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Zusammenfassung
Durch die Nutzung von Hochleistungsrechnen in verschiedenen Bereichen der Wis-
senschaft ist es möglich immer komplexere Probleme, wie z. B. turbulentes Verhalten
in Fluidströmungen oder die Faltung von Proteinen zu bewältigen. Eine der größten Her-
ausforderungen bei numerischen Simulationen von realitätsnahen Phänomenen auf mod-
ernen Hochleistungsrechern ist die Partitionierung des Simulationsgebietes. Dazu gehört
die Zerlegung des Gebietes in Primitive und deren Verteilung auf alle beteiligten Prozes-
sorelemente. Ziel ist es, eine optimale Balance in Bezug auf die Arbeitslastverteilung zu
finden, im Falle eines homogenen Systems eine, die die Last gleichmäßig auf alle Rechen-
ressourcen verteilt, während der Kommunikationsaufwand zwischen den Partitionen so
gering wie möglich gehalten wird. Die Situation wird um ein vielfaches komplexer, wenn
sich die Zerlegung des Simulationsgebietes während der Laufzeit der Simulation ändert
und eine dynamische Neupartitionierung erfordert. Eine Partitionierungsstrategie die
während der Laufzeit vielfach ausgeführt wird, muss neben den bisherigen Zielen schnell
und die Umverteilungskosten müssen minimal sein.

Erfolgreiche Codes verwenden verschiedene Ansätze um die oben genannte Heraus-
forderung anzugehen. Darunter sind graphen- und geometriebasierte Methoden. Der
Nachteil der meisten aktuellen Methoden besteht jedoch darin, dass sie globale Domä-
neninformationen benötigen. Mit zunehmender Größe und Auflösung der Simulations-
domäne werden sich der Speicherbedarf und der Kommunikationsaufwand in Zukunft als
unerschwinglich erweisen.

Der erste Beitrag dieser Arbeit besteht darin, einen umfassenden Überblick über den ak-
tuellen Stand der gängigen Partitionierungsmethoden zu geben. Danach liegt der Schwer-
punkt auf der Einführung eines Simulationscodes, der speziell auf ein dynamisches Par-
titionierungsschema, basierend auf einer lokalen Optimierungsmethodik, zugeschnitten
ist. Dieses Framework verzichtet, überall wo möglich, auf global synchronisierte Daten-
strukturen. Um den relativ langsamen Fortschritt lokaler Methoden hin zu einer prak-
tikablen Partitionierung zu beschleunigen, kombiniert dieser Simulationscode einen Diffu-
sionsansatz zum Austausch von Arbeitslasten zwischen benachbarten Prozessorlementen
mit einer räumlichen und hierarchischen Nachbarschaftsbeziehung, basierend auf einer
Baum-Zerlegung des Simulationsgebiets.

Ausgehend von der Prämisse einer vollständig dezentral verteilten Datenstruktur werden
alle notwendigen Module für eine numerische Simulation vorgestellt. Dies sind das Kom-
munikationsmodul, die initiale Partitionierung, das Modul zur adaptiven Netzverfeinerung
und -vergröberung, die Lösungsverfahren und die Eingabe/Ausgabe. Besonderes Augen-
merk liegt auf dem diffusionsbasierten dynamischen Repartitionierungsansatz.

Schließlich werden drei Testbeispiele mit unterschiedlichen Eigenschaften vorgestellt, um
den dezentralen dynamischen Repartitionierungsansatz ausführlich zu testen. Der erste
ist ein rein künstlicher Benchmark mit einer sich bewegenden Verfeinerungsfront. Das
zweite Beispiel ist einem Benchmark aus der additiven Fertigung mit selektivem Laser-
schmelzen nachempfunden. Temperaturgradienten werden am Laser sehr hoch und recht-
fertigen eine Verfeinerung des Simulationsgebietes. Das letzte Beispiel untersucht eine
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laminare Umströmung eines Zylinders mit Wirbelablösung hinter dem Hindernis. Das
sich ergebende Muster ist auch als "von Kármán Wirbelstraße" bekannt. Um die Strö-
mungsstrukturen genauer zu berechnen wird eine Verfeinerung um Gebiete mit hoher
Verwirbelung durchgeführt. Alle Testfälle zeigen gute Resultate des gewählten Ansatzes
auf aktuellen Systemen und versprechen eine Anwendbarkeit für zukünftige Hardware und
Problemgrößen, bei denen globale Partitionierungsmethoden versagen.



Abstract
The advent of High Performance Computing (HPC) in engineering has enabled the tack-
ling of increasingly complex problems, such as turbulent behaviour in fluid flows or the
convolution of proteins. One of the main challenges in numerical computing on modern
high performance computers for the simulation of real world phenomena is the partitioning
of the domain. This includes the decomposition of the simulation domain into primitives
and their distribution among all participating processing elements. The goal is to find
an optimal balance in terms of workload distribution, in case of a homogeneous system
one that distributes the load equally among all computing resources, while keeping the
communication overhead between partitions as small as possible. The situation becomes
more involved if the domain decomposition changes during the runtime of the simulation
and requires a dynamic repartitioning. A partitioning strategy that has to be executed
continuously must be fast and the redistribution costs must be minimal in addition to the
previous goals.

Successful codes employ different approaches to tackle the aforementioned challenge.
Among them are graph- and geometry-based methods. However, the disadvantage of
most current methods is their reliance on globally shared domain information. With
an increasing size and resolution of the simulation domain, the memory footprint and
communication overhead will therefore prove prohibitive in the future.

The first contribution of this work is to give a comprehensive overview over current state-
of-the-art partitioning methods. The main focus thereafter is the introduction of a simula-
tion code especially tailored to a dynamic partitioning scheme based on local improvement
methods. This framework renounces data structures, which must be synchronised glob-
ally, wherever possible. To alleviate the comparable slow progress of local improvement
methods towards a feasible partitioning, this framework combines a diffusion approach to
exchange workloads among neighbouring processing elements with a spatial and hierar-
chical neighbourhood description based on a space-tree domain decomposition.

Based on the premise of a completely decentrally distributed data structure, all necessary
modules for a numerical simulation are presented. These are the communication module,
the initial partitioning, the adaptive mesh refinement and coarsening module, the solution
procedures and the input/output. Special emphasis is laid on the diffusion-based dynamic
repartitioning module.

Finally, three test examples with varied properties are presented to extensively test the
decentral dynamic repartitioning module. The first is a pure artificial benchmark with a
moving refinement front. The second example is modelled after an additive manufacturing
benchmark, a laser powder bed fusion on bare metal substrates. Temperature gradients
become very high at the laser spot and warrant a refinement of the simulation domain.
The last test case is a laminar flow around a cylinder with vortex shedding behind the
obstacle. Also known as "von Kármán vortex street". To accurately capture the flow
structures, a refinement is performed around regions of high vorticity. All test cases show
a viability of the chosen approach on current systems and promise applicability for future
machines and problems, where global partitioning methods fail.
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Chapter 1

Introduction

“A Grand Challenge is a long-term science, engineering, or societal advance, whose real-
ization requires innovative breakthroughs in information technology research and develop-
ment (IT R&D) and which will help address our country’s priorities.”

- The 2003 NITRD Program Grand Challenge definition

1.1 Grand Challenges, Applications of
High-Performance Computing

In 1991 the United States Congress promulgated the High Performance Computing Act
(HPCA) [1], which formally established the High Performance Computing and Communi-
cations (HPCC) Program. Within this program, the Committee on Physical, Mathemati-
cal, and Engineering Sciences, the Federal Coordinating Council for Science, Engineering,
and Technology and the Office of Science and Technology of the United States of America
issued a blue book identifying fundamental problems in technology, science and engi-
neering with broad economic and scientific impact, where high-performance computing is
needed in order to solve these problems [148]. One year later, in 1992 the participating
agencies again issued a blue book revisiting these so-called "Grand Challenges" [205]. Af-
ter the conclusion of the HPCC Program, the Networking and Information Technology
Research and Development (NITRD) Program was established as a successor. Again,
within the NITRD Program the "Grand Challenges" have been revisited in 2006 [295]. In
its first edition, these challenges included among others:

Computer Science
Machine learning and parallel I/O for other I/O-intensive grand challenges.

Environmental Modeling and Prediction
Large-scale environmental modeling, high-performance computing for land cover dynam-
ics, earthquake ground motion modeling in large basins, massively parallel simulation of
large-scale, high-resolution ecosystems and global climate modeling.
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Product Design and Process Optimisation
High-capacity atomic-level simulations for the design of materials, first-principles simula-
tion of materials properties.

Space Science
Formation of galaxies and large-scale structures, black hole binaries: coalescence and
gravitational radiation, radio synthesis imaging.

Energy
Mathematical combustion modeling, Quantum chromodynamics calculations, Oil reser-
voir modeling.

In their first issue, the grand challenges have been formulated from the viewpoint of their
respective fields. In 2006, the challenges have been reissued. This time, their formulation
focuses more on an interdisciplinary viewpoint, where many fields need to come together
to solve them. Again, without claim of completeness, current challenges issued by the
NITRD Program include:

Knowledge environments for science and engineering
The stated goal here is to make distributed resources such as supercomputers, data
archives, distant experimental facilities and domain specific research tools available to
a wide audience of researchers, enable scientific progress and establish new fields of sci-
ence and engineering. Furthermore, this challenge also focuses on the availability of
high-performance resources in education to facilitate the training of students in new and
emerging technologies.

Clean energy production through improved combustion
This challenge emphasises among others on the ongoing efforts to responsibly use earth’s
depletable resources. As the still dominant source of energy in the United States,
fossil fuels have a major impact on the environment. The goal here is to improve the
efficiency of the combustion of fossil fuels to keep the impact on the environment as low
as possible as long as new and renewable sources of energy are not able to satisfy the
energy demand. To this end, high-performance computing systems that support large
and accurate multiphysics applications are needed.

Informed strategic planning for long-term regional climate change
High-resolution regional climate models require massive computing power. One of the
most pressing challenges of the twenty-first century is to limit the global warming to
1.5 ◦ Celsius according to the Parisian climate agreement. To accurately predict and
observe the climate and to determine the impact of different influences on the local and
global climate, e.g. greenhouse gases or the Gulf Stream, the large distributed climate
community needs access to local and global climate data, high-performance computing
and visualisation resources.

Real-time detection, assessment, and response to natural or man-made threats
Earthquakes, hurricanes and volcano eruptions are examples of natural threats. Typical
examples for man-made threats include chemical, biological and radiological hazards. The
challenge here involves the rapid localisation and assessment of those threats to minimise
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the loss of life and property. This is a very large topic with many facets. For one,
the alleviation of these hazards involve high-performance computing and state-of-the-art
models to fast and accurately simulate the outcome of these hazards. The storage, sharing,
visualisation and analysation of data is another facet. Furthermore, the development of
semi-autonomous robots for hazard removal for example is part of this challenge.

Generating insights from information at your fingertips
The amount of data generated every second is growing exponentially. Everyday devices
such as smartphones and cars are fitted with more and more sensors, producing data
points in an unprecedented manner. But also in the scientific field the amount of data
produced increases manifold each year. Be it data sent by space telescopes like Hubble
and James-Web or data produced by the Large Hadron Collider at CERN just to name
a few examples. The effort to store these data and to rapidly retrieve accurate insights is
an ever growing challenge. Key aspects here involve, to locate information from multiple
text sources, archived databases, image archives, and sensor streams for a person or team
solving a problem. Furthermore it is imperative to identify and organize connections
between disparate pieces of information and finally validate or refute hypotheses and
overcome human biases about hypotheses.

It is clear that some of the most pressing challenges of today require more and more
computing power. The amount of data in need to be analysed is growing rapidly. The
number of natural and man-made hazards in need to be accurately predicted or alleviated
is increasing. And, of course many applications in our day to day life need or benefit from
an increased availability of computing power. It can be concluded, that in this day and
age, high-performance computing is ubiquitous and therefore, many fields of science need
to utilise, educate, and advance their use of these resources.

1.2 Massively Parallel Systems
To solve the grand challenges of our time, machines are needed that provide enough com-
puting power to tackle these challenges in reasonable time frames. Machines up for this
task, which provide among the highest performance in the world in a single system are
called supercomputers. A supercomputer, in comparison to the more common desktop
computers, is mainly distinguished not by their hardware, but by an increase in per-
formance of multiple orders of magnitude. The most common way to benchmark the
performance of a supercomputer is still the LINPACK benchmark or more recently its
portable variant for distributed memory machines HPL [246]. LINPACK itself is actually
a software library for numerical linear algebra designed to be used on supercomputers.
The benchmark suite was shipped as part of LINPACK’s user’s manual and has since es-
tablished itself as the de-facto standard to benchmark supercomputers. As such, it is used
in the TOP500 project to rank the worlds most performant supercomputers [301]. The
computer this thesis is written on, is a workstation equipped with an Intel Core i7-4790,
a microprocessor with four cores, which shows a LINPACK performance of 0.5 GFlop/s.
The number one spot on the current TOP500 list as of June 2021 is the supercomputer
Fugaku. A machine equipped with almost 160.000 of Fujitsu’s A64FX microprocessors,
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whereas each processor has 48 cores. Hence, the total core count is more than 7.5 million
cores. Its listed LINPACK performance is 442, 010 TFlop/s, or in other words 884, 000
times the performance of the above workstation.

One can see, the difference between a supercomputer and a common workstation is not so
much a gap in technology. While the microprocessor is certainly more advanced due to the
age of the workstation, current workstations may be fitted with the same microprocessors
a supercomputer uses. The main difference is the amount of microprocessors and in turn
the amount of computational cores a supercomputer incorporates. Looking again at the
TOP500 list, the top ten machines comprise core counts between half a million and up to
more than ten million. Hence, we rightly call these machines massively parallel computers.

Historically, parallelisation was always one of the main drivers behind an increase in com-
puting performance, but rather than using multiple microprocessors, engineers focused
on improvements within a single chip itself. The technological advancement of the micro-
processor is often measured by the number of transistors per chip. Since the inception of
the Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), a type of transistor
which virtually all modern integrated circuits use, their number has approximately dou-
bled every 18 months. This doubling of the number of transistors was first observed by
Gordon Moore in 1965 [221] and later revised in 1975 [222]. Since then, his observation
has become known as Moore’s Law. More transistors on a single chip translate to an
increase in computing power for many reasons. The additional transistors nowadays are
used for multi-level caches, whose speed far outperforms external random-access memory
[14], wider I/O and memory transfer buffers that allow data transfers per clock cycle by
multiples [330], and the ongoing miniaturisation of transistors with tighter integration on
a single chip lowers the propagation time of electrical signals, allowing higher clock rates.
Furthermore, the power density of transistors stays constant even as they decrease in size,
in other words, more smaller transistors require the same amount of power as fewer larger
ones occupying the same area. This observation is also known as Dennard or MOSFET
scaling [73].

When it comes to parallelisation, the additional transistors are used in multiple ways.
The first one being bit-level parallelisation. Bit-level parallelisation refers to operating on
multiple bits simultaneously by increasing the processor word size. The earliest computers
were only able to operate on a single bit per instruction. An operation on a variable with
four bits therefore took four instruction cycles to be completed. Since then, processor
word size has increased steadily and was a major factor in the performance increase of
early supercomputers [65, 68]. The standard word size has been 64 bits since 2003 with the
introduction of x86-64 architectures. So-called vector processors or vector extensions can
also be seen as a special form of bit-level parallelisation. Vector processors were the basis of
most supercomputers from 1970 to 1990 with notable examples being the Cray-1 in 1975,
the Cray X-MP in 1983, the Cray-2 in 1985 and the Cray Y-MP in 1988 [230]. The idea is
that execution units perform a single instruction not only on a single variable but on a one
dimensional array of variables we generally refer to as vector. As the same instruction is
carried out for the whole array in parallel, data dependencies between array elements must
be avoided. While vector units are able to greatly improve performance, the application
areas are somewhat limited to cases where there are large non-interdependent arrays of
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variables on which the same instructions have to be performed. This applies for example
in numerical simulation or computer graphics [147, 111, 294, 162]. Vector processors
have become somewhat obsolete around 1990 when the price for scalar instruction units
decreased until it became more beneficial to use more general purpose scalar units instead
of one special purpose vector unit, that can only be used for appropriate applications.

On the instruction-level, the added transistors also were used in advancing parallelisation
to improve computing performance of microprocessors. We already mentioned scalar in-
struction units. What makes an instruction unit scalar, is the fact it is able to carry out
an instruction in one clock cycle. This is achieved via instruction pipelining. Here, an
instruction is divided into stages that operate one after the other, the pipeline. In the
classic Reduced Instruction Set Computer (RISC) pipeline, the five stages are instruction
fetch, instruction decode, execute, memory access and writeback [147]. Very simplified,
each stage takes approximately one clock cycle to execute, which results in five clock
cycles per instruction. However, with a pipelined architecture, as soon as one instruction
has completed a stage, the stage is free to be used for the next instruction. This makes
it possible to work on as many instructions simultaneously as there are stages, making it
possible to finish an instruction per clock cycle. The additional transistors are used here
for the more complex microarchitecture. For example between each stage, registers are
needed to store intermediate results. Instruction pipelining was first used in supercom-
puting from the early 1970s, in machines developed by Seymour Cray for Control Data
Corporation and later Cray Research [230].

The next logical step from a scalar processor is a superscalar processor, which is able
to execute more than one instruction per clock cycle. This is achieved simply by using
more instruction units. These can either be of the same type, for example more than
one Arithmetic Logic Unit (ALU), or of different types, that would be for example an
ALU and a Floating Point Unit (FPU). Typically, these units are also pipelined, making
the execution of more than one instructions per clock cycles possible [284]. However,
with more parallelisation, the underlying problem as well as additional hardware to make
efficient use of the additional execution units also play an important role. A program only
issuing instructions that use an ALU, cannot benefit from architectures with additional
FPUs. Instructions that must be carried out sequentially due to data dependencies also
cannot profit from this architecture. The problem of added hardware complexity due
to the scheduling hardware needed to efficiently order and dispatch the instruction to
their respective execution units has been addressed with Very Long Instruction Word
(VLIW) architectures, an alternative to superscalar processors. Essentially with VLIW
the same instruction units exist to perform multiple instructions in parallel, here however,
the number and type of the available instruction units is transient and the the task of
grouping parallelisable instructions together is left to the compiler. A single instruction
may consist of a multiply and an add instruction for example. The idea behind superscalar
architectures has also led to the re-emergence of vector instructions in the late 1990s.
Instead of specialised vector processors, a processor may incorporate smaller vector units
next to standard ALUs and FPUs to leverage their capabilities for dedicated problems
while maintaining applicability for a broader range of problems [147].

As we have seen, the number of transistors per microprocessor had a very large impact on
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the achievable performance. The miniaturisation of transistors is still an ongoing process
with the smallest MOSFETs currently produced being five nanometers. But apart from
simply using more transistors efficiently on a chip, another benefit of smaller transistors
that was already stated is the constant power density per occupied area. This allowed
manufacturers to raise the clock frequency accordingly. As time per clock cycle is the
inverse of processor frequency [147], with higher frequencies, the clock cycles become
shorter. And with processors able to execute an average number of instructions per clock
cycle, a higher frequency directly leads to more instruction per time unit. The practice
of increasing a processor’s frequency to boost its performance is also known as frequency
scaling. Frequency scaling was one of the main aspects behind the performance gains of
microprocessors up to the early 2000s. However, two aspects slowed this development
down and led to the end of the Moore’s Law in its pure form. Firstly, processes able to
produce transistors with sizes of three and even two nanometers have been shown to be
possible and are being actively developed for commercial use [196, 169, 272]. However this
process is likely to stop soon. A single silicon atom is about 0.2 nanometers wide, meaning
a two nanometers MOSFET is only 20 silicon atoms wide. At these scales, quantum
effects become an issue and prohibit a further decrease in size with the current technology.
Secondly, the power consumption in a chip follows the equation P = C × V 2 × F . P is
the power consumption, C is the capacitance, V is voltage and F is the frequency [257].
By increasing the frequency one increases also the power consumption and moreover
the thermal power dissipation [137]. The effort to cool the integrated circuits becomes
unfeasible after a certain point, so the continued increase in frequency and thus clock
cycles per time unit could not continue indefinitely [297].

Instead of faster clock cycles facilitated by the miniaturisation of transistors and an in-
crease in instruction-level parallelism the focus now shifted from enhancing the efficiency
of a single core per microprocessor to simply using more cores in a single processor. While
frequency scaling came to an end around 2004, when Intel, the world’s largest semicon-
ductor manufacturer, shifted their focus on to dual- and multicore microprocessors for
commodity hardware [110], Moore’s Law essentially kept its’ self fulfilling promise of in-
corporating more and more transistors on an integrated circuit. Having more independent
cores incorporated by a single microprocessor gave rise to a new level of parallelism - task
or thread-level parallelism. Having multiple cores available allows different tasks to be
performed on each core. While each core usually has some exclusive caches, the main
memory and in most chipsets some cache levels are also shared between the cores. In this
context we also talk about shared memory parallelisation. This form of parallelism puts
more effort on the side of the developer to fully utilise the capabilities of the underlying
multi-core architecture. A programmer is required to rethink their application in terms of
distinct tasks that are able to be carried out in parallel. Naturally not all applications lend
themselves to be partitioned into distinct tasks. If tasks rely on an output of another task,
the correct order of tasks has to be ensured, even if that means one processor is unable to
proceed with its assigned task and has to wait idly if no other tasks are available. Even
more fine grained, the programmer is responsible to ensure the correct synchronisation
between data variables in the global memory, having to explicitly manage the access to
these shared resources.
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Actually, task-level parallelism was introduced way earlier than with the introduction
of multi-core microprocessors. Neglecting modern technologies like Simultaneous Multi-
Threading (SMT), a technique to allow multiple threads to be run on a single core,
one core within a microprocessor could only execute one task at a time. The logical
conclusion to increase performance, apart from increasing the efficiency of the single
processor, was to simply use more microprocessors who could work in tandem. The idea
of incorporating more processors into one computer was first introduced with the ILLIAC
IV, designed from 1960 to 1966. The machine was planned to incorporate 256 processing
elements of which finally only 64 were delivered when it finally was completed in 1975.
Still, the ILLIAC IV is referred to as the first massively parallel computer [154]. As
the design of the computer differed largely from the supercomputers at the time, writing
software for the complex system was a difficult task in itself. The findings gained from
the effort paved the way for more parallel designs though. In rapid succession, new
supercomputers emerged, sporting ever more processing cores. In 1993, in the first year
the TOP500 list was published, Fujitsu’s Numerical Wind Tunnel marked the top spot
[302]. The machine incorporated 166 vector processors, combining the two dominant
trends in supercomputing at the time [151]. It’s successor as the worlds most powerful
supercomputer was the Hitachi SR22021 in 1996 [116]. The system used a distributed
memory architecture where every processor operates on its own private memory. In
contrast to a shared memory architecture introduced above, the distribution of data to
the processing units becomes a major factor in designing efficient applications for these
machines. Synchronisation issues on the other hand do not appear, instead data has to
be transferred from one processor memory to the next sending explicit messages via a
connecting network. Therefore, a fast and reliable high-performance network is crucial
for the performance of these machines. As such, the next computers termed the most
powerful computers in the world all increased parallelism by using ever more processing
elements and connected these elements with more and more efficient networks. The
Hitachi SR2201 used a three-dimensional crossbar network, its successor the ASCI Red
from 1997 used a two-dimensional mesh to connect its 9, 298 processors [206]. The ASCI
Red was also specifically addressed as a message passing computer due to its distributed
memory architecture. Other machines with notable networks were from the IBM’s Blue
Gene Series with the Blue Gene/L using a three-dimensional torus and its successor, the
Blue Gene/Q, which used a five-dimensional torus to send messages between its processing
elements [4]. An installation of the Blue Gene/L with 131, 072 also occupied the top spot
among the world’s fastest supercomputers from 2004 until 2008.

Starting in the mid 1990s supercomputers underwent a shift in design philosophy. Instead
of building new machines from custom build parts, off the shelf commodity parts were
used. One of the first computers that followed this new approach was the Beowulf cluster,
build by NASA in 1994 [22]. What is nowadays commonly known as a Beowulf cluster is
a pooling of a number of stand-alone computers, connected again with common, off the
shelf networking equipment like Ethernet or Infiniband. The typical structure of a cluster
is a configuration, where the cluster acts as a single computer which is exposed through
a server that communicates with the otherwise invisible compute nodes [67]. On the
current TOP500 list, as of June 2021, 92 percent of computers are classified as clusters.
The rest, making up 8 percent, are classified as Massively Parallel Processors (MPP). The
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transitions between a cluster and an MPP are fluid, however, an MPP is generally regarded
as more tightly coupled than a cluster, with specifically designed networks. MPP nodes
usually are not able to run applications on their own. From this point of view an MPP
is much more a single large computer than a cluster [147, 86]. An example would be the
aforementioned BlueGene series with it’s torus network. However, at the supercomputing
level, clusters too have specifically customised network equipment as well as handcrafted
software libraries and from the point of view of a user, writing applications for either one
is similar.

One of the latest trends in supercomputing, although already roughly twenty years old
is adding General-Purpose Graphics Processing Unit (GPGPU), so-called accelerators
[152, 150]. A GPU in contrast to a classical Central Processing Unit (CPU) incorpo-
rates many more cores whereas each individual GPU core is much less powerful than a
CPU core with reduced clock speeds and instruction sets. GPGPU perform quite well
for specialised applications, where rather simple similar tasks need to be carried out over
a large set of data without any dependencies and where communication is scarce. Such
applications are mainly found in graphics processing, for which GPUs were initially de-
signed, these patterns on the other hand are also found in scientific computing, where
the use of GPGPU becomes increasingly popular [256]. As such, seven out of the current
top ten supercomputers according to the TOP500 list are fitted with GPU accelerators
[301]. Conversely, GPGPUs can also be seen as going the same route as vector proces-
sors. They require extensive programming effort to make efficient use of the hardware and
are only applicable for specific problems. Therefore, a general-purpose supercomputer,
build to work on a variety of problems cannot rely solely on the performance of GPGPU
accelerators [133]. For example, the aforementioned fastest computer in the world, the
Supercomputer Fugaku does not employ any accelerators and is a pure CPU system.

The trend however, goes to so called heterogeneous systems. A classical CPU is general
purpose, meaning it is applicable for a wide range of different workloads and applica-
tions with varying patterns of computing, communication and memory access demands.
Consequently, more specialised components like the aforementioned vector processors or
GPGPUs outperform CPUs in their distinct application areas. Therefore, a heteroge-
neous system adds a variety of different specialised processing components with different
instruction sets on the same microprocessor. Each part of the workload of an application
can then be meet with the capabilities of the appropriate component for an additional
increase in efficiency. The main challenge in developing heterogeneous systems at the time
is not on the hardware side, but in developing appropriate software support to leverage
all the capabilities a heterogeneous systems provides [99].

1.3 Partitioning for Massively Parallel Systems
So far, the current challenges in high performance computing have been introduced and a
brief overview of the history and the technological advances that have led to the current
top supercomputing systems have been given. Currently, the high-performance landscape
is made up from a diverse group of massively parallel machines, both memory and message
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coupled, possibly with various extension units and connected with an array of complex
networking hardware in various configurations. The real challenge is to write application
code that is able to efficiently use this complex hardware and make use of all the levels
of parallelisation provided. The problem to solve must be formulated in such a way, that
it can be solved efficiently by a parallel hardware. This entails several key aspects. On
the bit- and instruction-levels the hardware and the compiler are mostly responsible for
the efficient usage of the available execution units. On the task-level however, it is the
developer’s burden to conceive suitable subtasks and distribute these among the process-
ing elements. In addition, for message-coupled systems, the necessary communication
between processing elements must be specifically laid out.

The Partitioning Problem
In order for every participating processing element to be assigned a share of the problem
at hand, the problem must be partitioned into chunks of work. Three general scenarios
are common. Firstly, a decomposition of the underlying data of a problem, where the
same operation has to be performed on each data partition. Examples here would be
a decomposition of the computational domain in physics simulations or the separation
of model data to be rendered into an image. Secondly, a partition where individual
processing elements are assigned distinct jobs during the solution of the problem, so-called
functional decomposition. Many manifestations can be distinguished here, for example
a partitioning of the processing elements into management, worker and I/O instances.
Further examples involve competitive parallelisation approaches, where the same data
is analysed by different solution approaches on different processing elements. Another
concept, an assembly line approach similar to instruction pipelining, where chunks of
data are processed and transferred from one processing unit to another is imaginable as
well. Finally, the last partitioning approach would be a hybrid model where the data
is partitioned and all or subsets of the processing elements carry out distinct jobs. For
example in complex multi-model climate simulations where different physics have to be
simulated on separate chunks of data. Another aspect that greatly influences partition
design is the underlying hardware, which the application code should be deployed upon.
For example, if a system has specialised execution units, the problems’ partitioning should
be carried out in such a way that it generates specific tasks which benefit from such a unit.
For example, IBM’s Blue Gene architecture employs dedicated I/O processing elements
to communicate with the file system. Separating I/O tasks and assigning those jobs to
their dedicated hardware is most efficient.

When the problem is decomposed, the resulting parts of the problems usually have de-
pendencies between each other. To use the analogy with pipelines again, if a problem is
decomposed into stages of a pipeline, each stage is dependent on the results of the pre-
ceding stage. An efficient partitioning minimises the amount of communication required
between partitions. This is easy for so-called embarrassingly parallel problems, where the
individual data points or tasks are mostly independent and show no dependencies. Com-
mon embarrassingly parallel problems are for example rendering of computer graphics
or convolutional neural networks, where the capabilities of GPGPUs are advantageous.
But for the simulation of physical phenomena, where commonly the physical domain is
partitioned, the underlying equations are coupled and require the replication and regular
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update of neighbouring data points. It is crucial to cluster dependent data points within
individual partitions to limit the amount of communication between processing elements,
as otherwise the overhead of the data transfer hinders an efficient solution process.

Another consideration is the distribution of partitions among the participating processing
elements. At first, the computational load should be distributed rather aligned with
the capabilities of the underlying hardware. In homogeneous system, an equal work
distribution is desirable to be able to use the machine efficiently and without much idling of
individual processing elements. In inhomogeneous systems, where computing capabilities
are varying, the load must be adjusted accordingly. Furthermore, in systems with special
extension units, like the aforementioned GPGPU accelerators, or dedicated I/O nodes,
suitable tasks need to be placed here. Of course, this presumes the existence of suitable
tasks generated by the partitioning. Another important aspect of task distribution is to
limit the impact of communication on the total solution time. That entails to assign
partitions that require regular communication among each other on processing elements
with favourable positions. In order of their performance either on the same processing
element, on processing elements located on the same microprocessor, on the same node
or on such elements with the most direct network connection.

An optimal partitioning is almost never trivial and requires much consideration of the
application as well as the hardware it should be deployed on. A load distribution where
each processing element is used to their full capabilities is often opposing a distribution
where a better clustering of data and tasks without fully utilising all processing elements
would limit communication overhead. Weighing advantages and disadvantages of different
distribution approaches is therefore a major factor for an efficient utilisation of a super-
computer. This task only becomes more involved with the continued trend of machines
with more and more diverse processing elements.

For many applications it is sufficient to stop after an initial partitioning and distribution.
Each processing element is assigned a share of data and a range of tasks and the appli-
cation runs on the system until the problem is solved, the simulation timeframe has been
exceeded or a critical failure is encountered. This approach is termed static partitioning.
Here, the impact of the partitioning on the total simulation time is low, as it has to be
carried out only once. As such, an optimal distribution is much more important than
faster approaches yielding less than optimal results. Furthermore, the partitioning can be
determined on a different machine with different characteristics. For example, partition-
ing approaches that require complete domain knowledge and therefore a certain size of
memory per processing element are possible, even if the target machine does not provide
enough. One simply determines suitable partitions for the target machine on a different
dedicated machine.

Dynamic Partitioning
There are however also problem classes, where the workload per partition is not static. In
so-called Adaptive Mesh Refinement (and Coarsening) (AMR) applications for example,
the computational mesh representing the simulation domain is able to change regularly
to satisfy accuracy requirements given by the solution procedure. A remeshing and a
subsequent repartitioning naturally lead to a new distribution of the altered work shares.
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Another example could be particle simulations. To compute the forces acting on a particle,
other, near particles are taken into account. As particles are able to move throughout the
simulation, a partitioning based on particle’s physical location of particles must regularly
update their assigned particles. Furthermore, there are cases where the computational
load of individual tasks is hardly foreseeable at the beginning of an application run. Here,
tasks are often dynamically allocated to processing elements whenever they are free. For
these applications, partitioning and distribution is a continuous task throughout their
runtime.

The overarching goal of a good partitioning is to decrease the time it takes to reach the
desired outcome of an application. If the partitioning has to be carried out repeatedly
during the runtime of an application, it will directly impact this runtime and a lot more
aspects have to be considered in comparison to the static case. Firstly, the quality of
a partitioning directly competes with the time it takes to evaluate it. A partitioning
with worse quality that is comparably fast to evaluate could be preferable to one with
better quality but a higher effort to evaluate. Secondly, partitioning needs to be carried
out by the same machine the other parts of the application are computed on. Shifting
between machines during a computation is just not feasible, even if only occasionally. This
also means partitioning approaches with specific requirements can only be applied if the
machine satisfies those requirements. Again, memory requirements are the most common
limitations. Partitioning approaches that are only parallelisable in a limited capacity
or are even sequential are also rarely feasible, as they leave large amounts of available
processing elements idle and waste resources. Finally, the incurred data movement by a
repartitioning should be considered. There are schemes, that generate efficient partitions
when used in a static approach but lead to large movements if applied continuously. The
runtime cost of data migration from one processing element to another has also to be
included in the decision process to determine a suitable partitioning scheme.

Extensive effort has gone into the research and development of different methods to parti-
tioning in the context of numerical simulations. [141] gives a comprehensive overview and
defines major classes of partitioners. Most methods can be classified into those that divide
the computational domain either based on its geometry, that is the location of objects,
or by their topology, in other words based on the connectivity or interaction between
objects. Later methods are also known as graph-based methods.

1.4 Objectives
The focus of this work is twofold. Firstly, it aims to give an updated overview over
different partitioning schemes and their individual advantages and drawbacks. To this
end, examples are given from some of the highest scaling application codes deployed
on current supercomputing infrastructures from the field of numerical simulations of real-
world phenomena. Most of the different partitioning methods have also been implemented
in high quality libraries for a broad use. These libraries are referenced wherever applicable.
Consequently, this overview aims to serve as a comprehensive analysis of the current state
of the art.
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As will be discussed later, geometry-based and graph-based methods, especially multilevel
methods with global knowledge have been established as the de-facto standard approach
to partitioning in the recent past. They are fast, easy to use and provide very good
partitioning results. Graph-based methods with only local knowledge are mainly applied
as part of a global multilevel method to improve an already existing partitioning. On
their own, they have not been considered for some time. To reach a comparable result,
local methods take much more time in general. That is because, as their name suggests,
they rely only on local updates between processing elements that hold partitions with
dependencies among each other.

To achieve their advantageous results the two former methods rely on globally shared
domain information. That means, the performance of such methods will always be bound
by the effort it takes to synchronise this shared information on all participating pro-
cessing elements. A lot of the research into these methods has therefore been towards
the reduction of global information and the optimisation of collective communication to
synchronise the remaining data. These efforts have been very successful, as can be seen
by the dominance of such methods. Nevertheless, the trend of ever increasing counts of
processing elements to achieve better performance in supercomputing is unabated. More
and more processing elements forcibly lead to more partitions to use these processing
elements. More partitions also mean more globally shared information and a higher effort
to synchronise. Currently the benefits outweigh the disadvantages, but methods that rely
on any kind of globally shared information will sooner or later reach their limits. This
has also been observed in the recent work of Eibl and Rüde [92], who compared different
partitioning approaches for particle dynamics applications. They conclude, although the
quality of methods with global knowledge is superior, their largest testcase could only be
handled by a local improvement method.

Therefore, the second main contribution of this thesis is the introduction of a code base
especially tailored to a dynamic partitioning scheme based on local improvement methods
that do not suffer from scalability limits, due to the sharing and synchronisation of global
data. To alleviate the comparable slow progress of local improvement methods towards
a feasible partitioning, this framework combines a diffusion approach to exchange work-
loads among neighbouring processing elements with a neighbourhood description based
on a space-tree domain decomposition. Space-trees are hierarchical structures found in
geometric partitioning methods. They combine a domain decomposition based on geomet-
rical primitives with a hierarchical refinement structure. Defining neighbourhood relations
in terms of a hierarchical structure, alleviates the locality of a diffusion method and allows
it to quickly find a suitable partitioning over the complete domain. This data structure,
in line with the premise of limiting global communication is completely decentralised. In
other words, there are no shared structures that need to be synchronised.

The framework in general could be used for a wide variety of applications from the field
of numerical simulation. As a prove of concept, the implemented framework uses a finite
volume-based spatial discretisation of the computational domain. This discretisation is
set up in such a way that it locally degenerates into a finite difference approach. For
timestepping an explicit Adams-Bashforth multistep method is used. It is well suited for
the numerical simulation of various types of conservation laws. Examples are parabolic
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differential equations such as the heat equation or the Navier-Stokes equations.

The framework features an adaptive refinement and coarsening module, which allows to
alter the domain discretisation over the course of the simulation. Therefore, a dynamic
partitioning is advantageous, which repartitions the domain whenever the load distribu-
tion deteriorates too much. In addition to the partitioning, all other modules of this
framework are subject to the limitations imposed by the decentral design philosophy.
Namely the initial decomposition of the computational domain, the solution methods,
AMR, and I/O. To this end, the present work details algorithms for each part of the
simulation pipeline under the given constraints.

1.5 Outline
The remainder of this work is organized as follows:

Chapter 2: Dynamic Partitioning for Massively Parallel Systems
This chapter aims to give a broad overview over partitioning methods for applications de-
ployed on massively parallel machines. A major classification into geographic and topolog-
ical methods was already given above. Within this classification, this chapter introduces
various manifestations and prominent examples of known applications and libraries, de-
ployed on current supercomputers. As such, this chapter also serves as an overview of the
current state-of-the-art.

Chapter 3: A Decentral Framework for Numerical Simulation
In this chapter, the framework concept is introduced. First, the decentral data structure
and its primitives are introduced. The neighbourhood model and the communication
patterns build upon it are discussed afterwards. Hereinafter, the various modules of the
framework are introduced with a special focus on the repercussions of the decentral design
on them. These modules include the initial domain generation, adaptive mesh refinement
and coarsening, solution methods for systems of linear equations and I/O.

Chapter 4: Dynamic Partitioning
In this chapter the entire dynamic repartitioning scheme is introduced. This includes first
the workload model and the communication model. On top of this theoretical framework,
the modules that make up the scheme are introduced. These are the diffusion model, the
target determination and the actual migration routines.

Chapter 5: Evaluation of the Dynamic Repartitioning
In this chapter, the dynamic repartitioning module is evaluated using three test cases
with increasing complexity. The first case is a purely artificial example with a growing
sphere around which a refinement is performed. The second example is inspired by an
additive manufacturing benchmark test and represents a laser powder bed fusion on bare
metal substrates. In the third test case, a laminar flow around a cylinder is simulated,
which leads to a flow phenomena known as von Kármán vortex street. The repartitioning
scheme is applied to all test cases and evaluated using key characteristics of the distri-
bution. These are the overall workload balance, the connectivity between processes and
individual primitives, which gives a measure of the communication overhead, and finally,
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the migration requirement to establish the computed partitioning.

Chapter 6: Conclusions
In this chapter a brief summary over the work in this thesis is given. To conclude, possible
future research directions are presented.
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Chapter 2

Dynamic Partitioning for Massively
Parallel Systems

One of the main goals of this thesis is to give a comprehensive overview over current
dynamic partitioning schemes used for massively parallel machines. In order to do so, some
preliminaries have to be settled. The goals of a successful partitioning are reiterated, then,
one has to define primitives to be distributed that make up the individual partitions. The
following analysis over several partitioning approaches is based on the work of Hendrickson
and Devine [141], Teresco et. al. [299], Schloegel et. al. [279], Bichot [26] and Buluç et. al.
[37]. Furthermore, this overview has been updated and extended by recent developments
wherever applicable.

2.1 Goals of a Dynamic Partitioning
In most cases, the overarching goal of a successful partitioning is to reduce the overall time
an application code needs to reach its desired outcome. This is achieved by decomposing
the problem into a set of subproblems that are then distributed among all available
resources a parallel machine has to offer. Of course, this presupposes that the problem to
be solved benefits from a parallelisation. In general, a partitioning of the problem only
makes sense if the problem is large enough. Computing a suitable partitioning, migrating
the generated subproblems to their assigned hardware and the added communication
between dependent subproblems all add to the runtime of the application. If this added
time is larger than gain of using multiple execution units, solving the problem on a parallel
machine is not advisable. However, what constitutes "large enough" is dependent on the
available hardware and the problem to be solved.

