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¨ENTROPY MINIMIZATION AND SCHRODINGER
PROCESSES IN INFINITE DIMENSIONS

BY HANS FOLLMER AND NINA GANTERT¨
Humboldt-Universitat and Technische Universitat Berlin¨ ¨

Schrodinger processes are defined as mixtures of Brownian bridges¨
which preserve the Markov property. In finite dimensions, they can be
characterized as h-transforms in the sense of Doob for some space�time
harmonic function h of Brownian motion, and also as solutions to a large
deviation problem introduced by Schrodinger which involves minimization¨
of relative entropy with given marginals. As a basic case study in infinite
dimensions, we investigate these different aspects for Schrodinger pro-¨
cesses of infinite-dimensional Brownian motion. The results and examples
concerning entropy minimization with given marginals are of independent
interest.

1. Introduction. Let P denote the distribution of a Brownian motion
X , 0 � t � 1, with state space S � Rd and initial distribution � . Thet 0
conditional distribution with respect to an initial value X � x and a termi-0
nal value X � y is given by the Brownian bridge P y from x to y, and so we1 x
can write

1.1 P � P y� dx , dy ,Ž . Ž .H x

Ž .where � denotes the joint distribution of X , X under P. A measure Q on0 1
� �C 0, 1 has these same conditional distributions with respect to X and X if0 1

and only if it is of the form

1.2 Q � P y� dx , dyŽ . Ž .H x

for some probability measure � on S � S. Such a mixture of Brownian
bridges will be called a Schrodinger process if it preserves the Markov¨
property of P, that is, if X , 0 � t � 1, is again a Markov process under Q.t

Ž .Schrodinger 1931 initiated the study of these processes by considering¨
the following problem of large deviations. Let � and � be distributions on0 1
S, and look for the most likely behavior of a large collection of independent
Brownian motions governed by P under the constraint that the empirical
distributions at times t � 0 and t � 1 are close to � and to � . In the limit of0 1
an infinite particle system, this behavior can be described by independent
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Ž .motions, each governed by a process Q of the form 1.2 where the represent-
Ž � .ing measure � minimizes the relative entropy H � � under the constraint

that the marginals of � are given by � and � ; for a precise statement and a0 1
Ž .proof based on Sanov’s theorem, see Follmer 1988 or Dawson, Gorostiza and¨

Ž .Wakolbinger 1990 . The density of the entropy minimizing measure � � �
admits a factorization of the form

d�
1.3 x , y � f x g y ,Ž . Ž . Ž . Ž .

d�

where f and g are nonnegative measurable functions on S. Such a measur-
able factorization implies that Q has the structure of an h-path process in

Ž .the sense of Doob 1984 , where h is a space�time harmonic function of
Brownian motion. In particular, we obtain the Markov property of Q, and so
Q is indeed a Schrodinger process as defined above.¨

Ž � .For a measure � � � with H � � � �, the Markov property of the associ-
Ž .ated process Q � P is, in fact, equivalent both to the factorization 1.3 of the

density and to the property that � minimizes relative entropy subject to
given marginals. Some of these implications are also valid if Brownian motion
on Rd is replaced by a general Markov process, but not all of them. The

Ž .difficult part is to derive the factorization 1.3 , either from the Markov
property of Q or from the minimization of relative entropy. Positive results
have been proved only under strong regularity conditions on the underlying
Markov process. These conditions were motivated by finite-dimensional dif-
fusion theory. In this paper, our main purpose is to throw some light on the
structure of Schrodinger processes in infinite dimensions. At the same time,¨
we clarify some questions concerning entropy minimization subject to given
marginals; these results may be of independent interest.

In Section 2 we recall some basic facts about Schrodinger processes.¨
Section 3 can be read without regard to our discussion of Schrodinger¨
processes. Here we discuss the structure of the unique measure � � � on a

Ž � .product space S � S which minimizes H � � under the constraint that the
marginals are fixed. In general, the minimizing measure can be characterized
by the fact that the density can be approximated by functions of the form
Ž .1.3 . However, the passage from this approximation to a factorization of the
density involves a delicate closure property of the space of product functions
under almost sure convergence. An argument of Ruschendorf and Thomsen¨
Ž . Ž .1993 yields the existence and essential uniqueness of the factorization 1.3
under the strong regularity condition

1.4 � � � � � .Ž . 0 1

In view of infinite dimensions, this condition is much too restrictive. On the
other hand, the first counterexample in Section 5 shows that, without some
kind of regularity assumption, there may not exist any measurable factoriza-

Ž .tion of the form 1.3 , even if we assume that the density is bounded both
from above and away from 0.
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As a basic case study in infinite dimensions, we consider the distribution P
of a Brownian motion with state space S � R� and some initial distribution

� �� on S. Alternatively, we can choose the state space S � C 0, 1 and view P0
as the distribution of a Brownian sheet. The standard regularity assumptions
used in the literature on Schrodinger processes no longer hold for P. On the¨
other hand, P exhibits as much regularity as one can hope for in the context
of infinite-dimensional stochastic analysis. In Section 4 we show that the
Markov property of a Schrodinger process Q � P does imply a factorization of¨

Ž .the form 1.3 if the density of Q is bounded from above. It follows that Q is
an h-process in the sense of Doob, that is,

dQ d� h X , tŽ .0 t
1.5 � X ,Ž . Ž .0FFtdP d� h X , 0Ž .0 0

where h is some space�time harmonic function of infinite-dimensional Brow-
nian motion. The proof combines regularity properties of the finite-dimen-
sional projections of P with a passage to the limit where we use martingale
arguments and the special product structure of P. These methods also allow
us to clarify the role of entropy minimization in this infinite-dimensional

Ž .context, beyond the restriction 1.4 . For a process Q defined in terms of
Ž .� � � as in 1.2 , we show that minimization of the relative entropy, the

Markov property and the factorization of the density are all equivalent if the
density of � is bounded from above. On the other hand, the second counterex-
ample in Section 5 shows that some strong restriction on the density is really
needed. We construct a Schrodinger process Q of the Brownian sheet which¨
minimizes the relative entropy subject to given marginals and whose density
belongs to L p for any p � �, but which does not admit a measurable

Ž .factorization of the form 1.3 .
Throughout this paper we limit the discussion to the case � � �, where �

is a given reference measure. For Brownian motion in finite dimensions, the
Ž .Markov property of a process Q of the form 1.2 with a general measure �

can be characterized by a splitting property of � which generalizes the
Ž . Ž .factorization 1.3 ; see Jamison 1974 . In the case of infinite-dimensional

Brownian motion, the problem of characterizing a general Schrodinger pro-¨
cess by some splitting property of its representing measure is still open. A
satisfactory solution should involve the spatial Gibbs structure of � viewed

Ž 2 .�as a random field on R , and some partial results in this direction have
Ž .been obtained by Brockhaus 1995 . The problem disappears if the initial

distribution is concentrated on one point. In that case, the structure of
Schrodinger processes is described by the parabolic Martin boundary on a¨

Ž .Wiener space; see Follmer 1991 .¨

Ž .2. Preliminaries. Let X be a Markov process with Polish statet 0 � t �1
Ž .space S and transition probabilities P x, dy , defined on a probability spaces, t

Ž . Ž .�, FF, P with filtration FF . We denote byt 0 � t �1

2.1 � � P � X�1 , 0 � t � 1,Ž . t t
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the marginal distributions on S and by
�12.2 � � P � X , XŽ . Ž .0 1

Ž .the joint distribution of X , X under P.0 1
For a probability measure � � � on S � S with density

d�
2.3 � � � 0 �-a.s.,Ž .

d�

Ž .consider the associated probability measure Q � P on �, FF defined by
dQ

2.4 � � X , XŽ . Ž .0 1dP
and denote by

2.5 � � Q� X�1 , 0 � t � 1,Ž . t t

the induced marginal distributions. The measure Q has the same conditional
distribution given the initial value X and the terminal value X as the0 1

� �underlying measure P. For any t � 0, 1 the density of Q with respect to P
on FF is given byt

dQ
2.6 � � X , X ,Ž . Ž .0, t 0 tFFtdP

where � is defined by0, t

2.7 � x , y � � x , z P y , dz .Ž . Ž . Ž . Ž .H0, t t , 1

This implies that, for 0 � s � t � 1, the conditional distribution of X witht
respect to FF under Q is given bys

�1�2.8 Q X � dy FF � � X , X P X , dy � X , y .Ž . Ž . Ž . Ž .Ž .t s 0, s 0 s s , t s 0, t 0

Thus, a prediction given FF will, in general, involve both the present state Xs s
Ž .and the initial state X , and so we cannot expect, in general, that X is0 t

again a Markov process under Q.

