. One option is to set IoU for such classes to 𝑁𝑎𝑁,
considering that the fraction is mathematically not defined, and to ignore them for the
image IoU. Another option is to set IoU for such classes to 1 in recognition of the correct
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prediction. However, if there are several classes that do not appear in an image and their
absence is predicted correctly, the resulting image IoU as average of all class IoU values
may become rather high but then contains little information about the segmentation
performance on the classes that actually appear in the image. Of course, if a weighted
average is taken with class true frequency as weights (as described in 3.), there is no
difference between setting IoU for classes with correctly predicted absence to 𝑁𝑎𝑁 or 1
because their weight will be zero.

3. The final distinction is similar to 1. but applies to themacro/micro case on dataset level.
That is, if (1) the values of TP, FP, and FN are summed up class-wise over all images of
the dataset, (2) dataset-wide per-class IoU values are computed, and (3) the average of
these is taken. Here, one may choose to use the total, dataset-wide support of each
class as weights in taking the average over classes. This again emphasizes performance
on frequent classes and reduces the influence of less frequent classes with the same
implications as discussed previously.

In appendix C, a guide to the different types of IoU computation is given in terms of equa-
tions. For the purpose of this project, the micro/macro approach based on argmax model
output was used for evaluation. This allows comparison of IoU values between single images
as well as across datasets. To provide additional information, an unweighted macro/micro
IoU is also given on the dataset level.

All five trained models as described in section 3.1.2 were evaluated on four of the cor-
responding test datasets: wb_m, wb_a@m, wb_a, and bv_a. Evaluation results on the test
dataset of the mixed wb_m+a scenario (containing both manually and automatically labeled
data) are not given, since this test dataset simply combines those of the scenarios wb_m and
wb_a. Information on the performance on these two data sources is better represented by
looking at the two test datasets individually.

3.3 Software and hardware used

The Python library Segmentation Models, which is based on Keras and TensorFlow, was used
for setup and training of the CNN (Yakubovskiy, 2019). Augmentations were implemented
using the library Albumentations (Buslaev et al., 2018). All training was performed on a Nvidia
GeForce GTX 1060 GPU with 6144MB of VRAM.
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4 Results and discussion

4.1 Assessment of automatically generated labels

4.1.1 Label quality and consistency

Wartenberg datasets. Since the training samples for the two corresponding scenarioswb_m
and wb_a@m cover the same geographical extent around identical locations (the centroids
of the manual dataset), it was possible to compare them with respect to their quality and
consistency. To obtain a quantitative measure, their IoU was computed and found to be 0.79
(micro/macro). While this generally indicates a high degree of consistency, several sources
for discrepancies between the two datasets and, thus, their labels can be identified. Figure 4
gives an exemplary comparison showing two training samples from both datasets in which
several of the discrepancies occur that are described in the following.

• The manual labels were created using non-orthorectified Google satellite imagery. The
automatic labels were derived from CityGML 3D city data, which, according to the data
specifications, matches orthorectified aerial imagery. Hence, a certain degree of mis-
alignment is to be expected.

• For both datasets there are cases where one provides more detailed labels than the
other, e. g. with respect to the individual delineation of dormers or their omission. From
qualitative assessment of random samples it appears that, generally, dormers are more
often delineated individually in the manual dataset. Also, roof geometries in the LoD2
3D city model are in some cases simplified to an extent that leads to erroneous rep-
resentation in the derived labels, particularly for cross-gabled buildings with one or
several wings.

• Because the 3D city data at LoD2 does not model roof overhangs whereas they of course
appear in the BVV orthophotos, the automatic labels do in many cases not cover the
depicted roofs completely, i. e., to their edges. This is a systematic lack of accuracy
stemming from the data source, and its effect on the performance of the models should
be investigated. This could be done by labeling a certain amount of orthophoto samples
manually, train a model on this data and compare its results to those of a model based
on 3D city data labels.

• The manual dataset in general only has labels for visible roofs, while the automatically
generated labels also cover roof areas that may be hidden underneath vegetation in the
orthophotos.

• There is a considerable amount of cases in which the assignment of an orientation class
differs between the manual and automatic datasets. This occurs when a roof segment’s
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orientation is at the boundary between classes. Then, the outcome of the manual label-
ing process may fall in one orientation class while the orientation computed from the
segment’s normal vector in 3D city data results in the other orientation class. Potential
effects on segmentation performance are unclear and could be investigated separately
in the future, but are considered likely to be negligible.

Bavaria dataset. Like the automatically labeled Wartenberg dataset, the Bavaria dataset
for the scenario bv_a was created from LoD2 3D city data. Therefore, the same observations
that were made for the former and described in the previous paragraph also apply to the
latter. An additional issue seems to be that in some cases the LoD2 data does not represent
roof geometries, leading to entire roofs being labeled as flat even though they clearly are
not. The reason for this was found to be the method of roof geometry generation applied
in creation of the 3D city data: An algorithm attempts to identify the roof geometry from a
point cloud, and, upon failure of this method for instance in cases of complex geometries, it
assigns a flat roof at a height derived from other parameters. A generic attribute indicates the
roof generation method and allows the quantification of erroneous geometries (Bayerische
Vermessungsverwaltung, 2018).

Table 6 shows the distribution of roofs and segments in the Bavaria dataset by their gen-
eration method. For 6678 (5.4%) of all 123050 buildings in the Bavaria dataset (excluding
Wartenberg data) no geometry could be automatically deduced from the point cloud, result-
ing in the assignment of a default flat roof shape that does not match the real structure
(values 3100, 3210, 3220). Another 231 roofs apparently were edited manually, but the cor-
rectness of their geometries cannot be verified since the corresponding method value 9999 is
not specified in the documentation. Figure 5 shows two exemplary training samples in which
this problem is visible.

This issue provides a clear starting point for further investigation of the impact these
flawed data have on the network’s performance by generating training data that only feature
labels created from correct roof geometries.

4.1.2 Comparison of roof and segment subdivision between datasets

To account for differences between theWartenberg datasets that were labeledmanually (wb_-
m) and automatically (wb_a), their data structures were compared with respect to the num-
ber of buildings and roof segments. In the manually labeled dataset wb_m, there are 1878
buildings with 4473 roof segments, averaging 2.38 segments per building. In case of the au-
tomatically labeled Wartenberg dataset wb_a, there are 2835 buildings with 6071 segments,
averaging 2.14 segments per building. The dataset wb_a identifies 1.35 times as many roof
segments and 1.51 times asmany separate buildings as the datasetwb_m. This indicates that,
in comparison to wb_m, wb_a is characterized by a more fine-grained distinction of separate
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(A)

(B)

Figure 4: Exemplary comparison of manual and automatic Wartenberg training samples (IoU
is given). (A) Manual labels identify dormer, auto labels do not; on the other hand, auto labels
identify segments missing in manual dataset. (B) Auto labels do not cover roof overhangs and
wrongly represent roof geometry of cross-gabled building to the right.
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Table 6: Distribution of Bavaria dataset by roof generation method of the 3D city data: Num-
bers of buildings and single roof segments for each method. Classification according to Bay-
erische Vermessungsverwaltung (2018).

Roof generation method Object count
Value Description Buildings Segments

1000 Identification algorithm (automatic) 61581 98776
2000 Identification algorithm (semi-automatic, edited) 54560 196308
3100 Unidentified: Flat roof with minimum height 1398 1398
3210 Unidentified: Flat roof with derived height (automatic) 3425 3425
3220 Unidentified: Flat roof with derived height (edited) 1855 1855
4000 Manual input of roof geometry 0 0
9999 Unknown 231 542

Sum 123050 302304

Figure 5: Two exemplary training samples from the Bavaria dataset in which roofs are falsely
labeled as flat due to the roof geometry missing in the LoD2 3D city data.
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buildings, leading to a higher number of both total buildings and roof segments, but on aver-
age fewer segments per building, because there are more smaller, subdivided buildings that
therefore comprise fewer segments.

Further, for each building ofwb_m its number of segments was compared to the number of
wb_a segments belonging to the same building. The aim was to investigate whether and how
the subdivision of identical roof areas into segments is different between the datasets. Due
to the different data sources (manually annotated roofs aligned to Google satellite imagery
vs. orthorectified 3D city data roofs), the segment and roof outlines of both datasets do not
match perfectly. For this reason, the same wb_a segment can intersect more than one wb_-
m building, which would distort the results of the analysis by falsely increasing the average
number of wb_a segments per wb_m building. To avoid this, an intersection threshold was
implemented as a condition to count a wb_a segment as being part of a wb_m building: The
intersection of both must amount to a minimum ratio of both the wb_m building and the
wb_a segment. The results differ depending on what this ratio is selected to be.