For further discussion, a problem size is assumed that justifies the use of a parallel ma-
chine. To reach the overarching goal of reducing the time to solution, four aspects with
respect to the partitioning strategy need to be considered:

Balanced and adjusted workloads
It is sensible to adequately involve all available processing elements in the execution of the
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program. In addition, the best results are achieved if the workload is distributed such that
no processing element is overburdened or idle at any point. In a homogeneous system,
in which all processing elements have equal capabilities, an even distribution of work-
load works best. In an inhomogeneous system, where individual processing elements are
stronger than others or have specific strengths and weaknesses, the partitioning approach
must be aware of these discrepancies and assign workload accordingly.

Minimal communication between partitions
In so-called embarrassingly parallel problems, partitions have no dependencies between
each other. Each processing element is able to work on its assigned share of the problem
independently. On the other hand, in the simulation of physical phenomena partitions
exhibit data dependencies. These dependencies force processing elements to regularly ex-
change neighbouring domain values. In general, a good partitioning approach minimises
inter-processor dependencies. This goal gains another dimension however, when one takes
into account the different speeds of communication between processing elements. Two pro-
cessing cores located in the same microprocessor communicate faster than two processors
on the same node which in turn communicate faster as two processors connected via the
network. Depending on the network configuration, there may be further differences in
communication speed. A very detailed partitioning might also take these differences in
communication speed into account when distributing partitions. That means, partitions
with many dependencies and therefore a high communication volume should be assigned
to processing elements with the fastest connection possible.

Up until this point the goals are identical to a static partitioning. The difference between
a static partitioning and a dynamic one is that the former has to be carried out only
once and can be decoupled from the actual application. It may even be processed on an
entirely different machine. A dynamic partitioning is carried out continuously during the
runtime of the application and therefore has a direct impact on it.

Fast and scalable partitioning
If the partitioning is not static, but should be recomputed regularly during the course
of the simulation, the time it takes to evaluate a new partitioning has a direct impact
on the overall runtime. As such, the time it takes to compute must be compared to the
time a good partitioning saves. An approach that consumes less time with a worse par-
tition configuration is preferable to an optimal partitioning that takes so much time that
the better result does not warrant the time investment. Furthermore, the partitioning
must be applicable on the target architecture. Pausing the computation, transferring the
current domain configuration and workloads to a different machine where an updated
partitioning is evaluated and then transferring the results back is simply not feasible to
decrease the overall simulation time. Being constraint by the target machines architec-
ture, the approach must be scalable and efficiently run on very large parallel machines.
Furthermore, memory constraints have to be considered. Memory per processing element
is a rather scarce resource which prohibits approaches which requires complete domain
knowledge to evaluate the partitioning. If the number of primitives to distribute becomes
large, the memory required to store configurations and supplementing information needed
for the partitioning might exceed the memory available.



2.2. Granularity and Workload 17

Minimal redistribution
In a dynamic setting where workloads of partitions continuously change, it makes sense to
revaluate the partitioning to account for these changes. To reach the new configuration,
primitives must be redistributed. As the cost of the redistribution again has a direct
impact on the overall runtime, it is sensible to try to minimise the amount of primitives
that have to be migrated.

Unfortunately, these goals are rarely compatible. For example, a configuration with a
single partition where all primitives are assigned to one processing element, naturally
has a minimal amount of dependencies, namely zero. It would however be the worst
possible configuration when it comes to balanced workloads as only one single processing
element would be working and all others are wasted. It has been shown that finding an
optimal solution between these two goals is NP-complete [299, 122, 121]. In a dynamic
setting, where two more goals have to be sufficiently satisfied, the problem becomes even
more involved and it is unpractical to look for an optimal solution. Therefore, existing
partitioning methods use heuristics which provide different compromises between these
goals.

2.2 Granularity and Workload
The scope of this thesis is restricted to numerical simulations of physical phenomena that
can be represented by a mathematical model. A mathematical model usually is a coupled
differential equation, representing the relations between functions of physical quantities
and their derivatives representing their rates of change. For example, differential equa-
tions are used to represent phenomena from fluid and solid mechanics, thermodynamics
and sound propagation. After a suitable model has been derived for the problem at hand,
the second step is to transfer the continuous model into a discrete representation that
can be evaluated by a computer. This step is called discretisation accordingly. Discreti-
sation techniques themselves are further divided into mesh-based methods and mesh-free
methods.

Mesh based-methods define a set of points and their connectivity, the mesh. At the
mesh points the unknowns of the underlying function are evaluated. The most widely
used mesh-based methods are the Finite Difference Method (FDM), the Finite Element
Method (FEM) and the Finite Volume Method (FVM). In the FDM the function values
are evaluated at the mesh points directly, derivatives are approximated using the values at
neighbouring mesh points. In the FEM, the domain is separated into a set of elements on
which basis functions are defined. The linear combination of these basis functions approx-
imates the solution function which is recovered by solving for the unknown coefficients of
the basis functions. In the FVM a control volume around each mesh point is defined. The
basis used here are the volume integral equations that describe the quantities within each
control volume. These are then transformed to surface integrals and their compatibility
across volume surfaces is required. Mesh free methods on the other hand still evaluate
quantities at specified points in space and time. Here, the points do not have to adhere
to a static connectivity to their neighbours and are allowed to move from one time to
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another. One of the oldest mesh free methods, smoothed-particle hydrodynamics (SPH)
defines points as physical particles that hold density and mass information for example.
Regardless of the discretisation technique used, all of them generate a system of coupled
algebraic or polynomial equations that can be solved on a computer.

For solving this system of equations on a parallel machine it is decomposed based on the
unknowns at the points defined by the discretisation. Each subsystem represents a task.
The size of these tasks, and therefore their computational load determines the granular-
ity. A fine-grained decomposition only incorporates a few mesh points or particles per
task, a coarse-grained decomposition contains a large amount per task. The granularity
is represented as a measure of computational work per task [163]. The granularity di-
rectly influences the partitioning. A fine-grained decomposition is preferable to reach a
balanced workload. A lot of small tasks can be freely distributed among the processing
elements such that a good balance is reached. On the other hand, the large amount of
tasks introduces a large bookkeeping overhead and the number of inputs to consider for
the partitioning is high as well. A coarse-grained partitioning has exactly the opposite
advantages and drawbacks. Fewer, larger tasks make it harder to find a suitable workload
balance. In the worst case, exactly as many task as processing elements exist and there
is no distribution that adequately serves the capabilities of the individual processing el-
ements. However, finding a partitioning and keeping track of the small number of tasks
requires a comparably low amount of effort. Finally, the granularity of the decomposition
also may have an impact on cache efficiency. To this end, a lot of research has been
conducted to determine the granularity for an increase in performance. The interested
reader is referred to [56, 339, 209, 190, 223]

Another important aspect of the granularity is the workload metric it is based on. A
partitioning requires not only the amount of tasks but also a somewhat accurate measure
of each tasks’ workload to distribute them to processing elements in a balanced fashion.
Watts and Taylor state that an accurate load evaluation is necessary to determine that
a load imbalance exists, to calculate how much work should be transferred to alleviate
that imbalance and, ultimately, to determine which tasks best fit the work transfer [323].
Although they state this in the context of a runtime load balancing, that is a rebalancing
when tasks are already distributed, the same notion holds true for the initial distribution
of workloads.

Workload can be estimated in two ways. An a priori estimation uses knowledge of the
model-specific algorithms. For example the number of mesh points within a partition.
If the number of mesh points changes due to an adaption in an AMR application, the
added, or subtracted workload can be estimated and the imbalance can be remedied by
repartitioning, i.e. migrating mesh points to regain a balanced amount among processing
elements. This approach becomes more difficult, the more complex the model itself be-
comes. If for example not every mesh point translates to the same workload depending
on various known factors like the amount of data dependencies it has and on various
unknown factors like the amount of iterations it takes to reach a defined minimal error
measure in a linear solver. Furthermore, the system the application is running on itself
skews the load estimate. Again, there are factors that are known and can be taken into
account like cache sizes, but there are also unknowns, like load from simultaneously run-
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ning applications, which is common for shared systems. Commonly used a priori load
indices can be found in [231, 335, 100].

Consequently, the second way of estimating future workload is to simply take a posteriori
measurements and extrapolate these measurements under the assumption that load will
only slightly change. Measurements are usually taken directly in runtime or executed clock
cycles. The applicability of this method for load balancing is limited though, because the
assumption of a minor variation breaks down when the computational domain is adapted.
Furthermore, for initial distribution of tasks an a priori work load estimate is at least
required once. Nevertheless, an a posteriori load measure is still very much warranted in
combination with an a priori one to check the accuracy of the later and inform the user
of too large discrepancies between estimated and measured workloads.

2.3 Geometric Methods

Geometric Methods are the first major class of partitioners. Again, the task of a par-
titioner is to take tasks or objects and map them to the available processing elements.
As input, every partitioner needs to be aware of the workload or weight of each object.
In addition, geometric partitions rely on the geometric location of objects to form par-
titions. In other words, they try to cluster geometrically near objects into partitions of
equal workload. This is especially beneficial for applications, where the main interaction
between objects come from those that are physically close. That is the case for contact-
based phenomena like crash simulations, where a large part of the workload comes from
searching for colliding objects. When all physically close objects reside on the same pro-
cessing element, the search for colliding objects could only be performed with local objects.
Another example where geometric methods perform well are particle-based simulations
like smoothed-particle hydrodynamics or molecular dynamics. Here, particles interact
only with physically near neighbours. Again, if all neighbours are assigned to the same
processing element, these interactions can be computed very fast.

In general, geometric methods are conceptually simple compared to topological methods.
As such, partitioning using a geometric method is usually quite fast. Hence, geometric
methods are also often the first choice in highly dynamic simulation scenarios where a
frequent repartitioning is warranted. A further advantage of geometric methods is their
independence from information about the dependencies of objects. Especially for mesh-
free discretisations, generating this information might be expensive. On the other hand,
the lack of this informations does not allow for an explicit control of communication costs
between partitions. As stated, these methods operate under the premise that most depen-
dencies are geometric and are sufficiently dealt with by design. Therefore, the partition
quality is considered worse in general compared to topological methods that are communi-
cation aware [76, 29]. Finally, geometric methods may generate disconnected subdomains
for complex geometries. Another side effect of the lack of dependency information.
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2.3.1 Recursive Bisection
Among the simplest partitioning approaches are recursive bisection methods. The basic
idea is to take a line in two dimensions or a plane in three dimensions and cut the com-
putational domain along them into two equal partitions. This division is then recursively
applied to the new partitions until the desired number of partitions is generated.

Berger and Bokhari where the first to propose such an algorithm, based on a bisection
along the coordinate axes [23]. As all geometric partitioners, the algorithm takes the
geometric locations of all primitives, as well as their weights and tries to find a cutting
plane that splits the total weight of all objects into two equal sets. As it recursively splits
the objects along a coordinate axis, it is aptly named Recursive Coordinate Bisection
(RCB). This method is very simple to implement, fast and produces good results [300].
However, the method has two drawbacks. Firstly, it only produces a number of partitions
which is a power of two. Secondly, for well shaped meshes, the use of a line to divide the
computational domain is able to also keep the amount of communication small as long as
the ratio between the smallest and largest mesh element is bounded [46]. For RCB that
is unfortunately not the case as the method only considers the weight of the objects and
not their density, in other words the number of objects per partition. It therefore may
produce halves of equal weight, but vastly different amounts of objects [216, 300]. To
remedy this, another approach was proposed by Jones and Plassmann called Unbalanced
Recursive Bisection (URB) [172]. Here, the cutting plane is chosen such that it divides
the number of objects in half also considering the aspect ratio of the newly generated
partitions. Furthermore, partitions are only further divided proportionally to the total
object weight within them, resulting in a balanced partitioning on one hand, and an
arbitrary number of partitions on the other.

Both RCB and URB are incremental methods, that means a small change in the under-
lying problem only induces a small change in the decomposition [141]. As such, they
display minimal costs when it comes to the redistribution of objects, which is a beneficial
property for the use in a dynamic scenario. Therefore, they have been successfully applied
to problems from fluid dynamics [216], molecular dynamics [292] and transient dynamics,
in particular for contact detection and smoothed-particle hydrodynamics [287, 251]. Fur-
thermore, RCB has been applied for various other particle-based applications [108, 109]
and for the discrete element method [61, 62].

Another variant that uses the idea of recursively dividing the computational domain with
lines or planes is the Recursive Inertial Bisection (RIB) proposed by Simon [289, 298].
In RCB and URB, the cutting planes are chosen to be orthogonal to the coordinate
axes. The idea of RIB is to use the axes of principle inertia instead of the coordinate
axes to bisect the computational domain. This comes from rigid body dynamics, where
for a general three-dimensional body one can find three orthogonal axes, for which the
products of inertia are zero. These are called axes of principal inertia. In rigid body
dynamics, it is preferable to formulate the problem in the coordinate system spanned by
these axes. In RIB the objects and their weights are treated as a rigid body to calculate
its axes of principal inertia. Unfortunately, it is not trivial finding these, as one has to
solve a characteristic value problem. The three eigenvalues then give the three sought
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after axes. RIB yields better quality partitions than RCB and URB but can not compete
with more sophisticated graph partitioners in general [300, 98]. In contrast to the former
two methods, RIB is not incremental [106] and it scales moderately [300], which limits its
applicability in dynamic scenarios.

The last approach from the class of recursive bisection partitioners comes from Miller et
al. [215, 214]. They propose an algorithm, where they project all n-dimensional objects
to a random n+1 dimensional sphere. The cutting plane to bisect computational domain
is then placed through the center of the sphere. In theory, this method gives the best
results of all recursive bisection methods, even comparable to graph partitioners. But is
is the most complex and expensive variant of the bisection methods [125].

As recursive bisection partitioners are conceptually very simple and easily parallelisable
[29, 285, 140], they are often implemented by application developers directly into their
codebase. Nevertheless, these algorithms have also been implemented into the high level
libraries Meshpart [124] for the Matlab environment and into Zoltan [30], a library with
a wide range of different partitioning methods for C and C++ applications. The imple-
mentations in Zoltan are parallelised using the Message Passing Interface (MPI) [225].
An application of the Zoltan implementation of the RCB for the simulation of a hopper
discharge using the discrete element method can be found in [204].

2.3.2 Space-Filling Curves
Another method from the class of geometric partitioners make use of Space-Filling Curves
(SFC). SFCs map a multidimensional space on to a linear one dimensional array while
locality information is preserved to a certain degree. In other words, objects that where
close in their original space will also be close in the one dimensional mapping. The array
can then be cut into a number of continuous partitions, adjusted to the number of pro-
cessing elements and their capabilities. Such a partitioning inherently leads to moderate
communication costs due to the locality information present in the curve [91]. There exist
various SFCs, all with their individual advantages and drawbacks. The first SFC was dis-
covered by Peano in 1890 [241]. The most relevant SFCs for dynamic partitioning are the
Hilbert curve [149], the Lebesgue curve [193] and the Sierpiński curve [288]. A detailed
overview over the different SFCs, their mathematical properties and their applications in
computer science can be found in [10] and [265].

To map objects with multidimensional coordinates to one dimensional space, each object
is given an index that represents the object’s position along the SFC. The objects are
then sorted by their index [5]. [20, 75, 30] describe binning techniques to evaluate this
index. Usually though, SFCs are typically generated by a two step process.

First the computational domain is recursively refined into spatial subdomains, whereas
each subdomain contains no more than a single object in the end. One starts with a single
root node representing the entire space. If the space has more than one object in it, it
is refined into a defined number of subdomains. This is then applied continuously until
each subdomain has zero or one object in it. The amount of subdomains generated for
each refinement is dependent on the SFC used. Both Hilbert and Lebesgue curves bisect
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the domain in each cardinal direction per refinement. The resulting tree, called quadtree
in two dimensions, because it generates four children for every refined parent node and
octree in three dimensions respectively, are well known structures in computer science.
For the Peano Curve, the domain is trisected in each cardinal direction, resulting in nine
children nodes for every refined parent node in two dimensions and 27 children nodes
in three dimensions. To construct a Sierpiński curve, the domain is divided into regular
triangles in two dimensions and tetrahedral elements in three dimensions respectively.

The leaf nodes of the resulting refinement tree are then traversed in a specific order given
by the SFC [45, 106, 105, 107, 104, 217, 69]. Each SFC defines a stencil that describes
the order in which each subdomain is visited. This stencil is applied to each level of the
refinement tree. Therefore, SFCs are self-similar. Appropriate similarity transformations
allow the connection of open ends.

In general, SFCs can be computed very fast, comparable to the runtimes exhibited by RCB
[249, 250]. Furthermore, partitioning with an SFC is incremental, the redistribution costs
of a repartitioning in a dynamic setting are low. From an implementation perspective,
SFC partitioners range between the simpler geometric methods and the more sophisticated
graph partitioners in complexity [91, 236]. Tree data structures and especially octrees are
also widely used for mesh generation and adaptive mesh refinement [13, 77, 141, 286,
226, 211, 293]. If the domain is generated following a tree refinement, they are especially
well tailored for an SFC partitioning, because the first step, the generation of the tree is
already completed.

In Figure 2.1a the stencil for the Peano curve is illustrated in two dimensions. In Fig-
ure 2.1b the domain is adaptively refined by one level. As described above, the curve
visits all subdomains in the order defined by the stencil. It is applied independently to
every refinement level. As such, the path through the refined domain is generated by
applying the stencil on the initial coarser representation and then again locally applying
it again to each refined subdomain individually. The Peano curve is not unambiguous,
meaning the stencil can be applied in different ways, which results in different paths
through the domain. Figure 2.1c and Figure 2.1d illustrate another adaptive refinement
and a possible resulting curve. The later illustrates a detailed view of the right upper part
of the domain. The Peano Curve is used for example in the appropriately named Peano
Framework [324, 325, 38], a solver framework for partial differential equations. The Peano
Framework is the basis behind ExaHyPE, an engine to solve hyperbolic partial differential
equations specifically tailored to efficiently use future exascale parallel machines. It ad-
dresses grand challenges in geo- and astrophysics, such as the dynamic rupture processes
and subsequent regional seismic wave propagation [261]. Furthermore, ExaHyPE is one
of the codes used within the Center of Excellence in the domain of Solid Earth (Cheese)
project that addresses challenges in computational seismology, physical volcanology and
tsunami modeling [55].

The Hilbert curve is one of the most used SFCs in literature as it is based on traversing
the widely used quad and octree data structures. Its two dimensional stencil is shown in
Figure 2.2a. Figures 2.2b and 2.2c show consecutive adaptive refinements of the domain
and possible traversals gained by applying the stencil. Similar to the Peano Curve, there
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(a) Stencil (b) First adaptive refinement

(c) Second adaptive refinement (d) Detailed view of the second adaptive
refinement

Figure 2.1: Peano Space-Filling Curve

are different possibilities for applying the stencil for the Hilbert curve and there exist alter-
native configurations. Among the earliest applications for these curves are particle-based
gravitational simulations and smoothed-hydrodynamics [321, 249] and the decomposition
and ordering of finite element meshes [91, 240, 235, 232]. The Zoltan package also pro-
vides a partitioning tool using the Hilbert curve [30]. A more recent example is SeiSol, a
code for the simulation of seismic wave propagation and earthquake scenarios and another
code from the Center of Excellence in the domain of Solid Earth project [283]. SeiSol also
uses Hilbert SFC-based partitioning [262] to achieve competitive performance on current
petascale architecture [34, 308].

The second curve that can be inferred from quad and octree data structures is the
Lebesgue curve. The curve conforms to a depth-first traversal of the refinement tree.
Its stencil is shown in Figure 2.3a in two dimensions. One can observe the characteristic
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(a) Stencil (b) First adaptive refinement (c) Second adaptive refinement

Figure 2.2: Hilbert Space-Filling Curve

"Z" shape of the curve for which it is also called Z-order curve. Figures 2.3b and 2.3c
show the curve after one and two adaptive refinements of the domain respectively. The
Lebesgue curve does not need similarity transformation to allow the connection of open
ends, therefore there is only one canonical configuration of the curve. When compared to
the Hilbert curve, it does not persevere locality as well. This is due to the large jumps
in the linearisation which can be seen in the Figures 2.3 in the transitions from quadrant
two to quadrant three. This is even more pronounced in three dimensions [45, 167]. How-
ever, the Lebesgue curve has one very important advantage over the Hilbert curve. The
computation of the index can be very efficiently carried out by interleaving the bit-wise
representation of the coordinates of an object, introduced by Morton [224].

(a) Stencil (b) First adaptive refinement (c) Second adaptive refinement

Figure 2.3: Lebesgue Space-Filling Curve

The first use of a Lebesgue curve for partitioning was reported by Warren and Salmon
for particle-based gravitational simulations [321]. More recently Frisch used an octree-
based data structure with a Lebesgue SFC-based partitioning for a computational fluid
dynamics framework for the simulation of large-scale fluid mechanics phenomena and
thermal comfort assessment [113]. The code was specifically tailored for massively paral-
lel computers and has shown competitive performance on current supercomputers [115].
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Furthermore, the Lebesgue curve is used in the high-level library for parallel adaptive
mesh refinement p4est. p4est uses a connected octree data structure, termed forests and
implements various highly optimised algorithms for domain management and partitioning
[42, 165, 39]. p4est has been used as a basis for ParFlow, a hydrology modeling software
that simulates saturated and variably saturated flow in heterogeneous porous media [237].
Using p4est, ParFlow is able to scale close to half a million processes on a BlueGene ar-
chitecture [40, 41]. Another high-performance framework waLBerla, for the solution of
fluid dynamics and particle dynamics problems, also employs an interface to p4est and is
therefore able to utilize their mesh management and partitioning capabilities [21, 280].

The last SFC used for partitioning is the Sierpiński curve. It is used to traverse a domain
decomposed into regular triangles in two dimensions and tetrahedra in three dimensions.
In Figure 2.4a the stencil of the curve in two dimensions is shown. Figures 2.4b and
2.4c show possible configurations for one and two adaptive refinements respectively. The
curve has been used for adaptive mesh refinement applications [12], finite element and
finite volume methods [211] and for the solution of shallow water equations [11]. The code
framework sam(oa)2 for the simulation of tsunami wave propagation also uses Sierpiński
curves to partition the computational domain and allows the code to perform on current
top machines [268].

(a) Stencil (b) First adaptive refinement (c) Second adaptive refinement

Figure 2.4: Sierpiński Space-Filling Curve

2.4 Graph-Based Methods
The second major class of partitioners are graph-based methods. Graph-based methods
view the domain decomposition as a weighted graph, where the nodes represent the objects
and the edges represent dependencies between the objects. The weight of the nodes
represents the workload incurred by the object, the weight of the edges represents the
cost of the communication to satisfy these dependencies, in other words, the amount of
information required to be transferred. In contrast to geometric partitioners, graph-based
methods hence model the communication but neglect the location of the objects.

The graph partitioning problem in general defines an objective function that maximises
or minimises an objective. One of the most used objective functions is to minimise the
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total edge cut, in other words to minimise the total amount of cut edges when assigning
nodes to a partition. When applying the graph partitioning problem to assign objects to
processing elements of a parallel machine, a better objective function is to minimise the
total communication volume [142]. That means the goal is to minimise the total weight
of the edges cut by the partitioning. In the context of partitioning for parallel machines,
where the task is to generate a mapping which assigns objects to processing elements
an additional requirement is to balance the workloads applied by the objects among the
processing elements. The problem therefore is augmented by a balance constraint which
states that each partition’s workload must be equal, except for an accepted imbalance.

The graph partitioning problem and the constraint graph partitioning problem can be ap-
plied to a wide range of different applications where the physical or technical phenomenon
can be described by a graph. Buluç et. al. [37] give a wide variety of applications where
the partitioning of a graph is useful. For example it can be applied for general graph
problems such as eigenvalue computations [31] and database management [266]. More-
over graphs are present wherever a network is present, therefore complex networks such as
power grids [85, 199], biological networks [173], social networks [112] and road networks
[192, 218, 184, 70, 71, 202] can be represented as a graph and graph-based partitioning
can be applied. Finally, there are also applications in scientific visualisation and image
processing, for example in volume rendering [9] and image segmentation [44, 244].

There exist a wide variety of algorithms that provide an optimal solution for the general
and the constraint graph partitioning problem. Unfortunately, these algorithms are NP-
complete [122, 121], which means their runtime complexity is exponential to the number of
inputs. In other words, a graph with more than a few hundred nodes can not be partitioned
in any reasonable amount of time. That prohibits their use for static partitioning and for
dynamic partitioning, where the speed of the partitioning is crucial, even more. As such,
this overview is limited on heuristics which provide reasonable good approximations to
an optimal partitioning in just a fraction of the time. For a more comprehensive overview
including also the exact algorithms, the interested reader is referred to Buluç et. al. [37]
who gives a more general overview over graph-based methods.

2.4.1 Global Graph-Based Methods

Graph-based methods are further classified into global and local methods. Global methods
work with the complete graph while local methods can be applied to arbitrary connected
subsets of a graph. With the complete information about the graph, global methods
are able to compute a solution directly, but they are mostly restricted to smaller graphs
or used as static partitioners because of their comparably high cost. In this section,
Graph Growing 2.4.1.1, Node-Swapping 2.4.1.2 and Recursive Spectral Bisection 2.4.1.3
are discussed. Multilevel methods are a special kind of global graph-based methods that
allow the combination of several global and local methods, therefore, they are discussed
separately in their own section 2.4.3.
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2.4.1.1 Graph Growing

One of the simplest forms of global graph partitioning is graph growing, also called greedy
graph partitioning [299] or levelised nested dissection [279] in literature. The algorithm
starts with a single node and adds connected nodes sequentially to the current partition
until the desired partition size is reached [123, 97]. New nodes are usually selected using
a local search through all connected candidate nodes with the goal of minimising the
edge cut weight when adding a node [178]. The quality of the generated partitions are
highly dependent on the chosen starting node. As such, a common strategy is to run
the algorithm many times over with different starting nodes and selecting the outcome
with the best properties. As the algorithm does not include any geometry information,
it does not maintain geometric locality [316]. Furthermore, the algorithm tends to leave
many separated nodes for the last partitions which leads to fractured partitions [160].
The method on its own is not incremental and not easily parallelisable, which limits its
applicability for dynamic partitioning. Nevertheless, it is very fast [98, 310, 316, 320] and
produces partitions comparable to RIB in quality [98]. A broader overview over different
variations and improvements of the concept can be found in [60, 127, 263].

Graph growing has also been extended to start from more than one node to generate
multiple partitions at once. This so-called bubble framework is based on the ideas of
[320] and has been first examined in [82]. After selecting a set of evenly distributed
starting nodes, graphs are simultaneously generated from each node. After all nodes are
assigned to a partition, new starting nodes are selected for the next trial. Improvements to
this approach have been examined in [274, 213, 212], which range from different growing
methods to extensions for weighted graphs.

2.4.1.2 Node-Swapping

Node-swapping is another method for global graph-based partitioning. The idea comes
from partition refinement where one tries to improve the partition quality of an already
existing partitioning. Using a random partition as a starting point, allows to use the
schemes from this field to be used as a partitioner in itself. The basic concept can be
explained as follows: given a starting partitioning with two partitions, one finds two
subsets of equal size and swaps these subsets from one partition to the other. The subsets
must have equal size as to not violate the balance constraint. The goal is to find the
subsets from each partition such that swapping them yields the greatest reduction in
edge cut or edge weight respectively. This swapping of subsets can be repeated until no
improvement is possible anymore. Finding those subsets to swap optimally is not trivial
though.

Therefore, Kernighan and Lin [183] proposed an algorithm that repeatedly swaps only
single node pairs. The algorithm introduces a queue for every partition and sorts the
nodes within the partition according to their priority, that is the decrease in edge cut
weight a transfer to the other partition yields. This decrease might also be negative.
After sorting, the nodes with the highest priorities from each queue are swapped and
removed from the queues. After both queues are empty and all nodes have been swapped,
the node swapping is reversed to the point at which the total edge cut weight was minimal.
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The resulting partition is then used as a starting point and the algorithm is applied again,
filling the queues, swapping nodes and reversing to the minimum edge cut of the current
pass. This is repeated until a complete pass through the queues yields no improvement
any more. The method also termed KL refinement, unfortunately is rather expensive with
a quadratic complexity per pass. Although some improvements have been proposed to
reduce its complexity [90].

Another variation was proposed by Fiduccia an Mattheyses [102], termed FM refinement
accordingly. Here, instead of swapping node pairs, only a single node is transferred from
one partition to the other at a time and the priority queues for each partition are updated
immediately. The main advantage of the FM refinement over the KL refinement is its
linear complexity. While both KM and FM schemes are able to escape some local minima,
this ability is limited. Therefore, the quality of the final partitioning is highly dependent
on the initial configuration of the partitions [279]. One way to improve the quality is to
follow a similar approach as graph growing and simply run the method for many different
starting configurations and pick the best outcome.

Other alternatives to improve the quality of these partitioning methods have been pro-
posed. Among them, allowing only boundary nodes to be swapped, halting a pass through
the priority queues early [179] and very localised versions where the search for matching
pairs only considers directly connected nodes [233, 269]. Furthermore, node-swapping
methods work better if the balance constraint is more lenient, allowing them a greater
freedom in moving nodes from one partition to the other [36]. This is used by Holtgrewe
et. al. [153], Sanders and Schulz [271, 282] who allow trade-offs between node balance
and total edge cut weight to generate partitions with higher quality. Finally, the problem
of finding larger sets has also seen some progress. Inspired by theoretical considerations
made by Hromkovič and Monien [159] several authors have proposed ways to find larger
sets of nodes to exchange in a single step [80, 8, 135, 220]

In summary, node-swapping methods produce medium to high quality partitions but are
relatively expensive. They rely on global information and are paralleliseable only in a
limited capacity [279, 126]. Finally, they are not incremental. As such, these methods are
mainly used for static partitioning once at the beginning of an application when used on
their own.

2.4.1.3 Recursive Spectral Bisection

Similar to recursive bisection methods using geometric information, a similar method can
also be constructed using the connectivity information present in graphs. To bisect the
nodes into two distinct sets, one computes the Laplacian matrix of the graph where the
off diagonal elements represent the connectivity between nodes, similar to the adjacency
matrix and the diagonal elements represent the degree of the node, that is the number of
connections the node possesses [59].

The second smallest eigenvalue (the smallest eigenvalue is zero), gives a measure of the
overall connectivity of the graph. A graph that is not connected has a value of zero in this
eigenvalue. The eigenvector associated with this eigenvalue is called Fiedler vector after
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Miroslav Fiedler who laid the theoretical foundations of the method [103]. The Fiedler
vector associated with each node then gives a measure of the distance between the nodes,
which is used to sort the nodes and bisect the sorted list of nodes into two halves. Again,
this method is recursively applied on the newly generated subsets to generate the desired
number of partitions. First use of this method has been reported by Donath and Hoffman
[83, 84], Pothen and Simon et. al. [252, 289, 253] and Boppana [32].

Recursive Spectral Bisection (RSB) gives very high quality partitions, unfortunately com-
puting the eigenvectors is very expensive and the overall algorithm is very slow [279, 320].
In practice a modified Lanczos algorithm can be used to speed up the eigenvector calcula-
tions [191, 238]. Furthermore, Hendrickson and Leland propose a strategy using multiple
eigenvectors to compute multiple partitions at once, speeding up the process even more
[144]. Nevertheless, RSB on its own is not suited for dynamic partitioning due to its
expensiveness [293]. It is difficult to parallelise efficiently [17, 291] and does not main-
tain geometric locality [316]. Lastly, in its base formulation RSB is not incremental. Van
Driessche and Roose however give a formulation of RSB that possesses this property [309].

2.4.2 Local Graph-Based Methods
Given an already existing partitioning, a local graph-based method works with a small
overlapping set of partitions. In this work, each partition is assigned to a processing
element. If imbalances occur during the runtime of the application, the local method
tries to resolve these imbalances by shifting workload from one processing element to
another within the same set of partitions. This is especially suited for applications with
frequent local changes to the domain graph that require a dynamic load balancing. Even
more so, as the methods are naturally incremental [69, 234]. The sets can be defined by
partitions having dependencies with each other, in other words they have connecting edges
between nodes assigned to them [161, 327]. Another variant considers the connectivity of
the underlying hardware [197]. These sets overlap, which makes it possible for workloads
to travel through multiple partitions in several iterations of a local method, until good
global balance has been reached. Therefore a local method performs best for small local
imbalances that are resolved within a few iterations. Local methods are easy to parallelise
[69, 234, 180, 318, 106] and are naturally scalable. Sets to consider may be arbitrarily
small, starting from a single partition and its neighbours. Therefore, local methods are
independent from the size of the computational domain and the number of partitions, or
number of processing elements, that should be considered.

Local methods typically are comprised of two steps. In the first step, a map is computed
of how much workload (nodes or objects) must be shifted from overloaded partitions to
lesser loaded ones to restore a balanced partitioning. Here two main alternatives can be
considered, Diffusion-based methods 2.4.2.1 and Demand-Driven methods 2.4.2.2 These
methods are elaborated in their respective sections.

The second stage of a local method then selects objects to transfer according to the
computed map. Among the most used methods to determine the nodes to exchange a
gain criterion is computed, similar to the gain criteria used in Node-Swapping methods
2.4.1.2. Possibilities are the method of Wheat et. al. [327, 328] for unweighted edges. The
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method only considers the minimisation of the amount of edge cuts and moves the node
with the lowest resulting amount of cut edges. An extension for weighted nodes considers
the minimisation of the total edge-cut weight [77]. A further extension introduces a
relative gain measure. That means including a measure of the gain of the node about to
be transferred from the target partitions’ perspective. This aims to reduce the number of
collisions, a node transfer that is immediately reversed [318]. Pairwise exchanges between
partitions are explored in [136]. The gain criterion can be further enhanced by also adding
a measure of the number of transfers necessary into its formulation [77, 277, 336]. Here, a
configuration with a lower edge-cut weight could be discarded if the cost of reaching that
configuration outweighs the benefits. All these methods try to minimise the surface of
each partition as this directly minimises the amount of communication between partitions,
given an accurate model of communication by the edges. There are applications, however,
where other criteria are more important. For example the aspect ration partitions has a
larger influence towards solution time for domain decomposition linear solvers [79, 310].

Local partitioning algorithms may take a long time to converge for large imbalances and
large domains, where the performance of global methods is far superior in general. But,
local methods are a popular choice as part of a Multilevel method to improve the quality
of already pre-partitioned graphs (see section Multilevel methods 2.4.3), running only a
few iterations. Nevertheless, when the graphs to partition become massive, for example
on current supercomputers, where each processing element represents a partition and
the number of objects to assign and balance is again orders of magnitude higher, global
methods will reach their limits. In this scenario, local methods will become the only
applicable dynamic partitioning methods [281, 92].

2.4.2.1 Diffusion

Diffusion is a natural process describing a substance’s desire to distribute evenly in space
[37]. Discretising the diffusion equation on a mesh given by the connectivity of the objects
of the computational domain or the network of the parallel machine allows to define an
iterative process to balance out the workload among all partitions. Diffusion algorithms
for dynamic balancing of partitions were first proposed by Cybenko in 1989 [66]. In
its base formulation, the method is solved using a first-order finite difference scheme.
The stencil for this scheme only uses direct neighbours and is thus compact [81]. Using
a higher-order stencil, that is including more distant mesh points from neighbours of
neighbours improves the convergence of the method, though also sacrificing the locality
of the method [323, 322].

To carry out an iteration of the algorithm, each partition evaluates the workload difference
between itself and all its’ neighbours and transfers workloads according to this difference.
As objects are only transferred between partitions that share neighbouring relations with
each other, the balanced partitions are incremental by design.

Another type of diffusion method is so-called Dimensional Exchange [78, 329, 336]. Here,
a hypercube network is assumed to represent the connectivity of the partitions. The
algorithm then loops over all dimensions of the hypercube and the partitions balance
workloads with their respective neighbours in that dimension. After all dimensions have
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been looped over, the workload is balanced. The algorithm can also be applied to non-
hypercube graphs by mapping the hypercube to the underlying graph configuration. This
however renders the algorithm non-incremental as loads are also exchanged with partitions
without a direct connectivity.

2.4.2.2 Demand-Driven

Another local graph-based method is the Demand-Driven model. The idea behind this
method, is that underloaded or overloaded partitions request or send workload to neigh-
bours when they detect an imbalance among them [327, 327]. There exist two versions
of the model, a receiver-initiated version, where underloaded partitions request work and
a sender-initiated version, where the work transfer is initiated by overloaded partitions
conversely. Compared to the diffusion model work transfers do happen asynchronously
only if demanded and only among a subset of all neighbouring partitions. Furthermore,
the workload sharing is only initiated if a process becomes idle or overloaded. Small im-
balances in workload that do not affect performance are not considered. The threshold
when a partition is considered underloaded or overloaded are application dependent. In
practice the receiver-initiated model has proven to be more successful, because the over-
head of balancing load is assumed by lesser loaded partitions and does not impact the
already overloaded partitions [329].

Similar to the diffusion methods, the neighbourhood model can either be application
specific [328] or dependent on the connectivity of the hardware network [197]. Another
variant to define neighbourhood can be found in Özturan et. al. [69, 234], who group sets
of partitions into trees, based on the request of workload they make. The workloads then
subsequently move only between the partitions within the same tree.

The Demand-Driven method has been successfully employed by the multiphysics frame-
work Alya from the Barcelona Supercomputing Center for the solution of coupled prob-
lems, for example incompressible and compressible flows, solid mechanics and particle
transport [312, 158]. Alya is one of two Computational Fluid Dynamics Frameworks of the
Unified European Applications Benchmark Suite (UEBAS) and is also part of the Accel-
erator benchmark suite of the Partnership for Advanced Computing in Europe (PRACE)
[307]. For its initial partitioning, Alya uses Metis [174] for initial partitioning and the
library LeWi which implements a Demand Driven model sharing workloads among cluster
nodes in a supercomputer for dynamic repartitioning [119, 120]. The code was successfully
deployed on the MareNostrum supercomputer of the Barcelona Supercomputing Center
[156, 157].

2.4.3 Multilevel Methods
The main drawback prohibiting the use of the above mentioned global graph-based meth-
ods for large graphs for dynamic partitioning are their expensiveness, both in terms of
runtime and storage requirement. The later can be alleviated by efficient storage schemes,
but using one of the methods on a large graph is simply too expensive to justify its cost
compared to a possible time save due to a more efficient partitioning. Multilevel methods
conveniently solve this problem by allowing the use of expensive partitioners on a reduced
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representation of the graph. In this regard, Multilevel partitioning methods share many
similarities to multigrid methods used to solve systems of linear equations with a hierarchy
of representations of the computational mesh.

A generic Multilevel scheme consists of three phases, a coarsening phase, a partitioning
phase and an uncoarsening phase, also called refinement. In the first phase, the graph is
gradually reduced to coarser representations of the original graph with fewer nodes and
fewer edges. This is achieved by contracting sets of nodes on the finer levels into single
nodes on coarser levels. The weights of the contracted edges are summed up, parallel
edges from the contracted nodes are summed up as well. This procedure is repeated
until the resulting graph is small enough such that one of the global graph partitioning
algorithms mentioned above can be applied to generate an initial partitioning. Finally, in
the uncoarsening stage, the contraction is gradually reversed, with the possibility adding
a local improvement of the partitioning, for example using a diffusion method on each
intermediate level. Adding to the similarity of Multilevel methods and multigrid methods,
coarsening and refinement can similarly be combined as restriction and prolongation.
Gradually contracting nodes until the coarsest level and then reversing until the original
graph is rebuild resembles a classical v-cycle. Other cycles have been used too, such as
the w-cycle which combines more intermediate coarsening and refinement cycles to put
more emphasis on partitioning the coarser levels, as well as the f-cycle, where through
nested iteration one builds up a good initial guess from the coarsest level [315, 269].

Multilevel methods promise a few advantages. Firstly, on the coarsest level, the most ex-
pensive partitioning methods, netting the highest quality partitioning can be used without
much impact on the runtime of the method due to the decrease in size compared with
the original problem. Although, it is not guaranteed that a good initial partitioning of a
coarse representation translates to an equally good partitioning when refined. Still, mul-
tilevel methods allow several runs of different partitioning kernels and picking the best
outcome while being less expensive than a comparable global method [37]. Secondly, small
movements of nodes on the coarsest level translates to large movements of nodes on the
finer levels. A good partitioning might be able to be computed faster as less movement
is needed for a node to reach its final position. And lastly, the improvements employed
during the refinement are expected to perform well, since they start from an already good
initial partitioning from the coarser levels.