DEFINITION 2.9. The process Q will be called a Schrodinger process if¨
Ž .X has the Markov property under Q.t 0 � t �1

Let us introduce a sufficient condition for Q to be a Schrodinger process.¨
Suppose that the density � of � with respect to � admits a factorization of
the form
2.10 � x , y � f x g y ,Ž . Ž . Ž . Ž .

Ž .where f and g are nonnegative measurable functions on S. Note that 2.3
implies f � 0 � -a.s. and g � 0 � -a.s. The nonnegative measurable function0 1

� �h on S � 0, 1 defined by

2.11 h x , t � g y P x , dyŽ . Ž . Ž . Ž .H t , 1
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is space�time harmonic in the sense that

2.12 h x , s � h y , t P x , dyŽ . Ž . Ž . Ž .H s , t

for 0 � s � t � 1. In terms of h, the density of Q with respect to P on FF cant
be expressed as

d� h X , tŽ .0 t
2.13 � � f X h X , t � X .Ž . Ž . Ž . Ž .0, t 0 t 0d� h X , 0Ž .0 0

This shows that Q has the structure of an h-path process in the sense of
Ž . Ž . Ž .Doob 1984 , page 566; cf. Jamison 1975 . In particular, X is at 0 � t �1

Markov process under Q with transition probabilities
�12.14 Q x , dy � h x , s P x , dy h y , t .Ž . Ž . Ž . Ž . Ž .s , t s , t

� Ž .�We have thus established the well-known fact see, e.g., Jamison 1974 that
a measurable factorization of the density implies the Markov property of Q:

Ž .PROPOSITION 2.15. Let Q � P be a process of the form 2.4 . If the density �
Ž .admits a measurable factorization of the form 2.10 , then Q is a Schrodinger¨

process.

Let us now turn to the question to which extent the converse holds. As
Ž .shown by Jamison 1974 , the Markov property of Q does imply a factoriza-

Ž . Ž .tion 2.10 if the process X has strictly positive transition densitiest 0 � t �1

2.16 p x , y � 0, x , y � S, 0 � s � t � 1,Ž . Ž .s , t

with respect to some fixed reference measure � on S; this will also follow
from Proposition 2.25 below. On the other hand, it is easy to construct
degenerate examples of Schrodinger processes such that the factorization¨
Ž .2.10 fails to hold.

EXAMPLE 2.17. Let S � R2 and P � � � � � � on � � S � S with0 1

1 12.18 � � 	 	 	 , � � 	 	 	Ž . Ž . Ž .0 Ž0 , 1. Ž0 , �1. 1 Ž1 , 0. Ž�1, 0.2 2

Ž . Ž .and define X � X 1 � t 	 tX , 0 � t � 1. For a given 
 � 0, 1 , take anyt 0 1
1 Ž .0 � � , � � 1 such that 
 � � 	 � , and define � � � in terms of the2

density


2� , if x � 0, 	1 , y � 	1, 0 ,Ž . Ž .
2 1 � � , if x � 0, 	1 , y � �1, 0 ,Ž . Ž . Ž .�2.19 � x , y �Ž . Ž .
2� , if x � 0, �1 , y � 	1, 0 ,Ž . Ž .�2 1 � � , if x � 0, �1 , y � �1, 0 .Ž . Ž . Ž .

The marginals are given by

2.20 � � � , � � 
	 	 1 � 
 	 .Ž . Ž .0 0 1 Ž1 , 0. Ž�1, 0.
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For any such choice of � , �, the associated process Q � � is a Schrodinger¨
process; the Markov property follows from the fact that the full trajectory can

Ž .be reconstructed from the value X at any time t � 0, 1 . However, it is easyt
to check that a factorization of the density is only possible for � � � � 
 . The
example also shows that a Schrodinger process may not be uniquely deter-¨
mined by its marginal distributions � and � .0 1

The following weak factorization for a Schrodinger process Q � P holds in¨
full generality, and this will be the starting point for our analysis of Schro-¨
dinger processes of infinite-dimensional Brownian motion. For a process

Ž .Q � P given by 2.4 , we denote by � the density of � with respect to � , byt t t
Ž .� the density of the joint distribution of X , X under Q with respect tot, 1 t 1

the joint distribution under P and by
�12.21  x , y � � x , y � xŽ . Ž . Ž . Ž .t , 1 t , 1 t

the conditional density of X with respect to X .1 t

Ž .LEMMA 2.22. A process Q � P of the form 2.4 is a Schrodinger process if¨
Ž .and only if the density � admits for each t � 0, 1 a factorization

˜2.23 � X , X � � X , X  X , X , P-a.s.,Ž . Ž . Ž . Ž .˜0 1 0, t 0 t t , 1 t 1

˜where � and  are nonnegative measurable functions on S � S. In this˜0, t t, 1
case, we can use in particular the functions � and  defined above.0, t t, 1

Ž .PROOF. The Markov property of Q clearly implies 2.23 with � � �˜0, t 0, t
˜ Ž .and  �  . Conversely, any measurable factorization of the form 2.23t, 1 t, 1

Ž .implies that the conditional distribution 2.8 of Q only involves the present
state X , and this amounts to the Markov property of Q. �s

Ž .It is easy to check that condition 2.16 implies that the conditional
� � � Ž .distribution � � X � z of X , X given X � z satisfiest 0 1 t

�2.24 � � � � X � z for � -a.a. z � S.Ž . t t

Ž .Under the regularity condition 2.24 for the underlying Markov process P,
Proposition 2.15 does admit a converse; that is, the Markov property of a

Ž .process Q � P of the form 2.4 implies a factorization of the density.

Ž . Ž .PROPOSITION 2.25. If condition 2.24 holds for some t � 0, 1 , then any
Ž .Schrodinger process Q � P admits a measurable factorization 2.10 .¨

Ž .PROOF. Fit t � 0, 1 . The Markov property of Q implies the weak factor-
Ž .ization 2.23 . We can conclude that, for � -a.a. z � S,t

2.26 � x , y � � x , z  z , yŽ . Ž . Ž . Ž .0, t t , 1

� � � Ž . Ž .for � � X � z -a.a. x, y . Now choose z � S such that conditions 2.24 andt
Ž . Ž .2.26 are both satisfied. This implies that the strong factorization 2.10 holds
�-a.s., where the measurable functions f and g on S are defined by
2.27 f x � � x , z , g y �  z , y . �Ž . Ž . Ž . Ž . Ž .0, t t , 1
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Ž . Ž .REMARK 2.28. a A measurable factorization of the form 2.10 implies
that the functions f and g solve Schrodinger’s system of equations¨

d� 0
x � f x g y P x , dy ,Ž . Ž . Ž . Ž .H 0, 1d�0

d�1 ˆy � g y f x P y , dx ,Ž . Ž . Ž . Ž .H 1, 0d�1

2.29Ž .

