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Scalable Computation of Robust Control
Invariant Sets of Nonlinear Systems

Lukas Schäfer, Felix Gruber, and Matthias Althoff

Abstract— Ensuring robust constraint satisfaction for an
infinite time horizon is a challenging, yet crucial task when
deploying safety-critical systems. We address this issue
by synthesizing robust control invariant sets for perturbed
nonlinear sampled-data systems. This task can be encoded
as a nonconvex program for which we propose a tailored,
computationally efficient successive convexification algo-
rithm. Based on the zonotopic representation of invariant
sets, we obtain an updated candidate for the invariant set
and the safety-preserving controller by solving a single
convex program. To obtain a possibly large region of safe
operation, our algorithm is designed so that the sequence
of candidate invariant sets has monotonically increasing
volume. We demonstrate the efficacy and scalability of our
approach by applying it to a broad range of nonlinear con-
trol systems from the literature with up to 20 dimensions.

Index Terms— Invariant sets, nonlinear control systems,
scalability, robust control, cyber-physical systems, safety.

I. INTRODUCTION

AUTONOMOUS systems, such as vehicles, robots, and
drones, have recently attracted a lot of interest both

in academia and industry. However, when deploying such
systems in safety-critical applications, it is crucial to guarantee
safety for an infinite time horizon. This task can be accom-
plished by computing robust control invariant (RCI) sets: once
the system state has entered an RCI set, the associated safety-
preserving controller takes over to keep the state inside this
RCI set and, thereby, satisfaction of state and input constraints
at any future point in time is guaranteed. Among the many
applications in robust control synthesis, RCI sets are com-
monly used as terminal constraints in robust model predictive
control to ensure recursive feasibility and stability [1]–[3].
Similarly, RCI sets can be employed as terminal constraints in
online safety-verification frameworks [4]. They have also been
applied as part of supervisory safety filters for learning-based
control [5], [6]. These filters monitor whether a desired input
compromises safety and, if so, overrides this desired input
using a safety-preserving controller.

Even though the computation of RCI sets has been an
active research area for decades [7], most work has been
devoted to linear systems [8]–[10]. Since we compute RCI
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sets for nonlinear system, we focus on this system class in
our subsequent literature survey. Besides RCI sets, we also
review work on corresponding safety-preserving controllers.

A. Related Work

The evolution of uncertain discrete-time nonlinear systems
can be enclosed by a convex set, which leads to the framework
of convex difference inclusion systems [11], [12]. Examples
include polytopic linear difference inclusion [13] or difference-
of-convex systems [11], [14], which have been used to com-
pute polytopic (robust control) invariant sets in [11], [12],
[15]. Computing polytopic (robust control) invariant sets in
this framework boils down to solving linear programs for each
vertex and, if applicable, a vertex-associated safety-preserving
control input. Since even the number of vertices of a box
grows exponentially with the dimension of the state space,
the applicability of these approaches is restricted to low-
dimensional systems.

Another line of research for the computation of polytopic
(robust control) invariant sets focuses on systems with polyno-
mial dynamics [16]–[18] and is based on convex relaxations
for polynomial optimization problems over cones [19], [20].
The basic idea is to synthesize a controller that renders every
half-space representing the polytope invariant, which can be
encoded as a polynomial optimization problem. Due to the
specific structure, lifting the problem to a higher-dimensional
space admits a linear programming relaxation. To depend less
on a suitable choice of the normal vectors, the approach is
extended to optimize over the normal vectors and the offsets
of the half-spaces in [18]. However, it is unclear how the lifting
step can be automated and the scalability of the approach to
higher-dimensional systems has not yet been demonstrated.

In contrast to the previously considered polytopic sets,
ellipsodial sets scale better to higher-dimensional systems at
the cost of more conservative results. In [21], [22], nonlin-
ear systems are approximated by linear difference inclusions
whose reachable sets are represented using polytopes in vertex
representation and a robust control invariant ellipsoid is ob-
tained by solving a set of linear matrix inequalities. However,
the representation of the difference inclusion compromises
the scalability of the approach. A control invariant ellipsoid
and an associated safety-preserving linear feedback for the
linearized system are computed in [23]. Control invariance
for the original discrete-time nonlinear system is verified
by solving a sequence of non-convex programs. To reduce
the conservatism, higher-order approximations for both the
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feedback and the sub-level set inducing a control invariant
ellipsoid are used in [24]. By restricting the class of considered
systems to polynomial dynamics, the problem of computing
a control invariant set can be formulated as a sum-of-squares
program. For a fixed degree of the polynomials, a sum-of-
squares program can be converted into a semi-definite pro-
gram. However, the authors only consider nominal systems in
[23], [24]. Ellipsoidal sets have also been applied to compute
invariant tubes in robust model predictive control [25], [26].

Yet another possibility for computing invariant sets are
methods using Hamilton-Jacobi equations, which have also
been applied to reachability analysis [27] and for finding ro-
bust regions of attraction [28]. However, solving the associated
partial differential equations scales exponentially with respect
to the number of state variables [27]. More recently, convex
programming relaxations have been proposed for the compu-
tation of the region of attraction and robust invariant sets for
perturbed polynomial systems subject to state constraints [29]–
[31]. The basic idea is to relax the Hamilton-Jacobi equations
into systems of inequalities that admit the formulation of a
semi-definite program. However, a candidate safety-preserving
controller has to be designed a-priori.

In contrast to the Hamilton-Jacobi framework, relying on the
notion of occupation measures yields an infinite-dimensional
linear program when synthesizing (control) invariant sets of
discrete-time and continuous-time polynomial systems. This
optimization problem admits a finite-dimensional relaxation
that translates into a semi-definite program [32]. In [32], [33]
over-approximations of the maximal control invariant set and
the region of attraction are computed. Under-approximations
of the maximal positive invariant set are considered in [34],
where an extension to bounded disturbances is introduced.
This line of research yields promising results including in-
variant sets for six-dimensional under-actuated systems [32].
However, the complexity of this approach is exponential in
the degree of the approximating polynomial [32] and none of
these approaches considers perturbed and controlled nonlinear
systems.

Another line of research for safety-preserving controller
synthesis of nonlinear systems are control barrier functions
(CBF), which attracted a lot of interest recently [35]–[41].
Research has mostly focused on control-affine systems [35]–
[37] or uncertain control-affine systems [38]–[41]. There exist
several approaches to obtain the CBF, whose sub-level set
represents an invariant set [35]: the CBF has to a) be guessed
based on the application, which makes it difficult to guaran-
tee feasibility of the online control problem, b) synthesized
from trajectories, which can be computationally expensive,
or c) computed by conversion into a set of sum-of-squares
constraints, which suffers from poor scalability [42].

B. Contribution and Outline

In this paper, we propose a novel approach for the com-
putation of RCI sets of perturbed nonlinear sampled-data
systems. Compared to existing approaches, our algorithm
scales favorably with the dimension of the state space. In
particular, we

• use zonotopes as an efficient set representation of RCI
sets of nonlinear systems;

• propose a parameterized representation of reachable sets
that enables to jointly synthesize an RCI set and a
corresponding safety-preserving set-based controller in a
single convex program; and

• derive a successive convexification algorithm, where the
sequence of convex programming solutions is recursively
feasible and the sequence of candidate RCI sets has
monotonically increasing volume.

The remainder of this work is structured as follows: In
Sec. II, we introduce zonotopes and polytopes as efficient
set representations and conditions for zonotope containment.
In addition, we provide our problem statement. Subsequently,
we present our solution concept in Sec. III. In Sec. IV, we
review and modify the reachability analysis algorithm in [43]
as an essential building block of our approach for computing
RCI sets. The convex program for synthesizing an RCI set
and a corresponding safety-preserving controller is proposed
in Sec. V. This section also covers the analysis of the sequence
of convex programming solutions and the properties of our
algorithm including its computational complexity. In Sec. VI,
we demonstrate the efficacy of our approach using a multitude
of examples from the literature. Finally, conclusions are drawn
in Sec. VII.

II. PRELIMINARIES

In this section, we first introduce our notation. Afterwards,
we introduce zonotopes and polytopes as efficient set repre-
sentations and recall two encodings of zonotope containment
problems. This section closes with a statement of our control
problem.