Table 7 shows the results of this analysis. It becomes apparent that in particular for wb_-
m buildings with few roof segments there are on average more roof segments in the wb_a
dataset, indicating a smaller-scale subdivision of roofs into segments in the 3D city data.
For buildings from wb_m with higher numbers of roof segments, presumably reflecting larger
buildings, this relation does not apply anymore and the number of wb_a segments is rela-
tively closer to the number of wb_m segments. From 8 wb_m segments upwards the numbers
appear to become somewhat arbitrary, likely due to a very small number of buildings with
that many roof segments, and are therefore hard to interpret with respect to the aim of this
analysis.

4.2 Neural network performance

4.2.1 Intersection over union cross-evaluation

Table 8 lists the performance of the five CNN models in terms of intersection over union (mi-
cro/macro) evaluated on four of the test datasets. One finds quite a clear separation between
the model trained with manually labeled samples and those trained with automatically la-
beled samples, but also between the Wartenberg models and the model trained on the large
Bavaria dataset. The same applies for the corresponding test datasets and the model results
on these.

With an IoU of 0.863, the model wb_m is the best performer on the manually labeled
dataset wb_m, which it was trained on and therefore seems to be specialized on. Notably, the
model wb_m+a trained on mixed (both manually and automatically labeled) data of Warten-
berg comes close to this performance at an IoU of 0.847. Also, the Bavariamodel scores higher
than those only trained on automatic Wartenberg data, indicating a benefit from training on
an extended BVV orthophoto datasest when required to generalize to Google satellite data
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Table 7: Number of wb_a segments that on average intersect wb_m buildings with a certain
number of segments (first column), depending on an intersection threshold: Minimum ratio
of the intersection area to both the wb_m building and the wb_a segment.

wb_m Average number of wb_a segments by intersection threshold
segments 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

1 2.03 1.69 1.58 1.54 1.52 1.51 1.49 1.47 1.45 1.47
2 3.26 2.86 2.68 2.59 2.55 2.52 2.49 2.44 2.37 2.25
3 3.77 3.47 3.42 3.38 3.34 3.33 3.31 3.31 3.24 2.95
4 5.20 4.76 4.59 4.45 4.38 4.33 4.27 4.23 4.16 3.93
5 6.58 6.21 6.13 5.96 5.88 5.75 5.58 5.46 5.13 4.83
6 7.39 7.04 6.79 6.65 6.56 6.49 6.46 6.35 6.25 5.98
7 8.09 7.91 7.55 7.55 7.45 7.45 7.36 7.18 7.18 7.09
8 6.60 6.40 6.40 6.30 6.30 6.00 5.90 5.80 5.80 5.40
9 10.00 10.00 10.00 10.00 10.00 10.00 9.33 9.00 9.00 7.33
10 13.33 13.22 13.22 13.22 13.22 13.22 13.11 12.78 12.56 11.22
11 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00
12 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

with manual labels. The lowest IoU values on this dataset are achieved by the two models
trained on the automatically labeled Wartenberg datasets, wb_a@m and wb_a, at 0.744 and
0.757, respectively. The latter delivers a slightly better performance, presumably because it
was trained with a higher number of samples.

The results on the test datasets of wb_a@m and wb_a are very comparable, which can
easily be attributed to their strong similarity: Their main difference is in number of training
samples and their centroids. Here, the Bavariamodel scores highest at 0.877, again indicating
the benefit arising from dataset extension. It is, however, closely followed by themodelswb_-
a@m,wb_a, andwb_m+a, which score between 0.85 and 0.86. Theworst performingmodel on
the automatically labeled Wartenberg dataset unsurprisingly is the one that was not exposed
to the corresponding training data, but only to the manually labeled Wartenberg data: wb_m
with an IoU of 0.747 and 0.741, respectively.

On average, the evaluation results on the Bavaria test dataset show the lowest IoU scores.
This is expectable considering that it is the most challenging dataset with very heteroge-
neous data from rural and urban areas across Bavaria, where especially the latter differ sig-
nificantly from the Wartenberg area. The model bv_a trained on the corresponding training
data achieves the best score at 0.839. All models trained on similarly structured, i. e., auto-
matically labeled data, follow at between 0.744 and 0.758. Interestingly, among these three,
the model that was additionally exposed to manually labeled data in training (wb_m+a) per-
forms best, albeit only by a slight margin, indicating a benefit from increased training data
heterogeneity even if this heterogeneity does not stem from the same parent population. It is
unclear, however, whether this result would hold if a statistical analysis were to be conducted
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on the outcomes of several training runs. Finally, the model wb_m which was trained only on
manually labeled data of Wartenberg shows the poorest performance with an IoU of 0.686.

With respect to the main diagonal in table 8, which represents the results of the first four
models evaluated on their corresponding test datasets, it is striking that the Bavaria model
bv_a falls behind the others. Nevertheless, the model manages to surpass the others on
the automatically labeled Wartenberg datasets, providing evidence for the fact that dataset
extension in the investigated scenario improves roof segment identification. And in relative
terms, when looking only at the bv_a test set, the bv_a model stands out significantly from
the others. This, on the one hand, puts into perspective its somewhat sub-par performance
on its own test dataset but, on the other hand, simply points to this particular test dataset
being themost challenging of all, especially for thosemodels that were limited to Wartenberg
training data.

Another noteworthy observation can be made with respect to the model wb_m+a, which
was trained on the combination of manually and automatically labeled Wartenberg data.
While it performs slightly worse than the best models on the test datasets wb_m and wb_-
a@m (those which were trained purely on the corresponding training data), on average over
both test sets it has a considerably higher IoU (0.849) than either of the more specialized
models (0.805 for wb_m and 0.799 for wb_a@m) and even a slightly higher IoU than the
model trained on the extended Bavaria dataset (0.840). This clearly demonstrates that the
models are subject to quite a strong degree of specialization on the data they were trained
on, and that to enhance a model’s capability to identify roof segments in heterogeneously
sourced data, ideally samples from all data sources should be represented in the training
data. Merely extending a homogeneous datasat with (even much) more data from the same
source does not help improving the performance on data from another dataset to the same
extent as training on data from both sources does, clearly pointing out a limited potential for
generalization.

Table 9 provides results structured identically as in table 8 but in terms of an unweighted
macro/micro IoU, which, owing to the computation approach, delivers results differing in ab-
solute values but similar in their relation to each other. As opposed to the micro/macro
results, which include an implicit weighting by class frequency, the unweighted macro/micro
IoU does not over-emphasize the predominant background class, instead giving all classes
identical weight independent of their frequency of occurrence. It is noticeable that the vari-
ance of the results is larger, indicating stronger differences between the models according to
this measure. Here, the relative improvement of the bv_amodel over the other models turns
out to be larger, indicating that it is in particular better at correctly identifying roof segments,
also independent of the background class. Appendix D lists the complete model evaluation
results, including further IoU performance metrics.
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Table 8: Intersection over union (micro/macro based on argmax model output) of the five
models on four test datasets.

Dataset Mean(wb_m,
Model wb_m wb_a@m wb_a bv_a Mean Std wb_a@m)

wb_m 0.863 0.747 0.741 0.686 0.759 0.064 0.805
wb_a@m 0.744 0.854 0.856 0.744 0.799 0.056 0.799
wb_a 0.757 0.860 0.861 0.750 0.807 0.053 0.808
bv_a 0.802 0.877 0.877 0.839 0.849 0.031 0.840
wb_m+a 0.847 0.852 0.856 0.758 0.828 0.041 0.849

Mean 0.802 0.838 0.838 0.756
Std 0.047 0.046 0.049 0.049

Table 9: Intersection over union (unweighted macro/micro based on argmax model output)
of the five models on four test datasets.