ˆ Ž .where P y, � denotes the conditional distribution of X under P, given1, 0 0
Ž .X � y; cf. Schrodinger 1931, 1932 . Conversely, any pair of nonnegative¨1

Ž . Ž .measurable functions f and g solving 2.29 induces via 2.10 a probability
measure � � � on S � S with given marginals � and � . The existence and0 1

Ž .uniqueness of a pair of solutions of 2.29 with given marginals � � � ,i i
Ž . Ž .i � 0, 1, have been discussed by Bernstein 1932 , Fortet 1940 , Beurling

Ž . Ž . Ž .1960 and Jamison 1974 under strong regularity conditions such as 2.16 .
Ž .For a discussion of 2.29 from a physical point of view, we refer to Schro-¨

Ž . Ž . Ž .dinger 1931, 1932 and, for example, Nagasawa 1993 and Aebi 1996 and
the references to the recent literature on stochastic mechanics given there.
For connections to the stochastic calculus of variations, see also, for example,

Ž . Ž .Thieullen 1993 and Thieullen and Zambrini 1995 . The classical DAD
Ž .problem can be formulated in terms of Schrodinger’s system 2.29 on a finite¨

state space. From this point of view, various generalizations are discussed in
Ž .Borwein, Lewis and Nussbaum 1994 .

Ž . Ž .b Condition 2.24 implies
2.30 � � � � � .Ž . 0 1

To see this, note that the Markov property of P implies that the conditional
Ž .distribution in 2.24 can be chosen as a product measure on S � S. However,

if � � � � � for any product measure, then it is easy to check that � is0 1
also absolutely continuous with respect to the product of its own marginals.

Ž . Ž .c As shown by Example 2.17 where � � � � � , condition 2.30 is not0 1
strong enough to guarantee that a Schrodinger process Q � P admits a¨
factorization of its density.

Ž . Ž .Regularity conditions such as 2.16 and 2.24 are motivated by finite-
dimensional diffusion theory. In the context of infinite-dimensional stochastic
analysis, they would be much too strong. As a case study in infinite dimen-
sions, we are going to look in Section 4 at the factorization problem for
infinite-dimensional Brownian motion. Before we turn to this special setting,
let us first clarify the relation between the factorization problem and Schro-¨
dinger’s original problem of minimizing relative entropy under the constraint
that the marginals at times 0 and 1 are fixed.

3. Minimizing relative entropy with given marginals. Let � be a
probability measure on S � S, where S denotes our Polish state space. We fix

Ž .two probability measures � and � on S and denote by M � , � the convex0 1 0 1
set of probability measures � on S � S whose marginals coincide with � 0
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Ž .and � . Let us assume that there exists a measure � � M � , � such that1 0 1

�3.1 � � � and H � � � �,Ž . Ž .
where

d�

log d� , if � � � ,H��3.2 H � � �Ž . Ž . d��

�, otherwise

denotes the relative entropy of a probability measure � with respect to �. As
Ž .shown by Csiszar 1975 , this assumption implies the existence and unique-´

� Ž .ness of a measure � � M � , � which minimizes the relative entropy with0 1
respect to � under the constraint that the marginals are given by � and � :0 1

� � � �3.3 H � � � min H � � � � M � , � .� 4Ž . Ž .Ž . Ž . 0 1

Moreover, we have
3.4 � � � �.Ž .

Let �� denote the density of � � with respect to �. The proof of Theorem 3.1
Ž . � 1Ž � .in Csiszar 1975 shows that log � belongs to the closure in L � of the´

space of sums

� 1 13.5 S � , � � a  b a � L � , b � L � ,Ž . Ž . Ž . Ž .� 40 1 0 1

Žwhere a  b denotes the measurable function on S � S defined by a 
.Ž . Ž . Ž . �b x, y � a x 	 b y . The minimizing measure � can actually be charac-

terized by such an approximation of the density.

Ž .PROPOSITION 3.6. Consider a measure � � M � , � which satisfies condi-0 1
Ž .tion 3.1 , and let � denote the density of � with respect to �. The following

properties are equivalent:

Ž . �i � coincides with the minimizing measure � .
Ž .ii There are nonnegative measurable functions f and g on S, n �n n

1, 2, . . . , such that

3.7 f x g y � dx , dy � 1,Ž . Ž . Ž . Ž .H n n

3.8 log f � L1 � , log g � L1 �Ž . Ž . Ž .n 0 n 1

and

3.9 lim log f x 	 log g y � log � x , y in L1 � .Ž . Ž . Ž . Ž . Ž .Ž .n n
n

Ž . � Ž .PROOF. i For � � � the result of Csiszar 1975 page 153, shows that´
� Ž . 1Ž � .log � belongs to the closure of S � , � in L � . In addition, the argument0 1

Ž . Ž .preceding 3.48 below shows that the approximating functions � x, y �n
Ž . Ž .f x g y can be chosen as densities of probability measures � whichn n n

Ž � .minimize H � � under finitely many constraints of the form Hh d� � c .i n i
Ž .Thus, it is no loss of generality to assume the normalization 3.7 .
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Ž . Ž .ii Suppose that log � admits an approximation of the form 3.9 and
define the probability measures � in terms of the densitiesn

d�n
3.10 x , y � f x g y , n � 1, 2, . . . .Ž . Ž . Ž . Ž .n nd�

Ž .Condition 3.8 implies that the product is strictly positive �-a.s., hence �-a.s.,
Ž .and so we have � � �. Let us now take any � � M � , � . We want to show˜n 0 1

Ž � . Ž � . Ž � .that H � � � H � � , and so we can assume H � � � �. This implies˜ ˜
� � � � � and˜ n

d� d� d�˜ ˜ n
3.11 �Ž .

d� d� d�n

�-a.s., hence �-a.s. Taking logarithms and integrating with respect to � , we˜ ˜
obtain

� �3.12 H � � � H � � 	 log f g d� .Ž . Ž .Ž . Ž .˜ ˜ ˜Hn n n

Ž .Due to condition 3.8 we can separate the integral and write

� �H � � � H � � 	 log f d� 	 log g d�Ž . Ž .˜ ˜ H Hn n 0 n 1

3.13Ž .
�� H � � 	 log f g d� ,Ž .Ž .˜ Hn n n

Ž . Ž � .since both � and � belong to M � , � . However, H � � � 0, and so we can˜ ˜0 1 n
Ž .use 3.9 to conclude

�H � � � lim log f g d�Ž .Ž .˜ H n n
n

3.14Ž .
�� log � d� � H � � .Ž .H

� Ž .This shows that � coincides with the minimizing measure � defined by 3.3 .
�

Let us now show that our criterion for � � � � is satisfied if the density of �
admits a measurable factorization. Note that we do not assume the integra-

1Ž . 1Ž .bility conditions log f � L � and log g � L � which are used, for exam-0 1
Ž . Ž . Ž .ple, in Corollary 3.1 of Csiszar 1975 ; see also 3.52 below.´

Ž .COROLLARY 3.15. Consider a measure � � M � , � which satisfies condi-0 1
Ž .tion 3.1 . If the density � admits a factorization

3.16 � x , y � f x g y , �-a.s.,Ž . Ž . Ž . Ž .
with nonnegative measurable functions f and g on S, then � coincides with the
minimizing measure � �.
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ŽŽ . . Ž . Ž .PROOF. Define f � c f � n � 1�n , g � g � n � 1�n, � x, y �n n n n
Ž . Ž .f x g y , where c is a normalizing factor such that H� d� � 1. The twon n n n

Ž .separate integrability conditions in 3.8 are clearly satisfied. Since � log � is
Ž � .bounded from below, the finite entropy condition H � � � � is equivalent to

3.17 � log � � L1 � or log � � L1 � .Ž . Ž . Ž .
Observe that � �c � 1 implies f � 1�n and g � 1�n, thus � �c � �.n n n n
Similarly, � �c � 1 implies f � n and g � n, thus � �c � �. Therefore, wen n n n

� Ž . � � �have log � �c � log � . Since lim c � 1 and lim � � � �-a.s., we cann n n n n
apply Lebesgue’s theorem to get

3.18 lim log � � log � in L1 � .Ž . Ž .n
n

Ž . �Thus, we have checked our criterion in 3.6 for � � � . �

It is sometimes taken for granted that Corollary 3.15 admits a converse,
Ž . �since the approximation 3.9 seems to suggest that the density � of the

� Ž .minimizing measure � admits a measurable factorization of the form 3.16
� Ž .� -a.s., hence �-a.s.; see, for example, the ‘‘if ’’ part of Corollaries 3.1 and

Ž . Ž .3.2 in Csiszar 1975 . However, this is a delicate point. In fact, our first´
counterexample in Section 5 will show that the converse may fail to hold,
even if we assume that the density � is both bounded and bounded away
from 0.

