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FUNCTIONAL ERDŐS–RENYI LAWS FOR SEMIEXPONENTIAL
RANDOM VARIABLES1

By Nina Gantert

Technische Universität Berlin

For an i.i.d. sequence of random variables with a semiexponential dis-
tribution, we give a functional form of the Erdős–Renyi law for partial
sums. In contrast to the classical case, that is, the case where the random
variables have exponential moments of all orders, the set of limit points is
not a subset of the continuous functions. This reflects the bigger influence
of extreme values. The proof is based on a large deviation principle for the
trajectories of the corresponding random walk. The normalization in this
large deviation principle differs from the usual normalization and depends
on the tail of the distribution. In the same way, we prove a functional limit
law for moving averages.

1. Introduction. Let Y�Y1�Y2� � � � be a sequence of i.i.d. random vari-
ables with E�Y� = 0. Consider the partial empirical means

ξn�m = 1
kn

m+kn∑
j=m+1

Yj� m = 0�1�2� � � � � n− kn� n = 1�2� � � �

over blocks of length kn. How fast should the block length kn increase in
order to have nontrivial fluctuations? In other words, we want to choose kn

such that, P-a.s.,

0 < lim sup
n→∞

sup
0≤m≤n−kn

ξn�m =	 α < ∞�

If E�exp
λY�� < ∞ for all λ ∈ R, it is well known, and goes back to Erdős–
Renyi [5], that the block length kn should be of order log n. The constant α is
then given in terms of the distribution of Y. The same question was answered
earlier in [12] for moving averages of the form

ξn = 1
kn

n+kn∑
j=n+1

Yj�

The statements have been extended to the case where E�exp
λY�� < ∞ for
some λ > 0. Refinements of these results, among them exact rates of conver-
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gence, have been obtained in [3]. Under the assumption that E�exp
λY�� < ∞
for some λ > 0, functional limit theorems for

ξn�m
t� =
1
kn

m+�knt�∑
j=m+1

Yj +
(
t− �knt�

kn

)
Ym+�knt�+1� 0 ≤ t ≤ 1(1)

have been proved in [2] and [11]. The proof of a functional limit law can be
based on a large deviation principle in function space. The most renowned
example is the proof of Strassen’s law of the iterated logarithm based on
Schilder’s theorem, given in [13]. Under the above assumption, sample path
large deviation principles have been derived in [1] and [9]; see also [4].

Our goal in this paper is to give functional limit laws for ξn�m, where the
size of kn has to be determined, in the case where Y has a semiexponential
distribution. That is, E�Yp� < ∞ for all p ≥ 0 but E�exp
λY�� = ∞ for each
λ > 0. This was left as an open problem in [2]; see [2], Remark 3.1. We also
consider moving averages of the form

ξn
t� =
1
kn

n+�knt�∑
j=n+1

Yj +
(
t− �knt�

kn

)
Yn+�knt�+1� 0 ≤ t ≤ 1�(2)

It turns out that the block length kn is of bigger order than log n and depends
on the distribution of Y. The set of limit points of �ξn�m� or �ξn� is not a
subset of the continuous functions as in [11]. This reflects the bigger influence
of extreme values on the partial sums. The proof is based on a large deviation
principle for the trajectories of the corresponding random walk. This large
deviation principle does not have the usual normalization; due to the influ-
ence of extreme values, the convergence of 
1/n�∑n

j=1 Yj to 0 is slower than
exponential in n. The large deviation principle is of independent interest and
complements results of [1], [9] or [8].