A. Notation
The set of real, nonnegative real, and positive real numbers

is denoted by R, R≥0, and R>0, respectively; the set of natural
numbers with and without zero is denoted by N0 and N,
respectively. We use ej , j ∈ {1, . . . , n}, to denote the standard
unit vectors of the Cartesian coordinate system in Rn. The set
{r, r + 1, . . . , q} ⊂ N0, 0 ≤ r ≤ q, is denoted by N[r:q].
The vector full of ones and zeros of appropriate dimension
is denoted by 1 and 0, respectively. Given a real matrix A,
det (A) refers to the determinant of A. We use A(·,j) to denote
the j−th column of A and A(·,J ), where J ⊂ N, to denote the
corresponding submatrix of A. The absolute value |A| as well
as equalities and inequalities between vectors and matrices are
applied elementwise. For a ∈ Rn, the operator diag (a) returns
a diagonal matrix with the elements of a on the main diagonal.
Given two sets A,B ⊂ Rn, A⊕ B = {a+ b : a ∈ A, b ∈ B}
denotes their Minkowski addition, A×B = {

[
aT , bT

]T
: a ∈

A, b ∈ B} denotes their Cartesian product, and CONV (A,B)
denotes their convex hull. The linear map of A with a matrix
M ∈ Rm×n is defined as MA = {Ma : a ∈ A} and
the operator VOLUME (A) returns the volume of A. Given
an interval C = {c : c ≤ c ≤ c} ⊂ R, the operators
CENTER (C) = c+c/2 and RADIUS (C) = c−c/2 return the center
and radius of C, respectively. In case of an interval matrix
M⊂ Rm×n, both operators are applied elementwise.
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B. Set Representations

Zonotopes are a popular set representation for reachability
analysis and controller synthesis of linear systems [44].

Definition 1 (Zonotope): A zonotope Z ⊂ Rnz in generator
representation is defined by

Z = {z ∈ Rnz : z = c+Gλ, |λ| ≤ 1}

where c ∈ Rnz is the center and G ∈ Rnz×η(Z) is the
generator matrix with η (Z) ∈ N0 denoting the number of
generators of Z . We use Z = 〈c,G〉Z as a more compact
notation.

According to [45], the Minkowski addition Z1⊕Z2 of two
zonotopes Z1 = 〈c1, G1〉Z ⊂ Rnz , Z2 = 〈c2, G2〉Z ⊂ Rnz

and the linear map MZ1 of a zonotope Z1 are

Z1 ⊕Z2 = 〈c1 + c2, [G1, G2]〉Z , (1a)
MZ1 = 〈Mc1,MG1〉Z .¸ (1b)

As proposed in [46, Theorem 3.3], we tightly over-
approximate the set-based multiplication MZ1, where M is
an interval matrix, by

M⊗Z1 =
〈
Cc1,

[
CG1,diag

(
R
∣∣[c1, G1

]∣∣1)]〉Z , (2)

where C = CENTER (M) and R = RADIUS (M). The opera-
tor BOX (Z1) = 〈c1,diag (|G1|1)〉Z returns the smallest axis-
aligned box enclosure of Z1 [47]. Given a vector a ∈ Rn≥0, we
use the same operator to compute BOX (a) = 〈0,diag (a)〉Z .

As a second set representation, we introduce polytopes.
Definition 2 (Polytope): We refer to a bounded set P ⊂

Rnz as a polytope, if it is defined by

P = {z ∈ Rnz : Hz ≤ h},

where H ∈ Rm×nz and h ∈ Rm. We use P = 〈H,h〉P as a
more compact notation.

C. Zonotope Containment

Since the synthesis of an RCI set is usually formulated
using set containment problems [8], [9], [48], we recall two
approaches to verify the containment of a zonotope in a
polytope and in another zonotope. Given a zonotope Z1 =
〈c1, G1〉Z ⊆ Rnz and a polytope P = 〈H,h〉P ⊆ Rnz , P
contains Z1, i.e., Z1 ⊆ P , if and only if [49]

Hc1 + |HG1|1 ≤ h. (3)

Consider the zonotope Z2 = 〈c2, G2diag (α)〉Z ⊆ Rnz

where α ∈ Rη(Z2)
>0 . To check whether Z1 ⊆ Z2 using

(3), the circumbody Z2 has to be converted into half-space
representation [50]. However, the number of half-spaces can
grow exponentially with respect to η (Z2) [51]. Using a slight
modification of the approach from [52, Lemma 2], Z1 ⊆ Z2

if there exist Γ ∈ Rη(Z2)×η(Z1), γ ∈ Rη(Z2) such that

G1 = G2Γ, (4a)
c2 − c1 = G2γ, (4b)
|[Γ, γ]|1 ≤ α. (4c)

Note that in contrast to (3), the conditions in (4) only

constitute a sufficient criterion for Z1 ⊆ Z2; it is shown in [51]
that the zonotope containment problem is co-NP-complete.

D. Problem Statement

We consider perturbed continuous-time nonlinear systems
that evolve according to

ẋ(t) = f(x(t), u(t), w(t)), (5)

where x(t) ∈ Rnx denotes the state of the system, u(t) ∈ Rnu

denotes the control input, and w(t) ∈ Rnw denotes the un-
known disturbance at time t ∈ R≥0. The function f is assumed
to be twice continuously differentiable and the input as well
as disturbance trajectories u(·) and w(·), respectively, are
assumed to be piecewise continuous. We make no assumption
about the statistical nature of the disturbance, only that the
set of admissible disturbances W contains the origin and is
given in generator representation. We use w(·) ∈ W as a
more compact notation for w(t) ∈ W at all times. The same
shorthand is used for state and input trajectories throughout
this paper. Given an initial state x(0) = x0, an input trajectory
u(·), and a disturbance trajectory w(·), the solution of (5) at
time t ∈ R≥0 is denoted by χ(x0, u(·), w(·), t).

In controller synthesis for cyber-physical systems, one usu-
ally encounters the setting of sampled-data systems: a physical
plant that evolves in continuous time is controlled by a digital
controller [5]. The sensors sample at discrete points in time
tk = k∆t with ∆t ∈ R>0, k ∈ N0 and the actuators provide
a piecewise constant control input

u(t) = uctrl(x(tk)), ∀t ∈ [tk, tk+1[ , (6)

where uctrl denotes a given sampled-data control law. Next,
we define the reachable set of the perturbed nonlinear system
in (5) under the sampled-data control law uctrl.

Definition 3 (One-step Reachable Set): For the system in
(5), a set of initial states X0 ⊂ Rnx , a sampled-data con-
troller uctrl, and a set of disturbances W , the reachable set
Re(∆t,X0, uctrl) after one time step is the set of trajectories
starting in X0 evaluated at time ∆t:

Re(∆t,X0, uctrl) = {χ(x(0), uctrl(x(0)), w(·),∆t) :

∃x(0) ∈ X0,∃w(·) ∈ W}.
(7)

The reachable set over the time interval [0,∆t] is defined as
the union of reachable sets Re(t,X0, uctrl), ∀t ∈ [0,∆t], i.e.,

Re([0,∆t],X0, uctrl) =
⋃

t∈[0,∆t]

Re(t,X0, uctrl). (8)

Since the computation of the exact reachable sets in (7)
and (8) is not possible for general nonlinear systems [53],
we compute over-approximations to ensure safety [54], i.e.,
Ro(t,X0, uctrl) ⊇ Re(t,X0, uctrl), ∀t ∈ [0,∆t].

The state and the control input are constrained by

x(·) ∈ X = 〈HX , hX 〉P , (9a)
u(·) ∈ U = 〈HU , hU 〉P . (9b)

In this paper, the control goal is to find an RCI set with
maximum volume around a steady state (xeq, ueq) so that we
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Fig. 1: Overview of our successive convexification approach for the compu-
tation of RCI sets of nonlinear sampled-data systems.

ensure satisfaction of the constraints in (9) despite unknown
disturbances for a possibly large region of operation.

III. SOLUTION CONCEPT

We obtain a possibly large RCI set by solving the following
non-convex program

PRCI :(
ŜRCI, ûRCI

)
= argmax
S,uctrl

VOLUME (S) (10a)

such that

Ro(∆t,S, uctrl) ⊆ S, (10b)
Ro([0,∆t],S, uctrl) ⊆ X , (10c)
∀x0 ∈ S, uctrl (x0) ∈ U , (10d)

where the constraints are based on the definition of RCI sets
of sampled-data systems [55]. The condition in (10b) ensures
invariance of ŜRCI; moreover, satisfaction of the state and
input constraints in between sampling times is enforced by
the constraints in (10c) and (10d), respectively. Thus, robust
satisfaction of (9a) and (9b) for every x(0) ∈ ŜRCI follows
by induction. Since we consider nonlinear systems, PRCI is
non-convex in general and, thus, computationally expensive to
solve. Moreover, a suitable initial guess is required to prevent
convergence to an infeasible stationary point.