Dataset Mean(wb_m,
Model wb_m wb_a@m wb_a bv_a Mean Std wb_a@m)

wb_m 0.596 0.359 0.342 0.300 0.399 0.116 0.477
wb_a@m 0.338 0.597 0.593 0.403 0.483 0.115 0.467
wb_a 0.385 0.619 0.619 0.422 0.511 0.109 0.502
bv_a 0.511 0.691 0.695 0.626 0.631 0.075 0.601
wb_m+a 0.579 0.606 0.619 0.455 0.565 0.065 0.593

Mean 0.482 0.574 0.574 0.441
Std 0.104 0.113 0.121 0.106
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4.2.2 Confusion matrices

Appendix E contains confusionmatrices of all fivemodels executed on the test sets of the four
relevant datasets. Here, only the ones that give the most valuable insights are discussed. Fig-
ure 6 shows confusion matrices and dataset-wide IoU values for each class of the four models
wb_a@m, wb_a, wb_m, and bv_a as found when run on their respective test sets. Some gen-
eral observations can bemadewith all models: Across all roof classes, themost frequent false
negative prediction is background. Flat roofs appear to be hardest class to distinguish from
background, since on all Wartenberg models they have more false negatives due to classifica-
tion as background than true positives. Only the Bavaria model manages to classify more flat
roofs correctly than falsely as background. On the other hand, the Bavaria model more fre-
quently falsely predicts sloped roofs to be flat roofs than the Wartenberg models. This could
potentially be attributed to the 5.4% of roofs in the Bavaria dataset that are labeled as flat by
default due to failure of the roof geometry identification algorithm (see section 4.1.1). Regard-
ing sloped roofs in general, there seems to be a weak pattern showing that their orientation
is, if at all, prevalently confused with the opposite or orthogonal orientations (differing by
90°, 180°, or 270°). An explanation could be that roof segments in opposing and orthogonal
orientations would have the same outline and potentially also similarly oriented textures, so
there is presumably less evidence for the model to distinguish between them.

While the confusion matrices of wb_a@m and wb_a look very much alike as is to be ex-
pected considering that they were trained on similar datasets, true positive rates and class-
wise IoU are slightly higher for the model wb_a, which was exposed to a larger number of
training samples (2085 vs. 1364). Another interesting comparison is that between the mod-
els wb_a@m and wb_m, which were trained on identically positioned samples from the two
different sources. In fact, their performance on their own test datasets is very comparable,
confirming the observation made earlier in terms of IoU (see section 4.2.1). There are some
differences in details: For instance, the model wb_m performs slightly better at identifying
flat roofs. Finally, the model bv_a achieves the most consistent performance with respect to
class-wise IoU and true positive rates, the lowest values for sloped roofs being 0.58 and 0.7,
respectively. While its results on flat roofs fall somewhat behind in comparison to that, it still
outperforms all three Wartenberg models in this regard.

Figure 7 shows confusion matrices and dataset-wide IoU values for each class of the mod-
els bv_a and wb_m+a when evaluated on the test sets of the scenarios wb_m and wb_a@m.
Its purpose is to further explore how well the Bavaria model and the model trained on mixed
(manually and automatically labeled) Wartenberg data perform on purely manually or auto-
matically labeled Wartenberg data.

Again, it becomes clear that the extended Bavaria dataset based on 3D city data provides
only limited improvement in terms of the model’s ability to generalize to manually labeled
Google satellite images of Wartenberg, as was already discussed in the previous section. Re-
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sults of the Bavaria model on the automatically labeled Wartenberg dataset wb_a@m, on
the other hand, show a definite improvement over the model trained purely on those data:
Class-wise IoU values and true positive rates are more consistent, identification of flat roofs
more reliable than for the model wb_a@m as seen in fig. 6.

The bottom two matrices in fig. 7 again illustrate the benefit of a model trained on data
from both sources when applied to this use case. The results indicate that the CNN has the
capacity to identify roof segments in data from either source, provided that it was exposed
to corresponding data during training.

4.2.3 Exemplary model predictions

Figure 8 presents predictions from all five models on six exemplary test samples from the
datasets wb_m and wb_a@m: One sample from each of the two datasets at three different
locations. In all cases, the depicted roof structures are rather complex.

The samples from location (A) contain residential buildings mainly with roofs sloped to-
wards north and south. Manual and 3D-city-data-derived labels show good consistency. The
models wb_m and wb_m+a perform best on the Google satellite image, the first scoring a
higher micro IoU and the second a higher macro IoU. This could be interpreted as a better
prediction of background pixels in the first case and better prediction of roof pixels in the
second case. Qualitatively, however, wb_m seems to deliver more accurate outlines of the
roof segments. Among the models trained purely on automatically labeled data, the Bavaria
model bv_a scores highest, coming quite close to the other two. It is able to detect almost
all constituent roof segments except one at the right image edge, which has a low contrast
compared to the background. The models wb_a@m and wb_a fall behind in comparison.

Roof segments in the corresponding BVV orthophoto at the same location are predicted
best by the Bavaria model bv_a. It is the only one capable of outlining the small roof connect-
ing the two buildings in the south-west corner of the sample. The models wb_m+a, wb_a, and
wb_a@m follow in this order sorted by performance, corresponding to the number of sam-
ples they were trained on. The model wb_m, trained exclusively on manually labeled data,
clearly has difficulties interpreting the BVV orthophoto, delivering the lowest micro IoU and
second-lowest macro IoU among all examples from this location.

Location (B) contains two pyramid roofs, which generally pose a greater challenge to the
networks due to their lower (although unquantified) frequency in the training data. Compari-
son of the labels for the location reveals a roof that was falsely classified as flat in the manual
data: The two-dimensional information does not allow identification of its gabled geometry.
The automatically generated labels, on the other hand, contain a gable roof where in the BVV
orthophoto only a parking lot is visible, indicating outdated data. In view of the predictions
on the Google satellite image, it is interesting to observe that the models wb_m and bv_a
make the same mistake as the human labeler, classifying the roof in the south-east corner
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wb_a@m (.854, .597) wb_a (.861, .619)

wb_m (.863, .596) bv_a (.839, .626)

Figure 6: Confusion matrices of the models wb_a@m, wb_a, wb_m, and bv_a on their respec-
tive test sets. Rows are ground truth labels, columns are predictions. Rows are normalized to
total number of predictions, thus, sum up to 1. Last row shows IoU of the corresponding class
on the dataset level (macro/micro). Numbers in brackets next to identifiers are micro/macro
and unweighted macro/micro IoU values.
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bv_a→ wb_m (.802, .511) bv_a→ wb_a@m (.877, .691)

wb_m+a→ wb_m (.847, .579) wb_m+a→ wb_a@m (.852, .606)

Figure 7: Confusion matrices of the models bv_a and wb_m+a on the test sets of wb_m and
wb_a@m. Rows are ground truth labels, columns are predictions. Rows are normalized to
total number of predictions, thus, sum up to 1. Last row shows IoU of the corresponding class
on the dataset level (macro/micro). Numbers in brackets next to identifiers are micro/macro
and unweighted macro/micro IoU values.
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of the sample as flat. Quantitatively, the model wb_m scores highest, and it also delivers the
best qualitative performance. Its predictions of the pyramid roofs are mostly accurate but
potentially not sufficient for a practical application. The model wb_m+a follows but, purely
visually, does not give satisfactory results. The Bavaria model bv_a does a significantly bet-
ter job at classifying the pixels than the two Wartenberg models wb_a and wb_a@m, but all
three have difficulties.

In the BVV orthophoto at location (B), the pyramid roofs are identified quite well by the
Bavaria model. It has difficulties, however, to correctly classify two of the gabled roofs in
the sample. The south-east one is again determined to be flat, which could be due to the
5.4% of roofs in its training data that were falsely labeled as flat, or simply because the
roof’s geometry is, in fact, hard to discern in the image. The models wb_m+a and wb_a take
the second places with respect to macro and micro IoU, respectively, followed by wb_a@m.
The model wb_m, not exposed to automatically labeled orthophotos in training, manages to
identify some segments but fails with most, reflected in the lowest scores.

Location (C) shows a group of buildings with roofs oriented in various directions. Again,
some inconsistencies between the labels of Google satellite image and BVV orthophoto are
visible. Looking at the Google satellite image, the best performance is in this case delivered
by wb_m+a, which apparently benefits from the additional training data with automatically
generated labels. Themodelwb_m has difficulties identifying correct outlines and unambigu-
ous orientations. Among the models only trained on 3D-city-data-based samples, only bv_a
performs decently. The others return mostly chaotically structured patches. Roof segments
in the BVV orthophoto at location (C) are well outlined by most models, in particular by bv_a,
and at least by wb_m.

In summary, these examples reflect the results that were found in terms if overall per-
formance: The Bavaria model clearly benefits from the vastly increased amount of training
data, both when applied to Google satellite images and BVV orthophotos. It is, in general,
closely followed by wb_m+a in the case of BVV orthophotos, and surpassed by this model
for Google satellite images. The model wb_m in most instances has difficulties identifying
outlines and orientations of roof segments in BVV orthophotos. The examples illustrate the
point made in the previous section that specialization on a data source is more important
that sheer amount of training data in the present case.

Figure 9 shows predictions from all models on three exemplary test samples from the
Bavaria dataset bv_a. They are located in urban areas in central Munich and therefore contain
buildings of a type that only the Bavaria model was trained on. This is clearly reflected in
predictions and performance measures: In all three cases it is apparent that only bv_a is
capable of identifying the roof segments with good quality, as is visible and indicated by
IoU. The other models are generally able to detect portions of the roof segments, even their
correct orientation, but fail to identify their full area and outline. Among them, the model
wb_m+a scores best in all cases, likely benefiting from its increased amount of training data
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and potentially also their higher diversity compared to the other Wartenberg models. The
poorest performance is, unsurprisingly, delivered by wb_m, which was not exposed to any
BVV orthophotos during training.