2. Statement of the results. Throughout the paper, Y�Y1�Y2� � � � will
be i.i.d. with

E�Y� = 0 and E�exp
λY�� < ∞ for all λ ≤ 0�

We will assume that

a1
t� exp
−b
t�tr� ≤ P�Y ≥ t� ≤ a2
t� exp
−b
t�tr�

for t large enough, where 0 < r ≤ 1 and a1� a2 and b are slowly varying
functions and b
t�/t1−r is nonincreasing. Let ξn�m
t� 
0 ≤ t ≤ 1� and ξn
t� 
0 ≤
t ≤ 1� be defined as in (1) and (2). Let E = �x ∈ L1�0�1�	 x
0� = 0� and let d
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be the metric on E given by d
x�y� = ∫ 1
0 �x
s� − y
s��ds, x�y ∈ E. Let

I
x� =




∑
t	x
t+��=x
t−�


x
t+� − x
t−��r� x nondecreasing pure jump function,

+∞� otherwise,

and

Ĩ
x� =
{
x
1�� x nondecreasing�

+∞� otherwise�

Remark. Note that the level set �x	 Ĩ
x� ≤ 1� contains all distribution
functions of probability distributions on �0�1�.

We will always equip E with its Borel σ-field �. Let

Zn
t� =
1
n

�nt�∑
j=1

Yj +
(
t− �nt�

n

)
Y�nt�+1� 0 ≤ t ≤ 1�(3)

The following theorems are our main results.

Theorem 1. Assume 0 < r < 1. The distributions of 
Zn� satisfy a large
deviation principle on 
E�d� with normalization b
n�nr and with the good rate
function I. This means, for every A ∈ �, we have

− inf
x∈intA

I
x� ≤ lim inf
n

1
b
n�nr

logP�Zn ∈ A�

≤ lim sup
n

1
b
n�nr

logP�Zn ∈ A� ≤ − inf
x∈cl 
A�

I
x�

and I is lower semicontinuous and has compact level sets.

Theorem 2. Assume r = 1 and b
t� −→ 0 as t → ∞. The distributions
of 
Zn� satisfy a large deviation principle on 
E�d� with normalization b
n�n
and with the good rate function Ĩ.

Theorems 1 and 2 can be used to derive the following “Strassen-type” the-
orems.

Theorem 3. Assume 0 < r < 1. Let c > 0. Assume b is such that there is a
sequence of positive constants 
sn� with

srnb
sn
c log n�1/r� −→ d as n → ∞�(4)

where 0 < d < ∞. Let

kn = �sn
c log n�1/r�(5)
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and

K =
{
x ∈ E	 I
x� ≤ 1

cd

}
�(6)

Then, for some no > 0, (i) and (ii) hold P-a.s.

(i) The set �ξn� n ≥ n0� is relatively compact in 
E�d� and the set of its
limit points is K.

(ii) The set �ξn�m� m = 0�1�2� � � � � n− kn� n ≥ n0� is relatively compact in

E�d�, and the set of its limit points is K.

Theorem 4. Assume r = 1 and b
t� −→ 0 as t → ∞. Let c > 0. Assume b
is such that there exists a sequence of positive constants 
sn� with

snb
sn c log n� −→ d as n → ∞�(7)

where 0 < d < ∞. Let

kn = �sn c log n�(8)

and

K =
{
x ∈ E	 Ĩ
x� ≤ 1

cd

}
�(9)

Then, for some n0 > 0, (i) and (ii) in Theorem 3 hold P-a.s.

In contrast to the classical case, that is, the case where the random variables
have exponential moments of all orders, the set K of limit points is not a subset
of the continuous functions. Note that if r < 1, K contains only pure jump
functions, whereas the case r = 1 is the “borderline case” where functions in
K can have jumps as well as continuous parts.

The following corollary is immediate.

Corollary 1. Let F	 E → R be a continuous function. Then, in the setting
of Theorem 3 or Theorem 4,

lim sup
n

F
ξn� = sup
x∈K

F
x�� P-a.s.(10)

and

lim sup
n

sup
0≤m≤n−kn

F
ξn�m� = sup
x∈K

F
x�� P-a.s.(11)
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3. Proofs.

Proof of Theorem 1. The underlying one-dimensional large deviation
principle is the following.

Lemma 1. The distributions of 
1/n� ∑n
j=1 Yj = Zn
1� satisfy a large de-

viation principle with normalization b
n�nr on R with the good rate function
I1, where

I1
t� =
{
tr� t ≥ 0�
+∞� else�

This goes back to [10]; a simple proof can be found in [6].