Inspired by [56], [57], we propose a successive convexifi-
cation scheme to derive a computationally efficient approach
for the computation of a possibly large RCI set SRCI with the
corresponding controller uRCI. To achieve scalability, SRCI

is represented as a zonotope. Our algorithm consists of the
following three main steps (see Fig. 1):

1 Initial Guess: First, an initial guess S(0) =
〈
xeq, G

(0)
〉
Z

for the RCI set SRCI is computed. As we will discuss
subsequently, we set η (SRCI) = η

(
S(0)

)
; thus, η

(
S(0)

)

is a user-defined parameter that allows to balance flex-
ibility with computational effort. For instance, S(0) can
be obtained using the approach for the computation of
zonotopic safe sets of linear systems [8].

2 Successive Convexification: As already mentioned, we
successively solve a convex approximation of the non-
convex program PRCI. To this end, we adopt the generator
scaling approach introduced in [58]: given an initial guess
S(0), we keep the orientation of the generators fixed and
introduce a vector of scaling factors s ∈ Rη(SRCI)

>0 as
optimization variables. Thus, the generator matrices of the
candidate sets S(i) =

〈
xeq, G

(i)
〉
Z , where the superscript

i ∈ N refers to the solution of the i−th iteration, are
defined recursively

G(i) = G(i−1)diag
(
s(i)
)
,

with the initial step G(1) = G(0)diag
(
s(1)
)
.

We use the zonotope S(i)
ctrl =

〈
ueq, G

(i)
ctrl

〉
Z

, where

G
(i)
ctrl ∈ Rnu×η(SRCI), to represent the candidate safety-

preserving controller u(i)
ctrl, which is associated with the

candidate RCI set S(i). Given a state x ∈ S(i), we obtain
a safety-preserving control input as

u
(i)
ctrl (x) = ueq +G

(i)
ctrlλ(x), |λ(x)| ≤ 1, (11)

where λ(x) parameterizes x in S(i), i.e., x = xeq +
G(i)λ(x).
The key ingredient of our approach are approximations
of the exact reachable sets

R̃(i)(∆t,S(i), u
(i)
ctrl) ≈ Re(∆t,S

(i), u
(i)
ctrl), (12a)

R̃(i)([0,∆t],S(i), u
(i)
ctrl) ≈ Re([0,∆t],S

(i), u
(i)
ctrl),

(12b)

which admit the computation of the candidate set S(i)

and controller u(i)
ctrl by solving a single convex program

(Sec. IV). More precisely, the approximations of the
reachable sets in (12) are designed in a way to arrive at
a convex encoding of the constraints in (10b) and (10c).
Based on (12), we solve the following conic convex
programming approximation of PRCI (Sec. V-A)

P(i)
cvx :(
s(i), u

(i)
ctrl

)
= argmax

s,uctrl

J (i)
cvx (S) (13a)

such that

R̃(i)(∆t,S, uctrl) ⊆ S, (13b)

R̃(i)([0,∆t],S, uctrl) ⊆ X , (13c)
Sctrl ⊆ U , (13d)

S ⊆ BOX
(
S(i−1)

)
⊕ T (i−1), (13e)

S =
〈
xeq, G

(i−1)diag (s)
〉
Z
, (13f)

where the cost function J (i)
cvx (S) denotes a suitable con-

cave approximation of (10a) (see Sec. V-A). Since the
control inputs can only be chosen within Sctrl due to
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(11), the constraint in (13d) automatically ensures the
input constraint in (10d). For simplicity, we refer to S(i)

and u(i)
ctrl as the solution of P(i)

cvx.
In addition to the constraints originating from PRCI, we
introduce the trust-region-like constraint in (13e), which
confines S to a neighborhood of S(i−1), please refer to
[59, Ch. 4] for an introduction to trust-region methods.
Throughout this paper, we assume that T (i−1) is chosen
as an axis-aligned box that is centered at the origin. This
constraint enables the formulation of the approximations
in (16) so that VOLUME

(
S(i)

)
is monotonically growing

(Sec. V-B).
We iteratively solve P(i)

cvx until the sequence of candidate
sets S(i) and controllers u(i)

ctrl converges, where conver-
gence is measured in terms of the relative increase of the
volume of S(i)

VOLUME
(
S(i)

)
− VOLUME

(
S(i−1)

)
VOLUME

(
S(i−1)

) ≤ ε

and ε ∈ R>0 is a user-defined parameter.
3 Verification of Safety: Since we have only used ap-

proximations of the reachable sets in 2 , satisfaction
of the constraints in (10b) and (10c) is not guaran-
teed. To verify safety, we compute over-approximations
Ro(∆t,S(i), u

(i)
ctrl) and Ro([0,∆t],S(i), u

(i)
ctrl) of the

reachable sets starting from the converged set S(i) using
the adaptive algorithm presented in [60]. If the conditions
in (10b) and (10c) are satisfied, our algorithm returns
the RCI set SRCI = S(i) and the corresponding safety-
preserving controller uRCI = u

(i)
ctrl; (10d) is satisfied by

construction, as previously explained.
Otherwise, we adopt the approach for over-approximating
reachable sets of nonlinear-systems [60] to obtain
a feasible solution: we enlarge R̃(i+1)(∆t,S, uctrl)

and R̃(i+1)([0,∆t],S, uctrl) before solving P(i+1)
cvx and

rechecking for satisfaction of (10b) and (10c). This pro-
cedure is repeated until the conditions in (10b) and (10c)
are satisfied.

In the next section, we derive the approximations of the
reachable sets in (12).

IV. PARAMETERIZED REACHABILITY ANALYSIS

In this section, we briefly recall the approach for reacha-
bility analysis of nonlinear systems introduced in [43], [60].
Afterwards, we present an approximation of the reachable sets
in (12) tailored to our successive convexification approach.
These approximations are designed so that our approach avoids
the execution of the reachability analysis algorithm while
solving the optimization problem P(i)

cvx.

A. Reachability Analysis of Nonlinear Systems

To compute reachable sets, we first abstract the system
dynamics in (5) by a first-order Taylor expansion, which yields
the following differential inclusion

ẋ(t) ∈ flin(t)⊕ L(t), (14)

where flin(t) is the linearized flow function of the system
dynamics and the Lagrange remainder L(t) captures the lin-
earization error. The abstraction in (14) admits the application
of the superposition principle of linear systems. Thus, the
computation of the over-approximated reachable sets can be
split into two parts [46, Ch. 3.2-3.3], [47]:

Ro(∆t,X0, uctrl) =Rlin(∆t,X0, uctrl)

⊕Rp (L([0,∆t])) ,
(15a)

Ro([0,∆t],X0, uctrl) =Rlin([0,∆t],X0, uctrl)

⊕Rp (L([0,∆t])) ,
(15b)

where Rlin(∆t,X0, uctrl) and Rlin([0,∆t],X0, uctrl) are
shorthands for the reachable sets of flin(t). Rp (L([0,∆t]))
returns the reachable set due to the set of linearization errors
L([0,∆t]) as presented in [61].

B. Approximative Parameterized Reachability Analysis
Based on (15), we propose parameterized approximations

of the reachable sets to leverage the scalable encoding of
zonotope containment problems in (4). The approximations
of the time-point and time-interval reachable sets are defined
as

R̃(i)(∆t,S, uctrl) =R̃(i)
lin(∆t,S, uctrl)

⊕Rp
(

BOX
(

Ψ(i) (S)
))

,
(16a)

R̃(i)([0,∆t],S, uctrl) =R̃(i)
lin([0,∆t],S)

⊕Rp
(

BOX
(

Ψ(i) (S)
))

,
(16b)

where Ψ(i) (S) ∈ Rnx

≥0 denotes an approximation of the
Lagrange remainder whose properties are discussed in Sec. IV-
B.3. We compute the sets in (16) so that they are linear in the
optimization variables s and uctrl. Due to the definition of the
Minkowski addition of two zonotopes in (1a), the computation
of the sets in (16) can be discussed separately: in Sec. IV-
B.1 and Sec. IV-B.2, we present the parameterized reachable
sets R̃(i)

lin(∆t,S, uctrl) and R̃(i)
lin([0,∆t],S) for points in time

and time intervals, respectively, of the abstraction flin(t).
Afterwards, we discuss the approximation Ψ(i) (S) of the
Lagrange remainder in Sec. IV-B.3.