4.3 Discussion of research hypotheses

The results shall now be discussed with respect to the research hypotheses that were estab-
lished in the beginning:

1. Roof positional information from 3D city models can be extracted and used to label the
corresponding roof areas in aerial or satellite images.

2. The automatically generated labels are accurate enough in outlining the roofs to allow
effective training of the neural network.

3. Training the neural network with the extended and less homogeneous dataset delivers
superior performance compared to the original hand-labeled dataset.

The first hypothesis was the least debatable and can be confirmed with certainty: Follow-
ing the steps described in section 3.1 it was possible to generate datasets of training samples
from 3D city data with labels outlining roof segments in corresponding BVV orthophoto crops.
Contrary to what was assumed before the project, the roof segments could be transferred to
two-dimensional format by simply projecting them onto the two-dimensional plane and no
further geometrical transformations were required.

Depending on the definition of effectivity, one may also confirm the second hypothesis.
Even though it was found that the labels created from 3D city data lack accuracy in some
respects (see section 4.1.1), their overall quality proved to be sufficient to enable training of
CNNmodels that achieve a performance at least comparable to and in some cases surpassing
that of the model trained on manually labeled data.

The third hypothesis can only be confirmed partially: Indeed it is the case that the model
trained on the extended Bavaria dataset performs better than the models trained only on
Wartenberg data, but only when tested on datasets that were created from the same data
source, i. e., 3D city data and BVV orthophotos. When tested onmanually labeled Google satel-
lite data, the Bavaria model’s performance is inferior to that of the model that is specialized
on this data source, even though the latter only knows Wartenberg and was not exposed to
even closely the same quantity or variety of buildings as the Bavaria model. In other words:
Specialization on a data source beats quantity and variety of training data in this case.

4.4 Further insights and suggestions for follow-up investigations

There is room for improvement concerning the approach to splitting the datasets into sub-
sets for training, validation, and testing. Under ideal conditions, all datasets would follow
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(A)

(B)

(C)

Figure 8: Six test samples from the Wartenberg datasets wb_m and wb_a@m at three loca-
tions (A), (B), and (C), and corresponding predictions from all models. For each location, the
upper sample is from wb_m (Google satellite image, manual labels) and the lower sample is
from wb_a@m (BVV orthophoto, auto labels). Micro (Mi) and macro (Ma) IoU with respect to
labels are given for each prediction.
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(A)

(B)

(C)

Figure 9: Three test samples (A), (B), and (C) from the Bavaria dataset bv_a, and corresponding
predictions from all models. Micro (Mi) and macro (Ma) IoU with respect to labels are given
for each prediction.
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the same distribution, but this is difficult to achieve in spatially heterogeneous data. The
approach used in this study aims at reducing spatial bias by allowing the selection of several
locations for each of the subsets around which their samples are selected instead of only one.
While this may reduce the bias somewhat, it will certainly not eliminate it. It would be better
to select the subset samples completely at random. This would, however, lead to a greater
reduction of usable samples than the lumped approach taken here, because all samples inter-
secting buildings that themselves intersect validation and test set samples cannot be used in
any of the other sets. Another promising approach could be to generate grid-based instead of
roof-centered samples. By means of shifting the grid by a fraction of the cell size one could
further increase the number of samples, equaling a pre-training augmentation strategy. A
potential downside would be a lower number of roofs that are depicted fully within samples.

The quality of the automatically generated labels could be improved in two ways. First,
the problem of roofs that are erroneously labeled as flat (discussed in section 4.1.1) should
be addressed by excluding all samples containing such roofs from the data. Considering that
this concerns 5.4% of all samples in the Bavaria dataset, this should lead to an improvement
in segmentation performance. Second, a threshold value could be implemented for the dis-
tinction between flat and sloped roofs. So far, any roof with non-zero slope as computed from
its normal vector was classified as sloped. Among all 2835 (6071) buildings (segments) in the
wb_a dataset, 776 (851) have zero slope, 37 (52) have a slope smaller than 5°, and 127 (198)
have a slope smaller than 10°. Among all 123 050 (302 304) buildings (segments) in the bv_a
dataset, 45 333 (59 532) have zero slope (including the falsely labeled ones), 2733 (4199) have
a slope smaller 5°, and 11 118 (17 637) have a slope smaller than 10°. It is conceivable that
many of these barely sloped roofs are hard to distinguish from flat roofs in the images, which
would suggest a potential improvement in training effectiveness and model performance if
they were classified as flat in the label generation process.

Any interpretation of the results depends entirely on the measure used for their quantifi-
cation and comparison. As discussed in section 3.2.3 and further elaborated in appendix C,
there are manifold ways to compute the seemingly unambiguous intersection over union,
each of which emphasizes different qualities in the predictions. They therefore can yield
quite different results, which must be interpreted with respect to the method of computa-
tion. Depending on the scenario at hand, one metric’s advantage can become a drawback
and vice-versa. For instance, the micro IoU at image level has the advantage that a weight-
ing of classes by their frequency is implied, which helps avoid the influence of very small
classes that are predicted badly if the larger classes show good results. On the other hand, if
there is one class (like the background class) that is exceedingly more frequent than all other
classes, a model can obtain good results (in terms of this measure) by mostly predicting back-
ground areas, turning the advantage into a drawback. For this reason, all image-level micro
IoU values reported here should be taken with a pinch of salt and compared to the corre-
sponding macro IoU values. The importance of an appropriate application and interpretation
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of object detection and segmentation performance metrics in consideration of their inherent
limitations is also being discussed in recent literature (Kofler et al., 2021; Reinke et al., 2021).
Another drawback of IoU as a performance measure is that it cannot be optimized directly in
training because it has non-zero gradients in some cases. Several new, IoU-derived metrics
were proposed in recent work, such as a generalized IoU (GIoU) and a generalized IoU for
pixelwise prediction (PixIoU), that aim to circumvent this problem (Rezatofighi et al., 2019; Yu
et al., 2021). For future investigations it might also be worth trying to use a micro IoU metric
that excludes the background class from its computation entirely. This avoids the problem
of one disproportionately frequent class distorting the results but retains the advantage of
giving more weight to more frequent classes in each image.

Considering the finding that the CNNs show quite strong specialization on the data source
they were trained on, and that data augmentation alone does not suffice to overcome this
limitation, one could try to find approaches that allow better generalization of the CNNs to
other sources of remote sensing imagery. This was already tried in a first attempt by combin-
ing the datasets wb_m and wb_a into a single dataset wb_m+a and, indeed, this helped the
corresponding CNN to achieve good performance on data from both Google satellite images
and BVV orthophotos. A next step could be for example to apply the same approach to the
Bavaria model.
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5 Conclusions

In this project, roof positional information from semantic 3D city models was successfully
used to generate datasets of images and labels from BVV orthophotos for the purpose of
training CNNs to identify roof segments and their orientation. The involvedmethods included
spatial data analyses in a 3DCityDB instance in a PostGIS-extended PostgreSQL database,
automated generation of training samples by retrieving orthophoto crops from a BVV Web
Map Service and rasterizing the corresponding roof surface geometries from 3D city data,
choosing suitable areas for a vastly extended training dataset, the execution of a spatial data
split for several training scenarios, the setup, tuning, and training of CNNs on the generated
datasets, followed by numerical as well as visual evaluation of their results.

As can be seen from the discussion, it is difficult to come to a definitive conclusion as to
whether a dataset extension using 3D city models as conducted in this project leads to better
performance of an identically structured neural network compared to the original, manually
labeled dataset. This is mainly due to the specialization of the models on the respective type
of training data (Google satellite images and BVV orthophotos, respectively), which inhibits
ideal comparability between them. In order to unambiguously identify any improvements
achieved by using an extended, 3D-city-data-based dataset with its potential drawbacks in-
stead of a smaller but manually labeled and, therefore, presumably less error-prone dataset,
it would be better to have the latter be based on the same imagematerial, i. e., BVV orthopho-
tos. This would enable identification of the impact of label characteristics that are introduced
by properties of the 3D city data, such as their incomplete coverage of visible roof areas due
to roof overhangs not being represented in the 3D model, and to separate this from the ad-
ditional effect of network specialization on data source.