Remark. Since we have E�exp
λY�� < ∞ for all λ < 0, Cramér’s theorem
(see [4]) yields, for each t < 0,

lim sup
n

1
n

logP
[

1
n

n∑
j=1

Yj ≤ t

]
< 0

and this implies

lim sup
n

1
b
n�nr

logP
[

1
n

n∑
j=1

Yj ≤ t

]
= −∞�

As a consequence, I and Ĩ are only finite on nondecreasing functions.
We now proceed as in the proof of Theorem 5.1.2 in [4]. In the next step, we

show that the finite-dimensional marginals of 
Zn� satisfy a large deviation
principle.

Lemma 2. Let T denote the collection of all ordered finite subsets of �0�1�.
For any τ = 
t1� � � � � td� where 0 = t0 < t1 < t2 < · · · < td ≤ 1, the distributions
of 
Zn
t1�� � � � �Zn
td�� satisfy a large deviation principle with normalization
b
n�nr on R

d with the good rate function Iτ, where

Iτ
x� =




d∑
j=1


x
tj� − x
tj−1��r� if x
tj� ≥ x
tj−1�� j = 1�2� � � � � d

+∞� otherwise�

Sketch of proof. As in [4], page 153, define Zn
t� = 
1/n� ∑�nt�
j=1 Yj 
0 ≤

t ≤ 1� and note that the distributions of 
Zn� and 
Zn� are exponen-
tially equivalent in the normalization b
n�nr. More precisely, d
Zn�Zn� =

1/2n�∑n

j=1
Yj/n�, and therefore, for each λ > 0, P �d
Zn�Zn� ≥ δ� ≤
P �
1/n�∑n

j=1 Yj ≥ 2λδ� for n large enough. Since

lim sup
n

1
b
n�nr

logP
[

1
n

n∑
j=1

Yj ≥ 2λδ
]
≤ −2rλrδr
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due to Lemma 1, and λ > 0 was arbitrary, we see that

lim sup
n

1
b
n�nr

logP �d
Zn�Zn� ≥ δ� = −∞�

Observe that Zτ
n = 
Zn
t1��Zn
t2�−Zn
t1�� � � � �Zn
td�−Zn
td−1�� is a vector

of i.i.d. random variables. Heuristically, if x
t1� < x
t2� < · · · < x
td�,

P �Zτ
n ≈ x� ≈ P

[
1
t1n

�t1n�∑
j=1

Yj ≈ x
t1�
t1

�

1

t2 − t1�n

�t2n�∑
j=�t1n�+1

Yj ≈ x
t2� − x
t1�
t2 − t1

� � � � �

1

td − td−1�n

�tdn�∑
j=�td−1n�+1

Yj ≈ x
td� − x
td−1�
td − td−1

]

≈ exp
(
−b
t1n�
t1n�r

(
x
t1�
t1

)r

− b

t2 − t1�n�

t2 − t1�n�r
(
x
t2� − x
t1�

t2 − t1

)r

− · · · − b

td − td−1�n�

td − td−1�n�r
(
x
td� − x
td−1�

td − td−1

)r)

≈ exp
(
−b
n�nr

d∑
j=1


x
tj� − x
tj−1��r
)

= exp
−b
n�nr Iτ
x��
and the argument can be made precise using the contraction principle, as in
[4], page 154. Note that if x
tj� < x
tj−1� and ε < 1

2
x
tj−1� − x
tj��, we have

lim
n

1
b
n�nr

logP
[�Zn
tj� − x
tj�� < ε� �Zn
tj+1� − x
tj+1�� < ε

] = −∞

due to the remark following Lemma 1. ✷

Let X denote the space of all functions x	 �0�1� → R, x
0� = 0, equipped
with the topology of pointwise convergence.

Lemma 3. The distributions of 
Zn� satisfy a large deviation principle with
normalization b
n�nr on X with the good rate function IT, where

IT
x� = sup
τ∈T

Iτ
x��(12)
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Lemma 3 follows from Lemma 2 if we apply the large deviation theorem
for projective limits of Dawson and Gärtner; see [4], Theorem 4.6.1.

