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Abstract
From the purification of exhaust gases to the large scale industrial production of fertilizers,
heterogeneous catalysis is of fundamental importance in various branches of our modern so-
ciety. A central goal in catalysis research is to understand and control the influence of various
experimental parameters on the performance of the reaction. The key to reaching this goal is
a systematic way of experimentation both in terms of material synthesis and catalytic perfor-
mance testing. Statistical design of experiments (DoE) is a mathematical toolbox, which can
be used to maximize the information output of a given experimental budget [2]. While tra-
ditional DoE is widely applied in industry, academic catalysis research often falls behind. In
this thesis, a set of statistical tools especially tailored to tackle problems in chemical kinetics
and catalysis is presented by bringing together classical DoE theory with modern statistical
learning and optimization methods.

Having a closer look at the catalyst surface, the interplay of various adsorption, diffusion
and reaction processes taking place during catalytic reactions can result in a complex ki-
netic phase diagram [3]. Characteristic for such phase diagrams are transitions with abrupt
changes in apparent kinetics. This challenges traditional DoE approaches with their un-
derlying smoothness assumption. The established approaches for modeling the kinetics of
catalytic reactions [4, 5] that can cope with such phase transitions suffer from the fact that
a detailed understanding of the mechanism is required. Further, these models often also
rely on a large number of parameters that are experimentally hardly accessible. Here, mak-
ing uninformed assumptions can introduce systematic deficiencies into the resulting model.
For the investigation of novel catalytic reactions, for which detailed knowledge of the un-
derlying mechanism is not available, a novel data driven regime identification algorithm is
proposed.

In order to reduce the bias through a priori model assumptions, an algorithm which sys-
tematically analyzes the influence of process parameters on the reaction rate to identify ef-
fective rate laws without prior knowledge was developed [1]. The proposed method deter-
mines relevant model terms from a polynomial ansatz employing well established statistical
methods [6]. For the optimization of the model parameters special emphasis is put on the
robustness of the results by taking not only the quality of the fit but also the distribution of
errors [7] into account in a multi-objective optimization [8]. The flexibility of this approach
is demonstrated based on synthetic kinetic data sets from microkinetic models. It could be
shown that the kinetics of both the classical HBr reaction and a prototypical catalytic cycle
are automatically reproduced based on very limited data sets.

While such rate laws give a reasonable representation of the reaction within one kinetic
regime, the low order polynomial approximation will break down approaching phase tran-
sitions. Thus, a kinetic regime can also be understood as the range of validity for such an
effective regime model. By using local experimental designs in combination with automati-
cally identified kinetic rate laws a local kinetic fingerprint can be created. This way, regions
of distinct kinetic behavior are mapped out based on empirically observed data. Combining
this local information with unsupervised learning and support vector classification mod-
els [9], a global multi-regime kinetic model free of any prior assumptions on the reaction
mechanism can be obtained.

Both classical experimental designs as well as space filling sampling techniques [10] are
designed for smooth functions of the input parameters. Therefore, the discontinuous behav-
ior at the phase transition requires an alternative sampling approach in order to maximize
the efficiency in terms of experimental data. Going beyond established DoE approaches, a
modified adaptive experimental design approach [11] is introduced, especially tailored to-
wards modeling experimental regions containing phase transitions. By incorporating the
presence of such discontinuities into the model assumption, the position of the real phase
transition can iteratively be approached. The potential of this approach is illustrated in-
vestigating artificial data sets from a microkinetic model for CO oxidation over RuO2 [12].
Further, the formulation of this adaptive procedure, which strives for algorithmic equipol-
lence between sets of interrelated continuous and categorical factors opens a wide field of
applications going beyond the investigation of chemical kinetics.
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Kurzzusammenfassung
Ob bei der Verringerung der Schadstoffemissionen im Straßenverkehr oder bei der großin-
dustriellen Produktion von Düngemitteln, die heterogene Katalyse ist von zentraler Bedeu-
tung für verschiedenste Abläufe in unserer modernen Gesellschaft. Ein wichtiges Ziel in
der Katalyseforschung ist es, den Einfluss verschiedener Prozessparameter, wie beispiels-
weise Druck oder Temperatur, auf den Ablauf der Reaktion zu verstehen und kontrollieren
zu können. Voraussetzung dafür ist eine systematische Herangehensweise sowohl in der
Synthese der Katalysatormaterialien, als auch bei der Durchführung katalytischer Tests.
Ein nützliches Werkzeug in diesem Zusammenhang ist die statistische Versuchsplanung
(„Design of Experiments“, DoE) [2]. Dabei ist das Ziel, den Informationsgewinn eines be-
grenzten experimentellen Budgets zu maximieren. In der industriellen Forschung und En-
twicklung sind grundlegende Ideen aus der statistischen Versuchsplanung vor allem im
Kontext der Prozessoptimierung bereits etabliert. In der akademischen Katalyseforschung
wird eine solche, systematische Herangehensweise jedoch in den meisten Fällen vernach-
lässigt. Diese Arbeit beschreibt eine Reihe von statistischen Methoden, welche speziell
auf die Anforderungen der Katalyseforschung und kinetischen Modellierung zugeschnit-
ten sind. Dabei werden klassische Ideen der statistischen Versuchsplanung mit modernen
Optimierungsmethoden und Algorithmen kombiniert.

In katalytischen Prozessen resultieren die Wechselwirkungen von verschiedenen Ele-
mentarprozessen wie Adsorption, Diffusion oder Reaktion an der aktiven Grenzfläche oft-
mals in einem komplexen kinetischen Phasendiagramm [3]. Charakteristisch dafür sind vor
allem Phasenübergänge welche mit einem abrupten Wechsel des effektiven kinetischen Ver-
haltens einhergehen. Ein derartig diskontinuierliches Verhalten stellt ein Problem für klas-
sische DoE Ansätze dar, da diese ein glattes Verhalten der Messfunktion voraussetzen.

Komplexe mikrokinetische Modelle sind üblicherweise in der Lage das Verhalten von
katalytischen Reaktionen zu beschreiben [4, 5]. Um ein derartiges Modell aufstellen zu
können, ist jedoch ein detailliertes Verständnis des Reaktionsmechanismus zwingend not-
wendig. Die Annahme eines fehlerhaften Mechanismus kann zu systematische Fehlern des
resultierenden Modells führen. Aus diesem Grund wird an dieser Stelle ein datenbasierter
Algorithmus vorgestellt, welcher speziell für die Analyse neuartiger Reaktionssysteme en-
twickelt wurde, für welche der zugrundeliegende Mechanismus nicht bekannt ist.

Um systematische Fehler durch a priori Annahmen der Modellfunktion zu minimieren,
wurde ein Algorithmus entwickelt, welcher systematisch den Einfluss verschiedener Prozess-
parameter auf die Reaktionsrate untersucht, ohne dabei eine feste funktionelle Form des
Modells vorauszusetzen [1]. Dabei werden etablierte statistische Methoden verwendet, um
relevante Modellterme aus einem polynomialen Ansatz zu wählen [6]. Die Modellparameter
werden im Rahmen einer Pareto-Optimierung [8] bestimmt, wobei neben dem Modellfehler
auch die Verteilung der Residuen [7] in Betracht gezogen wird. Anhand synthetischer Daten-
sätze aus mikrokinetischen Modellen für die klassische HBr-Reaktion sowie einen prototyp-
ischen katalytischen Zyklus konnte gezeigt werden, dass mit Hilfe eines solchen Algorith-
mus literaturbekannte Ratengleichungen automatisch reproduziert werden.

Derartige, effektive Ratengesetze sind in der Lage die Kinetik von Reaktionen inner-
halb eines Regimes zu beschreiben. Diese polynomiale Näherung der kinetischen Gleichun-
gen bricht jedoch im Bereiche von Phasenübergängen zusammen. Ein kinetisches Regime
kann demnach auch als Bereich interpretiert werden, in welchem ein derartiges Ratenge-
setz eine valide Beschreibung der effektiven Kinetik darstellt. Die Analyse der lokalen Ab-
hängigkeiten der effektiven Kinetik basierend auf lokalen experimentellen Designs kann
als Indikator dienen, in welchen Bereichen des experimentellen Bereichs ähnliche Effek-
tivkinetik vorzufinden ist. Mit Hilfe einer Kombination aus dieser lokalen Information
mit Methoden des Unsupervised Learning sowie Support Vector basierten Klassifizierungs-
modellen [9] kann ein globales Modell der regimeübergreifenden Kinetik ohne jegliche An-
nahme bezüglich des Reaktionsmechanismus konstruiert werden.

Da sowohl klassische statistische Versuchspläne wie auch raumfüllende Sampling Meth-
oden [10] darauf ausgelegt sind auf glatten Funktionen zu arbeiten, wird für das diskon-
tinuierliche Verhalten nahe der Phasengrenzen ein alternativer Sampling Ansatz benötigt,
um die Effizienz des Vorgehens bezügliche experimenteller Daten zu maximieren. Zu diesem
Zweck wurde eine modifizierte Variante eines sequentiellen, adaptiven Versuchsplans [11]
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entwickelt, welche speziell daran angepasst ist, Diskontinuitäten innerhalb des Design Raumes
zu berücksichtigen. Indem das Vorliegen derartiger Phasenübergänge direkt in die Model-
lannahmen, welche dem adaptiven Algorithmus zugrunde liegen, eingearbeitet wurden,
wird die Position der realen Phasengrenze iterativ approximiert. Erste Resultate dieser
Methode werden an Hand von mikrokinetisch simulierten Datensätzen für die CO Oxida-
tion über RuO2 [12] präsentiert. Der Formalismus dieses adaptiven Design Algorithmus,
welcher versucht korrelierte kategorische und kontinuierliche experimentelle Faktoren in
einem einheitlichen Rahmen zu behandeln, öffnet das Tor zu einem weiten Feld möglicher
Anwendung auch jenseits der Untersuchung chemischer Reaktionskinetik.
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Chapter 1

Introduction

"Das wird diesmal total angewandt." - Christoph S.

Understanding how a reaction system evolves over time is a fundamental question in all
aspects of chemical research. One of the pioneers in this field was J. H. van’t Hoff, who in
1896 laid the groundwork for what is nowadays known as chemical kinetics [13]. In modern
research, the study of chemical kinetics is of great importance in various fields of applica-
tions. On the one hand the kinetics of proteins and enzymatic reactions in biological systems
[14–17] can be crucial in understanding how novel drugs may act on a microscopic scale. On
the other hand, knowledge about the kinetics of catalytic reactions [18–20] is relevant in the
context of chemical reactor engineering for large scale industrial plants [21]. Looking at a
bigger picture, understanding complex reaction networks like the conversion of greenhouse
gases could even impact problems like the dependence on fossil fuels and global warming
[22].

The modeling of reaction kinetics can be of great value from both an experimental and
a theoretical point of view. On the theoretical side, first-principles microkinetic models [23]
are a valuable tool in modern catalysis research. These models rely on kinetic and ther-
modynamic parameters obtained from electronic structure calculations instead of being fit
to experimental data. Such models are heavily used in the design and screening of novel
catalysts [24–26] as the performance of the candidate materials can directly be assessed in
silico. Microkinetic models also play a key role in the context of multi-scale modeling [27,
28]. Here, reaction kinetics act as the mesoscopic bridge between microscopic electronic
structure calculations and macroscopic computational fluid dynamics. In such a bottom up
approach, the goal is to describe macroscopic properties based on fundamental assumptions
and theories. In experimental research, the general procedure is reversed. Reaction kinetic
models act as a tool to rationalize and compress empirical observations and to elucidate the
underlying microscopic mechanism of the process. To this end, complex microkinetic mod-
els are of little use, as they require a detailed list of elementary processes as input. Further,
the parametrization of microkinetic models requires microscopic quantities like adsorption
energies, which are experimentally not easily accessible. Also the huge number of model
parameters entering a microkinetic model can be a limitation due to the equally large data
set required to estimate them. Further, it needs to be ensured that the available data can
actually provide information on all relevant parameters. For example, often times the ap-
parent kinetic behavior of a reaction is only sensitive to the parameters of the rate limiting
step [29]. For these reasons, novel chemical systems are generally analyzed using different
approaches. Methods for the analysis of experimental data often assume a functional form
of a parametric kinetic model and evaluate how well the observed data can be reproduced.
Often times, these parametric models are based on careful consideration of classical kinetic
theory and therefore, the resulting parameters can be interpreted. If multiple possible ki-
netic models can be stated, insight about the most probable mechanism can be deduced by
comparing the performance of these models [30].

When fitting any model to limited amounts of experimental data, it is crucial to properly
construct the set of training points. A frequently encountered shortcoming of experimental
data sets is that they are constructed as line scans for the individual process factors like
temperature or pressure [31, 32]. A line scan is a one dimensional variation of a single factor
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with all other factors kept at a fixed level. While such data sets can provide information
about the individual effects of all factors, inference on any kind of interaction is impossible.
A better way of constructing these data sets is statistical design of experiments (DoE) [33].
DoE is a toolbox of statistical methods which enables us to probe the effects of various factors
on a system in the most efficient way. In the simplest case, standard experimental plans are
look up tables which just need to be scaled to the factor levels of the experimental setup.
By simultaneously varying multiple factors, such experimental designs provide valuable
information about effects and interactions of various experimental parameters.

Coming back to chemical reaction kinetics, the behavior of homogeneous chemical re-
actions, e.g. in terms of the reaction rate, tends to be smooth as a function of the reaction
conditions. In contrast, looking at catalytic reactions at an interface, abrupt changes in ap-
parent behavior can frequently be observed. This phenomenon is called a kinetic phase
transition [34]. Phase transitions of this kind can be caused by changes in coverage of the
catalyst surface. For example, a poisoning of the catalyst’s adsorption sites can result in a
dramatic drop in observed reaction rate. By mapping out the position of such transitions
as a function of process parameters like temperature or pressure, we obtain a kinetic phase
diagram. Microkinetic models are generally capable of capturing this complex behavior, as
they take into account the complicated interplay of all elementary reactions [12]. The ade-
quacy of effective analytical models, on the other hand, will break down when crossing a
kinetic phase transition, as these models usually are appropriate only for a single regime
with approximately smooth behavior. For the investigation of a catalytic reaction, for which
multiple effective regimes are expected, there are two options: The first is trying to set up a
microkinetic model which can be fitted to experimental data or is based on first principles
simulations. Either way, this process will be extremely expensive. Another issue is that as-
sumptions about the reaction mechanism need to be made, which, if not matching the real
underlying kinetics, can introduce systematic errors into the model. The alternative option
is to first map out the kinetic phase diagram and then fit simple effective models for each of
the regimes.
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Figure 1.1: Schematic of the identification of kinetic phase diagrams based on empirical kinetic data
observed at varying reaction conditions.
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Throughout this thesis, the latter option of identifying the kinetic phase diagram first
and fitting local effective models second, will be pursued. The main idea is to find a way
of locally probing the kinetic system at various reaction conditions and fingerprinting these
points according to the local effective kinetics. Based on this information, the critical reac-
tion conditions at which a kinetic phase transition may occur, can be determined. Knowing
about the position of the kinetic regimes, we can estimate the range of validity for the regime
wide local effective models. Further, by coupling these models, a global multi-regime repre-
sentation of the system’s kinetics can be obtained. In this context, a major question is how to
most efficiently sample the space of reaction conditions in order to localize the kinetic phase
transitions. To this end, we will employ a sequential adaptive design algorithm and modify
it to fit this specific task. A schematic overview of this multi-regime modeling problem is
given in Figure 1.1.

Following this introduction, chapter 2 starts with the exhibition of all relevant theoreti-
cal approaches and algorithms for the work presented in this thesis. After this theoretical
background, the last section of this chapter 2.11 describes the reaction kinetic models used
to create artificial data sets throughout this work. Chapter 3 contains the main results of
this project, both in terms of developed algorithms and application test cases. The chapter is
segmented into three sections, each dealing with one major part of the overall workflow. In
section 3.1, a sparse approximation approach to formal reaction kinetics is presented along
with its application to classical reaction systems. Section 3.2 deals with the automatized
identification of kinetic phase diagrams based on local effective model behavior. Finally,
section 3.3 introduces an adaptive design algorithm, which incorporates the procedure for
the identification of kinetic regimes in order to improve the data efficiency of this approach.
Chapter 4 provides a summary and conclusion of this work followed by an outlook towards
future developments and possible applications.
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Chapter 2

Theoretical Background

"Das ist ja dann easy." - Christoph S.

2.1 Chemical Reaction Kinetics

The theory of chemical reaction kinetics deals with the temporal evolution of reaction net-
works. From a mathematical standpoint, this can be described by a stochastic Markov jump
process obeying a master equation of the form

∂P(y, t)
∂t

=
∫
{W(y|y′)P(y′, t)−W(y′|y)P(y, t)}dy′. (2.1)

This equation governs the evolution of the probability of the system to reside in state y
at time t: P(y, t). This probability is given by the integral over all transitions which lead
from or to state y. All processes leading towards y are included in the term W(y|y′)P(y′, t),
which is the product of the probability of being in some other state y′ and the transition rate
between the two states W(y|y′). In the same way, all processes leading from y to some other
state are taken into account with a negative sign, indicating that these processes reduce the
probability of being in state y [35, 36]. Translating equation 2.1 into chemical terminology,
we can think of the state of the system y as being determined by the concentrations and the
spatial distribution of all reactant species. Thus, W(y′|y) corresponds to the reaction rates for
all elementary steps including y as a reactant or for W(y|y′) including y as a product. Under
certain assumptions, we can simplify this master equation and arrive at the rate equations
from classical kinetics. These assumptions are the following:

(i) The possible states of the system are discrete.

(ii) The temperature must be constant.

(iii) The number of elastic, non-reactive collisions per unit time must be large enough.

(iv) The system must be thermalized.

(v) The reaction mixture must be homogeneous.

Using these assumptions, the rate of a given reaction can generally be expressed in form of
rate laws for the time-dependent concentrations [Xi](t) of the 1 < i < N reaction compo-
nents (reactants and products),

d[Xi]

dt
= ∑

j
k j Mij ∏

m
([Xm]

sjm) , (2.2)

where k j are rate constants, Mij are the elements of the stoichiometric matrix and sjm are the
stoichiometric coefficients of the reactants [35, 37]. If detailed knowledge on the reaction
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mechanism is available, the rate laws for all species involved in the process can be set up ac-
cording to equation 2.2. Then, by numerically integrating the resulting system of differential
equations, the time evolution of the reaction network can be simulated [5]. While rate laws of
this form are valid in homogeneous chemistry (in the limit of large system sizes), in hetero-
geneous systems, we have to introduce another approximation in order to write equation 2.2
in terms of surface coverages. This approximation is the so called mean field approximation
(MFA), which assumes statistical independence of the surface adsorption states. Depend-
ing on the system at hand, this approximation may introduce severe errors into the kinetic
model. Especially for catalytic reactions, in which multiple adsorbed species react with each
other, the proximity of these adsorbed species is crucial and assuming a mean coverage will
result in large deviations. Models of this kind are generally referred to as microkinetic mod-
els (MKMs). In microkinetic modeling, some approaches have been developed to resolve this
problem. On the one hand, it is possible to introduce approximate lateral interactions into
mean field microkinetic models [38, 39]. The other, more complex approach, is to construct
a kinetic Monte-Carlo (kMC) model, which is a general approach to integrate the master
equation 2.1. Here, the fact that chemical reactions take place on defined lattice sites at the
catalytic surface, simplifies the definition of the individual states of the system. By explicitly
operating on a lattice of adsorption sites [4], lateral interactions of the adsorbed species are
directly accounted for.

2.2 Linear Regression Modeling

In linear modeling we want to identify the best linear model to explain the variation in an
empirical set of points. We assume a linear relation between the independent (or predictor)
variables Y and the dependent (or response) variables X plus some error term as both X and
Y are random variables[40]:

yqi = c0 + ∑
p

cpqxpi + εqi (2.3)

where yi is the ith observation of the qth response variable, c0 is a constant offset and the
cpq are regression coefficients corresponding to the p predictor variables xpi. Additionally,
we have the error term εqi. This describes a relation consisting of two parts, a systematic
linear term and a stochastic error term. What we now want to determine are the coefficients
c0 and cpq of the linear part in order to describe the systematic variation in the observed
data. In standard linear regression, we make some assumptions on the error in our data. For
example, we assume that the predictor variables X are deterministic quantities which do not
show stochastic variations upon replication. Further, the random variables εqi are assumed
to be independent and equally distributed around an expectation value E(εqi) = 0 [40–42].

2.2.1 Multivariate Linear Regression
The question is now, how to determine the unknown regression coefficients for the linear
model. In the case of multiple predictor and response variables, it is useful to rewrite the
regression model in a matrix form. If we have N observations, the equation looks as follows:

Y(Nxq) = X(Nxp)C(pxq) + ε(Nxq) (2.4)

where Y is the response matrix, X is the predictor matrix and C are the unknown coefficients.
These coefficients need to fulfill the requirement of minimizing the residual sum of squares
of our model:

min
C

{
(Y− XC)T(Y− XC)

}
(2.5)

The resulting, so called, least squares estimator of the regression coefficients Ĉ is the follow-
ing:

Ĉ = (XTX)−1XTY

X̃ = (XTX)−1XT
(2.6)
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where X̃ is the Moore-Penrose pseudoinverse [43] of the predictor matrix X. A numerically
robust way of obtaining X̃ is the Singular Value Decomposition (SVD) [43]. The SVD can
be seen as a generalization of an eigenvalue decomposition for rectangular matrices, which
is necessary as we usually have a different number of observations than we have predictor
variables.

X = UΣV∗

X̃ = VΣ−1U∗
(2.7)

where U and V are matrices with orthonormal columns and Σ is a diagonal matrix contain-
ing the singular values. This way we can directly solve the regression problem by determin-
ing Ĉ = X̃Y.

2.2.2 Regularized Regression
In many cases a simple linear regression will fail to identify an accurate model. This does,
however, not necessarily mean that there is no linear relationship in the data. Especially in
cases, where we have a high number of predictor variables, we may run into the problem,
that the predictor matrix is not of full rank. This is for example the case, if two or more
predictors appear to be linearly dependent at a given noise level. Also, it might be that the
sensitivity of the response towards certain predictors can not be distinguished from noise
and they should therefore be excluded from the final model. In such cases we can apply
regularization techniques to obtain better results in our regression. In the following, four
common regularization techniques are introduced.

Truncated Singular Value Decomposition (TSVD) As mentioned in section 2.2.1, the SVD
can be used to determine the coefficient matrix Ĉ in linear regression. If the predictor matrix
X is rank deficient, several singular values will be zero. If we deal with noisy data, meaning
data which is subject to e.g. measurement errors, these singular values will not go to exactly
zero, even if two columns of X are perfectly correlated. In a truncated SVD we now only
include those singular values, which are larger than some threshold when determining the
inverse. For the singular values below this threshold, the corresponding entries in Σ−1 (c.f.
equation 2.7) are set to zero. This way all singular vectors which correspond to systematic
variation are kept, while the noise dimensions are neglected in the back projection to X̃. The
threshold values is system specific and needs be determined based on the singular value
spectrum of X [43].

Tikhonov Regularization: Ridge Regression Ridge regression is a so called shrinkage
method. By introducing a Thikonov regularization term into the least squares cost func-
tion of standard linear regression, it penalizes the magnitude of the regression coefficients in
the final model:

min
c0,c

{
N

∑
i=1

(
yi − c0 −

p

∑
j=1

cjxij

)2

+ λ
p

∑
j=1

c2
j︸ ︷︷ ︸

l2
2

}
(2.8)

where the penalty term, which is scaled by λ, is applied to all coefficients cj except for the
constant intercept c0. In otherwise ill posed problems with no unique least squares solution,
such a penalty on the l2

2 norm of the coefficient matrix can lead to a more robust regression
by giving preference to a specific solution, namely the one with the smallest euclidian norm
[44].

Least Absolute Shrinkage Selection Operator (LASSO) For the purpose of feature selec-
tion, ridge regression is not suited, as the ridge solution will always contain all predictor
variables. While the penalty on the l2 will lead to regression coefficients approaching zero,
no coefficient will ever be exactly zero. The Least Absolute Shrinkage Selection Operator
(LASSO) [6, 45] tries to solve this problem by replacing the l2

2 norm in the regularization
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term by the l1 norm:

min
c0,c

{
N

∑
i=1

(
yi − c0 −

p

∑
j=1

cjxij

)2

+ λ
p

∑
j=1
|cj|︸ ︷︷ ︸

l1

}
(2.9)

The l1 norm corresponds to the sum of the absolute values of the coefficients cj. This has the
effect, that some cj may become exactly zero, if λ is large enough. By setting regression coef-
ficients to zero, the LASSO is able to select only those predictor variables, which contribute
significantly to the response. The resuling solution is then referred to as sparse. An alterna-
tive way of feature selection would be to iterate over all possible subsets of predictors. This,
however, is a combinatorial problem and the computational effort would quickly get out of
hand with an increasing number of predictor variables. We can understand the LASSO as
computationally feasible approximation to this optimal subset selection [44]. As for ridge
regression, the choice of the regularization parameter λ is crucial for the performance of the
LASSO. In practice, λ is usually determined via cross validation techniques[46].

Elastic Net Regression The LASSO may run into problems in cases, where multiple pre-
dictor variables, which are relevant for the solution, also show a high correlation among
each other. To avoid the LASSO picking one of these variables at random, we can apply a
different regularization technique, namely the Elastic Net. The Elastic Net is a combination
of the LASSO and ridge regression. Both, the l1 and the l2

2 norm of the coefficients are added
as a penalty term to the target function:

min
c0,c

{
N

∑
i=1

(
yi − c0 −

p

∑
j=1

cjxij

)2

+ λ1

p

∑
j=1
|cj|︸ ︷︷ ︸

l1

+λ2

p

∑
j=1

c2
j︸ ︷︷ ︸

l2
2

}
(2.10)

Here, we have two regularization parameters λ1 and λ2, which control the strength of the
LASSO and ridge penalty, respectively. With a correct set of parameters, the combination
of the two penalties is able to preserve the variable selection properties of the LASSO while
also benefiting from the advantages of ridge regression [47].



2.3. Design of Experiments (DoE) 9

2.3 Design of Experiments (DoE)

The field of experimental design deals with the question how to optimally conduct experi-
ments in order to obtain the desired answer with the minimal required effort. DoE is widely
applied in various branches of engineering. However, the same fundamental ideas apply to
the analysis of any kind of unknown system which is subject to a set of input variables and
produces some observable response. These input variables are generally referred to as fac-
tors. As indicated in Figure 2.1, the outcome of an experiment can depend on both, factors
which can be controlled by the experimenter, and uncontrollable factors, the experimenter
can not influence. What we are now interested in, are the effects of the controllable factors
at our disposal on the outcome of the experiment, meaning the observable response of the
system.

Figure 2.1: Schematic of an unknown system, which is subject to both controllable and uncontrollable
factors. Provided a set of inputs it will produce a response, whose values will depend on
the setting of the respective influence factors. The illustration is based on Montgomery[48].

The following section will give an overview over the most relevant principles of DoE in
the context of this thesis. The discussion is based on relevant literature references, which
provide a more extensive and rigorous introduction to the topic [2, 33, 48, 49].

2.3.1 Basic Factorial Experiments
In a general factorial experiment, we are interested in the effects of N controllable factors on
some response. In order to gain some inference on these effects, we must conduct multiple
experimental runs and vary the settings of all controllable factors whose effect we are inter-
ested in. But not only the so called main effects may be significant for the response. Often,
interactions of multiple factors should also be taken into account. The question is now, how
many of these runs are required and which combinations of factor settings should we be
interested in. This problem is basically a linear system of equations. In order for this system
to be well determined, the number of observations, i.e. experimental runs, needs to be equal
at least to the number of effects we want to estimate. Here, it is important to realize, that
the number of effects does grow dramatically with the number of factors, if we also want to
account for interactions. Already at the level of pair interactions, the linear increase of the
number of effects with the number of factors is accelerated by the binomial coefficient (n f

2 ):

nE = 1 + n f +

(
n f
2

)
(2.11)

where nE is the number of effects and n f the number of factors. This combinatorial growth
only gets worse going to higher order effects. If we now want to define an experimental
plan, we need to settle on a set of levels for each factor in our experiment. Combinations of
these level settings then define an experimental run. The simplest way of setting up such a
plan would be to measure all possible combinations of factor settings. This is the so called
Full Factorial Design (FFD). For example, the FFD of a three factor experiment with two



10 Chapter 2. Theoretical Background

levels (−1 and +1) would look like follows

D =



+1 +1 +1

+1 −1 −1

−1 +1 −1

−1 −1 +1

+1 +1 −1

−1 +1 +1

+1 −1 +1

−1 −1 −1



, nE = (nlevels)
n f = 23 = 8 (2.12)

The columns of this design matrix D are orthogonal and also each column contains the same
number of +1 and −1 settings. Thus, the design D is both orthogonal and balanced. These
are important requirements in order to be able to independently estimate the effects of indi-
vidual factors. The FFD always fulfills these requirements. However, the number of exper-
iments for a FFD quickly becomes infeasible, if we increase the number of levels or factors.
Therefore, such FFDs are only applicable for simple experimental setups with a low number
of factors. The advantage of the FFD is that it contains the maximum amount of information
possible about higher order and interaction effects (up to order n f ). For more complex prob-
lems we can often reduce the number of experiments by sacrificing information on effects
beyond a certain order. Such designs are then generally referred to as fractional factorial
designs.

2.3.2 Fractional Factorial Designs
The FFD for an experiment with a large number of factors requires a vast amount of experi-
mental runs. However, higher order interactions make up the bulk of the degrees of freedom
in such a system. If, for some reason, we are not interested in such higher order terms, or
we can assume these interaction effects to be negligible, we can resort to so called fractional
factorial designs to drastically reduce the required number of experiments. By removing
several factor settings from the experimental design, also the number of effects, which can
be estimated is reduced. Additionally, we no longer can differentiate between the effects
of certain factors and interactions terms. This is called a confounding of effects. Looking
again at the example of the FFD for a three factor experiment with two levels (this is called
the 23 factorial design), we expand the columns of the design matrix to see, which factor
combinations correspond to higher order effects:

Run A B C AB AC BC ABC


1 +1 +1 +1 +1 +1 +1 +1

2 +1 −1 −1 −1 −1 +1 +1

3 −1 +1 −1 −1 +1 −1 +1

4 −1 −1 +1 +1 −1 −1 +1


5 +1 +1 −1 +1 −1 −1 −1

6 −1 +1 +1 −1 −1 +1 −1

7 +1 −1 +1 −1 +1 −1 −1

8 −1 −1 −1 +1 +1 +1 −1

(2.13)

If we now take only the first four lines of this matrix, we can see that e.g. the entries in
the A column coincide with those in the BC column. Thus, by only running the first four
experiments, we can not differentiate between the effect of A and the interaction BC. The
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resolution of a fractional factorial design refers to such a confounding of effects. The most
important resolutions for these designs are the following [49]:

Resolution III Designs In these designs no main effects are confounded with each other.
They may, however, be confounded with two factor interactions. Further, also two factor
interactions can be confounded with each other. Hence, resolution III designs should pri-
marily be used to differentiate between the main effects of various factors. For example, in a
screening study, where we want to identify which factors in our experiment are the relevant
ones, such designs can be applied.