Thus, additional regularity properties are needed in order to obtain a
closure property of the space of sums. The following proposition is a result in

Ž .this direction. The existence part is due to Ruschendorf and Thomsen 1993 .¨
Ž .For � � � � � it reduces to Lemma 2.5 in Donsker and Varadhan 1975 .0 1

Ž .Part i of Proposition 3.19 also follows from the results of Borwein and Lewis
Ž .1992 . We include a proof because we want to illustrate at which point the
construction of a measurable factorization breaks down in the context of our
counterexamples in Section 5.

PROPOSITION 3.19. Let � be a probability distribution on S � S with
Ž . Ž .marginals � and � . Let a , b be sequences of real-valued measurable0 1 n n

functions on S such that

3.20 lim a x 	 b y � c x , y , �-a.s.,Ž . Ž . Ž . Ž .Ž .n n
n

where c is a finite measurable function on S � S.

Ž .i There are real-valued functions a and b on S such that the decomposi-
tion
3.21 c x , y � a x 	 b yŽ . Ž . Ž . Ž .

holds �-a.s.
Ž .ii If � satisfies the regularity condition

3.22 � � � � � ,Ž . 0 1

then c admits a measurable decomposition; that is, the functions a and b in
Ž .3.21 can be chosen to be measurable.
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Ž . Ž .iii Under condition 3.22 the decomposition is essentially unique up to
additive constants. More precisely, there is a countable number of disjoint

� Ž .� Ž .measurable rectangles A � B with � � A � B � 1 such that a � isi i i i i
Ž .uniquely determined up to an additive constant � -a.s. on each A and b � is0 i

uniquely determined up to an additive constant � -a.s. on each B .1 i

PROOF. The existence proof is a modification of the argument in
Ž .Ruschendorf and Thomsen 1993 .¨

Ž .i We introduce the measurable set

� 13.23 A � x , y � S � S � lim a x 	 b y � RŽ . Ž . Ž . Ž .Ž .½ 5n n
n

� � Ž . 4and its measurable sections A � y x, y � A for x � S. Let us show that,x
for any x, x� � S, we have either

3.24 A � A � or A � A � � �.Ž . x x x x

Suppose that there is some z � A � A � and take y � A . In order to checkx x x
that y � A � , note thatx

a x� 	 b yŽ . Ž .n n

� a x� 	 b z � b z 	 a x 	 a x 	 b yŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .n n n n n n

3.25Ž .

does converge to a finite limit.
Ž . Ž .ii Let � x, � denote the conditional distribution of the second coordinate

y under � , given the first coordinate x. The set

�3.26 S � x � S � x , A � 1� 4Ž . Ž .0 x

Ž .is measurable and satisfies � S � 1, and for any x � S we have A � �.0 0 0 x
Ž .In the same way, we define a measurable set S � S with � S � 1 such1 1 1

y � �Ž . 4 ythat the measurable sections A � x � S x, y � A satisfy A � � for any
Ž .y � S . Due to 3.24 we can define an equivalence relation � on S by1 0

3.27 x � x� iff A � A � .Ž . x x

Ž .Let E x � S be the equivalence class of x � S . For any choice of y � A ,0 0 x
we can write

� � � 13.28 E x � x � S � lim a x 	 b y � R ,Ž . Ž . Ž . Ž .� 4Ž .0 n n

Ž .and so E x is a measurable subset of S .0
Ž .iii Using the axiom of choice, we choose a system of representatives

containing exactly one member of each equivalence class. Define the functions
a by˜n

3.29 a x � a x � a x ,Ž . Ž . Ž . Ž .˜n n n

Ž .where x is the representative of E x . For x � S and y � A , we have0 x

3.30 a x � a x 	 b y � a x 	 b y .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .˜n n n n n
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The first term on the right-hand side converges since y � A , the second termx
converges since y � A � A , and so there exists a finite limitx x

3.31 a x � lim a x , x � S .Ž . Ž . Ž .˜n 0
n

Ž .For y � S there is exactly one representative x y such that y � A . Let1 x Ž y .
˜us define the functions b on S byn 1

˜3.32 b y � b y 	 a x yŽ . Ž . Ž . Ž .Ž .n n n

Ž .and note, as in 3.31 , that there exists a finite limit

˜3.33 b y � lim b y , y � S .Ž . Ž . Ž .n 1
n

Ž . Ž . Ž .For any x, y � A � S � S , we can use 3.31 to write0 1

3.34 lim a x 	 b y � lim a x 	 lim b y 	 a x .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .˜n n n n n
n n

Ž . Ž .Since y � A we have x y � x, and so we can rewrite 3.34 asx

˜3.35 lim a x 	 b y � lim a x 	 lim b y � a x 	 b y .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . ˜n n n n
n n

We have

3.36 � S � S � � S � S � � S � 1,Ž . Ž . Ž . Ž .0 1 1 1 1

Ž Ž .. Ž . Ž .hence � A � S � S � 1, and so we can conclude from 3.20 and 3.350 1
Ž .that the decomposition 3.22 holds �-a.s.

Ž .iv So far there is no reason why the functions a and b should be
measurable. In fact, the counterexamples in Section 5 will show that without
additional assumptions there may not exist any measurable version of the

Ž .decomposition 3.21 . The problem is that the definition of the functions

˜3.37 a � a � a �T , b � b 	 a �TŽ . Ž .˜n n n n n n

Ž .uses the selection map T : S � S defined by T x � x, and T may not be
Ž .measurable. Since each equivalence class E x is measurable, the problem

will disappear as soon as there is only a countable number of equivalence
classes since T is clearly measurable in this case.

Ž . Ž .Now note that assumption 3.22 implies � x, � � � for � -a.a. x � S,1 0
Ž .hence � A � 0 for � -a.a. x � S . This allows us to replace S by the1 x 0 0 0

˜ � � Ž . 4measurable set S � x � S � A � 0 in our construction above. However,0 0 1 x
˜since there is at most a countable number of sets A with x � S , there isx 0

˜only a countable number of equivalence classes in S . This implies the0
˜Ž . Ž . Ž . Ž .measurability of a � and b � , hence of a � and b � .˜n n

Ž .v The uniqueness statement follows if we apply the preceding construc-
˜ ˜�Ž . � Ž . Ž . Ž . Ž .4tion to the set A � x, y � S � S a x � a x � b y � b y . We define A˜ i

� Ž . Ž . 4as a level set of the form a � � a � � � , and B as the corresponding level˜ i i
˜� Ž . Ž . 4 Ž . Ž .set b � � b � � � . As in iv , condition 3.22 implies that it is enough toi

consider at most a countable number of such level sets. �
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Ž .REMARK 3.38. a If � is equivalent to the product of its marginals, then
Ž .the construction of a measurable decomposition 3.21 simplifies and reduces

Ž .to the proof in Donsker and Varadhan 1975 , page 403. In fact, � � � � �0 1
Ž . Ž .implies � � � x, � , hence � A � 1 for �-a.a. x � S , and this allows us to1 1 x 0

replace S by one single equivalence class. In particular, the uniqueness part0
Ž . Ž .simply states that the functions a � and b � are a.s. unique up to one

additive constant. Note that this simplified construction only requires the
assumption � � � � � .0 1

Ž .b The multiplicative analogue of Proposition 3.19 follows by taking loga-
Ž .rithms: under the condition 3.22 an approximation

3.39 lim f x g y � � x , y � 0, �-a.s.,Ž . Ž . Ž . Ž .Ž .n n
n

with nonnegative measurable functions f and g implies a measurablen n
factorization of the form

3.40 � x , y � f x g y ,Ž . Ž . Ž . Ž .

with nonnegative measurable functions f and g. If we have even � � � � � ,0 1
Ž .then it follows from part a that both f and g are uniquely determined a.s.

up to a multiplicative constant.