Lemma 4. For all x ∈ X, IT
x� = I
x�.

Proof. Clearly, IT
x� = I
x� if x is a jump function. Further, both rate
functions are infinite if there is s < t such that x
s� > x
t�. In the next step,
we show that IT
x� = ∞ if x is continuous on some interval �s� t� with 0 ≤
s < t ≤ 1, and x
s� �= x
t�. Let t
n�j = s+ 

j− 1�/n� 
t− s�� j = 1�2� � � � � n+ 1

and τn = 
t
n�1 � � � � � t

n�
n+1�. Then we have

x
t� − x
s� =
n∑

j=1

x
(
t

n�
j+1

)− x
(
t

n�
j

)

≤ max
1≤j≤n

∣∣∣x(t
n�j+1

)− x
(
t

n�
j

)∣∣∣1−r n∑
j=1

(
x
(
t

n�
j+1

)− x
(
t

n�
j

))r

and since max1≤j≤n �x
t
n�j+1� − x
t
n�j ��1−r → 0 for n → ∞, this implies that
Iτn
x� → ∞ for n → ∞. Let x be nondecreasing, x not a pure jump function.
Then there is a nondecreasing pure jump function x1 and a nondecreasing
continuous function x2 such that x = x1 +x2. Due to the last step, we can find
a sequence 
τn� such that Iτn
x2� → ∞ for n → ∞, and x is continuous in all
points of τn, for each n. Then we have Iτn
x� ≥ Iτn
x− x1� = Iτn
x2�, and this
implies Iτn
x� → ∞ for n → ∞. ✷

Let

KL = {
x ∈ E	 var�0�1�
x� ≤ L2/r}�(13)

Lemma 5. For each L�KL is compact in 
E�d�. For L large enough,

lim sup
n

1
b
n�nr

logP �Zn ∈ Kc
L� ≤ −L�(14)

In particular, the distributions of 
Zn� are exponentially tight in the normal-
ization b
n�nr.

Proof. Note that KL ⊆ �x ∈ E	 sup0≤s≤1 �x
s�� ≤ L2/r�. Let 
xn� ⊆ KL.
Then each xn can be identified with a signed measure. Let xn = x+

n − x−
n be

the Jordan–Hahn decomposition of xn. Due to Prohorov’s theorem, we can find
a subsequence 
nj� such that 
x+

nj
�� 
x−

nj
� converge weakly to x+� x−. Then

x = 
x+ − x−� ∈ KL. This implies that d
xnj
� x� → 0, since 
x+

nj
− x−

nj
�
s� →


x+ − x−�
s� for λ-a.a.s.
We have

P �Zn ∈ Kc
L� ≤ P

[
1
n

n∑
j=1

�Yj� ≥ L2/r
]
�
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Let L0 = E��Y��. Then �Y1� − L0� �Y2� − L0� � � � satisfy the assumptions of
Lemma 1, and we have

lim sup
n

1
b
n�nr

logP
[

1
n

n∑
i=1

�Yi� ≥ L2/r
]
≤ −
L2/r −L0�r ≤ −L�

where the last inequality holds for L large enough. ✷

Now we are able to prove the upper bound in Theorem 1.

Lemma 6. For each A ∈ �,

lim sup
n

1
b
n�nr

logP �Zn ∈ A� ≤ − inf
x∈cl 
A�

I
x��

Proof. We have

P �Zn ∈ A� ≤ P �Zn ∈ cl
A� ∩KL� +P �Zn ∈ Kc
L��

Since cl 
A� ∩ KL is closed w.r.t. the topology of pointwise convergence, the
claim follows from Lemma 3 and Lemma 5. ✷

In the next step we prove the lower bound in Theorem 1.