Multilevel methods were first developed by Bui and Jones for the computation of fill-
reducing matrix reorderings [36]. Independently, Hendrickson and Leland also proposed
the method for Finite Element mesh partitioning [145] and Hauck and Borriello ap-
plied it directly to graph partitioning calling it Optimised KLFM, because they ap-
plied Kernigham-Lin / Fiduccia-Mattheyses type Node-Swapping techniques [139]. In
fact, Multilevel methods have been established as the de-facto standard for graph par-
titioning and many authors have published their version of it for various applications
[130, 179, 219, 317, 57, 118, 134].

Coarsening
As mentioned, each Multilevel Method consists of three stages, the first being a coarsening
in which the original graph is gradually reduced. Karypis et. al. give a comprehensive
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overview over different techniques to contract nodes [178, 279]. The simplest being ran-
domly selecting nodes that have connections between them to contract [318]. Heavy-Edge
Matching combines nodes with the heaviest edges in descending order. The idea behind
is, since the heaviest edges are contracted within single nodes, the coarse graph naturally
ends up with the edges with the lowest weights. Partitioning this coarse graph leads to the
smallest edge cut weight. Heavy-Edge Matching completely neglects node weights though,
which may lead to large imbalances in partition weight. A solution to this problem is to
introduce an edge rating function that takes not only the edge weights into account but
also the balance between contracted nodes [2, 153, 269, 233]. Edge rating functions have
also recently been enhanced using algebraic distance measures gotten from eigenvector
analysis [264].

The disadvantage of heuristic methods like Random Matching, Heavy-Edge Matching
and Edge-Rated Matching is, even though it performs well in practice and are compa-
rably fast, they can not give any explicit guarantees of the quality of the coarse graph
for partitioning. Conversely, there are also a variety of slower methods that give those
guarantees. Examples are Greedy algorithms [254] and Path Growing Algorithms [87] as
well as their combination [207, 271], which guarantee at least half of the optimal edge
weight. Improvements of these are even able to achieve a two thirds guarantee at the cost
of a higher complexity [247, 314, 88].

Matching-based coarsening performs well for graphs from applications found in scientific
computing. Especially if the emerging partitioners are to be used to assign workloads
to processing elements in a parallel machine. There are however more strategies for
more irregular graphs and for applications where the quality of the partitioning is more
important than a possible very high runtime. These include contraction of multiple nodes
at once or coarsening using weighted aggregation. The interested reader is referred to
Buluç [37] for a comprehensive overview over these methods and their respective literature.

Partitioning
After the graph has been coarsened, even the most expensive partitioners can be applied
without much impact on the overall runtime as the coarsened graph is comparatively
small. As such, a large portion of multilevel schemes use some form of Recursive Spectral
Bisection as it produces the most optimal partitions [146, 145, 252, 253, 134, 18, 178].
Nevertheless, Karypis and Kumar state that, given good coarsening and refinement strate-
gies, the quality of the coarse level partitioning has only minimal impact [176]. As such
they propose a very simple but fast Node-Swapping technique for the initial partitioning
and report as good if not better results for various applications [179]. As graph partition-
ers are usually not incremental and are not suited well as dynamic partitioners, the use
of geometric partitioners has also been proposed in this stage to introduce this property
into the method [181].

Refinement
After the initial partitioning, the coarsening must be reversed gradually. In addition,
during every intermediate step the partitioning is improved by applying some steps of a
improvement-based partitioning technique. The main strategy used here is some variant
of Node-Swapping that uses a local search to find suitable nodes to exchange 2.4.1.2.
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Node-Swapping comes with a very advantageous benefit. In section 2.4.1.2 variants of
the technique were discussed that try to move more than a single node or exchange a
pair of nodes from one partition with another, but finding suitable sets to transfer is very
expensive [8, 80, 135]. If classical Node-Swapping is applied in the refinement stage of a
Multilevel method, finding sets is essentially free as they are represented by the collapsed
nodes. An alternative is to use a diffusion-based strategy as discussed in section 2.4.2.1
or another local optimisation technique [278]. This is mainly done when the scheme shall
be used as a dynamic partitioner to make the method incremental [155, 277, 320, 318].

Multilevel methods are the de-facto standard for graph partitioning. They provide the
best combination of partition quality and speed. They are faster than other global meth-
ods and provide at least equal quality partitions. Local graph-based methods are highly
dependent on the structure of the graph and may need a large number of iterations to
match or surpass the quality of the partitioning provided a Multilevel method. As such,
there exist a large number of high quality libraries implementing Multilevel Techniques.
Examples are Chaco [143], Metis [174], Scotch [243], Party [255] and KaHIP [270]. These
libraries have seen great success as static partitioners. However, since they implement se-
quential versions of the multilevel approach, they are not suited as dynamic partitioners.

Parallel implementations have proven to be rather challenging. As was mentioned, graph-
based methods in general are difficult to parallelise, even more so when using these as
components of a Multilevel method. Still, there have been efforts to implement par-
allel Multilevel methods to be used as dynamic partitioners. The most successful are
ParMetis[181, 177, 277, 180] and PT-Scotch [242], both parallel versions of their sequen-
tial counterparts, as well as Jostle [320, 318, 319].

2.4.4 Hypergraph Partitioning
When using classical graphs to model the decomposition of a computational domain the
edges between the nodes model the communication volume necessary to satisfy dependen-
cies between the partitions the nodes represent. It is sensible to work towards a minimal
accumulated edge-cut weight when assigning nodes to a partition. In other words, the
goal is to minimise the communication volume between partitions. For most applications
from the field of mesh-based simulation, modelling the communication volume using a
classical graph is a good approximation, which, given the use of good partitioners, leads
to good results. But for highly connected, heterogeneous and asymmetric problems as
they occur in VLSI design for example [43], the classical graph definition reaches its lim-
its. Here, Hypergraphs can be used to model these problems. Nevertheless, they are also
able to more accurately model communication volume for mesh-based problems and con-
sequently a hypergraph partitioning is able to provide even better partitions than regular
graph partitioners [49].

In a hypergraph, the nodes similarly represent objects to be partitioned, but in contrast
to a regular edge, which models dependencies between two objects, hyperedges represent
dependencies between an arbitrary number of objects [48, 49, 53]. This allows hypergraphs
to model more complex relationships between objects and allows for a more accurate
model of the communication volume for example. Similar to normal graph partitioning,
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hypergraph partitioning also tries to minimise (or maximise) an objective function, usually
the number of cut hyperedges or the accumulated hyperedge-cut weight, while satisfying
a balance constraint.

As mentioned before, one of the points of criticism that limits the use of global graph-
based methods as dynamic partitioners are possibly high redistribution costs. In a hy-
pergraph formulation, it is possible to model the total communication volume induced
by the transfer of messages to satisfy dependencies and in addition, the costs induced
by data redistribution. An accurate model of communication and migration costs leads
to the highest quality partitions of all partitioning methods introduced. Consequently,
hypergraph methods are widely used as static partitioners, for example in the libraries
PaToH [48, 49], Mondrian [311] and hMetis [175].

The high quality partitions produced by a hypergraph formulation come with the cost
of a more complex model and more expensive algorithms to evaluate good partitions,
compared to regular graph partitioning. As such, competitive hypergraph partitioners
also use the multilevel paradigm to their advantage [64, 175]. Furthermore, similar efforts
have been put into the parallelisation of these methods [50, 303, 304]. Increasing the speed
of the method and since the hypergraph model can explicitly model incrementality in its
formulation it has been successfully employed as a dynamic partitioner [51, 52]. Parallel
multilevel hypergraph partitioners can also be found in Zoltan [30, 74, 29] and Parkway
[304].

2.5 Summary
This chapter has given a comprehensive overview over the various partitioning methods
currently employed. The two main classes of partitioners are geometric and graph-based
methods. Among the geometric methods, different recursive bisections techniques and
Space-Filling Curves have been introduced. As these methods are among the global
methods with complete knowledge of the complete simulation space, the primitives can
be optimally distributed among the participating processing elements. Furthermore, geo-
metric methods are conceptually simple and usually quite fast. Most geometric methods
are incremental – only Recursive Inertial Bisection is not incremental – the repartitioning
costs are comparatively low. Small changes in the domain only lead to small changes in
the partitioning, where most primitives do not need to be moved. These characteristics
and their ease in implementation makes them a frequent choice for dynamic simulation
scenarios with frequent repartitioning. The main drawback of geometric methods is their
lack of dependency information between primitives, for example communication costs. As
such, a geometric method cannot incorporate this information into its formulation and
dependencies independent from the geometric location of primitives cannot be taken into
account.

The other main class of partitioners that were introduced are graph-based methods. In
contrast, these methods explicitly model the dependencies between primitives but neglect
their location. The graph partitioning problem is a constrained optimisation problem that
is much more involved than computing a simple geometric partitioning. Although, optimal
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solutions exist, their complexity is too high to be computed frequently. In practice, proven
heuristics that provide reasonably good approximations are used. Graph-based methods
can be further classified into local and global methods, where global methods are able
to compute an optimal result of the partition size. Among them are Graph Growing,
Node-Swapping and Recursive Spectral Bisection. All of them compute very high quality
partitions, however they are very expensive, not incremental and difficult to parallelise
efficiently. This makes them unsuitable for dynamic partitioning.

Local graph-based methods on the other hand only have a limited view of the domain
graph and try to incrementally improve already existing partitions. Here, diffusion and
demand-driven methods were discussed. These methods may take a long time to con-
verge to an acceptable solution, but are independent from the size of the system and the
computational domain. Furthermore, these methods are incremental. In practice, they
are a popular choice as part of Multilevel schemes to improve the quality of intermediate
coarser representations of the domain graph with only a few iterations.

Multilevel schemes are the current state-of-the-art when it comes to graph-partitioning.
They try to alleviate the expensiveness of global graph-based methods by applying them
on a reduced representation of the graph. The graph is reduced by contracting sets of
nodes on the finer levels into single nodes on coarser levels. After computing a partitioning
on the reduced graph, the contraction is reversed and the original graph is recovered. The
characteristics of the used partitioning method concerning the quality and incrementality
are retained from the methods used within the scheme.

For the sake of completeness, the partitioning of hypergraphs was briefly discussed.The
insights from regular graph-based methods are also true here. The advantage of hyper-
graphs is that the model can be augmented by further dependency information, which
in turn can be considered in the partitioning. As such, the hypergraph model is more
accurate and leads to even higher quality partitions. However, the cost of evaluating these
partitions is also increased.
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Chapter 3

A Decentral Framework for
Numerical Simulation

The advantage of local partitioning methods is their complete independence from globally
shared information. As such, their use is not prevented by the size of the machine they
should be deployed to. In order to show the viability of this approach, a simulation
framework for the numerical simulation of physical systems represented by mathematical
models has been developed to incorporate one of these methods. Specifically, a local
diffusion-based repartitioning is used. The baseline for this framework is the work of
Frisch, who developed a simulation code for fluid problems tailored to massively parallel
machines [113]. More accurately, his ideas of a distributed space-tree data structure,
where every node of the tree is discretised, not just the leaf nodes, is used. Furthermore,
most of the solution procedures using this data structure are used in the new framework
as well.

During the development of the new framework, it became obvious that the need to
synchronise global information also poses a bottleneck in other parts of the simulation
pipeline, in addition to the partitioning phase. Therefore, the basic premise of the new
framework has been to refrain from any kind of globally shared information. More specif-
ically, the data structure is completely decentralised with no overarching metadata avail-
able to one or more processing elements. This marks a clear deviation from Frisch’
concept, who used a central management instance, which kept track of the distribution
of the data structure. Furthermore, the new framework tries to limit the use of global
communication whenever possible. However, there are parts where global synchronisation
can not be avoided. An iterative solution procedure must broadcast a stop signal when a
global convergence threshold has been reached, for example.

In this chapter, this new framework is detailed. First, the data structure is introduced,
starting with the primitives that make up the structure. The primitives are generated
using a hierarchical domain decomposition. The decomposition is comparable to the ones
used to define a space-filling curve. As mentioned above an important detail of the data
structure is that intermediate states of the decomposition are not discarded. Therefore,
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the resulting structure has hierarchically overlapping primitives, whereas the decomposi-
tion is non-overlapping in space. Again, this data structure is completely distributed in
the new framework. That means, all primitives are exclusively partitioned among all pro-
cesses. Even the overarching macrostructure, made up from the hierarchical primitives on
coarser tree levels, is distributed and not duplicated. This renders the complete structure
decentral and no part of the structure must be synchronised.

The neighbourhood model is introduced next. It details the relationship between the
primitives and between the processing elements, which hold these primitives. Due to the
hierarchical structure, primitives have two types of neighbours, spatial and hierarchical
neighbours. To conclude the core concepts of the framework, the communication patterns
are detailed. There are two main communication models. The data exchange between
the primitives, which is mainly used to exchange bordering unknown quantities during
the solution process. And second, the data exchange between processing elements, which
is used in various management tasks.

In the following, additional modules of the framework that are affected by the decentralisa-
tion are introduced. First, the domain generation is illustrated. Next, the adaptive mesh
refinement and coarsening (AMR) is detailed. The AMR functionality causes changes to
the domain structure during runtime and consequently changes in workload and connec-
tivity of partitions. Therefore, using AMR is the reason the domain needs the dynamic
partitioning functionality in the first place. In this context, the metadata updates of the
neighbourhood relations caused by AMR are addressed as well. Furthermore, the frame-
work supports additional balance constraints on the domain decomposition. This might
cause refinements to cascade through the structure or refinements to be rejected. Both
the initial generation of the domain as well as adaptive changes to it from AMR need
to adhere to these constraints. Within the decentral structure, these operations are not
trivial and are addressed.

For completeness, the solution methods to solve systems of linear equations are described
next. These methods are not affected by the decentralisation of the data structure and are
taken mostly from the aforementioned work of Frisch. An addition to the new framework
is an asynchronous parallel Jacobi method, with a possible second application as a more
accurate load estimator.

Finally, I/O, interactive data exploration and computational steering are addressed with
an emphasis on adaptions needed to limit global synchronisation.

For parallelisation, the framework follows a distributed memory concept using the Message
Passing Interface (MPI), a portable message-passing library standard for C and Fortran
[225]. Up to this point, the term processing element was used to describe the wide variety
of different manifestations of elements within a microprocessor. For example, a processing
element can be a CPU, a GPU or a vector unit. Without Simultaneous Multithreading
(SMT) each processing element can run exactly one sequential process. Furthermore, each
processing element has exclusive access to a block of memory. In MPI terminology, each
process is assigned a unique number, called rank. Whenever the text refers to a rank or
a process, it refers to the program running on a single processing element, with exclusive
access to its memory block.
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3.1 Data Structure
The data structure consists of the grid primitives constructed at the beginning of the
simulation using a hierarchical domain decomposition approach. Both the primitives
and the domain decomposition are explained in more detail hereinafter. One uncommon
feature of the present framework is that it also keeps intermediate coarser representations
generated during the hierarchical decomposition. As such, the primitives that make up the
data structure are overlapping in a hierarchical sense but not in a spatial sense. Primitives
that discretise the same domain are connected and therefore extend the neighbourhood
relations between primitives and of the processes they are assigned to in hierarchical
direction. This extension aims at improving the convergence of local partitioning methods.
Furthermore, the coarser representations are used in parts of the framework unrelated to
the partitioning, namely the solution and visualisation modules (see Section 3.6)

3.1.1 Grid Primitives
To simulate a physical phenomena described by a continuous mathematical formulation,
the first step is to transfer the continuous model into a discrete representation that can
be evaluated by a computer. That means, the values of continuous functions must be
transferred to discrete points in the domain. These points form a grid at which the
known and unknown quantities are defined. The present implementation uses regular
grids, meaning the domain is segmented completely in axis-parallel, right-angled regions
with equidistant length along each axis. Each grid point can be indexed by an unique
triple (i, j, k) in three dimensions, representing one location in the continuous domain at
location (xi, yj, zk).
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Figure 3.1: Two dimensional regular finite difference grid.

A generic two dimensional grid for a finite difference discretisation is shown in Figure 3.1.
In total, the continuous domain is discretised by ni × nj grid points. Neighbouring grid
points in each cardinal direction can be reached by increasing (east and north) or decreas-
ing (west and south) the respective index i in x-direction and j in y-direction. As the
spacing of the grid points is equidistant, ∆xi is identical for all i. The same is true for
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∆yi. Therefore, one can easily compute the location of the point with indices (i, j) in R,
(xi, xj) = (x0 + i ·∆x, y0 + j ·∆y). In three dimensions, an additional index k is added
which behaves identical to the former two. Top and bottom neighbours are identified by
increasing or decreasing the index. The location zi in R corresponds to zi = z0 + k ·∆z.
In the finite difference method, ordinary or partial differential equations are transformed
into a system of linear equations. The derivatives are approximated by an algebraic
expression, the finite difference, defined at the grid points. The number of grid points
used to approximate the derivatives determines the order of the approximation [129]. If
values are needed at locations other than directly at the defined grid points, they are
interpolated. The most common way to approximate the values at these locations is
bilinear interpolation in two dimensions and trilinear interpolation in three dimensions
respectively. That means, that the values at directly surrounding grid points are used
and their contribution relative to their distance is added to find the value at the location.
Higher order interpolation is also possible, incorporating more and further away points
and can increase the accuracy of the interpolation.

(i, j)

i − 1 i i + 1

j − 1

j

j + 1

∆x

∆y

Figure 3.2: Two dimensional cartesian finite volume grid

The data structure used here is not exclusive to finite difference methods, but can be
applied to other mesh-based methods as well. In Figure 3.2 an exemplary finite volume
grid is shown. Here, the grid point at index location (i, j) represents the complete control
volume, also called cell, surrounding it. In other words, the value stored at the grid point
represents the integral over the cell volume. As the spacing of grid points along each axis
is equidistant, the distance between the grid points ∆x and ∆y correspond to length and
width of the cells. The index location (i, j) can also be understood at the center of the
control volume. This allows to easily compute the extent of the cell. For example, the left
lower corner (south-west) is at the location (x0 + i ·∆x− 1

2∆x, y0 + j ·∆y − 1
2∆y). The

grid in the Figure is a special case of regular grids, where the spacing along each axis is
equal, i.e. ∆x = ∆y. In other words the control volumes are squares (2D) or cubes (3D).
In finite volume computations the value at cell faces (edges in 2D) is often needed. The
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default way to approximate the values is to simply linearly interpolate between the two
cells sharing the face. This grid primitive is used in the present implementation. Using
the mid-point rule to approximate the volume and surface integrals of the control volume,
a simple stencil-based finite difference scheme can be used to update the cell quantities
(cf. [113]).

3.1.2 Domain Decomposition
As mentioned above, we follow the idea of space-trees to decompose the simulation do-
main. In the beginning, the computational domain is represented by a single node that
encloses the complete spatial domain. This is the root node of the tree structure at depth
d = 0. Now, the tree is successively build by refining the nodes on the current deepest
level. To refine a node, the domain is subdivided along its cardinal directions. A bisection
in each direction results in four child nodes for every refined node in two dimensions and
eight child nodes in three. Accordingly, trees using a bisection are called quadtrees (2D)
or octrees (3D).

After the tree has been generated, each leaf node is commonly discretised using an indi-
vidual grid. As such, the discretised computational domain is already decomposed into
primitives ready to be distributed to the MPI ranks. Space-filling curves are especially
well suited to distribute these grids. A traversal through the tree gives a neighbourhood
preserving order of grids that can simply be cut into equal sized chunks, according to the
number of participating processes. To be able to apply an SFC partitioning, the complete
space-tree including the overarching macrostructure, which consists of all refined nodes,
has to be available. Storing space-trees uses some very efficient storage schemes, therefore
memory limitations are currently not an issue. Changes to the tree have to be broadcast
to all processes though, the effort for which scales with the amount of processing elements
used.

Most computational domains are not uniform. That means they exhibit regions of high
and low interest. These regions are defined either by the requirement of the numerical
scheme or by the specific design purpose of a numerical simulation. A high numerical
accuracy is required for example in fluid flow simulations in the vicinity of obstacles in the
flow regime. For once, the obstacle must be represented accurately, using a high enough
resolution and furthermore, the flow structures influenced by obstacles are often the main
interest behind a simulation. This requires to refine the space-tree until the regime can
be accurately captured to resolve all occurring phenomena. A uniform refinement of the
space-tree, where every node is subdivided until the discretisation of the leaf nodes result
in the desired resolution will inevitably result in many wasted resources, as all regions are
resolved with the same, possibly very high accuracy. A solution is to adaptively refine the
space-tree only towards interesting features in the computational domain. In Figure 3.3,
an exemplary adaptive two dimensional decomposition is illustrated.

On the left hand side, the space discretisation through the successive refinements is shown.
At the bottom, the grids discretising the leaf nodes of the tree are accumulated. Under
the presumption that every grid consists of an equal number of grid points, regardless
of the space it discretises, the resolution is increased towards a region of interest at the



42 3. A Decentral Framework for Numerical Simulation

Figure 3.3: Spatial and hierarchical adaptive domain decomposition using a quadtree in
two dimensions. The underlying tree is illustrated on the right, the spatial decomposition
is shown on the left. Grids discretising the leaf nodes are accumulated in the bottom left.
The left illustration is taken from [245].

bottom corner of the domain. On the right hand side the corresponding space-tree is
illustrated. As every node refinement results in four child nodes, two in each cardinal
direction, it is a quadtree. Using a quadtree, or an octree in three dimensions, is too
restrictive for complex domains, though. For example, when simulating channel flows
with one elongated direction, a bisection would generate degenerated grids with large
aspect ratios, which can cause numerical errors. As such, the present framework allows
varying subdivisions between one and eight in each cardinal direction, resulting in up to 49
child nodes in two dimensions and up to 343 child nodes in three dimensions. Restricting
the subdivision to eight is caused by the grid identification scheme detailed in section 3.1.4,
though numerical issues prohibit a recursive subdivision of more than five anyway [113].
The parallel adaptive generation of the tree with respect to refining towards geometric
features is detailed in 3.4.
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The data structure is decomposed into individual grids given by the space-tree, the discre-
tised derivatives are defined across multiple data points however. Therefore, grids need
to access values at grid points held by neighbouring grids to compute the derivatives
at their boundary. For fast retrieval, each grid is surrounded by a so-called ghost cell
halo, additional mesh points, to store values from neighbouring grids at their respective
side. The thickness of the necessary ghost cell halo is determined by the approximation
of the derivatives. Higher-order derivatives or more accurate approximations need more
neighbours and warrant more ghost cell layers. All grids have full ghost cell halos. This
includes the grids located at the domain boundary. This serves to have a uniform grid
description and the ghost layers which would theoretically represent values outside the
domain may be used to impose boundary conditions.

Figure 3.4 illustrates the decomposition for a uniform mesh configuration. A single 4× 2
finite volume grid is decomposed into two 2 × 2 grids. The grids are coupled using a
single layer of overlapping ghost cells (illustrated in gray) at their respective boundaries.
After every iteration of a solution method, the values in the ghost cells are updated using
recently computed values of the respective neighbour. During the computation, the values
in the ghost cells are treated as boundary conditions and are not updated. Therefore, the
solution of such coupled grids can be separated into two phases: a computation phase
where a grid’s own cells are updated and a communication phase in which ghost layers are
updated following the arrows in the illustration. These types of domain decomposition
methods for the solution of boundary value problems are commonly known as Schwarz
Methods [290] after Schwarz, who was the first to prove convergence of the method for
the Laplace equation.

data copy
data copy
data cell
ghost cell

decompose

∆xc

∆xc ∆xc

Figure 3.4: Two dimensional cartesian finite volume grid

An exemplary two dimensional case of a decomposition of a non-uniform domain is il-
lustrated in Figure 3.5. Here, the decomposition produces two uniform grids. A 2 × 2
and a 4 × 4 finite volume grid. As the decomposition is generated by discretising the
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space-tree nodes, the accumulation of all grids who discretise leaf nodes may produce a
non-uniform configuration. Each individual grid will always be uniform though. These
grids are again extended with ghost cells on all sides. The configuration of the ghost cells
is conceived as if the neighbouring grid would be of equal spatial size as the actual grid.
This, in addition with having uniform grids, allows to use the same stencil, describing the
discretised partial differential equations, across all grids, regardless of their size.

Updating of ghost cells’ values becomes more involved though. As the overlapping halos
have different sizes, values cannot simply be copied anymore. Updating coarser ghost cells
representing data on finer grids involves an aggregation. All data values from cells that
are covered by the ghost cells must be aggregated according to the amount of overlap and
the values have to be interpolated to the same position where the data on the coarse ghost
cell is located, that is its cell center. Fortunately, as the discretisation of grids is self-
similar, meaning finer grids are simply subsections of coarser grids, a coarse cell always
covers a number of fine cells exactly. As such, the aggregation degenerates to a simple
averaging of all covered cells. In the Figure, this is illustrated by four cells averaging
their values and updating the corresponding ghost cells marked by orange arrows. To
be able to use the same stencil, the data in the finer grids’ ghost cells must be correctly
prolongated. The location of the cell center, where the data values are stored is different
between the coarser grid and its finer ghost cell representation. Therefore, the value is
linearly interpolated from the coarse grids’ cell center to the fine grids’ cell center (dashed
blue arrows).

data prolongation
data aggregation
data cell
ghost cell

decompose

∆xc ∆xf

∆xc
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Figure 3.5: Two dimensional cartesian finite volume grid

Linearly interpolating between neighbouring grids of different size introduces an error
into the computation. For numerical accuracy, the tree-based decomposition is subject
to a strict 2:1 balance constraint. In other words, neighbouring grids are not allowed to
differ by more than one refinement level, to restrict the interpolation error between grids.
This balance constraint is common in space-tree-based decompositions [164]. However,
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if the tree is not available in its entirety, as it is the case for the present framework, the
balancing becomes more involved. This impacts the initial generation of the tree data
structure and alterations to the tree using the adaptive mesh refinement and coarsening
features. Establishing and keeping the tree balance is covered in their respective sections
3.4 for the initial generation and 3.5 for AMR.

As mentioned above, the present framework discretises all nodes of the space-tree, even
refined ones. The data structure therefore represents the simulation domain in various res-
olutions throughout the whole space-tree hierarchy. All grids are exclusively distributed,
in other words there is no globally shared macrostructure that connects all partitions,
which makes the data structure completely decentralised. This has implications for the
neighbourhood model 3.2, as now, hierarchical neighbours have to be considered, too.
Furthermore, the coarser grids are used in a custom-tailored multigrid method for solv-
ing the attached mathematical model 3.6.2 and in an online visualisation scheme, which
allows an overview of large-scale simulation data.

3.1.3 Boundary Conditions
Boundary conditions are necessary constraints to obtain the solution of a boundary value
problem. Common conditions for a unknown function are Dirichlet and Neumann bound-
ary conditions. The former prescribe the value of the function itself at a specific point
in the domain, the later prescribe the value of the derivative in normal direction at the
boundary of the domain. Imposing boundary conditions for the present grid primitives is
simple. Each cell stores an additional value describing an imposed constraint. Here, the
unphysical ghost cell halos at the boundary of the domain have a practical application.
They can be used to impose various problem specific boundary conditions. For example,
in a fluid calculation, a wall with a slip condition may be represented by imposing a
Dirichlet condition on the normal component of velocity in the fluid, as the wall is impen-
etrable and a homogeneous Neumann condition (i.e. a zero derivative) of the tangential
velocity component. The later can be achieved by requiring the velocity component to be
identical between the fluid cell and the halo cell, which represents the wall.

Boundary conditions are also used to turn off specific sections of the simulation domain.
Wherever there is a Dirichlet condition imposed, the value of a variable in the cell is
prescribed, rendering a computation unnecessary. This allows for example, to mark solid
objects in a fluid domain or embed a more complex, non-rectangular simulation domain
within the rectangular grid description. The main drawback of this method is that bound-
ary conditions and geometric features can only be represented by full cells. That means,
normal directions for Neumann conditions are always aligned to the grid axes and object
boundaries follow a stepwise approximation. An adaptive refinement of the simulation
domain near those structures may alleviate these effects at the cost of a higher computa-
tional effort and numerical errors introduced by a higher unphysical surface roughness.

The idea to embed a complex domain into a simpler fictitious domain, which can be easily
discretised with a structured mesh has been used for example in the finite cell method
(FCM) for solid mechanics problems [239, 89]. Here, the fictitious domain approach is
combined with high-order finite elements to approximate the solution fields. The geom-
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etry is represented by using an adaptive integration scheme, which independently from
the finite cell grid refines towards geometric boundaries using a hierarchical domain de-
composition and places quadrature points in the refined sub-cells. Combining the h- and
p-versions of the finite element method, FCM achieves optimal rates of convergence, when
the mesh is refined, and exponential rates of convergence, when the polynomial degree is
increased (cf. [276]). The method has since been adapted for fluids, too [337]. Similar
methods have also been developed for finite volume and finite difference methods with a
focus on fluid mechanical problems. Here, these methods are called immersed boundary
methods and work has been done by Fadlun et. al. [96], Kim et. al. [185] and Tseng and
Ferzinger [306] for example. However, as this was not the main focus of the present work,
these methods have not been implemented yet.

3.1.4 Grid Identification
In a completely decentralised system, each grid needs to be uniquely identified not only
within a specific process but also globally. For this purpose, a 64 bit wide long integer was
chosen, again inspired by the work of Frisch [113]. In Frisch’ implementation the first 32
bits of the integer are used to describe the rank in an MPI-based implementation the grid
is assigned to. The second 32 bits, called tag, are split into a grid identifier, GID, unique
to the process the grid is assigned to and a hash. The hash itself consists of nine bits,
of which always three are used to encode the position along one direction of the grid in
the local coordinate system of its parent grid. Using three bits per direction gives 23 = 8
possible index locations per direction, from where the subdivision limit results.

The original implementation used 22 bits for the encoding of the GID, which enabled the
assignment of a little over four million grids to each rank. However, no simulation has
been reported that used more than a fraction of the maximum possible grids per rank.
The present framework uses 17 bits to encode the local grid identifier which still allows
to assign a little over 130.000 grids to each process. As rank and GID are sufficient to
uniquely identify a given grid across all processes, the left over bits in the UID can be
used otherwise. The encoding the framework uses is illustrated in Figure 3.6.
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Figure 3.6: Encoding of the global unique identifier (UID) of a grid

In addition to rank, GID and hash, three bits each encode a task and a direction. That
allows to encode a wide variety of tasks directly into an MPI message header without
any actual data transfer, as all information is stored in the message’s tag. For example,
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updating neighbourhood metadata after the deletion of a grid is one of the eight possible
tasks encoded. The GID identifies the grid which needs to update its metadata on a
specific process, the direction is able to refer to a specific neighbour grid (there are six
geometric neighbours, one parent and a variable number of children). In case the deletion
refers to a child, the hash is used to identify the child uniquely. The task encoding can
also be adjusted depending on the context of the message, for example during metadata
updates following AMR operations there are different tasks as updates after grid migra-
tions. Therefore, the encoding represents an efficient solution to many organisational
tasks in the framework. This is also further detailed in their respective sections.

3.2 Neighbourhood Model
Each grid has two types of neighbours, hierarchic neighbours and spatial neighbours. Hi-
erarchic neighbours are grids generated when discretising parent or child nodes from the
space-tree refinement. They all represent the same domain or parts thereof in different
resolutions. Spatial neighbours are the “real” neighbours, located adjacent to a grid in the
simulation domain. The framework’s neighbourhood model only considers spatial neigh-
bours between grids on the same refinement depth of the tree. These neighbours discretise
the domain with the same resolution. Neighbours are further limited to the ones which
share an edge in two dimensions and a face in three dimensions. Figure 3.7 illustrates
all hierarchic and spatial neighbours of a node (orange checkers) in two dimensions. A
node has exactly one parent (gray on top level). The number of child nodes depends on
the subdivision chosen. Here, a bisection in each cardinal direction per refinement step
was used, which amounts to four children (yellow on bottom level) per refined node. In
two dimensions, a grid has at most four spatial neighbours on the same refinement level
(solid orange). These neighbours share a common edge. In three dimension, a grid has at
most six spatial neighbours, with which it shares a face. Nodes at the domain boundary
have fewer neighbours. If the domain is non-uniformly refined, nodes may also have fewer
neighbours as spatial neighbours are only considered on the same refinement level.

There are a number of extensions conceivable to the neighbourhood model. A sensible
choice is to include also spatial neighbours on different refinement levels. With the present
approach, in an adaptive configuration, data exchanges between neighbouring grids on dif-
ferent refinement levels have to be conducted through a common neighbour. Particularly,
the spatial neighbour of the coarser grid which is simultaneously the hierarchical parent
of the finer grid. There can never be more than one intermediate neighbour because of the
2:1 balance constraint of the space-tree. To include these neighbours in the model does
however only make sense for leaf grids in a non-uniform refinement configuration. Next
to the added storage requirement, extending the model in this way would add another
level of complexity from an implementation perspective. Another possible extension to
the model is to include also neighbours at corners in two dimensions and ones that share
corners and edges in three dimensions. This model’s advantage is the possibility to use
more complex stencils which require also cells on these added neighbours. The tighter
coupling again adds a larger storage requirement, more communication to keep ghost cells
updated and an increase in algorithmic complexity.
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Figure 3.7: Illustration of all geometric and hierarchic neighbours of a grid in two dimen-
sions. When a node is refined, the domain is bisected in each cardinal direction, spawning
four child nodes.
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Figure 3.8: The left shows a sample distribution of eight grids to three processes. Ac-
cording to the neighbourhood relations between the grids, the processes holding these
processes inherit these neighbourhoods, shown on the right.

After partitioning the domain, each process is assigned a number of grids. Each of those
grids has a set of neighbouring grids, which either are assigned to the same or to a remote
process. Different processes which hold neighbouring grids are defined as neighbour pro-
cesses and regular communication must be established among them. Thus, each process
has a subset of all processes as neighbouring processes. These subsets are overlapping
and unique to a process. Additionally, their union contains all processes, meaning that
every process has at least one other neighbour and is reachable. Figure 3.8 illustrates this
model. The grids of a sample domain are distributed among three processes. Three grids
on the left side of the domain are assigned to process one, three grids in the middle are
assigned to process two and the two remaining grids on the right are assigned to process
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three. The neighbourhood given by the spatial relations between the grids is inherited by
the processes which hold them. Grids held by process one are neighbours of grids held by
process two. Similarly, processes two and three inherit their neighbourhood from assigned
grids with neighbourhood relations. Processes one and three have no neighbouring grids
and therefore are not considered neighbouring processes. The process neighbourhood is
illustrated on the right side of the figure.

As will be discussed in more detail in the following section, the neighbourhood model
directly influences the communication patterns in the framework. Neighbouring pro-
cesses need to regularly communicate with each other to exchange information. These
processes holding neighbouring partitions are also the ones directly communicating with
each other in the local improvement method for repartitioning. Therefore, adding second
level neighbours extends the number of processes exchanging grids in one iteration of
the chosen method, resulting in a higher-order discretisation of the diffusion and a faster
convergence towards a good balance. Apart, from the added storage requirement to in-
clude second level neighbours, this would render the method less local and therefore less
scalable. To find an optimal balance between scalability and extent of the neighbourhood
model is not trivial.

As a proof of concept, the framework in its current state implements the above illustrated
minimal viable set of neighbours to support all necessary data exchanges during a sim-
ulation run. The main ones include exchanging problem variables during the solution
process and alterations to the domain graph, which must be communicated to all affected
processes. Other tasks are conceivable as well, for example user-generated inquiries such
as steering or visualisation tasks. Extending the neighbourhood model in one of the dis-
cussed directions and study its implications are viable possibilities for future research
though.

3.3 Communication Patterns
As far as possible, each process only communicates with its neighbouring processes to
minimise global communication. At the current state, there are only two global com-
munication calls in the I/O module for writing and reading checkpoint files, all other
modules follow a completely decentral approach. Each grid has exactly one parent, a set
number of children, determined by the given refinement subdivision, and a set number of
neighbours. Each process holds a number of grids, with a maximum number determined
by the memory available on the hardware. This means that there is an upper bound to
the number of grids each process holds, which in turn have a bound number of potential
neighbour grids lying on other processes. This upper bound of neighbouring processes is
completely independent from the total size of the domain graph, theoretically allowing
scalability without any communication bottlenecks. In practice though, the hardware
network is not scalable infinitely.

There are two types of communication happening frequently during a simulation run.
The first is the data exchange of individual grids during the communication phase of the
solver procedure to update ghost cell data in-between stencil iterations. Furthermore,
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data aggregation and prolongation is used not only to update ghost cells across different
refinement levels, but also to synchronise coarser representations and to exchange residuals
and errors in a multigrid-like approach (see section 3.6.2 for details). The second is a cycle
through all neighbouring processes needed to exchange information and metadata updates
for the partitioning and AMR modules. Both are detailed hereinafter.

3.3.1 Grid Data Exchange
As mentioned above, the solution of the underlying system of equation uses iterative
stencil loops to smooth towards the solution. These demand updating neighbour values
stored in the ghost cell halos after each sweep. The use of 5-point 2D and 7-point 3D
stencils requires an exchange of ghost halos along grid edges in two, and along grid faces
in three dimensions. Spatial neighbours across grid corners are not needed using these
stencils, but if needed, would require an extension of the neighbourhood model. If the
domain is uniformly refined, a simple horizontal exchange between grids on the deepest
refinement level would suffice to update all ghost cells with the latest values. If the do-
main is not uniformly refined, some grids do not have direct spatial neighbours. Their
ghost cells are updated from a coarser neighbour and vice versa via a common neighbour
grid. A direct connection to a neighbour on a different level could also be conceived, the
increase in algorithmic cost and complexity of an enhanced neighbourhood model was not
deemed worthwhile so far. One could argue that a ghost cell update could be performed
in general via the hierarchical neighbours by aggregating the data on successively coarser
levels and then updating the cells top-down. This would allow to completely relinquish
spatial neighbour connections. Degrading the accuracy of the solution due to aggregat-
ing and interpolating the data prohibits this, but might be advisable for non-numerical
applications.

To complete all occurring cell data and ghost cell data updates across the different re-
finement levels, three communication stages can be conceived. In the first stage, termed
bottom-up transfer, data is aggregated on children grids and sent to their respective par-
ents. Next, nodes on the same level transfer geometric neighbouring data in a horizontal
exchange. Finally, data is transferred from parent nodes to their children, called top-
down transfer. In uniform refinement configurations with only simple methods to relax
towards the solution, it would be sufficient to only horizontally update the leaf grids, to
accelerate the solution however, a custom tailored multigrid-like method is build on top
of the data structure. A multigrid method, as the name suggests, requires multiple grids
discretising the same domain in different resolutions. Discretising all nodes of the domain
tree, resulting in exactly these grids required, is one of the reasons for the duplication of
discretised domain. In the multigrid method (see also 3.6.2) residuals are aggregated and
send upwards, using the same communication structure as in the bottom-up stage. Vice
versa, the top-down structure is used to prolongate error values to correct the solution on
finer grids in the multigrid method.

We compute solutions on the finest refinement level, as here the domain is discretised in
the highest resolution. Yet, as soon as coarser representations of the solution are required,
for example for visualisation or I/O, the solution must be synchronised stepwise bottom-
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up until the root grid is reached. The three communication stages for grid data exchange
are described in more detail in the following. Afterwards, the interaction of the different
stages to update ghost cells across different refinement levels is discussed in more details.

3.3.1.1 Bottom-Up Grid Data Transfer

The bottom up transfer is used to send cell data values from finer grids to their parent grid
on the next coarser refinement level. Ghost cell values are never updated in this stage.
Depending on the subdivision spacing chosen, multiple values are aggregated and send to
the parent to update its cell data values. Using a common octree for decomposition in
three dimensions for example, one cell on the parent grid discretises the same domain as
eight cells on the finer grid. The values of these eight cells are aggregated and the result
is used to update the coarser cell’s value. In Figure 3.9 the bottom-up scheme is depicted
for an example configuration in two-dimensions and a quadtree refinement.

parent grid
children grids
ghost cells
data agregation

Figure 3.9: Bottom-up communication stage to aggregate and send cell values from the
children to their parent grid.