Resolution IV Designs Using a resolution IV design, we can determine the main effects
of all factors more precisely. Now, the main effects are not confounded with any two factor
interaction.

Resolution V Designs These designs can be used to differentiate not only between the
main effects of all factors, but further also the two factor interactions are not confounded
with each other. Confounding with higher order effects is still possible.

Constructing fractional designs, we always have to take the orthogonality and balance
of the plan into account. Therefore, it is a common approach to start from a full factorial
design for a lower number of factors. For example, replacing the column in the 23 factorial
design corresponding to a higher order interaction we are not interested in (e.g. ABC) with
a new factor D, is a straight forward way of obtaining a fractional plan for four factors. The
advantage of fractional factorial plans is, that we always know in advance, which effects we
can differentiate and which we can not. Further, by combining multiple fractional factorials
we can always extend our plan to achieve a higher resolution [48, 49].

2.3.3 Response Surface Methodology
We can interpret the effects of various factors as coefficients in a linear model, which de-
scribes the change of the observed response as a function of the change in a given factor
level. In general, we can approximate such a function as a polynomial of the input factors
[2]. A polynomial is a linear combination of products and powers of the input variables. De-
spite containing such nonlinear terms, a polynomial model is still linear in the coefficients,
which we identify with the effects of all factors and their respective powers and interactions.
Let us consider a simple system with two factors x1 and x2 and a single response y. The
corresponding polynomial up to second order would look as follows:

y = θ0 + θ1x1 + θ2x2 + θ12x1x2 + θ11x2
1 + θ22x2

2 (2.14)

The coefficients of these various polynomial terms can be determined using linear regres-
sion. So, if we have performed a set of experiments given an experimental design, we can
directly analyze the effects of interest by fitting such a regression model. As previously men-
tioned, the order up to which the polynomial is expanded, is limited by the amount of data
provided. In Response Surface Methodology (RSM) we now want to exploit these models for
the response (in higher dimension then referred to as response surfaces) in order to not only
describe, but also tune the factors at our disposal. Fitting a second order polynomial to our
data enables us to optimize the response using minimization algorithms and hence find the
optimal factor settings for our system. Such techniques are commonly employed in process
engineering [50, 51]. For example, one could be interested in the optimal feed composition
in order to maximize the yield of a chemical reaction. In order to fit second order models,
special experimental designs have been developed to estimate second order effects in a effi-
cient way. Common examples for such response surface designs are the Central-Composite
Design (CCD) and the Box-Behnken Design (BBD) [2, 48, 52].
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2.3.4 Sequential Adaptive Designs
The aforementioned classical experimental designs usually provide a complete set of ex-
periments, which, if performed, allow for an analysis of effects with a certain resolution or
provide enough data to estimate the parameters of a given model. These designs often are
extensible with additional points. For example, a fold over can be used to transform any
resolution III design into a resolution IV design. In contrast, sequential designs start from
some initial set of data and suggest subsequent experiments to be performed, one at a time.
In this process, all the available data up to this point is taken into account in order to identify
the most promising next sample point [11].

The D-Optimality Criterion In order to find the next point in a sequential design, we
need to evaluate possible candidates and define a criterion to select the best one. There are
different criteria discussed in literature[53], which all relate to the information content of the
design in terms of its information matrix. Let us first assume that the model η is scalar and
linear in the parameters θ. This means that

η(x, θ) = θT f (x)

θT = [θ0, θ1, ..., θk]

f (x) = [ f0(x), f1(x), ..., fk(x)]T
(2.15)

where the fk(x) are known functions independent of θ. In this linear parametrization case,
the information matrix M can be written as

M =
N

∑
i

wi f (xi) f T(xi) with wi =
1
b2

i
(2.16)

where b2
i is the variance of the measurement at point xi. This information matrix is the

inverse of the dispersion matrix of the parameter estimator θ̂:

D(θ̂) = M(θ̂)−1. (2.17)

It can be shown that the best linear estimate of the parameters, θ̂, minimizes the determinant
of its dispersion matrix [11]. Minimizing the determinant of D(θ̂), in turn maximizes the
determinant of M(θ̂), the information matrix. Both M and D(θ̂) depend on the choice of the
design ζ. The optimal design ζ∗ for this problem would thus fulfill

ζ∗ = arg max
ζ

|M(ζ, θ̂)| = arg min
ζ

|D(ζ, θ̂)|. (2.18)

This is called the D-Optimality, where the goal is to construct the design in a way that the
determinant |D(θ̂)| is minimized [11, 53]. For nonlinear parametrization, when equation
2.15 does not hold, calculating the information matrix is slightly more complicated. Assum-
ing that η(x, θ) is smooth around the true parameter values θ0 and further that θ̂ is located
within this smooth region around θ0, we can write the information matrix of the parameter
estimates as follows [11]:

M(θ̂) =
N

∑
i

wi f∇(xi) f T
∇(xi)

with f∇(xi) = ∇η(xi, θ̂) =

[
∂η(xi, θ̂)

∂θ0
,

∂η(xi, θ̂)

∂θ1
, ...,

∂η(xi, θ̂)

∂θk

]T (2.19)

Local Optimal Designs As discussed in the last section, constructing the information ma-
trix for nonlinear parametrization is not entirely straight forward. In fact, the partial deriva-
tives in equation 2.19 formally need to be evaluated at θ0. This means that the optimal design
for this problem depends on the true parameter values of the model, which, of course, are
generally unknown. Thus, we can not construct a global D-optimal design for this case.



2.4. Power Transformations 13

However, as was done in equation 2.19, we can construct approximations if we have some
prior knowledge on the model parameters. For example, it might be possible to calculate
an initial guess for θ̂0 based on some preliminary measurements. This kind of procedure
is especially relevant in the context of sequential designs, as the parameter estimate is up-
dated in every iteration. Designs for nonlinear parametrization, which are based on some
approximation of θ̂0 are then called local optimal designs [11].

Sequential Design Fedorov proposed an algorithm for a sequential design for nonlinear
parametrization[11]. As mentioned before, some initial experiments are necessary to obtain
an estimate of the model parameters. The initial design of N points should be nondegenerate
to allow for a single valued estimation of θ̂(N). The coordinates of the subsequent point
xN+1 are then determined by solving the following optimization problem:

max
x

λ(x)dN(x) with dN(x) = f T
∇,N(x)D(N) f∇,N(x), (2.20)

where we have replaced the weights wi with the measurement efficiency function λ(x). This
is necessary, as we want to evaluate equation 2.20 at values xN+1 which are not contained
in the initial design. Hence, also the variance b2

N+1 is unknown. λ(x) is an approximate
function, which allows us to evaluate the efficiency of an measurement at any given x. If
no higher level information is available, a possible way of obtaining λ(x) would be to fit
an additional regression model to the observed variances of the initial measurements. The
second term in the optimization, dN(x), corresponds to the approximate variance of η(x, θ̂)
at the point x. The dispersion matrix D(N) is constructed from the information matrix of the
N data points contained in the initial design according to

D−1(N) = M(N) =
N

∑
i

λ(xi) f∇,N(xi) f T
∇,N(xi). (2.21)

The partial derivatives f∇,N(x) are also evaluated at the current estimate of the model pa-
rameters θ̂ = θ̂(N). Iteratively adding new points to the design as dictated by equation 2.20,
should yield a local optimal design in every step [11, 54].

2.4 Power Transformations

In statistical data analysis, power transformations are used to reduce the skew of distribu-
tions [55]. Especially in the context of linear regression modeling, such transformations can
be of use. By introducing nonlinear transformations in a preprocessing step, often not only
the quality of the fit will improve, but also the validity of the underlying assumptions [2].
For example, the functional relationship between two variables x1 and x2 may be highly
nonlinear. Applying a power transformation to one (or both) quantities could unveil a sim-
ple linear relationship of the transformed variables. The transformation parameters can then
also be chosen in way, such that the residual distribution of the model is close to a normal
distribution. After all, normality of errors is one of the key assumptions in standard linear
regression [33].

2.4.1 Tukey Ladder of Powers
Tukey and Mosteller [56] introduced the so called ladder of reexpressions in the context of
exploratory data analysis [55]. They describe a very simple power transformation, which in
the following will be referred to as the Tukey-transformation:

fTukey(xi, αi) =

{
xαi

i i f αi 6= 0
ln(xi) i f αi = 0

(2.22)

The parameter αi needs to be chosen based on the data at hand. What makes this kind
of transformation very appealing is that it is able to represent many common functional
relationships found in physics and chemistry. Some examples are given in here:
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α representation

-2 1/x2

-1 1/x

-1/2 1/
√

x

-1/3 1/ 3
√

x

0 ln(x)

1/3 3
√

x

1/2
√

x

1 x

2 x2

There is, however, one caveat to this transformation, which may become an issue if one
would be to optimize α in some kind of algorithm. The ladder of reexpressions has a dis-
continuity for α = 0. If the optimization of α can be restricted to values unequal 0 for some
reason, the Tukey-transformation should still be applicable. These power transformations
are usually applied to reduce skewness in the underlying data and bring it closer to being
normally distributed. In the context of regression modeling, normally distributed residuals
are desired as this is an indication of the adequacy of the model [2]. Based on the residual
vector of a given model the transformation parameters α can be estimated.

2.4.2 Other power transformations: Box-Cox and Yeo-Johnon
Box and Cox introduced a slightly modified power transformation which solves the dis-
continuity problem for a transformation parameter of 0 by an additional shift and scaling
factor[57]:

fBox−Cox(xi, αi) =

 x
αi
i −1
αi

i f αi 6= 0
ln(xi) i f αi = 0

(2.23)

While this kind of transformation is now continuous at αi = 0 it suffers from the fact, that it
is only applicable to positive values of xi. Therefore, it has to be ensured that all input data is
strictly positive before applying a Box-Cox transform. In practice, this is often not an issue, as
a shift to positive numbers is a affine transformation, which will not change the shape of the
distribution and hence have no effect on the optimal α. Nevertheless, Yeo and Johnson[58]
came up with a generalized power transform, which does not have this requirement. The
Yeo-Johnson transform can be applied to any real number and its transformation law reads
as follows:

fYeo−Johnson(xi, αi) =


(xi+1)αi−1

αi
i f xi ≥ 0 and αi 6= 0

ln(xi + 1) i f xi ≥ 0 and αi = 0
−(−xi+1)2−αi−1

2−αi
i f xi < 0 and αi 6= 2

−ln(−xi + 1) i f xi < 0 and αi = 2

(2.24)

2.5 The Probability Plot Correlation Coefficient

Filliben introduced the probability plot correlation coefficient (PPCC) normality test in 1975
[7]. A probability plot is a correlation plot between the ordered observations of a given data
set and the corresponding theoretical quantiles drawn from a reference distribution. If one
wants to check for the normality of the observations, the reference distribution is chosen
to be a standard normal distribution. The PPCC is then defined as the pearson correlation
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coefficient between these two vectors as given in equation 2.25.

PPCC = Corr(X, M) =
∑N

i=1 (Xi − X̄) (Mi − M̄)√
∑N

i=1 (Xi − X̄)
2 ∑N

i=1 (Mi − M̄)
2

, (2.25)

where X and M are the observations and theoretical quantiles with their respective mean
values X̄ and M̄. The PPCC will result in values close to unity, if normality assumptions
are valid for the underlying data, and smaller values for the case of different distributions.
Figure 2.2 shows this behavior for samples drawn from a poisson, a uniform and a normal
distribution.
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Figure 2.2: Probability plots for 1000 random samples drawn from different distributions. The corre-
sponding PPCC values are given in the histograms.

In Figure 2.2 the sample size was chosen to be 1000 and indeed this sample size is limiting
the inference from the PPCC. Figure 2.3 provides an estimate on the minimum sample size
necessary to distinguish between different distributions. While the poisson data can clearly
be identified as being non-normal, differentiating between uniform and normal may become
an issue in the limit of small datasets. The PPCC values in Figure 2.3 are the average value of
multiple runs per sample size. Therefore, in a single measurement the relative order of these
distributions may actually be different. A soon as the sample sizes approaches roughly 100,
however, the distributions should be accurately distinguishable.
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Figure 2.3: PPCC values for random samples of different size drawn from different distributions. The
observed PPCC is itself averaged over 100 runs with fixed sample size.
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2.6 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a numerical, gradient free, global optimization method
[59]. It is considered a nature inspired algorithm and tries to exploit swarm intelligence in
order to locate the minimum of a function. PSO enjoys great popularity in various fields,
due to its conceptual simplicity and applicability to a wide range of optimization problems.
Similar to genetic algorithms, PSO relies on a population (or swarm) of individuals to ex-
plore the search space at the same time. However, these individuals (called particles) locally
interact with each other during the optimization, according to specified rules. In the simplest
case, the PSO algorithm consists of the following steps[60]:

1. Initialize the positions (xi(t = 0)) and displacements (vi(t = 0)) of all N particles
drawing random samples from a d-dimensional uniform distribution.

xi(t = 0) = U(xmin, xmax, d)
vi(t = 0) = U(vmin, vmax, d)

(2.26)

2. Identify the current best position of the swarm (xS
min) as well as the best position found

for each particle up to this point (xPi
min)

3. Check if the convergence criterion is met. If yes, return xS
min.

4. Update the positions and displacements according to:

vi(t + 1) = ωvi(t)

+c1 ·U(0, 1, 1) · (xPi
min(t)− xi(t))

+c2 ·U(0, 1, 1) · (xS
min(t)− xi(t))

xi(t + 1) = xi(t) + vi(t + 1)

(2.27)

Go back to step 2.

The propagation rules in equation 2.27 describe the interaction of the swarm particles. There
is a stochastic element contained in the particle displacement vectors, as two of the three
contributions are scaled by random numbers between 0 and 1 drawn from a uniform dis-
tribution (U(0, 1, 1)). Further, some empirical parameters enter the equation. ω is related
to the inertia of the particle trajectories as it dictates the contribution from the displacement
of the previous step. The parameters c1 and c2 control the extent, to which the trajectory
of the particle is biased towards its best know position or the best known position of the
swarm, respectively. Thus, these parameters define the exploration-exploitation trade off
in the optimization. In practice, the displacement vectors are usually bound to some finite
range of values to avoid particles leaving the region of interest. Also, there are modifications
to this algorithm, where the particles only communicate with a certain number of nearest
neighbors[60].

2.7 Multi-Objective Optimization

The goal in an optimization problem is to minimize the value of some real valued function
f (x). This function is generally referred to as the objective function of the problem, while
the x are called design variables. By varying these design variables we try to identify the
optimal set of x, such that the value of the objective function is optimized. There are various
classes of optimization problems, with specialized algorithms for their respective solution.
For an introduction to the topic the reader is referred to Polak[61]. In this work, we will
deal with nonlinear optimization problems of continuous design variables with inequality
constraints. Further, the number of objective variables is larger than one, meaning f (x) itself
is vector valued. In such cases, we speak of multi-objective optimization, as we want to find
the set of x which optimizes all objectives in the best possible way[62].
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2.7.1 The Pareto Front
While in scalar, single objective problems there is usually one global optimum, this is not
necessarily the case in a multi-objective optimization. If two or more objectives are interfer-
ing with each over, at some point it might not be possible to decrease the value of objective
f1 while not increasing the value of another objective f2. This leads to a multitude of possi-
ble tradeoffs between these two objectives. To reduce the number of these tradeoff points to
the necessary minimum, we distinguish between dominated and non-dominated solutions.
A solution x1 is dominating another solution x2 if all objective values for x1 are at least as
good as for x2 and in at least one objective x1 is better than x2. This relation is schematically
shown in Figure 2.4. If x1 dominates x2, x2 must be located in the red area and have worse
objective values in both f1 and f2. On the other hand if x2 is located in the green area, we
can say, that it dominates x1. For the other two quadrants, x2 would be better in one of the
objectives and worse in the other. Therefore, we can not differentiate, whether x1 or x2 is
more optimal.

f1

f2

Solutions
dominate x1

x1

Solutions
dominated by x1

Solutions are
indifferent

Solutions are
indifferent

Figure 2.4: Illustration of the 2D objective space spanned by f1 and f2. The different areas indicate
the dominating relations between an arbitrary solution x1 and other solutions in the four
quadrants. The illustration is based on Collete[62].

The non-dominated solutions are also referred to as optimal in the Pareto sense (or Pareto
optimal). If we reduce the number of tradeoff solutions in a multi-objective problem to only
those, which are non-dominated, we end up with the so called Pareto Front (PF). This PF
is a subspace of the objective space, whose dimensionality is one lower compared to the
objective space. This means that for a problem with two objectives, the PF would be a 1D
curve, for three objectives the PF is a 2D surface and so on. As all solutions located on the
PF are Pareto optimal, they are all indifferent with respect to each other. Hence, we can not
decide which solution to pick without additional information. A schematic of the PF in a 2D
objective space is shown in Figure 2.5.
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f1

f2

feasible 
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Figure 2.5: Illustration of the Pareto Front (PF) in a 2D objective space spanned by f1 and f2. The PF
separates the feasible from the infeasible set of solutions. In this case the PF is a 1D curve, as
the overall objective space is two dimensional. The shape of this PF is typical for a problem,
in which f1 needs to be minimized, while f2 is supposed to be maximal.

The question is now, how to determine this PF in form of an optimization problem.

2.7.2 Evolutionary Multi-Objective Optimization (EMO)
Evolutionary optimization techniques are iterative algorithms designed to mimic the evo-
lutionary processes encountered in nature. They operate on a population of candidate so-
lutions and use operations like selection, crossover and mutation to update this population
towards an optimal solution. Such an optimization approach is very well suited for deter-
mining the PF in a multi-objective problem, as we are already working on a population of
multiple solutions. Further, incorporating stochastic events like mutations in the optimiza-
tion process, allows the algorithm to handle multiple optima more easily. Also, evolutionary
algorithms do not rely on gradients in order to update the solutions making them suited for
complex nonlinear problems. In general, evolutionary algorithms consist of the following
operators [63]:

Initialization In a first step, an initial population is created by sampling the available de-
sign space of the problem. Usually, upper and lower bounds are defined by the optimization
task. In principle, any kind of sampling algorithm may be applied here. Lacking additional
information, however, the initial population is often drawn randomly.

Evaluation In the second step, for every individuum in the population the fitness needs
to be determined. This means, that the cost function of the optimization problem is evalu-
ated for every candidate solution. Both the violation of constraints and the objective values
determine the fitness ranking within the population.

Selection Here, individuals are selected from the population to form the mating pool for
the next generation. A common variant is the tournament selection, which picks two indi-
viduals at random and select only the "fitter" of the two for the mating pool.

Variation In this step, parent individuals are selected from the mating pool and used to
create new individuals by exchanging information. The variation of the population can also
incorporate multiple processes like mutation and crossover. Such additional stochastic steps
can help to escape local optima and diversify the population.

Elitism During the elitism operation, both, the population of the last generation and of
the current generation are combined. From these joined populations the individuals for the
next generation are chosen. This enables the algorithm to keep good solutions from previous
generations and it could be shown, that such an elitism is required to ensure a non-degrading
performance of the algorithm [8, 64].
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Termination A common termination criterion is simply a maximum number of either iter-
ations (generations) or objective function evaluations. In EMO alternatively also measures
corresponding to the convergence of the PF can be applied. E.g. the change in hypervolume
occupied by the PF in objective space can be a reasonable termination criterion [65, 66].

The goal of an EMO is to find a set of solutions, which resemble the PF of the multi-
objective problem as closely as possible. Ultimately, one Pareto optimal solution needs to
be selected from the PF. Therefore, we want the approximated PF from the EMO to not only
contain non-dominated solutions, but also as diverse trade offs as possible. A well estab-
lished EMO algorithm is Non-dominated Sorting Genetic Algorithm (NSGA-II) [8]. It uses
elitist principles as well as mechanisms to emphasize both non-dominated and maximally
diverse solutions. In every iteration, the current parent and offspring populations are com-
bined. Then, this larger set of candidate solutions is sorted into non-domination fronts and
only the top half of the individuals is kept to restore the original population count. If only
some individuals from a non-domination front can be selected, the crowding distance sort-
ing is applied. The crowding distance corresponds to the volume an individual occupies in
objective space in which no other solution is located. By selecting those individuals with
the maximum crowding distance, the population of the next generation will be as diverse as
possible. This procedure is schematically illustrated in Figure 2.6.

rejected

Non-dominated
sorting

Crowding distance
sorting

Pt

Qt

Rt

F1

F2

F3

Pt+1

Figure 2.6: Schematic of the non-dominated and crowding distance sorting within NSGA-II. Pt and Qt
are the current parent and offspring populations, respectively. Those are combined and the
resulting population is sorted into non-domination fronts (F1, F2, F3, ...) of different classes.
According to this sorting, the top half of the population is kept to form the new population
Pt+1. In the highly probable case that not all individuals of a non-domination front can
be kept, the best individuals according to the crowding distance sorting are selected. The
illustration is based on Branke[63].

2.8 Quasi Monte Carlo Sampling

Quasi Monte Carlo (QMC) sampling is an approach to efficiently cover a high dimensional
space for multivariate integration. To this end, QMC samples rely on so called low-discrepancy
sequences. With every given number of points, a QMC sample tries to represent the n-
dimensional uniform distribution as closely as possible. In contrast to random sampling,
there is no requirement for the points to be independent. Hence, QMC samples can also be
constructed using deterministic sequences. A major construction principle of such sequences
is the so called full projection regularity. For a sequence Pn with m points in n dimensions to
be fully projection regular, its projections on to point sets Pk<n need also to contain m distinct
points [10]. The design of QMC samples aims at a faster convergence compared to standard
Monte-Carlo methods, given that the function to integrate is sufficiently smooth within the
region of interest. There are two different types of QMC methods: the open and the closed
type. An open type QMC sample is constructed from an infinite sequence of points, which
are also referred to as digital sequences. This comes with the advantage that, to increase
the number of points in the sample, simply the subsequent points in the sequence need to
be measured. Closed type QMC samples (or digital nets) on the other hand, usually result
in a completely new point set, if the number of measurements is changed [10, 67]. Deter-
ministic QMC sequences are a convenient way of sampling a multidimensional space, if no
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prior knowledge is available. Given a number of function evaluations and dimensions of the
sample space, a QMC set can be generated and simply scaled to the corresponding ranges.
Two well known QMC sequences are the Halton [68] sequence and the Sobol [69] sequence,
which both count among the open type digital sequences. The first 64 points of these two
sequences for the two dimensional case are illustrated in Fig. 2.7.
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n = [1,16] n = [17,32] n = [33,64]

Figure 2.7: Examples for QMC point sets chosen as a two dimensional Halton or Sobol sequence, re-
spectively. The point sets each consist of n=64 samples. The colors indicate different por-
tions of the sequences.

2.9 Clustering Analysis

2.9.1 Proximity Based Clustering: K-Means
When evaluating large data sets, cluster analysis is a convenient way of reducing the amount
of data points while containing as much information as possible [70]. The idea is to split the
data into subsets properly represented by one cluster center, the so called centroid. The
datapoints are sorted into clusters according to some similarity criterion. There are many
different algorithms available for performing such a task, one of them being Kmeans++.

Lloyd Algorithm The Lloyd algorithm is an algorithm used to create centroidal Voronoi
tesselations (CVT) of data sets. A Voronoi tesselation is a splitting of a given set of points
into subsets referred to as Voronoi regions. Each Voronoi region is defined by a generating
point according to equation 2.28.

V̂i = {x ∈ Ω | | x− zi |<| x− zj | for j = 1, ..., k, j 6= i}, (2.28)

where zi is the generator, Ω is a general open set Ω ⊆ RN and x are the points contained
in this region [71]. These are all points of the original set closer to its generator than to the
generator of every other region. The tesselation is referred to as centroidal if the generating
point of a region coincides with its respective mass center z∗i . Given a density function ρ
defined on Ω, the mass center can be defined according to equation 2.29 [72].

z∗i =

∫
Vi

yρ(y)dy∫
Vi

ρ(y)dy
(2.29)

From figure 2.8(a), showing the Voronoi diagram for a set of randomly chosen points, it is
obvious that the generator of a region does not have to be its mass center. In the case of
a rectangular lattice however, shown in figure 2.8(b) the tesselation with respect to these
points directly yields a centroidal one. Thus in order to create a CVT for a generic data
set an iterative approach is necessary. The Lloyd algorithm is such a method. Given the
previously defined open set Ω as well as an initial set of generators {zi}k

i=1, in the first step
this algorithm creates a Voronoi tesselation. Next, the center of mass z∗i is calculated for
every region Vi. These centers are then used as the generators for the Voronoi tesselation of
the following iteration. This procedure is repeated until a convergence criterion is met, for
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Figure 2.8: 2D Voronoi diagrams for (a) a set of random points and (b) points on a rectangular lattice;
the tesselation was performed according to the Euclidian distance of the data points.

example the sum of distances for all points with respect to their centroid reaches a certain
value [72]. As with most iterative algorithms, choosing the optimal initial generators has a
major impact on the efficiency of the tesselation process.

Kmeans++ Algorithm Creating a CVT of a data set basically is a cluster analysis. Given
a number of cluster centers, the goal is to minimize the total sum of distances between the
points and their respective centers. This is analog to the Lloyd algorithm with the according
convergence criterion. The difficult task is to choose the initial cluster centers, such that
the algorithm converges quickly and yields a reasonable segmentation. Within the standard
Kmeans algorithm initial centers are chosen arbitrarily. By introducing a more sophisticated
seeding procedure the Kmeans++ algorithm tries to improve upon this completely random
process: At first, one (of k) center c1 is chosen uniformly random from the data set Ω. The
next center is obtained by choosing a x ∈ Ω according to the probability distribution given
in 2.30.

P(x) =
D(x)2

∑x∈Ω D(x)2 , (2.30)

where D(x) refers to the shortest distance between any data point to a center already chosen.
This procedure is repeated until k centers are obtained. These form the initial guess for the
standard Kmeans algorithm.

Scree-Plot One drawback of the Kmeans algorithm is the requirement for manually defin-
ing k, the number of clusters. In general, k is unknown and it may not always be possible
to estimate it based on higher level information on the problem at hand. Several different
methods can be applied to determine k in such cases. One conceptually simple option is the
so called Ellbow method[73]. In order to determine the optimal kopt, we perform a cluster-
ing of the data set for different values of k and plot the resulting clustering errors. In the
context of Kmeans, the clustering error (sometimes also referred to as inertia) is usually the
sum of squared distances (SSD) for all points w.r.t. to the corresponding centroid as given in
equation 2.31.

SSD =
k

∑
c=1

Nc

∑
m∈Ic

|xm − zc|2 , (2.31)

where c runs over all clusters with their respective centroids zc and m runs over the point
set Ic assigned to each cluster. The resulting plot is called the scree plot and shows a con-
tinuously decreasing SSD with increasing k. While initially, the increments in SSD are large,
the SSD values usually quickly converge towards 0, when k approaches the number of data
points. In case a meaningful splitting of the data is possible, the scree plot should show an
ellbow (or sometimes knee) point like indicated in figure 2.9(b). At this point, the scree curve
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Figure 2.9: (a) A hypothetical 2D data set composed of three distinct clusters and (b) the corresponding
scree plot of the clustering error (SSD) versus the number of clusters k. The dashed lines
indicate kopt coinciding with the knee point of the scree curve.

shows the maximum curvature. This point corresponds to kopt. The simplest way of identi-
fying this point is by visual inspection, however, automatizing this step is possible, e.g. by
numerically approximating the curvature [74].

2.10 Support Vector Classification

2.10.1 Linear Support Vector Machines
The support vector machine (SVM) is a statistical learning model applicable to the classi-
fication and regression of data [9]. It is based on the principle of separating hyperplanes,
splitting the data set into multiple classes. Dealing with a space of dimension N, a hyper-
plane is a N − 1 dimensional subspace, which can be used to separate the original space
into multiple regions. Hence, in 3D space, the term hyperplane would refer to a 2D plane,
in 4D space to a 3D subspace and so on. Given a set of points consisting of two classes,
the optimal separating hyperplane not only separates the two subsets but also maximizes
the distance from its surface to the points of either class, the so called margin. Identifying
such a hyperplane can be formulated in terms of an optimization problem. However, for
this optimization to find a feasible solution, the data sets needs to be linearly separable. To
overcome this problem, we can use a SVM. We can set up the SVM as a hyperplane based
classification model, even if the requirement of linear separability in the training data is not
given. In the case of overlapping sample distributions, the SVM allows for a certain degree
of misclassification by introducing a penalty term. The optimization problem for the linear
support vector classifier (SVC) is the following [70]:

min
β0,β

1
2
||β||2 + C

Np

∑
i=1

ξi subject to ξi ≥ 0, yi(xT
i β + β0) ≥ 1− ξi ∀i, (2.32)

where β and β0 are the coefficients of the hyperplane defined by the equation (xT
i β + β0) =

0, C is the tuning parameter of the penalty and ξi is a slack variable corresponding to the
distance to the correct margin boundary for every point located within the margin. As the
margin width is defined as M = 1

||β|| the minimization in equation 2.32 leads to a maximized
margin. The magnitude of the penalty coefficient C controls the contribution due to misclas-
sification. In the limit of C = ∞, equation 2.32 would correspond to the optimal separating
hyperplane problem. A visualization of a two class SVM is shown in figure 2.10.
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Figure 2.10: 2D example of a two class SVM. The solid gray line is the separating plane between the
two classes (orange and blue data points). Data points surrounded by a circle are support
vectors. The dashed lines indicate the margin boundaries. The illustration is based on
Bishop[75].

Having determined the hyperplane parameters, we can define the decision function G(x)
to classify new observations, not contained in the original training data:

G(x) = sgn(xT β̂ + β̂0), (2.33)

where β̂ and β̂0 are the solutions of the optimization problem in equation 2.32.