Let us now connect the results of this section with our discussion of the
Markov property in Section 2 and with Schrodinger’s original problem.¨
Consider a probability measure Q � P and denote by � the joint distribution

Ž .of X , X under Q. The relative entropy of Q with respect to P is given by0 1

� � y � y3.41 H Q P � H � � 	 H Q P � dx , dy ,Ž . Ž .Ž . Ž . Ž .H x x

where Q y resp. P y denotes a conditional distribution of Q, resp. P, givenx x
X � x and X � y. Since relative entropy is nonnegative, minimization of0 1
Ž � .H � P under a constraint on the marginals at times 0 and 1 proceeds in two

Ž .steps. In the first place, Q must be of the form 2.4 so that the second term in
Ž . Ž � .3.41 vanishes. Thus, the problem is reduced to the minimization of H � �
under the constraint that the marginals are given by � and � . Consider a0 1

Ž . Ž .measure � � M � , � which satisfies condition 3.1 . Denote by � the den-0 1
sity of � with respect to � and by Q � P the associated process defined by
Ž .2.4 . We are going to compare the following properties of the measure � :

Ž . Ž .i � admits a measurable factorization 3.16 of the density;
Ž . � Ž .ii � coincides with the minimizing measure � defined by 3.3 ;
Ž .iii Q is a Schrodinger process.¨

We recall the regularity condition

�3.42 � � � � X � z for � -a.a. z � SŽ . t t

for the underlying process P which was used in Proposition 2.25.
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Ž . Ž .THEOREM 3.43. Assume that � � M � , � satisfies condition 3.1 . Then0 1
Ž . Ž . Ž .we have i � ii � iii . Under the additional condition � � � � � , we0 1

Ž . Ž . Ž .have ii � i , and under the stronger condition 3.42 , all three properties
are equivalent.

Ž . Ž .PROOF. We have already shown that i � ii holds in general, and that
Ž . Ž . Ž .iii � i holds under condition 3.42 ; see Corollary 3.15 and Proposition

Ž . Ž .2.25. The implication i � iii holds even without the finite entropy condi-
Ž . Ž . Ž .tion; see 2.16 . Recall from 2.30 that 3.42 implies � � � � � , and note0 1

Ž .that this is equivalent to condition 3.22 since � � � and � � � � � � � .0 1 0 1
Ž .Combining the multiplicative version 3.40 of Proposition 3.19 with a.s.

Ž .convergence along a subsequence in the approximation 3.9 , we see that
Ž . Ž . Ž . Ž .ii � i under condition � � � � � . It only remains to show ii � iii .0 1

Ž .Since S is a Polish space, the set M � , � can be described as0 1

3.44 M � , � � �  d� � c , k � 1, 2, . . . ,Ž . Ž . H0 1 k k½ 5
Ž . Ž . Ž .where h � C S ,  � h X if k is even and  � h X if k is odd. Letk b k k 0 k k 1

3.45 A � �  d� � c , 1 � k � n .Ž . Hn k k½ 5
For each n � 1 there is a unique measure � � such thatn

� � �3.46 H � � � min H � � ,Ž . Ž .Ž .n
��An

and its density �� with respect to � is of the formn

n
� �13.47 � � Z exp �  � f X g X ,Ž . Ž . Ž .Ýn n n , k k n 0 n 1ž /

i�1

with constants Z , � , 1 � k � n, and measurable nonnegative functionsn n, k
Ž . Ž .f , g on S; cf. Csiszar 1975 . As shown in Follmer 1988 , page 163, we have´ ¨n n

� � �3.48 lim H � � � 0.Ž . Ž .n
n

Define the processes Q� corresponding to � � byn n

dQ�
n �3.49 � � X , X .Ž . Ž .n 0 1dP

Ž .Using the factorization 3.47 and Proposition 2.15, we see that each measure
� Ž .Q has the Markov property. Due to 3.49 we haven

� � � � � �3.50 lim H Q Q � lim H � � � 0,Ž . Ž . Ž .n n
n n

and this implies convergence in total variation
	 � � 	3.51 lim Q � Q � 0.Ž . n

n

However, it is easy to check that the Markov property is preserved under
convergence in total variation, and this implies that Q� is a Schrodinger¨
process. �
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Ž . Ž .REMARK 3.52. a A measure � � M � , � is uniquely determined by0 1
Ž . Ž . Ž .property ii , hence also by property i . Under condition 3.42 we can also

Ž . Ž .conclude that � is uniquely determined by iii . In other words, 3.42 implies
the uniqueness of a Schrodinger process Q � P with finite relative entropy¨
Ž � .H Q P and given marginals � and � . Note that the uniqueness of Schro-¨0 1

dinger processes with given marginals does not hold in general, as shown by
Example 2.17.

Ž . Ž . Ž . Ž .b The implication ii � i is stated as Theorem 10.5 in Nagasawa 1993
but not fully proved. Note that we do not claim that there is a measurable

Ž . 1Ž .factorization 3.16 such that the integrability conditions log f � L � and0
1Ž .log g � L � are satisfied. In fact, such a factorization may not exist.0

Consider, for example, one-dimensional Brownian motion with some initial
distribution � . In this case we have � � � � � . Thus, the factorization of0 0 1

Ž . Ž . Ž . Ž . Ž .the function � x, y � exp y � x � 1�2 into f x � exp �x and g y �
Ž .exp y � 1�2 is �-a.s. unique up to a multiplicative constant; cf. Remark

1Ž .3.38. Since log � has distribution N � , 1 under �, the measure � defined2

by the density � satisfies

1�3.53 H � � � � log � d� � � �.Ž . Ž . H 2

Ž . 1Ž .However, since � � � , the function log f x � �x cannot belong to L � as0 0
soon as we choose the distribution � such that it does not have a finite0

Ž .mean. Another example can be found in Ruschendorf and Thomsen 1993 .¨

In the next section we will consider an infinite-dimensional Brownian
� Ž .motion P on S � R . In this case, neither the regularity assumption 3.42

nor the condition � � � � � in Theorem 3.43 can be expected to hold.0 1
Nevertheless, we are going to show that a Schrodinger process Q � P with¨
bounded density � does admit a measurable factorization. This will involve
different methods which exploit the special structure of P.

4. A factorization of Schrodinger processes of the Brownian sheet.¨
Let P be the distribution of an infinite collection of independent Brownian
motions with initial distributions �i , i � 1, 2, . . . . If P i denotes the Wiener0

� � imeasure on C 0, 1 with initial distribution � , then P is defined as the0
product measure

�
i4.1 P � PŽ . Ł

i�1

on the canonical path space
�

� � � �4.2 � � C 0, 1 � C 0, 1 , S ,Ž . Ž .Ł
i�1

with infinite-dimensional state space S � R�. We denote by

X � X i , 0 � t � 1,Ž .t t i�1, 2, . . .
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the coordinate process on �, by � � P � X�1, 0 � t � 1, the marginal distri-t t
Ž .�1 Ž .butions on S and by � � P � X , X the joint distribution of X , X0 1 0 1

under P.

