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Induced Earthquakes

Earthquakes caused by human activity

Mining, geothermal energy production, carbon capture and storage, oil/gas extraction

1239 induced earthquakes in the HiQuake database’.

Examples

® Pohang 2017: M5.5 (Palgunadi et al. 2020)
® Otaniemi 2018: < M2 (Hillers et al. 2020)

In order to understand these earthquakes better: Numerical simulations with SeisSol

TWilson et al. 2017: https://inducedearthquakes.org/, accessed 23 June, 2022
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https://inducedearthquakes.org/

Earthquake simulations

Solve the elastic wave equation:
* 0iq + Adxq + Boyq+ Co.q=0
e g contains stresses and velocities, A, B and C contain material information.
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SeisSol: ADER-DG for Earthquake simulations

Discontinuous Galerkin method with Arbitrary DERIivatives time-
stepping: ADER-DG: Achieve the same high order in space and
time

SeisSol specific:
e Tetrahedral elements

e Modal (orthogonal) basis functions: Diagonal mass matrix,
upper triangular stiffness matrix

e Exact Riemann solver for the numerical flux between elements
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HPC optimizations

Parallelization
e Element local discretization with DG
* Mesh partitioning based on workload estimate
e Exchange values at partition boundaries
Node-level performance
e Update scheme is a sequence of tensor contractions.

e Use code generator YATeTo 2 to map the tensor operations to GEMMs
(C = aAB+ 0).

¢ Use architecture specific backends for optimized code.

2(Uphoff and Bader 2020)
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Strong Scaling

(a) Parallel efficiency on Mahti: (b) Parallel efficiency on SuperMUC-NG:
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Figure: Strong scaling on recent supercomputers. Image taken from (Krenz, Uphoff, et al. 2021).
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Anisotropic materials

e Directional dependent material behaviour, e.g. cracked or layered media
e Jacobian A, B, C are more densely populated, but can reuse the numerical scheme

o = Atr(e)l + 2pe

Anisotropic:

3
Figure: Left: isotropic material, Right: g = Z CijkI €kl
anisotropic material k,1=1

S. Wolf et al. | SeisSol for Induced Earthquakes | PASC22 | 27t June, 2022



TUM
Poroelastic materials

e Interaction of fluid and solid phase introduces a stiff source term to the wave equation

¢ Replace Cauchy-Kowalevski procedure with space-time variant of ADER-DG

e Use sparsity pattern of the system matrix to efficiently solve the linear system (Wolf,
Galis, et al. 2022)
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Figure: Double couple source in a Figure: Sparsity patterns for the space-time
poroelastic medium ADER-DG variant
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Scalability
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Kinematic earthquake sources

® Prescribe slip at a several points or
along the complete fault fault.

e Watch how waves propagate
through the medium.

¢ No information about what happens Q

at the fault
¢ No interaction between wavefield
and fault. Figure: Sketch of an earthquake source
along a fault. Image taken from (Uphoff
2020)
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Dynamic rupture earthquake sources

® |nstead of numerical fluxes: Solve a
friction problem at (selected)
element interfaces.

¢ Interaction between wave
propagation and source dynamics

¢ Gives insight into the rupture
process

* Upto pow c.jynamic ru_pture Wgrks Figure: Complicated fault network, image
only with (visco-)elastic materials.  {gken from (Urich et al. 2019).
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Combine all the Multiphysics

Elasticity + Pore Fluids + Friction Problem
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How does Dynamic Rupture work in elastic media

Elasticity + Pore Fluids + Friction Problem
1. Solve the Riemann problem to get states at the interface.
2. Compute fault strength 75 based on the friction law.
3. Find shear traction t and slip rate s such that 7ss = t||s||.
4. Impose state with s and t at the interface.

>

Figure: Solution structure of the elastic Riemann problem
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What do we need to change for poroelastic media

Elasticity + Pore Fluids + Friction Problem
1. Fluid pressure now affects solution of the Riemann problem.
2. Fault strength depends on the pressure (and temperature)®.
3. Find shear traction t and slip rate s, but what about relative fluid velocity?

Figure: Solution structure of the poroelastic Riemann problem

3(Noda and Lapusta 2010)
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T

How to verify the results?

¢ Hard to find analytic solutions for combined friction and wave propagation problem.
e Community effort through SCEC to compare different dynamic rupture codes.
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Figure: Left: Geometry of the SCEC benchmark TPV12. Image taken from (Harris et al. 2009).
Right: Results of the TPV105 benchmark (top: pressure, bottom: temperature).
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Conclusion

e Extended SeisSol’s functionality to incorporate more complicated material models.
e Work in progress: Dynamic Rupture in poroelastic materials.
e Upcoming work: Compute, compute, compute
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Quantify poroelastic effects relevant for wave propagation

e Compare poroelastic materials with their elastic equivalents
e Study the Utsira sandstone formation used for CCS*
e Energy dissipation at material interfaces.

Figure: Cut through the layered Utsira model.

“Equinor 2022
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Nuisance patterns from the stimulation of Enhanced

Geothermal systems

e Geothermal Energy production near Helsinki:
Neighbors reported sound disturbance
connected to induced earthquakes.

e We used the elastic-acoustic coupling feature of
SeisSol to simulate which sounds an earthquake
emits.

e Parameter study: How does the source
mechanism and the geological subsurface
structure influence the nuisance pattern? (Krenz,
Wolf, et al. 2022).
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Backup Slide Equations

Weak formulation of the PDE in 1D:

/6tq-¢dx—/Aq6X¢dx+/ ¢Aq-nds:/Eq¢dx
T T oT T

Semidiscrete form:
0t Quy /T G10kdX — ApgQui /T ¢10xprdx

+ / Fok(Qpr, Qly)ds
oT

— EpqQu /T b1dx
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