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Abstract: Suppose that the integers are assigned i.i.d. random variables{ωx} (taking
values in the unit interval), which serve as an environment. This environment defines
a random walk{Xn} (called a RWRE) which, when atx, moves one step to the right
with probabilityωx, and one step to the left with probability 1− ωx. Solomon (1975)
determined the almost-sure asymptotic speedvα (=rate of escape) of a RWRE. Greven
and den Hollander (1994) have proved a large deviation principle forXn/n, conditional
upon the environment, with deterministic rate function. For certain environment distri-
butions where the drifts 2ωx − 1 can take both positive and negative values, their rate
function vanishes on an interval (0, vα). We find the rate of decay on this interval and
prove it is a stretched exponential of appropriate exponent, that is the absolute value of
the log of the probability that the empirical meanXn/n is smaller thanv, v ∈ (0, vα),
behaves roughly like a fractional power ofn. The annealed estimates of Dembo, Peres
and Zeitouni (1996) play a crucial role in the proof. We also deal with the case of positive
and zero drifts, and prove there a quenched decay of the form exp(−cn/(logn)2).

1. Introduction

In this paper, we continue the study, initiated in [4] and [2], of tail estimates for a
nearest-neighbor random walk onZ with site-dependent transition probabilities.

Let ω = (ωx)x∈Z be an i.i.d. collection of (0, 1)-valued random variables, with
marginal distributionα For every fixedω, let X = (Xn)n≥0 be the Markov chain onZ
starting atX0 = 0 (unless explicitly stated otherwise), and with transition probabilities
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Pω(Xn+1 = y | Xn = x) =

 ωx if y = x + 1
1 − ωx if y = x − 1

0 otherwise
. (1)

The symbolPω denotes the measure on path space given the environmentω, and is
referred to as the “quenched" setting. The process (X, ω) is an example of arandom
walk in random environment(RWRE), andX has the lawP =

∫
αZ(dω)Pω, referred

to as the “annealed" law. When no confusion arises, we useP also to denote the law
of (X, ω). We use in various places, when confusion does not occur,P to denote the
probability of events constructed from random variables unrelated to the RWRE.

For a discussion of the different regimes that the RWREXn exhibits, we refer to the
introduction in [2].

Abbreviateρ = ρ(x, ω) = (1− ωx)/ωx and〈f〉 =
∫

f (ω)αZ(dω) for any function
f of the environment. Letρmax denote the maximum ofρ over the closed support ofα,
and letρmin denote the corresponding minimum. We will be interested here in the case
〈ρ〉 < 1 andρmax ≥ 1, in which case (cf. [7]) the RWRE is transient and,P-a.s.,

lim
n→∞ n−1Xn = vα :=

1 − 〈ρ〉
1 + 〈ρ〉 . (2)

Tail estimates forXn/n have been derived for the quenched setting in [4]. In particular,
it was shown there that,P-a.s, the random variablesXn/n satisfy with respect toPω

a large deviation principle of speedn and explicit, deterministic, rate functionI(v),
defined as follows (see [4, Theorem 2 and Corollary 1]). Letf (r, ω), r ≥ 0 denote the
continued fraction function

f (r, ω) =
1|

er(1 +ρ(0, ω))
− ρ(0, ω)|

er(1 +ρ(1, ω))
− ρ(1, ω)|

· · · ,

and letλ(r) = exp〈logf (r, ω)〉 . Let r(v) = 0 for v ≤ vα, and forv ∈ (vα, 1], let r(v)
be the unique solution of the equationv−1 = −λ′(r)/λ(r). Then,

I(v) =

−r(v) − v logλ(r(v)) , v ∈ [0, 1]
I(−v) + v〈logρ〉 , v ∈ [−1, 0]

∞ , v 6∈ [−1, 1] .

Furthermore,I(v) = 0 for v ∈ [0, vα] andI is strictly positive elsewhere.
Our goal in this paper is to study in greater detail the regimev ∈ (0, vα) under

Pω. In the annealed setting, i.e., when one is interested inP(Xn ≤ nv), v ∈ (0, vα),
sub–exponential rates of decay were derived in [2]. We summarize now the main results
of [2] relevant to us. Recall (cf. [2]) that when〈ρ〉 < 1, there exists a uniques > 1
satisfying〈ρs〉 = 1.