2.10.2 Estimating Membership Probabilities: Platt Scaling
Using the decision function of a SVC, we can predict the class of an unknown data point xi.
Additionally, we can estimate its score fi, which is proportional to the signed distance of xi
to the decision boundary (the separating hyperplane). However, in certain cases it might be
useful to have a calibrated probability of the point xi being assigned to the class y, a posterior
probability. For the two class problem, Platt introduced a method to estimate this posterior
probability in 1999 [76]. Therein, a parametric sigmoid function is assumed as a model for
the probabilities:

P(y = 1| f ) = 1
1 + exp(A f + B)

, (2.34)

where y = 1 indicates the membership in class 1 and A and B are scalar parameters. These
parameters can be estimated from maximum likelihood and the resulting optimization prob-
lem can be written as follows:

min
A,B

[
−

N

∑
i=1

tilog(pi) + (1− ti)log(1− pi)

]
,

ti =
yi + 1

2
,

pi =
1

1 + exp(A fi + B)
.

(2.35)

To avoid a bias of the probability calibration, this fit is not performed on the same training
data as the fit of the original SVC. Instead, a n-fold cross validation is performed and the
SVC scores fi are determined on the test set of each fold. For multi class problems, Wu et al.
proposed an extension of this formalism by combining the comparisons of all two class sub
problems [77]. Assuming that all pairwise probability estimates rij are available, the multi
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class problem for k different classes is the following:

min
p

k

∑
i=1

k−1

∑
j 6=i

(rji pi − rij pj)
2 subject to

k

∑
i=1

pi = 1, pi ≥ 0, ∀i. (2.36)

2.11 Chemical Reaction Systems

Four chemical processes are exemplarily studied in this work to illustrate the suggested al-
gorithm. The first two reaction networks, the classical gas phase HBr reaction and a generic
catalytic cycle, can be attributed to homogeneous reactions. The latter two examples rep-
resent heterogeneous processes. Microkinetic models for the catalytic oxidation of carbon
monoxide both, over a Pt catalyst and over a RuO2 surface are investigated.

2.11.1 Hydrogen Bromine Reaction
Hydrogen (H2) and bromine (Br2) in gas phase can undergo a reaction to form hydrogen-
bromide (HBr):

H2 + Br2 −→ 2HBr . (2.37)

This reaction is a classic example, where the apparent initial reaction orders are not obvious
from the stoichiometric coefficients in the formal reaction equation. This indicates that a
more complex microkinetic mechanism takes place. Bodenstein and Lind [78] described an
effective rate law for the formation of HBr as

d[HBr]
dt

∝ [H2] · [Br2]
1/2 . (2.38)

This law was found to be valid in the early stages of the reaction in a regime, where [HBr] <<
[Br2]. It corresponds to an effective reaction order of 1.5 which could later be explained by
the, now well established, radical reaction mechanism [79]. The reaction mechanism and
rate constants for the microkinetic model have been taken from experimental kinetic studies
by Levy[80] and Cooley and Anderson[81]. The detailed mechanism is given in Table 2.1.

Dissociation Br2
k1−→ 2Br·

and 2Br· k2−→ Br2

Recombination H2
k3−→ 2H·

2H· k4−→ H2

H ·+Br· k5−→ HBr

HBr
k6−→ H ·+Br·

Chain Br ·+H2
k7−→ HBr + H·

Propagation Br ·+HBr
k8−→ Br2 + H·

H ·+Br2
k9−→ HBr + Br·

H ·+HBr
k10−→ H2 + Br·

Table 2.1: Elementary steps of the mechanism in the HBr model.
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Table 2.2: Kinetic parameters for the HBr model.

reaction prefactor barrier rate constants

[a.u.] [kcal/mol] @ 850K [a.u.]

k1 7.18·1012 * T 45.23 1.43·104

k2 5.70·1015 0.00 5.70·1015

k3 2.00·1013 * T 102.48 7.61·10−11

k4 1.10·1016 0.00 1.10·1016

k5 9.00·1015 0.01 8.95·1015

k6 5.95·1012 * T 85.85 4.27·10−7

k7 8.05·1010 * T 17.70 1.93·109

k8 9.31·1010 * T 41.70 1.50·103

k9 2.59·1011 * T 1.10 1.15·1014

k10 3.08·1010 * T 1.10 1.37·1013

All barriers and prefactors for the elementary processes are given in Table 2.2.

2.11.2 Catalytic Cycle
The second reaction process consists of a simple model catalytic cycle. Two reactants A and B
form a complex (∗AB) with the catalyst (∗) in a pre-equilibration step. A subsequent reaction
forms the reaction product P and restores the catalyst’s initial state. Reaction mechanisms
of this type are frequently encountered in homogeneous catalysis and enzymatic reactions.
The reaction equations are given in Fig. 2.11. This specific reaction model is based on work
by Pollice [82].

*

*A

*AB

P
A

B

D

k1 k2k6

k4

k3

k5

Figure 2.11: Reaction network of the catalytic cycle model. Reactants A and B form an activated com-
plex with a catalyst (*), which reacts to form the reaction product P in a subsequent step.
The ki are rate constants for the respective elementary steps.

We differentiate between two cases: the undisturbed catalytic reaction and the cycle with
a side reaction (k6) leading to a removal of reactant A, e.g. by decomposition. Tables 2.3 and
2.4 show the initial homogeneous feed composition and the rate constants of the catalytic
cycle model, respectively.
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Table 2.3: Feed concentrations for the catalytic cycle model.

species concentration

[mol/l]

[A]0 1.0

[B]0 1.0

[∗]0 0.01

[P]0 0.0

[D]0 0.0

[∗A]0 0.0

[∗AB]0 0.0

Table 2.4: Rate constants for the catalytic cycle model.

reaction prefactor barrier rate constants

[a.u.] [kcal/mol] @ 700K [a.u.]

k1 1.0 2.0 2.37·10−1

k2 10.0 1.0 4.87

k3 1.0 2.0 2.37·10−1

k4 10.0 6.0 1.34·10−1

k5 1.0 1.50 3.40·10−1

k6 1.0·103 5.00 2.75·10−5

2.11.3 CO oxidation on Pt
The catalytic oxidation of carbon monoxide to carbon dioxide is a classical example for a
reaction following a Langmuir-Hinshelwood mechanism [83]:

CO + ∗⇀↽ *CO
O2 + 2∗ −→ 2 *O

*O + *CO −→ CO2 + 2∗
(2.39)

The oxidation of CO exhibits several interesting kinetic phenomena. For example, CO oxi-
dation on a Pt catalyst is known for its oscillatory kinetics. The simple irreversible kinetic
model used in this work is based on kinetic equations by Ertl and coworkers [84]. The de-
tailed mechanism contains the following elementary steps:

O2 + 2∗
kad,O2−−−→ 2Oad

CO + ∗
kad,CO−−−→ COad

COad
kdes,CO−−−→ CO + ∗

COad + Oad
kreac−−→ CO2 + 2∗

Oad + Pt
koxid−−→ PtOad

COad + PtOad
kred−−→ CO2 + Pt + 2∗

(2.40)
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Kinetic parameters and rate constants are given in Table 2.5.

Table 2.5: Rate constants for the CO oxidation model.

reaction prefactor [a.u.] barrier [kcal/mol] rate constants [a.u.] @ 535 K

kad,O2 1.25·104 1.0 4.88·103

kad,CO 1.0·103 0.0 1.0·103

kdes,CO 2.70·1010 20.0 1.83·102

kreac 9.40·108 10.0 7.73·104

koxid 2.80·10−1 1.0 1.09·10−1

kred 6.10·101 10.0 5.0·10−3

The analysis in this work always deals with the initial reaction regime, meaning very
short residence times. For this reason, the surface oxidation does not play a significant role
in the reaction kinetics.

2.11.4 CO Oxidation on RuO2

The CO oxidation on RuO2 is an extensively studied catalytic reaction system [12, 85–89].
In this work, we use a mean field MKM implemented as described by Temel et al. [12].
The model is propagated into a quasi stationary state by numerically integrating the corre-
sponding system of differential equations. The space of physical parameters for this model
is spanned by the partial pressures of O2 and CO as well as temperature. The original au-
thors[12] show, that in contrast to a kinetic Monte Carlo (kMC) model, the mean field model
does not accurately describe the kinetics of this reaction system. However, it is also stated
that the surface phase diagram as well as the sharp peak in turn over frequency (TOF) can
be reproduced using the mean field model. The elementary reaction steps in the mean field
MKM model involve two different adsorption sites on the RuO2 (110) facet, the twofold co-
ordinated bridge (br) and the fourfold coordinated (cus) site. An illustration of the position
of these sites is given in Figure 2.12.

cus

br

Figure 2.12: Top view of the RuO2 (110) surface structure. The box indicates the surface unit cell and
the two adsorption sites, the bridge site and the fourfold coordinated cus site are high-
lighted [12].
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The following reaction steps are included:

CObr
k1−−⇀↽−−

k−1
COgas + ∗br

COcus
k2−−⇀↽−−

k−2
COgas + ∗cus

2 Obr
k3−−⇀↽−−

k−3
O2,gas + 2∗br

2 Ocus
k4−−⇀↽−−

k−4
O2,gas + 2∗cus

Obr + Ocus
k5−−⇀↽−−

k−5
O2,gas + ∗br + ∗cus

CObr + Ocus
k6−−→ CO2,gas + ∗br + ∗cus

CObr + Obr
k7−−→ CO2,gas + 2∗br

COcus + Ocus
k8−−→ CO2,gas + 2∗cus

COcus + Obr
k9−−→ CO2,gas + ∗br + ∗cus

(2.41)

The rate constants for all listed elementary steps are given in Table 2.6.

Table 2.6: Rate constants for the CO oxidation model on RuO2 for two different conditions: T = 600 K,
pCO = 7.0 atm, pO2 = 1.0 atm and T = 350 K, pCO = 4.0·10−10 atm, pO2 = 1.0·10−10 atm [12].

reaction rate constants rate constants

@ 600 K [a.u.] @ 300 K [a.u.]

k1 2.80·104 1.40·10−6

k−1 7.20·108 5.00·10−2

k2 9.20·106 2.90·10−2

k−2 7.20·108 5.00·10−2

k3 4.10·10−21 2.00·10−49

k−3 9.70·107 1.00·10−2

k4 2.80·101 5.50·10−12

k−4 9.70·107 1.00·10−2

k5 3.40·10−10 1.10·10−30

k−5 9.70·107 1.00·10−2

k6 1.20·106 1.10·101

k7 1.60 9.20·10−10

k8 1.70·105 0.40

k9 5.20·102 1.90·10−5
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Chapter 3

Results

"Komm hol das LASSO raus..." - Julius H.

3.1 Robust Sparse Polynomial Regression in Transformed
Variables

The focus of this chapter is on the description of a novel kinetic modeling approach aimed
at identifying effective rate laws. As established in section 2.1, reaction networks can be de-
scribed by systems of rate equations (cf. equation 2.2). Looking at the functional form of
such rate equations, we can see that kinetic rate laws generally resemble sums over prod-
ucts of the terms [Xm]sjm . Such products can also be thought of as interactions terms in a
polynomial function. Restricting ourselves to effective local models, we can interpret kinetic
rate laws as sparse polynomial functions in terms of the reactant concentration taken to their
respective partial reaction order. This mathematical structure of the kinetic rate laws heav-
ily influenced the selection of methods, incorporated in the proposed modeling algorithm,
which tries to identify a robust and data efficient mean field representation of the underlying
kinetics from empirical data. The first section of this chapter will describe the general form
of the modeling approach, followed by several examples from classical kinetics as a proof of
concept. Ultimately, we apply the method to a catalytic reaction to highlight its capability
to differentiate between regimes of distinct effective kinetics. The work presented in this
chapter has been published in the Chemical Engineering Journal under the CC-BY license
[1].

3.1.1 Introduction
Detailed knowledge about reaction kinetics for large and industrially relevant reaction net-
works is the basis for a rational design and efficient operation of chemical reactors. However,
when studying a new catalytic system the underlying mechanism is in general unknown.
Concentration profiles obtained at different reaction conditions contain valuable information
about the (inter-) dependence of reactants and products. Extracting these dependencies to
gain a deeper understanding of the catalytic mechanism is of general importance in hetero-
geneous as well as in homogeneous thermal catalysis, on which we will focus here without
loss of generality. As illustrated in Figure 3.1 the central observable in form of a concen-
tration profile is independent of the catalytic process at hand. In homogeneous catalysis,
reactions are usually performed in a batch reactor. Probing the reaction mixture at different
points in time and quenching the respective samples directly yields a concentration profile.
When studying heterogeneous catalysts in a gas flow reactor the same information is con-
tained in profiles of concentrations versus residence time in the reactor bed. The residence
time can be adjusted by either modulating the gas flow through the reactor or by taking
samples at different points along the reactor tube.
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Figure 3.1: Concentration-time profiles (e.g. from flow (left) or batch (right) measurements) as central
quantity in the kinetic analysis of catalytic reactions.

Researchers have several system parameters at their disposal to influence the outcome
of the reaction. These comprise feed concentrations of the reactants, temperature, pressure,
as well as a multitude of reactor-specific technical parameters. By recording concentration
time profiles under different reaction conditions, information regarding the reaction kinetics
can be deduced. In mean-field chemical kinetics the rate of a given reaction is generally
expressed in form of rate laws for the time-dependent concentrations [Xi](t) of the 1 < i < N
reaction components (reactants and products),

d[Xi]

dt
= ∑

j
k j Mij ∏

m
([Xm]sjm) , (3.1)

where k j are rate constants, Mij are the elements of the stoichiometric matrix and sjm are the
stoichiometric coefficients of the reactants [35, 37]. Even for complex reaction mechanisms,
these rate laws can often be asymptotically approximated by effective rate equations with
only a few dominating terms. An example would be

d[P]
dt

∝ [A]νA · [B]νB , (3.2)

where [P] refers to the concentration of the product depending on the reactant concentrations
[A] and [B]. The powers νA, νB are then referred to as (partial) apparent reaction orders.
These simplified equations are generally only valid in certain reaction regimes. A famous
example for such effective equations is the Lindemann mechanism [90]. It describes the self-
activation of gaseous species with a subsequent reaction of the activated species. Under low
pressure conditions this reaction can be described by an effective second-order law, while
under high pressure the reaction is dominated by the subsequent step leading to an effective
first-order dependency.

A variety of methods has been developed in order to deduce such effective kinetic equa-
tion from concentration and rate versus time data. Particularly in heterogeneous catalysis,
such methods often start off from a detailed microkinetic model [5], either in mean field
approximation [39] or within surface arrangement-resolved kinetic Monte Carlo [4]. Es-
tablishing such a microkinetic model requires a detailed mechanistic understanding of the
reaction though, the lack of which is typically one of the prime motivations for establishing
effective kinetic mechanisms in the first place. Furthermore, the more complex the reaction
network, the more kinetic parameters like activation barriers or exponential prefactors need
to be determined on the basis of experimental data. This can lead to questionable inference
on the model parameters or even overfitting due to the lack of available data [91]. In ho-
mogeneous catalysis, Blackmond [92] established the concepts of reaction progress kinetic
analysis (RPKA) and graphical rate equations in 2005. This analysis investigates the depen-
dence of the reaction rate on regime-determining parameters like reactant concentrations.
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Building on these ideas, methods like the variable time normalization analysis (VTNA) by
Burés et al. [93–95] and nonlinear fitting techniques [82, 96] have been introduced. They
come with the advantage of directly operating on the concentration time profiles to obtain
effective reaction orders in the individual components. Additionally, such analyses have
proven to be robust against sparse and noisy data, straightforward to interpret and simple
to perform [93]. There are, however, also some severe caveats. Notably, a separate anal-
ysis of the kinetics in each reactant completely neglects any potential interaction between
multiple species. In experimental design [2], parameters which influence the outcome of an
experiment and can be controlled by the experimenter are referred to as factors. In order
to estimate the interactions of these factors, a proper factorial design is required that varies
multiple factor settings at the same time. Only if this or any prior knowledge of the sys-
tem shows that any potential interaction can be excluded, a separate analysis of all factors is
valid.

In general, many of the existing kinetic modeling techniques thus suffer from a priori
model assumptions. The latter are prone to introduce systematic errors and thus a non-
normal error distribution in the model predictions, in contrast to the Gaussian distributed
error that would be expected from statistical measurement errors. If the model structure
does not fit the physical problem underlying the data, the distribution of prediction errors
will correspondingly be skewed. This may be due to an important reaction pathway miss-
ing in the assumed mechanism, but also unnecessarily complicated models can be a source
of error. An analysis of the residual distribution would readily reveal such issues, but un-
fortunately it is often neglected. In cases where the residuals are indeed provided [82, 91],
systematic deficiencies of the models become obvious immediately.

Within this perspective, we here introduce an algorithm for the systematic investigation
of formal kinetics from experimental data. Effective rate laws are determined from concen-
tration profiles acquired at different reaction conditions. Performing these measurements
according to statistical design [2] allows the algorithm to quantitatively evaluate interactions
between different experimental parameters. Centrally, applying well established statistical
methods [8, 55, 57] we directly incorporate the goal of normally distributed errors into the
optimization. At the same time, the algorithm determines relevant terms in the model func-
tion automatically [6, 45], making the approach to a certain degree free of a priori model
assumptions.

3.1.2 The Modeling Algorithm
The apparent reaction order can be understood as a measure of the sensitivity of the reaction
rate to a change in reactant concentration [93]. Similar, sensitivity parameters can also be
defined for other reaction conditions and are sometimes interpreted as physical quantities.
The algorithm, proposed below, is designed to determine effective rate laws by optimizing
these sensitivity parameters. This basic idea is closely related to VTNA. In VTNA, the de-
termination of the order in a certain reactant starts with a set of concentration versus time
profiles at different reactant concentrations. Then, if the time axes for all profiles are normal-
ized by the integral over the reactant concentrations raised to the correct power, all profiles
should coincide. Looking at eq. (3.2), we can identify this power (or exponent) as the ap-
parent reaction order. It is the sensitivity parameter of the reaction rate with respect to the
reactant concentration. In VTNA, the correct value is typically obtained manually in a trial
and error process or in a graphical manner, as coinciding curves can be easily identified by
visual inspection.

In contrast, our algorithm uses a more quantitative criterion to identify the correct sen-
sitivity parameters. VTNA works, because the relation between the change in product con-
centration and the reactant concentration becomes linear, if raised to its respective reaction
order. How linear a relation between two variables is, can easily be analyzed by perform-
ing linear regression and observing the quality of the resulting model. A well established
method, based on the same principle, is the Arrhenius plot. There, both temperature and
rates are scaled by a nonlinear transformation revealing a linear relationship with a slope
equal to the activation barrier of the process. In the case of the Arrhenius problem, the non-
linear transformations are known from the underlying theory and we are interested in the
slope of the resulting linear model. In contrast, if we want to determine effective rate laws, it
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is known that there should exist a set of transformations, which leads to a linear relationship.
Yet, this set of transformations is not easily accessible without detailed knowledge of the re-
action mechanism. Notwithstanding, knowing that a linear relationship should exist, the
quality of the regression model can be used as a measure of linearity and we can formulate
an optimization problem to automatically identify reaction orders and sensitivity parame-
ters for various factors influencing the reaction. These sensitivity parameters are the key
quantity in our approach, as they are supposed to capture all nonlinear effects encountered
in reaction kinetics.

We assign one of these sensitivity parameters to every factor, which influences the rate
of the reaction. For reactant concentrations, these parameters correspond to their respective
partial reaction orders. And, as we will show in a later section, also the apparent barrier can
be identified as such a sensitivity parameter by rescaling the reaction temperatures. In the
regression model we want to set up, these parameters are the exponents, which introduce
nonlinear effects to every factor. So, if we vary the concentration of reactant A ([A]) in a
reaction, the corresponding quantity, which enters our model, would be

{A} = [A]αA , (3.3)

where {A} denotes the transformed reactant concentration and αA is the corresponding sen-
sitivity parameter. As this is a type of power transformation [55], we will also refer to these
sensitivity parameters (α) as transformation parameters. If reactant A contributes linearly to
the reaction rate, e.g. in a simple first order reaction, the corresponding α would be 1. For a
second order reaction in A, on the other hand, the optimal α should be close to 2.

Model function As long as we are only interested in a single influencing factor, for ex-
ample we only want to vary the concentration of one reactant, a linear model is sufficient
to describe the concentration profile, given the correct scaling of the input and output vari-
ables. In a more general case, however, we have multiple reactants and additional factors
like pressure or temperature which influence the rate of a chemical reaction. Further, we
would like to investigate the influence of these multiple factors on the production rate of
possibly even multiple product species. Therefore, we need a more complex model ansatz,
which allows for possible interactions and higher order terms. For this reason, our algo-
rithm relies on polynomial functions to describe effective kinetic models. Let us consider a
simple reaction with two reactants A and B forming the product P. The only factors we want
to account for are the concentrations of these two reactants. In that case, the corresponding
polynomial would be

d[P]
dt

= const. + k1 · {A}+ k2 · {B}+ k3 · {A} · {B}+ k4 · {A}2 + k5 · {B}2 + ... (3.4)

with ki the unknown coefficients of the respective polynomial terms, which need to be deter-
mined in the regression. Note that this is now a function of the transformed factors, mean-
ing the transformation parameters (α) are already contained in the terms of this sum. Such
a polynomial contains not only higher powers of the input variables but, most importantly,
also the necessary interaction terms between multiple factors, meaning e.g. the product
{A} · {B}. At the same time, polynomial regression is still linear in the unknown parame-
ters, meaning that the quality of the model can still be used as a measure of adequacy for
the determined sensitivity parameters. However, being too rigid with the functional form
of our model may introduce systematic errors. To account for this we use the least abso-
lute shrinkage sparsification operator (LASSO) [6, 45], to let the the algorithm itself decide,
which polynomial term to include in the final model. LASSO is a modification to the stan-
dard linear regression, which, by introducing a regularization term, is able to set regression
coefficients to 0. This way, all terms which do not significantly contribute to the solution
based on the available data, are automatically canceled out. Further, the remaining (non
zero) coefficients not only tell us, which polynomial terms contribute to the effective model.
The magnitude of the LASSO coefficients give us a measure of the relative importance of
different polynomial terms or, in this context, kinetic processes. Additionally, the sign of the
coefficient indicates a positive or negative influence on the reaction rate.
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Despite selecting only the significant terms from the polynomial ansatz, we do not want
to expand eq. (3.4) to arbitrary order, as this would result in a huge amount of available
terms to choose from. The final result will depend on the order up to which these ansatz
terms are expanded and not every expansion order is reasonable for every problem. Hence,
we need to define some guidelines to choose an appropriate ansatz order. First of all, the
order of the ansatz terms should generally not exceed the number of factors in our reaction.
If we only consider two reactant concentrations for our model, an expansion up to 3rd order
would be pointless, as we can not define any 3-factor interactions in that case. Including
e.g. temperature as a third factor, such 3rd order terms could become relevant and should
be included in the ansatz. Further, we only consider interactions (or multilinear) terms,
meaning product terms of multiple different factors like {A} · {B} as opposed to the purely
quadratic ({A}2) or higher power ({A}3, {A}4, ...) terms. The reasoning behind this is that
in some cases these terms are already captured by the power transformation in the original
factors. For example, a quadratic term with transformation parameter α = 1 is equivalent to
a linear term with α = 2(

[A]1
)2

= {A}2
αA=1 = {A}αA=2 =

(
[A]2

)1
. (3.5)

This, of course, does only hold for very simple systems with only one polynomial term
containing [A]. There are exceptions, where including the purely quadratic terms can be
beneficial though, for example, when the target property (here the reaction rate) shows an
extreme point within the region, we want to describe and we will further illustrate and
discuss this point below. In general, however, for an initial analysis we neglect these terms.
We focus on the remaining pair and higher-order interaction terms. These are especially
relevant for factors, which are reactant concentrations. In classical collision theory [97], the
collision probability of multiple species directly depends on the product of their respective
concentrations. This directly transfers into chemical kinetics as a collision (or at least spatial
proximity) is an essential requirement for any kind of reaction to take place. This is the
reason, why these interaction terms often appear in kinetic rate laws and hence we need
to consider them in our model ansatz. The probability of many-body collisions, of course,
depends on the type of reaction at hand. Orders of four or higher, however, do usually
not contribute significantly, and thus provide a natural upper bound. Another important
point is the amount and type of data available, limiting the number of parameters, which
can reasonably be estimated. Adding higher order terms also introduces additional degrees
of freedom, giving the algorithm more flexibility. This can result in a more accurate model,
which in turn will be less interpretable due to a multitude of selected terms. There are, thus,
various things to consider when choosing the order of the ansatz polynomial. In practice,
a reasonable rule of thumb is to choose a 2nd order ansatz for two input features and a
3rd order ansatz for more than two features. A schematic, showing how the initial factors
translate into the target property for the simple example A + B −→ P, is given in Figure 3.2.
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Figure 3.2: Model structure for the relation between reaction factors and product rate. The factors (or
input features), in this case, are the concentrations of the reactants. This is an example for
a reaction with two reactants A and B and a single product P. The reactant concentrations
are transformed by the current guess of their respective reaction orders (transformation
parameters α). Based on these transformed variables, a polynomial model is constructed.
In the regression, LASSO selects only those terms, which significantly contribute to the
target variable, here the product rate.

Cost function For the optimization of the sensitivity parameters, a quantitative objective is
necessary. We want to obtain a statistically robust model, which at the same time achieves a
reasonable fit of the provided data. The quality of the fit could be quantified by simply look-
ing at the residual norm of the model. However, at the same time, we want to make sure,
that the LASSO regression does not introduce systematic errors into the model by choosing
unreasonably complex polynomial terms to enforce small residuals. To achieve this, we ex-
plicitly consider the distribution of the model residuals in our cost function. As we assume
the statistical noise in the underlying data to be normally distributed, we also want the resid-
uals of our model to show such a distribution. A normally distributed model error implies
that everything the model can not explain is to be assumed as statistical noise. To quantify
this criterion, the probability plot correlation coefficient (PPCC) introduced by Filliben [7]
is used (cf. section 2.5). The PPCC quantifies the normality of a statistical distribution as a
value between 0 and 1. The closer to 1, the closer the distribution is to being normal. We
then end up with two separate objectives for the optimization, the quality of the fit and the
normality of the error distribution. This corresponds to a vector valued cost function which
can be written as

min
α

{
|R|Fro(α),−PPCC(α)

}
, (3.6)

where |R|Fro is the Frobenius norm of the residual matrix, which for a one dimensional
residual vector is equal to its euclidian norm. The negative sign in front of the PPCC denotes,
that we want to maximize the PPCC value to get as close to normality as possible.

Estimation of the transformation parameters A common approach to solve a multi ob-
jective problem like equation 3.6 is to introduce a scoring function, which translates the
objective vector into a scalar. For example, we could minimize the norm of the objective
vector. Such a scalar score then allows for the use of standard optimization techniques. A
severe drawback, however, is that we introduce some bias by weighing the different objec-
tives in the scoring function. To avoid introducing such a bias in this step of the algorithm,
we utilize the multi-objective evolutionary algorithm NSGA-II [8]. A multi-objective opti-
mization usually does not result in one optimal set of parameters satisfying all objectives at
the same time. Instead, we rather end up with a set of possible models forming the so called
pareto front (PF) as illustrated in Figure 3.3. These pareto-optimal models display different
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trade offs between the multiple objectives, where an increase in one objective would lead
to a lower score in another. Hence, it is not straightforward to consider one pareto-optimal
model to be better than any other one, as it is not possible to find a model with a higher score
in all objectives.
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Residual Norm
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Figure 3.3: Schematic of the pareto front for a kinetic modeling problem. The two objectives are the
PPCC value of the model residuals and the norm of the residual vector.

In this context, the perfect model would achieve a PPCC value of 1 and a residual norm
of 0. Looking at the schematic pareto front in Figure 3.3, we see that these two objectives
interfere with each other. The ideal model would be located in the upper left corner of the
plot, within the infeasible region. Points on the pareto front, close to this ideal model, would
provide a reasonable choice. Solutions with even lower residuals can only achieve this at the
cost of neglecting the error distribution. Going to the other end of the pareto front, there are
models which achieve an almost perfect normal distribution of errors but can not provide
a reasonable fit anymore. Ultimately, the solution offering the best trade off between all
objectives needs to be chosen based on additional criteria and information. Below, we will
discuss characteristic features of the pareto front, that can be taken as strong indicators for
valid choices. A schematic, summarising all relevant steps of our approach, is shown in
Figure 3.4.
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Figure 3.4: A schematic of the optimization algorithm for obtaining the model transformation parame-
ters. Using the NSGA-II algorithm, we optimize the model parameters for the power trans-
formation, which enter the polynomial model and the LASSO regression. For each LASSO
model, both the residual norm and distribution of errors (in terms of the PPCC value) are
determined and used as the cost function during the optimization. While the initial param-
eter candidates are chosen randomly, during the optimization the pareto optimal solution
emerge.

Pareto Front Analysis and Model Selection The huge amount of pareto fronts generated
in the temperature scan analysis mandates an automatic model selection process. In this
work a rudimentary method was used. Basically, we analyze the distances between neigh-
boring pareto optimal points along the residual axis. We determine the pairwise distances
of all subsequent points and select those pairs, which are separated by more than k (default
k = 3) times the average distance. This way we locate the gaps in the front. From these gaps,
we choose the one at the lowest residual value. Here we select the final model again to be the
data point on the smaller residual end of this gap. In case the pareto front is approximately
continuous with no significant gaps along the residual axis, the algorithm selects the model
closest to the median of the residual values of all solutions.

3.1.3 Implementation Details
Software packages The entire optimization algorithm is implemented in Python. It relies
on the NSGA-II implementation as provided in the Pymoo [98] multiobjective optimization
package. The implementation of the LASSO algorithm from scikit-learn [99] is used and the
PPCC calculations are based on scipy [100].