1) Parameterized Time-Point Reachable Set: Since we aim
to compute an RCI set around the steady state xeq , the
expansion point of the differential inclusion (14) is chosen as
(xeq, ueq,0). Thus, the linear flow function flin(t) simplifies
to

flin(t) = Alin(x(t)− xeq) +Blin(u(t)− ueq) + Elinw(t),

where Alin, Blin, and Elin are matrices of appropriate dimen-
sions. By plugging in S from (13f), uctrl from (11) and using
reachability algorithms for linear systems [47], we obtain

R̃(i)
lin(∆t,S, uctrl) =

[
A,B

]〈
0,

[
G(i−1)diag (s)

Gctrl

]〉
Z

⊕Rp (ElinW) ,

(17)

with

A = eAlin∆t, B =

∫ ∆t

0

eAlinσdσBlin.
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2) Parameterized Time-Interval Reachable Set: Next, we
compute the time-interval reachable set Rlin([0,∆t],X0, uctrl)
in (15b) based on [46] by

Rlin([0,∆t],S, uctrl) =

CONV (S,Rlin(∆t,S, uctrl))⊕F ⊗ Saug,
(18)

where F ⊂ Rnx×(nx+nu) is an interval matrix and

Saug = (S ⊕ {−xeq})× (BOX (U)⊕ {−ueq}) ,

=

〈[
0

cBOX(U) − ueq

]
,

[
G(i−1)diag (s) 0

0 GBOX(U)

]〉
Z
,

= 〈caug, Gaug〉Z .

The addend F⊗Saug accounts for the curvature of trajectories
between points in time. By exploiting the constraints on the
reachable sets in P(i)

cvx, we propose the following simplification
of (18), which is linear in the generator scaling factors s.

Proposition 1: If the invariance constraint in (13b) is satis-
fied, the time-interval reachable set

R̃(i)
lin([0,∆t],S) = S ⊕ F ⊗ Saug, (19)

in (16b) is equivalent to Rlin([0,∆t],S, uctrl) in (18). In
addition, the center and the generator matrix of the zonotope
representing R̃(i)

lin([0,∆t],S) are linear in the generator scaling
factors s.

Proof: Equivalence of (18) and (19): By combining the
invariance constraint in (13b) with (16a), we obtain that
R̃(i)

lin(∆t,S, uctrl) ⊆ S since BOX
(
Ψ(i) (S)

)
is centered at

the origin. Thus, S = CONV
(
S, R̃(i)

lin(∆t,S, uctrl)
)

so that

R̃(i)
lin([0,∆t],S) = Rlin([0,∆t],S, uctrl).
Linearity with respect to s: Since the centers and gener-

ator matrices of S and Saug are linear in s, linearity of
R̃(i)

lin([0,∆t],S) in s follows from positive homogeneity of
|·|, (2), and (1).

3) Parameterized Lagrange Remainder: We apply two steps
to arrive at a parameterized formulation of L(t) that is tailored
to a convex approximation of PRCI: First, we have to circum-
vent the mutual dependency between the time-interval reach-
able set Ro([0,∆t],X0, uctrl) and the set of linearization er-
rors L([0,∆t]), which is evaluated over Ro([0,∆t],X0, uctrl)
[43]. To this end, we use S ≈ Ro([0,∆t],S, uctrl) to ap-
proximate L([0,∆t]). Since S = Ro([0, 0],S, uctrl), we write
L(0) ≈ L([0,∆t]). To make the dependency on S clear, we
use L(S) instead of L(0) in the remainder of this section.

Second, we introduce the approximation Ψ
(i)
j (S) of Lj (S),

which is interchangeable as long as several requirements
ensuring convexity and recursive feasibility of P(i)

cvx are met.
Definition 4: The continuous function Ψ

(i)
j (S) ∈ R≥0, j ∈

N[1:nx], which approximates Lj (S), is suitable for our suc-
cessive convexification approach, if it satisfies the following
requirements:

C1) Recursive feasibility: Ψ
(i+1)
j

(
S(i)

)
≤ Ψ

(i)
j

(
S(i)

)
holds

for all i ∈ N;
C2) Over-approximativeness: ∀S satisfying (13e), it holds

that Lj (S) ≤ Ψ
(i)
j (S);

C3) Convexity: Ψ
(i)
j (S) enables a convex formulation of

x1

x2

R̃(i)(∆t,S(i), u(i)
ctrl)

R̃(i+1)(∆t,S(i), u(i)
ctrl)

S(i)

Fig. 2: If Ψ
(i)
j (S) is chosen according to Def. 4, a feasible solution S(i),

u
(i)
ctrl of P(i)

cvx is also feasible for P(i+1)
cvx : both R̃(i)(∆t,S(i), u(i)

ctrl) and
R̃(i+1)(∆t,S(i), u(i)

ctrl) are contained in S(i), i.e., the invariance constraint
in (13b) is satisfied for P(i)

cvx and P(i+1)
cvx .

the constraints in (13b) and (13c) when using the
encodings in (3) and (4). Moreover, every auxiliary
constraint that is required for a given Ψ

(i)
j (S) to satisfy

the requirements in C1) - C3) is representable using (a
product of) linear, second-order, exponential, power, or
semidefinite cones [62].

We have introduced Ψ
(i)
j (S) so that higher-order derivatives

only have to be evaluated prior to solving P(i)
cvx; otherwise,

P(i)
cvx would usually be non-convex. Let us now discuss the

properties of Ψ
(i)
j (S) in Def. 4:

C1) Recursive feasibility: The effect of choosing Ψ
(i)
j (S)

according to C1) in Def. 4 is illustrated in Fig. 2: Consider
the solution S(i), u(i)

ctrl of P(i)
cvx, which satisfies the invariance

constraint in (13b), i.e., R̃(i)(∆t,S(i), u
(i)
ctrl) ⊆ S(i). Accord-

ing to C1), Ψ(i+1)
(
S(i)

)
≤ Ψ(i)

(
S(i)

)
and, thus, we obtain

R̃(i+1)(∆t,S(i), u
(i)
ctrl) ⊆ R̃(i)(∆t,S(i), u

(i)
ctrl), see Theorem 1

in Sec. V-B. Therefore, the solution of P(i)
cvx also satisfies the

invariance constraint in P(i+1)
cvx : R̃(i+1)(∆t,S(i), u

(i)
ctrl) ⊆ S(i).

C2) Over-approximativeness: Ideally, we would like to en-
sure Ψ

(i)
j (S) = Lj (S) while satisfying all conditions in

Def. 4, which is usually not possible since we consider general
nonlinear systems. Since S ⊆ Ro([0,∆t],S, uctrl), our heuris-
tic Lj (S) under-approximates L([0,∆t]) and, therefore, we
choose Lj (S) as a lower bound of Ψ

(i)
j (S). As a side effect,

this lower bound prevents Ψ
(i)
j (S)� Lj (S) with increasing

i as a consequence of C1).
C3) Convexity: We use Ψ

(i)
j (S) to compute the approx-

imations of the reachable sets in (16). Therefore, Ψ
(i)
j (S)

has to admit a convex formulation of the invariance and state
constraint in (13b) and (13c), respectively.

Subsequently, we propose a set of suitable functions
Ψ

(i)
j (S) , j ∈ N[1:nx], to demonstrate that the conditions in

Def. 4 are not overly restrictive as we assumed the flow
function in (5) to be twice continuously differentiable. To
this end, we parameterize the edgelengths of BOX (S) =
〈xeq,diag (∆x̄)〉Z by the generator scaling factors s:

∆x̄l (s) =

η(SRCI)∑
m=1

∣∣∣eTl G(i−1)
(·,m)

∣∣∣ sm, l ∈ N[1:nx]. (20)

The formulation of Ψ
(i)
j (S) is based on the over-

approximation of the Lagrange remainder proposed in [43,
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Proposition 1]: For z ∈ BOX (S) × BOX (U ×W) =〈
[xTeq, u

T
eq,0]T ,diag (∆z̄)

〉
Z

Lj (S) ≤ Lj (BOX (S)) =
1

2
∆z̄T max

z

∣∣∣H(j) (z)
∣∣∣∆z̄, (21)

where H(j) (·) denotes the Hessian of the j−th component
of the differential equation in (5) and the maximum operator
is applied elementwise. Note that ∆z̄l (s) = ∆x̄l (s) , l ∈
N[1:nx], and the remaining components of ∆z̄ are constant.

Proposition 2 (Parameterized Lagrange Remainder):
Consider the set of functions Ψ

(i)
j (S) , j ∈ N[1:nx]:

Ψ
(i)
j (S) = Ψ

(i)
quad,j (S) + τ0∆Ψ

(i)
j , (22)

with

Ψ
(i)
quad,j (S) =

nz∑
l=1

∣∣∣H(j)
(l,l)

(
ζ(i−1)

)∣∣∣ τl
+

nz∑
l=1

nz∑
m=1,m 6=l

∣∣∣H(j)
(l,m)

(
ζ(i−1)

)∣∣∣∆z̄l (1) ∆z̄m (1) ,

(23a)

∆Ψ
(i)
j = Lj

(
BOX

(
S(i−1)

)
⊕ T (i−1)

)
−Ψ

(i)
quad,j

(
BOX

(
S(i−1)

)
⊕ T (i−1)

)
,

(23b)

where ζ(i−1) denotes the maximizer in (21) for S = S(i−1).
The auxiliary variables τ0, τ1, . . . , τnz are confined to the
cones

τ0 ≥ max

0,

{
∆x̄l (s)−∆x̄l (1)

∆x̄
(T )
l −∆x̄l (1)

}
l∈N[1:nx]

 , (24a)

τl ≥ ∆z̄2
l (s) , l ∈ N[1:nz ], (24b)

where BOX
(
S(i−1)

)
⊕ T (i−1) =

〈
xeq,diag

(
∆x̄(T )

)〉
Z . The

functions Ψ
(i)
j (S) , j ∈ N[1:nx], and the auxiliary constraints

in (24) satisfy the conditions in Def. 4 and, thus, are a suitable
approximation of the Lagrange remainder.