Theorem 1 (see [2]).Letv ∈ (0, vα).
(a) Positive and negative drifts. Suppose that〈ρ〉 < 1 andρmax > 1. Then,

lim
n→∞ logP(Xn ≤ nv)/ logn = 1− s .

(b) Positive and zero drifts. Suppose that〈ρ〉 < 1 but ρmax = 1 andα(1/2) > 0. Then,
with C1 = 3

2 |π logα(1/2)
2 |2/3 andC2 = |π(log〈ρ〉)

8 |2/3,



Random Walk in Random Environment 179

− C1(1 − v

vα
)1/3 ≤ lim inf

n→∞
1

n1/3
logP(Xn ≤ nv)

≤ lim sup
n→∞

1
n1/3

logP(Xn ≤ nv) ≤ −C2(1 − v

vα
)1/3 . (3)

Maybe surprisingly, it turns out that the annealed estimates are key to understanding
the quenched asymptotics. The next theorems are our main results. They quantify the
fact that the annealed probabilities of large deviations are of bigger order than their
quenched counterparts, due to the possibility of rare fluctuations in the environment
which may slow down the RWRE.

Theorem 2 (Positive and negative drifts).Suppose that〈ρ〉 < 1, ρmax > 1, and let
v ∈ (0, vα). Then, forP-a.a.ω, the following statements hold:

1. For anyδ > 0,

lim sup
n→∞

1
n1−1/s−δ

log Pω (Xn < nv) = −∞. (4)

2. For anyδ > 0,

lim inf
n→∞

1
n1−1/s+δ

log Pω (Xn < nv) = 0. (5)

Furthermore,

lim sup
n→∞

1
n1−1/s

log Pω (Xn < nv) = 0. (6)

One should compare the rate of decay obtained in Theorem 2 with the annealed
polynomial rate of decay (see Theorem 1)P(Xn < nv) ' n1−s.

As in [2], tail estimates are different when the drift cannot be negative:

Theorem 3 (Positive and zero drifts).Suppose that〈ρ〉 < 1, ρmax = 1, and
α({1/2}) > 0. Then, forP-a.a.ω, and forv ∈ (0, vα),

− c1(1 − v

vα
) ≤ lim inf

n→∞
(logn)2

n
logPω(Xn < nv)

≤ lim sup
n→∞

(logn)2

n
logPω(Xn < nv) ≤ −c2(1 − v

vα
)2 . (7)

Here,c1 = |π logα({1/2})|2/8 andc2 = |π log〈ρ〉|2/243.

Again, the rate in Theorem 3 should be compared with the annealed rate (cf. Theo-
rem 1)P(Xn < nv) ' exp(−Cin

1/3).

Remarks. 1. As in [2], we have not covered the case of〈ρ〉 < 1, ρmax = 1, while
α({1/2}) = 0. The tail estimates in the annealed case were conjectured in [2, p. 681]
to be of the form exp(−Din

β), i = 1, 2, for someβ ∈ (1/3, 1) determined by the
tails of α(·) near 1/2. The same proof as in Theorem 3 then shows that the upper
quenched estimates in Theorem 3 become exp(−dn/(logn)γ), with γ = 1/β − 1.
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2. In the setting of Theorem 2, we conjecture that actually

lim inf
n→∞

1
n1−1/s

log Pω (Xn < nv) = −∞.

In fact, the derivation of the lower bound in (6) hints at such a limit. In the setting
of Theorem 3, we conjecture, as in [2], that the lower bound is sharp, that is

lim
n→∞

(logn)2

n
logPω(Xn < nv) = −c1(1 − v

vα
) .

In fact, it was shown recently (see [6]) that the lower bound is sharp in the annealed
setting, that is one may replaceC2 in the right hand side of (3) byC1. This however
does not suffice for closing the gap in our Theorem 3, see the comment following
the proof of the theorem.

3. In the setting of Theorem 2, it is natural to attempt to improve on (4), (5) by allowing
for δn →n→∞ 0. Such improvement is possible if in Theorem 1.1 of [2], one refines
the convergence, that is one proves bounds of the form

lim sup
n→∞

gnns−1P(Xn < nv) < ∞

for appropriategn →n→∞ 0 sub–polynomially , which is possible albeit tedious.
It seems however impossible by this way to completely close the gap between the
upper and lower bounds exhibited in (4) and (5).