REMARK 4.3. As in the Levy�Ciesielski construction of Brownian motion´
� 4as a superposition of the Schauder functions e , i � 1 with independenti

Ž .N 0, 1 -coefficients, we could pass to the representation
�

iX̃ �, � � X e � , 0 � � � 1,Ž . Ž .Ýt t i
i�1

˜ ˜� �with state space S � C 0, 1 and to the corresponding distribution P on

˜ ˜� �� � C 0, 1 , S ;Ž .
Ž .cf. for example, Gantert 1994 . Thus, our infinite-dimensional Brownian

� �motion could be viewed as a C 0, 1 -valued diffusion or, equivalently, as a
Ž Ž ..Brownian sheet X �, � indexed by the unit square. For our purpose, it willt

Ž .be convenient to use the explicit product structure 4.1 .

Ž i. Ž i.For x � x � S and y � y � S, the infinite-dimensional Brownian
bridge from x to y is defined as the product measure

�
iy y

i4.4 P � PŽ . Łx x
i�1

on �. For a probability measure � on S � S, the corresponding process Q is
given by

4.5 Q � P y� dx , dy .Ž . Ž .H x

From now on we assume that � is equivalent to the joint distribution � of
Ž .X , X under P with density0 1

d�
4.6 � � � 0 �-a.s.Ž .

d�

Then Q is equivalent to P with density

dQ
4.7 � � X , X .Ž . Ž .0 1dP

Due to Proposition 2.15, Q is a Schrodinger process if the density � has the¨
Ž .product form 2.10 . In our infinite-dimensional context, the question is to

which extent the converse holds, that is, under which conditions the Markov
property of Q implies a measurable factorization of the density. The following
theorem provides an answer to this question. The second counterexample in
Section 5, where Q is a Schrodinger process whose density is in L p for any¨
p � � but does not admit a factorization, will show that some strong restric-
tion on the density is really needed.
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THEOREM 4.8. Suppose that Q � P is a Schrodinger process with density¨
�Ž .� � L � . Then � admits a factorization of the form

4.9 � x , y � f x g y �-a.s.,Ž . Ž . Ž . Ž .
where f and g are positive measurable functions on the state space S � R�. In
particular, Q has the structure of an h-process for some space�time harmonic
function of infinite-dimensional Brownian motion.

Ž .PROOF. Let us fix a time t � 0, 1 . Our starting point is the weak factor-
ization

4.10 � X , X � � X , X  X , X , P-a.s.,Ž . Ž . Ž . Ž .0 1 0, t 0 t t , 1 t 1

Ž .which follows from the Markov property of Q; cf. 2.23 . Using the regularity
of the finite-dimensional projections of P, we are going to eliminate the

Ž .dependence on the first m coordinates of X in 4.10 . Then we will pass tot
the limit, m � �. Using the product structure of P, we will combine martin-
gale arguments with Kolmogorov’s zero�one law in order to eliminate com-
pletely the dependence on the intermediate value X . This will lead to thet

Ž .factorization 4.9 .

Ž .i For m � 1 we define the �-fields

4.11 AA � � X , X , X i , i � mŽ . � 4Ž .m 0 1 t

and

4.12 BB � � X i , i � m .Ž . � 4Ž .m t

The conditional distribution of P with respect to BB is of the formm

i i i i i i� �4.13 P � X � z , i � 1, . . . , m � P � X � z � P .Ž . Ł Łt t
i�m i�m

Since
i i i i i i�4.14 P � X � z � P on � X , X ,Ž . Ž .t 0 1

we see that
i i i�4.15 P � X � z , i � 1, . . . , m � P on AAŽ . t m

i Ž .for any choice of z , i � 1, . . . , m. In fact, the equivalence 4.15 can be shown
to hold even without the assumption that the initial distribution � is a0
product measure.

Ž .ii Let us use the notation

x � x1, . . . , x m , x Žm. � x m	 1, x m	 2 , . . .Ž . Ž .Žm.

� � Ž .for a given sequence x � R . For a fixed z � R , the equivalence 4.15
Ž .together with the weak factorization 4.10 implies the factorization

4.16 � X , X � � X , z , X Žm.  z , X Žm. , X , P-a.s.Ž . Ž . Ž . Ž .ž / ž /0 1 0, t 0 Žm. t t , 1 Žm. t 1
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We are now going to show that z can be chosen such that we can pass from
Ž .4.16 to the asymptotic factorization

� X , X � lim sup � X , z , X Žm.Ž . Ž .ž /0 1 0, t 0 Žm. t
m

� lim inf  z , X Žm. , X , P-a.s.Ž .ž /t , 1 Žm. t 1
m

4.17Ž .

� Ž . 	 	Note first that for any z � R the lim sup in 4.17 is finite since � � � .�0, t
Ž . Ž .However, for two sequences a and b of positive real numbers withn n

constant product a b � c � 0 and sup a � �, we can conclude thatn n n

4.18 c � lim sup a lim inf bŽ . ž /n nž /
nn

Ž .as soon as we know that lim inf b � �. In fact, for a subsequence n withn n l
lim inf b � lim b � �, we haven n l nl

4.19 c � lim a b � lim sup a lim inf b ,Ž . Ž . ž /n n n nž /l l nl n

Ž .and, for a subsequence n with lim a � lim sup a , we get the reversedk k n n nk

inequality. Thus, we have to show that there is a choice of z � R� such that
Ž .the lim inf in 4.17 is finite P-a.s. Since

�14.20  � � � ,Ž . Ž .t , 1 t , 1 t

we have
�1Žm. Žm.	 	4.21  z , X , X � � � z , X ,Ž . Ž . Ž .�ž / ž /t , 1 Žm. t 1 t Žm. t

and so the problem is reduced to finding z � R� such that

4.22 lim sup � z , X Žm. � 0, P-a.s.Ž . Ž .t Žm. t
m

Ž .iii Due to the product structure of P, we can apply Kolmogorov’s zero�one
and conclude that, for any choice of z � R�,

4.23 lim sup � z , X Žm. � c z , P-a.s.Ž . Ž .Ž .t Žm. t
m

Ž . � 	 	 �with some constant c z � 0, � . By Fatou’s lemma,�

Žm. Žm.4.24 c z � E lim sup � z , X � lim sup E � z , X .Ž . Ž . Ž . Ž .t Žm. t t Žm. t
m m

Ž . �1However, since P resp., � � P � X is a product measure, the functiont t
M on R� defined bym

Žm. Žm.4.25 M z � E � z , X � � z , x � dxŽ . Ž . Ž .Ž . Ž .Hm t Žm. t t Žm. t

is a version of the conditional expectation of � with respect to � , given thet t
first m coordinates of z � R�. By martingale convergence,

4.26 lim M z � � z , � -a.s.Ž . Ž . Ž .m t t
m
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Ž . Ž . �Since � z � 0 � -a.s., we see that 4.22 does hold for � -a.a. z � R . Fromt t t
Ž .now on we fix a sequence z such that 4.22 is satisfied. As we have seen in

Ž . Ž .part ii , this leads to the asymptotic factorization 4.17 .
Ž . Ž i. �

iiv For x � x � R let P denote the product of Wiener measures Px x

with initial point x i, and let P x denote the product of the measures P x i
,

where P x i
denotes the conditional distribution of a Wiener measure with

initial distribution �i , given that it assumes the value x i at the terminal0
time t � 1. Using Kolmogorov’s zero�one law for the product measure P , wex
obtain

4.27 lim sup � x , z , X Žm. � f x , P -a.s.,Ž . Ž .Ž .ž /0, t Žm. t x
m

where f denotes the measurable function on R� defined by

4.28 f x � lim sup � x , z , X Žm. dP .Ž . Ž . Ž .H ž /0, t Žm. t x
m

This implies

4.29 lim sup � X , z , X Žm. � f X , P-a.s.Ž . Ž .Ž .ž /0, t 0 Žm. t 0
m

In the same way, we can apply Kolmogorov’s zero�one law for the measures
x Ž .P to the second factor in 4.17 . This leads to