Data Scaling The optimization of the transformation parameters is not directly performed
on the raw data provided as input for the algorithm. Before the power transformation is
applied, the data (both predictor and response data) is shifted to all positive values. This is
done, as the Tukey power transformation is not defined for negative data. The same holds
for the Box-Cox transformation [2]. The algorithm also has the option to use the Yeo-Johnson
transformation [58], which can deal with negative data. Further, when dealing with reaction
kinetics, concentrations of the reactants as well as product rates should in general have posi-
tive values. For the sake of generality, however, the shift of the data is always performed. Be-
tween the power transformation and the regression task, all individual predictors are scaled
to zero mean and unit variance to eliminate any bias in the LASSO regression caused by the
absolute quantity of the feature. The standardization of these predictors leads to the LASSO
coefficients mainly having values in the interval [-1,1]. All these steps are linear transfor-
mations on the data, which can be reverted as along as the shift and scale parameters are



3.1. Robust Sparse Polynomial Regression in Transformed Variables 37

stored. The initial shift of the data to positive values has also implications on the extrapo-
lation range of the fitted models. During the procedure, the minimal data value for every
feature is shifted to a predefined minimal value (default zeroshift = 1). The applied shift
is determined based on the training data. When we predict for feature values outside the
training range, the applied shift may lead to negative values. In case of some transformation
parameter (α) smaller 0, the resulting model prediction will be undefined. This problem, in
principle, can be eluded by increasing the zeroshift value. Unfortunately, shifting the data
to larger absolute values decreases its sensitivity to the transformation parameters leading
to a worse fit. An example is given for the CO oxidation model in the appendix (cf. Figure
A.2).

LASSO Regularization Strength The LASSO regression requires a regularization strength
parameter as input. Usually, this parameter is determined using e.g. a k-fold cross vali-
dation. To avoid repeating this cross validation in every iteration for every individuum in
the NSGA-II optimization (which would drastically increase the computational cost), we
decided to determine a global regularization strength once in the beginning with all trans-
formation parameters (α) equal to 1. This is then kept fix for the entire optimization. This
way, we also avoid possible oscillations with parameters jumping back and forth in every
iteration, hindering the convergence of the genetic algorithm.

Temperature Input When we want to use the algorithm to identify apparent activation
barriers by varying the temperature we make use of the following relation:

k = k0 · exp
−EA
R · T = k0 ·

(
exp

−1
R · T

)EA

= k0 · (exp−βM)EA , βM =
1

RT
(3.7)

This allows us to identify the apparent barrier as the sensitivity parameter of the (exp−βM)
term. As these sensitivity parameters are exponents applied in a power transformation, we
have to make sure, that their numerical values lie within reasonable boundaries. For this
reason, we need to scale the universal gas constant R to a suitable energy unit, such that
the expected exponent does not become too small or too large. For example, if the expected
barrier lies in the range of 1 kcal/mol to 20 kcal/mol, we would insert R in units of 10kcal

mol·K . The
exponent determined in the algorithm then should have a value between 0.1 and 2. When
rescaling R to a suitable unit, we often end up with extremely small values for (exp−βM)
(e.g. on the order of 10−32). Such values can be rescaled by a constant to ensure numerical
stability. Such a scaling should not change the relative curvature between predictor and
response and hence not affect the determined activation barriers.

[c · exp (−βM · q)]
EA
q = c

EA
q · [exp (−βM · q)]

EA
q (3.8)

where q and c are constants scaling the feature values to a reasonable numerical range with-
out changing the curvature, as the prefactor does not depend on βM. By choosing q in terms
of an energy conversion factor the fraction EA

q becomes dimensionless. Another side effect
of the exponential sensitivity of the rates on temperature is that the scaled temperature val-
ues (exp−βM) may span several orders of magnitude, if the temperature region of interest
is large. For example, a temperature range of 200 K in some cases can lead to a span of 8
orders of magnitude in (exp−βM). This huge range again can lead to numerical instabilities
during the optimization. On the other hand, small temperature ranges may become an is-
sue from an experimental point of view, as the accuracy of thermostats is limited, especially
at elevated temperatures. We found a range of around 100 K to be a reasonable trade off
between these two boundaries. ´

Power Transformation of the Response In some cases, nonlinearities on the predictor vari-
ables are not enough and the functional relationship can be simplified when also considering
a transformation of the response variables. Again, we can apply the Tukey-transformation
and obtain:

d[P]
dt

= (const. + k1 · {A}+ k2 · {B}+ k3 · {A} · {B}+ ...)(β) (3.9)
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We assume the transformations on the response (β) to be robust over all possible model
functions, meaning we only have one global set of response transformations for the entire
population during the NSGA-II optimization. Therefore, we do not explicitly optimize β, but
instead estimate every few iterations, which β is on average the best possible transformation
over the entire population. This way, we not only reduce the dimensionality of the prob-
lem, but also end up with a more stable optimization, as we do not play off two nonlinear
transformations against each other.

Start

Create population

Float Random Sampling

Evaluate Cost

Function

Residuals, PPCC

Natural Selection

Rank and Crowding

Survival

Offspring

Simulated Binary

Crossover

Mutation

Polynomial Mutation
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Maximum Likelihood

yesno
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no

yes

Converged?

Stop

Standard NSGA-II

Figure 3.5: Schematic of the NSGA-II optimization including the slight modification for estimating the
transformations of the response variables.

While such transformations of the response are implemented in the modeling algorithm,
the results presented in this chapter do not require this additional nonlinearity. However, in
the following chapters, approximate models will include this response transformation.

3.1.4 Validation Test Case: Classical Examples of Formal Reaction
Kinetics

Generation of Artificial Data Sets Synthetic concentration versus time data is obtained by
numerically integrating the partial differential equations given by the reaction rate laws for
these processes. A simplified one-dimensional transient plug flow reactor (TPFR) model is
simulated, applying the method of lines [101] for the discretization along the reactor axis.
Numeric approximations to the time derivatives of the concentrations have been obtained
from central differences. For this purpose, the reaction has been simulated at different flow
rates. In our idealized reactor model, a change in flow rate is equivalent to a change in
residence time. At constant volume (reactor length), a change in residence time in a TPFR
model is in turn equivalent to a change in reaction time (time before quenching) in a batch
reactor. Therefore, in the limit of short residence times, we can estimate the reaction rate as
the change of the product concentration at the reactor exit.

d[P]
dt

∝
d[P]exit

dτ
d[P]exit

dτ
≈ [P]exit(τ + δτ)− [P]exit(τ − δτ)

2δτ

(3.10)

where t denotes the simulation time and τ refers to the residence time in the reactor. δτ
is the finite change in residence time used to approximate the derivative. As we are not
interested in the absolute values of the rates, in this work these derivatives with respect to the
residence time τ will be used as approximations to the actual rate. The examples discussed
in the following sections are all evaluated for short residence times and thus describe the low
conversion limit of the respective chemical processes. In this limit, the overall concentrations
are still very sensitive to the chemical reaction kinetics rather than to the transport through
the reactor tube. After all, the effective model we construct are designed to only describe the



3.1. Robust Sparse Polynomial Regression in Transformed Variables 39

reaction kinetic part of the reactor dynamics. Consequently, we generate training data for
our algorithm in a way, that is most sensititive to kinetic quantities.

The proposed algorithm is designed to operate on experimentally measured data. Ac-
cording to the central limit theorem [102], the accumulated effect of various noise sources in
an experimental setup tends to result in a normally distributed measurement error. This gets
more and more pronounced, the larger the data set is. As our algorithm relies on such nor-
mally distributed noise, we need to ensure that this distributional assumption is also valid
for our artificial data sets. To simulate statistical noise of the experimental setup, a noise
term based on normally distributed random numbers is therefore added to the computed
rate data. The magnitude of this noise term is 1% of the mean value of the respective rate
data set. Measurement errors for reaction rates around 1% to 2% are encountered in litera-
ture [103, 104] and a value of 1% lies well within the region, where the fitted rate models are
not significantly affected by the noise. Details on the influence of the magnitued of the noise
are given in the appendix.

The resulting data sets consist of the reactant concentrations at the reactor exit as well as
the change in concentration or rate of the product species at different reaction conditions.
In the examples shown in this work, these reaction conditions are characterized by differ-
ences in the feed composition (reactant concentrations) and temperature. It is important to
properly sample these conditions, in order to be able to capture especially the interaction
effects at play. For this reason we apply factorial experimental designs [2]. In these factorial
designs, instead of keeping all but one factor fixed and vary each individually, all factors
are varied at the same time. The simplest example of such a design is called a full factorial
design (FFD). In a FFD, all possible combinations of factor settings are sampled. Again, we
look at the example of the simple reaction A+B −→ P. If we want to vary the feed concentra-
tion of A and B, we first have to decide, how many settings we want to allow. Suppose we
want to look at three different concentrations of both A and B, the corresponding FFD would
dictate 3 · 3 = 9 necessary experiments to sample all possible combinations. However, the
amount of experiments for a FFD quickly becomes infeasible, if we increase the number of
levels or factors. Therefore, such FFDs are only applicable for simple experimental setups
or, in our case, simple reaction examples. The advantage of the FFD is that it contains the
maximum amount of information possible about higher order and interaction effects. For
more complex problems, we can often reduce the number of experiments by sacrificing in-
formation on effects beyond a certain order. Such designs are then generally referred to as
fractional factorial designs. Most of the test cases in this study deal with simple reactions
with only two to three factors. For these cases, we will use FFDs to sample the respective
reaction conditions. In a later example, we will make use of a very efficient screening design,
to reduce the number of required experiment for a slightly more complex chemical system.

The Isothermal HBr Reaction As a first test, we apply our algorithm to determine an effec-
tive rate law for the hydrogen bromine reaction at constant temperature. A set of concentra-
tion and rate data obtained at 25 different feed compositions is used to deduce the reaction
orders in both reactants. This data set as well as the underlying data sets for the following
sections are explicitly provided in the SI.

As we deal with two factors (the concentrations of H2 and Br2) in this first example, we
choose a 2nd order ansatz for the isothermal HBr problem. Feeding reactant concentrations
and product rates into our algorithm, we obtain the pareto front shown in Figure 3.6 a).
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Table 3.1: Model parameters and objective values for five selected pareto-optimal HBr models from
the pareto front in Figure 3.6.

α[Br2]
α[H2]

Residual PPCC dominating LASSO term

Solution 1 0.658 1.273 0.259 0.961 {Br2} · {H2}

Solution 2 0.518 0.985 0.321 0.989 {Br2} · {H2}

Solution 3 0.486 0.916 0.352 0.995 {Br2} · {H2}

Solution 4 -4.066 2.908 1.258 0.995 {H2}

Solution 5 -7.121 4.511 1.867 0.996 {H2}
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Figure 3.6: a) Pareto front for the isothermal HBr problem. The NSGA-II optimization is performed
on a population of 1000 individuals. Five representative pareto-optimal solutions are high-
lighted with their respective effective reaction orders and model parameters given in Table
3.1. b) Distribution of reaction orders α for both H2 and Br2 over the entire population. c)
Parity plot (predicted reaction rates vs. reference rates from microkinetic model) for solu-
tion 2. d) Residual distribution for solution 2. e) LASSO regression coefficients for solution
2.

Each point on the pareto front resembles a possible solution to the modeling problem.
These solutions differ in the transformation parameters α on the reactant concentrations, i.e.
the apparent partial reaction orders, and they differ in the set of dominant model terms se-
lected by LASSO. Recall that these model terms are combinations of reactant concentrations
which themselves are subject to a nonlinear transformation through the reaction order. For
the isothermal HBr problem, the pareto front is composed of three distinct domains of so-
lutions. The majority of solutions show comparably small residuals and are spread over a
wide range of PPCC values. The other two domains show a slight increase in PPCC at the
cost of a significant increase in model residuals. The transformation parameters, i.e. the re-
action orders in the dominating regression term, for five representative solutions are given
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in Table 3.1. Solutions 1, 2 and 3 are located within the major domain of the front. All three
models show reaction orders for Br2 close to 0.5 and for H2 roughly equal to 1. They thus
reproduce the effective rate law from Bodenstein and Lind [78] with the underlying radical
reaction mechanism. Solutions 4 and 5 are located in other domains of the front. They show
vastly different parameter sets which cannot be reasonably interpreted as reaction orders.

Figure 3.6 b) shows that this structure of the pareto front is also resembled in parameter
space, where the distribution of possible reaction orders is arranged in three domains. This
means, that all solutions within one domain of the pareto front show very similar transfor-
mation parameters. Switching from one domain to another does not only go with a change
in parameters. Also the dominating LASSO coefficients change, meaning the model has an
overall different functional form. For all solutions located in domain 1, only the interaction
term {Br2} · {H2} contributes predominantly to the rate law, while the largest coefficient in
solutions 4 and 5 corresponds only to the concentration of hydrogen {H2}. This behavior
exemplifies the flexibility of our approach. As soon as all possible trade-offs for a fixed func-
tional form are exhausted, LASSO allows for the switching to an alternative model which
can provide additional pareto-optimal solutions. This discontinuous structure of the pareto
front also allows for a selection of interesting solutions without prior knowledge on the
desired result. Pareto solutions located close to a discontinuity of the front resemble an ex-
tremum. These points describe either the maximum PPCC value, or the minimal residual
norm for a given set of LASSO terms. Changing the transformation parameters (α) any fur-
ther, would result in the LASSO optimization converging towards another set of terms and
hence a different functional form of the resulting rate law. Further, the ideal solution should
show a high PPCC value while maintaining a reasonably small residual norm. For most
pareto fronts generated by our algorithm, these solutions are located in the upper left cor-
ner (e.g. in Figure 3.6). For the HBr test case, the pareto front shows a clear kink in this
region, followed by a large discontinuity. Following this reasoning for a chemically reason-
able region of the pareto front, we should find the best possible solution at the upper edge
of domain 1. And indeed solution 3 does show the expected reaction order of almost exactly
3/2. In the following sections we will show, that following such a heuristic does also result
in chemically reasonable solutions for other systems, where we do not know the expected
outcome in advance.

A closer look at the prediction quality of solution 2 is shown in Figure 3.6 c). The partially
negative values for the reaction rate in this figure result from the rescaling and shifting of
the data during the modeling procedure. This is a technical requirement and details are
given in the SI. Within the limits of 25 available data points, the error distribution for this
model shown in Figure 3.6 d) roughly resembles a Gaussian shape, resulting in its high PPCC
value. While the LASSO regression is relatively robust against small sample sizes, evaluating
this PPCC value will become the bottleneck of the proposed algorithm with respect to the
required amount of data points. As the PPCC value ultimately compares two distributions,
its significance depends on how well the shape of these distributions is captured by the
available data. While the quality of the PPCC increases with larger data sets, it is generally
capable of distinguishing between different distributions with remarkably small data, way
below 100 points [7]. The 25 data points used in this example, however, are probably close
to a minimum size in order to obtain reasonable results. A closer look at the convergence
of the PPCC value with respect to the number of data points is provided in the SI. Further,
the model error is small with a relative root mean squared error (RMSE) of 4.2%. Another
interesting result is, that the LASSO algorithm chooses exactly only one polynomial term for
this model of the HBr rate, perfectly reproducing the literature known effective kinetic law.

Estimating Temperature Effects in the HBr Reaction In a second data set, additionally
also the temperature of the Hydrogen Bromine reaction is varied to illustrate the effect of
temperature as another factor. A total of 45 concentration profiles were full factorially sim-
ulated within a temperature range between 840 K and 860 K. This temperature window is
chosen to be that small, as the HBr reaction shows a very high sensitivity with respect to
changes in temperature. Keeping the temperature variations small results in an effect on the
reaction rate of similar magnitude compared to variations in feed concentrations. This pre-
vents one factor from dominating the LASSO regression. Nevertheless, larger temperature
ranges can also be realized within certain limits. A detailed discussion on this, as well as
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the complete data set are provided in the SI. We can, however, not directly use the temper-
ature data in order to determine its effect in our approach. If we assume an Arrhenius-like
behavior for the temperature dependency of a general rate constant k, we can rearrange the
corresponding Arrhenius equation as follows

k = k0 · exp
(
−EA
R · T

)
= k0 ·

(
exp

(
−1

R · T

))EA

= k0 · (exp (−βM))EA = k0 · T̂EA

βM =
1

RT
, T̂ = exp (−βM)

(3.11)

with k0 the pre-exponential factor and R the universal gas constant and T the temperature.
We define T̂ as the rescaled temperature values exp(−βM) and will use this notation in the
following for brevity. By this rearrangement we can identify the apparent barrier EA as the
sensitivity parameter of the reaction rate to a change in T̂. Thus, by feeding the algorithm
these scaled temperatures additionally to the reactant concentrations, an estimate for the
reaction barrier can be obtained. As we now have an additional input feature in terms of the
T̂ values, we choose a 3rd order polynomial ansatz for this temperature-dependent problem.
Figure 3.7 shows the resulting pareto front for this data set. The general structure of this front
is similar to that of the isothermal problem.
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Figure 3.7: a) Pareto front for the temperature-dependent HBr problem. The NSGA-II optimization
is performed on a population of 1000 individuals. Five representative pareto-optimal so-
lutions are highlighted with their respective sensitivity parameters given in Table 3.2. b)
Distribution of reaction orders α for H2, Br2 and the scaled temperature values T̂ over the
entire population. c) Parity plot for solution 2. d) Residual distribution for solution 2. e)
LASSO regression coefficients for solution 2. k1 indicates the regression coefficient, which
significantly contributes to the solution. The resulting approximate rate law is given in
eq. (3.12).

Model parameters for five representative solutions are again given in Table 3.2. By means
of the heuristics discussed for the isothermal case, solution 2 is located in the chemically
reasonable area of the pareto front. Its reaction orders for hydrogen and bromine again
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Table 3.2: Model parameters and objective values for five selected temperature-dependent pareto op-
timal HBr models corresponding to the pareto front in Figure 3.7.

α[Br2]
α[H2]

αT̂ Residual PPCC

Solution 1 0.546 1.085 0.430 0.077 0.991

Solution 2 0.550 1.094 0.438 0.082 0.996

Solution 3 0.551 1.103 0.442 0.084 0.997

Solution 4 0.546 1.115 0.449 0.097 0.997

Solution 5 7.221 0.860 0.631 0.375 0.999

reproduce the expected literature rate law of 3/2. The apparent activation barrier results in
a sensitivity parameter of 0.438. Taking into account the proper rescaling of the T̂ values, this
inherently dimensionless sensitivity parameter directly translates into an activation barrier
of 43.8 kcal/mol. Details on this scaling procedure are provided in the SI.

Levy [80] performed an experimental study on the high temperature kinetics of the HBr
formation in the range between 600 K and 1400 K, extending the original study by Boden-
stein and Lind [78] which was performed at around 500 K. The artificial data set created in
this work was sampled around 800 K well within this high temperature regime. In exper-
iment an apparent activation barrier of around 40.6 kcal/mol [80] was found, which is in
reasonable agreement with the 43.8 kcal/mol determined by our algorithm. Looking at the
resulting LASSO coefficients for this solution (Figure 3.7 e)), now the 3-body interaction of
all factors is dominating. For this solution the effective rate law would correspondingly have
the form

d[HBr]
dt

∝ k1 ·
(
[Br2]

0.550 · [H2]
1.094 · (exp (−βM))0.438

)
(3.12)

with k1 the LASSO coefficient for the dominant term as indicated in Figure 3.7 e).

A Homogeneously Catalized Reaction Cycle As a second prototypical case for reaction
kinetics we now turn to a simple model catalytic cycle. One or more reactant molecules
form an active complex with the catalyst in a pre-equilibrium. This active complex then
irreversibly reacts to form the product in a rate-determining step, regenerating the catalyst.
To test, whether our algorithm is able to capture the kinetics of such a catalytic process, we
create test data based on the model reaction network given in Figure 2.11. The first test
deals with the catalytic cycle without any side reaction (k6 = 0). Concentration profiles
are obtained for a range of different feed compositions starting at a 1:1 ratio of A to B up
to a tenfold excess in B. For each feed ratio, 25 data points based on variations in the feed
concentrations of A and B are simulated and an analysis using the modeling algorithm with
a second-order ansatz for the considered LASSO terms is performed. For each analysis, one
model is selected from the pareto front with the same heuristics regarding discontinuities in
mind as discussed before for the HBr problem. The resulting reactions orders in A and B for
these selected solutions are shown in Figure 3.8.
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Figure 3.8: a) Effective reaction orders versus excess in reactant B for the model catalytic cycle without
side reaction. b) LASSO coefficients for the selected solutions at different A:B ratios. The
coloring indicates the magnitude of the coefficients, which corresponds to the significance
of this term to the overall solution. At a feed ratio of 1:1 only the interaction between A and
B contributes to the corresponding rate law, while with increasing excess in B the linear
term in A becomes more and more dominant.

While initially the orders in both reactants are close to 1 at a feed ratio of 1:1, the sen-
sitivity of the reaction rate to the concentration of B quickly decreases to zero. The overall
reaction order thus decreases from an initial second-order process to a first order for large
excess values. This is to be expected, as ultimately the reaction rate only depends on the
concentration of the limiting reactant. This simple example illustrates that the algorithm is
capable of identifying such changes in the reaction regime, as clearly visible by the change
in reaction orders. Further, as can be seen from Figure 3.8 a), the sensitivities with respect to
the individual reaction orders are observed individually. While the apparent order in reac-
tant B steadily decreases with an increasing excess in B, the order in A only shows a slight
decrease. The overall reaction order concomitantly switches from initially a second-order
process depending on A and B to an effective first-order reaction limited only by A. This
way it may easily be deduced which reactant is limiting the overall rate without any ini-
tial assumptions. Further insight can be provided by the LASSO regression coefficients, as
illustrated in Figure 3.8 b). With increasing excess, the dominating LASSO term switches
from the product of both reactant concentrations to purely the concentration of A. This also
explains the increasing deviations of the reaction order in B from the expected behavior, as
the overall kinetic model becomes less and less sensitive to the concentration of reactant B.
In the extreme case of an A:B ratio of 1:11, the term {B} does almost not contribute to the
overall model anymore and hence also the reaction order in B is not well defined.

Reaction Cycle with Substrate Decomposition In a next step, we introduce the decompo-
sition of reactant A as a side reaction. This leaves us with two target variables, the reaction
rate towards product P and side product D. First, we set up a data set of 25 points varying
only the feed concentrations at a constant temperature of 700 K. For the model ansatz again
2nd order terms are used, as we have two input features in the concentrations of A and B.
It is straightforward to generalize our algorithm to identify surrogate rate laws for multiple
targets. The main difference is an increase in the dimensionality of the objective space for
the optimization, as now PPCC values for both d[P]

dt and d[D]
dt need to be considered. Conse-

quently, this also entails a higher-dimensional pareto front, complicating the selection of a
final solution. The resulting pareto front is shown in the SI and exhibits a similar structure as
the previously analyzed 2D examples. Hence, at least for this 3D example, a manual model
selection by visual inspection was still possible as before.
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Table 3.3: Model parameters and objective values for selected models for the production rate of prod-
ucts P and D in the catalytic cycle with side reaction. The corresponding pareto fronts are
given in the SI.

α[A] α[B] αT̂ Residual PPCC
d[P]
dt 1.143 1.159 0.066* 0.159 0.995

d[D]
dt 1.131 -0.827** 0.051* 0.148 0.981

* in 100 kcal/mol, **not selected in LASSO solution

The optimum solution according to the heuristics discussed before yields the following
rate laws for equal feed of A and B

d[P]
dt

∝ [A]1.03 · [B]1.07

d[D]

dt
∝ [A]1.03 .

(3.13)

Again, the algorithm accurately captures the expected behavior. The rate towards the re-
action product P is identified to be dependent on both reactants A and B, while only A
contributes to the formation of side product D. Additionally introducing temperature ef-
fects as done for the HBr example leads instead to complications. In principle, it would
also be possible to obtain the two activation barriers for the individual reactions within one
model by using the scaled temperatures as an input variable twice. However, to make sure,
that only one temperature term contributes to each rate expression, such that the two bar-
riers are disentangled, would result in a constrained LASSO [105] problem. Unfortunately,
algorithms for the constrained problem are not yet commonly implemented in customary
statistics packages. In fact, the same issue arises for the partial reaction orders of the reac-
tants if the reaction network of interest contains different reaction pathways with drastically
different kinetics. If, for example, the decomposition of A would be a second order process,
e.g. due a self activation of the reactant being necessary, we would require two different
transformation parameters for the concentration of A. In that case, as discussed before, the
LASSO would need to be constrained to ensure disentangled results for the two reaction
products. A workaround is to fit two independent models for both product species. We
perform this individual analysis of the two target rates based on one data set. For this set
we vary not only the feed concentrations but also the temperature to enable an estimation
the activation barrier. Sampling these three factors in a 3-level FFD, we end up with 27 data
points, cf. SI. Having one additional input feature, the rescaled temperatures, we increase
the order of ansatz terms in this analysis to three. For both target variables, the rate towards
P and the rate towards D, the algorithm produces a (now 2D) pareto front and a final solution
can be selected as before. The resulting model parameters for these individual solutions are
given in Table 3.3. The activation barrier for the product formation is identified to be 6.60
kcal/mol, corresponding to the barrier of the rate limiting decomposition of the activated
catalyst complex. This is in nice agreement with the barrier for this step in the microkinetic
model of 6.00 kcal/mol. Also for the side reaction, an activation barrier of 5.10 kcal/mol is
obtained, in accordance with the reference value of 5.00 kcal/mol.

Effective Temperature Regimes for the CO Oxidation on Pt In industrial applications, the
question frequently arises under which conditions the regime of the reaction system may
change. This is important for the optimization of process and reactor parameters. To this
end, our robust modeling approach can provide valuable insight. As previously shown for
the HBr and model catalytic cycle examples, the sensitivity parameters (apparent reaction
orders) change from one regime to another. Additionally, however, also the LASSO terms
of the overall model can vary. This gives the algorithm enough flexibility to only select the
limiting terms for the kinetic model of each respective regime. For CO oxidation on Pt, we
know that there is a drastic change in surface coverage at around 500 K from a partially CO
covered to a purely oxygen covered catalyst [106–108]. To identify potential temperature
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regimes we need to determine effective kinetic models over a wide range of temperatures
and analyze how the resulting models change qualitatively in various regimes. This comes
with the advantage, that we do not need any prior knowledge about the microkinetic mech-
anism underlying the observed rates. All we need to specify is the variable input factors and
the range of parameter values we are interested in.

It is especially important though to properly design the experiments for such a scan over
a wider temperature range, as the goal is to identify relevant regimes with as few data points
as possible. As an example, we generate kinetic data for the CO oxidation between 300 K
and 700 K based on experimental designs [109] translated along the temperature axis. De-
tails on the construction of these designs are given in the SI. Using this data set we can cut
out smaller temperature ranges and fit local surrogate models. For reference, we create a
large data set based on a FFD at every temperature with a total of 576 data points. Smaller
partially overlapping subsets of 108 data points each, are cut out to determine local models
for every temperature range. These local models are constructed using the proposed algo-
rithm. An expansion of the polynomial terms up to 3rd order is used, as we need to take into
account four input features, the concentrations of three species (CO, O2 and CO2), as well
as temperature. Such a procedure results in a large number of pareto fronts, from which
one solution needs to be selected respectively. This mandates an automated way of selecting
the ideal solution to reduce on the one hand the required manual work, but on the other
hand also to ensure more comparable and bias-free results. Here, we employ a rudimentary
heuristic based on the same discontinuity arguments as before, which would guide a manual
selection process. Details regarding this heuristic are explained in the SI. By observing the
LASSO coefficients of these selected solutions we obtain a map, showing which model con-
tributions are dominant at a given temperature. Figure 3.9 shows temperature maps for the
CO oxidation on Pt. The resulting map based on the full factorial reference is given in Fig-
ure 3.9 c). It can be clearly seen, that the dominant LASSO terms undergo a drastic change
over the range from 300 K to 700 K. Accordingly, we can roughly partition this map into
four regimes and link these to characteristic changes in the underlying microkinetic model.
To rationalize these findings, in Figure 3.9 a) we show the temperature dependence of the
dominating rate constants from the microkinetic model. These rate constants correspond to
elementary processes of the catalytic process, namely the adsorption of O and CO (ads_O,
ads_CO), the desorption of CO (des_CO) as well as the surface reaction between the ad-
sorbed species (reac). As further reference Figure 3.9 b) shows the concentration of adsorbed
CO, resolved along both the temperature and the reactor axis.

Regime 1 (300 K to 420 K): At low temperatures up to about 420 K the interaction term
{T̂}{CO} is dominating the models. This corresponds to the interaction of the temperature
effect and the concentration of CO. Looking at the behavior of the rate constants of the ele-
mentary processes in Figure 3.9 a), we see that in this same low temperature range, the rate
constant of the surface reaction between the adsorbed species (reac) changes dramatically,
explaining the significant sensitivity to temperature. Furthermore, over the entire tempera-
ture range, the adsorption of oxygen is at least three times faster compared to the adsorption
of CO, making CO the limiting species for the formation of carbon dioxide.

Regime 2 (420 K to 540 K): In the subsequent transition region from 420 K to 540 K the
temperature influence is less pronounced. The dominating terms now contain mostly the
concentrations of oxygen ({O2}) and CO ({CO}). Looking at the rate constants (Figure 3.9
a)) there is no significant change to observe in this temperature range. The CO coverage
(Figure 3.9 b)), on the other hand, undergoes a drastic change in this regime, from a partially
CO covered surface to an approximately CO free catalyst above 530 K. For this reason, the
relative contributions of oxygen and CO to the overall effective kinetic behavior do heavily
depend on the temperature. This may explain, why the algorithm is not able to reduce the
effective kinetics to a single dominating term for this range of temperatures.

Regime 3: (540 K to 600 K): The third regime again shows a stronger temperature de-
pendence. The three body interaction ({T̂}{O2}{CO}) is the dominant term in this region. A
similar reasoning as in regime 1 also applies here. The drastic change in the relative rate of
CO adsorption and desorption leads to the observed temperature dependence.
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Regime 4: (600 K to 700 K): The high temperature regime above 600 K is again dominated
by effects of reactant concentrations ({O2}{CO}). Temperature contributions are not signifi-
cant and the rate is basically only limited by the small fraction of adsorbed CO on the mostly
oxygen covered surface (cf. Figure 3.9 b)). This coverage of CO highly depends on both the
gas phase concentrations of CO and oxygen, as in the underlying microkinetic model both
species compete for the same adsorption sites.
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Figure 3.9: (Previous page.) Temperature scans for the CO oxidation model. a) Temperature depen-
dence of the dominant rate constants from the underlying kinetic model (Details provided
in the SI). b) Concentration of adsorbed CO species on the catalyst sites versus temperature
from the microkinetic model. While there is some CO coverage present at lower tempera-
tures, above 570 K there is basically no adsorbed CO left. c) Reference Temperature map
based on a full factorial experimental design with a total of 576 points. d) Temperature
map based on a set of screening designs with a total of 90 data points. e) Rate data versus
temperature for the entire range. The blue markers refer to all simulated rates at different
conditions within the 90 point screening design. The grey dashed line gives the ideal rate
at constant feed composition ([CO] = [O2] = [CO2] = 1 mol/l) and acts a guide to the eye.
The red line and area shows the fitted model prediction in the regime between 460K and
520K with the mean absolute error (MAE) interval.