We conclude this introduction with two technical lemmas, borrowed from [2], whose
proof follows readily from the explicit computations for inhomogeneous random walk
of [1, pp. 66–71]. LetXn denote a RWRE and let̄Xn denote a RWRE withω0 = 1. Let
τ̄k = min{n : X̄n = k}, let Rk = k−1∑k

i=1 logρ(i), and letL0 = maxn≥0{−Xn}.

Lemma 1 ([2], Lemma 2.1). For all n, k,

Pω(τ̄k ≥ n) ≥ (1 − e−(k−1)Rk−1)n .

Lemma 2 ([2], Lemma 2.2). For anyk ≥ 1,

P(L0 ≥ k) ≤ 〈ρ〉k

1 − 〈ρ〉 .

2. Proofs

Proof of Theorem 2.Since the lower bound of Theorem 2 is relatively simple, and the

key ideas are already explained in [2], we postpone the discussion of it and begin by
providing a sketch of the proof of the upper bound leading to (4), that is, with

τn = inf {t : Xt = n} , (8)

we will explain why

lim
n→∞

1
n1−1/s−δ

logPω

(
τn > n/v

)
= −∞.
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The required upper bound follows readily.
We will omit subsequences, etc. in this sketch, and thus the reader interested in a

complete proof should take the next few paragraphs with somewhat of a grain of salt. The
precise statement of the required estimate is contained in the statement of Proposition
1.

Divide the interval [0, nv] into blocks of size roughlyk = kn := n1/s+δ. Let Xx
n

denote the RWRE started atx, and define

T (i)
k = inf{t > 0 : Xik

t = (i + 1)k} , i = 0, ±1 , . . . . (9)

By slight abuse of notation, we continue to usePω for the quenched law of the{Xx
n}.

By using the annealed bounds of [2], see Theorem 1, one knows thatP(τk > k/v) ∼
k1−s . Hence, taking appropriate subsequences, one applies a Borel–Cantelli argument
to control the probability, conditioned on the environment, of the time spent in each such
block being large, i.e., one exhibits a uniform estimate onPω(T (i)

k > k/v), cf. Lemma
5.

The next step involves a decoupling argument. Let

T
(i)
k = inf {t > 0 : Xik

t = (i + 1)k or Xik
t = (i − 1)k}. (10)

Then, using Lemma 2, and the Borel–Cantelli lemma, one shows that for all relevant

blocks, that isi = ±1, ±2, . . . , ±n/k, Pω(T
(i)
k 6= T (i)

k ) is small enough. Therefore, we

can consider the random variablesT
(i)
k instead ofT (i)

k , which have the advantage that their
dependence on the environment is well localized. This allows us to obtain (cf. Lemma 7)

a uniform bound on the tails ofT
(i)
k , for all relevanti.

The final step involves estimating how many of thek-blocks will be traversed from
right to left before the RWRE hits the pointnv. This is done by constructing a simple

random walk (SRW)St whose probability of jump to the left dominatesPω(T (i)
k 6= T

(i)
k )

for all relevanti. The analysis of this SRW will allow us to claim (cf. Lemma 9) that
the number of visits to ak-block after entering its right neighbor is negligible. Thus, the
original question on the tail ofτn is replaced by a question on the sum of (dominated by

i.i.d.) random variablesT
(i)
k , which is resolved by means of the tail estimates obtained

in the second step.
A slight complication is presented by the need to work with subsequences in order

to apply the Borel–Cantelli lemma at various places. Going from subsequences to the
originaln sequence is achieved by means of monotonicity arguments.

Turning now to the complete proof, we first note that it is actually enough to prove
a weaker statement. Forδ ∈ (0, 1 − 1/s), let Cn = nδ and letnj = [j2/δ]. Recall that
τn = inf {t : Xt = n} , and letµ := v−1 > v−1

α . The key to the upper bound is the
following proposition, whose proof is postponed.

Proposition 1.

lim
j→∞

Cnj

n
1−1/s
j

logPω

(
τnj > njµ

)
= −∞. (11)

Assuming the proposition holds true, let us show how to complete the proof of the upper

bound (4). Note that, forj large,nj+1/nj ≤ (j + 1)2/δ + 1
j2/δ − 1

−→j→∞ 1. Let jn be such that

njn
≤ n < njn+1. Then, for anyn,
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Pω

(
τn > nµ

)
≤ Pω

(
τnjn+1

> njn
µ
)

= Pω

(
τnjn+1

> njn+1 µ(n)
)

,

whereµ(n) =
µnjn

njn+1

.