Another problem arising from roof overhangs frequently not being included by the au-
tomatic labels is that IoU as a performance measure loses meaning: A perfect IoU would
not imply perfect model performance, but rather that many roof segments are predicted in-
completely. Conversely, a perfect model performance in identifying roof segments and their
orientation would not be reflected in a perfect IoU. One could argue that the 3D-city-data-
based labels do not teach the model to identify roof segments but to predict the extent of
the underlying building footprint. Availability of manual labels for a part of the same base
imagery could again help overcome this problem by enabling quantification with respect to
the actual predicition target: complete roof segments.

Nevertheless, the present data allow a first evaluation of the potential that arises from
this type of automated labeling. The results are promising and point to the fact that roof
segment information from 3D city models can, in fact, be used to quickly and cost-efficiently
generate large datasets that enable effective training of a CNN for the purpose of roof segment
identification, although further work must be done to improve both the generated datasets
and performance evaluation.



REFERENCES 36

References

Bayerische Vermessungsverwaltung (2018). Kundeninformation LoD2 Gebäudemodelle. Stand
3/2018.

BMVI (2018). Regionalstatistische Raumtypologie (RegioStaR) des BMVI für die Mobilitäts- und
Verkehrsforschung. Arbeitspapier Version V1.1 (06.06.2018). Bundesministerium für Verkehr
und digitale Infrastruktur.

Bódis, K., I. Kougias, A. Jäger-Waldau, N. Taylor, and S. Szabó (2019). “A high-resolution geospa-
tial assessment of the rooftop solar photovoltaic potential in the European Union”. In: Re-
newable and Sustainable Energy Reviews 114. PII: S1364032119305179, p. 109309. doi: 10.
1016/j.rser.2019.109309.

Buslaev, A., A. Parinov, E. Khvedchenya, V. I. Iglovikov, and A. A. Kalinin (2018). “Albumentations:
fast and flexible image augmentations”. In: ArXiv e-prints.

Castello, R., S. Roquette, M. Esguerra, A. Guerra, and J.-L. Scartezzini (2019). “Deep learning in
the built environment: automatic detection of rooftop solar panels using Convolutional
Neural Networks”. In: Journal of Physics: Conference Series 1343. nov, p. 012034. doi: 10.
1088/1742-6596/1343/1/012034.

Castello, R., A. Walch, R. Attias, R. Cadei, S. Jiang, and J.-L. Scartezzini (2021). “Quantification of
the suitable rooftop area for solar panel installation from overhead imagery using Convo-
lutional Neural Networks”. In: Journal of Physics: Conference Series 2042.1, p. 012002. doi:
10.1088/1742-6596/2042/1/012002.

Collier, E., S. Mukhopadhyay, K. Duffy, S. Ganguly, G. Madanguit, S. Kalia, G. Shreekant, R. Ne-
mani, A. Michaelis, S. Li, and A. Ganguly (2021). “Semantic Segmentation of High Resolution
Satellite Imagery using Generative Adversarial Networks with Progressive Growing”. In: Re-
mote Sensing Letters 12.5, pp. 439–448. doi: 10.1080/2150704X.2021.1895444.

Costa, M. V. C. V. d., O. L. F. de Carvalho, A. G. Orlandi, I. Hirata, A. O. de Albuquerque, F. V. e. Silva,
R. F. Guimarães, R. A. T. Gomes, and O. A. d. C. Júnior (2021). “Remote Sensing for Monitoring
Photovoltaic Solar Plants in Brazil Using Deep Semantic Segmentation”. In: Energies 14.10.
PII: en14102960, p. 2960. doi: 10.3390/en14102960.

Freitas, S., C. Catita, P. Redweik, and M. C. Brito (2015). “Modelling solar potential in the urban
environment: State-of-the-art review”. In: Renewable and Sustainable Energy Reviews 41.
PII: S1364032114007461, pp. 915–931. doi: 10.1016/j.rser.2014.08.060.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep learning. Adaptive computation and
machine learning. Cambridge, Massachusetts: The MIT Press.

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep Residual Learning for Image Recognition”.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV, USA, 2016).
IEEE, pp. 770–778. doi: 10.1109/CVPR.2016.90.

https://doi.org/10.1016/j.rser.2019.109309
https://doi.org/10.1016/j.rser.2019.109309
https://doi.org/10.1088/1742-6596/1343/1/012034
https://doi.org/10.1088/1742-6596/1343/1/012034
https://doi.org/10.1088/1742-6596/2042/1/012002
https://doi.org/10.1080/2150704X.2021.1895444
https://doi.org/10.3390/en14102960
https://doi.org/10.1016/j.rser.2014.08.060
https://doi.org/10.1109/CVPR.2016.90


REFERENCES 37

Hoog, J. de, S. Maetschke, P. Ilfrich, and R. R. Kolluri (2020). “Using Satellite and Aerial Imagery
for Identification of Solar PV”. In: Proceedings of the Eleventh ACM International Conference
on Future Energy Systems. e-Energy ’20: The Eleventh ACM International Conference on
Future Energy Systems (Virtual Event Australia, 2020). New York, NY, USA: ACM, pp. 308–313.
doi: 10.1145/3396851.3397681.

ISO, ed. (2015). ISO 19109:2015. Geographic information — Rules for application schema.
Izquierdo, S., M. Rodrigues, and N. Fueyo (2008). “A method for estimating the geographi-

cal distribution of the available roof surface area for large-scale photovoltaic energy-
potential evaluations”. In: Solar Energy 82.10. PII: S0038092X08000625, pp. 929–939. doi:
10.1016/j.solener.2008.03.007.

Jadon, S. (2020). “A survey of loss functions for semantic segmentation”. In: 2020 IEEE Confer-
ence on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).
2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational
Biology (CIBCB) (Via del Mar, Chile, 2020). IEEE, pp. 1–7. doi: 10.1109/CIBCB48159.2020.
9277638.

Kemmerzell, N. (2020). “Automatic analysis of economic pv-potential via aerial images and
GIS”. Chair for Automotive Technology. Master’s thesis. Technical University of Munich.

Kofler, F., I. Ezhov, F. Isensee, F. Balsiger, C. Berger, M. Koerner, J. Paetzold, H. Li, S. Shit, R.
McKinley, S. Bakas, C. Zimmer, D. Ankerst, J. Kirschke, B. Wiestler, and B. H. Menze (2021).
Are we using appropriate segmentation metrics? Identifying correlates of human expert
perception for CNN training beyond rolling the DICE coefficient. doi: 10.48550/arXiv.
2103.06205.

Kolbe, T. H. (2009). “Representing and Exchanging 3D City Models with CityGML”. In: 3D Geo-
Information Sciences. Ed. by J. Lee and S. Zlatanova. Lecture Notes in Geoinformation and
Cartography. Berlin and London: Springer, pp. 15–31. doi: 10.1007/978-3-540-87395-2_2.

Krapf, S., N. Kemmerzell, S. Khawaja HaseebUddin, M. Hack Vázquez, F. Netzler, andM. Lienkamp
(2021). “Towards Scalable Economic Photovoltaic Potential Analysis Using Aerial Images
and Deep Learning”. In: Energies 14.13. PII: en14133800, p. 3800. doi: 10.3390/en14133800.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-based learning applied to docu-
ment recognition”. In: Proceedings of the IEEE 86.11, pp. 2278–2324. doi: 10.1109/5.726791.

Lee, S., S. Iyengar, M. Feng, P. Shenoy, and S. Maji (2019). “DeepRoof: A Data-Driven Approach For
Solar Potential Estimation Using Rooftop Imagery”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. KDD ’19. New York, NY,
USA: Association for Computing Machinery, pp. 2105–2113. doi: 10.1145/3292500.3330741.

Mayer, K., Z. Wang, M.-L. Arlt, D. Neumann, and R. Rajagopal (2020). “DeepSolar for Germany:
A deep learning framework for PV system mapping from aerial imagery”. In: 2020 Inter-
national Conference on Smart Energy Systems and Technologies (SEST). Sep., pp. 1–6. doi:
10.1109/SEST48500.2020.9203258.

https://doi.org/10.1145/3396851.3397681
https://doi.org/10.1016/j.solener.2008.03.007
https://doi.org/10.1109/CIBCB48159.2020.9277638
https://doi.org/10.1109/CIBCB48159.2020.9277638
https://doi.org/10.48550/arXiv.2103.06205
https://doi.org/10.48550/arXiv.2103.06205
https://doi.org/10.1007/978-3-540-87395-2_2
https://doi.org/10.3390/en14133800
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/3292500.3330741
https://doi.org/10.1109/SEST48500.2020.9203258


REFERENCES 38

Melius, J., R. Margolis, and S. Ong (2013). Estimating Rooftop Suitability for PV: A Review of
Methods, Patents, and Validation Techniques. doi: 10.2172/1117057.