In reality it is, of course, not possible to experimentally measure almost 600 concentra-
tion profiles for such an analysis. Therefore, we require a means of more efficiently sam-
pling the relevant data. In Figure 3.9 d) we show the temperature map obtained based on a
combination of low-resolution screening designs with a total of only 90 profiles. The corre-
sponding subsets consist of only 15 data points at three temperatures each. This extremely
small amount of data challenges the estimation of the PPCC values. Still, as we are mostly
interested in a rough estimate of the change in LASSO coefficients, such screening designs
can be applied. In order to fit an accurate surrogate model, applicable for the prediction of
reaction rates, a larger data set will be required. Looking at Figure 3.9 d), we can see that the
qualitative features of the map are very similar to the full factorial reference in Figure 3.9 c).
Regimes 1 (300 K - 420 K) and 2 (420 K - 540 K) are well captured by the screening designs,
and also the high-temperature behavior is reproduced. The main difference between the two
designs occurs in regime 3 (540 K - 600 K). Here, the temperature contribution is missing and
the dominant term is {O2}{CO} instead of {T̂}{O2}{CO}. Still, there is a small contribution by
{T̂}{O2}{CO} also present for the screening design. This shows, that an initial assessment of
relevant temperature regimes can already be obtained with a much smaller amount of data,
while a detailed modeling of the most interesting regimes could require additional sampling
in a second step.

Assuming that we do not have access to the extensive full factorial data, we would iden-
tify three temperature regimes based on the temperature screening map. In addition to that,
we obtain a rough estimate on how the reaction rate behaves with changing temperature
(blue crosses in Figure 3.9 e)). It turns out, that the reaction rate reaches its maximum in
the range around 500 K. Looking at the temperature map, this maximum region is located
within regime 2. As mentioned before, regime 2 does not show a clear dominant model term,
which can be attributed to the constant change in coverage in this temperature range. The
maximum in reaction rate, however, can further explain the appearance of multiple model
terms in the temperature map. To form such an extreme point in terms of the rate, at least
two counteracting processes need to take place in parallel. These processes are represented
by different LASSO terms with their relative importance determined by the coverages of the
reactants. In order to more accurately model this region of interest, additional data points
are acquired in the range between 460K and 520K based on a 3-level full factorial design
yielding 81 additional points. From the screening design data we know, that the maximum
rate should be located in this region. Using this more extensive data set we can fit a surrogate
model for this entire temperature range. In this model, also quadratic terms are included to
better describe the extremum. We have discussed before, that purely quadratic and higher
power terms are usually neglected in our model ansatz. However, if we know, that there
is an extremum located within our region of interest, including quadratic terms can be ben-
eficial. The red line in Figure 3.9 e) indicates the model prediction for the reaction rate at
constant feed composition ([CO] = [O2] = [CO2] = 1 mol/l) with an area showing the mean
absolute error (MAE) of the model based on the training data. Using the additional data
points, our algorithm is able to accurately reproduce the curvature of the reaction rate as a
function of temperature in this region. The reference data (grey dashed line) for the rate at
the same constant feed composition falls well within the error interval. The model predic-
tions here are only given for the region of interest between 460 K and 520 K. An extrapolation
to both higher and lower temperatures is possible up to a certain degree. However, while
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polynomial models excel at locally approximating complex functions, one has to be care-
ful with extrapolations beyond the training region. Extrapolation based on the presented
model is presented in the SI. In Figure 3.10 additional details on the fitted kinetic model for
the maximum rate region are given.
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Figure 3.10: Details for the maximum region (460 K to 520 K) effective kinetic model identified by
the screening approach of Figure 3.9 b): a) Parity plot of the model prediction versus the
reference from the microkinetic model. b) Residual distribution. c) LASSO coefficients for
the maximum region model.

Inspecting the LASSO coefficients (e.g. the selected model terms) in Figure 3.10 c), we
see that in nice agreement with the temperature map, multiple terms contribute to the final
model. The two largest contributions come from the 3-body interaction ({T̂}{O2}{CO}) and
the quadratic term ({T̂}2). The former indicates a strong interplay between CO and O2 with
a significant temperature dependence. Coming back to the strong changes in surface cov-
erages in this temperature region, this is to be expected. The large negative coefficient of
the quadratic temperature term on the other hand is in nice accordance with the maximum
in rate observed in Figure 3.9 e). The remaining model terms all depend on the concentra-
tion of CO ({CO}), with two of them ({CO} and {CO}2) showing a positive coefficient. This
points at the growing dependence of the overall rate on the concentration of CO at higher
temperatures as also observed for the high temperature regimes in the temperature map.
Finally, we need to analyze the sensitivity parameters (apparent reaction orders and barrier)
determined by the algorithm (Table 3.4). The apparent activation barrier of around 7.600
kcal/mol is in reasonable agreement with the barrier for the surface reaction in the microki-
netic model of 10.000 kcal/mol. A negative reaction order for O2 indicates a detrimental
effect of an increase in oxygen concentration on the reaction rate. We can understand this,
as the underlying microkinetic model does only consider one type of adsorption site. There-
fore, an increase of oxygen concentration may lead to a reduced adsorption rate of CO. At the
same time, an increase in CO concentration will lead to an increase in reaction rate causing
the positive reaction order in CO. The concentration of CO2 does not influence the reaction
rate, as no readsorption of the product species is considered. This leads to a reaction order
of effectively zero in the concentration of CO2. This detailed analysis of the maximum rate
region (460 K to 520 K) shows, that our algorithm can not only be used to identify interesting
kinetic regimes of an unknown system with very limited data. It can also reproduce the ef-
fective kinetics of a local regime in a subsequent step. Further, we can interpret the resulting
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Table 3.4: Model parameters and objective values for the selected solution for the maximum region of
the CO oxidation example. The corresponding pareto front is given in the SI.

αT̂ α[O2]
α[CO] α[CO2]

Residual PPCC

0.760* -0.610 0.306 0.004 1.346 0.997

* in 10 kcal/mol

model function in a physically meaningful way. Of course, within this study, the physical
meaning of the obtained models is limited by the assumptions of the underlying simulated
reaction models.

Going beyond the pure interpretation of the model parameters and terms, we can also
use the obtained models in an optimization process to identify reaction conditions which
maximize the rate. For more complex reaction networks such an optimization could even
target other properties like selectivities towards certain products. A closer look at the predic-
tions along cuts through all dimensions of the rate model (the three feed concentrations and
temperature) shows that our model does indeed not only describe the temperature trend but
also the effect of the feed composition and could therefore be used in such an optimization.
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Figure 3.11: Maximum region model predictions for 2D cuts through the 4D model. The remaining
two factors are kept constant at their respective central values (1.00 for [X] and 490 K for
T).

The 2D cuts shown in Figure 3.11, reproduce the behavior shown for the temperature
scan designs with a clear maximum around 490 K to 500 K. The most interesting cut is the
one through the [CO] [O2] plane in the lower left of Figure 3.11. This contour plot shows,
that the model also captures the influence of the CO and oxygen feed concentrations and
would predict a higher reaction rate, if the feed contains more CO and a lower amount of
oxygen. These trends are perfectly in line with the obtained effective reaction orders.

3.1.5 Outlook: Application to Experimental Data
We presented a novel approach to the analysis of reaction kinetic data with the goal of not
finding the most accurate model, but the most robust one. By analyzing both the resid-
ual norm and the distribution of errors for potential candidate solutions, we propose an
algorithm to identify the optimal trade-off. With the main goal of reducing the amount of
systematic error through model assumptions, we let the algorithm choose polynomial terms
making use of the sparsifying LASSO regression method. Additionally, the algorithm deter-
mines sensitivity parameters which can be interpreted as physical quantities like activation
barriers or apparent reaction orders. Besides yielding rate law like models, the algorithm
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can further provide valuable insight into the underlying processes. This way, a meaning-
ful analysis of reaction kinetics can be performed without knowledge of the exact reaction
mechanism. Emphasizing the aspect of robustness in such an analysis may become espe-
cially relevant with respect to transferability of the obtained models.

We showed that such a procedure reproduces well understood reaction systems like the
hydrogen bromine reaction or the catalytic model cycle without prior knowledge. In the HBr
case, the empirically observed fractional reaction order of 3/2 was automatically detected by
our method. At the same time we obtained an interpretable rate law capturing the effect of
not only the reactant concentration but also the influence of temperature. The homogeneous
catalytic cycle was equally well described and we were able to capture the change in effective
kinetics with an increasing excess of one reactant by monitoring the sensitivity parameters
resulting from the automatic analysis. Going one step further towards industrially relevant
processes, an analysis of the CO oxidation kinetics on Pt over a wide temperature range
provided both, information about process regimes, as well as an accurate surrogate model
for the region of interest. While these surrogate models can not provide detailed knowledge
about the reaction mechanism, valuable indications can be gathered by a thorough analysis
of both the transformation parameters (α) and the polynomial terms selected by LASSO.
This way we can learn how reaction orders and limiting species may change with reaction
conditions like the feed composition.

It is important to mention, that this entire procedure relies on rationally designed exper-
imental data sets, something not frequently encountered even in recent studies. A factorial
sampling of experimental data, varying multiple factors at the same time is vital for a mean-
ingful inference on interaction terms. As known from chemical reaction kinetics and also
shown by our results, these interactions terms are most often the key contributions to the
rate laws of various reactions. The artificial data sets used in this work rely on classical
experimental designs. For the CO oxidation example, making use of a simple construction
based on established screening designs we were able to achieve accurate results in a data
efficient way. In the future, the data requirements for such an analysis could even further
decrease by employing especially designed optimal designs [110, 111] for such specific use
cases. Applying this algorithm to more complex reaction systems and especially working on
real experimental data will be necessary to benchmark against established methodologies.
Experimentally obtaining suitable training data for such an analysis will be a challenge in
its own right. The algorithm requires kinetic data reflecting the chemical reaction kinetics.
Therefore, such experiments need to be performed in specialized reaction sensitive reactor
setups [112–114]which are not dominated by transport phenomena. While a polynomial
approximation of the data in a transport limited reactor could in principle yield accurate
results, any kind of interpretability in terms of kinetic parameters is lost in such cases. Pro-
vided suitable training data, however, our approach promises to provide efficient kinetic
models which, coupled to different transport models, should even be transferable between
different reactor geometries. This would allow for a straight forward upscaling going from
idealized lab scale experiments to real industrial reactors. Obviously, our method is not
designed to describe the global kinetics of a system over a wide range of conditions. The re-
sulting models are also not intended to describe transport phenomena in chemical reactors.
This approach rather resembles a semi local sensitivity analysis, which provides simple and
well behaved kinetic models.

The formulation of this method allows for a straightforward extension in terms of both
input and response variables to deal with more extensive reaction networks. In addition
to that, also the optimization cost function may easily be modified to employ other error
models for specific use cases. In this context, it may also be useful to apply our algorithm
to data from complex microkinetic models. Comparing the result of such an analysis on
experimental data versus model predictions, both in terms of sensitivity parameters and
dominant LASSO terms, could be an extremely sensitive measure of the quality of a mi-
crokinetic model. Further, the capability of our approach to obtain robust effective kinetic
models without any prior knowledge of the system opens up a wide field of possibilities
towards computer guided experimentation. By optimizing desired properties like turn over
frequencies or selectivities on the level of the cheap effective kinetic models, an algorithm
can propose potentially interesting parameter ranges to sample next in an iterative proce-
dure.
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This way, a fully automated exploration of relevant regimes as well as optimization of
the process conditions could be realized.

3.2 Surrogate Models for Multi-Regime Kinetics

This chapter builds on the capability of the previously established sparse polynomial ap-
proximation models to differentiate between different kinetic regimes based on the effective
behavior of local models. A general, largely automatized regime identification algorithm
is presented, which utilizes the local model parameters as a fingerprint to localize kinetic
phase transitions. The first section of the chapter outlines the main steps of the regime iden-
tification algorithm. Following this exposition, the CO oxidation on Pt example from the
previous chapter is continued to illustrate how to couple local effective models into a global
representation over multiple regimes. Investigating a MKM for the CO oxidation on RuO2,
the last two sections describe two and three dimensional problems.

3.2.1 Introduction
Reaction kinetic systems often show dramatically different behavior depending on the con-
ditions at which the reaction is performed. In general, such a change in effective behavior is
not continuous over a wide range of reaction conditions but rather happens at a specific crit-
ical point, thus breaking the underlying smoothness assumptions of many machine learning
approaches. These so called kinetic phase transitions can for example be observed for cat-
alytic surface reactions in both theory and experiment [34, 115–117]. For such systems, we
can segment the reaction condition space into different regimes, where the effective behavior
of the reaction does not change qualitatively and the, often sharp, boundaries between those
regimes. In many examples, such phase transitions are correlated with the surface states of
the catalyst and for example poisoning of the catalytic surface can cause a dramatic drop in
the reaction rate [117]. An extensively studied catalytic system of this type is the CO oxida-
tion reaction over RuO2. In this system, several sharp phase transitions can be observed as a
function of the partial pressures of CO and O2 [3]. We can set up microkinetic models, which
reproduce these kinetic phase diagrams over a wide range of reaction conditions. For this
specific system, it was shown that even a comparably simple mean field MKM is capable of
capturing most phase transitions [12]. Unfortunately, knowledge of the microscopic reaction
mechanism is a strict requirement for setting up such a MKM. In the previous chapter we
could show that the sparse approximation approach we propose is capable of fitting effec-
tive models similar to the rate laws of classical kinetics. These rate laws correspond to an
approximation to the dominant effective kinetics in a given reaction condition range and can
be obtained without a detailed understanding of the reaction system. Therefore, the range
of validity of such a rate law should provide a good estimate at which critical conditions
the behavior of the system changes. The regime identification algorithm we propose in this
work locally probes the kinetics of the system to determine the position of kinetic phase
transitions. Local rate law kinetic models provide information on which experimental con-
ditions contribute to the kinetic model as well as on the corresponding nonlinear sensitivity
parameters. Using this information as local features we can sample the reaction condition
space and differentiate between regions of distinct kinetic behavior. As soon as the kinetic
phase transition is localized, we can couple the locally valid effective rate laws via a transi-
tion function across the phase boundary. Making use of clustering analysis and classification
models, we implement this procedure to automatically identify kinetic regimes in order to
create a global surrogate model by coupling multiple local rate law like kinetic models.

3.2.2 Regime Decomposition Algorithm
Here, the main steps of the regime identification procedure are outlined:

Sampling the Reaction Parameter Space First of all, we need to define the global bounds
of the reaction conditions we want to describe. Having settled on some finite space, we
generate a sequence of Quasi Monte Carlo (QMC) [68] points to sample this space as evenly
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as possible. Every one of these QMC points is then the center of a classical experimental
design, which gives a more detailed factorial description of the local environment of these
centers. These local designs (LD) are used as the training data for the local analysis in the
subsequent step.

Local Kinetic Models For the local approximation of the reaction kinetics we use the data
driven modeling methodology described in the previous section. This method yields sparse
polynomial models in transformed variables (SPTVs). Such an SPTV resembles an approxi-
mation to the rate laws known from classical kinetics and provides us with interpretable ki-
netic parameters like reaction orders or apparent barriers. Further, these polynomial models
are extremely cheap to evaluate, smooth and continuously differentiable. Another valuable
feature of the SPTV is its capability to identify dominant terms in different kinetic regimes
making use of the LASSO [1, 6] regression to select only relevant model terms for the final
local model. We have previously shown, that such an analysis can differentiate between
multiple effective temperature regimes in the catalytic oxidation of CO over Pt(111). Per-
forming this local analysis, we end up with one SPTV model for every QMC center point.
An example for the functional form of such an SPTV is given in equation 3.14 for a system
with two relevant process parameters x1 and x2:

η(x, θ, α, β) =
(

θ0 + θ1 · xα1
1 + θ2 · xα2

2 + θ12 · xα1
1 · x

α2
2 + θ11 · x2α1

1 + θ22 · x2α2
2 + ...

)β
, (3.14)

where the reaction rate model η is a polynomial function of the reaction parameters xi like
e.g. feed concentrations and the αi are the corresponding sensitivity parameters. The θi and
θij are the regression coefficients of the various polynomial terms. Due to the sparsifying
LASSO regularization, in practice, only few of these coefficients are nonzero, resulting in
compact and interpretable models.

Regime Identification In order to automatize the decomposition of the global domain into
multiple regimes, we employ clustering analysis (c.f. section 2.9). Clustering is considered
an unsupervised learning method to identify structure in a data set. Data points are sorted
into different domains based on a cost function like for example a proximity measure. The
goal here is, to decompose the global range of reaction conditions into regimes of different
effective kinetic behavior. Therefore, we want to identify which local models have a similar
form, i.e. describe a similar dominant kinetic process. The data set, we want to perform
the cluster analysis on, can be constructed from different model parameters like on the one
hand, the LASSO coefficients of the individual local SPTV models, and on the other hand,
their respective transformation (or sensitivity) parameters. In some cases, in addition to that,
we can also consider the input reaction parameters in the clustering to ensure compact do-
mains with low overlap. The specific clustering algorithm we use is the Kmeans algorithm
(c.f. section 2.9.1). The optimal number of domains is evaluated based on a scree plot of the
clustering inertia versus k. The final value for k is then either selected manually or based
on the numerically identified point of highest curvature of the scree plot. Other clustering
methods like the density based method "Ordering Points To Identify the Clustering Struc-
ture" (OPTICS) [118] have the advantage that the number of clusters does not need to be
predefined. For small data applications, in general hierarchical clustering methods are rec-
ommended, however, in this study we applied the Kmeans algorithm due to its conceptual
simplicity and interpretability [119]. Having performed this step, we can assign a cluster-
ing label to every QMC point, which allows us to decompose the reaction parameter space
into local domains. As the parameter space in which we perform the clustering is generally
more than three dimensional, we use principal component analysis (PCA) [41] as a tool to
visualize the resulting clustering. PCA is a tool to decompose multidimensional data into
orthogonal linear combinations which describe the maximum amount of variance within the
data. This way, assuming linearity, we can assure a minimal loss of information projecting
onto a lower dimensional representation.

Coupling Local Effective Models In order to describe the entire global domain of reaction
conditions, we want to have a single model capturing the reaction kinetics over multiple



54 Chapter 3. Results

regimes. Having identified multiple reaction regimes within this global domain, we can, in
a first step, reduce the number of local models to the necessary minimum. For every local
regime, we collect all QMC centers, which have been assigned to this regime in the clustering
analysis. Based on these regime wide data sets, we, again, fit a SPTV model which should
now be valid for the entire regime. The only question left, is now, how to couple these regime
models. This is done using a support vector classification model (SVC) [9]. The SVC model is
trained on the reaction conditions as an input to reproduce the clustering labels obtained by
Kmeans. This way, the SVC can predict in which regime a certain point is located, provided a
set of reaction parameters. The most interesting regions of the global domains, are, however,
the boundaries between different local regimes. In order to describe these boundaries in a
somewhat smooth manner, we use the SVC to estimate the membership probabilities of a
point (set of parameters) for every identified regime using a cross validation technique [76,
77]. With these membership probabilities as weights, we can formulate our global surrogate
model as a linear combination of SPTV models. The global surrogate model can be written
as

η̂(x, θ̂) = ∑
k

pk(x)ηk(x, θk, αk, βk) (3.15)

where the estimated rates η̂ at a point x are given by the sum over the membership proba-
bilities pk multiplied by the predicted contributions of the regime specific SPTV models ηk.
A schematic of the entire regime identification procedure is shown in Figure 3.12.
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Figure 3.12: Schematic of the regime identification procedure. Starting with an initial sampling of the
global domain, local regimes are identified based on the similarities of the local models
identified for the respective QMC points. The predicted membership probabilities from
the calibrated classification model are then used as weights for coupling the local regime
models.

Implementation Details Building on the Python implementation of the SPTV modeling
algorithm, the regime identification algorithm is also written in Python. Further, the scikit-
learn [99] implementations of the Kmeans algorithm and the SVM (which also provide the
probability calibration methods) are used. The QMC samples are constructed using the scipy
statistics package [100].

3.2.3 Proof of Concept: CO Oxidation on Pt
Before we apply the regime decomposition procedure to a more complex microkinetic model,
we want to briefly revisit the CO oxidation on Pt example from the previous section 3.1.4.
By analyzing the change in model parameters over a wide temperature range, we were able
to identify temperature regimes with distinct apparent kinetics. For each of these regimes,
an individual kinetic model could be identified. Using only a single SPTV model, we would
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not be able to capture the entire range of reaction conditions. However, as the LASSO co-
efficients within the four major temperature regimes did not show too drastic variations, a
set of coupled local models should be able to achieve this. Using the same screening design
data set as discussed in section 3.1.4, we apply a clustering analysis to the set of local sen-
sitivity parameters (α) of the SPTV models for every temperature interval. In the same way
as the overall temperature range was segmented into effective regimes by visual analysis in
the previous chapter, temperature intervals with similar effective kinetics should now also
be assigned to one cluster. The LASSO coefficients are not included in the model parameter
data, as due to the almost smooth transition between the low and high temperature regimes
(c.f. Figure 3.9 d) these parameters do not allow for a clear assignment of the data points to
the transition region. The results of the Kmeans analysis are presented in Figure 3.13.
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Figure 3.13: a) Scree plot for the clustering of the local sensitivity parameters α for the CO oxidation on
Pt. The vertical line indicates the chosen number of domains k = 3. b) PCA representation
of the sensitivity parameter space. The coloring of the points resemble their respective
assignment to a cluster and the percentage numbers in the axis labels refer to the amount
of explained variance by each principal component (PC). c) Screening design data colored
to match the identified clustering of the local models. The black line corresponds to the
reaction rate predictions of the SVC coupled global model at constant feed composition
([CO] = [O2] = [CO2] = 1 mol/l). The spread of the underlying data points comes from
the influence of the feed composition. To illustrate that this behavior is also captured
by our global model, the gray lines indicate the model predictions for two different feed
compositions, a CO rich ([CO] = 1.2 mol/l, [O2] = [CO2] = 0.8 mol/l) and a oxygen rich
([CO] = [CO2] = 0.8 mol/l, [O2] = 1.2 mol/l) composition.

The scree plot in Figure 3.13 a) indicates that going beyond three domains, only small
improvement in terms of the clustering error can be gained. Choosing three clusters for
the Kmeans analysis leads to a reasonable segmentation of the samples in terms of their
respective sensitivity parameters as can be seen in the PCA representation 3.13 b). Thus, the
sensitivity parameters yield a clear segmentation into three regimes (clusters). Again, for
each individual regime, a SPTV model can be set up to represent the local kinetic behavior.
In order to couple these regime wide models into a globally valid representation, we train a
SVC model, which classifies points into individual regimes with respect to their coordinates
in factor space (feed composition and temperature). In Figure 3.13 c) the screening design
data points have been color coded according to their cluster label predicted by the SVC.
We can see that this labeling results in three compact regimes along the temperature axis.
Using the predicted membership probabilities of this classification model, we can couple the
local kinetic models for the three identified regimes in a linear combination. The resulting
global model is shown in Figure 3.13 c) (black line). The combination of three local SPTV
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models yields an accurate description of the reaction rate over the entire temperature range,
including the transition region with the extremum. Following the same ideas, in the next
section, we will apply this procedure to a more complex two dimensional example.

3.2.4 Test Case: Isothermal CO Oxidation on RuO2

For a second test case, we analyzed a microkinetic model for the CO oxidation on a RuO2
catalyst (c.f. 2.11.4) using the previously explained regime identification methodology. In
this example, the complex reference model is a mean field MKM as presented in section
2.11. We define the global reaction condition domain as a partial pressure range of 10 ·
10−2 to 10 · 102 bar for both gas phase reactants CO and O2. The sampling of this range is
performed using a set of 64 QMC points drawn from a Halton series, scaled to the respective
bounds. Around each of these QMC points for the local design (LD) a four level full factorial
is expanded. The QMC point is defined as the central factor configuration (0,0) of the LD
to which all displacements are referenced. The magnitude of the maximum displacements
are determined as one third of the averaged nearest neighbor distance of the QMC points,
resulting in a range of about 0.125 in terms of the logarithm of both partial pressures. This
way, we ensure an approximately even sampling with minimal overlap. Each of these LDs
consists of 16 point respectively, hence the training data for each local SPTV model consists
of 17 points, including the QMC center. This results in a total of 1088 evaluations of the
MKM. The distribution of the QMC central points and the local designs over the reaction
condition range are illustrated in Figure 3.14.

2 1 0 1 2
log(pCO)

2

1

0

1

2

lo
g(

p O
2)

QMC Halton points

2 1 0 1 2
log(pCO)

2

1

0

1

2

lo
g(

p O
2)

Local Designs

Figure 3.14: a) Distribution of QMC points over the reaction conditions space. b) Local factorial de-
signs constructed around every QMC center. The maximum displacements of the local de-
signs are one third of the averaged QMC point nearest neighbor distance: d(log(pCO)) =
d(log(pO2 )) = 0.125.

For the local models, the polynomial ansatz is restricted to only linear terms, as these
models purely serve as a qualitative indication of the locally dominant factors. It is impor-
tant to mention that, in order to ensure numerical stability, these SPTV models map between
the logarithmized quantities log(pCO), log(pO2) and log(TOF). Therefore, the resulting sen-
sitivity parameters may not directly be interpreted in terms of partial reaction orders. As
explained in the previous section, the model selection from the pareto front is performed
automatically.

Surface Phase Diagram In order to rationalize the results of our regime identification for-
malism, we inspect the system at hand in more detail: The dependence of the MKM pre-
dicted TOF for CO oxidation is shown in Figure 3.15 a). We can see that there are dramatic
differences in TOF depending on the partial pressures of both reactants. The region of max-
imum activity is visible as a diagonal stripe with log(TOF) values up to 6. This region is
characterized by a combination of moderate partial pressures of both CO and O2. The oppo-
site would be the regions in the upper left and lower right corners of Figure 3.15 a), in which
one of the two partial pressures is orders of magnitude higher than the other.
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Figure 3.15: a) TOF predicted by the mean field MKM. b) Surface phase diagram for the bridge type
adsorption sites (br). c) Surface phase diagram for the cus type sites. The colored areas
indicate that one surface species is dominating with a coverage ≥ 90 %. White areas
correspond to conditions for which no single species shows such a high coverage.

Comparing the TOF to the surface phase diagrams in Figure 3.15 b) and c), the correla-
tion between surface coverage and activity directly becomes obvious. For both, bridge and
cus adsorption sites, the surface coverage is dominated by a single species in most of the
pressure range. At low pCO and high pO2 , the catalyst surface is almost entirely covered by
atomic oxygen, while in the other extreme (low pO2 and high pCO) adsorbed CO occupies
most adsorption sites. The intermediate region, where neither of the two adsorbed species
is poisoning the catalyst, is the therefore of interest. This range also coincides with the maxi-
mum TOF region in Figure 3.15 a). This behavior can intuitively be understood, as the MKM
mechanism dictates that both reactants need to be in an adsorbed state at the same time in
order to react towards CO2. Therefore, the goal of the regime identification would be for
the algorithm to realize that the effective kinetics of the reaction are dominated by different
terms in the two extrema of the surface phase diagrams. This separation of the overall re-
action condition space directly allows for locating the intermediate pressure regime as the
main region of interest.

Identified Kinetic Regimes With the parameter sets of all local SPTV models, we perform
a clustering analysis in order to classify the QMC centers to regions of the same effective
kinetics. The model parameter space is spanned by the two model sensitivity parameters (α)
as well as the LASSO coefficients for the individual polynomial terms θ. For a linear model
in two variables log(pCO) and log(pO2) this results in a 5 dimensional space. A reduced
3 dimensional PCA representation of this parameter space is shown in Figure 3.16 b). Each
point in this space represents one local SPTV model. The three principal components account
for almost 90 % of the explained variance in this data set, thus only minor information is lost
by displaying the parameter space in 3D. As we can see, the data points form three distinct
clusters and the scree plot in Figure 3.16 a) further confirms k = 3 as a reasonable choice.
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Figure 3.16: a) Scree-Plot for the Kmeans clustering of the model parameter space. The vertical line
indicates the chosen number of clusters (k = 3). b) PCA representation of the model
parameter space. The colors of the individual points indicate their clustering labels. The
percentage of explained variance of the individual principal components is given in the
axis labels. c) The center points represented in reaction condition space. The coloring,
again, indicates the cluster assignment.

Having identified a clustering of the local models in parameter space, we need to verify
that this classification is also meaningful in terms of the reaction conditions (i.e. the par-
tial pressure ranges). Figure 3.16 c) shows the distribution of the QMC points in reaction
condition space and the coloring of the points indicate their cluster assignment according
to the Kmeans analysis. It immediately becomes obvious that the spatial compactness of the
identified clusters is not only given in parameter space, but the clusters also form contigu-
ous regimes in the reaction condition space. Further, the three identified clusters show a
very similar structure to the catalyst surface phase diagrams. While there is some overlap
between the point distributions of the green and blue clusters in Figure 3.16 c), this sepa-
ration suggests the blue cluster to resemble the maximum TOF transition region, while the
green and orange clusters correspond to the O and CO covered regimes, respectively. This
becomes even more pronounced looking at the results of the support vector classification
trained on the clustering labels. Figure 3.17 shows a direct comparison of the SVC domains
with the surface phase diagrams from the MKM.
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Figure 3.17: SVC predicted domains: a) Surface phase diagram of the bridge (br) sites. b) Surface phase
diagram of the cus sites. c) Classification of the reaction condition space according to the
SVC. The black lines indicate the SVC decision boundaries. The coloring of the points
corresponds to their assignment to different clusters during the Kmeans analysis.

Overlaying the two decision boundaries of the SVC with the surface phase diagram for
the cus adsorption sites like shown in Figure 3.17 b), we see a very nice agreement. Most
points assigned to the blue cluster lie within the surface phase, which is not dominated by
a single adsorbed species. The agreement between the SVC and the surface phase diagram
of the bridge sites is lower compared to the cus sites. The SVC predicted transition region is
slightly shifted towards lower CO partial pressures compared to the phase transition region.
The qualitative dependence on the O2 partial pressure, however, is reproduced. This could
be an indication that within the here studied pressure ranges, the effective kinetics of the
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reaction are dictated by the reactivity of the cus sites. Indeed, the MKM rate constant for
CO2 formation from reactants both adsorbed on bridge sites is significantly lower compared
to reaction involving at least one cus site (cf. section 2.11). This sensitivity of the apparent
kinetics with respect to the reaction on the cus sites has also been reported in literature [12,
120]. Using the Platt scaling formalism, we can use the SVC to predict calibrated member-
ship probabilities for the three identified regimes. The resulting probability functions are
shown in Figure 3.18.
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Figure 3.18: Membership probabilities calibrated using the extended Platt scaling formalism (cf. sec-
tion 2.10). a) Membership probability for domain A. b) Membership probability for do-
main B. c) Membership probability for domain C. The insets show a line profile of the
probability function orthogonal to the separating hyperplanes.