Using an MPI parallelisation strategy, the scheme to communicate through the complete
tree structure is implemented as follows. First each non-leaf grid issues a non-blocking
MPI_Irecv call for every child grid. Next, each process sorts all its assigned grids by their
reverse refinement level, meaning grids on the highest level are first, followed by grids on
lower levels. This allows to iterate through all grids from most to least refined. Iterating
through all grids, leaf grids use a blocking MPI_Send to send their data values to their
parent grids. Non-leaf grids issue a blocking MPI_Waitall call to wait for the arrival of all
their children’s messages, aggregate their data and use another blocking MPI_Send call to
transfer the data to their parents in turn. The cascade stops at the root grid, which has
no parent anymore. Data travels gradually through the refinement levels and the order in
which a parent receives data from its children is irrelevant due to the non-blocking receive
calls.
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3.3.1.2 Horizontal Grid Data Exchange

In Figure 3.10 the horizontal grid data exchange is illustrated. Grids on the same refine-
ment level, with a direct neighbourhood relation, update ghost cell data with the latest
values from their neighbours. Data cells on the sender correspond exactly to their re-
spective ghost cells on the receiver side, therefore no aggregation or projection has to be
applied. In contrast to the bottom-up stage, strictly only ghost cells are updated, regular
data cells are never touched.

grid

ghost cells

data copy

Figure 3.10: Horizontal communication stage, transferring cell values between geometric
neighbour grids to update corresponding ghost cells.

Implementation of the horizontal exchange is very simple. Each grid that needs to com-
municate horizontally issues a non-blocking MPI_Irecv for every neighbour it exchanges
data with. Afterwards, the grids send their data values using blocking MPI_Send calls.
After a grid has send all its data, a blocking MPI_Waitall stalls the execution until all
neighbouring messages have been received.

3.3.1.3 Top-Down Grid Data Transfer

The last stage, the top-down stage, is used to prolongate cell data values and ghost cells
from parent grids to their children grids. As mentioned before, data values and especially
ghost cell values are usually not representing the exact same domain and are not stored
at the same location between finer and coarser grids. Therefore, after receiving data from
parent grids, data values are linearly interpolated (bilinear in two dimensions and trilinear
in three), taking their fine grid locations into account. Figure 3.11 depicts both the data
prolongation to regular cells (blue arrows) and to ghost cells (dashed orange arrows).

The implementation of the top-down data transfer for a complete update of all refinement
levels is similar to the bottom-up stage, just mirrored. First, every refined grid issues a
non-blocking MPI_Irecv call. The sorted list from the bottom-up stage is still valid,
therefore, it can again be used to iterate through all grids assigned to a process. This
time however, in reverse order from the grids on the lowest to highest refinement level.
The root grid starts the cascade sending data to all its children using blocking MPI_Send
calls. Subsequently the children grids, issue an MPI_Wait call, suspending the process
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parent grid
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Figure 3.11: Top-down communication stage, transferring cell values from a parent grid
to update regular cells and ghost cells. Data is received into buffers projected to their
correct locations.

until the receive call is completed. After extracting and interpolating the cell values,
a subsequent blocking MPI_Send call forwards the values to all children. Grids on the
highest refinement level do not forward anything anymore.

3.3.1.4 Ghost Layer Exchange in Uniform and Adaptive Refinement
Structures

So far, the implementation aspects for the bottom-up and top-down stages illustrated an
information exchange through the complete grid hierarchy. This is needed in the multi-
grid solver or when synchronising the solution across all levels for partial visualisation for
example. The ghost cell exchange can be limited however, depending on the refinement
structure and the application. If the space-tree is completely uniform, all ghost layers, ex-
cept the ones at the domain boundary, can be updated by pure horizontal communication.
Furthermore, only leaf grids have to update their ghost cells, horizontal communication
on coarser levels is not necessary.

When the space-tree refinement is non-uniform though, horizontal communication to up-
date all required ghost cells is not sufficient anymore, as some leaf grids do not have
spatial neighbours on the same refinement level. In Figure 3.12 the procedure to update
those values is illustrated. First, the bottom-up stage is used to update cell values on the
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parent grid of the fine grid (blue arrows). Next, the horizontal stage exchanges cell values
to update the ghost cells between the parent and its spatial neighbour (green dashed and
dotted arrows). Finally, the updated ghost cell values can be forwarded from the parent
to the child grid using the top-down scheme (orange dashed arrows). Important to note
is that the order of operations, bottom-up, horizontal and top-down must happen in this
order to ensure a correct ghost cell update.

coarse grids

fine grid

1. bottom-up transfer

2. horizontal exchange

3. top-down transfer

Figure 3.12: Combination of bottom-up, horizontal and top-down communication stages
to transfer ghost layer data between neighbours on different refinement level via a common
neighbour grid.

In [113], Frisch uses the ghost layer exchange throughout the whole domain structure. This
provides a simple update scheme, whose costs have been shown to be reasonable through
a performance evaluation. Nevertheless, updates of ghost cells across all grids still is
unnecessary. Therefore, the scheme has been improved, only including grids that actually
are required to update their ghost cells. All leaf grids have to horizontally communicate.
In addition leaf grids with one or more missing spatial neighbour need to exchange data
with their parents. Leaf grids easily can determine this for themselves. Finally, non-leaf
grids used to forward ghost cell information also need to participate. Figuring out which
ones to include requires one horizontal communication between all spatial neighbours in
the domain. This communication transfers whether a neighbour is a leaf grid or not. A
non-leaf with leaf neighbours must forward ghost cell data.

This is implemented simply using a set of flags for non-leaf grids. Which are set after
the domain is generated, and updated if changes to the refinement structure occur. As
aforementioned, leaf grids do not need additional flags, if one of their neighbourhood
references is empty, they need to update their ghost cells via their parent. Non-leaf grids
store whether their spatial neighbours are leafs, allowing them to know with which they
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need to horizontally exchange ghost cell data.

3.3.2 Process Data Exchange
The second type of communication in the framework is the information exchange between
neighbouring partitions, that means between processes that hold sets of grids with neigh-
bourhood relations between each other. A common reason for a process data exchange
is for example the exchange of loads between neighbouring process within the dynamic
partitioning module.

A complete exchange of information between one process with all other processes in its
neighbour list is termed communication cycle. As such, information only travels to direct
neighbours per communication cycle, which in turn requires multiple communication cy-
cles to distribute information throughout the whole domain. However, information rarely
travels from one end of the domain to another, while the multilevel neighbourhood struc-
ture allows us to limit the amount of cycles necessary in this case. It takes at most the
diameter of the tree structure to reach all processes, in other words 2H − 1, where H
is the height of the tree. Additionally, non-continuous partitions, i.e. non-neighbouring
nodes on a single process, spawn multiple information sources in a spatial sense.

The communication cycle may be designed in three ways. The simplest scheme is an
ordered pattern. Each process traverses the list of neighbours in ascending order, first
sending to and then receiving from all processes whose MPI-rank is smaller than their
own. For all MPI-ranks greater than itself, a process first receives and then sends. Here,
blocking MPI_Send and MPI_Receive calls are used. Figure 3.13 illustrates an example
pattern with five participating processes, where every process communicates with every
other process. Circles depict processes marked with their MPI-rank. Data exchanges are
shown as arrows. Following this pattern, it takes seven pseudo steps to iterate through
one complete communication cycle, with concurrent communication in steps three to
five. Obviously, this pattern is not ideal because processes are occasionally idle, which is
reinforced if some processors are slower or more burdened. In practice, it is sufficient and
has shown good results [95], partly because full all-to-all communication never occurs.

A second version replaces the blocking send and receive routines with their non-blocking
counterparts. This allows all communication to be processed in order of appearance,
without having to wait for slower processes. The trade-off is the memory that has to be
available for receive buffers, where for every remote process a individual buffer is needed.
In the blocking case, a single reusable buffer is sufficient. A variant of this approach
would be to use remote memory access (RMA) routines, i.e. MPI one-sided. Every process
opens up a dedicated memory window for each neighbour process. The remote process
then has remote access to this memory window without explicitly exchanging messages.
One issue to consider here are the dangers of concurrent memory access, introducing
additional synchronisation overhead. Frequent opening and closing of memory windows
when neighbourhood relations change, is another.

The third and last method finds pairs of neighbour processes to communicate without
order and without non-blocking communication routines to transfer the simulation data.
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Figure 3.13: Ordered communication pattern with five ranks. Every rank needs to ex-
change data with every other rank.

This saves memory since a single send and receive buffer is sufficient, as they can be
reused immediately, similar to the ordered cycle. The advantage is that slower processes
do not hold up communication as it can be completed in order of appearance. There is,
however, the added cost of finding the pairs.

The outline of this algorithm is as follows. In a first step, shown in Figure 3.14a, each
process randomly determines if it is a sender or a receiver and transfers this state using
a non-blocking MPI_Isend to all its neighbours. A non-blocking MPI_Irecv is posted to
acquire the state of all neighbours. In the second step, illustrated in Figure 3.14b, each
sender checks if at least one receive is complete, and sends a positive response message to
one of the receivers and negative responses to all other receivers. In the third step, shown
in Figure 3.14c, a receiver sends back a positive response to one of the positive senders
and a negative one to all other positive senders. The negative senders can be ignored.
As soon as one sender is positive a pair has been found and actual communication can
be established (Figure 3.14d). All other positive senders still need to receive a negative
response, though this can be postponed. If a pair is found, or all remote processes have
the same state, or all responses were negative, processes are assigned a new random state
and start with the next cycle, trying to find a new communication partner (Figure 3.14e).

The last method should perform well when the load is badly balanced among the processes.
Faster processes are able to complete their communication first, slower ones are granted
additional time to finish their previous workload. Depending on the randomised sender
and receiver configurations however, the amount of time it takes to find a pair varies
highly and the added communication from finding pairs can be detrimental to the overall
performance. Furthermore, every process needs to send and receive their state multiple
times, even for pair searches that are already completed. Although MPI provides a facility
to cancel outgoing messages with MPI_Cancel, its use is highly discouraged, especially
for sends, as messages could already be partially send, making their cancellation more
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receiver

sender

(a) Each process is randomly assigned to be a
sender or a receiver. In the first stage, neigh-
bouring processes exchange their state.

pos pos

sender

receiver

(b) Next, senders that have identified at least
one neighbour to be a receiver, send a positive
response to it. Other possible receivers would
be send a negative response.

pos neg

sender

receiver

(c) The receiver picks a sender that has send a
positive response and sends a positive response
to it. All other senders are getting negative
responses.

sender

receiver

(d) A pair is found. Actual data exchange hap-
pens.

sender

receiver

(e) Starting over with stage one. Processes are
assigned new states and processes with already
completed exchanges no longer communicate in
this cycle.

Figure 3.14: Method to determine neighbourhood pairs in arbitrary order.
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expensive as sending and receiving the actual message. Given a suitable partitioning
and dynamic repartitioning, with mostly balanced loads among processes, the outlined
method is not used in practice. If memory is not an issue, the second method, using non-
blocking communication routines could be used. However, it again only performs better
than the more memory efficient blocking version if the process load is highly imbalanced.
Therefore, for all production runs, the ordered communication cycle that uses blocking
communication routines is used in this research.

3.4 Domain Generation
To set up simulation scenarios involving complex geometries, a fast and reliable way is
needed to generate a volume-based model that fits the described data structure. Even
more so, when scenarios should be evaluated in which objects are moving or the mesh is
dynamically refined during runtime, which requires a re-evaluation of the decomposition
on the fly. Consequently, the domain generation must be feasible on the target machine.
Although a different machine could set up the computational domain with for example
more lenient memory limits, during runtime it makes little sense to stop the application,
port the current state to a different machine, where a new configuration is evaluated,
before finally moving the new state back to the target machine. Therefore, the domain
generation is not only subject to the limitations of the target machine, but also to the
decentral data structure when it is being adjusted during runtime.

As mentioned before, the domain is generated following an adaptive space-tree decompo-
sition. The user is able to define a minimum refinement depth to which the space-tree
should be refined. Furthermore, regions of special interests can be defined where the
domain tree should be refined further. Finally, the vicinities of geometric features are
often the most interesting regions. To adaptively refine towards these features and to set
boundary conditions accordingly, a space-tree-based voxel generator is used. This tech-
nique was first proposed by Samet [267]. Mundani further developed a fast method for
various application scenarios [227] and Frisch adapted the method for his data structure
[114].

3.4.1 Voxel Generator for Geometry-Based Decomposition
Primitives for this decomposition are simple voxels in three dimensions (pixels in two
dimensions), with only spatial information about the physical size they occupy. The root
voxel spans the whole computational domain. For every refinement, a set of child voxels
is generated, their union occupies the same domain as their parent. The number of child
voxels generated for each refinement again is dependent on the variable subdivision spac-
ing. The algorithm uses a queue-based treatment of candidate voxels with the root grid
as the initial element in the input queue. The decision whether a voxel should be refined
is based on a range of geometrical intersection tests with a surface-based description that
represents the domain geometry or features within. Commonly, a surface description us-
ing a stereolithographic format is used. The most well known data format of that class
being the STL format. Here, the surface is represented through triangles.
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Each voxel in the input queue is successively tested against more and more expensive
intersections tests. If a triangle of the surface model is inside, touches or intersects the
voxel, it is added to an output queue. The use of multiple intersection tests increases
the efficiency of the algorithm, as the quick and inexpensive tests serve to discard many
voxels early on, before evaluating against more expensive tests. After the input queue is
empty, all voxels in the output queue are refined and their newly generated children are
put in the input queue for the next pass until a prescribed depth has been reached, or no
voxels are put into the output queue as refinement candidates during the intersection tests
anymore. Figure 3.15a illustrates a surface-based model of a human used as the input for
the voxel generator. In Figure 3.15b the volume-based results from the voxelisation are
shown. The subdivision is equivalent to the classical octree scheme with eight children
per refined voxel and a tree depth of d = 6. Shown are only the leaf voxels, i.e. the most
refined ones that also contain geometric features.

(a) Surface-based
model

(b) Volume-based
model, depth d = 6

Figure 3.15: Surface-based input model and volume-based output model of a human for
the voxel generator. The model is refined up to depth d = 6 using an octree scheme for
subdivision.

To generate the computational domain using the voxel generator, the space-tree, which
consists of all generated voxels is simply discretised. In other words each voxel becomes
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a grid of the data structure. To set the geometry boundary conditions, the leaf grids
constructed from the voxels on the finest refinement level, i.e. the ones intersecting the
geometry, are again subjected to the intersection tests employed by the algorithm. This
time however, each individual cell of the respective grid is checked. If it contains, touches
or is intersected by any surfaces of the geometric objects, geometry boundary conditions
are set in the cell accordingly.

3.4.2 Decentralised Generation
In Frisch’ implementation, a single central management instance is responsible for de-
composing the computational domain and to assign each process an appropriate share
of the data structure. This approach has the advantage that all topology information
is stored centrally and allows for efficient global partitioning methods. However, it is
limited by memory and does not scale. For problems with a static decomposition, which
is only generated once, this method works quite well and if needed, can be computed on
a different machine with more memory. In a dynamic setting however, both scalability
and memory limits are crucial. Therefore, the present framework uses also a decentralised
domain generation method to alleviate these bottlenecks.

In the present approach, all processes are responsible to generate their own share of the
decomposition. Using one of the aforementioned space-tree decomposition methods, each
process needs at least one unique root node to start the decomposition from. To achieve
this, the domain generation is a multistage process. In the first stage each process inde-
pendently generates an initial decomposition from a common root node, which represents
the complete domain. Here, either a uniform space-tree decomposition or the adaptive
voxel generator and an input geometry can be used. This initial decomposition must
create a tree that has at least as many leaf nodes as there are processes participating in
running the application. The generated tree is comparably shallow with respect to the
final domain tree and has a low memory footprint, because only the structure is gener-
ated without initialising the corresponding discretised grids. Nevertheless, the depth and
consequently the size of this initial tree is directly dependent on the amount of processes
used and is therefore limited. For process counts on current supercomputers this is not
an issue. This topic will be further discussed in section 3.4.5.

1 2 3 4

Figure 3.16: Stage one: Initial tree generation on all processes.

In Figure 3.16 the first stage is illustrated using a simplified example. Four process have
generated an initial tree refined up to a depth of two, with four leaf nodes on the deepest
refinement level in orange. The macrostructure connecting the leafs is shown in blue. So
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far, this approach has no drawbacks compared to a centralised generation. Instead of
waiting idle, all processes simply generate the same structure.

1 2 3 4

Figure 3.17: Stage two: Partitioning of the initial tree.

In the next stage, each process individually computes an initial partitioning of the current
tree structure. As the complete structure is available, using an SFC linearisation on the
hierarchical tree structure is convenient. But also all other global and local partitioning
methods can be applied here. The only constraint that has to be adhered to, is that
each process is assigned at least one of the leaf nodes of the tree. After computing the
partitioning, it is virtually applied. That means, the UID of the nodes are changed
to reflect their new rank and GID (see section 3.1.4. Afterwards, the neighbourhood
metadata is updated with the new UIDs. This process can conveniently make use of the
complete tree being present on all processes at this point. To conclude stage two of the
domain generation, each process deletes all non local nodes determined by the partitioning.
Figure 3.17 illustrates the configuration after stage two. Each process holds at least one
leaf node (orange) and possibly a part of the overarching macrostructure (blue). Hatched
nodes have been deleted and remain on other processes. Up to this point, every operation
has been completely local and no communication took place. Nevertheless, the initial
domain is partitioned and all neighbourhood metadata is up to date.

1 2 3 4

Figure 3.18: Stage three: Local subtree generation.

In the third stage, each process is now able to use one form of the space-tree refinement
with one of its assigned leaf nodes as starting point. The generation of the individual
subtrees has no dependencies at all and is therefore embarrassingly parallel. Figure 3.18
illustrates the current configuration in a simplified fashion. Each process has generated a
local subtree from its assigned leaf node (orange).
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3.4.3 Metadata Updates
The final step of the initial domain generation is to update the neighbourhood metadata
of the nodes of the newly generated subtrees. In practice there are two possibilities. The
first method is again completely local. Each process keeps neighbouring leaf nodes after
the initial refinement and refines them as well. Now in addition to their own subtrees,
a process also has the neighbouring subtrees available and can locally update the neigh-
bourhood metadata. After updating, the neighbour subtrees are deleted. Drawbacks of
this method are the higher memory footprint and a higher effort of having to construct
also neighbouring subtrees.

1 2 3 4

Figure 3.19: Stage four: exchange of surface trees.

The second is through information exchange with neighbouring processes. More specif-
ically, communication has to be established with processes that hold spatial neighbours
of the intermediate leaf nodes, from which the subtrees were generated. New neighbours
can only lie on the surface of the subtrees opposing a processes’ own subtrees. Therefore,
the method only transfers this surface information of subtrees to neighbouring processes.
The surface nodes of a space-tree still adhere to the tree structure. As such, a mock
surface tree is generated on the receiving process that can be traversed exactly like the
regular local tree structures. In Figure 3.19 the traversal of these surface information is
illustrated. The nodes of the respective surfaces are depicted green and information to
build up the tree structure is transferred to the appropriate neighbour process.

Transferring the surface trees and also space-trees in general can make use of very effi-
cient memory storage schemes also known as succinct data structures [166]. In turn, the
messages length to send these trees is minimal. For binary trees, one possible succinct
structure is generated through converting the tree structure into a list of bits who encode
the tree traversal. The framework uses a depth-first traversal, whereas every bit encodes
whether a node is refined or not. With the knowledge of the subdivision spacing, i.e.
the amount of new nodes generated when a refinement takes place, the tree can be re-
built from this list of bits. In Figure 3.20 an example tree and its bit representation is
illustrated. The subdivision per refinement is two. The list is generated going through
the tree from top to bottom first and from left to right second. The id is an increasing
number, signifying the order of traversal of the tree. ref takes the value 1 if the node is
refined and 0 otherwise. To transfer the surface tree from one process to another, one



3.4. Domain Generation 63

id ref
0 1
1 1
2 0
3 1
4 0
5 0
6 0

0

1

2 3

4 5

6

Figure 3.20 & Table 3.1: Depth-first encoding of an example space-tree (binary-tree)
with seven nodes in total. id refers to a consecutive numbering of nodes following their
traversal, ref is encoding the tree structure and encodes whether a node identified by id
is refined (1) or not (0).

sends the bit list followed by a list of unique identifiers (the UIDs) in the same order as
the bits reference the corresponding nodes. This information is sufficient to build a mock
tree representing the neighbouring subtree surface on the target process.

(a) First refinement level. (b) Second refinement level.

Figure 3.21: Multistage neighbourhood reference update using a bottom-up, horizontal
and top-down local tree traversal.

The method to update neighbourhood metadata is illustrated in Figure 3.21 and is ex-
plained as follows. Neighbourhood references are updated top-down starting with nodes
on the first refinement level of a subtree. In Figure 3.21a the subtree on the left and a
mock surface tree on the right are present. The neighbourhood reference of the orange
node is updated by traversing the tree upwards to the root node of the subtree (hatched).
The metadata references of this node are up to date from a previous metadata update
of the initial tree, therefore its neighbour on the mock surface tree can be queried (dot-
ted). From here, using the location information in the UID, the respective child node is
found (green). After all neighbourhood references on the first refinement level have been
updated, the procedure is repeated on the next refinement level. With the now updated
references on the coarser level, the traversal of the two trees again only includes two levels.
This is illustrated in Figure 3.21b, were the reference update queries the neighbour of the
now updated node from the previous illustration. The same method to update neighbours
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is used in the local update method, with the surface information being available in the
complete neighbour subtree.

The framework uses the later method of exchanging the surface trees and updating neigh-
bourhood references from them. The surface trees are likewise needed to resolve the 2:1
tree balance constraint, which is addressed in the following section. Since they have to
be transferred in any case, their use for the neighbourhood updates is the sensible choice.

3.4.4 2:1 Tree Balancing
As explained in section 3.1.2, the framework supports ghost cell updates across differ-
ent refinement depths. Nevertheless, these exchanges always interpolate values to match
the discretisation between grids and therefore introduce an error. To ensure the con-
vergence of the numerical solvers, the amount of refinement level discrepancy between
spatial neighbouring leaf grids is limited to at most one level of difference. For the initial
domain generation, this is achieved through balancing the domain tree before discretising
the nodes. The balance is established solely trough refinement, coarsening of previously
refined nodes is not used to balance the tree.

Balancing space-trees is a well known problem in literature. The interested reader is re-
ferred to [164], [203] and [296] for publications detailing the problem. The decentralisation
of the data structure makes this problem more involved however. First, the method to
balance a single space-tree is illustrated.

Figure 3.22: Domain configuration with a violation of the 2:1 balance constraint. A grid
has spatial neighbours on the same level, one refinement level down, marked in gray and
two refinement levels down, marked in yellow.

Figure 3.22 illustrates a configuration where a grid has two spatial neighbours two re-
finement levels further down, marked in yellow. This configuration therefore violates the
2:1 balance constraint and the tree node representing the original grid has to be refined.
The method is constructed from the point of view of the nodes subject to be possibly re-
fined. For every leaf node, their geometrical neighbours are referenced. From them, their
children on the opposing side of the original grid are visited. If any of these children are
refined themselves, the method found a violation of the constraint and marks the original
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node for refinement. After the node has been marked for refinement, all further checks
can be relinquished and the next leaf node is addressed. The pseudo code for the method
is also given in Algorithm 1. This balancing method is repeated either H − 1 times, with
H being the height of the subtree or until a complete iteration through all current leaf
nodes does not detect a single violation of the constraint. A simple flag, set when a node
is refined and unset between iterations of the method, is sufficient for this task.

Algorithm 1: Local tree balancing method.
foreach leafNode do

foreach leafNode.spatialNeighbour do
if leafNode.spatialNeighbour is refined then

foreach leafNode.spatialNeighbour.childNode do
if leafNode.spatialNeighbour.childNode is bordering leafNode and is
refined then

refineNode ( leafNode );
goto nextLeaf

end
end

end
end
nextLeaf;

end

This method is used to balance the initial tree on all processes and to balance the local
subtrees. However, balancing subtrees across processes requires information about the
neighbour subtrees. Again, the surface of the neighbouring subtrees is sufficient to balance
the local subtrees as part of the global domain. Therefore, the same mock surface trees
are used in balancing the domain and updating the local subtrees. The cycle of sending
surface information, building mock trees and using them has to be repeated again H − 1
times as in the pure local method as newly generated nodes warrant subsequent updates
and refinements on remote processes and vice versa. After the first cycle though, only
the newly generated nodes have to be exchanged, not the complete surface anymore.
Breaking early is however not possible this time. Refinements may cascade through a
remote subtree caused by updated tree surfaces on the opposite side of the neighbour
subtree (see also section 3.5.1). Refinements caused by nodes on the opposite side of a
remote subtree may only be visible after refinements have cascaded through the remote
subtree in a later cycle, with no violations of the balance constraints in between.

To conclude the method one further remark has to be made. Nodes generated to satisfy
the balance constraint cannot have geometry boundary conditions. If a node had parts of
the geometry in the first place, it would have been refined previously, when the subtree
was generated. Therefore, intersection tests to evaluate geometry boundary conditions in
the cells of the discretised grids are not necessary.

The idea to also generate remote subtrees from neighbour leaf nodes of the initial tree as a
means to balance in a pure local fashion, similar to the method proposed when updating
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neighbourhood references, can not be applied here. To evaluate cascading refinements
caused by a second level neighbour subtree (the neighbour of a neighbour), would require
knowledge of the subtrees of the second level neighbour as well. To evaluate all cascading
refinements, all subtrees of processes with neighbour connections over H−2 intermediate
processes would have to be considered. This strategy is directly opposing the decentral
design and was therefore not considered. Furthermore, the advantages over a complete
centralised domain generation are vanishing, even more so for large domains.

3.4.5 Performance Evaluation of the Domain Generation
To show the viability of the decentral generation approach, a strong scaling study on
a representative example was performed. All tests were run on Leibniz Supercomputing
Centre’s (LRZ) Linux Cluster System [201] on the CoolMUC-2 cluster segment [200]. This
segment consists of 812 28-way Intel Xeon E5-2690 v3 Haswell-EP nodes with Infiniband
FDR14 interconnect and two hardware threads per physical core. The theoretical peak
performance of the segment is 1,400 TFlop/s. Furthermore, the compiler used was the
Intel Compiler in version 19.0.

(a) Surface-based model (b) Volume-based model, depth d = 7

Figure 3.23: Surface-based input geometry files and voxelised domain. Visualised are the
most refined grids on depth d = 7.

The input file for the voxel generator contains the geometry for an operating theatre
located at the university hospital “Klinikum rechts der Isar” in Munich. It has been
used as geometry for fluid simulations in [326, 248, 113]. In addition to the operating
theatre’s furnishing, two models of doctors as well as a patient have been added. The
model has dimensions of 6.3 m × 6.25 m × 3.5 m, and in total all input files contain
84,072 triangles. Figure 3.15 shows both the combined input surface files on the left and
the voxelised volume-based model on the left. The later depicts only the most refined
grids on depth d = 7. The complete computational domain consists of a little more than
121,213 nodes, whereas each node is discretised using a grid with 8 × 8 × 8 × cells.
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The domain generation was conducted to depth d = 6 and depth d = 7 with increasing
process counts, starting from a single process on one cluster node up to 896 processes,
using 32 cluster nodes with 28 processes each. Each refinement of a tree node generates
eight child nodes, using a bisection of the domain in every dimension, representing an
octree structure. Each individual test combination was run multiple times to calculate
the truncated mean, where extreme outliers were discarded. The Linux Cluster is a shared
resource that is used by many researchers simultaneously. Therefore, outliers are caused
by other running applications that also use the interconnect. Consequently, without the
outliers, the given truncated mean agrees very closely with the minimum observed times.

The number of used processes determines the height of the initial tree generated in stage
one of the domain generation procedure. In this test case, a simple uniform refinement for
the initial tree was used. A single process does not need an initial tree, for seven processes
an initial tree refined to depth d = 1 with eight leaf nodes is needed. For 14, 28 and 56
processes, the intermediate tree needs to be refined to depth d = 2 with 64 leaf nodes. For
112, 224 and 448 processes the tree is refined to depth d = 3 and 512 leaf nodes and finally,
using 896 processes requires an intermediate tree refined to depth d = 4 with 4,096 leaf
nodes. The measured times are split into two categories. The first combines stages one to
three of the domain generation. That means it contains the generation of the initial tree,
virtual partitioning using an SFC linearisation, update of local neighbourhood metadata
and the generation of the local subtrees. Also included are the intersection tests to set the
boundary conditions on the cells of the leaf grids on the finest refinement level. The initial
tree does not have to be balanced as it is uniformly refined. The second measurement
includes the local subtree balancing and the communication and building of the mock
surface trees.

In Figure 3.24 the measurements are shown. For both refinement depths, a steady decline
is observed in both generation times and balancing effort. For refinement depth d = 6
(Figure 3.24a), the complete domain setup takes roughly 1.000 seconds on a single process
and 0.9 seconds on 896 processes, whereby the lowest total time is measured at 448
processes used. From 448 processes to 896 processes used, the time for the refinement
stage increases again. At 448 the initial tree is refined on every process up to depth d = 3
resulting in an average number of leaf nodes as starting points for local trees per process of
1.1. For 896 processes the initial tree must be refined one level further, which results in an
average number of leafs per process of 4.6. The added time can therefore be explained by
the added effort of uniformly refining the intermediate tree one level further, generating
more remote nodes that are deleted anyway. Moreover, the amount of subtrees to generate
is higher as well. Balancing the subtrees becomes cheaper though, as the subtree height
is lower. This also explains the increased speedup for the balancing stage between.

For refinement depth d = 7 (Figure 3.24b), the domain generation takes roughly 20,000
seconds on a single process and two seconds using all 896 processes. On a single process,
the initial tree is equivalent to the final tree. Therefore, balancing and updating the
subtrees is not necessary. The tree generation clearly benefits from the parallelisation.
The balancing and update routines, even though they are only necessary because of it,
also benefit from a higher degree of parallelisation.
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(a) Refinement depth d = 6

(b) Refinement depth d = 7

Figure 3.24: Times for domain generation using the decentral domain generation pro-
cedure. The measurements are broken down into generating the initial and the local
subtrees, and secondly into balancing and updating the subtrees. The times are mea-
sured against the amount of processes used from 1 to 896.
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The measured speedups for depths d = 6 and d = 7 are on average four times the number
of processes used. This superlinear speedup can be mainly attributed to cache effects.
Storing the complete domain tree on a single node far exceeds the size of faster caches.
Increasing parallelisation not only shares workload, but also splitting up the domain
tree allows for subtrees to fit into cache memory and allows faster access. Furthermore,
increasing the process count leads to less local leaf nodes and therefore less subtrees to
balance, if the depth of the initial tree is not increased simultaneously. In the best case,
one less subtree saves communication with six neighbouring processes in three dimensions.
If, on the other hand, the initial tree has to be refined one level further, the height of the
subtrees is one less. This saves a complete balancing cycle.

Figure 3.25: Memory requirement of the intermediate tree and the complete node share
of the process with the most nodes for depths d = 6 and d = 7 measured against process
counts from 1 to 896.

To conclude the measurements, Figure 3.25 illustrates the memory consumption of the
initial tree and the local subtrees. As mentioned before, on a single process, the initial
tree is not needed and the local subtree is the complete domain tree. For refinement depth
d = 6 the tree contains 27,770 nodes which consume 45 MB. For refinement depth d = 7
the tree consists of 121,213 nodes. The memory consumption is 200 MB respectively. With
more processes holding exclusive parts of the domain, the memory requirement decreases.
With 896 processes participating, the subtree memory requirement on a single process is
270 kB for depth d = 6 and 1.4 MB for depth d = 7. Naturally, the memory consumption
of the initial tree is increasing with its height. The intermediate tree for 896 processes
refined to depth d = 4 with 4,681 nodes in total requires roughly 1.9 MB. However, after
the initial tree has been partitioned, foreign nodes are deleted, which brings the memory
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requirement down to roughly 2 kB.

As the size of the initial tree is directly dependent on the amount of processes used, it is the
limiting factor of this approach. When using 896 processes the memory requirement of the
initial tree outgrows the decreasing requirement for the local subtrees. At approximately
half a million processes, the initial tree would have to be refined to depth d = 7, matching
the single process requirement. Even if this example is unrealistic, it shows the limitations
of this approach. The supercomputer Fugaku incorporates 7.6 million cores with 660 MB
memory per core. An initial tree refined uniformly to depth d = 7 uses 960 MB of memory.
The approach therefore allows only the usage of less than half a million cores or the initial
tree has to be adaptively refined, whereby the geometry determines the number of nodes
and therefore the memory consumption. Summit, the current number two supercomputer
with 2.4 million cores and 1.2 GB memory per core on the other hand is able to use the
approach and utilise all available cores.

3.4.6 Concluding Remarks for the Decentral Domain
Generation

This concludes the decentral domain generation procedure. Within the constraints of the
decentral framework, the procedure succeeds in lowering the time it takes to generate the
domain compared to a centralised approach. Furthermore, the memory requirement on a
single process has been lowered in the observed range. Nevertheless, the initial tree acting
as a starting point of an individual subtree refinement poses limitations as its height
and consequently its memory requirement are directly connected with the number of
processes used. This limitation comes close to the capabilities of current supercomputers
and occasionally prohibits the use of all their resources. A conclusive solution to the
increasing sequential part has yet to be found.

Another important remark is that the ensuing domain configuration is not yet load bal-
anced. Only the initial tree is partitioned. Depending on the configuration of the geometry
in the input file or the user supplied domain configuration, the complete partitioning after
the subtrees have been generated might be highly imbalanced. This results in a high vari-
ability of workload per process. At this point, global partitioning methods are no longer
feasible without gathering the complete tree structure on a single repository. As such, the
framework employs a local diffusion approach supported by the decentral data structure
to ensure a proper load distribution, while also minimising inter-process communication
and minimal redistribution costs. The decentral partitioning is detailed in chapter 4.

A similar strategy, where each process independently generates the domain, has been
utilised recently by Jomo [171, 170], within his work, where he addresses various concepts
to parallelise the finite cell method. In his domain generation method, all processes gener-
ate the complete domain independently and retain the ensuing structure. A partitioning
is realised by simply marking active and inactive parts of the local domain, where the
decision which parts remain active is forwarded to the Zoltan library [29]. As mentioned
before, Zoltan provides different geometric and graph-based partitioners.
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3.5 Adaptive Mesh Refinement and Coarsening

Adaptive mesh refinement (and coarsening), abbreviated AMR, is a method to adaptively
change the resolution and therefore the solution accuracy of specific regions within the
computational domain during runtime of the application. This is especially useful for
highly dynamic simulations with fast varying localised effects. The concept has become
widespread in modern numerical simulation and has seen use in many applications areas.
Examples are astrophysics simulations like the simulation of the formation of stars and
many kinds of fluid flow phenomena which can be described by Shallow Water Equations
and Navier Stokes Equations [25, 24].

The Chair of Computational Modeling and Simulation [63] (formerly Chair of Computa-
tion in Engineering) of the Technical University of Munich has a long history of research
into adaptive and runtime adaptive methods, especially with respect to FEM and FCM.
In the 1980s, Rank worked on error estimators as an indicator for refinements in the
hp adaptive version of the FEM [258, 260]. More recently, work has been done to ex-
tend the FCM with hierarchical hp-d adaptivity for local mesh refinement by Schillinger
[275]. Moreover, Zander et. al. proposed a new refinement strategy termed multi-level
hp-method to address the problem of hanging nodes in dynamically changing domain
discretisations [341, 340]. Lastly, Kopp et. al. have again extended the multi-level hp
framework to include arbitrary dimensions. This allows them to not only address spatial
adaptivity, but also include adaptivity in temporal direction within their Galerkin frame-
work [188]. Their framework has been successfully applied to transient problems with
dynamic AMR and for additive manufacturing applications [187, 186].

The runtime adaptive mesh approach has a number of advantages over a fixed mesh. In
general, the computational costs and the storage requirements are less than with a static
mesh. The runtime adaptive mesh evolves and increases the resolution in regions with
a higher demand on accuracy, while it likewise decreases the resolution in regions with
a lower demand. A static approach has to discretise every region of the computational
domain with the highest resolution required during the runtime. As regions do not always
require this level of effort, resources are wasted when the accuracy demand is low. Fur-
thermore, to estimate which regions need which resolution during the runtime requires a
large amount of a priori knowledge of the evolution of the solution. Bad assumptions can
lead to bad results due to low accuracy or high costs due to high resolution in regions
where the accuracy is not needed. An adaptive approach reacts to the evolution of the
solution during the runtime and requires less knowledge beforehand.

The frameworks’ data structure is designed to easily incorporate AMR capabilities. A
local refinement is simply achieved by refining the node of the domain tree representing
the domain where the additional accuracy is desired. In other words, a grid is refined
through the generation of a set of children grids. As the amount of mesh points per grid is
equal among all grids, regardless of the domain they discretise, more grids discretising the
same domain result in a higher amount of mesh points and consequently a finer resolution,
better accuracy and allows to better capture local phenomena. Conversely, coarsening is
achieved by “unrefining” a node. Meaning the deletion of the child nodes, respectively
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the children grids. The solution procedure is entirely unaffected by a refinement or a
coarsening. All stencil operation are confined to a single grid, and the communication
procedures to communicate values between grids support data exchanges over various
refinement depths.

Important for an effective runtime adaptive mesh is the criterion used to issue refinement
and coarsening tasks. A viable choice is refinement towards geometry, especially if it is
moving through the domain. In CFD simulations, like the solution of Shallow Water
Equations, mesh refinement towards moving wave fronts, i.e. towards high water level
gradients can be used. Depending on the problem, refinement towards regions of high
pressure gradients, high energy dissipation in turbulent regimes and towards high vortic-
ity to resolve vortex phenomena are also good choices for general Navier Stokes problems.
Another possibility are problem dependent error estimators, which can hint at high error
regions, where a higher accuracy is needed, or regions with lower errors, where the res-
olution could be decreased. Yet, good error estimators may be very costly and lead to
diminishing returns of the advantages of the mesh adaptivity. Verfürth gives an overview
over error estimators in the context of adaptive mesh refinement [313]. Other references
with respect to error estimators can be found for example for finite difference methods in
[182], for finite volume methods in [47, 6] and for finite element methods in [3, 128, 259].

Refinement, coarsening and deletion operations may cause violations of the 2:1 balance
constraint (see section 3.4.4). Refinements are always possible, may cause subsequent re-
finements tough. Coarsening and deletions can be rejected when they result in a violation
of the constraint. Furthermore, processes cannot end up with zero nodes, respectively
discretised grids. As mentioned before, the inter-process communication cycle includes
processes with neighbouring connections. Without any nodes, processes won’t be able to
communicate anymore.

All refinement, coarsening and deletion operations cause metadata updates. After re-
finements, the new local grids need to set their neighbour references. Remote grids that
have gotten new neighbours must be informed to register the new neighbour references.
Similarly, grids must be informed when neighbours have been deleted to invalidate the
appropriate neighbour references.

To send different tasks in the AMR pipeline between processes so-called queries are used.
These queries are structured similar to the unique grid identifier described in section 3.1.4.
The MPI-rank of the origin grid – the grid which issues the update – and remote grids
are implicitly known by the ranks of the sender and receiver processes. The GID refers to
the affected or target grid. Furthermore, a query contains a task field, to encode the task
in the current communication cycle, a side field, encoding a reference to the direction of
the origin, and finally the hash if the task applies to one of the targeted grids’ children.
This allows the unique identification of the query task as well as both the origin and the
remote grid using a single 64 bit integer.

The following sections cover the intricacies of the refinement, coarsening and deletion
methods with emphasis on the compliance of the balance constraints and the subsequent
metadata updates.
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3.5.1 Refinement
A refinement increases the local resolution of the simulated domain. The same domain
that was represented by a single node, discretised by a grid, will be represented by a
set of nodes discretised with grids of equal size after a refinement. The amount of child
nodes can be freely chosen. The implementation described here allows subdivisions for
the discretised domain from 1 to 7 in each cardinal direction. A node may only be refined
if it is not yet refined. Furthermore, it cannot be partially refined. Either it is refined and
the full set of child nodes exist or none of them do. The decision as to whether a node
should be refined is made by the process that holds it and depends on the requirements
of the problem, as elaborated earlier.

Transferring values from coarser to finer grids is implemented in two ways. A simple switch
allows to change between the two. As the domain occupied by the parent exactly matches
the domain occupied by all its children, the first method simply replicates the same values
from the parent into all child grids. However, this leads to unphysical oscillatory behaviour
when calculating the second derivative, for example. A better method is to interpolate the
values from the coarser to the finer grids, using bilinear in two and trilinear interpolation
in three dimensions. At the boundaries of the fine grids, the values in the ghost cells of
the parent grid are taken into account to interpolate the values.

Refining a grid can lead to a violation of the 2:1 balance constraint, which requires leaf
grids discretising neighbouring domains to be on refinement depths with a difference of
one level at most. In other words the interpolation between ghost layer exchanges during
the solution process is limited to one refinement level. A refinement will never be rejected
due to a violation of the balance constraint. In contrast to the tree balancing procedure,
where the leaf nodes themselves evaluate whether they need to be refined, a consecutive
refinement query is issued by the node about to be refined. As the tree structure is
completely distributed, running several balancing cycles is more expensive in contrast to
the balancing of local subtrees and the cheap transfer of surfaces of neighbouring trees.