Let N be large such that infn≥N
µnjn

njn+1

> µα, and consider onlyn > N . One

concludes from Proposition 1 that for allδ > 0, P a.s.,

lim sup
n→∞

1

n1− 1
s +δ

log Pω(τn > nµ) = −∞ . (12)

To prove (4), letv < v′ < vα and defineL[nv′] = max{[nv′] − X [nv′]
k ; k ≥ 0}. Then,

Pω(Xn < nv) ≤ Pω(τ[nv′] > n) + Pω(L[nv′] ≥ [nv′] − nv) . (13)

By Lemma 2,

P(L[nv′] ≥ [nv′] − nv) = E(Pω(L[nv′] ≥ [nv′] − nv)) ≤ 〈ρ〉[nv′]−[nv]−1

1 − 〈ρ〉 .

Hence, one may find someε > 0, θ > 0 such that

P(Pω(L[nv′] ≥ [nv′] − nv) ≥ e−εn) ≤ e−θn .

Applying now the Borel–Cantelli lemma, one concludes thatP-a.s.,

lim sup
n→∞

1
n

logPω(L[nv′] ≥ [nv′] − nv) < −ε < 0 . (14)

(4) follows from (13), (14) and (12).
As mentioned before, the proof of the lower bounds (5) and (6) follows the ideas of

[2] (see in particular Remark 4, p. 682). Indeed, it is already explained there why, for
anyδ > 0,

lim inf
n→∞

1
n1−1/s+δ

log Pω

(Xn

n
< v
)

= 0.

In order to see the refined estimate in (6) , we recall the following notations from [2]. Let

Rk(m) = 1
k

m+k∑
i=m+1

logρ(i). Defineτx
k = inf {t : Xx

t = k + x} andτx
k = inf {t : X

x

t =

k + x}, whereX
x

t is the RWRE withω(x) = 1, initiated atx. It follows from Lemma 1
that

Pω

(
τx
k+1 ≥ n

)
≥ Pω

(
τx

k+1 ≥ n
)

≥
(

1 − e−kRk(x)
)n

. (15)

Forn = 1, 2 , . . . , define

Mn(x) = max
x≤m≤x+n
k≤x+n−m

kRk(m).

In particular, it follows from (15) that for anyc > 0 andl = [n/c],

Pω(τx
l+1 ≥ n) ≥ Pω(τ̄x

l+1 ≥ n) ≥
(

1 − e−Ml(x)
)n

. (16)

We recall the following exceedence bounds, due to Iglehart. For this version, see [5],
Theorem A.
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Lemma 3. There exist constantsK1, K2, such that for anyz ∈ R,

exp
(
−K1 exp(−sz)

)
≤ lim inf

l→∞ P
(
Ml(x) − log l

s
≤ z
)

≤ lim sup
l→∞

P
(
Ml(x) − log l

s
≤ z
)

≤ exp
(
−K2 exp (−sz)

)
.

A corollary of Lemma 3 and (16) (takingy = ez) is the following:

Lemma 4. For anyy > 0 there exists acy > 0 such that, for anyv′ < vα,

lim inf
n→∞ P

(
Pω(τx

[nv′] ≥ n) ≥ e
− n1−1/s

y(v′ )1/s

)
≥ cy

and the convergence is uniform inx.

Equipped with Lemma 4, we have completed all the preliminaries required for prov-
ing (6). Indeed, fixy > 0, and letnk = 22k

. Note that

lim sup
n→∞

logPω(Xn ≤ nv)
n1−1/s

≥ lim sup
k→∞

logPω(Xnk
≤ nkv)

n
1−1/s
k

≥ lim sup
k→∞

logPω(τ0
[nkv] ≥ nk)

n
1−1/s
k

≥ lim sup
k→∞

logPω(τnk−1

[nkv]−nk−1
≥ nk)

n
1−1/s
k

≥ lim sup
k→∞

logPω(τnk−1

[nkv′] ≥ nk)

n
1−1/s
k

n,

wherev′ = v − ε for arbitraryε. By Lemma 4, and the Borel–Cantelli lemma, for any
z > 0,

Pω

(
τ

nk−1

[nkv′] ≥ nk

)
≥ e− n

1−1/s

k
z

infinitely often. The conclusion follows by takingz → ∞. This completes the proof of
Theorem 2, except that we still have to show Proposition 1. �

Proof of Proposition 1.Let k = kj =
Cnj

n
1/s
j

1 − ε
for some 1> ε > 0. ForXx

n the RWRE

started atx, recall that

T (i)
k = inf{t > 0 : Xik

t = (i + 1)k} , i = 0, ±1 , . . . .