In general, these probabilities again show a clear distinction between the different regimes.
A closer look at the insets in Figure 3.18, however, reveals that the two decision boundaries
are not equally well defined. As was already visible in Figure 3.16 c), there is a overlap be-
tween the blue and green clusters. This is also resembled in broader probability transition
between these two regimes as shown by the difference in width of the two sigmoid functions
in the insets of Figure 3.16 b) and c), as well as the asymmetric tails of the probability func-
tion in Figure 3.16 a). We can see that these calibrated membership probabilities accurately
reproduce the previously established separation of the reaction condition space and can thus
be used as weights for the global surrogate model in the subsequent step.

Local Regime Models In order to set up the global surrogate model for the entire reaction
condition space, we first need to fit the three individual regime models. To this end, for each
regime, we combine the data from every QMC center assigned to it and fit another SPTV
model for the joint data set. To more accurately describe the kinetics of these regimes and
make efficient use of the large amount of data per regime, for these models we expand the
polynomial terms up to second order. The model parameters for the three automatically se-
lected pareto optimal models are given in Table 3.5. For regime A, the transition region, the
absolute local sensitivity towards the partial pressure of O2 is smaller than for CO, with CO
showing a negative α value. Only two LASSO coefficients have been selected for this regime
model, the interaction between the two reactant pressures and the quadratic contribution by
O2. The negative coefficient θ2

O2
nicely shows, that we have an extremum (a maximum) in

TOF within this region, while the large coefficient for the interaction term reproduces the
almost diagonal structure of the regime in the reaction condition space. The insets in Figure
3.18 show the predicted membership probabilities across this phase transition along the line
log(pO2) = −0.461 · log(pCO) − 0.168. Regime B shows mostly the CO covered surface at
high pressures of CO and low pressures of oxygen. In this model, only the interaction term
contributes to the SPTV model with a large positive coefficient. The α parameters surpris-
ingly show a higher sensitivity towards CO, despite the surplus of CO being adsorbed on
the surface. This might be a result of the overall higher CO desorption rates compared to O2.
However, as the SPTV models operate on the logarithm of both input and output values, it
is difficult to interpret these parameters in a straight forward manner.
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Table 3.5: Sensitivity parameters α and LASSO coefficients θ for the local regime models. Zero coeffi-
cients are represented by a dash for better readability.

Regime αCO αO2 θCO θO2 θCO·O2 θ2
CO θ2

O2

A (transition) -0.332 0.133 - - 0.945 - -0.162

B (CO covered) 2.333 -1.220 - - 0.968 - -

C (O covered) 4.088 -1.538 - -0.191 -0.908 - -

The surface phase diagram in regime C is dominated by adsorbed oxygen. The high
sensitivity towards CO with an α of 4.088 results from only few adsorption sites being avail-
able for CO. Thus, the adsorption of CO is limiting the overall rate and increasing the CO
partial pressure increases the probability of an adsorbed CO species. A negative sensitivity
towards O2 can also be understood as further adding more oxygen into an already oxygen
covered system will poison the catalyst even stronger. In line with this interpretation is also
the negative LASSO coefficient for the linear oxygen term in this model. Apart from that,
the dominating LASSO term is again the interaction between the two reactants. For model
C, however, the sign of this coefficient is negative, meaning that increasing both partial pres-
sures in a similar degree will not result in a higher TOF.

The residual distributions for the three local regime models are given in Figure 3.19. Both,
the models for regimes B and C show rather symmetric error distributions and small mean
squared errors (RMSE) of 0.074 and 0.082 respectively. The errors in model A are signifi-
cantly higher with an RMSE of 0.224. The extremely high maximum absolute error (MAE)
for this model results from a single outlier as shown in the inset of Figure 3.19 a). This outlier
is located close to the estimated transition between regime A and regime C. This proximity to
the phase transition suggest a misclassification as the cause for this large error. In addition to
that, the distribution for model A seems to be skewed towards positive values. This skewed
distribution could be an indication that the kinetics in the transition region may require a
more complex description than our SPTV model can provide. On the other hand, regime
A covers only a small portion of the overall reaction condition space. The approximately
uniform distribution of the QMC points result in regime A having the smallest training data
set. Thus, the worse model performance compared to regimes B and C could also be a result
of a less extensive training. A sampling procedure weighting all regimes equally despite
those regimes covering differently sized portions of the factor space could therefore be a
promising alternative to the QMC sampling.
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Figure 3.19: Residuals distributions for the three local regime models. Root mean squared errors
(RMSE) as well as maximum absolute errors (MAE) are given in the figures.

Performance of the Global Model Combining the three local regime SPTV models with
SVC predicted membership probabilities, we can set up the global surrogate model for the
entire reaction condition space. Figure 3.20 gives an overview over the prediction perfor-
mance of this global surrogate model. Comparing the predicted TOF over the entire partial
pressure range in Figure 3.20 c) with the reference values in Figure 3.20 a), we can see that
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the qualitative behavior of the MKM is well reproduced by our reduced model. The par-
ity plot in Figure 3.20 b) shows that this agreement is even quantitatively accurate with an
RMSE of 0.089.
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Figure 3.20: Prediction performance of the global surrogate model evaluated on a regular grid over the
entire reaction condition domain. a) TOF calculated using the reference MKM. b) Parity
plot between reference and predicted TOF values. The parity plot as well as the error
values are determined on the test set depicted in the other subfigures. This test set is
constructed as a regular 30 by 30 grid. c) TOF predicted by the global surrogate model.

To better assess the modeling accuracy of our approach, we construct regression mod-
els using several standard techniques based on the entire 1088 point data set. The results
are summarized in Table 3.6. In these tests, our approach outperforms conventional poly-
nomial regression models, which can not deal with the switching behavior at the regime
boundaries. But also highly flexible methods like the decision tree based Random Forest
Regression (RFR) and Gaussian Process Regression (GPR) show larger RMSE and MAE val-
ues compared to our coupled SPTV approach. The bad performance of these techniques
can probably be attributed to their high demand in training data, especially in regions with
high gradients as the phase transition in regime A. The only method outperforming our ap-
proach is Kernel Ridge Regression (KRR) with a radial basis function (rbf) kernel. While,
this method is capable of accurately describing the entire partial pressure range, the result-
ing models lack interpretability. Our coupled SPTV model, on the other hand, does not only
reveal the separation of the overall domain into local regimes, but also describes the local
sensitivity of the reaction kinetics. Further, it should be mentioned that the good perfor-
mance of the KRR(rbf) method relies on a high density of data points. For this reason, re-
placing the evenly distributed QMC points with a more sparse sampling of the experimental
region could pose a problem for such methods.
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Table 3.6: Comparison of the model root mean squared (RMSE) and maximum absolute errors (MAE)
for the coupled local effective models with standard regression techniques: Linear and Poly-
nomial Regression (Poly), Random Forest Regression (RFR), Gaussian Process Regression
(GPR), Kernel Ridge Regression (KRR).

Method RMSE MAE

Linear Model 1.167 4.204

2nd Order Poly. 0.490 1.889

3rd Order Poly. 0.333 2.530

4th Order Poly. 0.220 0.841

RFR 0.175 1.630

GPR 0.259 6.471

KRR(poly) 0.329 2.431

KRR(rbf) 0.047 0.424

This Work 0.089 0.485

3.2.5 Extension of the CO Oxidation on RuO2 to Variable Temperatures
Having investigated the isothermal CO oxidation process as a function of the partial pres-
sures of CO and O2, we now introduce temperature as a third factor. The overall procedure
follows the same steps as previously for the two dimensional case. First, the overall param-
eter domain is sampled using QMC points from a Halton sequence. The reaction condition
ranges are given in Table 3.7.

Table 3.7: Reaction condition ranges covered in the temperature dependent CO oxidation example.

Factor -1 1

pCO [bar] 1·10−2 1·102

pO2 [bar] 1·10−2 1·102

Temperature [K] 550 650

An extensive data set of 512 QMC centers is used in this example, with a local 3 factor
3-Level FFD consisting of 27 points each. This results in a total data set size of 13824 points.
For each LD, a linear SPTV model is constructed and the resulting model parameter space is
analyzed by means of Kmeans clustering. As established in the previous section, temperature
effects are considered in the form of exp(−βM) values, such that the corresponding sensitiv-
ity parameter can be associated with an apparent barrier. The corresponding segmentation
of the QMC centers is shown in Figure 3.21.
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Figure 3.21: a) Scree-Plot for the temperature dependent CO oxidation on RuO2. The vertical line
indicates the selected number of domains k = 3. b) PCA representation of the model
parameter space. The colors of the individual points indicate their clustering labels. The
percentage of explained variance of the individual principal components is given in the
axis labels. c) The center points represented in reaction condition space. The coloring,
again, indicates the cluster assignment.

Again, a segmentation into three distinct domains is a reasonable choice. However, the
PCA representation of the parameter space, shown in Figure 3.21 b), reveals significant over-
lap between the green and orange clusters. This might be the result of the three displayed
principal components only accounting for roughly 62% of the variance in the data set. Still,
the reaction condition representation of the corresponding segmentation of the QMC cen-
ters, shown in Figure 3.21 c), also shows considerable overlap with a much broader transi-
tion region (green cluster) compared to the isothermal case. Apart from that, a rather similar
structure of the three clusters can be observed. Having identified the three regimes, the
global surrogate model is constructed from three SPTV models with polynomial terms up to
third order. The resulting model predictions have been evaluated on two 2D cuts through
the reaction condition domain. The results are shown in Figure 3.22.
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Figure 3.22: Prediction performance of the global surrogate model for the temperature dependent case
evaluated on regular 2D grids cutting through the 3D reaction condition domain. a) TOF
calculated using the reference MKM for a cut at constant T = 600 K. b) Parity plot between
reference and predicted TOF values for a cut at constant T = 600 K. The parity plot as well
as the error values are determined on the test set depicted in subfigures a) and c). This
test set is constructed as a regular 30 by 30 grid. c) TOF predicted by the global surrogate
model for a cut at constant T = 600 K. d) TOF calculated using the reference MKM for a cut
at constant log(pO2 ) = 1. e) Parity plot between reference and predicted TOF values for a
cut at constant log(pO2 ) = 1. The parity plot as well as the error values are determined on
the test set depicted in subfigures d) and f). This test set is constructed as a regular 30 by
30 grid. f) TOF predicted by the global surrogate model for a cut at constant log(pO2 ) = 1.

Figures 3.22 a), b) and c) show the results for a cut at constant T = 600 K through the
three dimensional surrogate model. This cut corresponds to the same reaction conditions as
previously investigated in the two dimensional case. With a RMSE value of 0.214, we can
immediately see that the prediction quality is significantly worse compared to the tempera-
ture independent model. While the quantitative agreement with the MKM reference values
is less pronounced, the qualitative behavior is well reproduced for this cut in the partial
pressure plane. While the position of the regime boundary is accurate, we can see some
additional curvature in Figure 3.22 c) compared to the reference. This might be an artifact
of introducing temperature as the third factor. The rescaling of the temperature input, pre-
sented in the previous section, is a sensitive procedure and further assumes an Arrhenius
like temperature dependence within the region of interest. If this assumption is not valid,
systematic model deviations can occur. The second cut (Figures 3.22 d), e) and f)) covers
various temperatures as well as CO partial pressures at constant oxygen pressure. The pre-
diction quality of the global model is along this cut is comparable to the isothermal cut with
a slightly lower RMSE value of 0.193. Looking at the qualitative agreement with the refer-
ence, we again observe accurrate reproduction of the MKM. Especially, the wedge shaped
maximum TOF region in Figure 3.22 is nicely reproduced by the global surrogate model.

3.2.6 Outlook: Data Efficiency
We have shown that the combination of multiple local models can be used to describe chem-
ical kinetics over larger domains of reaction conditions. The regime identification procedure
we propose relies solely on the available data and does not require a priori knowledge of
the reaction behavior or mechanistic details. For the CO oxidation reaction on RuO2, the
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SVM coupled surrogate models accurately reproduce the reaction kinetics of the mean field
MKM at a fraction of the computational cost. In use cases like reactor simulations, where
kinetic models are coupled to computational fluid dynamics, propagating a full MKM into
steady state can become a computational bottleneck. While there is an initial investment
necessary to set up the training data, in some scenarios, replacing the expensive MKM with
a global surrogate could facilitate reactor simulations on significantly larger time and length
scales. In general, however, reaction kinetics depend on way more than two factors and
this leads to the main drawback of the naive QMC sampling of the global reaction condi-
tion domain. While QMC samples provide a highly efficient coverage of a multidimensional
space, these samples are constructed for numerical integration of functions which show a
certain degree of smoothness [10]. The behavior we see in reaction kinetics is exactly the
opposite with regime boundaries leading to drastic changes in reactivity. Despite the fact
that mean field MKMs show dramatically smoother behavior than e.g. kinetic Monte-Carlo
simulations (which, on a microscopic level, are generally even more accurate for heteroge-
neous catalysis), we already run into problems looking at a 3D factor space. Introducing
temperature as a third factor in section 3.2.5 results in a systematically lower performance of
the global surrogate model. While the qualitative system behavior is still captured, a major
drawback in this case is the huge amount of data required to set up this model. With a total
of 13824 MKM simulation, the creation of the training data could already be infeasible for
more complex reaction networks. This large data set, however, is necessary to locate the
regime boundaries in the system with high accuracy. 512 QMC centers in three dimensions
result in an approximately the same point density as the 64 centers used in the isothermal
case. For a smooth function, such an dramatic increase should not be necessary. Locating a
lower dimensional subspace, like the regime boundaries, on the other hand, becomes more
and more difficult in higher dimensions. What makes the data efficiency even worse, is that
most of the QMC centers are located within approximately smooth regimes, where the local
behavior does not change much over a larger range of conditions. For these reasons, we re-
quire a refined sampling of the reaction condition ranges, to improve on the data efficiency
of the approach and perform only those simulations necessary to on the one hand locate the
regime boundaries and on the other hand to perform a polynomial approximation the local
kinetic behavior.

3.3 Sequential Adaptive Designs for the Identification of
Regime Boundaries

In this chapter an adaptive design approach for the efficient identification of kinetic regime
boundaries is presented. The proposed algorithm builds on established optimal design the-
ory [11] and introduces some necessary modifications to match the problem at hand. The
first section gives an overview over the implementation of this adaptive design algorithm
and how it differs from classical methods. This is followed by application test cases for vari-
ous toy systems to assess the algorithm’s performance. Finally, we apply our method to the
previously studied MKM for the CO oxidation on RuO2.

3.3.1 Introduction
The construction of a kinetic phase diagram for a chemical reaction system generally requires
detailed mechanistic understanding. If, however, the reaction network is unknown and the
only available information is the empirically observed dependence of the reaction rate on
the applied conditions, we need an alternative way of determining such phase transitions.
In the previous chapter, we could show that the behavior of local SPTV models can act as
a fingerprint for the local effective reaction kinetics. The question now arises, how to most
efficiently sample the space of reaction conditions to estimate the position of relevant phase
transitions in a kinetic system. In order to fit a kinetic model over a range of reaction condi-
tions, classical experimental designs are a valid option, if we can assume that the behavior
within the desired range is smooth. Phase transitions mark the opposite of such smooth be-
havior and therefore, classical designs may not be appropriate for this class of problems. The
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results of the previous sections have shown that fitting a local SPTV model over a smooth re-
gion of reaction conditions is fairly efficient in terms of required data points. Hence, within
each kinetic phase (or regime) the required amount of data is low. What becomes the expen-
sive part is localizing the position of phase transitions. To this end, an alternative to classical
design of experiments can be optimal design theory, where the design matrix is numerically
optimized under some model assumption in order to provide the best possible estimate of
the model parameters [121, 122]. Therefore, the presence of kinetic phase transitions needs
to be incorporated into the model assumptions for such an optimal design. As the position
of these phase transitions is a priori unknown, a promising approach is sequential adaptive
design [11]. In adaptive design theory, measurements are performed sequentially one after
the other. By doing so, we can utilize all relevant information from the previous experiment
to identify the most promising next sample point. This idea of sequential experimentation
is similar to methods like active learning and bayesian optimization [123], which already
found application in the context of catalysis research [124–128] and kinetic modeling [129,
130]. In these methods, the selection of design points is in general governed by a so called
exploration-exploitation trade off. Exploration refers to regions, where the uncertainty of
the current model estimate is high. On the other hand, a focus on exploitation would push
design points towards regions where the current model estimates have some desired prop-
erties, e.g. the predicted TOF shows a maximum. The trade off between these two goals
is defined by the acquisition function used in the optimization [131]. These techniques also
rely on very flexible regression models like e.g. gaussian process regression [132] which can
be demanding in terms of training set size. In contrast, sequential adaptive designs are con-
structed in a way, such that certain optimality criteria w.r.t to an assumed model class are
fulfilled. For example, the error on the estimated model parameters should be minimized.
Exploitation, in the sense of finding the optimum function value is not a primary focus of
such design strategies. Of course, having determined a complex enough surrogate model,
an optimization can still be performed in a subsequent step. In this work, we propose an
sequential adaptive design algorithm based on the work by Fedorov [11, 54]. We assume
a coupled multi-regime SPTV model to incorporate the phase transitions directly into the
optimal design algorithm. By combining this classical theory with modern optimization
and classification algorithms, we are able to construct optimal adaptive designs for reaction
condition ranges which cover multiple effective regimes.

3.3.2 Modified Fedorov Algorithm for Regime Boundaries
We here describe a modified version of the sequential design algorithm for nonlinear para-
metrization based on Fedorov "Theory of Optimal Experiments" [11] (cf. section 2.3.4). We
want to construct the optimal design for estimating the parameter of a global surrogate
model for a reaction condition range, which may consist of multiple effective regimes. The
optimization target, which dictates the position of the next measurement consists of two
contributions, the efficiency function λ(x) and the dispersion function d(x). The main goal
of this algorithm is to identify the regime boundaries as efficiently as possible. In order to
achieve this, some modifications to the standard algorithm are introduced, which modify
the estimated efficiency function for the next measurements.

Dispersion Function d(x) In the optimal design framework, the dispersion function de-
scribes the estimated gain in information obtained by sampling and adding a point x to the
design. This information content depends on the type of model we want to fit based on our
design. For the functional form of the global model, we again use a set of coupled local effec-
tive SPTV models (equation 3.15) as in the previous section. While such polynomial models
are linear in the coefficients (as the initial power transformation parameters are determined
as part of the regression), we expect a nonlinear behavior in the boundary region, where lo-
cal models of multiple regimes contribute to the overall global model. For nonlinear models
the dispersion function d(x) is calculated as given in equation 2.20. This equations contains
the partial derivatives of the global model with respect to the model coefficients θ. As we
now have a set of coupled local models, only the derivatives with respect to coefficients cor-
responding to the regime where x is located in, will contribute. Of course, in the boundary
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region, contributions from all relevant local models are expected. In practice, these partial
derivatives are evaluated as finite differences with small displacements in θ.

Efficiency Function λ(x) The efficiency of an experiment is related to the information gain
in performing this measurement. Generally, λ(x) is proportional to the inverse of the ex-
pected error at a given point x. This means that the expected gain in information is larger,
choosing a point xN+1 in a region where the predicted measurement error is small and the
data is thus more reliable. In our setup, we additionally incorporate the position of the
currently approximated regime boundaries. The efficiency function λ is constructed in the
following way:

λ(x) =
1

ε(x) ∏
j

[
1− exp

(
−r2

j

2w2

)]
∀ rj ≤ rcuto f f (3.16)

Here, ε(x) is the error model. The other product terms in λ(x) are inverted gaussian terms
with a minimum at rj = 0 and standard deviation w. These terms do not depend directly
on the values of the control variables x but on the distances rj to the separating hyperplanes
of the SVM. They correspond to the derivative of a hypothetical transition function between
multiple domains. In practice, these terms act as a penalty for placing sampling points too
close to the boundary region. In order to restrict these contributions to the transition region,
a cutoff distance rcuto f f is introduced.
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Figure 3.23: Behavior of the efficiency function λ(x) for three different exemplary cases: a) The error
model has a clear minimum value within regime B leading to a clear efficiency maximum
at x = 2. The dip in efficiency around x = 0 is not resolved in this illustration due to
scaling. b) The error function has a minimum within the regime boundary region. In this
case, the repulsion term in λ(x) leads to the maximum being located on the edge of the
boundary region at x = rcuto f f . c) The error model is constant in both regimes. Here,
also λ(x) is constant, except for the boundary region, where the repulsion term leads to a
low efficiency. The green shaded area corresponds to the cutoff distance rcuto f f from the
estimated regime boundary (x = 0).

In later iterations of the adaptive algorithm, when the local models for the individual
regimes are well determined, an additional biasing potential can be added to the efficiency
function to more accurately determine the position of the regime boundary. For the func-
tional form of this potential we can use an inverted form of the penalty in equation 3.23.
This bias has its maximum directly at the regime boundary (rj = 0) pushing the next design
points towards the boundary. However, the width of this term is broadened compared to the
penalty term, leading to an optimum of the resulting efficiency approximately at the cutoff
distance from the boundary. By multiplying this term onto λ(x), the effect of the penalty is
not canceled out:

λbiased(x) = λ(x)∏
j

exp

(
−r2

j

4w2

)
∀ rj ≤ rcuto f f (3.17)
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Error Model The efficiency function λ(x) relies on knowledge about the error of the model.
For this reason, we simultaneously train the error model ε(x) while constructing our sequen-
tial design. While the absolute accuracy of the error model is not too important, the model
should give a good indication of the relative errors over the entire reaction condition range.
The model we employ here is a slightly modified linear regression model. Similar to the
global kinetic model (eq. 3.15), also the error model ε̂ is composed of contributions from
every regime coupled via membership probabilities obtained from the classification model:

ε̂(x) = ∑
k

pk(x)εk(x, αk, βk) (3.18)

where the εk are the error models for the individual regimes. These models depend on
the transformation parameters αk and βk as the linear regression is performed in terms of
the power transformed variables in order to qualitatively capture nonlinear effects. One
drawback of a linear model is that extrapolated values far from the training points may
become negative. Negative values for the model error, of course, are not reasonable. To
overcome this issue, we introduce an exponential transformation on the predicted errors,
which ensures positive values. This transformation is scaled in a way that the resulting
function does not deviate too much from a linear behavior, meaning that the linear term
dominates the series expansion of the exponential within the region of interest. Again, the
absolute value of the error is not relevant as long as the qualitative behavior of the error over
the modeling range is captured. In addition to that, penalty terms are added to every data
point proportional to the magnitude of its residual in the regression model. These penalties
try to drive the adaptive design algorithm away from regions with an exceptionally large
error that would lead to outliers in the linear regression. This may for example occur in the
initial design steps, when the currently estimated regime boundary is still far away from the
actual boundary. Measuring a point close to the real boundary will result in a large error
for the respective local model and this is captured in the penalty term included in the error
model. For a two dimensional problem depending on predictor variables x1 and x2, the local
error model for a given regime may look as follows:

εk(x, αk, βk) = e1 · exp
(

e2 ·
(
c0 + c1 · xα1

1 + c2 · xα2
2
)β
)

∏
j

Pj(x)

Pj(x) = ps · |ρj| · exp

(
−1 · ||x− xj||22

pw

)
+ 1

(3.19)

where Pj(x) is a 2D Gaussian function with its amplitude scaled proportional to the residual
ρj from the linear error model at training point xj. ps and pw are hyperparameters of the
penalty function. These Gaussian functions decay towards one, such that multiplying them
onto the fitted error model does only influence the predicted values in the proximity of the
training points. Typical values for the hyperparameters are ps = 0.1 and pw = 0.04. Here, es-
pecially the choice of pw can be motivated by the desired sample density of the final design,
as the maximum repulsion distance of the design points should be related to its support in
design space. In practice, these parameters can be kept constant for different problems, as
can the standard deviation of the Gaussian penalty terms. This is due to the fact that the
adaptive design algorithm always operates on the scaled factors on the interval [−1,+1].
Thus, the absolute values of any factor do not influence the choice of these scaling parame-
ters. A similar argument can be made for the choice of e1 and e2, the scaling parameters of
the exponential transformation.

Optimization Problem Ultimately, the optimization problem which needs to be solved to
locate the best subsequent point xN+1 is the same as equation 2.20. In order to solve this
problem, we use a particle swarm optimizer. In this implementation the pyswarm package
[133] is employed.
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Batch Sampling In a real experimental study, it may often be useful in the adaptive design
procedure not to add one single experiment at a time. Instead, a batch of Nb experiments
may be required in order for the experimental workflow to run more efficiently. The problem
of selecting a batch of experiments corresponds to finding the Nb best and most diverse
points in terms of the adaptive design optimization function. We propose two different
methods for approximating this without significantly increasing the computational cost of
the optimization:

1. Batch Optimization: The first option is to extend the optimization problem from a N f
(number of factors) dimensional to a N · N f dimensional problem by simultaneously
optimizing the N f coordinates of all Nb points contained in the batch. The diversity of
these points is then emphasized by adding a repulsive potential between the batch
points. Instead of Nb N f dimensional optimizations, only one higher dimensional
problem needs to be solved.

2. Biasing Potentials: The second option is to consecutively perform the optimizations
for every of the Nb points. As soon as one optimum is identified, a biasing potential is
added to the cost function at this location. This potential drives the optimization for
the remaining points of the batch away from the already identified high dimensional
design minima.

In this work, we have implemented option 1, the batch optimization. For the low di-
mensional problems illustrated here, the extended dimensionality Nb · N f does not exceed
the capabilities of the PSO for reasonable batch sizes. For example, a batch with 4 new ex-
periments in a 2D kinetic experiment requires one 8D optimization to be performed. For
the repulsive potential between the individual points we use a simple Coulombic 1/r2 term.
The cost function for the batch optimization is

min
xb

Nb

∑
n=1
−1 · (λ(xn)dN(xn)) +

Nb

∑
i 6=j

q2

r2
ij

xb = [x11, x12, ..., x1N f︸ ︷︷ ︸
batch point 1

, x21, x22, ..., x2N f︸ ︷︷ ︸
batch point 2

, ..., xNb1, xNb2, ..., xNb N f︸ ︷︷ ︸
batch point Nb

]T
(3.20)

where r2
ij are the pairwise distances between the individual batch points and xb is the Nb ·N f

dimensional vector of the batch coordinates. The coulombic repulsion between the batch
samples is governed by the pseudo charge q assigned to each point. The overall optimiza-
tion is very sensitive to this hyperparameter, which determines how diverse the identified
minima will be. To loosen the requirement of identifying the optimal q value, all batch min-
ima are locally relaxed without the repulsive term after the combined optimization. This
way, individual minima should be discovered, as long as all solutions ended up in the cor-
rect basin of the cost function during the initial step. The dependence on q is illustrated in
the example in Figure 3.24.
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Figure 3.24: Batch optimization for a 2D function with four minima. The initial minima obtained in
the batch optimization are marked by white circles and the locally relaxed solutions are
indicated by black stars. The corresponding pairs are connected by a white dashed line.
a) Optimization result for q = 10, b) for q = 0 and c) for q = 1.

For a high pseudo charge (Figure 3.24 a), the repulsion between the individual solutions
is large. For this reason, the two minima located closest to each other are not resolved, but
one of the sample points is pushed towards the overall boundary. The other extreme is an
optimization with zero charge (Figure 3.24 b). Here, we can see that only two of the four
minima are identified, as the individual samples feel no repulsion among each other. This
way, all solutions tend to converge towards the lowest minima. Figure 3.24 c) shows the
results for q = 1. Using a moderate repulsive strength, the algorithm is successful in iden-
tifying all four minima of the function. In general, this choice of q may not be transferable
two arbitrary optimization targets, as the optimal hyperparameter value depends on both
the distance between and the depth of the minima.

Design Initialization The general Fedorov algorithm relies on a nonsingular design for
the initial set of points. In our setup, a key requirement for the overall design to be non-
singular is that the subsets of design points located in the individual regimes are sufficient
to determine the regression coefficients of the respective local model. As, however, for the
initial design, the regime boundaries are not known, a priori defining a nonsingular design
can be challenging. To avoid this issue, we introduce an additional initialization step before
relying on the Fedorov algorithm to select the next points. The overall design is initialized
with a user selected standard design, e.g. a Placket-Burman type screening design. Now, all
local models are determined and initial regime boundaries are obtained. At this stage, the
initialization algorithm checks, if each subset contains enough data points to fit a linear local
regime model. If this requirement is not met by every regime, additional sample points are
selected in this regime. These points are determined by employing a reduced adaptive de-
sign algorithm. In the absence of both, an estimate for the global model as well as the error
model, we have no information about the efficiency nor the nonlinear dispersion function.
Therefore, we use the linear D-optimality criterion max |XTX| separately for every regime,
where X is the design matrix for a linear regression model. By maximizing this determinant,
the distance between design points will be maximized within each regime. Such ideas are
closely related to techniques like farthest point sampling, where one samples as diverse sets
of points as possible [134, 135]. This reduced algorithm can also be described as a Fedorov
algorithm for linear parametrization with a constant efficiency function λ = const. This
procedure is repeated until each regime provides sufficient samples to fit an initial global
model. During these optimization steps of the individual regime designs, of course, the
penalty with respect to the distance of the samples to all regime boundaries is considered in
the same way as later in the full Fedorov optimization. A 2D example of the here described
design initialization is given in Figure 3.25. In this example, the initial global design consists
of only five points. Analysis of the initial local models gives rise to a segmentation of the
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parameter space into three regimes. As each regime is supposed to be described by a linear
local model, at least three sampling points per regime are required to estimate both slopes
and the intercept of the model. In this situation the initialization procedure is triggered for
each regime and additional points are added to the design.
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Figure 3.25: Example for a design initialization step in 2D. a) The global design has been initialized
with a two factor two level full factorial design sampling all corners of the square pa-
rameter space. Additionally, the central point has been added. b) Segmentation of the
parameter space according to the initial local models. c) Extended design matrix after
the design initialization step. The additional points added in the initialization step are
indicated with stars.

All newly added points in Figure 3.25 are located close to the vertices of the individual
regime facets. This way, the area covered by the design is maximized. The residual devia-
tion from the vertices is intentional and caused by the repulsive penalty close to the regime
boundaries.