Figure 3.26: Domain configuration where one refinement (gray) leads to a violation of
the 2:1 balance constraint and warrants the green grid to also refine. A refinement of the
orange grid does not violate the balance constraint.

To answer the question whether a refinement breaks the one level difference constraint and
warrants another refinement, a grid simply checks if it has spatial neighbours on all sides.
If it is missing a neighbour on a side, a refinement will break the 2:1 balance. Figure 3.26
illustrates in which configurations a refinement breaks the balance constraint. The grids
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marked in gray and orange have been refined. The orange grid has valid neighbours in
east, west and north direction (the south neighbour is assumed). The gray grid is missing
a neighbour in west direction. The refinement therefore violates the balance constraint.
To re-establish the balance, the green grid, i.e. the west neighbour of the parent of the
original grid has to be refined as well.

Algorithm 2: Pseudo code for the refinment info method, receiver side.
refinementInfoIncoming ( )

receiveQueries ( );
foreach query do

if queryOrigin is a geometric neighbour and queryTarget is not refined then
addTargetToRefinementCandidates( queryTarget );

else if queryOrigin is child and neighbour is local and not refined then
addTargetToRefinementCandidates( queryTarget );

else if queryOrigin is child and neighbour is remote then
addNewQuery ( queryTarget.neighbour );

end
end

From an implementation perspective, all processes evaluate violations of the balance con-
straint, which can be resolved locally first. This is the case when the parent of the refined
grid as well as the neighbour of the parent are local and can be refined to re-establish the
balance. If the parent or the neighbour of the parent are remote, queries are generated
to be send to the processes holding the affected grids. The procedure on the sender side
bundles these queries for their respective targets, so they can be sent in a single message.
The method to inform remote processes about a refinement on the receiver side is illus-
trated in pseudo code in Algorithm 2. Using the GID information the receiver process
determines the target grid of the query. The side information allows to determine the
origin grid. If the origin is a spatial neighbour and the target grid is not refined it must
be refined. If the target grid is the parent and its neighbour is local and not refined, the
neighbour can be directly refined as well. If the target grid is the parent and its neighbour
is remote, a new query is generated to be forwarded in the next communication cycle.

If the origin grid, its parent and the parent’s neighbour grid are held by three different
processes, the refinement query must be forwarded once, resulting in two total communi-
cation cycles. Furthermore, a refinement may cascade through the domain. Figure 3.27
illustrates a refinement cascading to the maximum amount of consecutive refinements
possible in two dimensions. The initial structure is shown in Figure 3.27a. The domain is
adaptively refined twice. Grids on depth d = 0 are shown in white, grids on depth d = 1
in grey and grids on depth d = 2 in orange. At this point, the domain balance is satisfied,
with no depth difference greater than one between spatial neighbours. In Figure 3.27b, the
right lower grid on depth d = 2 is refined one level further, which generates an imbalance.
Grids on refinement depth d = 1 border the new ones on depth d = 3. Since the origin
grid of the refinement does not have a spatial neighbour in the east and bottom direction,
the parent, and subsequently its spatial neighbours in the respective directions, must be
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(a) Initial structure (b) Refinement (c) First cascading re-
finement

(d) Second cascading
refinement

Figure 3.27: Cascading refinement in two dimensions. Colour coding signifies the refine-
ment depth from lowest to highest, white, grey, orange and yellow. Top row depicts an
overlay of all grids with the most refined representation of the domain visible. The bottom
row shows all grids, including coarser representations of the domain.

informed. The first refinement cascade results in the state illustrated in Figure 3.27c.
Again, an imbalance is observed. This time caused by the last refinement. Likewise, the
parent of the origin grid and its neighbours in the respective directions must be informed
and refined. The final balanced state is depicted in Figure 3.27d. This example shows
that a refinement may cascade once in each cardinal direction. In the worst case, where all
grids (origin, parents and neighbours) are on different processes, each forwarding requires
two communication cycles for the information to be propagated, four communication cy-
cles are needed in two dimensions and six in three dimensions to deal with all possible
cascading refinements.

3.5.2 Coarsening and Deletion
A coarsening decreases the local resolution of the domain. A grid that is refined is said
to be coarsened when its children grids are deleted, leaving the domain to be represented
only by a single grid instead of multiple ones. The framework only allows one level of
coarsening per iteration through the AMR pipeline. This means that a grid that has just
been coarsened cannot be deleted in the same AMR cycle. As discussed for refinements,
a grid cannot be half refined respectively half coarsened. For coarsening this means all
children, without exceptions must be deleted when a grid is coarsened. If one or more of
the children to be deleted are themselves refined, they cannot be deleted and the original
coarsening is rejected. Again, just as with refinement, the decision as to whether a grid
should be coarsened is made by the owning process. It aims to keep the accuracy of the
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solution within acceptable bounds while increasing the speed of the application.

There are three reasons which lead to a rejection of a coarsening. Grids cannot be coars-
ened if one or more children are refined themselves. Furthermore, empty domains cannot
be allowed. In other words, processes cannot end up with zero assigned grids after deleting
a set of child nodes. As discussed in section 3.2, the neighbourhood model considers pro-
cesses holding grids with neighbourhood relations to be neighbouring processes. Processes
without neighbourhood relations do not participate in the communication cycle anymore
and therefore cannot be targets for grid migrations within the dynamic repartitioning.
Consequently, these processes would be idle for the rest of the runtime, wasting valuable
resources.

Figure 3.28: Domain configuration where the coarsening of a grid (grey) leads to a viola-
tion of the 2:1 balance constraint. To carry out the coarsening the children in orange will
be deleted, leading to a discrepancy of two refinement levels between spatial neighbours.

The last reason for a rejection of a coarsening results from a violation of the 2:1 balance.
This happens when the geometric neighbour of a grid to be deleted is refined. Figure 3.28
illustrates a configuration in which the coarsening of a grid (grey) must be rejected because
it would lead to a violation of the constraint. Coarsening the grid entails deleting its
children, marked in orange, which leads to a discrepancy of two refinement levels between
spatial neighbours. To detect this violation two possibilities are conceivable.

The first comes from the perspective of a grid about to be deleted. One could send a
query to all its spatial neighbours, asking if at least one of them is refined. The second
possibility is from the perspective of the grid to be coarsened. This grid sends a query
to its neighbours, who forward the query to their children, again asking whether they
are refined. In the framework the first method is implemented. To determine whether
the first reason for a rejection is true, that is whether one of the children to be deleted
is refined, communication between the grid to coarsen and its children to be deleted has
to be carried out regardless. As such, the implemented method communicates less and
is therefore preferred. To evaluate all coarsenings five communication cycles are needed
in the worst case. This worst case occurs when the grid to be coarsened is held by
one process, any of its children are held by a second and any of the neighbours of these
children are held by a third processes. A communication cycle is needed to send the initial
coarsening query from parent to children, a second cycle forwards the coarsening query,
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a third cycle receives the response about the possible violation of the domain balance.
This response must be sent back to the original parent grid in a fourth cycle. After all
responses have been evaluated, the coarsening is rejected or confirmed. If the coarsening
has been confirmed, deletion requests are send in the fifth and final communication cycle.

Algorithm 3: Pseudo code for the coarsening info method, receiver side.
coarseningInfoIncoming ( )

receiveQueries ( );
foreach query do

case task is delete do
if queryTarget is refined then

addNewQuery ( queryOrigin, negativeResponse );
continue;

else if any queryTarget.neighbours are local and refined then
addNewQuery ( queryOrigin, negativeResponse );
continue;

else if any queryTarget.neighbours are remote then
addNewQuery ( queryTarget.neighbour, forwardDelete );

end
end
case task is forwardDelete and queryTarget is refined do

addNewQuery ( queryOrigin, negativeResponse );
end
case task is negativeResponse do

if queryTarget is local then
removeFromCoarseningCandidates ( queryTarget );

else if queryTarget is remote then
addNewQuery ( queryTarget, negativeResponse );

end
end

end

The coarsening implementation is relatively involved. There are three possible tasks. The
delete task is issued by grids about to be coarsened to their children. The forwardDelete
is issued by grids to be deleted to their neighbours, to detect violations of the balance
constraints. The third task is called forwardResponse and is issued by neighbours of
grids marked for deletion in response to the forwardDelete. First, the coarsenings are
evaluated as far as possible on the origin process. For remote children delete tasks are
generated, for local children with remote neighbours forwardDelete tasks are issued. The
procedure on the sender side is again trivial as it simply sends all queries to the receiver.

The method for the receiver side is illustrated in Algorithm 3. A switch case separates
the queries according to their task. When the task is delete, the target grids are checked
if they are refined. If true, a negative response is stored and the next query is treated.
If not, all local neighbours of the target grid are checked for refinement. If any of them
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are refined, a negative response is stored similarly and the next query is treated. Lastly,
queries are issued to the remote neighbours with the task forwardDelete. For the task
forwardDelete, the receiver checks if the target grid is refined. If true, a new query is
generated with task negativeResponse, which will be send either in the same commu-
nication cycle when processes swap their sender and receiver state or in the next cycle.
The negativeResponse task is also the last task differentiated by the switch statement.
If detected and if the target grid is local, the grid cannot be coarsened and is removed
from the candidates. If it is remote, again a negative response is stored.

After three cycles, all queries are treated and processes have stored a number of negative
responses. If the negative responses to coarsening and subsequent deletions are fewer
than grids are assigned to this process, additional negative responses are issued, to prevent
empty processes. In the fourth cycle, the responses are finally send to the origin processes,
where all rejected coarsenings are deleted from the candidate list. Subsequently, the
deletion queries are issued in the fifth and last cycle.

Considering the 2:1 tree balance, a refinement can cause consecutive refinements on remote
processes, which in turn may prohibit coarsenings. A definitive decision about the validity
of a coarsening is consequently only possible after all refinements are evaluated, meaning
an interleaving of refinement and coarsening queries is not possible. Therefore, refinements
must be evaluated before coarsenings and the amount of communication cycles needed for
a complete domain update is given by the total amount of cycles needed for refinement
and deletion. Four cycles in two dimensions and six cycles in three dimensions are needed
for the information propagation of cascading refinements, plus five cycles for deletion.
This amounts to a total of nine (2D), respectively eleven (3D) communication cycles.
Adding two cycles for metadata updates, which will be discussed in the next section, the
total amount of cycles is eleven (thirteen in 3D).

3.5.3 Neighbourhood Metadata Updates
After the domain updates, new grids, generated through refinement must register their
spatial neighbours. Furthermore, already present grids who have gotten new neighbours
must register them likewise. The deletion of grids must also be communicated and the af-
fected grids must delete the neighbourhood references accordingly. In the AMR pipeline,
the generation of new grids caused by refinements is carried out immediately after all re-
finement queries have been evaluated. Coarsening grids involves simply to delete children
neighbourhood references. This is done after all coarsening queries have been evaluated.
The deletion of grids is delayed and carried out after the metadata updates have been
completed. Grids about to be deleted have all the neighbourhood references needed to
inform the affected grids of the deletion.

When a grid is refined, the task of the update function is to determine the spatial neigh-
bours of the newly generated children grids on the same refinement level. The parent grid
is known by construction and second level children grids cannot exist yet because only
one additional level of refinement is allowed to be generated per update cycle. Possible
neighbour grids are the children of spatial neighbours of the grid that is refined.
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Algorithm 4: Pseudo code for the metadata update method, receiver side.
metadataUpdateIncoming ( )

receiveQueries ( );
foreach query do

if task is refine then
if queryTarget is refined then

addNewQuery ( queryOrigin, positiveResponse );
addUIDsToQuery (queryTarget.childrenUID);

else
addNewQuery ( queryOrigin, negativeResponse );

end
else if task is delete then

removeNeighbourReference ( queryTarget.neighbour, queryOrigin.side );
end

end
sendQueries ( );

Algorithm 5: Pseudo code for the metadata update method, sender side.
metadataUpdateOutgoing ( )

sendQueries ( );
receiveQueries ( );
foreach query do

if positiveResponse then
updateMetadata( queryTarget, neighbourUID );

end
end

From an implementation perspective, the grid being refined issues a query to its spatial
neighbours with the task refine. If the refining node, all its spatial neighbours and
their respective children are located on the same process, the update can be handled lo-
cally. Otherwise all queries to a specific process are send in one message. On the receiver
side every query is evaluated first. For a refinement query, the neighbour grid stores a
response detailing its refinement status and additionally, if it is refined, it includes the
UIDs of its children located towards the query origin. Within the same communication
cycle, the receiver sends back its responses to the refinement queries and allows the ori-
gin to update its neighbourhood references. This means, after one cycle all new grids
caused by a refinement have valid neighbourhood references. On the other side, grids
that already existed are not aware of their new neighbours yet. Therefore, in a second
communication cycle queries are issued directly targeted at these grids using the already
up-to-date neighbourhood references of the refined children. The task for these queries is
called update.

To update the neighbourhood references of a deletion, grids about to be deleted can
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simply issue a query to all their spatial neighbours with the task delete. Using the
side information in the query, target grids are able to unambiguously determine the
origin and delete its neighbourhood reference. These queries can be exchanged in a single
communication cycle.

The order in which individual metadata update queries due to refinements and deletions
are processed is arbitrary. Moreover, both operations do not affect each other and may
be interleaved. Thus, all update requests are gathered per process and sent in a single
message. In conclusion, all metadata updates can be completed in two communication
cycles. One for all updates of newly generated grids and all deletions and the second cycle
is used to update neighbourhood references of all grids that have gotten new neighbours.
The pair of incoming and outgoing methods used in the first update cycle is illustrated
in Algorithm 5 and Algorithm 4. The update of neighbourhood references in the second
cycle is trivial and therefore omitted.

3.5.4 Complete AMR Pipeline
To conclude the AMR module, the complete program flow of one domain update is illus-
trated in Algorithm 6. Input for the method are two lists of grids selected for refinement
and coarsening (refinementCandidates and coarseningCandidates).

As explained earlier, refinements and consecutive refinements have to be evaluated before
coarsenings. This is done first locally. Afterwards, the remote queries are created and
send back and forth four or six times (depending on the problem dimension) using the
communication cycle. If refinements caused consecutive refinements, these are added to
the refinementCandidates. In the next step all refinementCandidates are actually
refined and new grids are generated.

Afterwards, the coarseningCandiates are evaluated. First locally, then the queries for
remote processes are gathered and send back and forth three times to allow all queries to
reach their intended targets (see section 3.5.2). A fourth cycle is used to send and receive
the final responses from remote processes, after which the coarsening can be confirmed or
rejected conclusively.

At this point the coarseningCandiates only hold valid candidates. Their children are
therefore subject to deletion and are gathered in a third list named deletionCandidates.
Afterwards, the coarsening is carried out. This means the neighbourhood references of
all children are deleted, resulting in a negative response for subsequent refinement checks.
All remote grids subject to deletion are informed in the following.

Next in line are the metadata updates. After completing all the possible local updates,
queries are generated for the remote updates. Two cycles are used to process all queries,
with the first cycle combining refinement and coarsening updates and the second cycle is
used to forward refinement queries (see section 3.5.3).

Finally, the grids in deletionCandiates are deleted and the various candidate lists are
cleared. Furthermore, each process needs to update its neighbourhood. Due to refine-
ments, new processes may need to be added to the neighbourhood, conversely, deletions
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Algorithm 6: Pseudo code for the AMR workflow
Data: refinementCandidates, coarseningCandidates
// Refinement
foreach refinementCandidate do

evaluateConsecutiveRefinementsLocal ( refinementCandidate );
getRemoteRefinementQueries ( refinementCandidate );

end
for i← 1 to Dimension × 2 do

communicationCycle ( refinementInfoIncoming,
refinementInfoOutgoing );

end
refineGrids ( refinementCandidates );
// Coarsening
foreach coarseningCandidate do

evaluateCoarseningsLocal ( coarseningCandidate );
getRemoteCoarseningQueries ( coarseningCandidate );

end
for i← 1 to 3 do

communicationCycle ( coarseningInfoIncoming,
coarseningInfoOutgoing );

end
getRemoteCoarseningResponseQueries ( );
communicationCycle ( coarseningResponseIncoming,
coarseningResponseOutgoing );

// Deletion
getDeletionCandiates ( coarseningCandidates );
coarsenGrids ( coarseningCandidates );
foreach deletionCandiate do

getRemoteDeletionQueries ( deletionCandiate );
end
communicationCycle ( deletionInfoIncoming, deletionInfoOutgoing );
// Metadata updates
foreach refinementCandidate and coarseningCandidate do

updateMetadataLocal ( candidate );
getRemoteUpdateQueries ( candidate );

end
communicationCycle ( metadataUpdateIncoming, metadataUpdateOutgoing );
communicationCycle ( refinementResponseUpdateIncoming,
refinementResponseUpdateOutgoing );

// clean up
deleteGrids ( deletionCandidates );
clearCandidates ( );
updateNeighbourhood ( );
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can remove neighbourhood connections between processes. As the communication cycle
involves only processes within the local neighbourhood, it is crucial to keep it recent.

3.6 Solution Methods for Systems of Linear
Equations

The numerical solution methods were not the main focus of this work. The solution
procedure itself is, without one exception, not influenced by the decentralisation of the
data structure. For completeness sake, the main points of these methods are detailed in
the present section.

In order to discuss the solution methods implemented in the framework, a model problem
is analysed. A representative equation is Poisson’s equation, an elliptic partial differen-
tial equation, which occurs when solving the incompressible Navier-Stokes equations for
example. Combining the momentum conservation equation and the mass conservation
equation yields an equation for the pressure that takes the form of a Poisson’s equation.
For a more detailed derivation of equations occurring in Computational Fluid Mechanics
see [101].

The Poisson’s equation takes the form

∆ϕ = f in Ω
ϕ = g on ΓD

∇ϕ · n = h on ΓN .

(3.1)

∆ is the Laplace operator defined as the divergence of a gradient of a scalar function. As
such, Poisson’s equation can also be written as

∇2ϕ = f or ∇ · ∇ϕ = f or div(gradϕ) = f. (3.2)

ϕ is the sought solution and f ,g and h are given functions. The equation is defined
on domain Ω with boundary ∂Ω = ΓD ∪ ΓN , whereas ΓD and ΓN are the Dirichlet
and Neumann boundaries, respectively. Additionally applies ΓD ∩ ΓN = ∅. A Dirichlet
boundary condition prescribes the value of the function ϕ at the boundary directly, a
Neumann boundary condition specifies the value of the normal derivative of ϕ with n
denoting the outward directed boundary normal. For simplicity the specialisation of
Poisson’s equation with right hand side given as f = 0, also known as Laplace’s equation, is
used. For a two dimensional model problem in a rectangular coordinate system, Laplace’s
equation takes the form

∂2ϕ

∂x2 + ∂2ϕ

∂y2 = 0. (3.3)

Laplace’s equation is then discretised using the Finite Difference method on a regular grid
similar to the one introduced in Figure 3.1. The values of the continuous function ϕ(x, y)
are sampled at ni×nj equidistant spaced grid points, which are subscripted using indices
i = [0, ..., ni−1] and j = [0, ..., nj−1].



3.6. Solution Methods for Systems of Linear Equations 83

To approximate the second order derivatives a central difference scheme is used, which
takes the form

∂2ϕi

∂x2 = ϕi−1 − 2ϕi + ϕi+1

∆x2
∂2ϕj

∂y2 = ϕj−1 − 2ϕj + ϕj+1

∆y2 (3.4)

for both x and y-directions. With an equal spacing in both cardinal directions ∆x = ∆y,
substituting the derivatives in equation 3.4 into Laplace’s equation 3.3 yields

ϕi−1,j + ϕi,j−1 − 4ϕi,j + ϕi+1,j + ϕi,j+1 = 0. (3.5)

This is the general equation for each internal point in the grid. Values at the boundary
of the domain are set up accordingly from the equations given at the boundary (cf.3.1).
In conclusion, one ends up with an equation for the value at every grid point, in other
words a system of coupled linear equations. This system can be assembled into the form

Ax = b (3.6)

with A being the coefficient matrix, x the vector of unknowns, in this case the values of
ϕ at the grid points and b being the right hand side of the equation.

Standard procedures to solve systems of linear equations are direct and iterative methods.
Among the direct methods are the LU decomposition based on classical Gaussian elimi-
nation or the Cholesky decomposition, which requires less operations but only works for
a symmetric positive definite matrix A. Another direct method is the QR decomposition
which in itself can be used to compute a solution, however, it is also used as part of many
more involved iterative methods to find an orthonormal basis. Direct methods compute
the solution within one pass of the respective algorithm. Unfortunately, these methods
also entail large memory requirements and comparably large runtime complexities, which
limits their applicability for large systems.

Here, iterative methods are used, which compute increasingly accurate approximations to
the solution with every pass of the respective method. As each pass is relatively cheap
compared to direct methods, iterative methods are usually able to produce reasonably
good approximations of the solution with a limited number of iterations, resulting in a
much lower overall time and, depending on the method used, lower memory requirement.
Among the iterative methods are splitting methods, like Jacobi and Gauss-Seidel with or
without weighting, Krylov subspace methods, such as the conjugate gradient and GMRES
(Generalized Minimal Residual) and finally, multigrid methods which combine various of
the aforementioned methods on a hierarchy of discretisations. For a conclusive overview
over these methods to solve systems of linear equations, the interested reader is referred
to [72] and [210] (in German).

Implemented in the framework are the weighted versions of Jacobi and Gauss-Seidel meth-
ods. These methods in general perform well in reducing short wavelength errors, but long
wavelength errors are reduced very slowly, leading to slow convergence rates. To acceler-
ate the time to solution, a multigrid method is implemented as well, which is adapted to
and makes use of the hierarchical data structure. As explained in the beginning, the idea
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for these methods and especially their adaption for the present hierarchic data structure
is taken from the work of Frisch [113].

Additionally, an asynchronous version of the parallel Jacobi method has been imple-
mented. An asynchronous method is characterised by a parallel iterative method, where
the individual processes do not wait for neighbours to complete their current iteration step
and use the latest values available. It is possible for these methods to converge faster or
even at all, compared with a synchronous method, because processes do not wait idle for
other processes. In view of the novel repartitioning strategy, which gives a slightly worse
load balance compared to global methods, asynchronous methods are a way to alleviate
these imbalances and use otherwise idle time in which less burdened processes wait for
results from their neighbours.

In the following, an overview over the implemented methods is given.

3.6.1 Splitting Methods
As their name suggests, these methods are based on the splitting of the matrix A into

A = B + (A−B). (3.7)

Applying this split for the operator A in the system of linear equations 3.6 yields

Bx+ (A−B)x = b ≡ Bx = (B − A)x+ b. (3.8)

If B is a regular matrix, one can invert it and ends up with

x = B−1(B − A)x+B−1b. (3.9)

From here, one is able to define the linear iteration method with M = B−1(B − A) and
N = B−1

xm+1 = Mxm +Nb for m = 0, 1, ... (3.10)

Here, m denotes the current iteration count. Starting with an initial guess of the vector
of unknowns x0, one supplies the current approximation to the solution xm into the right
hand side equation which yields a new approximation xm+1. It can be shown that this
method with iteration matrix M is consistent and will convergence to the exact solution
given an infinite number of iterations if and only if the spectral radius of the iteration
matrix ρ(M) < 1 (see [210]).

The question now becomes how to chose the split of matrix A. Solving the original system
of linear equations Ax = b directly is done by computing the inverse of A and applying it
to both sides of the equations. That is

x = A−1b. (3.11)

Comparing above equation 3.11 and the iteration method 3.9, one observes that B can
be viewed simply as an approximate to the matrix A and the approximation error is
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successively corrected with B−1(B−A)xm. A perfect approximation A = B consequently
yields equation 3.11, allowing the solution of x in one step with no correction. The
problem here is, finding the inverse of A is computationally very expensive and makes
direct methods infeasible for large matrices. Therefore, an iterative method tries to find
a good approximation B of the original matrix A that is easily invertible.

Popular choices for B are as follows:

The Richardson method
B = 1

ω
I with ω 6= 0 being a weighting factor and I is the identity matrix.

The Jacobi method
B = D with D = diag((aii)i) in other words the diagonal elements of A.

The weighted Jacobi method.
B = 1

ω
D. A version of the Jacobi method with a weighting factor ω 6= 0.

The Gauss-Seidel method
B = D + L and L is the strict lower diagonal part of A.

The successive over-relaxation method (SOR)
B = 1

ω
D + L. A weighted version of the Gauss-Seidel method.

3.6.1.1 Jacobi Method

Using B = D in equation 3.10 and after some rearranging yields

xm+1 = D−1(b− (A−D)xm). (3.12)

The inverse of a diagonal matrix D is the reciprocals of its diagonal elements D−1 =
diag(( 1

aii
)i). The expression (A − D) simply is the matrix A with zeros on all diago-

nal elements. Therefore the component-based notation for every unknown xm+1
i can be

expressed as

xm+1
i = 1

aii

bi −
n∑

j=1
j 6=i

aijx
m
j

 . (3.13)

One observes that every new approximate xm+1 is computed solely using the old ap-
proximate xm. Therefore, the Jacobi method is also called total-step method. When
implementing the method, two vectors are needed to store the new and old values xm+1

and xm, as to not overwrite xm within the current iteration.

Using B = 1
ω
D in equation 3.10 and after some rearranging one ends up with

xm+1 = xm + ωD−1 (b− Axm) . (3.14)

Thus xm+1 can be interpreted as the current approximation xm plus some correction
D−1 (b− Axm). Using an additional weighting ω on the correction term, the aim is to
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accelerate convergence. This can be achieved by minimising the largest eigenvalue of the
iteration matrix M of the method and consequently decrease the spectral radius ρ(M) to
speed up the convergence.

The corresponding component-based notation of the weighted Jacobi method is

xm+1
i = (1− ω)xm

i + ω

aii

bi −
n∑

i=1
j 6=i

aijx
m
j

 . (3.15)

3.6.1.2 Gauss-Seidel Method

Substituting B = D + L into equation 3.10 and with U = A − D − L, the strict upper
diagonal part of A, yields after some rearranging

xm+1 = (D + L)−1(b− Uxm). (3.16)

Computing the inverse of (D+L) is no longer trivial, however using forward substitution,
the components of xm+1 can be computed sequentially. In component-based notation the
equation for every unknown xm+1

i is

xm+1
i = 1

aii

(
bi −

i−1∑
j=1

aijx
m+1
j −

n∑
j=i+1

aijx
m
j

)
. (3.17)

In this notation, the Gauss-Seidel method is almost identical to the Jacobi method. The
main difference is that already computed new components of xm+1 are used within the
current iteration. As such, only one vector of unknowns can be used to implement the
method. Newly computed values directly overwrite the old ones. The spectral radius
of the iteration matrix M is generally smaller compared to the Jacobi method, leading
to a faster convergence. However, because the computation of specific components of
xm+1 requires already computed values in the current iteration, dependent on the matrix
structure A, the critical path to compute these components might be very long. These
dependencies prohibit an efficient parallelisation of the method.

Similar to the weighted Jacobi method, a weighted version of the Gauss-Seidel method
can also be conceived. This is known as Successive Over-Relaxation method (SOR).
Substituting B = 1

ω
D + L. into equation 3.10 yields

xm+1 = (D + ωL)−1(ωb− [ωU + (ω − 1)D]xm). (3.18)

Using forward substitution again, yields the component based notation

xm+1,
i = (1− ω)xm

i + ω

aii

(
bi −

i−1∑
j=1

aijx
m+1
j −

n∑
j=i+1

aijx
m
j

)
. (3.19)
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3.6.1.3 Matrix-Free Approach

In general, after the assembly of A, one of the methods described above can be applied to
solve for the unknown quantities x. However in the special case of the discretised Laplace’s
equation 3.5 the assembled matrix without boundary conditions has only five non-zero
entries per row in two dimensions and seven non-zero entries in three. Furthermore, all
entries in matrix A are consistent for each internal point. That means, the calculation of
the value of each point uses the same coefficients. Applying the Jacobi method 3.13, a
new approximate solution of ϕm+1

i,j is evaluated as

ϕm+1
i,j = −1

4
(
ϕm

i−1,j + ϕm
i,j−1 + ϕm

i+1,j + ϕm
i,j+1

)
. (3.20)

Applying the Gauss-Seidel method 3.17 looks almost identical, except the already com-
puted values of the current iteration are used directly:

ϕm+1
i,j, = −1

4
(
ϕm+1

i−1,j + ϕm+1
i,j−1 + ϕm

i+1,j + ϕm
i,j+1

)
. (3.21)

For the solution of Laplace’s equation with the given discretisation, it makes little sense
to assemble the matrix, as the structure is consistent and sparse for each internal point.
As such, the solution procedure simply solves the above equation for each internal point.
When boundary conditions are supplied, the equation has to be altered. For a mesh point
with a Dirichlet condition for example, no equation has to be solved at all because the
value is prescribed. As the matrix A is never assembled, solving the equations in this
fashion is called matrix-free.

The drawback of this matrix-free approach is that it is very rigid and only solves the exact
equation with the supplied discretisation. If the equation or the discretisation changes, a
new solver has to be implemented. For example, a higher order discretisation, involving
more data points, leads to a different matrix A and the equations have to be altered
accordingly.

3.6.1.4 Parallelisation

When it comes to parallelisation, the Jacobi method is straight forward. Every process
computes a full sweep over all its assigned grids. Meaning it evaluates a new approximate
solution for every grid point using only the old values. After the sweep all ghost cells are
updated and a new iteration is computed.

The Gauss-Seidel method is harder to parallelise due to the dependencies within a single
iteration. One remedy is the red-black version of the Gauss-Seidel method that can be
applied for specific discretisations. Here, the components of x are split into two non-
overlapping sets with no direct dependencies within the two sets. The left illustration in
Figure 3.29 shows the partitioning of the grid points for the discretised two dimensional
Laplace problem into two sets. Now, within each set, new approximations for x can be
computed completely in parallel. Each process runs one sweep over one of the sets, updates
the respective ghost cells and repeats the process with the other set until convergence is
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Figure 3.29: Partitioning of grid points to parallelise the Gauss-Seidel method for a two
dimensional Laplace problem. Red-black partitioning on the left. Wavefront partitioning
on the right

reached. Even though this is a possible remedy to parallelise the Gauss-Seidel method,
one should be aware that it alters the original iteration procedure as even though the sets
have no direct dependencies within them, they are implicitly coupled via the second set.
This dependency is not satisfied anymore.

A second possible way to parallelise the method is a wavefront approach. Again, given the
two dimensional discretisation of Laplace’s equation and a Dirichlet boundary condition
on the value ϕ1,1, all dependencies for the computation of ϕ2,1 and ϕ1,2 are satisfied.
They can be computed in parallel. After both have been computed, all dependencies
for the computation of ϕ3,1, ϕ2,2 and ϕ1,3 are satisfied, which again can be evaluated in
parallel. The right illustration in Figure 3.29 shows the partitioning of the grid points
into wavefronts. Within each wavefront, the grid points have no dependencies and can be
computed completely in parallel. However, wavefronts are dependent on their predecessor,
meaning new approximations for the grid point values in wavefront one must be completed
before grid point values in wavefront two can be evaluated. The wavefront approach
works for a partitioning of grid points within a grid and it also can be applied on a
complete grid level. The drawback of a wavefront partitioning is the relatively high
idle time where processes need to wait for the resolution of dependencies. Given the
example in Figure 3.29 with 4 × 4 grid points and four available processes, while one
process computes an approximate for ϕ1,1 the other three are idle. In wavefront two, two
processes can work in parallel while the other two are idle. Only in wavefront four, all
processes could be utilised, before more and more processes again become idle in later
wavefronts. Furthermore, there can never be more participating processes as there are
grid points (or grids) in the largest wavefront.

Implemented in the framework are both the weighted Jacobi method as well as the SOR
for computing sweeps on individual grids. That means, the Jacobi method can be used
to iterate over the complete domain in parallel with regular ghost cell updates after each
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sweep. For the SOR method this is not as easily possible due to the discussed dependencies
in its formulation. A red-black or wavefront partitioning for parallelising the method is
not used. The benefits of introducing a multigrid method, which involves both solvers,
outweighs those benefits gained by a parallel version of the SOR.

The solution procedure itself is not affected by the decentralisation of the data structure.
All ghost cell exchanges happen between neighbouring grids and consequently between
neighbouring processes without any global data synchronisation. Though, in Frisch’ im-
plementation, a global sum of the residual was computed after every sweep to determine
whether the solution has converged and the iteration process could be stopped. As the
Jacobi method is never used on its own until the solution has converged this global com-
munication never takes place. Further considerations concerning the stopping criterion
and their influence on the communication patterns are discussed in the following sections
for the multigrid method and the asynchronous methods.

3.6.2 Multigrid Method
Doing a Fourier-analysis on the initial guess for x to separate different wavelength compo-
nents of the error, one finds the eigenvectors associated with eigenvalues of A are simply
the Fourier modes of the error. Furthermore, the smoothest mode, meaning the error
component with the lowest frequency is associated with the highest eigenvalue and vice
versa. Even with a weighting factor, the iterative methods discussed above are not able
to reduce the largest eigenvalue considerably. In practice this means that they are able to
reduce high frequency errors quickly, but take many iterations to reduce smooth, low fre-
quency errors of the initial guess. Consequently, these methods are also termed relaxation
or smoothing methods.

However, a second observation can be made. Smooth quantities on fine grids can be
transferred to coarser grids, where they behave more oscillatory. In combination these
principles have led to the development of multigrid methods. Multigrid methods have
been first proposed by Brandt in 1977 [33]. They have since then successfully been
applied to a variety of applications, including hyperbolic differential equations such as the
Euler equations [117] and hyperbolic-parabolic differential equations such as the Navier-
Stokes equations [7]. The interested reader is referred to [305], [35] and [132] for a more
comprehensive overview over multigrid methods. Convergence properties of the method
can be found in [131] or [132] for example.

In the following, an abbreviated overview over the method is given. The observations
made, concern the error rather than the solution of the system of linear equations. There-
fore, Ax = b must be rewritten in terms of the error first. By introducing the residual r,
which is defined as

r = b− Ax̃ (3.22)

where x̃ is an approximate to the exact solution x̂, and the error as difference between
the exact solution and the approximate

e = x̂− x̃, (3.23)
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one is able to write an equivalent system

Ae = r = b− Ax̃. (3.24)

This means, instead of solving for the exact solution, it is equivalent to solve for the error
and use it to correct an approximate solution.

To complete all necessary preliminaries for a multigrid method, one needs a way to transfer
quantities from fine grids (Ωh) to coarse grids (Ω2h,Ω4h...) and vice versa from coarse grids
to fine grids. These operations are called restriction, i.e. the downsampling of a quantity
from a fine grid to a coarse grid, and prolongation, i.e. interpolation of a quantity from
a coarse grid to a finer grid. Most common restriction operators are injection and full
weighting operators. The most common prolongation operator is the linear prolongation.

The injection operator to restrict quantities is comparably simple. To get the coarse grid
representation, the quantity discretised at every nth point is taken, without considering
the left out grids points. For example, considering only every second point leads to a
coarser grid with about half as many grid points in each coordinate direction. The full
weighting operator also takes into account a restriction to every nth grid point. How-
ever, contributions from left out grid points are evenly distributed among their remaining
neighbouring grid points. The linear prolongation functions are exactly contrary to the
full weighting. The quantities at each coarse grid point are interpolated to their fine grid
counterpart as well as to neighbouring fine grid points who do not exist on the coarse
grid. Choosing full weighting and linear prolongation as restriction and prolongation op-
erators, one observes that one operator is simply the transpose times a constant factor of
the other. This is called variational property. A combination of two operators who exhibit
this property is desired, because it signifies a well-defined way of transferring quantities
between grids without discrepancies between the operators.

Ω8h

Ω4h

Ω2h

Ωh

relax restrict solve prolongate

Figure 3.30: Multigrid v-cycle scheme.
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Algorithm 7: Recursive multigrid v-cycle scheme.
procedure x ← MGv (x,b)
// Pre-relaxation
for i← 0 to α1 do

x ← relax (x,b);
end
// compute residual
r ← b − A x;
// restriction
r ← restrict (r);
// recursive call until the coarsest grid
if (Ωl > Ωmin) then

e ← MGv (e,r);
else

// solve on the coarsest grid
e ← solve (e,r) ;

end
// prolongation
e ← prolongate (e);
// correction
x ← x + e;
// Post-relaxation
for i← 0 to α2 do

x ← relax (x,b) ;
end

Combining all the components into a recursive solution scheme is illustrated in Algo-
rithm 7. First, α1 iterations of a relaxation method are performed on the finest grid to
reduce high frequency errors. In the second step, the residual is computed and restricted
to the next coarser grid. As long as the method has not reached the coarsest level, the
method is recursively called to compute the error from the current residual. If the coarsest
grid has been reached, the number of remaining grid points is usually sufficiently small
to apply a direct method to solve for the error. The error is then prolongated to the next
finer grid and used to correct the current solution. Finally, α2 iterations of a relaxation
method are performed on the corrected solution.

In Figure 3.30 the flow of a single iteration of the algorithm is illustrated for the initial
resolution Ω and three coarser resolutions Ω2h, Ω4h and Ω8h. The structure of the re-
cursive function leads to the characteristic v-cycle shape of the method. However, other
formulations lead to other characteristics shapes. Alternatively, the recursive function
call may be executed multiple times, which leads to the w-cycle. The w-cycle takes more
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effort per iteration as it spends more time on coarser levels, leading to better convergence
properties over the v-cycle. The second alternative is the f-cycle. This variation starts
by building up a good initial guess through nested iteration, before running the stan-
dard v-cycle. Again, this shows superior convergence over the v-cycle, at the cost of a
higher computational effort per iteration. The choice which cycle has the best properties
is usually problem dependent.

3.6.2.1 Multigrid-Like Method

By comparing the bottom-up and top-down communication stages to synchronise the data
structure to the restriction and prolongation operations of a multigrid method, Frisch
emphasises the similarity between them. The bottom-up stage aggregates data on each
level and recursively sends it upwards to the respective coarser levels until the root grid,
i.e. the coarsest representation, is reached. Conversely, the top-down stage runs from the
coarsest grids to the most refined ones, interpolating data into the respective cells on each
intermediate level. As such, the structure naturally lends itself for the application of a
multigrid method, using the communication stages as restriction and prolongation. The
advantage here is that coarser grids do not have to be extracted from finer grids as they
are already present within the data structure.

The easily parallelisable weighted Jacobi iteration is used as relaxation method on all
levels except the coarsest, which is represented by the single root grid. Here, due to its
superior convergence properties, the SOR method is used to solve for the error. As the
solution is conducted only on a single grid on a single process, parallelisation is not an
issue.

Upon closer inspection, the grid data exchange procedures closely resemble the restriction
and prolongation operators, however, they do not fit perfectly. The main difference is that
the location of kept grid cells in coarser representations matches that of finer representa-
tions in the classical multigrid formulation. Depending on the subdivision chosen, this is
not the case in the grid hierarchy used in the framework. Therefore, an interpolation from
different grid point locations across resolutions is necessary. Due to this discrepancy, the
method is termed multigrid-like.

For a conclusive description of the method, its intricacies, convergence studies and bench-
mark results, the interested reader is once again referred to the work of Frisch [113]. One
minor difference between the implementation of Frisch and the one used in the decentral
framework is the convergence detection. In the former, after every full iteration, a global
sum over the Euclidian norm of the residual vector was computed to detect convergence.
From equation 3.24 it can be concluded, when the residual goes to zero, the error does
as well. Meaning the residual is an equally valid measure to detect the convergence of
the solution. The decentral framework tries to limit global operations as far as possi-
ble. Therefore, to accumulate the residual, the norm is computed on the finest grids and
send in conjunction with the regular data during the bottom-up communication towards
the root grid. Intermediate results are accumulated on the intermediate levels and for-
warded to the next coarser level. The global residual norm is then available on the root
grid. When the norm is sufficiently small, the process holding the root grid sends a halt
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message in conjunction to the data with the top-down communication stage.

3.6.3 Asynchronous Methods
Up to now, when the iterative methods described above are parallelised, a synchronous
approach was used. This means, there is a clear order of execution of the different parts
of the solution procedure. The simulation domain is decomposed into non-overlapping
regions (the grids), which are assigned among the participating processes. Additionally,
each grid is surrounded by a ghost layer, which represents the current quantities of neigh-
bouring regions, which are needed to update the local solution. During the solution
process, each process executes an update sweep over all its assigned grids and afterwards,
the corresponding ghost cells are updated with the latest values before the next iteration
can commence. In other words, each grid sweep always uses values from the same itera-
tion to update the local values. Consequently, all processes are synchronised within the
current iteration they compute.