Lemma 7. For each A ∈ �,

lim inf
n

1
b
n�nr

logP �Zn ∈ A� ≥ − inf
x∈int
A�

I
x��

Proof. Let Uδ
x� = �y	 d
x�y� < δ�. It is enough to show that, for x with
I
x� < ∞ and A = Uδ
x�,

lim inf
n

1
b
n�nr

logP �Zn ∈ A� ≥ −I
x��

Assume for simplicity that x has one jump of height h at t, where 0 < t < 1.
Then, for some ε = ε
δ� small enough,

P �Zn ∈ Uδ
x�� ≥ P
[
Zn
t− ε� ≤ ε� h < Zn
t+ ε� −Zn
t− ε�

< h+ ε� Zn
1� −Zn
t+ ε� ≤ ε
]

and

lim inf
n

1
b
n�nr

logP �Zn ∈ Uδ
x�� ≥ −hr

due to Lemma 2. The same argument carries through for any nondecreasing
jump function x. ✷

It remains to show that I has the desired properties.

Lemma 8. I is lower semicontinuous and has compact level sets.
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Proof. To see that I has relatively compact level sets, note that for each
c > 0, there is L = L
c� such that �x	 I
x� ≤ c� ⊆ KL, and it was shown in
Lemma 5 that KL is compact, for each L.

Assume d
xn� x� → 0. We have to show that I
x� ≤ lim infn I
xn�. Without
loss of generality, we can assume I
xn� < ∞, for each n. We can then identify
xn� x with distribution functions where xn
s� −→ x
s� as n → ∞ if x is
continuous in s.

(i) Assume x is continuous on �0�1�. Then xn
s� → x
s� for all s, and
Iτ
xn� → Iτ
x� for all τ. Hence

I
x� = sup
τ

Iτ
x�

= sup
τ

lim inf
n

Iτ
xn�

≤ lim inf
n

sup
τ

Iτ
xn�

= lim inf
n

I
xn��

In fact, lim infn I
xn� = ∞ since we know that I
x� = ∞ in this case.
(ii) Assume x is discrete, with countably many jumps. There is a τ =


t1� t2 � � �� such that x and each xn are continuous in each ti. Then I
x� = Iτ
x�
and I
xn� = Iτ
xn�, for all n. We conclude I
xn� → I
x�.

The general case is easy from (i) and (ii). ✷

The theorem now follows from Lemmas 6, 7 and 8. ✷

Proof of Theorem 3. (i) Let δ > 0.

(a) Let Kδ = �y	 d
y�K� < δ� where d
y�K� = inf�d
y� z�	 z ∈ K�. Let
Kc

δ = E \Kδ denote the complement of Kδ. Note that, since Kc
δ is closed and

I is lower semicontinuous and has compact level sets, there is ε > 0 such that
inf�I
x�	 x ∈ Kc

δ� > 
1/cd�+ε. We will prove that, with probability 1, ξn ∈ Kc
δ

only for finitely many n. We apply Theorem 1 to get

P �ξn ∈ Kc
δ� ≤ exp

(
−b
kn�kr

n

(
1
cd

+ ε

2

))
(15)

for n large enough.
Since 
kr

nb
kn�/c log n� −→ d as n → ∞ due to (4) and (5), we have

P �ξn ∈ Kc
δ� ≤ exp

(
−cd log n

(
1
cd

+ ε

3

))

= 1
nγ

(16)

for n large enough, where γ = 1 + cd 
ε/3� > 1.
The claim now follows by applying the Borel–Cantelli lemma.
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(b) Let x ∈ K. We will show that with probability 1, 
ξn� has a subsequence

ξnj

� converging to x. We can assume w.l.o.g. that I
x� < 1/cd. Let Uδ
x� =
�y	 d
x�y� < δ�. Then there is ε > 0 such that inf�I
y�	 y ∈ Uδ
x�� ≤ I
x� <

1/cd� − ε. Again, Theorem 1 yields

P �ξn ∈ Uδ
x�� ≥ exp
(
−b
kn�kr

n

(
1
cd

− ε

2

))

≥ exp
(
−cd log n

(
1
cd

− ε

3

))

= 1
nγ

(17)

for n large enough, with γ = 
1 − 
ε/3� cd� < 1, where we used (4) and (5) in
the second inequality.