A proof of Proposition 2 is provided in Appendix I. We use
a one-dimensional example, i.e., BOX (S) = S, in Fig. 3 to
present our proposed functions Ψ

(i)
j (S) for two subsequent

iterations of P(i)
cvx, i ∈ {q, q + 1} ⊂ N. Moreover, we use

Fig. 3 to illustrate that our Ψ
(i)
j (S) satisfy C1) and C2) in

Def. 4. Our proposed functions consist of a quadratic term
Ψ

(i)
quad,j (S), which is motivated by the quadratic function

in (21), and a piecewise linear term, which compensates
the gap ∆Ψ

(i)
j between Lj (BOX (S)) and Ψ

(i)
quad,j (S) for

S = S(i−1) ⊕ T (i−1). As shown in Fig. 3, the combination
of the two components ensures that our Ψ

(i)
j (S) are over-

approximative for all S ⊆ S(i−1) ⊕ T (i−1). Satisfaction of
the recursive feasibility condition C1) follows by construction
since our Ψ

(i)
j (S) are exact, i.e, Ψ

(i)
j (S) = Lj (BOX (S)),

for S = S(i−1); please compare Ψ
(q+1)
j (S) with Ψ

(q)
j (S) for

S = S(q).

li
n

ea
ri

za
ti

o
n

er
ro

r

z0

S(q−1)

S(q−1) ⊕ T (q−1)

S(q)

S(q) ⊕ T (q) Lj (BOX (S))

Ψ
(q)
quad,j (S)

Ψ
(q)
j (S)

Ψ
(q+1)
quad,j (S)

Ψ
(q+1)
j (S)

∆Ψ
(q+1)
j

Fig. 3: Illustration of our functions Ψ
(i)
j (S) from Proposition 2 for two

subsequent iterations of P(i)
cvx, i ∈ {q, q + 1} ⊂ N, using a one-dimensional

example: Our Ψ
(i)
j (S) over-approximate Lj (BOX (S)) for every feasible S

and are exact for S = S(i−1).

V. SUCCESSIVE CONVEXIFICATION

In the first part of this section, we discuss the choice of
the cost function in (13a) and characterize the optimization
problem P(i)

cvx. Afterwards, we discuss the properties of the
sequence of solutions obtained by iteratively solving P(i)

cvx.
Finally, we analyze the computational complexity of our
algorithm.

A. Convex Programming Approximation
As previously mentioned, we aim at maximizing the volume

of RCI sets: According to [63], the volume of the candidate
RCI set S can be computed as

VOLUME (S) = 2nx

ncomb∑
j=1

∣∣∣det
(
G

(i−1)
(·,J (j))

)∣∣∣
︸ ︷︷ ︸

=w
(i)
j

∏
l∈J (j)

sl︸ ︷︷ ︸
=m

(i)
j

, (25)

where J (j) denotes one of the ncomb possible nx−membered
subsets of N[1:η(SRCI)]. To cast (25) as a concave cost function,
we use

J (i)
cvx (S) = 2nx

ncomb∑
j=1

w
(i)
j

nx
√
m

(i)
j , (26)

where concavity follows from concavity of the geometric mean
[64, Sec. 3.1]. Note that VOLUME

(
S(i−1)

)
= J

(i)
cvx

(
S(i−1)

)
since J (i)

cvx

(
S(i−1)

)
corresponds to setting s = 1, i.e., m(i)

j =
1, j ∈ N[1:ncomb]. To derive a meaningful sequence of convex
programming approximations P(i)

cvx, we require that the volume
of S(i) is monotonically increasing:

Lemma 1: For i ∈ N, let S(i−1), S(i) denote the solution
of P(i−1)

cvx , P(i)
cvx, respectively. If J (i)

cvx

(
S(i−1)

)
≤ J

(i)
cvx

(
S(i)

)
,

it holds that VOLUME
(
S(i−1)

)
≤ VOLUME

(
S(i)

)
.

Proof: By assumption, J (i)
cvx

(
S(i)

)
− J (i)

cvx

(
S(i−1)

)
≥ 0,

which can be rearranged as∑
j∈J−

w
(i)
j

∣∣∣∣ nx
√
m

(i)
j − 1

∣∣∣∣ ≤ ∑
j∈J+

w
(i)
j

∣∣∣∣ nx
√
m

(i)
j − 1

∣∣∣∣ , (27)

where we assign the index j ∈ N[1:ncomb] to the set J− if
nx
√
m

(i)
j − 1 < 0 and to J+ otherwise.

We use (27) to derive a similar result for VOLUME
(
S(i)

)
−

VOLUME
(
S(i−1)

)
: Due to strict monotonicity of the addends
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with respect to m
(i)
j in both (25) and (26), we obtain the

same index sets J−, J+ when applying the above approach
to VOLUME

(
S(i)

)
− VOLUME

(
S(i−1)

)
. Hence, it remains to

be shown that∑
j∈J−

w
(i)
j

∣∣∣m(i)
j − 1

∣∣∣ ≤ ∑
j∈J+

w
(i)
j

∣∣∣m(i)
j − 1

∣∣∣ ,
which follows from concavity of the geometric mean and a
first-order Taylor expansion of both sides in (27).

Next, we characterize the convex program P(i)
cvx.

Lemma 2: Let Ψ(i) (S) be chosen according to Def. 4. Then
the optimization problem P(i)

cvx can be cast as a conic program,
i.e., P(i)

cvx is a convex approximation of (10).
Proof: First, we recall the standard form of a conic

program:

min
y

cT y (28a)

such that Cy = b, (28b)
y ∈ K (28c)

where K is a product of lower-dimensional convex cones [62].
Cost function: The cost function J

(i)
cvx (S) in (26) is a

conical combination of geometric means and, thus, J (i)
cvx (S) is

concave. Following the approach for the maximization of the
geometric mean of non-negative affine functions in [65, Sec.
2.3 e)], we cast the maximization of (26) as the minimization
of a linear cost function constrained by a product of second-
order and linear cones.

Invariance constraint: By combining (17) and Def. 4
with the definition of the Minkowski addition of zono-
topes, see (1a), we obtain that the zonotope representing
R̃(i)(∆t,S(i), u

(i)
ctrl) in (16a) is linear in the optimization vari-

ables. Hence by using (4), the approximation of the invariance
constraint in (13b) is represented as a linear equality constraint
and a product of linear cones.

State, input, and trust-region-like constraint: By combining
Proposition 1 and Def. 4 with (1a), we obtain that the zonotope
representing R̃(i)([0,∆t],S(i), u

(i)
ctrl) in (16b) is linear in the

optimization variables. The zonotope S(i)
ctrl representing the

controller u
(i)
ctrl is linear in the optimization variables by

definition. Since both X and U are assumed to be represented
using polytopes, see (9), encoding the constraints in (13c) and
(13d) using the criterion in (3) yields a product of linear cones.
The same result applies for the trust-region-like constraint in
(13e) since BOX

(
S(i−1)

)
⊕ T (i−1) can be represented using

a polytope defined by 2nx half-spaces.
Auxiliary constraints: The constraint in (13f), which defines

the center and generator matrix of S, is a linear equality
constraint and, thus, can be rearranged in the form of (28b).
Finally, C3) in Def. 4 ensures that any required auxiliary
constraints for the formulation of Ψ(i) (S) according to Def. 4
can be rewritten as a product of convex cones.

Remark 1: By combining Lemma 2 and Proposition 2,
the approximation of the Lagrange remainder used in our
experiments yields a second-order cone program P(i)

cvx. The
proof follows from the fact that the auxiliary variables in (24)
are confined to a product of linear and second-order cones.

B. Successive Convexification Loop

Before discussing the properties of the sequence of solutions
of P(i)

cvx, we briefly consider the initial trust-region T (0) and the
update mechanism, see Fig. 1. To ensure recursive feasibility
of the sequence of solutions of P(i)

cvx, we require that T (i−1)

contains the origin in its interior. This prevents the trust-
region-like constraint in (13e) from obstructing convergence
to a possibly large RCI set. We introduce a suitable choice
of T (0) and a simple update strategy that is tailored to
Proposition 2 in Appendix II.