4.30 lim inf  z , X Žm. , X � g X , P-a.s.,Ž . Ž .Ž .ž /t , 1 Žm. t 1 1
m

where g is the function defined by

4.31 g x � lim inf  z , X Žm. , x dP x .Ž . Ž . Ž .H ž /t , 1 Žm. t
m

Ž . Ž . Ž .The factorization 4.17 together with 4.29 and 4.30 yields the desired
Ž .factorization 4.9 . As in Proposition 2.15 we can now construct a space�time

harmonic function h such that Q is represented as an h-process of our
infinite-dimensional Brownian motion. �

Ž .REMARK 4.32. a Instead of assuming that � is bounded from above, we
could also assume that � is bounded away from 0. In that case ��1 is

˜ �1 �1 �1Ž .bounded from above, and the process Q � P defined by � � � H� d�˜
Ž .has again the Markov property, since the weak factorization 2.23 for �

˜induces a weak factorization for �. Thus, Q is a Schrodinger process, and the˜ ¨
Ž .factorization 4.9 for � implies a measurable factorization for �.˜

Ž .b If � is bounded both from above and away from 0, then the proof
Ž .simplifies since 4.22 is clearly satisfied. In this case we could also drop the

assumption that the initial distribution � is a product measure. However,
Ž .this requires a modification of part iv involving a passage to the limit t�1

and the use of Blumenthal’s zero�one law for the time-reversed processes P x,
since Kolmogorov’s zero�one law for the spatial tail field may no longer hold
for P x.
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Let us now relate Theorem 4.8 for infinite-dimensional Brownian motion P
to our results in Section 3 on the minimization of relative entropy under fixed

Ž .marginals. Note first that the regularity condition 3.42 clearly does not hold
in our present context, not even if the initial distribution � is concentrated0
on one point. The weaker condition � � � � � appearing in Theorem 3.430 1
only holds under very strong restrictions on the initial distribution � . For0
example, it is satisfied if � is concentrated on the Cameron�Martin space0

� � Ž 2 �.H � C 0, 1 resp., on the sequence space l � R . Nevertheless, we were
able to show that a Schrodinger process Q � P with bounded density �¨
admits a measurable factorization. Combining this result with the first part
of Theorem 3.43, we see that, under the additional condition � � L�, the

Ž . Ž . Ž .three properties i , ii and iii appearing in Theorem 3.43 are all equivalent
in our present context:

THEOREM 4.33. For infinite-dimensional Brownian motion P, consider a
Ž .process Q � P given by a probability measure � � � on S � S as in 4.5 . If

the density � of � with respect to � is bounded from above, then the Markov
Ž . Ž .property iii of Q is equivalent both to a measurable factorization i of the

Ž .density and to the property ii that � minimizes relative entropy under the
constraint that its marginals are fixed.

In the next section we are going to construct a counterexample where
Q � P is a Schrodinger process of infinite-dimensional Brownian motion¨
whose density belongs to L p for any p � �, but where the implication
Ž . Ž . Ž . Ž .iii � i and even the implication ii � i break down.

5. Two counterexamples. In this section we construct two examples of
measures on a product space which minimize relative entropy under the
constraint that the marginals are fixed, but which do not admit a measurable
factorization of the density.

Our first example shows that even boundedness of the density, both from
above and away from 0, does not guarantee that such a factorization holds.

� 4�1, . . . 4We take the space S � 0, 1 of binary sequences and define a probability
measure � on S � S as follows. The marginal distribution � is defined as0

1the Bernoulli measure with parameter p � . For x � S and k � 1, we define2
Ž .R x � S as the sequence where the kth component of x has been removed.k

Ž Ž ..i i Ž Ž ..i i	1That is, R x � x for i � k and R x � x for i � k. Let 
 denote ak k
� 4strictly positive probability distribution on 1, 2, . . . . For a given sequence

Ž 1 2 . Ž .x � x , x , . . . � S, we define the transition probability � x, dy as
�

5.1 � x , � � 
 	 .Ž . Ž . Ý k R Ž x .k
k�1

Thus, the sequence y � S is obtained from x � S by removing, with proba-
bility 
 , the kth component of x. Note that the marginal distribution �k 1

Ž .coincides with � , and that � x, � is singular with respect to � . In particu-0 1
lar, � does not satisfy the regularity condition � � � � � appearing in0 1
Theorem 3.43.
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We define
n n�1

k �1 k5.2 f x � exp x , g y � C exp � y ,Ž . Ž . Ž .Ý Ýn nž / ž /
k�1 k�1

1 Ž .where C � e 	 1 . The functions � on S � S defined byn2

5.3 � x , y � f x g yŽ . Ž . Ž . Ž .n n n

satisfy
�1 minŽn , k . � �1 �145.4 � x , R x � C exp x � C , eCŽ . Ž . Ž .Ž .n k

and
�

5.5 � d� � 
 � x , R x � dx � 1.Ž . Ž . Ž .Ž .ÝH Hn k n k 0
k�1

Ž . � Ž . � 4Since � x, � is concentrated on the countable set R x k � 1 , the limitk
� 
 lim � exists �-a.s. and satisfiesn n

�1 k � �1 �145.6 � x , R x � C exp x � C , eC .Ž . Ž . Ž .Ž .k

Ž .We have H� d� � 1 as in 5.5 , and so � is the density of a probability
measure � � �. We denote by � and � the marginal distributions of � .0 1

Ž � .PROPOSITION 5.7. The measure � has minimal relative entropy H � �
under the constraint that the marginals are given by � and � . Its density �0 1
is bounded from above and away from 0, but it does not admit a measurable
factorization.

Ž . Ž .PROOF. i The boundedness of � is clear since 5.4 shows that � as-
Ž .sumes only two positive values. Due to 5.4 , we can apply Lebesgue’s

theorem to verify our criterion in Proposition 3.6. Thus, � coincides with the
� Ž � .measure � which minimizes H � � under the constraint that the marginals

are given by � and � .0 1
Ž . Ž .ii Note first that the product form 5.3 of � does not directly imply an

Ž . Ž .factorization of � since lim f x � � � -a.s. and lim g y � 0 � -a.s. Letn n 0 n n 1
us now assume that there are nonnegative measurable functions f and g on
S such that
5.8 f x g y � � x , y , �-a.s.,Ž . Ž . Ž . Ž .

and let us show that this leads to a contradiction. Taking logarithms, we get

5.9 log f x 	 log g y � log � x , y , �-a.s.,Ž . Ž . Ž . Ž .
hence

5.10 log f x 	 log g R x � x k � log C , � -a.s.Ž . Ž . Ž .Ž .k 0

Ž . Ž .for each k � 1, due to 5.1 , 5.6 and the assumption that 
 is strictly
positive. This implies, for each k � 1, the relation

5.11 log f 0, . . . , 0, x k , x k	1, . . . � log f 0, . . . , 0, 0, x k	1, . . . � x kŽ . Ž . Ž .
� -a.s.,0



¨H. FOLLMER AND N. GANTERT922

hence
n

n	1 n	2 k5.12 log f x � log f 0, . . . , 0, x , x , . . . 	 x , � -a.s.Ž . Ž . Ž . Ý 0
k�1

Ž .for each n � 1. Equation 5.12 is of the form

5.13 Z � Z 	 S , P-a.s.,Ž . n n

where Z is finite P-a.s., Z and S are independent and S has binomialn n n
1Ž .distribution B n, under P. However, this leads to a contradiction. Choose2

� � � �a such that P Z � a � � . Then
n n

� �5.14 � � P Z � a � P Z � � 	 a P S �Ž . n n2 2

by independence, and this implies
n

5.15 lim sup P Z � � 	 a � 2� .Ž . n 2

In the same way,
n n

� �5.16 � � P Z � �a � P Z � � 	 a P S � � 2 aŽ . n n2 2

implies
n

5.17 lim sup P Z � � 	 a � 2� ,Ž . n 2
Ž . Ž .whereas the sum of the first terms in 5.15 and 5.17 should clearly be

greater than or equal to 1. �

REMARK 5.18. Let us illustrate how the construction of a measurable
decomposition in the proof of Proposition 3.19 breaks down in our example.