Let λ > 1. Consider the subsequence ξnj
with nj = �jλ�. Choose λ small

enough such that λγ < 1. Then

∑
j

P �ξnj
∈ Uδ
x�� ≥

∑
j

1
�jλ�γ ≥ ∑

j

(
1
jλγ

)
= ∞�

Since ξnj
� j = 1�2� � � � are independent for j large enough, the claim follows

by applying the Borel–Cantelli lemma. ✷

(ii)

(a) We show that, with probability 1, there are only finitely many n such
that ξn�m ∈ Kc

δ for some m ∈ �0�1�2� � � � � n−kn�. Choose λ > 1. Then, λγ−1 > 1
for γ = 1 + ε/3. Going back to the proof of (i), we have

P
[
ξn�m ∈ Kc

δ for some m ∈ �0�1� � � � � n− kn�
]

≤ nP �ξn�1 ∈ Kc
δ�

≤ n
1
nγ

�

where we used (16) in the last inequality. Let nj = �λj�. Then we have∑
j

P
[
ξnj�m

∈ Kc
δ for some m ∈ �0�1� � � � � nj − knj

�]

≤ ∑
j

1
�λj�γ−1

< ∞�

We conclude

lim sup
j→∞

sup
0≤m≤nj−knj

d
ξnj�m
�K� = 0�(18)

To pass from the subsequences 
nj� to the sequence n, we use the following
analytical lemma, which plays the role of Lemma 1.20 in [13].
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Lemma 9. Let K and 
ξn�m� be defined as in Theorem 3. Assume that for

each λ > 1 and nj = �λj�,
lim sup
j→∞

sup
0≤m≤nj−knj

d
ξnj�m
�K� = 0�

Then we have

lim sup
n→∞

sup
0≤m≤n−kn

d
ξn�m�K� = 0�

Proof. Choose δ� λ with 0 < δ < 2/3, 1 < λ < 
1+δ/2�∧
1+
δ/2� 
cd�1/r�
and j0 such that d
ξnj�m

�K� ≤ δ/4 for j ≥ j0, m ∈ �0�1� � � � nj−knj
�. Choose

L ∈ N such that k�λn�+1/kn ≤ λ for n ≥ L. Let n
δ� = L ∨ j0. For n ≥ n
δ�,
there is j such that λj ≤ n ≤ λj+1. Let N = �λj+1�. Then n ≤ N ≤ λn. Now,
observe that

ξn�m
t� =
kN

kn

ξN�m

(
kn

kN

t

)
� 0 ≤ t ≤ 1�(19)

Let x ∈ K such that

d
ξN�m� x� = d
ξN�m�K� ≤ δ

4
�

Then x 
kn/kN ·� ∈ K, and

d
ξn�m�K� ≤
∫ 1

0

∣∣∣∣kN

kn

ξN�m

(
kn

kN

t

)
− x

(
kn

kN

t

)∣∣∣∣dt
≤

∫ 1

0

∣∣∣∣kN

kn

ξN�m

(
kn

kN

t

)
− kN

kn

x

(
kn

kN

t

)∣∣∣∣dt
+

(
kN

kn

− 1
) ∫ 1

0
x

(
kn

kN

t

)
dt

≤
(
kN

kn

)2

d
ξN�m� x� +
(
kN

kn

− 1
)

1

cd�1/r

≤ λ2 δ

4
+ 
λ− 1� 1


cd�1/r
< δ�

where we used

kN

kn

≤ k�λn�+1

kn

≤ λ�

(b) As in the proof of (i), one can show that, with probability 1, for each
x ∈ K there is an independent subsequence 
ξnj�mj

� converging to x. ✷

Let Zn be defined as in (3). The proof of Theorem 2 follows the same lines
as the proof of Theorem 1. The underlying one-dimensional large deviation
principle is the following.
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Lemma 10. In the setting of Theorem 2, the distributions of 
1/n�∑n
i=1 Yi =

Zn
1� satisfy a large deviation principle with normalization b
n�n on R with

the good rate function Ĩ1, where

Ĩ1
t� =
{
t� t ≥ 0�
+∞� t < 0�

We refer to [10] or [6] for a proof.
Theorem 4 is then proved from Theorem 2 exactly as Theorem 3 was proved

from Theorem 1.