By slight abuse of notation, we continue to usePω for the quenched law of the{Xx
n}.

Finally, letbn = C−δ
n andIj =

{
−
[

nj

kj

]
− 1 , · · · ,

[
nj

kj

]
+ 1
}

. Fix µ′ > µ.
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Lemma 5. For P – a.e.ω, there exists aJ0(ω) such that for allj > J0(ω), and all
i ∈ Ij ,

Pω

(
T (i)

kj

kj
> µ′

)
≤ bnj

.

Proof of Lemma 5.By Chebycheff’s bound,

P

(
Pω

(T (i)
kj

kj
> µ′

)
> bnj

)
≤ 1

bnj

P
(T (i)

kj

kj
> µ′

)
≤ 1

bnj

k1−s+o(1)
j ,

where the last inequality follows from Theorem 1(a), ando(1) −→j→∞ 0.

Hence,

P

(
Pω

(T (i)
kj

kj
> µ′

)
> bnj for somei ∈ Ij

)
≤ 3

[nj

kj

]
· 1
bnj

· k1−s+o(1)
j

≤ 3

nδ(s−o(1)−δ)
j

≤ 4
j2(s−o(1)−δ)

,

and the conclusion follows from the Borel–Cantelli lemma. �
Let 0 < θ < − log〈ρ〉

1−ε , dθ
n = e−θn1/s Cn , and recall that

T
(i)
k = inf {t > 0 : Xik

t = (i + 1)k or Xik
t = (i − 1)k}.

Lemma 6. For P – a.e.ω, there is aJ1(ω) s.t. for all j ≥ J1(ω),

Pω

(
T

(i)
kj

6= T (i)
kj

, somei ∈ Ij

)
≤ dθ

nj
.

Proof of Lemma 6.Again, we use the Chebycheff bound:

P
(

Pω

(
T

(i)
kj

6= T (i)
kj

, some i ∈ Ij

)
> dθ

nj

)
≤ 1

dθ
nj

· 3nj

kj
P
(
T

(0)
kj

6= T (0)
kj

)
≤ 1

dθ
nj

· 3nj

kj
· 〈ρ〉kj

1 − 〈ρ〉

≤ 3
(1 − 〈ρ〉) n

1− 1
s −δ

j exp

(
n

1
s +δ
j

(
log〈ρ〉
(1 − ε)

+ θ

))
,

where the second inequality follows from Lemma 2. The conclusion follows from the
Borel–Cantelli lemma. �

We actually need to iterate the estimates of Lemma 5.
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Lemma 7. For P – a.e.ω, for all j > J0(ω) , and eachi ∈ Ij , and forx ≥ 1,

Pω

T
(i)
kj

kj
> µ′x

 ≤ (2bnj
)[x/2]∨1.

Proof of Lemma 7.For 1≤ x < 4, the claim follows from Lemma 5. Assume thus that
x ≥ 4. Then,

Pω

T
(i)
kj

kj
> µ′x

 ≤ Pω

(T
(i)
kj

kj
> µ′(x − 2) ,

(i − 1)kj < X
ikj

[µ′kj (x−2)]+1 < (i + 1)kj ,

min{t : t ≥ [µ′kj(x − 2)] + 2, Xikj

t = (i + 1)kj} ≥ xµ′kj

)
.