This behaviour matches exactly with a serial implementation of an iterative method,
where only one large grid on a single process would be used. In general, the parallelisation
should not influence the solution in any way, other than speeding up the computation. The
drawback however, is when load is unevenly distributed. In the present case, when some
processes are burdened with a much higher amount of grids than others. Because of the
necessary synchronisation after every sweep, less burdened processes wait idle until other,
more burdened processes catch up and allow the exchange of the latest computed values
to carry on with the next sweep. The most obvious remedy is an efficient repartitioning,
i.e. a load-balancing, which will be discussed in detail in the next chapter.

Another possible remedy to alleviate load imbalances are asynchronous iterative methods.
Here, every process simply uses the latest available neighbouring quantities without syn-
chronisation. More explicitly, every process executes a sweep over all its assigned grids, as
before. However, instead of waiting for neighbouring processes, a quick check is executed
whether any previous communication has been completed. If a previous outgoing message
to transfer ghost cell values has been completed, a new message with the latest values is
issued. Likewise, if new neighbouring cell values have arrived, they are extracted into the
local ghost layers and are used in the next iteration.

For a better understanding, Figure 3.31 illustrates the iteration process for a synchronous
and an asynchronous iterative method. The simulation domain is split into two grids
which are distributed to two processes p 0 and p 1. Each grid has a layer of ghost cells
representing the neighbouring values on the other grid. Furthermore, calculating a new
approximate solution xm+1 for each grid point using some iterative approach takes twice
as long on process one compared to process two. In the synchronous case, process zero
finishes the first iteration, sends boundary values to update the respective ghost cells and
has to wait for process one to send the newest values of its current iteration, before it
can commence with the next iteration. In the synchronous case, all processes work on
the same iteration with the latest values. The method does not differ in any way from its
non-parallelised version. In the asynchronous case, process zero finishes its first iteration,
sends the respective boundary values and immediately starts with the second iteration
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without waiting for updated ghost cell data. In this case, iteration one and two use the
same ghost cell values from the same iteration on process one. After the second iteration,
process zero does not send data of the newly computed approximate because the last
message has not been received yet. This is however implementation dependent, as one
could also have multiple messages in flight. In the asynchronous case, different processes
can be on different iterations. Additionally, the parallelised version differs considerably
from its single process counterpart. Furthermore, depending on the load situation in the
machine, different runs of an asynchronous method may differ from each other.

time

synchronous

p 1

p 0

asynchronous

p 1

p 0

iteration

idle

send ghost data

Figure 3.31: Comparison between synchronous and asynchronous iteration methods

It is obvious that asynchronous methods alter the behaviour and the convergence proper-
ties of the underlying method considerably. Chazan and Miranker were the first ones to
explore such asynchronous methods in 1969 [54]. Under the term chaotic relaxation, they
tried to establish a mathematical framework and derive convergence guarantees. Baudet
later extended this framework, giving actual measurements on multiprocessor systems [19].
For synchronous iterative methods, their convergence has been established if and only if
their iteration matrices have a spectral radius ρ(M) < 1. For asynchronous iterative
methods this condition is aggravated by requiring the spectral radius of the component-
wise absolute value of the iteration matrix ρ(|M)| < 1. If ρ(|M)| ≥ 1, then there exists a
sequence of asynchronous iterations, such that the method does not converge. However,
depending on the initial guess and the sequence of asynchronous iterations, which are
influenced by the current load situation as well as the used hardware, the asynchronous
method might still convergence. Even in cases where the synchronous method does not
[332, 334]. As no guarantees can be given in these cases, this poses a rather theoretical
benefit.

3.6.3.1 Asynchronous Jacobi Method

Corresponding to the idea of parallelising an iterative procedure with asynchronous ghost
cell updates, an asynchronous Jacobi method has been implemented in the framework.



3.6. Solution Methods for Systems of Linear Equations 95

Given a uniform domain refinement, the crucial points of the implementation are the asyn-
chronous domain updates as well as the convergence detection. The later are explained
in more detail in the next section. If an adaptive domain refinement is given, it has to be
determined which grids actually need to exchange data first (see also section 3.3.1.4).

The sweeps to update the local quantities work exactly the same as for the regular Ja-
cobi method. However after each sweep, the asynchronous operations to update ghost
cells take place. These can be implemented using regular MPI peer-to-peer communi-
cation which requires explicit send and receive calls from both participating processes.
Another recent alternative is the use of MPI’s one-sided functionality, also known as re-
mote memory access (RMA), which allows writing or reading data to another processes’
memory without the other processes involvement [338]. The current implementation uses
the former, “classical” peer-to-peer MPI facilities.

After determining the communication structure, every grid posts a non-blocking
MPI_Irecv for every neighbour, spatial and hierarchical with which it needs to exchange
data, to receive updated ghost cell data. After the initial sweep, a non-blocking MPI_Isend
is posted, to send new ghost cell data to the applicable neighbours.

Algorithm 8: Asynchronous iteration method
// sweep
x ← relax (x,b)
// asynchronous receive and send
foreach neighbour do

if MPI_Test ( recvRequest) = complete then
extract (buffer.neighbour);
MPI_Irecv (buffer.neighbour, recvRequest);

if MPI_Test ( sendRequest) = complete then
MPI_Isend (cellData.neighbour, sendRequest);

end

Non-blocking MPI calls are supplied with an additional request object over the blocking
variants. This status object allows to check or wait for the completion of the send or
receive call. After every regular sweep, the completion of the MPI_Irecv call is checked
using the MPI_Test method. If the message has been received, the receive buffers are
extracted into the local ghost cells and a new MPI_Irecv for the next update is posted.
The commencing sweep will use the newest updated ghost cell values. If nothing has
been received so far, execution of the next sweep is not halted, instead, the next sweep
simply uses old ghost cell values to update the local quantities. Similarly, after each
sweep the completion of the MPI_Isend call is checked using the MPI_Test method and
the corresponding request object. If it has been completed, a new MPI_Isend call is issued
with the latest neighbouring values. If not, the method simply continues with the next
sweep. In algorithm 8, the algorithm is illustrated in a simplified fashion.

As mentioned before, in a uniform refinement setting, all leaf grids simply execute the
asynchronous iteration algorithm until convergence. Coarser grids do not have to be
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involved. In an adaptive setting, it is sensible to determine which grids actually need
to be involved in actual communication, prior to the asynchronous solution procedure.
In addition to the horizontal communication between leaf grids, whenever a leaf grid
has no valid spatial neighbour at one of its sides, the ghost layer exchange must involve
hierarchical communication via its parent. Leaf grids are able to determine this case
completely local. They simply check whether any of their spatial neighbourhood references
is invalid. If that is the case, the ghost layer transfer in the respective direction will be
executed via the parent grid. Non-leaf grids cannot determine their status locally, because
they have no information whether their spatial neighbours are refined or not. Therefore,
this refinement status has to be exchanged between all spatial neighbours once at the
beginning of the solution process. More specifically, if no change to the domain happens
in between timesteps of the simulation, the communication structure remains valid.

The exchange of refinement status is implemented using a non-blocking MPI_Irecv call
to receive the status of every neighbour, followed by a blocking MPI_Send of a grids’ own
status and a subsequent MPI_Waitall to block further execution until all messages have
been received.

Now, all non-leaf grids are able to determine whether they are involved in transferring
ghost layer data. This is the case for a non-leaf grid with leaf spatial neighbours. Here, the
grid’s children on the side of the leaf neighbour have no spatial neighbours on their level.
They communicate their respective ghost cell data to the parent which forwards it and
vice versa. In asynchronous fashion, data is extracted to the local data cell whenever new
messages have been received and forwarded if a previous message was sent successfully.

3.6.3.2 Convergence Detection

The stopping criteria in asynchronous iterative methods is not trivial and has been studied
for example by Bahi et. al. for decentral applications [16, 15]. In the synchronous case,
the solution process is halted either when the norm of the global residual is small enough,
or after crossing a threshold of the number of global iterations. The later cannot be
applied at all for the asynchronous case, since there is no global synchronous iteration
every process is working on.

The algorithm described by Bahi is based on local convergence. Every grid individually
tracks whether their local residual norm is below a defined threshold. If this is the case,
a termination request is send to a central process tasked with evaluating the termination.
After every grid has send the termination request to the central instance, a verification
response is sent in response. It might happen that after the first termination request sent
by a grid, the solution is not within the local convergence threshold any more. This is
the case, when delayed ghost cell updates cause large discrepancies with a neighbouring
grid’s cell values. If a residual norm of a grid is still in a valid range when receiving the
verification request, it sends a confirmation. Otherwise it sends a negative response to
the central process. If all grids have sent a confirmation, the solution procedure can be
halted and the central instance sends final termination requests to all processes. Other-
wise, a negative query is sent to all processes and the convergence detection is started
anew. In Figure 3.32 the mechanism to detect the convergence is illustrated for four
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processes, whereby process zero acts as detection instance. In this example, all processes
are still within the local convergence threshold when the confirmation request arrives.
Consequently, convergence is confirmed and the solution process is terminated.

p 0

p 1

p 2

p 3

time

local detection

global detection

local confirmation

global confirmation

terminate

convergence msg

confirmation req

confirmation msg

termination msg

convergence

Figure 3.32: Global convergence detection process. Adapted from [15].

This method is also implemented in the present framework, however in a simplified fashion
without confirmation of the convergence. Whenever a grid has reached local convergence,
it sends a termination request to its parent grid. Here all requests are accumulated and
if all have arrived, a termination request is send to its parent in turn. As soon as the
root grid has received all termination requests from its children, a halt signal is send in
the opposite direction, down the tree. In the mean time all leaf grids and grids needed
to forward ghost cell data continue iterating until they have received the halt order.
Finally, all outstanding messages need to be received and no new receive and send calls
must be issued. This is achieved by appending the last outgoing message from each grid
that has received the halt order with a termination flag, signifying this to be the last
communication from this grid.

An alternative method implemented, is via the evaluation of the norm of the global resid-
ual. Instead of sending a single termination request, the local residual norm of each leaf
grid is send continuously in an asynchronous fashion towards the root grid. The individual
children norms are accumulated on each intermediate level and the result is forwarded.
The root grid can then determine global convergence and send the corresponding halt
orders.

3.6.3.3 Conclusions and Outlook for Asynchronous Methods

There are a few key issues when discussing the applicability of asynchronous methods in
practice. When using a local convergence criterion, the overall solution can never be worse
than when using a synchronous method. The overall simulation time is determined by the
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slowest process. It needs to iterate until it has reached the local convergence threshold.
Instead of waiting idle, faster processes use the time to carry out more iterations towards
the exact solution and the norm of the global residual is lower compared to a synchronous
method. This is true even when using old ghost cell values [332]. It may even happen
that the asynchronous method is faster. This is because the grids on the slowest process
may converge faster due to more exact values from their neighbours assigned to faster
processes.

Using a global convergence criterion is generally ill-advised. Firstly, the frequent accu-
mulation of the norm of the global residual entails much more communication compared
to the single termination request of the former method. Secondly, even though the com-
putation halts at the same norm as the synchronous method would, the residual may be
badly distributed. High local residuals in grids on slow processes can be balanced by low
local residuals in grids on faster processes, masking a non-converged local solution.

In conclusion, an asynchronous method with a local convergence criterion can be benefi-
cial when there is a considerable load imbalance or the hardware is heterogeneous. Given
the fact, one of the main goals of the present work is to introduce an efficient dynamic
partitioning to alleviate these imbalances, the applicability is limited. However, the iter-
ation count per grid could be used as a more accurate load metric, compared to simply
taking the number of grids per process. Therefore, asynchronous methods still could be
a valuable addition to the modules of the decentral framework.

Currently, the only asynchronous method implemented in the framework is the asyn-
chronous Jacobi method described above. This method suffers from the same poor con-
vergence properties stemming from the slow reduction of short wavelength errors. As
such, it cannot compete with the synchronous multigrid method. Recently however,
asynchronous versions of the multigrid method have gotten some attention by Wolfson-
Pou [331] and Chow et. al. [333]. They base their work on original ideas of McCormick
et. al. from 1989 under the term of asynchronous multilevel adaptive methods (AMA)
[138, 208], which were later advanced and termed asynchronous fast adaptive composite-
grid methods (AFAC) [194, 195]. A robust asynchronous multigrid method could be a
valuable extension to the decentral framework in the future.

3.7 I/O
To conclude all modules affected by the decentral structure, a brief overview of the I/O
functionality of the framework is given. For visualisation and checkpointing, the frame-
work uses the Hierarchical Data Format version 5 (HDF5). Initially developed in 1987
by the National Center for Supercomputing Application (NCSA), HDF5 was selected by
NASA to be used in its Earth Observing System [189].

HDF5 was developed to efficiently store large amounts of array based data. To this end,
HDF5 provides an abstract data model to facilitate the view of the stored data. The
structure within an HDF5 file is made up from groups, the data is held by datasets. A
group may contain datasets and additional groups, resulting in a hierarchical tree-like
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structure. Additionally, HDF5 provides functionality for distributed memory systems.
Parallel HDF5 routines are based on MPI-IO, whereas the HDF5 libraries manage the
application’s I/O calls and in turn utilize MPI-IO’s routines, providing easy-to-use parallel
I/O functionality.

As mentioned above, the I/O functionality involves two main tasks. Writing checkpoint
files with all necessary data from which a simulation can be restarted and files with pure
visualisation data. The structure of a checkpoint file is as follows. On the top level,
there exist two groups, one for persistent simulation data, for example the refinement
specification, the current time and the time step etc. The second group contains the
current grid data. That includes metadata and simulation data. The structure of a
visualisation file contains one group for every written time step. In the simplest case,
only the most refined grid data for every spatial point is written such that the simulation
domain is represented in the finest resolution available. Another possibility is to store the
data of every grid in addition to the hierarchical neighbourhood structure of every grid.
This allows to traverse the hierarchical refinement structure starting from the root grid
and allows a selective visualisation of parts of the simulation domain in various resolutions.
The advantage is the ability to limit the amount of data to be visualised, allowing a fast
overview over coarse features or a more detailed view of selected parts of the domain (see
also [229, 93, 94]).

The parallel functionality of HDF5 allows all processes to access a single shared file in-
dependently. Each process is assigned an exclusive region inside the file for read and
write operations. There are however, two collective communication calls necessary when
generating and writing this single shared file. The generation of the file as well as the
generation of the file structure is a collective operation that needs to be carried out by
all processes. Here, the total size of the domain must be known. MPI provides the
MPI_Allreduce method, a global reduction operation that allows to compute the sum of
all reduced values when supplied with the MPI_SUM method. This is used to compute the
total number of grids in the domain across all processes. The second global communi-
cation call is used by each process to determine their access region in the shared output
file. These individual offsets can be determined by the MPI_Scan method. This method
computes the partial reduction of the former global sum. In other the words, the method
returns the partial sum of the value of all preceding processes.

The dataset containing the grid data is a two dimensional array. Each row contains
the data of a single grid. The global sum allows each process to generate this data set
collectively, the scan provides the individual offsets into the array. For example, process
zero always has offset 0. It writes its grid data into the first n rows of the collective array,
with n being the amount of grids it holds. Process two has offset n, it independently
writes its grid data into the rows of the array starting from n + 1. Since the root grid is
by design always held by process zero, it is always written into the first row of the data
array. This makes it a convenient starting point for traversing the hierarchical domain
tree for the selective visualisation method mentioned above.

In conclusion the I/O functionality of the framework supports checkpointing and two
ways of visualising the grid data using the HDF5 API. The premise of the framework, to
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reduce global communication as much as possible is still adhered to, using independent
file access to a shared file. However, there are two global communication calls necessary.
One for the initial generation of the file and a second to determine the size of the grid
data and each processes’ individual access region for each write.

3.8 Summary
When first conceiving the present work, storing and updating a central repository of
the domain structure to carry out a global partitioning technique was identified as most
pressing bottleneck. Therefore, the initial idea was to introduce a repartitioning scheme
based on a local method to alleviate the bottleneck. However, during the course of the
work it became clear that any kind of globally shared data structures are detrimental to
performance when the domain structure grows or more processes are involved. With the
main performance gain in computing architectures in the last few years stemming from
an increase in parallelisation, other parts of the numerical pipeline will similarly exhibit
scalability issues which need to be addressed. Therefore, even though the main focus of
this thesis lays on the dynamic repartitioning as the most crucial bottleneck, all other
parts of the simulation pipeline, with globally shared structures were introduced and,
wherever possible, local alternatives have been proposed and implemented.

The basis of this effort is the decentral data structure, which is exclusively distributed.
On top of this structure a neighbourhood model has been proposed. This neighbour-
hood model is deliberately reduced to the bare minimum to support the requirements
of a numerical simulation. An extended neighbourhood model, which allows the use of
higher order stencil operations and also a higher order discretisation of the model for
repartitioning could be conceived in the future though.

The main modules of the framework are designed after current methods, however they
have been revisited and altered considerably according to the boundaries set by the choice
of available metadata and the use of a communication cycle that only includes neigh-
bouring processes given by the neighbourhood model. These modules include the initial
domain generation, the AMR, the solution procedures for the differential equations and
the I/O facilities. Furthermore, the AMR module is subject to an additional 2:1 balance
constraint to limit interpolation errors between different neighbouring grids with differ-
ent spatial resolutions. Finally, an asynchronous solution method has been explored and
implemented as a fitting extension on top of the decentral structure.
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Chapter 4

Dynamic Partitioning

After a defined number of iterations towards a solution the AMR pipeline is executed.
Processes evaluate whether a local resolution in the domain is still within acceptable
boundaries in terms of accuracy and speed. If higher accuracy is needed, a refinement is
ordered. Where accuracy is sufficient, a coarsening might be applicable. In the present
distributed data structure each node of the tree is discretised using a grid with the same,
predefined number of grid points. When a node, respectively the grid is refined, a new
set of child grids is generated, increasing the resolution of the original domain. In turn,
when grids are deleted, the domain is solely represented by the parents which enclose a
greater spatial region with the same amount of grid points per grid, in turn, decreasing
the resolution of the region. New grids are generated on the process to which the respec-
tive parent is assigned to. Consequently, the number of grids on this process increases.
Vice versa, a coarsening lowers the number of grids on a process. In time, this leads
to imbalances in grid distribution and decreases the efficiency of the solution procedure.
Furthermore, new grids may also increase the surface of a partition and lead to a higher
number of neighbouring partitions, in turn, leading to an increase in neighbour processes
that add communication overhead.

To alleviate occurring load imbalances and to minimise neighbourhood connections, a
repartitioning becomes necessary. In other words, the distribution of grids to processes
has to be evaluated anew. As discussed in chapter 2, there is a variety of global and local
methods for partitioning the domain. In general, global methods provide overall better
partitions, their main drawback however, is the need for up-to-date structure information
of the complete domain decomposition. More accurately, geometry-based methods need
the location and weights of the decomposed primitives, graph-based methods require the
graph with the primitives as nodes and the edges representing their dependencies among
each other.

The number of partitions is equal to the number of participating processes, the number
of primitives is generally much higher (see also section 2.2). Having a large number of
primitives allows easy distribution and balanced workloads among all partitions, while
at the same time the bookkeeping effort of storing and managing the primitives, their
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weight and their location or their dependencies, is high. With the continued increase in
computing power, mainly based on increased parallelism through more processors, the
number of primitives a global method has to manage will become no longer feasible.

The only techniques to manage such a number of primitives without memory or syn-
chronisation bottlenecks are local methods. However, they themselves have a number
of disadvantages. As workload can only be transferred locally, the number of iterations
required to reach a balanced state might be high. Furthermore, guarantees about the
quality of the partitioning are hardly possible. And lastly, partitions might fragment,
leading to an increase in communication costs. Nevertheless, local methods are currently
the only approach which seems practical to be employed for dynamic partitioning appli-
cations, which should be deployed to current and future supercomputers. As such, the
framework employs a dynamic repartitioning module based on a local diffusion model to
balance workloads after the domain has been altered through AMR. The characteristics
and benefits of the diffusion model are explained in the following.

4.1 Diffusion Model
Berger et. al. state that "the computational costs inherit properties of the physical
system" when applying AMR [25, 24]. More specifically, the resolution of a region is
adapted to the physical system one tries to solve. In turn, the number of grids to reach
the desired resolution also follows the properties of the physical system. It seems like
a sensible choice, to also use a model based on the physical system to distribute these
grids among the participating processes. Therefore, a diffusion model was chosen for the
dynamic repartitioning, hoping it would lend itself well to diffusion problems or such with
diffusive terms.

Local diffusion methods have seen some application within multilevel methods to improve
partitioning locally. However, until recently, they have not been applied exclusively for
large-scale applications. Recalling the goals of the repartitioning, a diffusion approach
looks like a sensible choice. It can be shown, that diffusion processes tend towards a
balanced state. Satisfying the first goal of balanced and adjusted workloads. Furthermore,
the convergence of this approach is accelerated by making use of the data structure, which
allows to transfer workload not only in the spatial, but also through the hierarchical
dimension. The diffusion model to balance loads is discussed in section 4.1.2 in detail.

Minimal communication between partitions is the second goal of a good partitioning.
One tries to minimise the surface area of a partitioning and ensure it stays continuous
spatially as well as through the hierarchy. The later meaning all grids within a partition
are connected either directly or indirectly through other grids in the same partition. The
diffusion model operates on a model of the communication structure, as workload is only
transferred between processes holding neighbouring grids. However, the diffusion itself
only balances workloads without optimising neighbourhood connections or keep partitions
continuous. Therefore, the second part of the repartitioning module is the determination
which primitives are actually transferred to balance load while at the same time keeping
a favourable neighbourhood structure. There are a few possible approaches to determine
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which grids should be transferred to which neighbour process. Additionally, there are
cases when transferring a grid leads to an increase in neighbouring processes. Possible
different selection approaches as well as weighing opposing goals are discussed in detail
in section 4.2.

Nevertheless, the diffusion rebalancing won’t be able to compete with global methods in
terms of overall workload balance and minimal communication, especially when a low
order diffusion or limited load diffusion steps are applied. An SFC distribution for exam-
ple, simply cuts a linearised list of primitives into equal sized chunks to form partitions.
There cannot be a better balance. Furthermore, the Z-order curve used for the initial par-
titioning has been shown to give a neighbourhood preserving distribution with contiguous
partitions and minimal surface areas. Starting from this partitioning, the diffusion model
tries to keep the favourable properties of the initial partitioning.

However, when it comes to a fast and scalable method with minimal redistribution, the
diffusion approach has clear advantages. The amount of neighbours a grid is connected
to is bounded. Consequently, a process with a maximum amount of grids has a bounded
number of neighbour processes with which loads can be exchanged. This is completely
independent from the total number of grids or participating processes, which promises a
very good scaling behaviour of the method. Finally, as the redistribution follows a diffusive
model, only a limited number of grids are transferred from one neighbour process to the
next. In comparison to global methods, where large quantities are shifted within all
participating processes, the redistribution costs of the local method will be much lower.

The remainder of the chapter is structured as follows. First, the workload model is illus-
trated and possible improvements are discussed. Next, the diffusion model is introduced.
Afterwards, the different possibilities of determining which grids are migrated to which
neighbour process are discussed. To conclude the repartitioning module, the actual mi-
gration of grids is detailed. Since the receiving process might not actively communicate
with neighbours of the migrating grid, updating the neighbourhood relations is not trivial
in the distributed data structure. This is addressed here as well.

4.1.1 Workload and Communication Model
In the distributed data structure, each node of the tree is discretised using a grid with
an equal amount of degrees of freedom, regardless of the physical extent the grid covers.
This means, given homogeneous processing elements, a single sweep of an iterative solution
procedure over all degrees of freedom should take approximately the same amount of time.

In the basic Jacobi solution procedure, only the leaf grids should contribute towards
the load measure on a process, as only these grids compute sweeps over their grids.
When adaptive smoothing is applied within the multigrid solution procedure, the picture
becomes more involved. Based on the depth of the respective grid, the amount of adaptive
smoothing steps in the current implementation is doubled for every depth less. This means
that smoothing on coarser grids is more expensive than finer ones by a factor depending
on their depth. An individual exception marks the root grid on depth d = 0. The SOR
method is executed until the approximation of the solution is sufficiently small or a defined
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maximum number of sweeps has been executed. Depending on how many iterations are
needed, the cost of relaxation on the root grid is variable, although with an upper bound.
To estimate the cost, an error estimator could be employed. Given the fact that the root
grid is only a single grid, the impact of its cost on the overall simulation time is deemed
miniscule and an exclusive treatment seems unwarranted.

In its current implementation, each grid, regardless of depth is said to contribute one unit
of computational work w towards the load per process. A first improvement, could be to
include the number of adaptive smoothing steps into the work contribution. However, to
get a first overview over the advantages and drawbacks, a simple model of the workload
suffices. The famous quote by Sir Tony Hoare, "premature optimization is the root of all
evil" also supports this viewpoint.

The communication model can be similarly involved. It is mainly needed for determining
the best migration candidates to minimise the communication frequency with grids as-
signed to neighbouring processes. Again, the simplest model weights a spatial edge (the
relation between two grids on the same level) similar to a hierarchical edge (the relation
between parents and children). However, this model can be extended manifold. A pure
Jacobi procedure on a uniform refinement only entails spatial ghost layer exchanges on
the leaf grids. Therefore, in this case, spatial edges of coarser grids and hierarchical edges
should not be considered at all when deciding which grids should be transferred. In adap-
tive refinement structures, more hierarchical and spatial edges affect the communication
volume. These are the edges involved in forwarding ghost layer data when leaf grids
miss spatial neighbours on their refinement depth. Finally, in the multigrid procedure
all spatial and hierarchical edges impact the overall communication volume, because of
the residual and error transfer between depths and the smoothing on coarser levels which
entails horizontal communication.

Not all spatial edges can be weighted equal. Depending on the depth of a grid, a coarser
grid will adaptively smooth more often. After every smoothing a horizontal ghost layer
exchange happens, which means the spatial edges of a coarser grid have a larger impact
on communication volume compared to a finer grid. Similarly, not all horizontal edges
can be weighted equal, too. While restriction and prolongation transfer the same amount
of data, a ghost layer forwarding transfers a different amount of data. In both cases the
first operation transfers an amount of data related to the amount of local cells of the
parent grid. Ghost layer forwarding transfers only ghost layer data, which naturally has
one dimension less. Furthermore, not all ghost layers of a grid have equal size as the
resolution in each dimension is variable. Finally, the network configuration also plays a
role in determining the weight of an edge. An edge connecting two grids, assigned to
two processes running on two processing elements on the same computing node, is much
cheaper than if the two processors are on separate nodes, connected trough ethernet.
Depending on the network configuration of the computing cluster as well as the current
usage, connection speeds might be highly variable, which in turn affects the weight of the
edges. In conclusion, the weight of spatial and hierarchical edges are neither consistent
between themselves nor between each other. However, modeling these intricate weights
seems excessive at this stage of the framework. Each edge’s weight is assumed to be
ew = 1. There is however the possibility to prefer one edge type over the other. This will
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be explained further in section 4.2.

The problem of establishing workload and communication models becomes even more
involved when comparing communication volume given by the amount and weight of
inter-process edges and the workload given by the amount of grids per process. In other
words, weighting both models against each other, a better balance against possible higher
communication costs, requires not just a relative comparison within the models, but
absolute costs. Again, at this point, there is no definitive answer as both models are not
comparable currently. Section 4.2 however, gives a few possible strategies that are also
implemented in the framework.

A more accurate combined workload and communication metric could be concluded from
either the non-idle runtime of each process during the solution process, or from the amount
of asynchronous iterations of each process of an asynchronous iterative method. These
metrics give an exact value for the current load each process handles, including all influence
factors described above. Nonetheless, the insight into which factors contribute which load
cannot be gathered directly. Though, as a starting point to get a broader picture and
evaluate different balancing and distribution strategy, these metrics could prove viable.

4.1.2 Load Balancing
The diffusion model for dynamic load balancing that is used in the current implementation,
was first described by Cybenko in [66]. The basic model is stated as follows:
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where the work distribution at time t is quantified as a vector w(t), and w(t)
i is the number

of tasks to be done by process i at time t. The size of vector w is the amount of processes
in the system. The summation is over all processes in the network n. In the original
model, η(t+1)

i represents the new work generated at time t for processor i and c is the
constant amount of work that can be accomplished by any process between time t and
t+ 1. The non-negative constant αij determines the ratio of workload swapping between
process i and j, with αij = 0 if i and j are not connected. Dropping the inhomogeneous
terms from 4.1 results in the static model:
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and the amount of load exchanged between two processors with:
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Cybenko determines α from the completely known structure of different static networks.
For the framework’s dynamic structure, the extension of the model from Boillat, proposed
in [27, 28], is used. Only local knowledge of the connections of each processes is required
here to compute α. Consider G = (N,E) as a non directed, connected, acyclic finite
graph. The vertices of the graph are labelled with numbers (N = 1, 2, ..., n). The number
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of edges a vertex has to another vertex, also called the degree of a vertex i, is denoted by
vi. The canonical valuation of the Graph G is given by:

cij = 1
max(vi, vj) + 1 (4.4)

Boillat has shown that using the canonical valuation for α in 4.3, continuously exchanging
loads converges strictly asymptotically towards a fixed point, i.e. a balanced state. For
inhomogeneous systems, an additional way to compute the constant can be found in [168].

As already established, the workload wi is set as the number of grids held by process i.
The degree of process i is given by the number of neighbours of said process. One com-
munication cycle of the process data exchange method described in section 3.3.1.4 is used
to exchange the current load and the current degree between all neighbouring processes.
This allows the use of the canonical valuation 4.4 as a dynamic α, and consequently, the
computation of the amount of load one process needs to transfer to its neighbours to
balance.

An issue with this method is that the load exchange cannot account for load fractions.
As only whole grids can be migrated from one process to the next, loads can only be
transferred in increments of one. Currently, the load to be migrated is rounded to the
next integer, which introduces a balancing error. Therefore, processes tend to either
transfer too much load when rounding up, or too little when rounding down. This effect
is especially detrimental for processes with a high number of neighbours, i.e. a high degree
and consequential a very low α. Since the difference in weight between neighbouring
processes is multiplied by α, these high degree processes tend to accumulate high numbers
of grids without transferring them to their underloaded neighbours. The rounding down
prevents them to balance fractional loads. However, as soon as the loading becomes to
high and the load fractions cross the threshold of 0.5, suddenly, a lot of grids get migrated.
This transfer overcompensates in the opposite direction, because due to the rounding up,
the number of migrated grids is higher than the total computed load transfer.

One possible remedy for the overcompensation could be to never allow more grids to
be transferred as the total load transfer, while preferring processes with a higher target
fraction as receivers. However, this does not solve the rounding issues conclusively. Only
if the granularity of the decomposition is fine enough, such that rounding hardly mat-
ters could this problem be solved. A very fine decomposition is however detrimental to
performance on the other hand. Consequently, more research is needed to derive a good
determination of the granularity of the decomposition, weighing the load balance against
the solution procedure’s efficiency.

4.2 Target Selection
Up to now the diffusion model only considers the workload balance, i.e. a balanced number
of grids per process, while disregarding the minimisation of communication links to other
processes. The goal is to have as few neighbourhood connections of grids across process
borders as possible and, if possible, cluster the inevitable connections to a limited number
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of processes. This is also meant when talking about the minimisation of the surface
area of a partition. In the same regard, it is important to keep partitions contiguous
in spatial and hierarchical direction. Additionally, if a weighting of edges is available,
prefer heavy edges with a high communication volume for intra-process connections and
light edges, entailing a low communication volume for inter-process communication. As
the communication cycle only considers neighbouring processes, possible targets for a
migration are said neighbours. This implicitly helps in keeping favourable neighbourhood
relations.

There are two questions to be answered here. The first is which grids should be migrated
to which neighbour processes to keep the inter-process communication volume and cost
as low as possible. The second question is, if a migration should be forced at all costs,
even if the migration leads to a worse structure, for example a fracturing of the partition.
These questions cannot be answered conclusively as they are highly problem dependent.
Therefore, the current implementation gives a variety of choices based on the current
communication model.

All target selection methods are subject to two constraints. First, the root grid can never
be moved from the process with MPI-rank zero. The root grid serves as starting point
to traverse the complete tree top-down. Several methods depend on this defined starting
point. Second, a process is never allowed to migrate all grids to their neighbours. A process
with no grids has no neighbour processes any more, is excluded from the communication
cycle and can therefore never gain any grids any more. It would be idle for the remainder
of the runtime. In the formulation of the load balancing this case theoretically cannot
happen, nevertheless, the rounding issues when computing a load fraction could cause all
grids to be migrated in an overcompensation.

Currently, there are seven different target determination methods available. For complete-
ness, there is a method that distributes grids randomly, which is not used in practice. All
other methods are based on the degree of a grid with its current process and with a
possible target process. The degree in this context is nothing else than the amount of
neighbourhood relations with other grids assigned to the present or to the remote process.
The first target determination method weighs the overall degree of each grid, that means
the combined amount of spatial and hierarchical connections on the target process. The
second and third methods prefer the hierarchical degree over the spatial degree and vice
versa. The local degree is not considered in these methods. If after several migrations,
a process should receive more grids, but there are none available with a remote degree
greater than zero, meaning they have no relations to any of the remote grids, no grids
are transferred to this neighbour process any more. This would lead to a non-contiguous
partition and is therefore relinquished to the detriment of a better balance.

The other three methods do exactly the same as the former three with the difference
that they transfer grids even if the remote degree is zero. Meaning they accept a worse
communication structure in favour of a better balance. The grids to transfer in this case
are chosen in opposite order of their local degree. That means, the grid with the lowest
local degree is transferred first, then the second lowest etc.

Herafter, a summary of the six main target determination is given:
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HD - highest degree target determination
Grids are sorted according to their overall highest remote degree and send from highest
to lowest degree if the respective target process still needs to satisfy the calculated load
transfer. Grids are never transferred to processes where they have a remote degree of
zero, even if the respective process still requires grids to equalise load.

HDF - highest degree target determination with forced migration
Same as HD, except grids are also transferred to processes where they have a remote
degree of zero. After all grids with non-zero remote degrees have been transferred and
the load balance is still not satisfied, left over grids with remote degree zero are taken
into account. The selection is based on the local degree of the grid, starting with the grid
with the lowest local degree.

HHD - highest hierarchical degree target determination
Grids are sorted according to their hierarchical remote degree first and according to their
spatial remote degree second. The sorted list is then traversed and grids are send to
their respective target processes, if they still need grids according to the calculated load
transfer. Grids with a remote degree of zero are not transferred to satisfy the load balance.

HHDF - highest hierarchical degree target determination with forced migra-
tion
Same as HHD, except grids are also transferred to processes where they have a remote
degree of zero. Again, the local degree in reverse order is used to determine suitable grids
to send to satisfy the load transfer given by the diffusion model.

HSD - highest spatial degree target determination
Counterpart to HHD. Grids are sorted according to their spatial remote degree first and
according to hierarchical remote degree second. Migration is based on traversing the
sorted list. Grids with zero remote degree are not transferred to satisfy load balance.

HSDF - highest spatial degree target determination with forced migration
Counterpart to HSDF. Initial migration is determined by sorting all grids according to
HSD. To satisfy the remaining load transfer, grids with zero remote degree are taken into
account and are send according to their local degree in reverse order.

In Algorithm 9 the technical implementation is illustrated. The first step is to iterate
through all neighbour processes and calculate the degree of each grid towards this neigh-
bour process. This is done by checking the remote neighbour references, i.e. the UIDs
which conveniently also encode the neighbour MPI-rank. A tupel containing a reference
to the grid and the respective neighbour rank is added to a candidate array if the degree is
larger than zero. In a second step, the candidate array is sorted given the respective pred-
icate. These are, as mentioned above, either the highest overall degree, or a preference of
the spatial or hierarchical degree. The sorted array is now traversed, yielding the current
most favourable grid to transfer. If the respective neighbour still needs grids to balance
its load, the grid is migrated, a migration counter is increased, the load requirement of the
neighbour process is decreased and the grid is removed from the candidate array. A grid
may be present multiple times in the candidate array, once for each neighbour process
with positive neighbourhood relations. Therefore it is important to remove all references
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Algorithm 9: Target determination method
// Generate an array of transfer candidates
foreach neighbourProcess do

foreach grid do
neighbourDegree ← getNeighbourDegree (grid, neighbourProcess);
if neighbourDegree > 0 then

candidateArray.append (grid, neighbourProcess);
end

end
// Sort the array according to the preferred predicate
sort (candidateArray, sortPredicate);
// Iterate through the candidate list and migrate grids
foreach candidate in candidateArray do

if candidate.neighbourProcess.loadTransfer > 0 then
migrate (candidate.grid);
migrationCounter ++ ;
candidate.neighbourProcess.loadTransfer −− ;
candidateArray.remove (candidate.grid);
if migrationCounter = totalTransfer then

return;
end
// Optional for forced migration

// Generate an additional candidate list of left over grids
foreach grid do

candidateArray.append (grid);
end
// Sort the array according to the local degree
sort (candidateArray, smallerLocalDegree);
// Migrate left over grids until the load transfer is satisfied
foreach neighbourProcess do

if neighbourProcess.loadTransfer > 0 then
migrate (candidateArray.grid);
candidateArray.grid ++;
candidate.neighbourProcess.loadTransfer −− ;

end
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of the specific grid. The algorithm concludes if either the candidate array is empty or
the amount of completed migrations has reached the total number of grids that should
be transferred to reach a balanced state.

The second part of the algorithm is only executed in the target determination methods
with forced migration, meaning those which also transfer grids with remote degree zero
to satisfy the load balance. The candidate array is filled again with the left over grids.
Similar as before, the candidates are sorted. This time according to the local degree,
because all remote degrees are zero. A traverse through the array now gives the grid with
the current lowest local degree. Each neighbour is checked whether the required number
of grids have been migrated already, if not, the current grid is migrated to this process.
As no duplicates are in the candidate array at this point, a removal is not necessary, but
the iterator pointing to the current element must be increased. After the migration, the
load requirement of the neighbour process is decreased. The method concludes when all
neighbour processes have gotten the required number of grids to balance or the candidate
list only has a single entry left (to prohibit no grids being left on the process).

This concludes the target determination methods implemented in the framework so far.
One additional option using the current communication model would be to weigh local
and remote degrees against each other. However, a broader understanding is necessary
to estimate the repercussions of weighing a better communication structure against a
more favourable load balance and to make an informed decision when one should take
precedence over the other.

4.3 Migration
To conclude the dynamic repartitioning module, the migration algorithms are introduced.
After the diffusion load-balancing has determined the amount of load to be transferred,
and the chosen target determination method has selected the target for the respective
grids, the grids need to be actually transferred. This includes the grids metadata and its
simulation data. In addition, all neighbourhood references held by other grids must be
updated accordingly. Due to the decentral grid distribution, the metadata updates must
be issued by the original holder of the grids. Before the final migration of a grid, processes
do not necessarily communicate with neighbours of the grid to be migrated and cannot
issue update queries to the respective processes.

The complete migration and update method is a three step process. An example is
illustrated in Figure 4.1. The setup consists of four process, p0 to p4, whereas p0, p1
and p2 each hold a grid with neighbourhood relations among them (dashed green lines).
p3 does not necessarily have any neighbourhood connection to p0 and p2, though it has
neighbourhood relations with p1 (not pictured). The goal is to migrate p1’s grid to p3.

The new grid identifier (GID), as part of the UID of a grid (see section 3.1.4), can only be
determined by the target process. Therefore, in a first step, the original process informs
the target process how many grids it is going to receive. The target process then virtually
generates new GIDs and sends them back to the origin process. With the new GID, the
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(a) Origin process informs target process how many grids are about to be transferred.
Target process sends back new GIDs.

p0 p1 p2

p3
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(b) Origin process informs all neighbours of metadata update.

p0 p1 p2

p3

migrate

response

(c) Grid is migrated.

Figure 4.1: Three stage migration and metadata update method.
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new MPI-rank and the static hash of the grids, new UIDs can be constructed on the origin
process. This back and forth communication is illustrated in Figure 4.1a. In the second
step, the new UID is communicated to all processes with grids that hold a neighbourhood
reference. The specific grids that need to update their reference are easily determined from
the references of the grid about to be migrated. This update is illustrated in Figure 4.1b.
In the third stage, the actual migration takes place. Each grid is transferred from origin
to target with its metadata and simulation data, pictured in Figure 4.1c.

The migration of grids may have caused a change in neighbourhood structure of the
assigned processes. Therefore, after the migration, each process must update their com-
munication links, which is simply achieved by iterating through every neighbour of the
held grids and storing every unique neighbour rank. In the figure, this means that now p0
and p3, as well as p2 and p3 are neighbouring processes and must establish communication
links. p1 must no longer communicate with p0 and p2.