4. Examples. Of course, we have a lot of choices to specify F in Corol-
lary 1.

Letting F
x� = x
1�, we get, in the setting of Theorem 3 or Theorem 4,

lim sup
n

1
kn

n+kn∑
j=n+1

Yj = 1

cd�1/r

� P-a.s.(20)

lim inf
n

1
kn

n+kn∑
j=n+1

Yj = 0� P-a.s.(21)

lim sup
n

sup
0≤m≤n−kn

1
kn

m+kn∑
j=m+1

Yj = 1

cd�1/r

� P-a.s.(22)

lim inf
n

sup
0≤m≤n−kn

1
kn

m+kn∑
j=m+1

Yj = 0� P-a.s.(23)

Letting F
x� = ∫ 1
0 x
s�ds, we get

lim sup
n

((
1 − 1

2kn

)
Yn+1 +

(
1 − 3

2kn

)
Yn+2

+
(

1 − 5
2kn

)
Yn+3 + · · · + 3

2kn

Yn+kn−1 +
1

2kn

Yn+kn

)

= 1

cd�1/r

� P-a.s.,

(24)

lim inf
n

((
1 − 1

2kn

)
Yn+1 +

(
1 − 3

2kn

)
Yn+2

+
(

1 − 5
2kn

)
Yn+3 + · · · + 3

2kn

Yn+kn−1 +
1

2kn

Yn+kn

)

= 0� P-a.s.

(25)
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lim sup
n

sup
0≤m≤n−kn

((
1− 1

2kn

)
Ym+1 +

(
1− 3

2kn

)
Ym+2

+
(

1− 5
2kn

)
Ym+3 + · · · + 3

2kn

Ym+kn−1 +
1

2kn

Ym+kn

)

= 1

cd�1/r

� P-a.s.,

(26)

lim inf
n

sup
0≤m≤n−kn

((
1 − 1

2kn

)
Ym+1 +

(
1− 3

2kn

)
Ym+2

+
(

1− 5
2kn

)
Ym+3 + · · · + 3

2kn

Ym+kn−1 +
1

2kn

Ym+kn

)

= 0� P-a.s.

(27)

Let us now specify the distribution of Y.

Example 1. Assume P �Y ≥ t� = a
t� exp
−b1t
r� for t large enough, where

a is slowly varying and 0 < r < 1. In other words, we specified b
t� ≡ b1.
Condition (4) is satisfied with sn ≡ 1 and d = b1. In particular, (20), (21), (22)
and (23) become

lim sup
n

1

c log n�1/r

n+�
c log n�1/r�∑
j=n+1

Yj = 1

b1c�1/r

� P-a.s.

lim inf
n

1

c log n�1/r

n+�
c log n�1/r�∑
j=n+1

Yj = 0� P-a.s.

lim sup
n

sup
m=0�1�2�����n-�
c log n�1/r�

1

c log n�1/r

m+�
c log n�1/r�∑
j=m+1

Yj = 1

b1c�1/r

� P-a.s.

lim inf
n

sup
m=0�1�2�����n-�
c log n�1/r�

1

c log n�1/r

m+�
c log n�1/r�∑
j=m+1

Yj = 0� P-a.s.

Similar results were obtained in [7].

Example 2. Let b
t� = b1 log t + b2 log log t, 0 < r < 1. Condition (4) is
satisfied with

sn = 1

log log n�1/r

and d = b1

r
�

In particular, (20)–(27) hold with kn = �
c log n/ log log n�1/r� and d = b1/r.

Example 3. Let b
t� = 1/
b1 log t+ b2 log log t�, 0 < r ≤ 1. Condition (4)
is satisfied with sn = 
log log n�1/r and d = r/b1. In particular, (20)–(27) hold
with kn = �
c log n log log n�1/r� and d = r/b1.
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