Hence, by the Markov property,

Pω

(T
(i)
kj

kj
> µ′x

)
≤ Pω

T
(i)
kj

kj
> µ′(x − 2)


× sup

(i−1)kj<y<(i+1)kj

Pω

(
inf {t : Xy

t = (i + 1)kj} ≥ 2µ′kj

)

≤ Pω

(T
(i)
kj

kj
> µ′(x − 2)

)
· Pω

(
T (i)

kj
+ T (i−1)

kj
> 2µ′kj

)

≤ Pω

T
(i)
kj

kj
> µ′(x − 2)


[
Pω

(
T (i)

kj
> µ′kj

)
+ Pω

(
T (i−1)

kj
> µ′kj

)]
≤ 2bnj Pω

T
(i)
kj

kj
> µ′(x − 2)

 ,

where the last inequality is a consequence of Lemma 5. The lemma follows by induction.
�

We need one more preliminary computation related to the bounds in Lemma 7. Let
{Z (i)

kj
}, i = 1, 2, . . . denote a sequence of i.i.d. positive random variables, with

P

(
Z (i)

kj

kj
< µ′

)
= 0 , P

(
Z (i)

kj

kj
> µ′x

)
=
(

2bnj

)[x/2]∨1
, x ≥ 1.

Lemma 8. For anyλ > 0, and anyε > 0,
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E
(

exp

(
λ

Z (i)
kj

kj

))
≤ eλµ′(1+ε) + gj ,

wheregj −→j→∞ 0.

Proof of Lemma 8.

E
(

exp

(
λ

Z (i)
kj

kj

))
=
∫ ∞

0
P
(Z (i)

kj

kj
>

logu

λ

)
du

≤ eλµ′(1+ε) +
∫ ∞

eλµ′ (1+ε)

(2bnj
)

[
logu

2λµ′(1 + ε)

]
∨1

du

= eλµ′(1+ε) + gj

wheregj −→j→∞ 0. �

In order to control the number of repetitions of visits tokj–blocks, we introduce an
auxiliary random walk. LetSt, t = 0, 1 , . . . , denote a simple random walk withS0 = 0
and

P
(
St+1 = St + 1

∣∣∣St

)
= 1− P

(
St+1 = St − 1

∣∣∣St

)
= 1− dθ

n.

SetMnj =
1

Cnj

n
1− 1

s
j .

Lemma 9. For θ as in Lemma 6, andn large enough,

P
(

inf {t : St =
[nj

kj

]
} > Mnj

)
≤ exp

(
−θε

2
nj

)
.

Proof of Lemma 9.

P

(
inf
{

t : St =
[nj

kj

]}
> Mnj

)
≤ P

(
S[Mnj

]

Mnj

<
nj

kj Mnj

)
= P

(
S[Mnj

]

Mnj

< 1 − ε

)
≤ 2e−Mnj

hnj
(1−ε),

where the last inequality is a consequence of Cramèr’s theorem (cf. [3]), and the fact
thatdθ

n < ε. Here,

hn(1 − x) = (1− x) log
( 1 − x

1 − dθ
n

)
+ x log

x

dθ
n

.

Usinghn(1 − x) ≥ − 2
e − x logdθ

n, we get

P

(
S[Mnj

]

Mnj

< 1 − ε

)
≤ 2e2Mnj

/e e
+εMnj

logdθ
nj ≤ e− ε

2 θ nj . �

We are now ready to prove (11). Note that, for allj > J0(ω), and alli ∈ Ij , we may,

due to Lemma 7, construct{Z (i)
kj

} and{T
(i)
kj

} on the same probability space such that
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Pω

(
Z (i)

kj
≥ T

(i)
kj

∀ i ∈ Ij

)
= 1. Fix µα < µ′ < µ andε > 0 small enough. Recalling

that, underPω, theT
(i)
kj

are independent, we obtain, with{St} defined before Lemma 9,
andj large enough,

Pω(τnj > njµ) ≤ P
(

inf
{

t : St =
[nj

kj

]}
> Mnj

)
+ P
(Mnj∑

i=1

Z (i)
kj

> njµ
)

≤ e−θεnj/2 + P
( 1

Mnj

Mnj∑
i=1

Zkj

kj
> µ(1 − ε)

)
≤ e−θεnj/2 +

[
E
(

exp

(
λ

Z (i)
kj

k(i)
j

))
· e−λµ(1−ε)