4.4 Summary
This chapter has introduced the dynamic repartitioning method. The motivation for
introducing a repartitioning scheme based on a local method were to alleviate bottlenecks
of storing and updating a central repository of the domain structure, which is inherently
not scalable. The choice of a diffusion-based approach was made to mimic the physical
system in the hopes it would complement the AMR module, which also inherits the
properties of the physical system.

The diffusion aims to balance the workload across all participating processes. Here, a
single grid contributes one unit of computational load. Given enough iterations, it can
be proven that the diffusion-based approach converges. In practice however, only whole
grids can be migrated, which leads to some difficulties in load balancing. Some pointers
have been given for improvement, however this problem is not yet conclusively solved.

The second major part of the repartitioning module is the target determination. After
a measure of the necessary load transfer has been calculated, the question remains as to
which grids should be transferred to which target processes. The degree of a grid with
respect to a possible target process, i.e. the number of neighbourhood connections with
grids assigned to this process was proposed as the main deciding factor to which process
a grid should be transferred to. Different variants of target determination methods have
been implemented and will be evaluated in the next chapter. Possibilities include weighing
overall degree or preferring either hierarchical or spatial connections. Furthermore, these
variants can also be extended by allowing or prohibiting migrations to target processes
with unfavourable neighbourhood relations, weighing a better load balance against worse
communication patterns.

After the load transfer and the targets have been determined, the last part of the repar-
titioning module is the migration method. It is again limited by the constraints given
by the decentral data structure. The necessary metadata update methods have been dis-
cussed as well. This concludes the theoretical framework as well as the implementation
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details of the dynamic partitioning module. In the next chapter, the module is evaluated
using a number of different test cases and the results are discussed.
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Chapter 5

Evaluation of the Dynamic
Repartitioning

In order to show the viability of the implemented dynamic repartition approach, three ex-
ample test cases have been selected with increasing closeness to real applications. Firstly,
a pure artificial test scenario with a moving front, around which refinement takes place
is analysed. The second example is modelled after a simplified formulation of a laser
powder bed fusion benchmark. A prescribed heat source representing the laser is applied
to a metal surface, whereas the heat is dissipated through the material. The strength of
the heat-dissipation acts as an indicator for regions where refinement or coarsening is re-
quired. Finally, the well-studied benchmark scenario of vortex shedding behind a circular
obstacle within a flow is analysed. Here, the incompressible Navier-Stokes equations are
solved and the vorticity is used as an indicator to identify regions where the resolution
has to be increased or may be decreased.

As a baseline, a pure SFC repartitioning with a Z-Order curve is used. When it comes
to workload balance, the SFC returns an optimal result. In terms of connectivity, i.e.
the number of inter-process edges and minimisation of the surface area of partitions, the
Z-order curve has been shown to produce very good results [10, 265]. However, it has
been established that this decomposition cannot be computed regularly during runtime if
the system size becomes to large. Therefore, the question is how good the local approach
can be comparable to the “optimal” distribution for balance and connectivity.

All test examples were run on Leibniz Supercomputing Centre’s (LRZ) Linux Cluster
System [201] on the CoolMUC-2 cluster segment [200]. The specifications of the system
are: 812 28-way Intel Xeon E5-2690 v3 Haswell-EP nodes with Infiniband FDR14 inter-
connect and two hardware threads per physical core. The theoretical peak performance
of the segment is 1,400 TFlop/s. The compiler used was the Intel Compiler in version
19.0.
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5.1 Test Example - Growing AMR Sphere
The first example is a pure artificial test case for the repartitioning. There is no physical
system to be solved. Instead, a hollow sphere is placed inside a cubic domain at its center.
With every timestep the sphere is enlarged until the complete sphere encloses the domain.
Wherever the sphere surface intersects a cell, the corresponding grid is refined to a defined
depth. Vice versa, when the intersection no longer applies, the domain is coarsened and
grids are deleted again.

5.1.1 Test Setup
The setup consists of a cubic domain of unitless size 1×1×1. The domain is decomposed
using a subdivision of two in every cardinal direction, generating the classical octree
structure with eight children per refined parent. The domain is uniformly refined to
depth d = 4 resulting in 4,608 total grids and 4,096 leaf grids on the deepest refinement
level. Now the sphere is introduced into the domain at the center (0.5, 0.5, 0.5) with
unitless radius rinit = 0.01 and an adaptive refinement is performed to depth d = 6,
where the sphere surface intersects with the cells of a grid. This is the case for the eight
grids directly surrounding the center on depth d = 4 resulting in 64 children on depth
d = 5 and again on the eight grids surrounding the center on depth d = 5, resulting again
in 64 more children on depth d = 6. Consequently, the initial refinement results in 4,736
total grids and 4,208 leaf grids in the domain.

Over the course of the runtime, the sphere grows with a normal velocity of velnormal =
0.002 per pseudo timestep. This means, the radius of the sphere grows by 0.002 every
step. After exactly 429 timesteps, the radius of the sphere outgrows the cubic domain. At
t = 429 the radius of the sphere is 0.868 The locations with the largest distance from the
center of the domain are its corners with a distance of

√
3

2 ≈ 0.866. Wherever, the sphere
intersects a grid, it is refined down to depth d = 6. After the sphere no longer intersects
a grid, the AMR module tries to coarsen the domain back to depth d = 4. However, the
2:1 balance constraint must be adhered to, which results in a gradual coarsening around
the sphere’s surface to depth d = 5.

Figure 5.1 shows a cutout of the domain configuration overlaid with an STL representation
of the sphere at timesteps t = 0, t = 100, t = 200, and t = 300. This illustrates the
gradual growth of the sphere and the adaptive refinement and coarsening around the
sphere’s surface. The illustration depicts only leaf grids, with grids on depth d = 4 in
blue, grids on depth d = 5 in green and grids on depth d = 7 in orange.

Figure 5.2 shows the evolution of the number of grids during the runtime of the test.
At t = 0 the domain has 4,736 grids in total. As the sphere grows the number of
grids gradually increases until t = 253, where the number of grids in the computational
domain reaches its peak at 56,969. This is shortly after the sphere is at its largest, while
still completely within the cubic domain at t = 249. Afterwards, the number of grids
gradually decreases until the cubic domain is completely enclosed by the sphere and no
grids intersect with its surface any more. In the end, the domain is back to its initial
state, uniformly refined to depth d = 4 and 4,608 grids exist in total. During the course of
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(a) t = 0 (b) t = 100

(c) t = 200 (d) t = 300

Figure 5.1: Cutout of the computational domain overlaid with the sphere in STL format
at timesteps t = 0, 100, 200, 300. Only leaf grids are depicted, d = 4 in blue, d = 5 in
green and d = 6 in orange.

the test case, the sphere has intersected every grid once. Therefore, the domain has been
discretised completely to depth d = 6 at one time, resulting in 294,912 unique grids that
have existed in total. Apart from the pure artificial nature of the test case, the evolution
of the amount of grids in the domain also separates this example from the other two,
discussed afterwards.

In the following, the distribution of the SFC partitioning is compared against the diffusion-
based partitioning with the various target determination methods. The initial partitioning
is computed using the Z-order SFC for all testcases. The AMR module evaluates refine-
ment and coarsenings after every timestep. Afterwards a repartitioning is executed. Each
case is run on 32 nodes of the CoolMUC-2 cluster, with 28 cores each. Each core runs a
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Figure 5.2: Number of grids in the domain per timestep.

single process, amounting to 896 participating processes in total.

5.1.2 Workload Balance
The first key measure observed is the overall workload balance. That is how balanced the
distribution of grids onto the participating processes is. Figure 5.3 shows an overview of
the workload balance in terms of the standard deviation σ of grids per process of the SFC
partitioning, the diffusion partitioning with highest overall degree target determination
(HD) and without any repartitioning (NB).

The average number of grids per process (µ) varies between approximately µ = 5 at the
beginning and the end of the test run, and approximately µ = 64 at t = 253. This average
number behaves exactly as the curve shown in Figure 5.2. As mentioned above, the SFC
produces optimal balancing results with standard deviations of always less than one. Also
to no surprise, without any repartitioning the standard deviation rises considerably when
new grids are generated locally and have no way to be migrated to less burdened processes.
The highest standard deviation for NB is σ = 69 at t = 280.

The diffusion results have been gathered by running only a single iteration of the method
after every AMR adjustment. Here, the standard deviation rises in the first third of the
test run to approximately σ = 10 at t = 97, before dropping to σ = 4 at t = 158 and
staying between σ = 4 and σ = 6. At the highest overall load during the simulation run
at t = 253 the relative standard deviation is 8.5%.

To get a better picture of the evolution of the workload balance, Figure 5.4 illustrates
the frequency distribution of grids to processes at the three distinct timesteps mentioned
above. At t = 97, the standard deviation is maximal. The distribution is arguably very
poor. 55% of processes hold an amount of grids within one standard deviation from the
mean. The rest of the processes hold an amount between one and two standard devia-
tions from the mean. Furthermore, 32% of processes hold either five or six grids. This
is the amount they started with, suggesting that these processes have not yet actively
participated in grid migration. At t = 158 the standard deviation is minimal. The dis-
tribution is much better than before. 67% of processes lie within one standard deviation
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Figure 5.3: Standard deviation of grids per process measured at every timestep with an
Z-order partitioning (SFC), without repartitioning (NB) and with a single iteration of the
diffusion repartitioning and highest degree target determination (HD).

from the mean and 27% lie between one and two. Furthermore, the distribution appears
roughly normal distributed, adhering to the three-sigma-rule with two thirds of the pro-
cesses within one standard deviation from the mean and almost all (94%) within two.
The distribution has no outliers as before, suggesting the distribution has reached a good
balance. Finally, at t = 253 the computational load, that is the total amount of grids
in the domain, has reached its peak. The mean number of grids per process is twice as
high as before. Nevertheless the standard deviation is still acceptable. The distribution of
grids per process is even better, with 72% of all processes within one standard deviation
from the mean and 24% between one and two.

After establishing a baseline between the SFC and diffusion repartitioning strategies, a
closer examination between the individual target determination methods is performed.
First, the highest overall degree (HD) is compared against preferring to distribute grids
with hierarchical connections over spatial ones to a target process (HHD) and the opposite,
preferring spatial connections over hierarchical ones (HSD). All three methods do not
transfer grids to processes without any connections, in other words, they accept a worse
workload balance if no suitable grid with neighbourhood connections on the target grid
is available. Figure 5.5 shows the standard deviation of the different strategies for every
timestep. One gathers that the different methods have a negligible influence on the
distribution for the example, since the curves almost perfectly match.

Next, the three target determination methods with forced migration are examined in
terms of workload balance. They work similar to their respective non forced counterparts.
However, as their name suggests, after all grids with neighbourhood connections have been
migrated to a target process, grids without neighbourhood connections are migrated in
addition to satisfy the load transfer computed by the diffusion model. In Figure 5.6
the standard highest degree method (HD) is compared to its forced migration version
(HDF). For HDF, one observes an initially flatter curve compared to HD that rises to
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(a) t = 97

(b) t = 158

(c) t = 253

Figure 5.4: Histogram of the frequency distribution of grids per process at times t =
97, t = 158 and t = 253 with diffusion partitioning and highest overall degree target
determination (HD). The histogram is overlaid with the smoothed kernel density estimate
using a Gaussian kernel.
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Figure 5.5: Standard deviation of grids per process measured at every timestep with a
single iteration of the diffusion repartitioning and different target determination strategies.
Highest degree target determination (HD), preferring hierarchical edges over spatial edges
(HHD) and preferring spatial edges over hierarchical edges (HSD).

approximately σ = 6 at t = 87. Even though its peak is lower in the first third of the
simulation run, it does not recover in the following and the non forced version outperforms
the former from t = 146 onwards. For the rest of the runtime, the standard deviation
remains between σ = 5 and σ = 7. At the highest overall load during the simulation run
at t = 253 the standard deviation is σ = 6.4, a relative standard deviation of 10%.

Figure 5.6: Standard deviation of grids per process measured at every timestep with a
single iteration of the diffusion repartitioning and different target determination strategies.
Highest degree target determination (HD) and highest degree target determination with
forced migration (HDF).

For a better understanding, the evolution of the workload balance is similarly examined
for the HDF method at times t = 97, t = 158 and t = 253. This is illustrated in
Figure 5.7. At t = 97 the distribution is much better compared to HD, with 61% of all



122 5. Evaluation of the Dynamic Repartitioning

(a) t = 97

(b) t = 158

(c) t = 253

Figure 5.7: Histogram of the frequency distribution of grids per process at times t =
97, t = 158 and t = 253 with diffusion partitioning and highest overall degree target
determination with forced migration (HDF). The histogram is overlaid with the smoothed
kernel density estimate using a Gaussian kernel.
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processes within one standard deviation from the mean number of grids per processes.
Furthermore, the amount of processes which have not yet migrated load, i.e. processes
with five or six grids is much lower, at only 12.5% compared with the 32% of processes
when using the non forced migration version. These results coincide with the expectation
that forcing a migration for the benefit of a more optimal workload balance should produce
beneficial results. At t = 158, HDF produces slightly worse results in overall standard
deviation, the distribution itself is comparable however. It is roughly normal distributed
with 63% of all processes within one standard deviation from the mean and one third
of processes between one and two standard deviations. Compared to HD, there are less
processes within one standard deviation (67% for HD), but considerably more between
one and two (27% for HD). Furthermore, the distribution is slightly skewed to the left
of the mean compared to HD which is slightly skewed to the right. Lastly, at t = 253
both HD and HDF have even more similar distributions, with the same percentage of
processes within one standard deviation from the mean and between one and two. The
main difference is HD is even more skewed towards the right of the mean, whereas HDF is
more balanced than before. In conclusion, HDF is able to reach a balance workload faster,
due to more possibilities for migration. Both methods tend towards a consistent standard
deviation with slightly better values for HD during the remainder of the simulation.

Figure 5.8 illustrates the comparison of standard deviation of grids per process of all
target determination methods with forced migration. Similar to the regular versions, no
discernible difference can be observed.

Figure 5.8: Standard deviation of grids per process measured at every timestep with a
single iteration of the diffusion repartitioning and different target determination strategies
with forced migration. Highest degree target determination (HDF), preferring hierarchical
edges over spatial edges (HHDF) and preferring spatial edges over hierarchical edges
(HSDF).

To conclude the detailed examination of the different methods in terms of workload bal-
ance, the influence of multiple diffusion steps per timestep is studied. Figure 5.9 shows the
standard deviation using one to four steps of the HD repartitioning scheme per timestep.
More steps in generally lead to a slightly better balance with the highest improvement
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achieved when going from one to two steps. Even more steps have a slight advantage
during the first third of the runtime, while the system establishes its’ initial balance. Af-
terwards, the difference between two or more steps is negligible. The best improvement
in distribution is achieved at times t = 97 and t = 253, reducing the peaks in standard
deviation by one. Figure 5.10 illustrates the distribution of process to grids at time t = 97
and four iterations of the method per timestep. The overall distribution is similar to be-
fore with almost identical percentages of process within one and between one and two
standard deviations from the mean. However, the amount of process which have not yet
participated in balancing has been reduced from 32% to 25%.

Figure 5.9: Standard deviation of grids per process measured at every timestep for dif-
ferent amounts of iterations of the diffusion repartitioning with highest degree target
determination (HD).

Figure 5.10: Histogram of the frequency distribution of grids per process at time t =
97 with four iterations of the diffusion partitioning and highest overall degree target
determination (HD). The histogram is overlaid with the smoothed kernel density estimate
using a Gaussian kernel.
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Figure 5.11: Standard deviation of grids per process measured at every timestep for
different amounts of iterations of the diffusion repartitioning with highest degree target
determination and forced migration (HDF).

Figure 5.12: Histogram of the frequency distribution of grids per process at time t =
97 with four iterations of the diffusion partitioning and highest overall degree target
determination with forced migration (HDF). The histogram is overlaid with the smoothed
kernel density estimate using a Gaussian kernel.

Similar observations can be made for the target determination method with forced mi-
gration HDF. In Figure 5.11 the standard deviation for one to four steps of the HDF
scheme is illustrated. Even though peaks in standard deviation are reduced as well, the
effect is even less pronounced. The best effects are achieved at times t = 97 and t = 267,
going from a single step to four balancing steps with reductions in standard deviation
of roughly one. In Figure 5.12 the distribution of grids per process is depicted at time
t = 97 and four balancing steps per timestep. Here, the improvement is more noticeable.
70% of processes lie within one standard deviation from the mean compared to 61% with
a single balancing step. The percentage of processes which have not yet participated is
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more than halved, from 12.5% to 5.8%

5.1.3 Connectivity
The second key measure observed is the connectivity within the domain. The connectivity
can be split into two categories. First the process connectivity. It measures the number
of connections (edges) between processes that hold one or more neighbouring grids and
are considered neighbouring processes. As such, the process connectivity gives a measure
of the communication frequency. A lower number of edges directly translates to a lower
number of messages send. Figure 5.13 illustrates process connectivity in terms of total
edges during every timestep of the simulation. In Figure 5.13a an overview is given,
comparing the SFC strategy against the diffusion methods with highest degree target
determination with and without forced migration (HD and HDF). As expected, the SFC
performs best out of the three, with a total edge count between 5,834 and 4,523 over
the course of the runtime. The process connectivity for both diffusion strategies rises
up to a maximum of 10,670 edges at t = 195 for HD and 16,458 at t = 229 for HDF.
Consequently, at its highest, HD has about twice as many messages to send during each
process communication cycle and HDF even has more than three times as many as with
the SFC repartitioning strategy. HDF performs worst out of the three during the runtime
and is also worse off at the end, when both the SFC and HD strategies tend towards their
initial state. As the HDF strategy is designed to force migrations even if neighbourhood
connections are unfavourable this behaviour is to be expected.

Figure 5.13b gives a closer comparison over the three target determination strategies
without forced migration. The already shown HD, as well as the variant which prefers
hierarchical edges within the target determination (HHD) and the variant which prefers
spatial edges (HSD). The differences are miniscule however. HHD performs slightly worse
than HD and reaches its peak at t = 210, with 10,793 total edges. An increase of 123
edges compared to HD. HSD performs worst out of the three. Its peak is reached at
t = 212 with 11,368 total edges.

A similar comparison for the three variants with forced migration, HDF, HSDF and
HHDF, is illustrated in Figure 5.13c. The difference between the three variants is even
more negligible. The curves rarely deviate from each other, with peaks in total edges of
16,213 at t = 229 for HHDF and of 16,721 at t = 230 for HSDF.

For more insight into the distribution of neighbourhood connections, the frequency dis-
tribution of these connections per process is illustrated in Figure 5.14. The first his-
togram 5.14a shows the distribution of edges per process using an SFC strategy at t = 175,
where the number of total edges in the domain is at its highest. The mean number of
edges per process µ is 13. The standard deviation σ is 5. 72% of all processes lie within
one standard deviation from the mean. This means they have between 8 and 18 neigh-
bourhood connections. 22% of processes are between one and two standard deviations,
that is processes with less than 8 and between 18 and 23 neighbourhood connections.
There are some outliers with more than three standard deviations from the mean. How-
ever, in total less than two percent. The highest amount of neighbour connections is 34.
The sample with the highest frequency of 122 is 11. In other words, 122 processes have
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(a) Overview of the main repartitioning strategies: SFC, diffusion with highest degree target determina-
tion (HD) and diffusion with highest degree target determination and forced migration (HDF)

(b) Diffusion repartitioning with highest degree target determination (HD), preference of hierarchical
degree (HHD) and preference of spatial degree (HGD).

(c) All diffusion repartitioning strategies with forced migration. Highest degree target determination
(HDF), preference of hierarchical degree (HHDF) and preference of spatial degree (HGDF).

Figure 5.13: Process connectivity measured as number of edges between processes in the
domain per timestep.
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11 neighbourhood connections.

The second histogram 5.14b shows the distribution of edges per process using the HD
strategy at t = 195. Again, the timestep is chosen at the highest total edge count during
the runtime. The mean number of edges per process µ is 24. The standard deviation σ is
10. 78% of all processes lie within one standard deviation from the mean. These processes
have between 14 and 34 neighbourhood connections. Compared to the SFC strategy a
slightly better clustering around the mean, however the mean and standard deviation are
about twice as high. The sample with the highest frequency of 63 is 16. Half as many
occurrences as SFC’s most frequent sample. 18% of processes are between one and two
standard deviations. There are also more outliers that are farther away. The largest
outlier is one process with 84 connections. The degree of the process directly influences
the workload swapping ratio between neighbouring processes. A high degree leads to a
low ratio and, because of the rounding in the diffusion formulation, to few grid transfers.
In turn, leading to a high amount of grids, which in turn may cause a high number of
neighbourhood connections.

The final histogram 5.14c shows the distribution of edges per process using the HDF
strategy at t = 229, the respective timestep with the highest total edge count. The mean
number of edges per process µ is 37. The standard deviation σ is 18. Mean and standard
deviation are around three times as high compared to the SFC distribution, making this
the most wide and worst distribution of neighbourhood connections among the three.
The overall distribution is however comparable to the former strategies. 73% of processes
have between 19 and 55 neighbourhood connections, that is within one standard deviation
from the mean. The sample with the highest frequency of 44 is 20. This is again in line
with the distribution being roughly three times as wide as the SFC distribution. 22% of
processes are between one and two standard deviations, i.e. have less than 19 and between
55 and 73 neighbourhood connections. Outliers with more than three standard deviations
from the mean make up 1% of all processes. About half as many compared to the HD
strategy. It can be assumed that while this strategy still suffers from a high degree and
consequently a low workload swapping ratio, the fact this strategy is not constrained by
target determination restrictions somewhat mitigates the tendency towards very high grid
amounts. Nevertheless, the process with the highest number of connections has 115. It is
connected to roughly 13% of all participating processes.

To complete the picture, the second connectivity category is the grid connectivity. This
is measured as the amount of inter-process edges directly between grids. At any given
timestep the amount of grids, and consequently the total amount of inter- and intra-
process edges is equal. Intra-process edges do not entail any communication, because
the necessary values can simply be read or copied from the local memory. Therefore,
a lower amount of inter-process edges, which directly translate to communication over
the network, is beneficial. In Figure 5.15 the inter-process edges for all implemented
repartitioning strategies are illustrated. To be comparable, the values are taken at the
same timestep t = 253, where the computational intensity is maximal.

Exhibiting 56,083 inter-process edges, the lowest of all measured strategies, the SFC repar-
titioning shows the best distribution of neighbouring grids. This means, the clustering
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(a) SFC distribution at time t = 175.

(b) HD distribution at time t = 195.

(c) HDF distribution at time t = 229.

Figure 5.14: Histogram of the frequency distribution of neihgbourhood connections
(edges) per process. The histogram is overlaid with the smoothed kernel density esti-
mate using a Gaussian kernel.



130 5. Evaluation of the Dynamic Repartitioning

of neighbouring grids is best and the surface area is indeed minimal, as advertised. Fur-
thermore, the percentage of hierarchical edges compared to spatial edges is the lowest
of all strategies, with 14% hierarchical and 86% hierarchical edges. This suggests that,
compared to other strategies, the SFC method largely favours hierarchical edges to be
kept within the same process over spatial edges. If the SFC strategy is seen as the gold
standard, weighting hierarchical edges even more than the HHD and HHDF strategies do,
might be worthwhile.

The total amount of inter-process edges of the diffusion strategies are roughly equal. HD
exhibits the lowest amount of 79,933, followed by HHD with 83,070, HDF with 84,781,
HSDF with 85,237, HHDF with 85,195 and finally HSD with 86,090 inter-process edges.

Figure 5.15: Amount of total inter-process edges between grids, divided into spatial and
hierarchical edges for all repartitioning strategies at time t = 253.

In terms of distribution of hierarchical compared to spatial edges, the overall highest
degree strategies show no difference compared with the strategies that explicitly prefer
hierarchical edges. However, the versions which prefer spatial edges show a lower percent-
age of inter-process spatial edges compared to inter-process hierarchical ones. In general,
the percentage of inter-process hierarchical edges is lower for the versions with forced
migration compared to their non forced counterparts. Given that the overall edge count
of all grids is equal for every strategy and the inter-process edges of the diffusion methods
are roughly equal as well, the main influence on the higher process connectivity of the
versions with forced migration can be attributed to the worse clustering of neighbouring
grids onto individual processes.

This may also be concluded from Figure 5.16. Here, the process connectivity is depicted
by means of a matrix with the respective MPI ranks as rows and columns. If two ranks
share a neighbouring connection, the respective matrix entry is marked in black. As a
communication link is bidirectional, the matrix is naturally symmetric. One observes a
very tight clustering around the main diagonal for the SFC repartitioning method (Fig-
ure 5.16a). Numerically close ranks mainly communicate with each other with some
exceptions marked by off-diagonal entries. The clustering is still visible for the HD strat-
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egy (Figure 5.16b), albeit much wider with many more off-diagonal entries. Because, the
strategy cannot transfer grids with no neighbourhood connections to a target rank, the
deviation from the initial SFC clustering is limited. When using the HDF strategy (Fig-
ure 5.16c), almost no clustering is visible anymore. One might surmise a faint remnant
of the initial SFC pattern around the main diagonal, however hardly visible.

(a) SFC (b) HD

(c) HDF

Figure 5.16: Process connectivity at time t = 253.
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5.1.4 Migration
To reach the computed partitioning, the respective grids must be transferred from one
process to the next. As such, to conclude the observations of the repartitioning strategy,
these redistribution costs are evaluated. The main findings comparing the SFC, HD and
HDF strategies are illustrated in Figure 5.17 and Table 5.1. Results for the other strategies
are purposely omitted, because within the variants with and without forced migration,
the differences are negligible.

Here, the main drawback of the otherwise advantageous SFC repartitioning becomes vis-
ible. It incurs massive redistribution costs. In total, grids are migrated 7.3 million times.
Almost every grid (99.99%) is migrated during its lifetime, on average 24 times. During
the 430 timesteps of the testcase, the highest number a single grid is migrated is 302
times. To reach the state computed by the method, 16,935 migrations are necessary per
timestep on average. The highest migration count per timestep is 49,289 at time t = 252.

The HD and HDF methods incur only a fraction of the redistribution costs. HD ac-
cumulates 250 thousand migrations in total, only 3.4% of the migrations of SFC. HDF
accumulates even less, with 200 thousand migrations in total, which is 2.7% of the migra-
tions of SFC. While SFC migrates almost all grids during their lifetimes multiple times,
less than half of the grids are migrated even once during their lifetime using the diffu-
sion strategies. 45% using HD and 40% using HDF. For HD, on average 586 grids are
migrated per timestep. The highest single number of migrations is 2,066 at timestep 252.
For HDF, the highest number of migrations is measured at the same timestep, with 1,735
migrations. The average number is 456 migrations per timestep.

When comparing HD and HDF, it can be observed that up to around time t = 25 HDF
leads to more migrations. This is in line with expectations. However, afterwards HD
overtakes and performs about 25% more migrations in total. At first glance this might
seem counter intuitive. Nevertheless, this is in line with the observed better workload
balance from the second third of the runtime onwards.

Figure 5.17: Total amount of migrations per timestep for SFC, HD and HDF strategies.

The impact on the runtime of the added migrations of the SFC method is significant. As
no actual calculation takes place, the majority of the runtime comes from evaluating the
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Table 5.1: Migration statistics for the growing sphere test example.

SFC HD HDF

total migrations 7, 316, 002 253, 087 196, 926
individual grids migrated 294, 874 134, 326 118, 450
ratio [%] 99.99 44.84 39.54
average migrations per step 16, 935 586 456
max migrations per step 49, 289 2, 066 1, 735
average migrations per grid 24.42 1.88 1.66
max migrations per grid 302 20 15

distribution and the subsequent grid transfers. Multiple runs with the same conditions
were performed. On average the diffusion approach with HD target determination takes
73 sec or 1:13 min. The SFC strategy needs more than 33 min on average for one complete
run. This is in line with the roughly 33 times higher migration volume of the later method.

5.1.5 Short Summary
This test example analysed a pure artificial AMR case to test the repartitioning. During
the course of the runtime, the complete domain has been refined to depth d = 6 once and
coarsened back to d = 4. This example aimed to give an overview over all available target
determination methods of the diffusion repartitioning strategy as well as to analyse the
influence of a greater number of iterations of the method.

In terms of workload balance, the diffusion model for repartitioning with any target de-
termination method performs reasonably well when it comes to establishing a balanced
workload among all participating processes. After relatively high standard deviations at
the beginning of the simulation, when the number of grids grows rapidly, the various
diffusion methods with and without forced migration tend towards a relative standard
deviation of less than 10 percent. With more time, the distribution of grids per process
tend to become more narrow with less outliers. Comparing the forced and the non forced
variants, it becomes clear that to establish an initial system balance, the forced variants
have advantages, because they are less limited. After an initial balance has been estab-
lished however, and all processes have participated in grid migrations, the non forced
variants outperform the forced variants slightly. The distribution of all variants can be
improved by using more balancing steps per timestep, albeit minor. The best improve-
ments could be observed going from one balancing steps to two. Afterwards the returns
are diminishing.

Looking at process connectivity, the diffusion variants without forced migration end up
with around twice as many communication links at their respective maxima compared to
the SFC method. The versions with forced migration perform worse as expected, with
around three times as many communication links. This means every communication cycle
is two, (or three) times as expensive. Furthermore, the overall distribution is worse, with
a standard deviation twice as high for the non forced migration versions compared to



134 5. Evaluation of the Dynamic Repartitioning

the SFC baseline and three times as high for the forced migration versions. Concerning
the overall inter-process grid connectivity, all diffusion-based approaches have around 1.5
to 1.6 times as many inter-process edges as the SFC method, whereas the later shows
a preponderance for spatial edges. Even though the amounts of edges for the diffusion
approaches are roughly equal, the clustering is worse for the forced migration methods.
This is one of the main reasons responsible for the worse process connectivity.

Even though the SFC method is incremental, meaning small changes in the refinement
structure only lead to small changes in the partitioning, with most of the grids still
assigned to their former processes, the number of grid migrations is considerably higher
compared to the diffusion approach. The combined number of migrations of the SFC is
about 33 times that of the diffusion repartitioning. As this is a pure AMR benchmark
without any computation, the impact of the higher migration volume on the runtime is
considerable. Using the SFC method the time is around 27 times as long as with the
diffusion method with highest degree target determination.

5.2 Test Example - Additive Manufacturing
Benchmark

The second example is inspired by an additive manufacturing benchmark test: a laser
powder bed fusion on bare metal substrates. The AMB2018-02 benchmark serves as a
starting point for the evaluation [198]. In these benchmark cases, a laser tracks over a
bare nickel-based superalloy metal surface in individual strokes, melting the surface of
the alloy. For a physically correct simulation, the interested reader is referred to Kopp
et. al. [187]. The present test setup is inspired by their hatched square laser track. As
for the present evaluation, physical correctness is less important. Therefore, the model is
simplified to a three-dimensional temperature diffusion equation. This does not capture
the phase change of melting substrate for example.

5.2.1 Test Setup
The simplified physical model is represented by the three-dimensional temperature diffu-
sion equation

∂

∂t
T = α ·∆T. (5.1)

with T being the temperature, depending on time t and its location in the grid. α
represents the thermal diffusivity in [m2/s], ∆ is the Laplace operator. For the numerical
discretisation a central difference scheme in space and a forward Euler timestepping is
used. This is known as FTCS scheme, which is commonly used to solve parabolic partial
differential equations.

The domain setup consists of a cubic alloy of size 25 cm × 25 cm × 5 cm. The root
node, representing the complete domain, is refined by subdividing the domain in x- and
y-direction by two. There is no subdivision in z-direction. Consequently, the root node
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has four children on refinement depth d = 1. Refinements from level d = 1 onwards use a
subdivision of two in all three directions, resulting again in an octree structure with eight
children per refined parent node. The domain is uniformly refined to depth d = 5, which
results in 18,725 total nodes and 16,384 leaf nodes on refinement level d = 5.

The initial partitioning follows the domain generation method outlined in section 3.4.
Therefore, all test cases start from a Z-order SFC partitioning. Within the domain gen-
eration procedure, each node is discretised with a grid, which consists of 16 × 16 × 8
cells. Each cell is initialised with an initial temperature of T = 25◦C. The material for
the chosen alloy is steel with a thermal diffusivity of α = 0.208 · 10−4 m2/s. The laser
is represented by a time-dependent Dirichlet temperature boundary condition applied to
the top surface of the alloy, with a temperature of T = 1, 200◦C. The radius of the laser
is 750 µm.

The laser travels along a prescribed path with a speed of 80 mm/s. Initially, it draws a
square on top of the alloy with a side length of 15 cm, starting from the square’s right
lower corner and moving in y-direction first. The square is completed and the initial
position is reached again at time t = 7.5 s. After completing the square, the laser hatches
the area inside the square, starting again from the initial position at its right lower corner.
The spacing between each track of the hatch is 5 mm. The hatch is complete around time
t = 61 s. Figure 5.18 illustrates the accumulation of the laser track at four different
timesteps. In practice, the temperature boundary condition is removed after the laser has
moved away from the respective cell.

In regions where the temperature diffusion is high, in the vicinity and in the wake of the
laser, an increased accuracy of the solution is desired. Thus, grids are refined incrementally
to depth d = 7 when the second derivative of the temperature exceeds a value of 260◦C in
one of its cells. Consequently, an incremental coarsening is performed back down to the
initial depth of d = 5 when a threshold of 30◦C is undershot. Refinements and coarsenings
need to satisfy the 2:1 balance condition as before. Figure 5.19 serves to illustrate the
refinement state at time t = 25 s. The left upper illustration shows the complete domain.
Cells with a temperature of greater than 30◦C are coloured. Below is a zoomed in view
of all grids on depths d = 6 and d = 7. The current laser spot is clearly visible in red as
well as its previous path where temperature and consequently the diffusion are still high
and the domain is refined.

The timestep size is determined by a stability analysis of the FTCS scheme. It takes into
account the cell size and the thermal diffusivity and results in dt = 9 · 10−5 s. The laser
speed is taken into account as well, which limits the timestep such that the laser cannot
travel more than the length of a single cell per step. However, the limiting factor for dt
is the stability condition. A domain update is performed every 20 timesteps, or every
dt = 18 · 10−4 s. After every domain update, four repartitioning steps of the diffusion
method are performed to balance the workload.

Figure 5.20 shows the evolution of the number of grids during the runtime of the test.
At time t = 0 s the domain has 18,797 grids with roughly 38.5 million cells in total. The
number of degrees of freedom correspond to the number of cells. The initial refinement
around the laser spot increases the grid count to 19,053 at time t = 0.54 s, with roughly
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(a) t = 5 s (b) t = 10 s

(c) t = 30 s (d) t = 60.6 s

Figure 5.18: Accumulation of the laser track boundary condition on top of the alloy at
different times.

39 million cells. The amount of grids stays relatively constant until time 7.5 s, at which
point the initial square is completed. Small peaks can be observed when the laser changes
direction in the corners of the square. During the hatching, the grid count shows a greater
variability between 19,013 and 19,197, with between 38.9 and 39.3 million cells. However,
the total variability is less than 2%. During the course of the test case 90,453 unique grids
have existed in total.

Compared to the first example, this test examines very small localised phenomena with
residual effects. The refinement and coarsening of the domain closely follows the laser
track. In the following, the diffusion-based repartitioning with highest degree target de-
termination (HD) is examined in terms of workload balance, connectivity and migration
frequency. A Z-order SFC repartitioning method serves as a baseline. To allow an evalu-
ation of the influence of the number of participating processes on the repartitioning, this
testcase has been deployed to 4, 8, 16 and 32 nodes of the CoolMUC-2 cluster, with 28
cores each. Again, each core runs a single process, resulting in 112, 228, 448 and 896
processes in total.
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Figure 5.19: Refinement state at time t = 25 s. Cells with temperatures higher than 30◦C
are coloured. Detailed view is illustrated in the center, complete domain is at the top left.

5.2.2 Workload Balance
Figure 5.21 shows the standard deviation σ of grids per process for the HD repartitioning
for the different node counts, from 4 to 32 nodes. It can be seen that with higher amounts
of processes, σ becomes less volatile and generally smaller. Using 4 nodes, σ varies between
1.5 and 4.1. Using 8 nodes, the variability is lowered to values of σ between 1.8 and 3.3.
Again doubling the node count to 16, σ varies between 1.4 and 2.8 and finally, using 32
nodes, σ varies between 1 and 2.3. This behaviour was to be expected. As the number
of processes increase, the mean number of grids per process decreases and the standard
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Figure 5.20: Number of grids in the domain per timestep. Data points are sampled for
better visibility. Every fourth data point is taken into account.

deviation should become smaller.

Figure 5.21: Standard deviation of grids per process measured at every timestep using
HD diffusion repartitioning and different amounts of participating processes.

The relative standard deviation shown in Figure 5.22 as the ratio between σ and the mean
number of grids µ reveals a decrease in distribution quality when using higher node counts.
Compared to the absolute σ, the relative standard deviation and its volatility increases
with higher number of participating processes. Especially for 32 nodes, the initial square
outline of the laser up to time t = 7.5 s can be observed clearly by the increase in relative
σ from around 6% to 9%. The square outline covers a relatively large domain, making it
hard for the diffusion approach to keep up, as each process only covers a small amount
of the complete domain. Less processes, each covering a larger amount of the domain do
not exhibit this large increase in relative σ. After the initial square has been completed,
all curves stay relatively constant with values between 8 and 11 percent for 32 nodes,
between 4 and 6 percent for 16 nodes, between 2 and 4 percent for 8 nodes and around 2
percent for 4 nodes.
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Figure 5.22: Relative standard deviation of grids per process measured at every timestep
using HD diffusion repartitioning and different amounts of participating processes.

A complete picture of the distribution at time t = 38 s, when the most number of grids
exists in the domain, is depicted in Figure 5.23. It can be assumed that for higher node
counts, the amount of processes that actively participated in load balancing becomes
less. The reason is a combination of very few grids per process and a tendency to keep
grids when the weight difference between neighbouring processes is small because of the
rounding. Nevertheless, the diffusion method in this case is able to limit the impact of
outliers and keep a relatively narrow distribution. Using 32 nodes, the average amount of
grids is approximately 21. A single refinement introduces eight new grids, which increases
the load by almost 50%. Multiple refinements therefore may increase the current load
by a multiple. However, in total there are only five processes with a grid count larger
than three standard deviations from the mean (27 grids), among them a single highest
sample of 29. On the other side, there are 15 processes with grid counts smaller than
three standard deviations from the mean (15 grids). The smallest sample here is a single
process with 11 grids. These can be assumed to be the result of an overcompensation in
the diffusion process.

5.2.3 Connectivity
The examination of the domain connectivity is again split into the process and grid con-
nectivity. Figure 5.24 depicts the total number of connections (edges) between processes
per timestep for the HD and SFC repartitioning strategies and the different numbers of
nodes used. The total connectivity for the SFC strategies stays constant at 560 edges for
4 nodes, 1,270 edges for 8 nodes, 2,640 edges for 16 nodes and 5,110 edges for 32 nodes.
Doubling the amount of nodes approximately doubles the amount of total edges in the
system, which is reasonable behaviour.

When using the HD strategies the amount of edges increase from their initial amount to
time 7.5 s. Afterwards they stay roughly constant until the end of the runtime. Again,
this behaviour suggests that similar to the behaviour observed for the workload balance,
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(a) 4 nodes

(b) 8 nodes

(c) 16 nodes

(d) 32 nodes

Figure 5.23: Histogram of the frequency distribution of grids per process at time t = 38 s
with HD diffusion repartitioning for different node counts. The histogram is overlaid with
the smoothed kernel density estimate using a Gaussian kernel.
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Figure 5.24: Process connectivity measured as number of edges between processes in the
domain per timestep. Illustrated are HD and SFC repartitioning strategies with 4, 8, 16
and 32 nodes.

the diffusion strategy has issues with high spatial distances when it comes to process
connectivity, too. Small local phenomena are handled well though. Using 4 nodes, the
total amount of connections rises to 950 edges. An increase of 70% compared to the SFC
method. Using 8 nodes, the edge count rises to 1,900, a 50% increase. For 16 nodes used,
the edge count increases by 33% to 3,500 edges. Finally, with 32 nodes the edge count
increases by 23% to 6,300. The percentage increase in process connectivity is reduced for
a larger number of nodes.