Muftah, H., T. S. L. Rowan, and A. P. Butler (2021). “Towards open-source LOD2 modelling using
convolutional neural networks”. In:Modeling Earth Systems and Environment. PII: 1159. doi:
10.1007/s40808-021-01159-8.

Open Geospatial Consortium, ed. (2012). OGC City Geography Markup Language (CityGML) En-
coding Standard. OpenGIS Encoding Standard.

Qin, Y., Y. Wu, B. Li, S. Gao, M. Liu, and Y. Zhan (2019). “Semantic Segmentation of Building Roof
in Dense Urban Environment with Deep Convolutional Neural Network: A Case Study Using
GF2 VHR Imagery in China”. eng. In: Sensors (Basel, Switzerland) 19.5. PII: s19051164 Journal
Article, p. 1164. doi: 10.3390/s19051164.

Rausch, B., K. Mayer, M.-L. Arlt, G. Gust, P. Staudt, C. Weinhardt, D. Neumann, and R. Rajagopal
(2020). “An Enriched Automated PV Registry: Combining Image Recognition and 3D Building
Data”. In: CoRR abs/2012.03690.

Reinke, A., M. D. Tizabi, C. H. Sudre, M. Eisenmann, T. Rädsch, M. Baumgartner, L. Acion, M.
Antonelli, T. Arbel, S. Bakas, P. Bankhead, A. Benis, M. J. Cardoso, V. Cheplygina, B. Ci-
mini, G. S. Collins, K. Farahani, B. Glocker, P. Godau, F. Hamprecht, D. A. Hashimoto, D.
Heckmann-Nötzel, M. M. Hoffmann, M. Huisman, F. Isensee, P. Jannin, C. E. Kahn, A. Karar-
gyris, A. Karthikesalingam, B. Kainz, E. Kavur, H. Kenngott, J. Kleesiek, T. Kooi, M. Kozubek,
A. Kreshuk, T. Kurc, B. A. Landman, G. Litjens, A. Madani, K. Maier-Hein, A. L. Martel, P. Matt-
son, E. Meijering, B. Menze, D. Moher, K. G. M. Moons, H. Müller, F. Nickel, J. Petersen, G.
Polat, N. Rajpoot, M. Reyes, N. Rieke, M. Riegler, H. Rivaz, J. Saez-Rodriguez, C. S. Gutier-
rez, J. Schroeter, A. Saha, S. Shetty, B. Stieltjes, R. M. Summers, A. A. Taha, S. A. Tsaftaris,
B. van Ginneken, G. Varoquaux, M. Wiesenfarth, Z. R. Yaniv, A. Kopp-Schneider, P. Jäger, and
L. Maier-Hein (2021). Common Limitations of Image Processing Metrics: A Picture Story.
This is a dynamic paper on limitations of commonly used metrics. The current version
discusses metrics for image-level classification, semantic segmentation, object detection
and instance segmentation. For missing use cases, comments or questions, please con-
tact a.reinke@dkfz.de or l.maier-hein@dkfz.de. Substantial contributions to this docu-
ment will be acknowledged with a co-authorship. doi: 10.48550/arXiv.2104.05642.

Rezatofighi, H., N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese (2019). “Generalized
Intersection Over Union: A Metric and a Loss for Bounding Box Regression”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June.

Ronneberger, O., P. Fischer, and T. Brox (2015). “U-Net: Convolutional Networks for Biomedical
Image Segmentation”. In: Medical image computing and computer-assisted intervention -
MICCAI 2015. 18th International Conference, Munich, Germany, October 5-9, 2015, proceed-
ings / Nassir Navab, Joachim Hornegger, William M. Wells, Alejandro F. Frangi (eds.) Ed. by
N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi. Vol. 9351. LNCS sublibrary: SL6 - Image

https://doi.org/10.2172/1117057
https://doi.org/10.1007/s40808-021-01159-8
https://doi.org/10.3390/s19051164
https://doi.org/10.48550/arXiv.2104.05642


REFERENCES 39

processing, computer vision, pattern recognition, and graphics 9349-9351. Cham: Springer,
pp. 234–241. doi: 10.1007/978-3-319-24574-4_28.

Schmidhuber, J. (2015). “Deep learning in neural networks: An overview”. In: Neural Networks
61, pp. 85–117. doi: 10.1016/j.neunet.2014.09.003.

Sugino, T., T. Kawase, S. Onogi, T. Kin, N. Saito, and Y. Nakajima (2021). “Loss Weightings for
Improving Imbalanced Brain Structure Segmentation Using Fully Convolutional Networks”.
eng. In:Healthcare (Basel, Switzerland) 9.8. Journal Article. doi: 10.3390/healthcare9080938.

Willenborg, B., M. Pültz, and T. H. Kolbe (2018). “Integration of semantic 3D city models and 3D
meshmodels for accuracy improvements of solar potential analyses”. In: The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-
4/W10, pp. 223–230. doi: 10.5194/isprs-archives-XLII-4-W10-223-2018.

Xu, S., X. Pan, E. Li, B. Wu, S. Bu, W. Dong, S. Xiang, and X. Zhang (2018). “Automatic Building
Rooftop Extraction From Aerial Images via Hierarchical RGB-D Priors”. In: IEEE Transactions
on Geoscience and Remote Sensing 56.12, pp. 7369–7387. doi: 10.1109/TGRS.2018.2850972.

Yakubovskiy, P. (2019). SegmentationModels. https://github.com/qubvel/segmentation_mod-
els.

Yao, Z., C. Nagel, F. Kunde, G. Hudra, P. Willkomm, A. Donaubauer, T. Adolphi, and T. H. Kolbe
(2018). “3DCityDB - a 3D geodatabase solution for the management, analysis, and visual-
ization of semantic 3D city models based on CityGML”. In: Open Geospatial Data, Software
and Standards 3.1. PII: 46. doi: 10.1186/s40965-018-0046-7.

Yu, J., Z. Wang, A. Majumdar, and R. Rajagopal (2018). “DeepSolar: A Machine Learning Frame-
work to Efficiently Construct a Solar Deployment Database in the United States”. In: Joule
2.12. PII: S2542435118305701, pp. 2605–2617. doi: 10.1016/j.joule.2018.11.021.

Yu, J., J. Xu, Y. Chen, W. Li, Q. Wang, B. Yoo, and J.-J. Han (2021). “Learning Generalized Intersec-
tion Over Union for Dense Pixelwise Prediction”. In: Proceedings of the 38th International
Conference on Machine Learning. Ed. by M. Meila and T. Zhang. Vol. 139. Proceedings of
Machine Learning Research. 18–24 Jul. PMLR, pp. 12198–12207.

Zhao, W., C. Persello, and A. Stein (2022). “Extracting planar roof structures from very high
resolution images using graph neural networks”. In: ISPRS Journal of Photogrammetry and
Remote Sensing 187. PII: S092427162200065X, pp. 34–45. doi: 10.1016/j.isprsjprs.2022.
02.022.

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.3390/healthcare9080938
https://doi.org/10.5194/isprs-archives-XLII-4-W10-223-2018
https://doi.org/10.1109/TGRS.2018.2850972
https://doi.org/10.1186/s40965-018-0046-7
https://doi.org/10.1016/j.joule.2018.11.021
https://doi.org/10.1016/j.isprsjprs.2022.02.022
https://doi.org/10.1016/j.isprsjprs.2022.02.022


40

Appendices



A RECORDS OF HYPERPARAMETER TUNING 41

A Records of hyperparameter tuning



A
RECORDS

OF
HYPERPARAM

ETER
TUNING

42

Table 10: This table gives an overview of most model runs that were performed during hyperparameter tuning, along with the most
important settings. The column TEST IOU contains the IoU as reported by the Python library Segmentation Models, corresponding
to a macro/macro IoU with a class assignment threshold of 0.5, setting IoU for classes whose absence was predicted correctly to 1,
and without weighting by class frequency. RGS refers to RandomGridShuffle augmentation.