]Mnj

≤ e−θεnj/2 +
(
eλ(µ′+2εµ−µ) + gje

−λµ(1−ε)
)Mnj

≤ e−θεnj/2 +
(
e−λεµ

)Mnj

,

where Lemma 9 was used in the second inequality and Lemma 8 in the fourth. Since
λ > 0 is arbitrary, (11) follows. �
Proof of Theorem 3.We begin by giving a quick sketch of the lower bound in (7), based
on [2]. By the Erd̈os-Renyi strong law for the longest run of heads, (or the asymptotics
for long rare segments in random walks, see e.g., [3, p. 69]), there is a segmentI =
(imin, imax), with imin ≥ n(v−ε), imax < nv andimax−imin = logn/(− logα({1/2}))(1+
o(1)), such thatωi = 1/2 for i ∈ I. Let X̃n denote the RWRE started at (imin + imax)/2.
Let τ = min{t : X̃t = imin or X̃t = imax}. Then,τ possesses the same law as the
exit time, denoted ¯τ , of the simple symmetric random walk from the interval [−(imax−
imin)/2, (imax − imin)/2]. As before, we letτk = min{t : Xt = k}. We have,

Pω(Xn < nv) ≥ Pω(τn(v−ε) ≥ n
v − 2ε

vα
)Pω(τ > n(1 − v

vα
+

2ε

vα
))

= Pω(τn(v−ε) ≥ n
v − 2ε

vα
)P (τ̄ > n(1 − v

vα
+

2ε

vα
)) . (17)

By Solomon’s law of large numbers, cf. (2),

lim
n→∞ Pω(τn(v−ε) ≥ n

v − 2ε

vα
) = 1 . (18)

By standard eigenvalue estimates for the simple random walk (cf. [8, p. 243]),

lim
n→∞

(logn)2

n(1 − v
vα

− 2ε
vα

)(logα(1/2))2
logP (τ̄ > n) = −π2/8 . (19)

Combining (19), (17), and (18), the lower bound in (7) follows.
The proof of the upper bound in (7) follows the proof of part 1 of Theorem 2, except

that there is no need for subsequences here. Withµ = v−1 > v−1
α = µα andt ∈ (0, 1) ,

defineµ̄ = tµα + (1− t)µ. Fix 1/2 > ε > 0, δ > 2, bn = n−(δ/2) and
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k = k(n) :=
(logn)3(1 + δ)3

C3
2(µ̄ − µα)(1 − ε)3

,

whereC2 was defined in Theorem 1. We defineIn =
{

−
[

n
k

]
− 1 , · · · ,

[
n
k

]
+ 1
}

, and

useT (i)
k as in (9). Then, following the outline of the proof of Lemma 5,

P(Pω(T (i)
k > µ̄k) > bn) ≤ exp(−C2(µ̄ − µα)1/3k1/3(1 − ε))

bn
, (20)

where we have used the bound

P(T (i)
k > µ̄k) ≤ exp(−k1/3C2(µ̄ − µα)1/3) ,

which follows from Theorem 1 using the inequalities

P(T (i)
k > µ̄k) ≤ P(X[µ̄k] < k) ≤ P(X[µ̄k] < ([µ̄k] + 1)/µ̄) .

Thus, by the Borel–Cantelli lemma, forP-a.e.ω, there exists anN0(ω) such that for all
n > N0(ω),

Pω(T (i)
k > µ̄k , somei ∈ In) ≤ bn . (21)

Define T
(i)
k as in (10). Set 0< γ < (1 + δ)3| log〈ρ〉|/C3

2(µ̄ − µα). With dn =
exp(−γ(logn)3), the Borel–Cantelli lemma yields, as in the proof of Lemma 6, that
for P-a.e.ω, there exists anN1(ω) such that forn ≥ N1(ω),

Pω(T (i)
k 6= T

(i)
k , somei ∈ In) < dn . (22)

Using (21), one concludes as in Lemma 7 that forP-a.e.ω, for n > N0(ω), and each
i ∈ In,

Pω(T
(i)
k > kµ̄x) ≤ (2bn)[x/2]∨1 . (23)

Let Z (i)
k , i = 1, 2 , . . . denote a sequence of positive, i.i.d random variables with

P
(Z (i)

k

k
< µ̄

)
= 0 , P

(Z (i)
k

k
> µ̄x

)
= (2bn)[x/2]∨1 , x ≥ 1.

The following lemma takes the place of Lemma 8 in the proof of Theorem 2:

Lemma 10. For eachε′ > 0, we have, forλn = − log(2bn)/2µ̄(1 + ε′),

E exp
(
λn Z (i)

k /k
)

≤ eλnµ̄ + gn ,

wheregn −→n→∞ 0 .