Piecewise Approximation of Nonlinear Boundaries Assuming linearity of the regime
boundaries is, of course, a simplification in the absence of more information. Like shown
in the previous chapter, this approximation often works well. However, to deal with the
more general case of nonlinear boundaries, we need to expand the classification procedure
used in the adaptive design algorithm. Using a nonlinear kernel for the SVC model provides
the required flexibility to identify nonlinear boundaries, but the calculation of the efficiency
function λ relies on a well defined distance metric orthogonal to the regime boundary. Us-
ing nonlinear kernel functions, like radial basis functions (rbf) or polynomials, it is difficult
to determine these distances, as the decision boundary of the SVC is no longer a simple
function of the design variables. For this reason, we resort to use a piecewise linear approx-
imation to the nonlinear regime boundary to keep the advantages of simple linear functions
like e.g. the data efficiency. To this end, we start with fitting the classification model using a
very flexible rbf kernel function. Based on this model, we can predict the score of any given
point x. For the linear SVC case, these scores were directly proportional to the distance from
the decision boundary. While this property is not strictly true for the nonlinear case, the
magnitude of the SVC score is still related to this distance. By evaluating the SVC score on
a dense grid over the entire range of design variables, and setting a threshold for this score,
we can obtain a point cloud, located in the vicinity of the nonlinear boundary. An example
is given in Figure 3.26 a), where the data points exactly follow the parabolic shape of the
regime boundary. In order to segment these points into multiple parts along the boundary,
we can project them onto their main principal component and partition them according to
a set of percentiles like shown in the inset of Figure 3.26 a). We end up with a piecewise
linear model, by taking always the end points of each segment and fitting a linear model in
between. In case the outer most points do not fall onto the overall boundaries of the design
space, we can determine the closest edge and add an additional point there. The result is
shown in Figure 3.26 b).
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Figure 3.26: Illustration of the piecewise approximation of nonlinear boundaries. a) 2D design space
with two regimes separated by a parabola shaped boundary. The black data points have
a SVC score < 2. The inset shows the projection of these points on the main principal
component with the colors indicating the segmentation according to several percentiles.
b) The representation of the segmented data set in the original 2D space. The line shows
the piecewise approximation to the decision boundary.

Overview Figure 3.27 shows a schematic of the adaptive design algorithm for the identi-
fication of regime boundaries. Starting with an initial set of points, first it needs to be de-
termined, whether this initial global design results in nonsingular partial regime designs. If
this is not the case, the design initialization procedure adds points to the global design based
on the adaptive design criterion for linear parametrization. During this phase, the efficiency
function λ does not contribute to the optimization, as it depends on the error model which
is not yet well determined due to a lack of data. After each added point, the regime assign-
ment gets updated until every identified regime contains sufficiently many data points. As
soon as this criterion is met, the algorithm switches into the main optimization loop. First,
the individual local regime models are constructed and combined into a global model. Next,
a global error model is obtained in a similar fashion. The error values for every design point
are based on the residuals of the local model used to obtain the local feature vector. Based on
these two models we can determine the cost function for the main Fedorov algorithm. The
dispersion contribution to the cost function depends on the global model’s gradients w.r.t.
the regression coefficients, while the error model directly enters the efficiency function λ.
Depending on whether a refinement of the exact regime boundary position is desired or not,
additionally the confining bias potential may be added to λ. Using a particle swarm opti-
mizer, we determine the position of the next sample. Having obtained the coordinates of the
next point, the algorithm checks, if the local design around this point would overlap with
any existing design points. If this is the case, instead of adding a new point to the design,
the closest already known point is reevaluated to obtain a better estimate of the correspond-
ing measurement error. If the optimized sample is actually new, the corresponding point is
added to the overall design. Finally, based on the updated design, the new position of the
regime boundaries are estimated. This loop continues until some convergence criterion is
met. The choice of the convergence criterion depends on the specific problem and the goal
of the adaptive design procedure. If the main goal is to locate the regime boundaries, ter-
minating the algorithm as soon as the position of the estimated boundary does not change
beyond a certain threshold seems reasonable. However, at this point, the design might not
yet be sufficient to accurately model the system behavior within each regime. Therefore, if
the design is supposed to allow for an accurate modeling of the system, rather a criterion
based on the dispersion contribution to the optimization cost function could be useful. In
practice, however, most often the maximum number of experiments will probably be the
limiting factor.
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Figure 3.27: Schematic of the modified Fedorov algorithm for regime identification.

3.3.3 Algorithm Behavior for Several Toy Problems
To assess the performance of the proposed design algorithm, we constructed characteristic
toy models for which the exact position of the regime boundary is known. These toy models
consist of simple analytical functions within each regime coupled via a smooth transition
function at the boundary. Additionally, statistical noise is added to the sampled data, both in
terms of uncertainty on the input variables (x) and the response of the function. To model the
behavior of real phase transitions more realistically, the standard deviation of the noise term
on the response values is nonconstant over the range of input variables with its maximum at
the regime boundary. For the purpose of illustrating the algorithm behavior, the examples
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shown here, are 2D functions in variables x1 and x2. The analytical expressions as well as
the final design matrices for these examples are given in the appendix (cf. A.3 and A.4).

Regime Boundaries in 2D: Constant Function

The simplest toy model of this type is a constant function which takes on different values
depending on the respective regime. Further, the boundary between these regimes is linear,
enabling the adaptive design algorithm to in theory find the exact solution in the limit of a
large set of samples. Figure 3.28 shows the behavior of three piecewise constant toy systems,
which possess different linear regime boundaries. The first model corresponds to a two
regime system with one transition along a linear function in x1 (Figure 3.28 a), while the
other two toy systems represent two possible scenarios of a three regime problem.
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Figure 3.28: Toy models with linear boundaries and constant function values within each regime.
While the "real" input parameter ranges for the individual models are different, the co-
ordinates x1 and x2 are scaled to the same design range [-1,1] throughout the adaptive de-
sign process. a) Model with two regimes and one boundary. b) Model with three regimes
and two transition boundaries. c) Model with three regimes and three phase transitions
creating a triple point.

The first test of the proposed algorithm is conducted for the two regime system in 3.28
a). Without any knowledge on the system at hand, standard experimental plans are usu-
ally a reasonable choice for an initial design. For example, depending on the amount of
experimental measurements feasible, we can initialize the adaptive design algorithm with a
2-Level full factorial design to investigate the effective model behavior at the extreme points
of the design space. This way, the presence of regime boundaries separating the entire space,
should directly be identified. In a 2D case, meaning two experimental factors, the 2-Level
FFD consists of the four corners of the design space:

Dinitial =


−1 −1

+1 −1

−1 +1

+1 +1

 . (3.21)

As established in the previous chapter, the classification of the design points is performed
based on local features. These features are based on the behavior of local models fitted to
local experimental designs with small displacements around the central global design point.
For the local designs, we again, use 2-Level FFDs with the addition of the central point [0, 0],



76 Chapter 3. Results

which coincides with the global design point

Dlocal =



−1 −1

+1 −1

0 0

−1 +1

+1 +1


. (3.22)

The initial as well as well as the local designs used for the 2D to systems are schematically
illustrated in Figure 3.29.
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(+1,+1)

(+1,-1)

(-1,+1)

Dlocal

Dinitial

Figure 3.29: Schematic illustration of the initial and local 2 factor designs.

Investigating such simplified toy models, instead of fitting a SPTV model and clustering
according to the LASSO coefficients and transformation parameters, locally constant models
are used. Hence, the local models are solely distinguished by one parameter, the constant
function value. After the initial regime identification, the design initialization step is per-
formed in order to create locally nonsingular designs in every regime. As previously dis-
cussed, this is a requirement for setting up the local (per regime) linear regression models.
While a linear model would not be necessary for these piecewise constant toy systems, the
error model which enters the efficiency function λ still needs to be determined. Figure 3.30
gives an overview over the adaptive design for the toy system in Figure 3.28 a) after this
initialization step.
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Figure 3.30: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the toy system shown in Figure 3.28 a). All functions are evaluated
based on the design after the initialization step. a) The prediction of the current global
model approximation. b) The prediction of the error model. c) The efficiency function for
the optimization. d) The cost function for the optimization. e) The dispersion function
based on the current global model. f) The clustering of the current data set and the result-
ing SVM predictions. The black dashed line corresponds to the current estimate for the
regime boundary based on the SVM while the red line indicates the position of the known
reference boundary. The star indicates the latest added point of the design.

As we can see, additional points have been added to the initial design Dinitial . A linear
model in two variables requires at least three data points for the estimation of the regression
coefficients. However, the blue regime in Figure 3.30 f) contains four points already after
the initialization step. This is due to the fact, that the regime assignments get updated af-
ter every added data point. Hence, it took the design initialization two iterations to set up
this locally well determined design. The efficiency function is shown in Figure 3.30 c). By
definition, λ behaves like the inverse of the error model ε. In addition to that, there is the
penalty term in the proximity of the estimated regime boundary. The dispersion function in
Figure 3.30 e) has a clear maximum around [1.0,-0.5] which tries to maximize the distance
to the already known sample points. Combining the dispersion and efficiency functions, we
end up with the cost function of the adaptive design algorithm (Figure 3.30 d)). The cost
function now also shows the penalty around the boundary line, which pushes the optimum
of the dispersion function away from the boundary. Figure 3.31 shows how the individual
contributions are updated after sampling the next data point. We can see that the position of
the estimated regime boundary is slightly shifted and now coincides well with the known
reference (red dashed line). As a result of the additional data point and the shifted regime
boundary, all contributions to the cost function also undergo some change. The most drastic
difference can be observed for the dispersion function in Figure 3.31 e). The newly added
data point reduced the dispersion contribution around its position giving rise to a new op-
timum around [-1.0,0.25] for the subsequent iteration. In general, the position of the regime
boundary has been accurately determined after only one iteration of the adaptive design
algorithm plus the initialization step with a final design consisting of only eight data points.
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Figure 3.31: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the toy system shown in Figure 3.28 a). All functions are evaluated
after one iteration. Subplots are the same as for Figure 3.30.

The toy system in Figure 3.28 b) shows a slightly more complex behavior. Now, three
distinct regimes are present in the design space and, hence, two decision boundaries need
to be determined. Again, we choose a 2-Level FFD for the initial design. As for the previ-
ous example, the first design points are already added during the design initialization. A
linear model in three distinct regimes would require at least nine total design points. The
initialized design shown in Figure 3.32 consists of 10 points, requiring only one additional
point compared to the minimum number of nine for the initial global response model. The
algorithm accurately identifies the three regimes, despite none of the initial 2-Level FFD
points being located in the third regime (green area in Figure 3.32 f)). As the SVC classi-
fier determines pairwise decision boundaries for each combination of classes, there are three
estimated regime boundaries (black dashed lines) present in this three regime example. Fol-
lowing the adaptive design procedure for four iterations, both regime boundaries are well
determined as shown in Figure 3.33.
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Figure 3.32: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the toy system shown in Figure 3.28 b). All functions are evaluated
after the design initialization. Subplots are the same as for Figure 3.30. Despite only two
regime boundaries (red dashed lines), there are three SVC decision boundaries as the clas-
sification model determines pairwise two class boundaries.
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Figure 3.33: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the toy system shown in Figure 3.28 b). All functions are evaluated
after four iterations. Subplots are the same as for Figure 3.30. Despite only two regime
boundaries (red dashed lines), there are three SVC decision boundaries as the classifica-
tion model determines pairwise two class boundaries.
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The third piecewise constant toy system exemplifies a second possible three regime sce-
nario where the two regime boundaries intersect and form a triple point in the phase dia-
gram. For this toy system (Figure 3.28 c)), the design initialization gave similar results as
for the previous example without the boundary intersection as can be seen in Figure 3.34. It
took the algorithm six iterations to accurately estimate the position of the regime boundaries
and the triple point of the system.
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Figure 3.34: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the toy system shown in Figure 3.28 c). All functions are evaluated
after the design initialization. Subplots are the same as for Figure 3.30. Despite only two
regime boundaries (red dashed lines), there are three SVC decision boundaries as the clas-
sification model determines pairwise two class boundaries.

In this case, starting with the 5th iteration, the confining potential has been activated to
more efficiently sample the proximity of the regime edges. Looking at the efficiency func-
tion in Figure 3.35 c), the effect of this confining potential becomes obvious. The estimated
efficiency of the next measurements becomes maximal close (but not directly on top of) the
estimated boundaries. These potential functions depend only on the distance to the respec-
tive SVC decision boundaries and are evaluated for each of them. Hence, both the repulsive
and the confining potential terms multiply close to intersections of multiple boundaries. This
emphasizes the sampling of design points close to the triple point of the phase diagram. In
total, it took 15 designs points to get a reasonable approximation of the phase diagram of
this toy system.
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Figure 3.35: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the toy system shown in Figure 3.28 c). All functions are evaluated
after six iterations. Subplots are the same as for Figure 3.30. Despite only two regime
boundaries (red dashed lines), there are three SVC decision boundaries as the classifica-
tion model determines pairwise two class boundaries.

Regime Boundaries in 2D: Nonconstant Function

In a second step, we investigated the regime identification capabilities of the algorithm for
toy systems which show nonconstant behavior within each regime. Also for these examples,
we did not use SPTV models for the local representation of the model function, as the un-
derlying dependencies are less complex. The model representation used to obtain the set of
local features for every global design point, is a LASSO regularized linear model. Due to the
feature selection properties of the LASSO by clustering according to the coefficients of such
a model, we can distinguish between local models depending on either x1 or x2 in a straight
forward manner. The regime wide local models contributing to the overall global model, are
then either linear or second order LASSO models depending on the amount of data points
available per regime. Figure 3.36 shows the behavior of the two nonconstant toy systems.
Both systems show a dramatically different functional dependence in the two regimes, with
one regime depending only on x1 and the other only on x2. The major difference between
the two systems is the shape of the regime boundary, which is linear in Figure 3.36 a) and
follows a parabolic function for the system in Figure 3.36 b). For the initial and local designs,
the same point sets have been used as for the piecewise constant toy systems.
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Figure 3.36: Toy models with nonconstant function values within each regime. a) Model with two
regimes and one linear boundary. b) Model with two regimes and one nonlinear transition
boundary.

Figure 3.37 gives an overview over the adaptive design for the toy system with the lin-
ear boundary. We can see that during the initialization step two new design points have
been added meeting the minimal requirement of six data points for a 2D linear model in
two regimes. While the assignment of each design point to its respective class is correct,
the position of the initially estimated regime boundary is vastly different from the known
reference. This is simply due to a lack of available data. The cost function in Figure 3.37 d) is
dominated by the dispersion contribution which pushes the next design point towards the
least sampled area of the design space.
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Figure 3.37: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the toy system shown in Figure 3.36 a). All functions are evaluated
after the design initialization. Subplots are the same as for Figure 3.30.

After four iterations, the adaptive design algorithm has accurately determined the transi-
tion line between the two regimes. The efficiency function in Figure 3.38 shows that the con-
fining potential has been activated and thus the next sample points would be located close to
the regime boundary. The final design consists of a total of 10 samples, which mainly lie near
the edge of the design space. As the functional depence within each regime is simple, the
amount of points required for the sampling of the area of each regime is small. As soon as the
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regime wide models are well determined, sampling more points on the edge of the design
space can provide more information on the exact position of the boundary region. Initially,
this trade off between refining the local regime models and localizing the phase transition is
automatically regulated by the interplay of the dispersion and efficiency functions. At the
point when sufficient data points are located in each regime, however, the dispersion con-
tribution can become less and less pronounced. At this point, it can be beneficial to activate
the confining potential to push the design points towards the decision boundary. The loca-
tion of the cost function maxima along this boundary are then still dictated by the residual
dispersion contribution.
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Figure 3.38: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the toy system shown in Figure 3.36 a). All functions are evaluated
after four iteration. Subplots are the same as for Figure 3.30.

The second toy system in Figure 3.36 b) shows a nonlinear regime boundary. The purpose
of this toy system, is to test the piecewise linear approximation of nonlinear SVC decision
boundaries. For the design initialization procedure, we started with a linear kernel for the
SVC resulting in the design illustrated in Figure 3.39. Similar as for the linear regime bound-
ary, the classification of the initial data points is correct, but the estimated boundary deviates
dramatically from the reference due to lack of data. Starting with the first adaptive design
iteration, we use a radial basis function kernel for the SVC and apply the piecewise linear
approximation procedure to the decision boundary. Whether to use a linear or nonlinear
kernel in the classification model is currently a user supplied input. A possible solution,
however, might be to define a error threshold for the linear SVC, which if exceeded triggers
the usage of a nonlinear kernel. The resulting nonlinear classification model is shown in
Figure 3.40.
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Figure 3.39: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the toy system shown in Figure 3.28 b). All functions are evaluated
after the design initialization. Subplots are the same as for Figure 3.30.

After three iterations the algorithm gives a reasonable representation of the parabolic
shape of the regime boundary. At this point, the partial regime designs consist of four sam-
ple points each. Therefore, the regression coefficients for linear response models in both
regimes are well determined. This is reflect in the low values of the dispersion function in
Figure 3.40 e). Further, all maxima are close to the already existing designs points in the
corners and on the edges of the design space. While the number of data points is sufficient
to determine the global response model, the distribution of the points over the design space
is not optimal to accurately determine the functional dependencies of the toy system. This
becomes obvious when comparing the global model prediction in Figure 3.40 a) to Figure
3.36 b). For this reason, we performed several further iterations of the adaptive design al-
gorithm and activated the confining potential to pull the design points away from the outer
edges of the design space.
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Figure 3.40: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the toy system shown in Figure 3.28 b). All functions are evaluated
after three iterations. Subplots are the same as for Figure 3.30.

The final design after 15 iterations is shown in Figure 3.41. We can see that the position of
the regime boundary did not change significantly as the previously determined phase dia-
gram was already close to the known reference. A more pronounced change can be observed
for the global response model in Figure 3.41 a), which now shows a more distinct behavior
of the two regimes. Further, this extended design provides enough information to fit an
accurate error model (Figure 3.41 b)), which captures the dependence of the measurement
error on the position of the phase transition.
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Figure 3.41: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the toy system shown in Figure 3.28 b). All functions are evaluated
after 15 iterations. Subplots are the same as for Figure 3.30.

3.3.4 CO Oxidation on RuO2 Revisited
Based on various simplified toy systems, we could show that the proposed adaptive design
algorithm is capable of identifying changes in effective system behavior and the position of
the resulting regime boundaries in an efficient way. Coming back to applications in chemical
reaction kinetics, we now apply this adaptive design to the CO oxidation on RuO2, which, in
section 3.2, has been investigated based on QMC sampling. For the local model representa-
tion of this reaction kinetic system, SPTV models have been used. Therefore, the clustering
of the design points is performed on a data set containing both the LASSO coefficients of
the local models as well as the corresponding transformation parameters. Again, the final
design matrices are given in the appendix A.4.

Kinetic Phase Transition at Constant Temperature

First, we investigated the constant temperature case, resulting in a 2D design space depend-
ing on the partial pressures of CO and O2. We use a 2-Level FFD with additional center point
for the initial design. The same experimental plan is used for the local designs around each
global center. After the initialization procedure, one new design point is added resulting in
two three point regime designs. The corresponding overview is shown in Figure 3.42.
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Figure 3.42: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the isothermal CO oxidation over RuO2. All functions are evaluated
after the initialization step. Subplots are the same as for Figure 3.30.

As we have seen for the toy systems, the initialized design allows for setting up a valid
surrogate model. The assignment of the design points to different regimes is reasonable.
However, the choice of the position of these initial points does not lead to the expected slope
of the estimated transition boundary. Additional points are needed in order to correct for
this. After two iterations of the Fedorov algorithm, the position of the regime boundary has
changed as shown in Figure 3.43. To more accurately determine the position of the bound-
ary, again, the confining potential has been activated and three further iterations have been
performed. The resulting design after five iterations is given in Figure 3.44. As expected, the
final two points added to the design are located close to the SVC boundary. We can see that
the adaptive design successfully identifies the expected kinetic phase transition between the
oxygen and the CO covered regimes. Compared to the QMC data set in the previous section,
the point density for this adaptive design is not sufficient to identify the transition region as
an individual regime. Rather, the identified decision boundary runs through this region of
the kinetic phase diagram. Looking at the surrogate model predictions based on this 12 point
sequential design in Figure 3.45, we can see despite consisting of only two regimes, the qual-
itative behavior of the TOF for this reaction is captured (cf. Figure 3.15). The correlation plot
shows a systematic overestimation of the reaction rate. This is due to a larger uncertainty in
terms of the transition region leading to a broadening of the maximum TOF region as can
be seen in Figure 3.45 c). Apart from this overestimation the two regime surrogate model
is in reasonable agreement with the MKM taking into account the small number of only 12
training samples.
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Figure 3.43: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the isothermal CO oxidation over RuO2. All functions are evaluated
after two iterations. Subplots are the same as for Figure 3.30.
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Figure 3.44: Overview over the relevant functions contributing to the optimization problem in the Fe-
dorov algorithm for the isothermal CO oxidation over RuO2. All functions are evaluated
after five iterations. Subplots are the same as for Figure 3.30.

In case the identification of an extended transition region as a separate regime is desired,
sampling additional points with a slightly broadened confining potential could be a viable
way of determining additional points in this region. However, considering only two regimes
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for the surface phase diagram is also a valid description. The transition region resembles
reaction conditions where both, the oxygen and CO dominated processes contribute to the
overall kinetics. Given a sufficiently dense sampling, points within this region will tend to
form their own cluster, as they can not be assigned to either of the major regimes. This,
however, is not necessary to capture the effective behavior, as the membership probabilities
predicted by our classification model can take care of this mixing of the two kinetic processes
over the phase transition.

We compared the position of the decision boundary based on the 12 point sequential
adaptive design (SAD) to several sets of QMC points. Also included are the result for a
sequential design run using the batch optimization procedure with a batch size of three
points per iteration. For a simpler comparison we restricted ourselves to a single linear
regime boundary, which is uniquely defined by a slope and an intercept. The results are
given in Table 3.8.
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Figure 3.45: Prediction performance of the global surrogate model based on the final 12 point adaptive
design evaluated on a regular grid over the entire reaction condition domain. a) TOF
calculated using the reference MKM. b) Parity plot between reference and predicted TOF
values. The parity plot as well as the error values are determined on the test set depicted
in the other subfigures. This test set is constructed as a regular 30 by 30 grid. The inset
shows the shape of the residual distribution. Despite not being centered around 0, the
distribution is reasonably symmetric. c) TOF predicted by the global surrogate model.

Table 3.8: Parameters of the regime boundary for the two regime problem of the CO oxidation on
RuO2 for different designs.

Design # Points Intercept Slope

SAD 12 -0.47 2.03

SADbatch 13 -0.86 2.72

QMC(Halton) 12 -0.69 2.67

QMC(Halton)flipped 12 -1.00 3.38

QMC(Sobol) 12 -0.75 3.00

QMC(Sobol)flipped 12 -0.75 3.00

Reference(LHC) 120 -0.67 2.18

As the position of the real phase transition is difficult to define, we used an extensive
latin hypercube (LHC) sampling with 120 points as reference. Comparing slope and inter-
cept values of the decision boundary obtained by our adaptive design to QMC designs of
similar size, for most cases, the adaptive design is significantly closer to the extensive ref-
erence data set. One exception is the performance of the 12 point Halton sequence, which
yields comparable results to our approach. As QMC sequences are deterministic, these 12
points will always be the same, independent of the position of the phase transition. If the
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transition happens to fall in between the points of such a QMC sequence, the result may
compare to or even outperform the adaptive design. However, it is not guaranteed that the
phase transition is well sampled for any system. Table 3.8 also shows the result for a flipped
Halton sequence, were we change the assignment order of the two partial pressures. We can
see that the resulting decision boundary deviates significantly more from the LHC reference.
This is an indication that the good performance of the original series was indeed by chance.
As opposed to the Halton series, Sobol QMC samples are symmetric with respect to an inter-
changing of the two axes. This property of the Sobol sequence leads to both the original and
the flipped sample resulting in the same position of the decision boundary. Comparing the
single point SAD to the batch optimization, we can see that the batch SAD deviates slightly
stronger from the reference, especially in terms of the intercept. This behavior is expected,
as the fully sequential optimization takes into account the full information of the current es-
timate in every iteration. Instead, for the batch case, multiple minima of a fixed cost function
are sampled, which could have changed, if the points would have been measured sequen-
tially. Still, the optimization identifies the right trend. The batch optimization also has the
advantage, that it requires only two iterations to construct this 13 point design, which could
be beneficial in a real experimental study. The batch optimized design contains 13 points
as opposed to the sequential one with 12, as the initialization procedure for the batch SAD
added one additional point. Continuing with a fixed batch size results in the slightly larger
final design.

Hierarchical Approach for the Exploration of Higher Dimensional Problems

The regime identification formalism using a modified Fedorov algorithm, we propose in this
work, can easily be extended to higher dimensional problems. Given an N dimensional de-
sign space, the corresponding regime boundaries are (N-1)D subspaces. A third experimen-
tal factor in the CO oxidation on RuO2 is temperature. By varying temperature in addition
to the partial pressure of both reactants, we span a 3D design space. Hence, the resulting
regime boundaries are 2D planes or, generally, 2D surfaces. We applied the adaptive design
algorithm to the temperature dependent problem by initializing the algorithm with a three
factor Placket-Burman design (PBD) plus an additional central point:

Dinitial =



−1 −1 +1

+1 +1 +1

0 0 0

−1 +1 −1

+1 −1 −1


. (3.23)

Starting from this five point designs, the initialization procedure has been performed to en-
sure locally nonsingular designs. The evolution of the adaptive design and the resulting
regime boundary over several iterations is illustrated in Figure 3.46. The minimum sample
requirement for a 3D linear model is four. As we can see, the design initialization step added
six points to the initial PBD in order to fit the global surrogate model. This indicates major
changes in the position of the SVM decision boundary during this phase. The following sam-
ple points proposed by the adaptive design mainly focus on the corners of the design space
reproducing classical factorial experimental designs. As soon as most corners of the design
space are covered, the algorithm adds points along the edges of the 3D cube to more accu-
rately localize the phase transition. This goes along with few points within the design space
volume, which facilitate a more accurate estimation of the regime model parameters. We
can see that already from the second iteration onward, the position of the regime boundary
does no longer change significantly.
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Figure 3.46: Adaptive design algorithm for the 3D temperature dependent CO oxidation on RuO2. The
subplots show the design points as well as the 2D decision boundary for every iteration.
The star indicates the latest addition to the design.

Having identified a 2D subspace of the 3D design space which resembles the transition
region and hence the region of maximum TOF, we can map a 2D experimental design onto
this plane to efficiently fit a more accurate response model for this region. From the param-
eters of the decision boundary determined by the SVC we can directly obtain a coordinate
system lying within this plane. However, in mapping onto this plane the question of the de-
sign space boundaries arises. While the original 3D design space was a well defined (hyper-
)cube, the intersection of this cube with the SVC decision boundary is in general a simplex
with ≥ 4 corners. In order to work on a simple rectangular 2D subspace, we, therefore, need
to determine the proper rotation of the in plane coordinate system, such that the inscribed
rectangle of the simplex has a maximum area. Given a rotation angle around the normal
vector of the plane, we can identify the maximum inscribed rectangle using an algorithm
described by Marzeh et al.[136]. For the 2D case, this algorithm is efficient enough, such that
the possible rotations can be evaluated brute force on a regular grid. The resulting mapping
from the original 3D space onto the rotated 2D subspace is illustrated in Figure 3.47.
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Figure 3.47: Definition of the 2D coordinate system located in the decision boundary plane. a) The 3D
design points and the corresponding decision boundary. The stars indicate the intersec-
tions of the plane edges with the overall boundaries of the design space. The three vectors
indicate the basis vectors of the coordinate system within the plane with one dimension
being normal to the plane. b) Maximum area rectangle enclosed by the simplex defined by
all intersection points of the decision plane with the global boundaries. The x- and y-axis
correspond to vectors within the plane. c) A combination of a 3-Level FFD and 2-Level
FFD mapped onto the decision plane used for training a response model in the resulting
2D coordinate system.

Using the maximum area rectangle as the new 2D design space, we can construct a 2D
experimental design within this plane in order to fit a response model of the maximum TOF
region. The corresponding sample points are shown in Figure 3.47 c). The response model
was fitted as a function of the original design parameters, the partial pressures of CO and
oxygen as well as temperature. Figure 3.48 shows the prediction quality of the resulting
model.
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Figure 3.48: Prediction performance of the decision plane surrogate model fit to the 2D experimental
design in Figure 3.47 c) evaluated on a regular grid over the entire reaction condition
domain. a) TOF calculated using the reference MKM. b) Parity plot between reference and
predicted TOF values. The parity plot as well as the error values are determined on the
test set depicted in the other subfigures. This test set is constructed as a regular 30 by 30
grid. c) TOF predicted by the global surrogate model.

The mapping between the 2D subspace within the boundary region and the original co-
ordinates is a simple linear transformation. The coordinate system is rotated such that two
of the three basis vectors are located within the transition plane. This is followed by a rota-
tion around the normal vector of the plane to maximize the area of the resulting rectangle.
By storing the original intercept of the rotated 3D coordinate system before the projection to
2D, the entire mapping is easily invertible.
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The basis vectors of the transition plane in terms of the original coordinates are the fol-
lowing:

Vector 1 =


−0.200

0.145

−0.969


log(pCO)

log(pO2)

T̂

Vector 2 =


−0.569

−0.822

−0.005


T

log(pCO)

log(pO2)

T̂

(3.24)

We can see that one of the two basis vectors (Vector 1) is heavily dominated by temperature
and shows only a slight tilt in the other two dimensions. Vector 2 on the other hand is largely
independent of the reaction temperature and depends on both partial pressures. This behav-
ior has already been observed for the extensive QMC sampling in the previous section. The
position of the transition region between the oxygen and the CO poisoned regimes does not
show a large shift due to temperature effects. In fact, the dependence of the TOF on tem-
perature does not show an abrupt phase transition within the range of reaction conditions
investigated here. Using the proposed adaptive design algorithm, this simplified coordinate
system, which can be used in more detailed kinetic studies, could be identified without any
prior knowledge of the underlying microkinetics.

Finally, we again compared the position of the estimated phase transition of the SAD
with QMC point sets of the same size. As we are now dealing with a 2D transition plane,
we need to assess the similarity of two regime boundaries using a different metric. The
two quantities of interest here, are the deviation in euclidian distance of the plane from the
origin and the scalar product of the two normal vectors. If the normal vectors are scaled to
unit length, the absolute value of this scalar product is connected to direction cosine of the
two vectors and takes on values between 0 and 1. A value of 1 would correspond to two
parallel planes, while a scalar product of 0 would indicate that the normal vectors of the two
planes are orthogonal. A 200 point LHC design acts as the reference for this comparison and
the results are summarized in Table 3.9.