ID NAME DATASET LOSS FUNCTION LR BACKBONE BATCH SIZE EPOCHS TEST IOU NOTE RGS SETTING

1 21-12-20_pvbackend wb_m categorical focal jaccard loss 1.00E-04 resnet152 40 0.63179
2 21-12-20_wbg_v4 wb_a categorical focal jaccard loss 1.00E-04 resnet152 40 0.7185
3 22-01-02_pvbackend wb_m categorical focal loss 1.00E-04 resnet152 8 40 0.76425
4 22-01-02_wbg_v4 wb_a categorical focal loss 1.00E-04 resnet152 8 40 0.79099
5 22-01-03_pvbackend wb_m dice loss (no class weights) 1.00E-04 resnet152 8 40 0.72858
6 22-01-04_pvbackend wb_m categorical focal + dice loss 1.00E-04 resnet152 8 40 0.72261
7 22-01-04_wbg_v4 wb_a dice loss (no class weights) 1.00E-04 resnet152 8 40 0.7512
8 22-01-05_pvbackend wb_m categorical focal loss 1.00E-04 resnet152 8 40 0.74652 No shift/scale/crop
9 22-01-05_pvbackend_2 wb_m categorical focal loss 1.00E-04 vgg19 16 40 0.68843
10 22-01-07_pvbackend wb_m categorical focal loss 1.00E-03 vgg19 16 40 0.69548
11 22-01-07_pvbackend_2 wb_m categorical focal loss 1.00E-05 vgg19 16 80 0.75385 Continuation of 9
12 22-01-09_pvbackend wb_m categorical focal loss 1.00E-04 inceptionresnetv2 14 40 0.74918
13 22-01-09_pvbackend_2 wb_m categorical focal loss 1.00E-05 inceptionresnetv2 14 20 0.75021 Continuation of 12
14 22-01-09_pvbackend_3 wb_m categorical focal loss 1.00E-04 efficientnetb4 6 40 0.75239
15 22-01-09_pvbackend_4 wb_m categorical focal loss 1.00E-04 efficientnetb6 4 40 0.74293
16 22-01-12_pvbackend wb_m categorical focal loss 1.00E-04 inceptionv3 22 40 0.74347
17 22-01-12_pvbackend_2 wb_m categorical focal loss 1.00E-04 inceptionv3 20 20 0.74356 Continuation of 16
18 22-01-13_pvbackend wb_m dice loss (with class weights) 1.00E-04 resnet152 10 40 0.70354
19 22-01-13_pvbackend_2 wb_m categorical cross entropy loss 1.00E-04 resnet152 8 40 0.77013
20 22-01-15_wbg_v4 wb_a categorical cross entropy loss 1.00E-04 resnet152 8 40 0.7841
21 22-01-15_pvbackend wb_m categorical focal loss 1.00E-04 resnet152 8 40 0.78026
22 22-01-15_wbg_v4_2 wb_a categorical focal loss 1.00E-04 resnet152 8 40 0.78544
23 22-01-16_pvbackend wb_m categorical focal loss 1.00E-04 resnet152 8 40 0.7701 With RGS 2x2, p = 0.5
24 22-01-16_pvbackend_2 wb_m categorical focal loss 1.00E-04 resnet152 8 40 0.78286 With RGS 2x2, 3x3, p = 0.5
25 22-01-16_pvbackend_3 wb_m categorical focal loss 1.00E-04 resnet152 8 40 0.7804 With RGS 2x2, 3x3, 4x4, p = 0.75
26 22-01-17_pvbackend wb_m categorical focal loss 1.00E-04 resnet152 8 40 0.77528 With RGS 2x2, 3x3, p = 0.67
27 22-01-17_wbg_v4 wb_a categorical focal loss 1.00E-04 resnet152 8 40 0.80199 With RGS 2x2, 3x3, p = 0.5
28 22-01-17_pvbackend_2 wb_m categorical focal loss 1.00E-04 resnet152 8 40 0.77451 With RGS 2x2, 3x3, p = 0.5
29 22-01-17_wbg_v4_subset wb_as categorical focal loss 1.00E-04 resnet152 8 40 0.79023 With RGS 2x2, 3x3, p = 0.5
30 22-01-20_pvbackend wb_m categorical focal loss 1.00E-04 resnet152 8 40 0.74316 No augmentations
31 22-01-22_pvbackend wb_m categorical focal loss 1.00E-04 resnet152 8 40 0.78172 RandomResizedCrop
32 22-01-22_pvbackend_2 wb_m categorical focal loss 1.00E-04 resnet152 8 25 0.77484 Continuation of 32
33 22-01-22_pvbackend_3 wb_m categorical focal loss 1.00E-04 resnet152 8 25 0.77103 Continuation of 33
34 22-01-23_bavaria bv_a categorical focal loss 1.00E-04 resnet152 8 20 0.81551 With RGS; > 3 hours / epoch 2x2, 3x3, p = 0.5
35 22-02-08_pvbackend wb_m categorical focal loss 1.00E-04 resnet152 8 40 0.76881 With RGS 2x2, 3x3, p = 0.5
36 22-02-08_pvbackend_2 wb_m categorical focal loss 1.00E-04 resnet152 8 40 0.77895
37 22-02-13_pvb_wbg wb_m+a categorical focal loss 1.00E-04 resnet152 8 40 0.78959 With RGS 2x2, 3x3, p = 0.5
38 22-02-13_pvb_wbg_2 wb_m+a categorical focal loss 1.00E-04 resnet152 8 40 0.76348 RandomResizedCrop
39 22-03-12_bavaria bv_a categorical focal loss 1.00E-04 resnet152 8 20 0.81037 > 3 hours / epoch
40 22-03-16_pv_areas_wbg_a wb_a@m categorical focal loss 1.00E-04 resnet152 8 40 0.77712
41 22-03-16_pv_areas_wbg_a_2 wb_a@m categorical focal loss 1.00E-04 resnet152 8 40 0.7863 With RGS 2x2, 3x3, p = 0.5
42 22-03-25_pvbackend wb_m jaccard loss 1.00E-04 resnet152 8 40 0.69076 With RGS 2x2, 3x3, p = 0.5
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B Plots of buildings and data splits

Figure 10: Data split of the datasets wb_m and wb_a@m (identical number, location, and size
of training samples) with areas containg training (train), validation (val), and test data.
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Figure 11: Data split of the dataset wb_a with areas containg training (train), validation (val),
and test data.



B PLOTS OF BUILDINGS AND DATA SPLITS 45

Figure 12: Data split of the Munich subregion of the dataset bv_a with areas containg training
(train), validation (val), and test data.
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Figure 13: Data split of the subregion Erding/Freising of the dataset bv_a with areas containg
training (train), validation (val), and test data.
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Figure 14: Data split of the rural subregion of the dataset bv_a with areas containg training
(train), validation (val), and test data.
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C A guide to computation of intersection over union

C.1 Image-level micro

Does not distinguish between classes. Instead, treats all classes equally by summing up true
positives (TP), false positives (FP), and false negatives (FN) of all classes in the image and
deriving IoU from these. More frequent or predominant classes will therefore have a stronger
influence on the result.

𝑇𝑃𝑖𝑚𝑎𝑔𝑒 = ∑
𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑇𝑃𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 (C.1)

𝐹𝑃𝑖𝑚𝑎𝑔𝑒 = ∑
𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝐹𝑃𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 (C.2)

𝐹𝑁𝑖𝑚𝑎𝑔𝑒 = ∑
𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝐹𝑁𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 (C.3)

𝐼𝑜𝑈𝑖𝑚𝑎𝑔𝑒 =
𝑇𝑃𝑖𝑚𝑎𝑔𝑒

𝑇𝑃𝑖𝑚𝑎𝑔𝑒 + 𝐹𝑃𝑖𝑚𝑎𝑔𝑒 + 𝐹𝑁𝑖𝑚𝑎𝑔𝑒
(C.4)

C.2 Image-level macro

Distinguishes between classes: Computes IoU for each class in the image, then takes the
average of these. Some distinctions described below.

𝐼𝑜𝑈𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 =
𝑇𝑃𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒

𝑇𝑃𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 + 𝐹𝑃𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 + 𝐹𝑁𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒
(C.5)

Two distinctions:

1. If intersection and union (numerator and denominator) are zero, 𝐼𝑜𝑈𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 can either
be set to 1 (rewarding the correct prediction of the class’s absence) or to 𝑁𝑎𝑁 (then
being ignored in computing the image IoU by averaging all class IoU values). The former
has the disadvantage that it reduces the meaningfulness of the IoU with regard to the
model’s performance in outlining the classes that are actually present in the image; the
latter has the disadvantage that correct prediction of a class’s absence is not reflected
in the IoU.

2. Unweighted vs. weighted (by support) average.

Unweighted average of image-level class-wise IoU values:

𝐼𝑜𝑈𝑖𝑚𝑎𝑔𝑒 =
∑𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝐼𝑜𝑈𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠
(C.6)
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Weighted average of image-level class-wise IoU values, using image-level class support (true
frequency) as weights:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 = 𝑇𝑃𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 + 𝐹𝑁𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 (C.7)

𝐼𝑜𝑈𝑖𝑚𝑎𝑔𝑒 =
∑𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝐼𝑜𝑈𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 ⋅ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠
(C.8)

C.3 Dataset-level micro

Does not distinguish between images. Either uses dataset-level class-wise IoU values (macro/mi-
cro) or uses dataset-level total TP, FP, and FN (micro/micro).