Proof of Lemma 10.Exactly as in the course of the proof of Lemma 8, forn large enough,

E exp
(
λn Z (i)

k /k
)

=
∫ ∞

0
P
(Z (i)

k

k
>

logu

λn

)
du

≤ eλnµ̄ +
∫ ∞

eλnµ̄

(2bn)
log u

2λnµ̄ du = eλnµ̄ + gn ,

where
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gn =
∫ ∞

eλnµ̄

u(log 2bn)/(2λnµ̄) du =
∫ ∞

eλnµ̄

u−(1+ε′) du −→n→∞ 0. �

Let St, t = 0, 1, . . . , denote the simple random walk withS0 = 0 and

P (St+1 = St + 1|St) = 1− P (St+1 = St − 1|St) = 1− dn ,

and let

Mn =
nC3

2(µ̄ − µα)(1 − ε)2

(logn)3(1 + δ)3
.

Mimicking the proof in Lemma 9, we obtain that

P (inf{t : St = [n/k]} > Mn) ≤ exp(−nθε) , (24)

whereθ = γC3
2(µ̄ − µα)(1 − ε)2/(3(1 +δ)3).

Following the proof of Theorem 2, we have

Pω[τn > nµ] ≤ P
(

inf
{

t : St =
[n
k

]}
> Mn

)
+ P
(Mn∑

i=1

Z (i)
k > nµ

)
≤ e−nθε + P

( 1
Mn

Mn∑
i=1

Z (i)
k

k
> µ(1 − ε)

)
≤ e−nθε +

(
E exp

(
λn Z (i)

k /k
)

e−λnµ(1−ε)
)Mn

≤ e−nθε + e−λnMn(µ(1−ε)−µ̄−ε) ,

where the second inequality is due to (24) and the last due to Lemma 10.
Plug in the definition ofMn andλn to get

lim sup
n→∞

(logn)2

n
logPω(τn > nµ) ≤ −

C3
2(µ̄ − µα)(1 − ε)2 δ

2

(
µ(1 − ε) − µ̄ − ε

)
2(1 +δ)3µ̄(1 + ε′)

.

Lettingε andε′ → 0 andδ → 2, one gets

lim sup
n→∞

(logn)2

n
logPω(τn > nµ) ≤ −C3

2(µ̄ − µα)
1

2 · 33

µ − µ̄

µ̄

= −C3
2

1
2 · 33

(µ − µα)2 t(1 − t)
(1 − t)µ + tµα

, (25)

where we used the definition of ¯µ in the last equality. Optimizing overt ∈ (0, 1) yields

lim sup
n→∞

(logn)2

n
logPω(τn > nµ) ≤ −C3

2
1

2 · 33
(µ − µα)2 1

(
√

µ +
√

µα)2
.

To prove the upper bound in (7), observe that forv < v′ < vα, by the same argument
as in (14),
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lim sup
n→∞

(logn)2

n
logPω

(Xn

n
< v
)

≤ lim sup
n→∞

(logn)2

n
logPω

(
τ[nv′] > [nv′]

1
v′
)

= lim sup
n→∞

v′ (log[nv′])2

[nv′]
logPω

(
τ[nv′] > [nv′]

1
v′
)

≤ −C3
2

1
2 · 33

v′
( 1

v′ − 1
vα

)2 1(
1√
v′ + 1√

vα

)2

≤ −C3
2

1
2 · 33

(
1 − v′

vα

)2 vα(√
v′ +

√
vα

)2 .

Lettingv′ → v, and usingvα/(
√

v +
√

vα)2 ≥ 1/4, we get

lim sup
n→∞

(logn)2

n
logPω

(Xn

n
< v
)

≤ −C3
2

1
8 · 33

(
1 − v

vα

)2
, (26)

completing the proof of the upper bound in (7). �

Remark.Even when one uses the results of [6] and replacesC2 by C1 in the right hand
side of (26), the behaviour of the exponent in the upper bound is quadratic in (vα − v),
which is far from the linear behaviour exhibited by the exponent of the corresponding
lower bound. While the constant in the upper bound can be slightly further improved
(e.g., by using subsequences in the proof), it seems that a new approach is needed to
completely close the gap.

Added in proof
A. Pisztora and T. Povel have recently succeeded in closing the gap mentioned above,
and established that the lower bound in (7) captures the right asymptotic behaviour.
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