Table 3.9: Parameters of the 2D regime boundary for the temperature dependent 3D two regime prob-
lem of the CO oxidation on RuO2 for different designs.

Design # Points Normal Scalar ∆ Origin
Vector Product Distance

SAD 22
(
−0.798 0.550 0.247

)T 0.993 0.971
QMC(Halton) 22

(
−0.955 0.251 0.158

)T 0.969 1.763
QMC(Halton)flipped 22

(
−0.886 0.352 0.300

)T 0.995 1.380
QMC(Sobol) 22

(
0.784 −0.510 −0.353

)T -0.992 3.371
Reference(LHC) 200

(
−0.851 0.446 0.277

)T 1.000 0.000

Comparing the SAD to the LHC reference the normal vectors of the two resulting transi-
tion planes are almost perfectly parallel with a scalar product of 0.993. Of all investigated de-
signs consisting of 22 points, the SAD also shows the lowest distance in terms of the plane’s
intercept. Looking at the performance of the QMC samples, we can see that both Sobol
and Halton sequences result in very accurate normal vectors with the Halton sequence even
outperforming the SAD. However, in terms of the intercept values, the distance is, again,
larger as compared to the sequential design. For the Halton sequence, we again switched
the assignment of the experimental factors to the sample dimensions. The resulting decision
boundary is in closer agreement with the reference compared to the original Halton points,
however, as for the 2D case this improvement is purely by chance, as the QMC design does
not adapt to the phase transition.
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3.3.5 Outlook: Applications in Real Experiments
We have shown a sequential adaptive design algorithm specialized for the identification of
regimes in reaction kinetic systems. Building on the original adaptive D-optimal design pro-
cedure proposed by Fedorov [11], we have introduced the presence of regime boundaries,
which mark an abrupt change in effective behavior of the system. This is incorporated into
the global model assumption by constructing the information matrix based on a coupled
SPTV model for the multi-regime system. At the same time, we modify the measurement
efficiency function to avoid putting samples exactly on the regime boundary, where the ex-
pected noise level is high and a safe assignment of the sample to any regime can be difficult.
Looking at various artificial toy systems as well as the MKM of the CO oxidation over RuO2,
we could show, that this algorithm accurately determines the location of such phase transi-
tions in an efficient way.

This data efficiency becomes especially important when applying such a procedure in a
real experimental study, where every single design point is extremely expensive to evaluate.
A major drawback of this procedure for experimental studies is the way the local fingerprint
for the effective kinetics is obtained. For every global design point, in our algorithm, a local
factorial design is expanded in order to estimate the local sensitivity of the kinetics. These
local designs lead to a dramatic increase in experimental effort, if every individual factor
setting is equilibrated in a reactor. A possible solution to this problem could be frequency
response measurements [137]. Such experiments allow for an estimation of kinetic parame-
ters based on small periodic modulations of experimental conditions around the steady-state
[138, 139]. Replacing the local fingerprint used in the regime assignment procedure by such
frequency response estimated parameters would effectively reduce the number of required
reactor equilibrations to the number of global design points. For example, in the case of the
isothermal CO oxidation over RuO2, reaching a steady-state for 14 different reaction condi-
tions determined by the SAD would be sufficient.

In general, the here proposed adaptive design method is not restricted to the investi-
gation of reaction kinetic phase diagrams. Only minor modification would be required to
generalize this approach for arbitrary systems expected to show phase transitions of some
kind. Using SPTV models as a representation of the regime wide models is of course tailored
towards reaction kinetics problems. However, in principle every kind of regression model
could be used instead. In the most general case, as shown for the artificial toy systems,
standard polynomial regression models can be employed, which tend to have reasonable
approximation properties in sufficiently smooth regions. Going in the direction of catalyst
design, this method could also be applied to identify phase transitions in a design space
spanned by e.g. the synthesis conditions of the catalyst. This way, expensive screening and
optimization studies could be restricted to a smaller parameter range or lower dimensional
manifolds allowing for a more efficient sampling.

Up to this point the application test cases for the algorithm in this work have been rather
simple in terms of the kinetic phase diagram and the smoothness of the in-regime behavior.
It will be interesting to benchmark the performance of this algorithm for more noisy data.
Generating kinetic data based on kMC [4] could turn out as a challenge for the modeling al-
gorithm. Also, the presence of many regimes in a system needs to be further investigated, as
the various penalty terms may lead to an insufficient sampling of especially smaller regimes.
Further, while the formulation of the method allows for a straight forward extension to
higher dimensional problems, some open questions still need to be addressed. For exam-
ple, the piecewise linear approximation of nonlinear regime boundaries is currently only
implemented for 2D two regime systems. One of the problems here is to identify the proper
decision function thresholds to locate points close to the decision boundary in a multi-class
problem. To this end, selecting points based on the local uncertainty in terms of the cal-
ibrated membership probabilities of the SVC could be a valid alternative. Further, when
selecting points based on such a threshold, samples along all decision boundaries are se-
lected. To approximate multiple regime boundaries individually, these points would need
to be separated, a task which could for example be tackled by clustering analysis.
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Chapter 4

Summary, Conclusions and
Outlook

"Das ist wie Schiffe Versenken, nur hochdimensional." - Christoph S.

Understanding the kinetic phase diagram of chemical reactions is central in catalysis re-
search. The complex mechanisms of surface reactions give rise to distinct kinetic regimes,
which show qualitatively different behavior. These regimes are separated by sharp kinetic
phase transitions [34], which generally coincide with transitions in the surface phase dia-
gram of the catalyst [3]. Knowledge about the kinetic phase diagram of a catalytic reaction is
valuable when trying to identify optimal conditions in a reactor setup. In this thesis, we have
presented a data driven top down approach to identify the shape of kinetic phase diagrams
based on experimental observations.

In a first step (section 3.1), we developed an algorithm to identify effective kinetic models
from kinetic data. This algorithm approximates the kinetics of the system as a sparse poly-
nomial in terms of the reaction conditions. These factors entering the polynomial expansion
are taken to their respective sensitivity parameter with respect to the response variable. In
general this response variable is identified with the observed rate of the reaction and thus for
example the sensitivity parameter for a given reactant concentration can be interpreted as
the corresponding partial reaction order. The resulting models represent the best analytical
mean field approximation to the observed kinetics and take the shape of effective rate laws
known from classical kinetics. In order to estimate the model parameters for these rate laws,
we employed modern statistical and numerical methods. Constructing the polynomial mod-
els making use of the LASSO [6, 45] ensures sparsity of the final rate law, as only those terms
are selected from the polynomial ansatz, which contribute in a significant way. Further, also
the nonlinear sensitivity parameters are optimized for these models. In a multi-objective
framework [98] we employ a genetic algorithm [8] to identify the best possible trade off be-
tween the accuracy of the kinetic model and the adequacy of the normality assumption on
the residual distribution [7]. A key requirement for the estimation of interaction terms in
the polynomial ansatz is the proper factorial design of the kinetic data sets. We could show
that this sparse approximation approach combined with classical DoE reproduces rate laws
of classical kinetic reaction networks [80]. Investigating a MKM for the CO oxidation on a Pt
catalyst, we could further exemplify the capability of this approach to distinguish between
effective kinetic regimes.

In order to locate the position of a kinetic phase transition as a function of various process
parameters, we harness the capability of this novel kinetic modeling approach to automat-
ically identify kinetic rate laws (c.f. section 3.2). In an automatized regime identification
procedure, we assign sample points to different regimes by analyzing the behavior of local
kinetic models. We sample the range of possible reaction conditions making use of QMC
sequences [68] and expand local factorial designs around each of these QMC centers. Based
on the local designs, kinetic models are optimized and the behavior of these models is en-
coded in a vector of model parameters. On the data set of these kinetic fingerprints, we
peform a clustering analysis [99] in order to label each QMC center. We could show that this
clustering according to the kinetic fingerprints of the samples also results in a reasonable
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segmentation in the reaction condition space. Based on the labels of each QMC center, a
classification model [9] is trained. The decision boundaries of this classification model then
correspond to an approximation to the real kinetic phase transitions. For the CO oxidation
on RuO2, the support vector classifier trained following this procedure nicely reproduced
the catayst’s surface phase diagram from the reference MKM. Going one step further, we
could establish that membership probabilities from a calibrated classification model [76] can
act as weights in a linear combination, coupling the local regime models to form a global
representation of the multi-regime kinetics.

Working towards applying this regime identification procedure in real experimental stud-
ies, we investigated adaptive design methodologies (c.f. section 3.3). Adaptive designs are
experimental plans which are updated in every iteration making use of the information ob-
tained during the previous measurements. Such computer optimized designs require some
assumption on the functional form of the model we want to use in order to describe the sys-
tem at hand. Using coupled local effective models, we incorporate the presence of regime
boundaries into this model assumption and thus into the optimality criteria for the exper-
imental design. While the QMC sequences sample the design space as evenly as possible,
the adaptive design takes into account the current guess for the position of the phase tran-
sition when suggesting another design point. This way, the exact shape of the kinetic phase
diagram can be explored in an iterative manner. For several analytical toy systems, using
this algorithm, the position of regime boundaries could accurately be reproduced. Further,
revisiting the CO oxidation on RuO2, we could show that this algorithm can also capture
kinetic phase diagrams of moderately complex reaction networks. For higher dimensional
problems, we demonstrated how to reduce the number of effective coordinates by projecting
lower dimensional designs onto the boundary regions identified by our algorithm.

Having exemplified the performance of our algorithm based on artificial data sets, we
envision the application of this kind of technique in the investigation of novel and mecha-
nistically not well understood reaction systems. In the context of computer guided exper-
imentation, such an adaptive design algorithm can pave the way for an almost automatic
exploration of kinetic phase diagrams. Provided a set of process parameters and an initial
design, the algorithm can guide the experimental search through the kinetic space. In the
process of this exploration, efficient surrogate models are obtained, which can be utilized for
optimization or coupled to macroscopic simulations in a reactor engineering framework.

From an algorithmic point of view, the presented adaptive procedure could also pave the
way towards handling continuous and categorical factors on an equal footing in a design
framework. The piecewise constant toy models covered in section 3.3.3, can be interpreted
as a continuous representation of a design space depending on categorical variables, where
each regime corresponds to a constant factor setting. Often times, declaring categorical vari-
ables is a low order approximation to an actually more complex problem. In such cases,
taking into account the less idealized small variations around points within the same regime
(categorical setting), which show qualitatively similar behavior, may actually be beneficial
for locating the transition point of the pseudo-categorical factors.
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Appendix A

Appendix

A.1 Additional Details on the Regression Algorithm

The contents of this section have been published in the Chemical Engineering Journal under
the CC-BY license [1] (cf. SI) .

A.1.1 Influence of the Noise Term
The algorithm is designed to identify robust models based on "real" data from experimental
measurements. Such data is subject to statistical noise, which in the limit of a large number
of measurements can be assumed to be normally distributed. For this reason, all simulated
rates based on simple mikrokinetic models have been modified by adding a noise term from
a normal distribution. This, to a certain degree, is necessary, as the algorithm tries to find
the model with most gaussian shaped residual distribution. If we leave out this term, the
main source of error would come from the discretization when estimating the rate from fi-
nite differences. This discretization error, however, is in general not normally distributed
[140]. Figure A.1 shows how the magnitude of the noise influences the result of the pareto
optimization and the corresponding noise standard deviations are given in Table A.1. We
can see, that up to a noise level of 10% of the mean data value, the trends in transformation
parameters are robust. Also, we see that even without artificial gaussian noise, the correct
reaction orders are captured. The error in our simulated data set thus seems to be already
close to a normal distribution. The additional noise term we add is therefore a safety mea-
sure to assure, the underlying assumptions for our algorithm are given. The assumption,
that experimental noise is approximately normally distributed in the limit of large data sets
on the other hand is well established due to the central limit theorem [102].
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Figure A.1: Pareto fronts for the isothermal HBr problem at different noise levels. The red points in-
dicates a reasonable choice for the final model with the transformation parameters given
in the legend. The random errors are drawn from distributions with mean 0 and standard
deviations given in Table A.1.
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Table A.1: Standard deviations for the different noise levels.

Percentage of sample mean Standard deviation [mol/l/s]

0.0% 0.000

0.1% 2.516·10−8

1.0% 2.516·10−7

10.0% 2.516·10−6

50.0% 1.258·10−5

A.1.2 Model Extrapolation
Figure A.2 shows the extrapolation of maximum region models produced with different zero
shift values.
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Figure A.2: CO oxidation models with different zero shift values.

It immediately becomes obvious, that the extrapolation beyond the training region (dashed
black lines) is not recommended with such polynomial models. The curvature of the model
is solely determined by the training data and might lead to dramatic deviations and does
not need to resemble the behavior of the "real" function outside this limited domain. The
higher the order of the polynomial, the more drastic these deviations can become. Addition-
ally, the extrapolation to lower temperatures is limited by the the zero shift value used in
the preprocessing steps of the algorithm. If the input features end up with negative values
after the shifting and scaling steps, taking a logarithm during the power transformation be-
comes a problem. Thus, for such values no prediction is possible. Increasing the zero shift
value resolves this issue, however, at the cost of a decreased sensitivity to the exponents of
the transformation, as the absolute values of the features will increase. This will result in a
worse fit as can be seen in Figure A.2.
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A.2 Additional Results

A.2.1 Temperature Dependent HBr Reaction
As stated in the main text, the chosen temperature range between 840 K and 860 K is ex-
tremely narrow. From an experimental point of view, this temperature range would be dif-
ficult to resolve due to the limitations of experimental setups. As already mentioned above,
the scaling of the temperature input introduces certain limitations regarding the extend of
the temperature range of interest. Here we show two additional examples for the temper-
ature dependent HBr reaction. This time, we increased the magnitude of the temperature
variations to 100 K. Figures A.3 and A.4 show the results for temperature windows of 900 K
to 1000 K and 1300 K to 1400 K respectively. As can be seen from these results, the kinetics
of the HBr reaction is qualitatively reproduced also in this larger temperature regimes. The
reaction orders and activation barriers also reproduce the expected behavior. Looking at the
error distributions of the resulting models, however, they do not resemble a gaussian shape.
We attribute this result to the way larger temperature effect on the simulated rates, compared
to the effects of the concentration variations. This results in the temperature dominating the
LASSO regression. Looking at the parity plot e.g. in Fig. A.3, we can clearly see that the data
points are separated into three domains, which correspond to the three sampled temperature
values.
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Figure A.3: a) Pareto front for the temperature-dependent HBr problem in the range 900 K to 1000 K.
The NSGA-II optimization is performed on a population of 1000 individuals. Five repre-
sentative pareto-optimal solutions are highlighted with their respective sensitivity param-
eters given in Table A.2. b) Distribution of reaction orders α for H2, Br2 and the scaled
temperature values T̂ over the entire population. c) Parity plot for solution 1. d) Residual
distribution for solution 1. e) LASSO regression coefficients for solution 1.
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Table A.2: Model parameters and objective values for five selected temperature-dependent pareto op-
timal HBr models in the range 900 K to 1000 K corresponding to the pareto front in Fig. A.3.

α[Br2]
α[H2]

αT̂ Residual PPCC

Solution 1 0.498 1.447 0.400 0.167 0.988

Solution 2 2.701 3.618 0.408 0.183 0.989

Solution 3 0.554 2.133 0.327 0.255 0.989

Solution 4 0.558 3.146 0.314 0.292 0.991

Solution 5 0.006 0.695 0.232 0.603 0.992
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Figure A.4: a) Pareto front for the temperature-dependent HBr problem in the range 1300 K to 1400 K.
The NSGA-II optimization is performed on a population of 1000 individuals. Five repre-
sentative pareto-optimal solutions are highlighted with their respective sensitivity param-
eters given in Table A.3. b) Distribution of reaction orders α for H2, Br2 and the scaled
temperature values T̂ over the entire population. c) Parity plot for solution 2. d) Residual
distribution for solution 2. e) LASSO regression coefficients for solution 2.

A.2.2 Catalytic Cycle without Side Reaction
To observe the change in effective kinetics with an increasing excess in one reactant, we
performed multiple simulation runs of the catalytic cycle at different A:B ratios. For further
analysis, only one pareto optimal solution was chosen. The complete pareto fronts for the 7
different feed ratios are given in Fig. A.5.
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Table A.3: Model parameters and objective values for five selected temperature-dependent pareto op-
timal HBr models in the range 1300 K to 1400 K corresponding to the pareto front in Fig. A.4.

α[Br2]
α[H2]

αT̂ Residual PPCC

Solution 1 0.611 1.307 0.486 0.234 0.996

Solution 2 0.595 1.333 0.488 0.238 0.997

Solution 3 0.607 2.919 0.491 0.249 0.998

Solution 4 0.645 3.424 0.492 0.258 0.998

Solution 5 7.699 4.091 0.520 0.325 0.999

Figure A.5: Pareto fronts for the catalytic cycle without side reaction at different A:B ratios. The red
point indicates the selected solution.

The underlying data sets have been obtained by sampling minor variations of the two
reactant concentrations according to 2 factor full factorial design (25 runs) with level settings
given in Table A.4. All runs have been performed at a constant temperature of 700 K.

A.2.3 Catalytic Cycle: Substrate Decomposition
Figure A.6 shows the pareto front for the isothermal catalytic cycle with substrate decom-
position. As two response variables (rate towards P and rate towards D) are considered,
the cost function is no 3 dimensional. The automatic pareto front model selection, can in
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Table A.4: Parameter scalings for the catalytic cycle without side reaction. x indicates the excess in
reactant B and takes values of 0, 0.5, 1, 2, 4, 6, 10.

Level [A] [1·10−4 Torr] [B] [1·10−4 Torr]

-1 0.8 x+0.8

0 1.0 x+1.0

+1 1.2 x+1.2

principle still be applied to these higher dimensional problems. However, as this procedure
effectively projects the front onto the residual axis, the more complex structure of the pareto
front is not accounted for. An extension of the algorithm to higher dimensions is currently
not implemented. For this reason, the model selection in figure A.6 was done manually.
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Figure A.6: Pareto front for the isothermal catalytic cycle model with substrate decomposition. The
cost function for this problem is now 3D, as PPCC values for two response variables need
to be optimized and the subplots show different angles of the same front. The optimization
was performed on a population of 200 individuals. The red marker indicates the selected
model.

The majority of solutions within this 3 dimensional pareto front are located at low resid-
ual values, with a semi-continuous domain of points at a residual norm of roughly 0.1. The
typical ellbow shape of the front can be found in the plane of the two PPCC values. Ul-
timately, the solution, which was chosen from this front, is located at the edge of such a
domain in the almost 2 dimensional sub front at low residual values.

To determine the temperature dependence of the two reaction pathways in the isothermal
catalytic cycle with substrate decomposition, individual models for both product rates have
been fit. The corresponding pareto fronts are given in figures A.8 and A.7. Both optimization
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have been performed on the same dataset based on full factorial design with three factors
([A],[B], T).
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Figure A.7: Pareto front for the temperature dependent catalytic cycle model with substrate decom-
position. The optimization was performed on a population of 200 individuals. The red
marker indicates the selected model. The target quantity is the production rate of the main
product P.
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Figure A.8: Pareto front for the temperature dependent catalytic cycle model with substrate decom-
position. The optimization was performed on a population of 200 individuals. The red
marker indicates the selected model. The target quantity is the production rate of the side
product D.

For these individual models the pareto front again becomes a 2 dimensional object. There-
fore, the standard model selection could be applied. Both fronts show a similar behavior
with a significant gap between low and high residual solutions.

A.2.4 CO Oxidation
Figure A.9 shows the pareto front for the maximum rate region in the CO oxidation example.
Here we have an example for a pareto front, which makes the selection of clear optimal
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Table A.5: Parameter scalings for the full factorial.

Level [O2] [1·10−4 Torr] [CO] [1·10−4 Torr] [CO2] [1·10−4 Torr] T [K]

-1 0.8 0.8 0.8 460

0 1.0 1.0 1.0 490

+1 1.2 1.2 1.2 520

solution quite difficult. The entire front is basically one continuous domain. This is often
the case, if multiple (>2) LASSO terms contribute significantly the overall model, as in such
cases there are various possible trade offs which result in very similar objective values. Still,
in this case there are indeed some minor gaps, which allow for a model selection using the
automated analysis implemented in our algorithm.
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Figure A.9: Pareto front for the CO oxidation model. The optimization was performed on a population
of 200 individuals. The red marker indicates the selected model. The target quantity is the
production rate of CO2.

This maximum region model was fit based on a 3-level full factorial design with scaling
parameters as given in table A.5.

In Figure A.10 we show the predictions of the maximum region model along cuts through
all 4 feature dimension (T, [O2], [CO], [CO2]) compared to the data from the full factorial
design.
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Table A.6: Parameter scalings for the temperature scan designs.

Level [O2] [1·10−4 Torr] [CO] [1·10−4 Torr] [CO2] [1·10−4 Torr]

-1 0.8 0.8 0.8

0 1.0 1.0 1.0

+1 1.2 1.2 1.2

450 475 500 525
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Figure A.10: Maximum region model predictions along cuts through all 4 feature dimensions.

A.2.5 Temperature Scan Designs
The temperature scan designs are basically composed of experimental designs, which are
translated along the temperature axis. For every temperature value we evaluate a basis
design for all N − 1 remaining factors (partial pressures). In the case of the full factorial
reference design, this basis design is simply a 3 factor (pCO, pO2 , pCO2 ) 3-level full factorial.
For the screening designs, we used a Placket-Burman (PB) design [109] at every temperature.
For every PB design the central point (0,0,0) was added to allow for a better estimation of
nonlinear effects. The respective design matrices are given in Tables A.7 and A.8. Table A.6
contains the parameter settings for the partial pressures. The temperature was increased in
steps of 20.0K for the full factorial design and steps of 23.5K for the screening design.

A.3 Toy Models for the Adaptive Design Algorithm

Here, the exact equations for the toy models discussed in chapter 3.3 are given. The tran-
sition functions q(x1, x2) are arctangent type trigonometric functions centered around the
transition boundaries. The error function e(x1, x2) is used to scale the standard deviation of
a gaussian noise term σ, which is drawn from a standard normal distribution. The function
e(x1, x2) itself is of gaussian shape and centered along the regime boundary, such that the
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Table A.7: Temperature scan full factorial design with a total of 567 points for N=21.

T [O2] [CO] [CO2]

T1 -1 -1 -1

T1 0 -1 -1

T1 1 -1 -1

T1 -1 0 -1

T1 0 0 -1

T1 1 0 -1

T1 -1 1 -1

T1 0 1 -1

T1 1 1 -1

T1 -1 -1 0

T1 0 -1 0

T1 1 -1 0

T1 -1 0 0

T1 0 0 0

T1 1 0 0

T1 -1 1 0

T1 0 1 0

T1 1 1 0

T1 -1 -1 1

T1 0 -1 1

T1 1 -1 1

T1 -1 0 1

T1 0 0 1

T1 1 0 1

T1 -1 1 1

T1 0 1 1

T1 1 1 1

... ... ... ...

TN -1 -1 -1

TN 0 -1 -1

TN 1 -1 -1

TN -1 0 -1

TN 0 0 -1

TN 1 0 -1

TN -1 1 -1

... ... ... ...



A.3. Toy Models for the Adaptive Design Algorithm 109

Table A.8: Temperature scan screening design with a total of 90 datapoints for N=18.

T [O2] [CO] [CO2]

T1 -1 -1 1

T1 1 -1 -1

T1 -1 1 -1

T1 1 1 1

T1 0 0 0

... ... ... ...

TN -1 -1 1

TN 1 -1 -1

TN -1 1 -1

TN 1 1 1

TN 0 0 0

magnitude of the noise term is larger the closer a point is to the boundary, resembling the
expected behavior of a real reaction kinetic system.

A.3.1 Piecewise Constant Models with Linear Boundaries
Two Regimes with Linear Boundary
This model is shown in Figure 3.28 a).

f (x1, x2) = −1 · q(x1, x2) + 1 · (1− q(x1, x2)) + σe(x1, x2)·

q(x1, x2) =
arctan(20 · (x2 − s(x1))) + π/2

π

e(x1, x2) = 0.1 · exp
(
−(x2 − s(x1))

2

4

)

s(x1) = 0.3 · x1 − 1.5

(A.1)
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Three Regimes with Linear Boundaries without Intersection
This model is shown in Figure 3.28 b).

f (x1, x2) = 5 · (1− q1(x1, x2))− 8 · q2(x1, x2) + σe(x1, x2)·

q1(x1, x2) =
arctan(20 · (x2 − s1(x1))) + π/2

π

q2(x1, x2) =
arctan(20 · (x2 − s2(x1))) + π/2

π

e(x1, x2) = 0.1 · exp
(
−(x2 − s1(x1))

2

4

)
+ 0.1 · exp

(
−(x2 − s2(x1))

2

4

)

s1(x1) = −0.3 · x1 − 2.5

s2(x1) = 0.1 · x1 + 3.5

(A.2)

Three Regimes with Linear Boundaries and Triple Point
This model is shown in Figure 3.28 c).

f (x1, x2) = 5 · (q1(x1, x2) · q2(x1, x2))− 8 · (1− q1(x1, x2))σe(x1, x2)·

q1(x1, x2) =
arctan(20 · (x2 − s1(x1))) + π/2

π

q2(x1, x2) =
arctan(20 · (x2 − s2(x1))) + π/2

π

e(x1, x2) = 0.1 · exp
(
−(x2 − s1(x1))

2

4

)
+ 0.1 · exp

(
−(x2 − s2(x1))

2

4

)

s1(x1) = −0.3 · x1 − 2.5

s2(x1) = 0.9 · x1 + 1

(A.3)
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A.3.2 Piecewise Nonconstant Models
Two Regimes with Linear Boundary
This model is shown in Figure 3.36 a).

f (x1, x2) = x1 · q(x1, x2) + (1− x2
2) · (1− q(x1, x2)) + σe(x1, x2)·

q(x1, x2) =
arctan(20 · (x2 − s(x1))) + π/2

π

e(x1, x2) = 0.1 · exp
(
−(x2 − s(x1))

2

4

)

s(x1) = 0.3 · x1 − 1.5

(A.4)

Two Regimes with Nonlinear Boundary
This model is shown in Figure 3.36 b).

f (x1, x2) = (−0.2 · (x1 − 15)2 − x1) · q(x1, x2) + (0.2 · (x2 − 15)2 − 1.5 + x2) · (1− q(x1, x2)) + σe(x1, x2)·

q(x1, x2) =
arctan(20 · (x2 − s(x1))) + π/2

π

e(x1, x2) = 0.1 · exp
(
−(x2 − s(x1))

2

4

)

s(x1) = 0.03 · (x1 + 10)2 − 5

(A.5)
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A.4 Final Design Matrices of the Adaptive Design Algorithm

Here, the final adaptive designs for all test cases are given explicitly.

A.4.1 Piecewise Constant Models with Linear Boundaries
Two Regimes with Linear Boundary

Table A.9: Final adaptive design for the two regime piecewise constant system with linear boundary.

x1 x2

-1 -1

1 -1

-1 1

1 1

-0.435 -0

-0.597 -0.5

-0.1 -0.75

1 -0.016

Three Regimes with Linear Boundaries without Intersection

Table A.10: Final adaptive design for the three regime piecewise constant system with non intersecting
linear boundaries.

x1 x2

-1 -1

1 -1

-1 1

1 1

-0.569 -0.785

1 0.108

0.696 0.554

1 -0.267

-0.304 -0.455

0.029 -0.227

-1 0.468

0.096 1

0.12 0.186

0.134 -1
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Three Regimes with Linear Boundaries and Triple Point

Table A.11: Final adaptive design for the three regime piecewise constant system with intersecting
linear boundaries.

x1 x2

-1 -1

1 -1

-1 1

1 1

-0.065 -0

0.882 -0.272

1 0.5

0.353 -0.636

-0.152 0.75

-1 -0.538

-1 0.582

1 -0.389

-0.334 0.094

0.18 -1

-0.715 -0.118

A.4.2 Piecewise Nonconstant Models
Two Regimes with Linear Boundary

Table A.12: Final adaptive design for the two regime piecewise nonconstant system with linear bound-
ary.

x1 x2

-1 -1

1 -1

-1 1

1 1

0.698 -0

0.213 -0.5

-1 -0.027

-1 0.483

1 0.526

-1 -0.461



114 Appendix A. Appendix

Two Regimes with Nonlinear Boundary

Table A.13: Final adaptive design for the two regime piecewise nonconstant system with nonlinear
boundary.

x1 x2

-1 -1

1 -1

-1 1

1 1

0 0

0.29 -0.5

-1 0.162

1 -0.191

1 1

-1 1

1 -1

-0.846 -0.029

0.705 0.048

-0.417 -0.271

-0.172 -0.633

-1 -0.653

1 0.618

0.515 1

0.961 0.49

-1 -0.248

1 0.878
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A.4.3 Isothermal CO Oxidation over RuO2

Table A.14: Final adaptive design for the isothermal CO oxidation reaction over RuO2.

log(pCO) log(pO2)

-1 -1

1 -1

-1 1

1 1

0 0

0.6 0.321

0.441 1

-0.014 -0.924

-0.202 1

0.516 1

-0.397 -1

0.129 -1

Table A.15: Final adaptive design for the isothermal CO oxidation reaction over RuO2 using a batch
size of 3.

log(pCO) log(pO2)

-1 -1

1 -1

-1 1

1 1

0 0

0.6 0.915

0.85 0.733

-0.101 1

0.916 -0.147

-0.245 1

-0.258 -1

0.075 -1

-1 -0.196



116 Appendix A. Appendix

A.4.4 Temperature Dependent CO Oxidation over RuO2

Table A.16: Final adaptive design for the CO oxidation reaction over RuO2 with varying temperature.

log(pCO) log(pO2) T

-1 -1 1

1 -1 -1

-1 1 -1

1 1 1

0 0 0

0.285 0.026 0.861

0.219 -0.45 0.519

0.988 -0.825 0.143

-0.609 -0.232 0.088

-0.516 0.173 0.664

0.222 0.022 -0.637

-1 -1 -1

1 0.003 -1

-1 1 1

1 -1 1

-0.152 -1 -1

1 0.945 -1

-0.231 1 -1

-0.318 1 0.232

-0.006 1 1

-1 -0.178 1

-1 -0.2 -1

-1 1 -0.041
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