The formulation of the approximations of the reachable sets
in (16a) and (16b) realizes two appealing properties of the
sequence of solutions of P(i)

cvx.
Theorem 1: Let P(m)

cvx ,m ∈ N, admit a feasible solution
S(m) and u(m)

ctrl . For every i > m, i ∈ N, it holds that

1) Ŝ(i) = S(i−1), and û(i)
ctrl = u

(i−1)
ctrl are a feasible solution

of P(i)
cvx, and,

2) the volume of the set S(i) is monotonically increasing,
i.e., VOLUME

(
S(i−1)

)
≤ VOLUME

(
S(i)

)
.

Proof:
1) The constraint in (13f) satisfies S = Ŝ(i) for s = 1. From

(17) and (19), it follows that

R̃(m+1)
lin (∆t, Ŝ(m+1), û

(m+1)
ctrl ) = R̃(m)

lin (∆t,S(m), u
(m)
ctrl ),

R̃(m+1)
lin ([0,∆t], Ŝ(m+1)) = R̃(m)

lin ([0,∆t],S(m)).
(29)

Moreover, since Ψ(m+1)
(
Ŝ(m+1)

)
≤ Ψ(m)

(
S(m)

)
, see

Def. 4, C1), we obtain that

Rp
(

BOX
(

Ψ(m+1)
(
Ŝ(m+1)

)))
⊆ Rp

(
BOX

(
Ψ(m)

(
S(m)

)))
.

(30)

By combining (29) and (30), it follows that

R̃(m+1)(∆t, Ŝ(m+1), û
(m+1)
ctrl ) ⊆ Ŝ(m+1),

R̃(m+1)([0,∆t], Ŝ(m+1), û
(m+1)
ctrl ) ⊆ X ,

i.e., the constraints in (13b) and (13c) in P(m+1)
cvx are

satisfied. Since û(m+1)
ctrl = u

(m)
ctrl , satisfaction of the input

constraint in (13d) follows trivially. The trust-region-like
constraint in (13e) is satisfied since {0} ∈ T (m).

2) From feasibility of S(m) for P(m+1)
cvx , it follows that

J
(m+1)
cvx

(
S(m)

)
= J

(m+1)
cvx

(
Ŝ(m+1)

)
is a lower bound

of J
(m+1)
cvx

(
S(m+1)

)
and Lemma 2 ensures growing

cost in (13a) if there exists a minimizer such that
J

(m+1)
cvx

(
S(m)

)
< J

(m+1)
cvx

(
S(m+1)

)
. The claim follows

from Lemma 1.
It follows by induction that the assertions hold for all i > m.

Remark 2: Since ncomb can become prohibitively large
for high-dimensional systems, we propose to maximize the
volume of a zonotope Sred with η (Sred) ≤ η (SRCI) under
the constraint that Sred ⊆ S. Using Lemma 1, it follows that
we obtain a lower bound of VOLUME

(
S(i)

)
whose value is

monotonically increasing. Extending the results in Lemma 2
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and Theorem 1 is straightforward and, therefore, omitted due
to space restrictions.

Remark 3: So far, we have assumed that S(0), T (0) and
Ψ(1) (S) are chosen so that there exists a feasible solution
of P(1)

cvx. In the case that this assumption does not hold, we
reformulate the constraints in (13b), (13c) as soft constraints,
i.e., we add a slack variable to the constraints in (4c)

|[Γ, γ]|1 ≤ s+ κ1,

and (3)
Hc1 + |HG1|1 ≤ h+ κ2,

where κ1, κ2 are non-negative vectors of appropriate dimen-
sion. To recover a solution of the original convex program
P(i)

cvx if one exists, an exact penalty term is added to the cost
function in (13a) [66]. Since the modified constraints are linear
inequality constraints and the additional cost term due to the
exact penalty is linear, the results in Lemma 2 and Theorem 1
are not affected by this modification.

C. Computational Complexity
Since the computation of the initial guess S(0) is not a part

of the proposed algorithm, we only consider the successive
convexification loop and the verification of the converged
solution.

The computation of the parameterized approximations of
the reachable sets in (12) is based on the reachability analysis
algorithm in [43], which has complexity O

(
(nx + nu)3

)
[67]. However, we cannot provide a general bound on the
complexity of this step since the computation of Ψ(i) (S) is
an interchangeable module. As we have shown in Lemma 2,
P(i)

cvx is a conic program, which subsumes optimization over
the (nonsymmetric) exponential and power cone. Recently, it
has been shown that there exist algorithms for nonsymmetric
conic programming, which compute solutions in polynomial
time [68], [69]. Since updating the trust-region T (i) after
solving P(i)

cvx is optional, we do not consider this step. Let
Oconic denote the complexity of solving P(i)

cvx, which can be
polynomial in nx, nu, depending on the choice of Ψ(i) (S).
The overall complexity of the successive convexification step
then follows as O

(
Ncvx

(
(nx + nu)3 +Oconic

))
, where Ncvx

denotes the number of iterations of P(i)
cvx. Please note that we

cannot provide an upper bound on Ncvx.
The computational effort for verifying the converged can-

didate RCI set is dominated by solving P(i)
cvx and the com-

putation of reachable sets which has polynomial complexity.
Since we cannot guarantee that the verification eventually
succeeds, we limit the number of iterations by Nver. The
overall complexity of our algorithm therefore follows as
O
(
(Ncvx +Nver)

(
Oconic + (nx + nu)3

))
.

VI. NUMERICAL EXPERIMENTS

In this section, we apply our robust control approach to a
set of control systems proposed in the literature. We start by
demonstrating the broad applicability and scalability of our
approach in Sec. VI-A. In the subsections thereafter, we take
a closer look at some selected results: First, we compare our

algorithm with two approaches from the literature in Sec. VI-
B. Afterwards, we consider a cartpole to demonstrate that
our approach successfully handles underactuated systems in
Sec. VI-C.

Our implementation and the benchmark systems alongside
all parameters will be made publicly available with the next
release of the AROC1 toolbox [71]. For reachability analysis,
we use our open-source toolbox CORA [72]. The convex
programs P(i)

cvx are modeled using CVX, a package for speci-
fying and solving convex programs [73], [74] and solved using
MOSEK [75]. All computations were conducted on a laptop
equipped with an Intel Core i7-11370H and 64 GB of memory.

For the computation of the initial guess S(0), we use a
modified version of the algorithm for the computation of safe
terminal sets of linear systems proposed in [8]. Throughout
this section, the number of generators of the zonotope repre-
senting SRCI is chosen as η (SRCI) = 5nx. For the examples
in Sec. VI-B and Sec. VI-C, the origin is chosen as the
equilibrium for the computation of SRCI.

A. Computation Times

To demonstrate the broad applicability and scalability of
our approach, we applied it to a variety of control systems
where the dimension of the state space nx ranges from two to
20. In case of the examples with nx = 2, we maximized the
concave approximation in (26) of the volume of S; in case
of the examples with nx ≥ 4, we maximized the volume of
an inscribed zonotope Sred ⊆ S whose order was chosen so
that the number of addends in (26) does not exceed 1500, see
Remark 2.

The results are summarized in Table I, where the fifth
and sixth columns contain the number of convex program-
ming iterations, i.e., the number of P(i)

cvx that are solved, as
well as the average solver time per P(i)

cvx, respectively. The
seventh column shows the number of convex programming
iterations required for verifying safety and the penultimate
column indicates the success of the verification procedure. The
computation time for the execution of our algorithm is shown
in the last column. Note that the last column does not include
the time for converting P(i)

cvx into standard form since this step
is not a part of our approach.

There are two main conclusions that can be drawn from
the results in Table I: first, we successfully applied our
approach to a variety of nonlinear control systems ranging
from applications such as chemical reactors to under-actuated
systems, see Sec. VI-C, despite only relying on linearization.
In case of the pendubot example, the sequence of solutions of
P(i)

cvx converges to a feasible solution that cannot be verified
as safe. Second, the total computation times indicate that the
approach scales favorably with the dimension of the state
space.