To get a better insight into the quality of the distribution, Figure 5.25 illustrates the
standard deviation σ per timestep of both strategies for the different node counts. σ stays
almost constant when using the SFC repartitioning at values around 4. Increasing the
node count slightly increases the standard deviation, too. The relative σ ranges between
33% and 38%. When using the HD repartitioning, standard deviations are generally
higher. Again, the increase up to time t = 7.5 can be seen clearly. While at 32 nodes σ
stays relatively constant, using less nodes shows a more oscillatory behaviour. Using 4
nodes, σ even increases sharply directly at the beginning. Here, less processes result in
a higher connectivity and a larger impact on many processes, when the initial square is
drawn by the laser track. Using more processes, the phenomena stay more localised. The
relative standard deviation for node counts 8, 16 and 32 increases from 35% to around
45% at time t = 45 s, where it remains. The lower node counts show a higher volatility
though. A node count of 4 exhibits an initial spike up to 70% and gradually decreases
down to 45% as well.

Figures 5.26 and 5.27 illustrate the comparison between the distribution of edges to indi-
vidual processes for the HD and SFC strategies at time t = 38 s, where the computational
intensity is maximal. The first comparison used 4 nodes. The SFC strategy exhibits a
mean number of edges per process µ of 10.4 and standard deviation σ of 4. 72% of all
processes have an amount of edges within one standard deviation from the mean, 95%
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Figure 5.25: Standard deviation of connections per process measured at every timestep
using the HD and SFC repartitioning strategies for different amounts of participating
processes.

(a) SFC, 4 nodes

(b) HD, 4 nodes

Figure 5.26: Histograms of the frequency distribution of edges per process at time t = 38 s
with SFC and HD repartitioning strategies. The histogram is overlaid with the smoothed
kernel density estimate using a Gaussian kernel.



5.2. Test Example - Additive Manufacturing Benchmark 143

(a) SFC, 32 nodes

(b) HD, 32 nodes

Figure 5.27: Histograms of the frequency distribution of edges per process at time t = 38 s
with SFC and HD repartitioning strategies. The histogram is overlaid with the smoothed
kernel density estimate using a Gaussian kernel.

lie within two. There is a single outlier with 22 edges. The sample with the highest
frequency of 20 is 6. The HD strategy exhibits a mean number of edges per process µ of
18 and standard deviation σ of 8. The distribution is relatively more narrow with 86% of
all processes within one standard deviation from the mean and 97% within two. There
are more outliers tough. Three processes hold more edges than three standard deviations
from the mean. The highest edge count is 68.

The second comparison used 32 nodes. The mean number of connections between pro-
cesses µ is 11.4, the standard deviation σ is 4.1. The distribution in terms of percentages
is very close to the first comparison, with 71% of all processes within one standard devia-
tion from the mean and 96% within two. However, the number of outliers is considerably
higher. In total, 20 processes or roughly 2.2% have a number of connections larger than
three standard deviations from the mean. The greatest outlier has 29 edges. With the
HD method, the mean µ is 14 and the standard deviation σ is 6.2. The distribution differs
a little from before, with 80% of processes within one standard deviation and 96% within
two standard deviations from the mean. The distribution is a little broader than before,
however the standard deviation is smaller. Furthermore, the percentage of outliers has
improved and is even less than with the SFC method. 13 or 1.5% of processes have more
connections than three standard deviations from the mean. The highest edge count is 50.
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To complete the evaluation of the process connectivity, the communication links are again
illustrated between the respective MPI ranks. Figure 5.28 shows the connectivity matrix
at time t = 38 s for the four different node counts. The connectivity in general is mostly
clustered around the main diagonal, which is beneficial. Although not guaranteed, nu-
merically close MPI ranks usually are run on physically close components. For example
on cores on the same microprocessor. This entails faster communication. This beneficial
clustering around the main diagonal with less off-diagonal entries is even more pronounced
for higher nodes counts.

(a) 4 nodes (b) 8 nodes

(c) 16 nodes (d) 32 nodes

Figure 5.28: Process connectivity at time t = 3.8 s.

Finally, the grid connectivity results for this test case are presented in the following. In
Figure 5.29 the inter-process edges for the SFC and HD methods and the different node
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counts are shown. Again, all values are taken at time t = 38 s. The HD method exhibits
20,183 inter-process edges for 4 nodes, 23,965 for 8 nodes, 29,499 for 16 nodes and 35,872
for 32 nodes. The SFC method exhibits 14,530 edges for 4 nodes, 19,114 for 8 nodes,
25,503 for 16 nodes and 33,182 for 32 nodes. The amount of inter-process grid edges is
lower for all measured node counts when using the SFC strategy. However, the percentage
increase is higher. HD’s edge count increases between 19 and 23 percent for every doubling
of the nodes. SFC’s edge count increases between 30 and 33 percent. If this behaviour
persists, SFC’s total edge count will overtake HD’s count when the number of nodes is
further increased.

The distribution of spatial and hierarchical edges stays relatively constant for HD. Inter-
process hierarchical edges fluctuate between 18 and 22 percent of all inter-process edges.
The corresponding spatial edges fluctuate between 78 and 82 percent respectively. The
percentage of hierarchical edges is lower for the SFC repartitioning. However, it in-
creases with more nodes used from 8 to 17 percent. Correspondingly, the proportion of
inter-process spatial grid connections decreases from 92 to 83 percent. If this behavior
continued, the percentages between the two repartitioning strategies would even out on
the next doubling of nodes. Furthermore, a subsequent increase of nodes could lead to a
higher percentage of hierarchical edges of the SFC strategy compared to the percentage
observed when using the HD strategy.

Figure 5.29: Amount of total inter-process edges between grids, divided into spatial and
hierarchical edges for both repartitioning strategies and different node counts at time
t = 3.8 s.

5.2.4 Migration
To conclude the observations for this test example, the migration statistics are presented.
Figure 5.30 illustrates the total amount of grid transfers from one process to another for
each timestep. The statistics at the end of the runtime are given in Table 5.2.

Again, the SFC method, incurs massive redistribution costs that linearly scale with the
amount of nodes used. In total, 2.5 million grid migrations are necessary to reach the
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computed partitions using 4 nodes. At the top end, with 32 nodes, more than 16.3 million
migrations are necessary. The amount of individual grids transferred during their lifetime
rises from 93 to 99 percent. Of these grids, each one is migrated 30 times on average on
4 nodes. The most migrated grid was transferred 763 times. On 32 nodes, the average
migration per grid is 183 and the single most migrated grid was transferred 2,072 times.
There are 3,942 repartitioning steps during the runtime. At the top end, a grid has been
transferred at every second repartitioning. Because of the massive migration costs, which
linearly scale with the amount of processes, an SFC-based repartitioning is not feasible
in practice for large clusters.

Figure 5.30: Total amount of migrations per timestep for SFC and HD strategies for
different amounts of nodes.

The diffusion scheme incurs only a fraction of the repartitioning costs. On 4 nodes, the
scheme accumulates 111 thousand migrations in total, only 4.3% of the migrations of
SFC. The amount of migrations is also affected by an increase of nodes. On 32 nodes, the
total amount of migrations rises to 149 thousand. Per repartitioning, only 28 grids are
migrated when using 4 nodes. The highest amount of migrations per repartitioning step is
118. The average rises slightly to 35 migrations on 32 nodes. The highest migration count
per repartitioning step is almost unchanged at 120 migrations. Therefore, the increase in
total migrations can be attributed to the rise in individual grids migrated. Even though
each grid is migrated less on average, 4.44 times on 4 nodes compared to 2.18 on 32
nodes, the number of individual grids transferred rises from 25 thousand (27.6%) to 68
thousand (75.5%). In the observed range, the redistribution costs of the diffusion scheme
are therefore not completely independent from the domain size. However, compared to a
global method, the costs are massively lower, with much leeway until the costs become
an issue. Furthermore, because the rising redistribution costs can be attributed to the
increase in individual grids migrated, there is an upper bound to this increase, when all
grids participate in the redistribution.

The overall runtimes give a hint of the impact of the added migration costs. Workload
balance is optimal for the SFC distribution and the overall number of edges is between
35% and 45% lower. Therefore, one can expect a lower iteration time, less communi-
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Table 5.2: Migration statistics for the AMB test example.

SFC 4 nodes 8 nodes 16 nodes 32 nodes

total migrations 2, 554, 321 5, 843, 808 8, 144, 439 16, 373, 183
individual grids migrated 83, 853 86, 723 88, 327 89, 478
ratio [%] 92.58 95.88 97.65 98.93
average migrations per step 648 1, 482 2, 066 4, 154
max migrations per step 3, 464 8, 488 11, 411 17, 380
average migrations per grid 30.46 67.38 92.21 182.99
max migrations per grid 763 860 1, 284 2, 072

HD 4 nodes 8 nodes 16 nodes 32 nodes

total migrations 110, 826 111, 968 127, 629 148, 632
individual grids migrated 24, 913 38, 238 56, 357 68, 245
ratio [%] 27.55 42.28 62.23 75.46
average migrations per step 28 28 32 35
max migrations per step 118 106 114 120
average migrations per grid 4.44 2.93 2.26 2.18
max migrations per grid 72 72 56 54

cation and consequently lower overall runtimes without redistribution costs when using
the SFC repartitioning strategy. The actual runtimes with redistribution costs are given
in table 5.3. One observes that not only the time save given by the better balance and
favourable connectivity has been completely evened out, but the diffusion approach is
considerably faster for all measured cases. The increase in migration volume for higher
node counts also has compounding effects on the runtimes. The total runtime grows from
50 min using 4 nodes to 1:43 min using 32 node. The percentage increase in runtime is
14% at 4 nodes, increasing to a runtime increase of 92% at 32 nodes.

Table 5.3: Average runtimes in [h:min:sec] for the additive manufacturing benchmark.

4 nodes 8 nodes 16 nodes 32 nodes

SFC 12 : 30 : 53 7 : 31 : 55 4 : 43 : 16 3 : 35 : 15
HD 11 : 40 : 32 6 : 15 : 28 3 : 24 : 41 1 : 52 : 13

5.2.5 Short Summary
The distinct feature of this test example is a very small localised phenomena that travels
only through parts of the domain. While the laser track draws the initial square, the
distances the laser covers are larger. Afterwards, during the hatch the distances become
smaller. To allow for an evaluation of the influence of the number of participating processes
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on the repartitioning, this testcase has been deployed to 4, 8, 16 and 32 nodes with 112,
228, 448 and 896 processes respectively.

Looking at workload balance, the key aspect here is that the diffusion repartitioning
still performs reasonably well and even limits outliers for very small average grid counts.
However, especially for 32 nodes, the granularity for a good workload balance is too
coarse. 21 grids on average per process do not give enough leeway to reach a balanced
distribution. Even relatively small outliers considering the total overall load have a high
impact on the distribution, as they impose between half and one and a half times the
average load. Not only is a coarse granularity detrimental to the workload balance, it
also has an impact on the solution procedure. Frisch argues that the best results can be
achieved upwards of 100 grids per process [113], which is only the case using 4 nodes for
the given domain decomposition.

When it comes to process connectivity, the diffusion scheme benefits from an increase in
node counts, whereas the SFC method sees either no improvement or produces slightly
worse results. Nevertheless, all measurements so far still show an advantage for the SFC
scheme. The total amount of edges is influenced by the locality of the phenomena for
the diffusion scheme. As expected, the SFC, as a global method is not affected. The
advantage of the SFC method decreases from 1.7 times as many connections to 1.2 when
using 32 nodes. The standard deviation improves when using more processes in the
diffusion approach, both in value and volatility. The distribution quality improves too,
producing less outliers. Even compared to the SFC distribution, which produces more
outliers. Concerning the overall inter-process grid connectivity, even though the SFC
shows better results for all measured node counts, it appears less scalable and the HD
method will outperform it for higher node counts.

The redistribution costs incurred by the SFC method scale linearly with the number
of processes used and are massive in comparison to the diffusion approach. While the
number of migrations still increases with more processes used for the diffusion, the increase
is marginal. Even though the workload balance and connectivity measures favour the
SFC partitioning, the added migration volume leads to longer runtimes compared to the
diffusion strategy, which is almost twice as fast at 32 nodes.

5.3 Test Example - Von Kármán Vortex Street

The third and last example is one of the benchmark cases proposed by Schäfer and
Turek within the DFG priority research program ‘Flow Simulation on High-Performance
Computers’ [273]. Here, the incompressible Navier–Stokes equations are solved to simulate
laminar flow around a cylinder. For high enough Reynolds numbers vortexes shed behind
the obstacle and result in a pattern known as von Kármán vortex street. To accurately
capture the flow structures, a refinement is performed around regions of high vorticity.
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5.3.1 Test Setup
Here, the mathematical model is represented by the Navier–Stokes equations for incom-
pressible Newtonian flows. These consist of the continuity equation and the momentum
equations for three dimensions in differential form:

∇ · ~u = 0 (5.2)

∂ρ∞ui

∂t
+∇ · (ρ∞ui~u) = ∇ · (µ∇ui)−∇ · (p~ei) + bi. (5.3)

~u describes the velocity vector of the flow field, t represents the time, ρ∞ the density of
the fluid (assumed constant over the entire domain), ui is the velocity in direction i, µ
the dynamic viscosity, p the pressure, bi are some interior body forces in direction i, and
~ei is the unit vector in direction i. To solve these equations a fractional step method
proposed by Chorin [58] is used, which allows to decouple the velocity and pressure fields.
Ignoring the pressure gradient, an intermediate velocity field that does not satisfy the
incompressibility constraint is computed. Using the continuity equation 5.2 allows to
formulate a Poisson’s equation for the pressure. The pressure is then used to correct the
intermediate velocity field to satisfy the incompressibility constraint.

The pressure Poisson equation is the computationally most intensive part. Here, the
custom multigrid method detailed in section 3.6.2 is used. For spatial discretisation a
finite volume method that locally degenerates into finite differences due to the block
substructuring of the domain into regular Cartesian grids is applied. Time stepping is
done by a two-step Adams–Bashforth method that is accurate to second-order.

The benchmark setup is a three-dimensional channel flow with a cylinder obstacle near
the inlet on the left-hand side channel boundary. Figure 5.31 illustrates the configuration
for the benchmark. The channel has a length of l = 2.2 m and a height and width of
h = w = 0.41 m. The cylinder’s diameter is dcylinder = 0.1 m with its center located at a
miniscule deviation from half width at ycylinder = 0.2 m and xobstacle = 0.5 m.

Schäfer and Turek describe three different benchmark scenarios each for two and three
dimensions. 2D-1 and 3D-1 with Re = 20 produce a steady solution, 2D-2 and 3D-2 with
Re = 100 produce an unsteady solution and 2D-3 and 3D-3 with Re = 100 and transient
inflow conditions. However, they themselves argue for higher Reynolds numbers in three
dimensions for the unsteady solutions, as the flow tends to become almost stationary.
Therefore, for the present example a Reynolds number of Re = 150 was chosen.

The Reynolds number is defined by

Re = uD

ν
. (5.4)

u is the characteristic velocity u = 4
9umax, D is the characteristic length scale, here

D = dcylinder and ν is the kinematic viscosity of the fluid. The kinematic viscosity for
water is ν = 10−3 m2/s. To get Re = 150, the maximum velocity in x-direction needs to
be umax = 3.375 m/s.
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Figure 5.31: Configuration for flow around a cylinder test example.

The inlet velocities in x-, y- and z-direction (ux,uy and uz) are given by

ux(x, y, z) = 16 · um · yz
(w − y)(h− z)

w2 · h2 m/s, uy = 0, uz = 0. (5.5)

The initial conditions in the flow regime are given by the same formula, resulting in a
parabolic flow profile. Top, bottom, north and south walls are prescribed with a no-slip
boundary condition, the east end of the domain serves as an outlet.

The channel is decomposed using the space-tree approach with a subdivision spacing for
the root node of (4, 1, 1) and a spacing of (2, 2, 2) for all other nodes. Refining the root
node such that the most elongated direction is subdivided into four smaller nodes, serves
to generate more cubically shaped grids. The domain is uniformly refined to depth d = 3,
which results in 256 total nodes and 288 leaf nodes on refinement level d = 3. Each node
is discretised with a grid, which consists of 8× 8× 8 cells.

As the phenomena of interest is the vortex shedding behind the cylinder obstacle, the
vorticity is used as an indicator for refinement or coarsening. It is calculated as the curl
of the flow velocity ~u:

ω = ∇× ~u =
(
∂ux

∂y
− ∂uy

∂z

∂ux

∂z
− ∂uz

∂x

∂uy

∂x
− ∂ux

∂y

)
. (5.6)

If the maximum vorticity magnitude in a grid exceeds a value of 70 m/s, the node is set
for refinement up to a maximum depth of d = 5. Conversely, a coarsening is ordered if
the value goes below 50 m/s until the initial uniform refinement depth d = 3 is reached.
As always, 2:1 domain balance is required. Before running the simulation, two refinement
steps are carried out using the initial flow profile. This results in a refinement around
the obstacle. All generated grids are distributed among 112 processors or 4 nodes of the
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CoolMUC-2 cluster segment. Following the domain generation method outlined in 3.4,
the initial partitioning follows the Z-order SFC distribution.

The simulation ran for a total of tend = 5.5 s. The timestep size is determined by the
Courant–Friedrichs–Lewy (CFL) condition. Usually, one would use the CFL condition to
adaptively increase or decrease the timestep size, while ensuring convergence of the solver.
In this case, the aim was to keep the timestep size constant. Therefore, the CFL condition
was used once, to determine the allowed timestep size at the start of the simulation, after
the initial refinement and with the initially prescribed velocities. To ensure convergence,
the used timestep size was taken as ten percent the allowed size, which turns out to be
dt = 9.7 · 10−5 s. A domain update is performed every 5 · 10−3 s, or around every 50
timesteps. In contrast to the previous test cases, the domain repartitioning, which uses
a single iteration of the diffusion method is run every timestep. This serves no practical
use, it however allows a closer consideration of the progression of the diffusion. The SFC
repartitioning, used as a comparison, is run after every refinement and coarsening step as
before.

Figure 5.20 shows the evolution of the number of grids during the runtime of the test.
At time t = 0 s, after the two initial refinement steps, the domain has 732 leaf grids
and 837 grids in total. This amounts to roughly 375, 000 cells on the finest level with
1.5 million degrees of freedom and 429, 000 cells with 1.7 million degrees of freedom in
total. The vortex street develops approximately until time t = 1 s. The total number of
grids is steadily increasing up to approximately 5,000 during this time. After the vortex
street has developed, refinement and coarsening follow each vortex through the domain
and balance each other out. The total amount of grids stays roughly constant between
5,000 and 5,500. In terms of cells, this amounts to between 2.56 and 2.82 million cells with
between 10.24 and 11.26 million degrees of freedom respectively. The variability after the
vortex street has developed, is around 11%. The highest computational intensity, i.e. the
highest number of grids is found at time t = 5.39 s.

Figure 5.32: Number of grids in the domain per timestep.

Figures 5.33 and 5.34 aim to give an overview into the development and evolution of the
vorticity structure within the channel. In Figure 5.33, an isometric view into the domain
is depicted. Only the cells with vorticity magnitude higher than 50 m/s are shown.
The wireframe illustrates the structure of the grids on the deepest refinement level d = 5,
which follow these regions of high vorticity magnitude. The plots in Figure 5.34 show slices
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perpendicular to the z-axis at half height and similarly aim to illustrate the evolution of
the vorticity. All cells are coloured by their vorticity parallel to the z-axis.

In the following, the diffusion-based repartitioning with highest degree target determina-
tion (HD) is examined in terms of workload balance, connectivity and migration frequency
for this testcase. Again, the Z-order SFC repartitioning method serves as a baseline.

5.3.2 Workload Balance
The first measurement again shows the course of the workload balance in terms of standard
deviation σ during the runtime of the simulation. This is illustrated in Figure 5.35. The
curve for the SFC partitioning is purposely omitted. The global method achieves a perfect
workload balance with discrepancies of at most one grid per process. Therefore, σSF C is
less than one. When using the diffusion strategy, the balance in terms of σ rises and shows
a high volatility between values of 4 and 8 during the initial consolidation of the domain
as the vortex street develops. As soon as the rate of change in the domain slows down
and the vortex street has developed at around t = 1 s, the workload balance steadily
decreases down to roughly σ = 2.5 at time t = 2.1 s. From here, the standard deviation
stays in the range between 2.5 and 3.5 with a slight decrease towards σ = 2 towards the
end of the runtime.

In terms of relative standard deviation, illustrated in Figure 5.36, a value of 35% is
measured at the beginning, which then steadily decreases down to 5% at time t = 2 s.

As mentioned above, coarsening and refinement is evaluated approximately once every 50
timesteps, a diffusion rebalancing however takes place every timestep. This reveals the
progression towards a local optimum. In Figure 5.37, a zoomed-in view of the progression
of the standard deviation between t = 0.5 s and t = 0.55 s is shown. The flattening curves
make clear that the first repartitioning step returns the most reduction and further steps
have diminishing returns. After most AMR cycles, it takes around 4 steps to reach a local
optimum. The maximum amount of steps until the distribution stays constant during the
complete simulation time are 7.

To complete the evaluation of the workload balance, a closer look at the distribution at
time t = 5.39 s, when the highest amount of grids exist, is provided in Figure 5.38. The
average amount of grids µ at this timestep is 48.5, the standard deviation is σ = 2.5. The
distribution is comparably good. The three highest samples are 47, 48 and 49 grids per
processes with a frequency of 23, 26 and 22. This means 71 out of 112 processes have
an amount of grids very close to the mean. In total, 80% of all processes lie within one
standard deviation from the mean and 94% are within two. The process with the smallest
amount has 40 grids. The maximum amount of grids per process in the domain is 58,
which two processes have.

5.3.3 Connectivity
The examination again commences by analysing the connectivity between processes. In
Figure 5.39 all relevant measurements for both the SFC and HD repartitioning strategies
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(a) t = 0.4 s

(b) t = 0.8 s

(c) t = 2.9 s

(d) t = 5.3 s

Figure 5.33: Illustration of the vorticity at selected timesteps. Cells with vorticity mag-
nitude higher than 50 m/s are shown. Red colouring marks a positive vorticity in x-
direction, blue marks a negative vorticity in x-direction. The plots are overlaid with the
grid structure on the deepest refinement level d = 5.
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(a) t = 0.4 s

(b) t = 0.6 s

(c) t = 0.9 s

(d) t = 1.8 s

(e) t = 3.0 s

(f) t = 4.9 s

Figure 5.34: Slice through the domain perpendicular to the z-axis at half height at selected
timesteps. Cells are coloured according to their vorticity parallel to the z-axis. Red
colouring marks a positive vorticity, blue marks a negative vorticity. The plots are overlaid
with the grid structure.
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Figure 5.35: Standard deviation of grids per process measured at every timestep using
HD diffusion repartitioning.

Figure 5.36: Relative standard deviation of grids per process measured at every timestep
using HD diffusion repartitioning.

are shown. The total number of connections (edges) between processes (5.39a), the stan-
dard deviation of edges per process (5.39b) and the relative standard deviation (5.39c).

Similar to the workload balance, for the HD strategy, the initial number of connections
rises in the beginning of the simulation during the formation of the vortex street from
roughly 500 to 1,050 edges. However only up to time t = 0.6 s. Afterwards, the total
number of edges stays relatively constant, with a small decrease to around 1,000 edges
until the end of the simulation. The SFC also shows a small increase up to time t = 0.35
from roughly 500 to 580 edges and stays at this level for rest of the runtime. The rise in
standard deviation is equivalent to the rise in total number of edges. σHD rises from a
value of 3 to 8 and stays in the range between 8 and 9 roughly until time t = 3.8 s and then
drops slightly to a range between 7 and 8 for the remainder of the runtime. σSF C shows a
slight increase in the beginning at time t = 0.35 s from 3 to 4, then slightly decreases to
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Figure 5.37: Zoomed in view of the standard deviation of grids per process measured
between time t = 0.5 s and t = 0.55 s using HD diffusion repartitioning.

Figure 5.38: Histogram of the frequency distribution of grids per process at time t = 5.39 s
with HD diffusion repartitioning. The histogram is overlaid with the smoothed kernel
density estimate using a Gaussian kernel.

a relatively constant trend between values of 2 and 2.5. The relative standard deviation,
as a combination of the two former measurements reveals a behaviour seen also in the
two former testcases. Both strategies show roughly constant relative standard deviations
in the range between 40 and 45 percent for HD and between 30 and 35 percent for SFC.
This suggests that regardless of the testcase, the SFC and HD strategies converge towards
a fixed quality of the process connectivity.

A closer look into the distribution of process edges at time t = 5.39 s is given in Figure 5.40.
The quality of the SFC distribution is quite good with a rather narrow distribution around
the average amount of edges per process µSF C of 10.6. With σSF C = 3.2, 75% of all
processes lie within one standard deviation from the mean and 93% are within two. Still,
there is a considerable amount of processes (6%) in the range between two and three
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(a) Total number of edges.

(b) Standard deviation.

(c) Relative standard deviation.

Figure 5.39: Process connectivity in the domain per timestep using the HD and SFC
repartitioning strategies.
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standard deviations and a single outlier even farther from the mean. This outlier has
21 neighbourhood connections. In comparison, the HD distribution has entirely different
characteristics. The distribution is more narrow due to a higher standard deviation σHD

of 7.5 and mean µHD of 18.6. It is however also more shallow. Within one standard
deviation from the mean are 66%, within two are 97% of all processes. Three processes lie
in the range greater than two standard deviations. One of them has 36 edges, the other
two have 37.

(a) SFC

(b) HD

Figure 5.40: Histograms of the frequency distribution of edges per process at time t =
5.39 s with SFC and HD repartitioning strategies. The histogram is overlaid with the
smoothed kernel density estimate using a Gaussian kernel.

To conclude the observation into neighbourhood relations between processes, the connec-
tivity between the individual MPI ranks is illustrated in Figure 5.41 at time t = 5.39 s.
The plot for the SFC repartitioning shows the characteristic clustering around the main
diagonal. Compared to previous examples, the clustering is not as narrow, which suggests
that even the SFC method cannot reach an optimal clustering here. These difficulties be-
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come more clear looking at the connectivity matrix for the HD method. The clustering
from the initial partitioning has been mostly deteriorated with only a faint residue around
the main diagonal.

(a) SFC (b) HD

Figure 5.41: Process connectivity at time t = 5.39 s.

The measurements of the grid connectivity are rather unremarkable and follow the ob-
servations made for the previous testcases closely. Figure 5.42 illustrates the amount of
inter-process edges between grids at time t = 5.39 s. In total, the SFC method exhibits
5,714 edges and the HD method has 8,043 edges. The same increase as seen previously
of 40%. Also the distribution between spatial and hierarchical grid edges is unsurprising,
with a ratio of 83 to 17 percent for the SFC strategy and 72 to 28 percent for the HD
strategy.

This concludes the observations into process and grid connectivity. The main conclu-
sions here are that the different partitioning strategies are somewhat independent from
the problem and tend towards specific characteristic values. That includes the relative
standard deviation of connections between processes, the relative number of inter-process
edges between SFC and HD partitioning methods as well as their respective ratios between
hierarchical and spatial edges.

5.3.4 Migration
Finally, the migration statistics are presented. Figure 5.43 illustrates the total amount of
grid transfers from one process to another for each timestep. The statistics at the end of
the runtime are given in Table 5.4.

Again, no new findings can be gathered from these measurements. Even though the HD
redistribution is run roughly four times as frequent – it runs after every timestep but
only redistributes four times per AMR cycle on average – the difference in the amount of
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Figure 5.42: Amount of total inter-process edges between grids, divided into spatial and
hierarchical edges for both repartitioning strategies and different node counts at time
t = 5.39 s.

migrations is an order of magnitude. SFC accumulates 900 thousand grid transfers, 30
times as many as the HD method with 30 thousand in total. Using the SFC strategy,
close to 90% of all grids get migrated at least once during their lifetime. On average each
grid moves from one process to another 37 times. To reach the partitions computed by
the diffusion method, only 21% of all grids get transferred ever, on average 4.3 times.

Figure 5.43: Total amount of migrations per timestep for SFC and HD strategies.

5.3.5 Short Summary
This example solves the most complex mathematical model considered. The refinement
and coarsening is triggered purely by flow structures. The simulation takes some time to
form the characteristic vorticity structure, during which time the number of grids in the
domain rises steadily. After the structure has been established, refinement and coarsening
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Table 5.4: Migration statistics for the vortex street test example.

SFC HD

total migrations 900, 569 29, 892
individual grids migrated 28, 630 6, 870
ratio [%] 89.72 21.11
max migrations per step 378 100
average migrations per grid 37.46 4.35
max migrations per grid 331 99

equalise each other and the number of grids stays relatively constant.

Looking at the workload distribution, the relative standard deviation of grids is at its
highest during the formation of the vortex street, where the number of grids in the domain
is rising. After the formation of the structure, the relative standard deviation steadily
decreases down to about 5% and stays at this level for the remainder of the simulation.
The setup of the diffusion repartitioning also reveals a rapid progression towards a local
optimum after an average of 4 diffusion steps.

The process connectivity follows the observations made for the previous examples. Apply-
ing the diffusion strategy, the total number of edges stays roughly at 1.000 with a relative
standard deviation per process of around 45%, which decreases slightly to 40% in the last
quarter of the simulation. The number of edges when using the SFC method stays around
600 with a relative standard deviation of 30%. The number of inter-process connections,
directly between grids, is 40% higher for the diffusion method compared to the SFC. The
ratio between hierarchical and spatial edges also is consistent with previous examples,
with the SFC strategy exhibiting higher percentages of inter-process hierarchical edges
than the diffusion-based approach.

Even though the diffusion method always reaches its local optimum in between AMR
steps, the migration volume incurred by it is still considerably lower compared to the
SFC method. Overall, the diffusion scheme has a migration volume of only a thirtieth of
that of the SFC method.

5.4 Summary
The findings from the three test cases are summarised in the present section.

Concerning the workload balance, the diffusion approach cannot compete with the SFC
method. By design, the global SFC method is able to find a optimal workload balance
by simply cutting the linearised traversal of the domain tree into equally sized chunks.
However, the workload balance of the diffusion approach is still viable. The diffusion
methods all tend towards a relative standard deviation of less than 10 percent. With
more time, the distribution of grids per process tend to become more narrow with less
outliers. However, a quick rise or drop in grid numbers combined with a high spatial range
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of the change poses difficulties for the methods. This can be observed especially at the
beginning of the testcases and at the end of the first testcase when the amount of grids
starts to decrease again. The versions with no limitations on target determination perform
better initially, due to more options to distribute workload to, however in time, the target
determination methods geared towards a better connectivity outperform the former also
in terms of workload balance. More iterations of the diffusion repartitioning, comparable
to a higher order scheme, bring a slightly better balance with rapidly diminishing returns.
In practice, most improvement is reached after four steps.

In terms of process connectivity, the total number of connections between processes, the
diffusion repartitioning with highest degree target determination has around 40% more
neighbour relations compared to the SFC partitioning. The distribution is however only
slightly worse with a relative standard deviation of edges per process of roughly 45%
compared to 35% for the SFC method. Additionally, the diffusion methods profit from
an increase in participating processes. The SFC method on the other hand delivers only
slightly worse results. The SFC is geared towards keeping favourable neighbourhood con-
nections by distributing neighbouring grids to numerically near MPI ranks. The neigh-
bourhood patterns slowly deteriorate when using a diffusion repartitioning. This effect
is accelerated using the forced migration variants of the method, while versions without
forced migration are able to keep the pattern considerably longer.

Measuring the grid connectivity, mainly important for the solution process, the diffusion
method also ends up with roughly 40% more inter-process edges between grids as the SFC
distribution. This ratio seems to be consistent regardless of the testcase. Furthermore,
the ratios between hierarchical and spatial inter-process edges also seem to be consistent,
with the SFC version exhibiting a higher number of spatial edges compared to all versions
of the diffusion method. Within the diffusion method, the target determination allow to
slightly influence the ratio. It cannot be determined at this point what an optimal ratio
would be, which would minimise the communication volume. This is highly dependent
on the solution procedure used.

By contrast, the diffusion approach exhibits considerable advantages in terms of the overall
number of migrations between processes. The number of grid transfers when using an SFC
distribution ranks about one to two orders of magnitude higher compared to the diffusion
methods. The massive migration costs also prohibit the use of an SFC-based method for
dynamic repartitioning for smaller domains with less processes. If other global methods
fare better was not part of this investigation.

In conclusion, the results for workload balance and connectivity, while worse than for a
SFC partitioning, are still within an acceptable range.

One caveat has to be mentioned though. In this work, neither the exact point at which
global methods fail due to the effort of globally synchronising shared data structures nor
their impact on the runtime has been measured extensively. Some runtime measurements
have been given for the first two test cases, which show a considerable impact of the
migration costs on the runtime. Nevertheless, these numbers should be taken with a grain
of salt. There are a multitude of factors that influence the runtime of the simulation
framework, ranging from problem parameters like the size of the individual grids, the
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chosen solution procedures and the frequency of the mesh adaption, as well as parameters
of the repartitioning like the chosen method and the frequency in which the method is
applied and finally, parameters that can hardly be influenced from the outside like the
current load of a shared system among many more. Given this many options, it is hardly
possible to give a fair and accurate comparison that is generally applicable. What is clear,
however is that global methods will inevitably reach a point where they simply cannot be
applied anymore. Therefore, the investigation into more sophisticated local repartitioning
methods is certainly worthwhile and the performance seen for the investigated examples
is a good starting point for future improvements.
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Chapter 6

Conclusion

The rapid development of high-performance computing has enabled the tackling of some
of the greatest challenges humankind faces in the 21st century. In the introduction, the
historical evolution of HPC and its continued development towards more and more paral-
lelisation has been set forth. With more parallelisation, the task to solve these challenges
is not only in their mathematical modeling and the algorithmic development, but also
in formulating the problem in such a way that it can make optimal use of the parallel
hardware. In other words, the problem must be decomposed and distributed among all
hardware elements the machine provides. Another layer of complexity is added when
the decomposition changes during the solution process and the distribution is not optimal
anymore. Furthermore, as these grand machines are added with more heterogeneous com-
ponents for specialised tasks, a suitable distribution must take into account the strengths
and weaknesses of these components.

Currently, state-of-the-art partitioning approaches use global information of the simu-
lation domain, its decomposition and all participating processing elements. With ever
growing problem sizes and machines, incorporating more and more components, this ap-
proach will not be feasible in the future. Initially, the motivation for introducing a dynamic
repartitioning scheme based on a diffusion model with only local information, was to al-
leviate already visible bottlenecks of storing the domain structure in a central repository
and updating it occasionally. During the course of this work, it has become clear that not
only the partitioning is affected when problems grow, but many more components of the
numerical pipeline suffer from the need to synchronise global data structures. Therefore,
this work introduced a feature complete framework for the numerical simulation of real
world phenomena, following the premise of limiting global data to the bare minimum
wherever possible.

The basis of this framework is a completely decentralised data structure. The domain
graph is generated using a hierarchical space-tree decomposition, where intermediate rep-
resentations are kept. This graph is exclusively distributed among all participating actors.
Each actor is only aware of its direct spatial and hierarchical neighbours. The intermedi-
ate nodes of the domain tree extend the neighbourhood model in hierarchical direction.
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In addition, the grids, which more coarsely discretise the domain, are used in the solution
process. Based on the data exchange requirements of all actors, several communication
patterns have been introduced.

Within this work, the initial domain generation has been enhanced to make use of parallel
hardware. Each process now participates in generating its own share of the data struc-
ture. Additionally, neighbourhood search and a tree balancing method, which obey the
limitations of the decentral structure have been introduced. Nevertheless, an overarching
macro structure is required as a starting point for domain generation. This macrostruc-
ture scales with the amount of processing units used and represents a problem that has
yet to be solved.

The global communication in the input/output module has been reduced to the bare
minimum. It must inevitably synchronize data twice globally. Once to determine the
total size of the output file and a second time to determine the individual write offset of
each processing unit.

So far, the solution procedures have not been affected by the decentral data structure.
All data exchange is directly possible using the implemented communication patterns.
Additionally, asynchronous methods, which look promising for decentral data structures
have been added to the framework.

In order for a dynamic repartitioning to become necessary, adaptive mesh refinement
and coarsening has been introduced. This includes routines for evaluating consecutive
refinements and valid coarsenings across the decentral structure as well as the update of
neighbourhood relationships.

The core of this thesis is the dynamic repartitioning module. It features a diffusion model
dependent on the workload balance and the connectivity between neighbouring processing
units to exchange workloads. Furthermore, various target determination methods were
introduced. Target processes are determined based on the neighbourhood of a grid to its
possible destination and its original owner.

Finally, the dynamic repartitioning has been thoroughly examined with three distinct
test cases in terms of workload balance, quality of the distribution to minimise network
communication and costs to reach the newly computed partitioning. The first case is an
artificial benchmark, the other two were inspired by real-world applications with increasing
complexity. In general, the partitioning presents itself as a viable choice. All the more,
since local methods currently appear to be the only alternative if machines and simulation
domains continue to grow at the current pace.

Both the concept of completely decentralised data structures and the diffusion method for
partitioning have much room for improvement. Interesting choices for future developments
are described in the following:

Enhanced Diffusion Model
In its respective chapter, the shortcomings of the diffusion formulation were already es-
tablished. In theory, the convergence of the diffusion towards a completely balanced
state is proven. In practice however, the model cannot account for load fractions and
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needs to round the computed workload transfer to the nearest whole integer. This leads
to either transferring too little or too much load. Furthermore, processes with already
many grids tend to have a high number of neighbourhood connections. As the transfer
ratio is inversely dependent on the degree (the number of neighbourhood connections),
processes with a high degree tend to accumulate grids. Increasing the granularity of the
decomposition might be a remedy at the expense of lower computational efficiency and
higher bookkeeping costs. Another remedy might be to compute a total workload transfer
per process and then migrate until this threshold has been reached. Each neighbour is
assigned grids according to their relative workload transfer. Whether this solves the issue
and the convergence guarantees are still valid is to be determined.

Enhanced Workload and Communication Models
Not all grids are equal when it comes to workload. Depending on the solution proce-
dure, their refinement depth and whether they have children or are leafs, grids have
various numbers of iterations to perform. As such, the computational effort a grid entails
should influence the workload metric. Similarly, not each edge entails an equal amount of
communication volume. Again, the same variables that influence the workload also influ-
ence edge weight. When it comes to process connectivity, a single edge might make the
difference between determining neighbourhood relations between processes, which adds
another layer of complexity. Again, not only should a more accurate communication
model be introduced, but it should also be possible to weight the workload and commu-
nication metrics against each other. Models measuring the non-idle runtime of processes
or the number of asynchronous iterations could give a very accurate estimate of the cur-
rent load. Nonetheless, the insight into which factors contribute which load cannot be
gathered directly. Additionally, this point is not exclusive to the diffusion partitioning.
All partitioning methods need and benefit from accurate workload and communication
models. Therefore, further research into these models is warranted.

Improved Target Determination
In addition to the previous point, given suitable and comparable models for workload and
communication, the target determination method could be improved. That includes, but
is not limited to weighing the computational cost of a grid transfer against added com-
munication, weighing grid edges differently when they constitute the last connection to a
process and would change process connectivity and migrating grids with high connectivity
among them in conjunction.

Local Solution Techniques
The multigrid solver, while a very efficient technique to solve systems of linear equations,
contradicts in its current form the decentralisation premise. Each multigrid cycle traverses
the complete tree structure from the leafs to the root and back. In other words, the
solver scales with the height of the tree and is not independent from the total size of
the computational domain. The cost is very minor at the moment, because the growth
ratio of the height of the tree follows a logarithmic rate compared to the growth of the
resolution, still, there will be a limit to solving arbitrarily large domains in the future. As
such, research into more local solution techniques is warranted. A start could be simply
fixing the depth of the multigrid scheme.
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Interactive Visualisation
Mundani and Frisch have introduced a visualisation technique that allows to get insight
into the simulation already during runtime [229]. In an effort to limit the data transfer,
the technique, called sliding window, either allows to visualise the complete domain in
a coarse resolution or smaller regions with a finer resolution. The availability of coarser
spatial discretisations and a central structure repository in Frisch’ implementation allow
this technique to be easily applied. In the present framework, coarser representations are
available too, however the central repository as an entry point is missing. The hierarchy
could still be traversed in an acceptable fashion directly from the process that holds the
root grid and then following the children by evaluating whether they fit the visualisation
window. Sending the grids to a collector for aggregation is easy, however one process
cannot decide if the available transfer bandwidth to the frontend has already been reached.
It is possible to get a stop signal from the collector, however this would lead to possibly
unbalanced visualisations with missing data from slower or more burdened processes.

Interactive Computing
Similar to gathering data during a running simulation, the runtime connection to a frame-
work could also be exploited to issue simulation altering tasks. This concept is called
computational steering and has been explored in-depth by Mundani [228]. Possible tasks
in this context could be a user-guided refinement or coarsening, altering of boundary
conditions or changing other simulation parameters on the fly, and many more. It def-
initely is worthwhile to evaluate if and how the decentral framework concept fits into a
computational steering approach.
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