Ž . Ž .Due to 5.2 and 5.3 , we have

5.19 c x , y � log � x , y � lim a x 	 b y , �-a.s.,Ž . Ž . Ž . Ž . Ž .Ž .n n
n

where the function a on S � R� is defined byn
n

i5.20 a x � x .Ž . Ž . Ýn
i�1

Ž .In our case, the equivalence relation 3.27 on S � S is given by0

5.21 x � x iff � m � 1 such that x i � x i for all i � m.Ž . ˜ ˜
Ž .The equivalence classes E x are measurable with respect to the tail field

� i �� 45.22 AA � � x i � m ;Ž . Ž .�
m

in fact, they are the atoms of AA
�. If there were a measurable choice of

Ž .representatives x � T x , the map T : S � S would be measurable with˜
respect to AA

�, hence constant � -a.s. due to Kolmogorov’s zero�one law. This0
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would imply that � is concentrated on a single atom, contradicting the fact0
Ž Ž .. Ž .that � E x � 0 for any atom E x .0

Let us now return to the infinite-dimensional Brownian motion
�

i5.23 P � P ,Ž . Ł
i�1

� Ž .with state space S � R . For a process Q � P of the form 4.5 with bounded
density �, we have seen in Theorem 4.33 that both the Markov property and
the property of minimizing the relative entropy under given marginals imply
a factorization of the density. Our next example will show that both implica-
tions may fail if boundedness is replaced by being in L p for all p � �.

Let us specify the initial distributions

1i5.24 � � 	 	 	 ,Ž . Ž .0 0 1��2 i

where � , � , . . . � R	 are such that1 2

�
25.25 � � 2.Ž . Ý i

i�1

Ž .The joint distribution of X , X under P is given by the measure0 1

�
15.26 � � 	 � N 0, 1 	 	 � N 1�� , 1Ž . Ž . Ž .Ž .Ł 0 1�� i2 i

i�1

on S � S. The measure
�

15.27 � � 	 � N � , 1 	 	 � N � 	 1�� , 1Ž . Ž . Ž .Ž .Ł 0 i 1�� i i2 i
i�1

is equivalent to �, and the density � of � with respect to � is defined �-a.s.
by

�
i i� x , y � exp �1 exp � y � xŽ . Ž . Ž .Ł i

i�1

�
i i� exp �1 exp � y � x .Ž . Ž .Ý i

i�1

5.28Ž .

Note that the sum in the exponent converges �-a.s.: since the differences
i i Ž .y � x , i � 1, 2, . . . , are independent and identically distributed with N 0, 1

2Ž .under �, the partial sums form a martingale which is bounded in L � due
Ž .to 5.25 , hence �-a.s. convergent to a finite limit. We denote by � and � the0 1

marginals of � .
Let Q � P denote the process with density

dQ
5.29 � � X , X .Ž . Ž .0 1dP
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Note that Q is of the form
�

i5.30 Q � Q ,Ž . Ł
i�1

where Qi is the distribution of a one-dimensional Brownian motion with
constant drift � and initial distribution �i . We are now going to show thati 0
Q is a Schrodinger process with minimal relative entropy, but that Q does¨
not have the structure of an h-transform of infinite-dimensional Brownian
motion. In other words, it is not possible to construct a measurable factoriza-
tion of the density.

PROPOSITION 5.31. The process Q has the Markov property, it minimizes
Ž � . Ž � .relative entropy H Q P � H � � under the constraint that the marginals � 0

and � are fixed, and the density � belongs to L p for any p � �. However, the1
density does not admit a measurable factorization of the form

5.32 � x , y � f x g y , �-a.s.Ž . Ž . Ž . Ž .

Ž .PROOF. i Let us write

5.33 � x , y � lim f x g y , �-a.s.,Ž . Ž . Ž . Ž .n n
n

where
n

�1 i5.34Ž . f x � c exp �� x ,Ž . Ž .Łn n i
i�1

n n
1i 2g y � exp � y , c � exp � .Ž . Ž .Ł Ýn i n i2ž /i�1 i�1

The differences yi � x i, i � 1, 2, . . . , are independent with distribution
Ž .N � , 1 under � , and this implies that the partial sumsi

n n
1i i 25.35 log f x g y � � y � x � �Ž . Ž . Ž . Ž .Ý Ýn n i i2

i�1 i�1

2Ž .converge to log � in L � . Due to Proposition 3.6, we can conclude that �
Ž � .minimizes the relative entropy H � � under the constraint that the marginals

Ž .are fixed to be � and � . Note also that 5.28 implies that0 1

p5.36 � d� � exp p p � 1 ,Ž . Ž .H
pŽ .that is, the density � belongs to L � for any p � �.

Ž . Ž . Ž .ii The representation 5.30 shows that the coordinate process X hast
the Markov property under Q, and so Q is, in fact, a Schrodinger process.¨
The Markov property also follows from the fact that � minimizes the relative

Ž � .entropy H � � under the given marginals; cf. Theorem 3.43. It is also implied
by the weak factorization

5.37 � X , X � � X , X  X , X , P-a.s.Ž . Ž . Ž . Ž .0 1 0, t 0 t t , 1 t 1
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Ž .for any t � 0, 1 , where
�

i i� X , X � exp �1 exp � X � X ,Ž . Ž . Ž .Ł0, t 0 t i t 0
i�1

�
i i X , X � exp � X � X ;Ž . Ž .Łt , 1 t 1 i 1 t

i�1

5.38Ž .

cf. Lemma 2.22.
Ž . Ž .iii Let us first note that it is not possible to derive a factorization 5.32

Ž . Ž . Ž .directly from 5.33 since lim f x � 0 and lim g y � � �-a.s. In order ton n
show that there is no alternative way of constructing a factorization, we
proceed indirectly. Assume that there are nonnegative measurable functions

Ž .f and g such that the factorization 5.32 holds �-a.s. We have f, g � 0 �-a.s.
Taking logarithms, we get

log f x 	 log g y � log � x , yŽ . Ž . Ž .
�

i i� � y � x � 1, �-a.s.Ž .Ý i
i�1

5.39Ž .

Let � denote the conditional distribution of � given that x i � 0 forŽn.
i � 1, . . . , n. In our case, � is absolutely continuous with respect to �, andŽn.

Ž .so 5.39 implies

log f 0, . . . , 0, x n	1, . . . 	 log g yŽ . Ž .Ž .
� log � 0, . . . , 0, x n	1, . . . , yŽ .Ž .5.40Ž .

n �
i i i� � y 	 � y � x � 1Ž .Ý Ýi i

i�1 i�n	1

� -a.s. However, � and � are equivalent on the �-field generated by yŽn. Žn.
i Ž .and by the coordinates x , i � n, and so 5.40 holds also �-a.s. Looking at the

Ž . Ž .difference between 5.39 and 5.40 , we see that for each n � 1 the relation
n

n	1 n	2 i5.41 log f x � log f 0, . . . , 0, x , x , . . . � � xŽ . Ž . Ž . Ý i
i�1

Ž .holds �-a.s. Equation 5.41 is of the form

5.42 Z � Z 	 S , P-a.s.Ž . n n

where Z is finite P-a.s., Z and S are independent and S has binomialn n n
1Ž .distribution B n, under P. As in the previous example, this leads to a2

contradiction. �
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