To obtain a better impression of the scalability of our
approach, we consider a chain of nmass nonlinear mass-spring-
damper systems, where we increased nmass from one (nx = 2)
to ten (nx = 20). The dynamics of the j−th mass are governed

1https://tumcps.github.io/AROC/
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TABLE I: Computational Effort

Example
nx nu nw P(i)

cvx Verification
total time

# iter. ∅ solver time # iter. feas.

Artifical System [22] (Sec. VI-B.1) 2 2 2 9 0.18 s 3 3 7.5 s
Jet Engine [16] (Sec. VI-B.2) 2 1 1 14 0.14 s 0 3 3.2 s
Cart [71] 2 1 2 15 0.13 s 0 3 3.9 s
Mass-Spring-Damper System [25] 2 1 2 16 0.15 s 0 3 4.5 s
Cartpole (dynamics of the pendulum) [76] 2 1 1 18 0.15 s 0 3 5.5 s
Cartpole [77] (Sec. VI-C) 4 1 1 16 0.93 s 0 3 63.2 s
Pendubot [78] 4 1 1 11 1.29 s max. 7 -
Chemical Reactor [79], [80] 4 2 2 22 1.32 s 0 3 71.1 s
Robot Arm [71] 4 2 4 13 0.81 s 1 3 82.5 s
Longitudinal Quadrotor [5] 6 2 2 10 0.95 s 0 3 46.7 s
Multi-Tank 8 8 3 10 4.73 s 0 3 96.5 s
Coupled Van-der-Pol - based on [81] [82, Sec. 5.2] 10 5 5 14 4.04 s 0 3 92.1 s
Chain of Mass-Spring-Damper-Systems (nmass = 10, Sec. VI-A) 20 10 20 15 7.36 s 0 3 124.2 s

m1 m2 m3Fk,1

Fd,1

Fk,2

Fd,2

Fk,3

Fd,3

x1 x2 x3

Fig. 4: Chain of Mass-Spring-Damper Systems (nmass = 3).

by the set of differential equations (based on the cart system
from [71])[

ẋj,1
ẋj,2

]
=

[
xj,2 + wj,1

−Fk,j(x)− Fd,j(x) + uj + wj,2

]
,

Fk,j(x) = 0.8
(
(xj,1 − xj−1,1)3 − (xj+1,1 − xj,1)3

)
,

Fd,j(x) = 1/3
(
(xj,2 − xj−1,2)2 − (xj+1,2 − xj,2)2

)
,

where xj,1, xj,2 denote the deviation from the equilib-
rium position and velocity, respectively. The resulting sys-
tem for nmass = 3 is depicted in 4. The constraint sets
are chosen as Xj = [−6 m, 6 m] × [−6m/s, 6m/s], Uj =
[−14m/s2, 14m/s2], and the disturbance is confined to the
set Wj = [−0.1m/s, 0.1m/s]× [−0.1m/s2, 0.1m/s2]. Measure-
ments are taken with a sampling time of ∆t = 0.1 s.

The results for nmass ∈ N[1:10] are summarized in Table II.
As already indicated by the results in Table I, the computa-
tional effort of our approach only scales moderately with the
dimension of state space. This result can be observed best by
comparing the average solver time for P(i)

cvx in the third column
of Table II. Note that for all nmass ∈ N[1:10], the converged
solution of the sequence of P(i)

cvx was verified as safe without
enlarging the approximations of the reachable sets in (16). The
projections of SRCI for nmass = 10 onto the x1,1−x1,2−plane
and onto the x10,1 − x10,2−plane are shown in Fig. 5a and
Fig. 5b respectively.

B. Comparison with Approaches From the Literature

In this section, we compare our approach to the results in
[16], [22]. In [22], an ellipsoidal RCI set with a linear feedback
controller is computed for the linearized system, which is
computed using the approach in [21]. The approach in [16]
computes a polytopic RCI set and a corresponding polynomial

TABLE II: Scalability: Chain of nmass Mass-Spring-Damper Systems

nmass

P(i)
cvx Verification

total time
# iter. ∅ solver time # iter. feas.

1 (nx = 2) 21 0.15 s 0 3 8.0 s
2 (nx = 4) 20 0.62 s 0 3 43.4 s
3 (nx = 6) 12 0.98 s 0 3 34.3 s
4 (nx = 8) 6 1.83 s 0 3 48.3 s
5 (nx = 10) 13 2.55 s 0 3 61.44 s
6 (nx = 12) 12 2.37 s 0 3 43.4 s
7 (nx = 14) 13 4.0 s 0 3 73.7 s
8 (nx = 16) 11 6.1 s 0 3 98.6 s
9 (nx = 18) 16 11.28 s 0 3 229.4 s
10 (nx = 20) 15 7.36 s 0 3 124.2 s

(a) SRCI of m1 (b) SRCI of m10

Fig. 5: Projections of the RCI set SRCI for a chain of nmass = 10
mass-spring-damper systems. Shown are: over-approximation of time-point
Ro(∆t,SRCI, uRCI) (green) and time-interval Ro([0,∆t],SRCI, uRCI)

(gray) reachable set, corresponding approximations of the converged P(i)
cvx iter-

ation R̃(i)(∆t,SRCI, uRCI) (blue) and R̃(i)([0,∆t],SRCI, uRCI) (black),
respectively, SRCI (red).

safety-preserving controller for polynomial systems.
1) Robust Control Invariant Ellipsoid: The dynamics of the

artificial, open-loop unstable system from [22] are governed
by the set of differential equations[

ẋ1

ẋ2

]
=

[
−x1 + 2x2 + 0.5u

−3x1 + 4x2 − 0.25x3
2 − 2u+ w

]
.

The constraint sets are chosen as X = [−6, 6] × [−6, 6],
U = [−2, 2], and the disturbance is confined to the set
W = [−0.1, 0.1]. Measurements are taken with a sampling
time of ∆t = 0.1 time units.
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(a) Artificial System (b) Jet Engine, taken from [16]

Fig. 6: Comparison of our approach for the computation of RCI sets with the
approaches from [22] (a) and [16] (b). The solution SRCI of our approach
is depicted in red, the corresponding results from [16], [22] are depicted in
blue.

The approach in [21] abstracts the nonlinear system to
a linear differential inclusion. The RCI ellipsoid and the
corresponding linear feedback are obtained by maximizing the
volume of the ellipsoid subject to LMI conditions. However,
the required linear differential inclusion has to be represented
in vertex representation which compromises the scalability of
their approach.

For comparison, we depict SRCI and the RCI ellipsoid for
the artificial system in Fig. 6a. Due to the increased flexibility
when using zonotopes to represent SRCI, the volume of the
RCI set is increased by 14% compared to [22].

2) Robust Control Invariant Polytope: In the second compar-
ison, we consider the Moore-Greitzer model of a jet engine
whose dynamics are governed by the set of differential equa-
tions [83] [

ẋ1

ẋ2

]
=

[
−x2 − 3

2x
2
1 − 1

2x
3
1 + w

u

]
.

The constraint sets are chosen as X = [−0.2, 2]× [−0.2, 0.2],
U = [−0.35, 0.35], and the disturbance is confined to the
set W = [−0.025, 0.025]. Measurements are taken with a
sampling time of ∆t = 0.1 time units.

The approach in [16] tackles the task of computing an RCI
set and the corresponding controller by solving a sequence of
linear programs iterating between synthesizing a polynomial
controller and adapting the RCI set. However, the linear pro-
gramming relaxation of their polynomial optimization problem
is obtained by lifting the problem to a higher-dimensional
space and vertex enumeration in the lifted space. Furthermore,
it is not clear, whether and how the lifting procedure can be
automated.

The authors of [16] provide the results for a polytopic RCI
set with 24 facets and a corresponding linear controller, which
is shown in Fig. 6b alongside SRCI. They obtain a larger RCI
set since their approach can exploit beneficial higher-order
effects in the dynamics. In addition, polytopes provide more
flexibility in the design of the RCI set compared to zonotopes.

C. Cartpole Example

To demonstrate the ability of our approach to deal with
underactuated systems, a cartpole is considered next. The

(a) Position - velocity (b) Deflection - angular velocity

Fig. 7: Projections of the RCI set SRCI for the cartpole system. Shown
are: over-approximation of time-point Ro(∆t,SRCI, uRCI) (green) and
time-interval Ro([0,∆t],SRCI, uRCI) (gray) reachable set, corresponding
approximations of the converged P(i)

cvx iteration R̃(i)(∆t,SRCI, uRCI) (blue)
and R̃(i)([0,∆t],SRCI, uRCI) (black), respectively, SRCI (red).

dynamics are governed by the set of differential equations
ẋ1

ẋ2

ẋ3

ẋ4

 =


x3

x4

f3(x2, x4)
f4(x2, x4)

+


0
0
1

m1+m2−m2 cos2(x2)
cos(x2)

m1l+m2l−m2l cos2(x2)

 (u+ w),

f3(x2, x4) =
m2g cos(x2) sin(x2)−m2lx

2
4 sin(x2)

m1 +m2 −m2 cos2(x2)
,

f4(x2, x4) =
(m1 +m2)g sin(x2)−m2lx

2
4 sin(x2) cos(x2)

m1l +m2l −m2l cos2(x2)
,

where the states represent the distance x1 of the cart from the
origin, the deflection x2 of the pole from the upright position,
the velocity x3 of the cart, and the angular velocity x4 of the
pole, respectively. The input u is the horizontal force acting
on the cart and w denotes an unknown exogenous force, that
is acting on the cart in the same direction. The parameters
of the model m1 = 2.5 kg, m2 = 1.0 kg, l = 0.5 m, and
g = 9.81 m

s2 are taken from [77]. The constraint sets are chosen
as X = [−1 m, 1 m] × [− 3

4π rad, 3
4π rad] × [−2 m

s , 2
m
s ] ×

[− 3
2π

rad
s ,

3
2π

rad
s ], U = [−10 N, 10 N], and the disturbance

is confined to the set W = [−0.5 N, 0.5 N]. Measurements
are taken with a sampling time of ∆t = 0.1 s. To improve
the control performance, we subdivide ∆t into time steps of
length ∆tc = 0.025 s for sampling the control input as in [84].
The corresponding time-point reachable set of the abstraction
flin(t) is computed as in [49, Sec. IV.A]; the other parts of
our approach remain unaffected.