Based on image-level macro: Dataset-level macro/micro. Distinguishes between classes:
Computes IoU for each class in the dataset, then takes the average of these. Some distinctions
described below.

𝑇𝑃𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = ∑
𝑖𝑚𝑎𝑔𝑒𝑠

𝑇𝑃𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 (C.9)

𝐹𝑃𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = ∑
𝑖𝑚𝑎𝑔𝑒𝑠

𝐹𝑃𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 (C.10)

𝐹𝑁𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = ∑
𝑖𝑚𝑎𝑔𝑒𝑠

𝐹𝑁𝑐𝑙𝑎𝑠𝑠,𝑖𝑚𝑎𝑔𝑒 (C.11)

𝐼𝑜𝑈𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡 =
𝑇𝑃𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑇𝑃𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡 + 𝐹𝑃𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡 + 𝐹𝑁𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡
(C.12)

Distinction: Unweighted vs. weighted (by support) average. Unweighted average of dataset-
wide class-wise IoU values:

𝐼𝑜𝑈𝑑𝑎𝑡𝑎𝑠𝑒𝑡 =
∑𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝐼𝑜𝑈𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠
(C.13)

Weighted average of dataset-wide class-wise IoU values, using dataset-wide class support
(true frequency) as weights:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = 𝑇𝑃𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡 + 𝐹𝑁𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡 (C.14)

𝐼𝑜𝑈𝑑𝑎𝑡𝑎𝑠𝑒𝑡 =
∑𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝐼𝑜𝑈𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ⋅ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑐𝑙𝑎𝑠𝑠,𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠
(C.15)
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Basedon image-levelmicro: Dataset-levelmicro/micro. Does not distinguish between classes
nor images. Instead, treats all classes and images equally by summing up true positives (TP),
false positives (FP), and false negatives (FN) of all images in the dataset and deriving IoU from
these.

𝑇𝑃𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = ∑
𝑖𝑚𝑎𝑔𝑒𝑠

𝑇𝑃𝑖𝑚𝑎𝑔𝑒 (C.16)

𝐹𝑃𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = ∑
𝑖𝑚𝑎𝑔𝑒𝑠

𝐹𝑃𝑖𝑚𝑎𝑔𝑒 (C.17)

𝐹𝑁𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = ∑
𝑖𝑚𝑎𝑔𝑒𝑠

𝐹𝑁𝑖𝑚𝑎𝑔𝑒 (C.18)

𝐼𝑜𝑈𝑑𝑎𝑡𝑎𝑠𝑒𝑡 =
𝑇𝑃𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑇𝑃𝑑𝑎𝑡𝑎𝑠𝑒𝑡 + 𝐹𝑃𝑑𝑎𝑡𝑎𝑠𝑒𝑡 + 𝐹𝑁𝑑𝑎𝑡𝑎𝑠𝑒𝑡
(C.19)

C.4 Dataset-level macro

Distinguishes between images: Takes average of all image IoU values. Therefore, dataset-
level micro/macro andmacro/macro IoU are computed identically. Independently of whether
the image-level IoU was computed following the micro or macro approach, the corresponding
dataset-level macro IoU is computed as:

𝐼𝑜𝑈𝑑𝑎𝑡𝑎𝑠𝑒𝑡 =
∑𝑖𝑚𝑎𝑔𝑒𝑠 𝐼𝑜𝑈𝑖𝑚𝑎𝑔𝑒

𝑛𝑖𝑚𝑎𝑔𝑒𝑠
(C.20)
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D Complete results of model evaluation
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Table 11: Evaluation results of each scenario’s model on each test dataset. Intersection over union and F1-score as reported by
Python library Segmentation Models, and IoU values computed from argmaxmodel output following themicro/macro, macro/macro,
macro(weighted)/macro, micro/micro, macro/micro, and macro/micro(weighted) computation approaches.

Model Dataset sm_iou sm_f1 mi_ma ma_ma ma_w_ma mi_mi ma_mi ma_mi_w

wb_m wb_m 0.783 0.811 0.863 0.492 0.878 0.859 0.596 0.868
wb_m wb_a 0.694 0.723 0.741 0.312 0.781 0.737 0.342 0.773
wb_m bv_a 0.690 0.713 0.686 0.260 0.711 0.670 0.300 0.693
wb_m wb_a@m 0.699 0.728 0.747 0.313 0.784 0.743 0.359 0.777
wb_a wb_m 0.710 0.739 0.757 0.344 0.761 0.752 0.385 0.755
wb_a wb_a 0.802 0.833 0.861 0.535 0.872 0.859 0.619 0.865
wb_a bv_a 0.742 0.769 0.750 0.372 0.758 0.732 0.422 0.738
wb_a wb_a@m 0.796 0.828 0.860 0.521 0.870 0.857 0.619 0.864
bv_a wb_m 0.760 0.791 0.802 0.464 0.811 0.798 0.511 0.803
bv_a wb_a 0.828 0.858 0.877 0.599 0.889 0.875 0.695 0.883
bv_a bv_a 0.816 0.843 0.839 0.543 0.854 0.832 0.626 0.843
bv_a wb_a@m 0.828 0.858 0.877 0.592 0.889 0.875 0.691 0.883
wb_ma wb_m 0.773 0.803 0.847 0.511 0.857 0.843 0.579 0.848
wb_ma wb_a 0.800 0.833 0.856 0.531 0.867 0.854 0.619 0.862
wb_ma bv_a 0.753 0.781 0.758 0.394 0.769 0.742 0.455 0.751
wb_ma wb_a@m 0.790 0.823 0.852 0.513 0.864 0.850 0.606 0.858
wb_a@m wb_m 0.698 0.727 0.744 0.327 0.744 0.738 0.338 0.738
wb_a@m wb_a 0.792 0.823 0.856 0.504 0.867 0.854 0.593 0.861
wb_a@m bv_a 0.723 0.749 0.744 0.342 0.752 0.726 0.403 0.731
wb_a@m wb_a@m 0.786 0.818 0.854 0.485 0.866 0.852 0.597 0.859
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E Confusion matrices
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wb_m→ wb_m (.863, .596) wb_m→ wb_a@m (.747, .359)

wb_m→ wb_a (.741, .342) wb_m→ bv_a (.686, .300)

Figure 15: Confusion matrices of the model wb_m on four test sets. Rows are ground truth
labels, columns are predictions. Rows are normalized to total number of predictions, thus,
sum up to 1. Last row shows IoU of the corresponding class on the dataset level (macro/mi-
cro). Numbers in brackets next to identifiers are micro/macro and unweighted macro/micro
IoU values.
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wb_a@m→ wb_m (.744, .338) wb_a@m→ wb_a@m (.854, .597)

wb_a@m→ wb_a (.856, .593) wb_a@m→ bv_a (.744, .403)

Figure 16: Confusion matrices of the model wb_a@m on four test sets. Rows are ground truth
labels, columns are predictions. Rows are normalized to total number of predictions, thus,
sum up to 1. Last row shows IoU of the corresponding class on the dataset level (macro/mi-
cro). Numbers in brackets next to identifiers are micro/macro and unweighted macro/micro
IoU values.
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wb_a→ wb_m (.757, .385) wb_a→ wb_a@m (.860, .619)

wb_a→ wb_a (.861, .619) wb_a→ bv_a (.750, .422)

Figure 17: Confusion matrices of the model wb_a on four test sets. Rows are ground truth la-
bels, columns are predictions. Rows are normalized to total number of predictions, thus, sum
up to 1. Last row shows IoU of the corresponding class on the dataset level (macro/micro).
Numbers in brackets next to identifiers are micro/macro and unweighted macro/micro IoU
values.
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bv_a→ wb_m (.802, .511) bv_a→ wb_a@m (.877, .691)

bv_a→ wb_a (.877, .695) bv_a→ bv_a (.839, .626)

Figure 18: Confusion matrices of the model bv_a on four test sets. Rows are ground truth la-
bels, columns are predictions. Rows are normalized to total number of predictions, thus, sum
up to 1. Last row shows IoU of the corresponding class on the dataset level (macro/micro).
Numbers in brackets next to identifiers are micro/macro and unweighted macro/micro IoU
values.
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wb_m+a→ wb_m (.847, .579) wb_m+a→ wb_a@m (.852, .606)

wb_m+a→ wb_a (.856, .619) wb_m+a→ bv_a (.758, .455)

Figure 19: Confusion matrices of the model wb_m+a on four test sets. Rows are ground truth
labels, columns are predictions. Rows are normalized to total number of predictions, thus,
sum up to 1. Last row shows IoU of the corresponding class on the dataset level (macro/mi-
cro). Numbers in brackets next to identifiers are micro/macro and unweighted macro/micro
IoU values.
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