Note that the initial guess does not admit a feasible solution
of P(1)

cvx. We resolved this issue as described in Remark 3. The
projections of SRCI onto the x1 − x3−plane and onto the
x2− x4−plane are shown in Fig. 7a and Fig. 7b respectively.

VII. CONCLUSIONS

We have presented a scalable algorithm for the computation
of RCI sets of nonlinear sampled-data systems. To this end,
we designed a successive convexification procedure, which
computes a sequence of candidate RCI sets with monotonically
increasing volume. The core of our approach is a tailored
approximation of reachable sets that enables to jointly syn-
thesize an RCI set and a corresponding safety-preserving
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controller in a single convex program. While approaches in the
literature have only been applied to low-dimensional systems,
we show results for a broad range of control systems with up
to 20 dimensions. Moreover, the computational effort of our
approach only scales moderately with the dimension of state
space due to the combination of scalable reachability analysis
and convex optimization.

APPENDIX I
PROOF OF PROPOSITION 2

a) C2): We show that Lj (BOX (S)) ≤ Ψ
(i)
j (S) for S ⊆

BOX
(
S(i−1)

)
⊕ T (i−1), which is sufficient for C2) to hold,

see (21). We split the proof into three parts and set τl =
∆z̄2

l (s) , l ∈ N[1:nz ], see (24b). In addition, we use ζ to
denote the maximizer in (21) and ζ(T ) to denote the maximizer
in (21) for S = S(i−1) ⊕ T (i−1).

Case S ⊆ BOX
(
S(i−1)

)
: From (24a), we obtain τ0 = 0.

Since S ⊆ BOX
(
S(i)

)
⊆ BOX

(
S(i−1)

)
, it holds that∣∣H(j) (ζ)

∣∣ ≤ ∣∣H(j)
(
ζ(i−1)

)∣∣ and, therefore, Lj (BOX (S)) ≤
Ψ

(i)
quad,j (S) = Ψ

(i)
j (S).

Case BOX (S) ⊇ BOX
(
S(i−1)

)
: First, note that

for BOX (S) = BOX
(
S(i−1)

)
, i.e., τ0 = 0, and

BOX (S) = BOX
(
S(i−1)

)
⊕ T (i−1), i.e., τ0 = 1, it

holds that Lj (BOX (S)) = Ψ
(i)
j (S), see (22), (23). Due

to the formulation of (22), we essentially consider the set
BOX

(
S(i−1)

)
⊕ τ0T (i−1) ⊇ BOX (S) for the computation of

Ψ
(i)
j (S).
We consider each addend of Lj (BOX (S)) separately and,

thus, have to show that∣∣∣H(j)
(l,l) (ζ)

∣∣∣∆z̄2
l (s) ≤

∣∣∣H(j)
(l,l)

(
ζ(i−1)

)∣∣∣∆z̄2
l (s)

+ τ0

(∣∣∣H(j)
(l,l)

(
ζ(T )

)∣∣∣− ∣∣∣H(j)
(l,l)

(
ζ(i−1)

)∣∣∣) (∆z̄
(T )
l

)2

,

⇐⇒
(∣∣∣H(j)

(l,l) (ζ)
∣∣∣− ∣∣∣H(j)

(l,l)

(
ζ(i−1)

)∣∣∣)∆z̄2
l (s)

≤ τ0
( ∣∣∣H(j)

(l,l)

(
ζ(T )

)∣∣∣− ∣∣∣H(j)
(l,l)

(
ζ(i−1)

)∣∣∣ )(∆z̄
(T )
l

)2

,

(31)

holds in case of the main diagonal elements of H(j) (·) and∣∣∣H(j)
(l,m) (ζ)

∣∣∣∆z̄l (s) ∆z̄m (s)

≤ τ0
(∣∣∣H(j)

(l,m)

(
ζ(T )

)∣∣∣∆z̄(T )
l ∆z̄(T )

m

)
+ (1− τ0)

∣∣∣H(j)
(l,m)

(
ζ(i−1)

)∣∣∣∆z̄l (1) ∆z̄m (1) ,

(32)

holds in case of the off-diagonal elements of H(j) (·).
For τ0 = 0 and τ0 = 1, it holds that both sides in (31) and

(32) are equivalent. By resolving (24a) with respect to ∆z̄l (s),
the left-hand side in both (31) and (32) can be re-written as a
quadratic function in τ0 with non-negative coefficients, which
is convex. The claim follows since the right-hand side in both
(31) and (32) is affine in τ0.

Case BOX (S) + BOX
(
S(i−1)

)
∧ S * BOX

(
S(i−1)

)
: This

case follows by combining the proof of the previous two cases.

b) C1): As we have already shown, it holds that
Lj
(

BOX
(
S(i)

))
= Ψ

(i+1)
j

(
S(i)

)
and Lj (BOX (S)) ≤

Ψ
(i)
j (S), see the proof of C2). Hence, the proposed functions

Ψ
(i)
j (S) , j ∈ N[1:nx], satisfy C1).

c) C3): Since the functions Ψ
(i)
j (S) , j ∈ N[1:nx], are

linear in τ0, τ1, . . . , τnz
, see (22) and (23), it follows that

the center and generator matrix of Rp
(

BOX
(
Ψ(i) (S)

))
are

constant and linear in τ0, τ1, . . . , τnz
, respectively, see the

definition of BOX (·) and [61]. Thus, C3) is satisfied.
Using ∆z̄l (s), see (20), the constraint in (24a) is equivalent

to a set of nx+1 linear inequalities, and, hence, representable
using a product of linear cones. From (20), it follows that the
inequality constraints in (24b) can be rewritten as a second-
order cone constraint as described in [62, Sec. 3.2.3]. Hence,
the constraints due to the auxiliary variables in Proposition 2
comply with the requirements in C3), which concludes the
proof.

APPENDIX II
TRUST REGION UPDATE

We introduce a suitable choice of T (0) and a simple update
strategy that is tailored to the approximation Ψ(i) (S) of the
Lagrange remainder proposed in Proposition 2. T (0) is chosen
as a box with non-empty interior that is centered at the origin.
We compute the updated trust-region T (i), i ∈ N, according
to the following rules:
• S(i) ⊆ BOX

(
S(i−1)

)
: It follows that BOX

(
S(i)

)
⊆

BOX
(
S(i−1)

)
, i.e., ∆z̄l (1) ≥ ∆z̄l (s), l ∈ N[1:nx], and,

thus, we obtain that τ0 = 0 from (24a). Hence, the trust-
region does not affect the approximation error and we set
T (i−1) = T (i);

• S(i) intersects with the boundary of BOX
(
S(i−1)

)
⊕

T (i−1): There exists at least one l ∈ N[1:nx] so that
the trust-region prevents the optimizer from enlarging
S(i) even further in the direction of el. To accelerate
convergence, we uniformly enlarge the trust-region by a
factor σ > 1.

• otherwise: We consider S(i−1)
T (τ0) = S(i−1)⊕τ0T (i−1),

for which we compute Ψ
(i)
j (s) in Proposition 2, and,

inspired by [57], we evaluate the following relative error
criterion

%j =
Ψ

(i)
j

(
S(i−1)
T (τ0)

)
− Lj

(
S(i−1)
T (τ0)

)
Lj
(
S(i)

) .

If the maximum relative error maxj∈N[1:nx]
%j exceeds the

strictly positive upper bound %, we uniformly contract the
trust-region by a factor 1/σ where σ > 1; otherwise we
set T (i−1) = T (i).

Based on the assumption that the flow function of the dynam-
ical system in (5) is twice continuously differentiable, it can
be verified that the above procedure ensures that the origin
lies within the interior of T (i), i ∈ N0.
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