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Abstract We consider one-dimensional random walks in random environment
which are transient to the right. Our main interest is in the study of the sub-ballis-
tic regime, where at time n the particle is typically at a distance of order O(nκ) from
the origin, κ ∈ (0, 1). We investigate the probabilities of moderate deviations from
this behaviour. Specifically, we are interested in quenched and annealed probabilities
of slowdown (at time n, the particle is at a distance of order O(nν0) from the origin,
ν0 ∈ (0, κ)), and speedup (at time n, the particle is at a distance of order nν1 from the
origin, ν1 ∈ (κ, 1)), for the current location of the particle and for the hitting times.
Also, we study probabilities of backtracking: at time n, the particle is located around
(−nν), thus making an unusual excursion to the left. For the slowdown, our results
are valid in the ballistic case as well.
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44 A. Fribergh et al.

1 Introduction and results

Let ω := (ωi , i ∈ Z) be a family of i.i.d. random variables taking values in (0, 1).
Denote by P the distribution of ω and by E the corresponding expectation. After choos-
ing an environment ω at random according to the law P, we define the random walk in
random environment (usually abbreviated as RWRE) as a nearest-neighbour random
walk on Z with transition probabilities given by ω: (Xn, n ≥ 0) is the Markov chain
satisfying X0 = z and for n ≥ 0,

Pz
ω[Xn+1 = x + 1 | Xn = x] = ωx ,

Pz
ω[Xn+1 = x − 1 | Xn = x] = 1 − ωx .

As usual, Pz
ω is called the quenched law of (Xn, n ≥ 0) starting from X0 = z, and

we denote by Ez
ω the corresponding quenched expectation. Also, we denote by P

z the
semi-direct product P × Pz

ω and by E
z the expectation with respect to P

z ; P
z and E

z

are called the annealed probability and expectation. When z = 0, we write simply
Pω, Eω, P, E.

In this paper we will also consider RWRE on Z+, with reflection to the right at the
origin. This RWRE can be defined as above, in the environment ω̃ given by

ω̃i =
{

ωi , i �= 0,

1, i = 0

(provided, of course, that the starting point is nonnegative). We then write Pz
ω̃

, Ez
ω̃

for the quenched probability and expectation in the case of RWRE reflected at the
origin, P̃

z and Ẽ
z for the annealed probability and expectation, keeping the simplified

notation Pω̃, Eω̃, P̃, Ẽ for the RWRE starting at the origin.
For all i ∈ Z, let us introduce

ρi := 1 − ωi

ωi
.

Throughout this paper, we assume that

E[ln ρ0] < 0, (1.1)

which implies (cf. [14]) that limn→∞ Xn = +∞ Pω-a.s. for P-a.a. ω, so that the RWRE
is transient to the right (or simply transient, in the case of RWRE with reflection at the
origin).

We refer to [16] for a general overview of results on RWRE. In the following we
always work under the assumption that

there exists a unique κ > 0, such that E[ρκ
0 ] = 1 and E[ρκ

0 ln+ ρ0] < ∞. (1.2)
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Slowdown and speedup of transient RWRE 45

This constant plays a central role for RWRE, in particular when it exists, its value
separates the ballistic from the sub-ballistic regime:

κ > 1 if and only if
Xn

n
→ v > 0, P-a.s.

We refer to the case κ > 1 as the ballistic regime and to the case κ ≤ 1 as the sub-bal-
listic regime. In this paper we mainly consider the case where the RWRE is transient
(to the right) and sub-ballistic, i.e. the asymptotic speed is equal to 0. The following
result was proved in [9] and partially refined in [4]:

Theorem 1.1 Let ω := (ωi , i ∈ Z) be a family of independent and identically
distributed random variables such that

(i) −∞ ≤ E[ln ρ0] < 0,
(ii) there exists 0 < κ ≤ 1 for which E

[
ρκ

0

] = 1 and E
[
ρκ

0 ln+ ρ0
]

< ∞,

(iii) the distribution of ln ρ0 is non-lattice.

Then, if κ < 1, we have

Xn

nκ

law−→ C1

(
1

Sca
κ

)κ

,

where
law−→ stands for convergence in distribution with respect to the annealed law P,

C1 is a positive constant and Sca
κ is the completely asymmetric stable law of index κ .

If κ = 1, we have

Xn

n/ ln n
law−→ C2

1

Sca
1

.

In the quenched case, the limiting behaviour is more complicated, as discussed
in [11]. However, one still can say that at time n the particle is “typically” at distance
roughly nκ from the origin, since the weaker result limn→∞ ln Xn/ ln n = κ , P-a.s.,
is still valid.1

Besides the results about the location of the particle at time n, we are interested
also in the first hitting times of certain regions in space. For any set A ⊂ Z, define:

TA := min{n ≥ 0 : Xn ∈ A}.

To simplify the notations, for one-point sets we write Ta := T{a}. In the case where
a is not an integer, the notation Ta will correspond to T�a	.

In this paper we investigate the following types of unusual behaviour of the random
walk:

• slowdown, which means that at time n the particle is around nν0 , ν0 < 1 ∧ κ , so
that the particle goes to the right much slower than it typically does;

1 Apparently, this result is folklore, at least we were unable to find a precise reference in the literature.
Anyhow, note that it is straightforward to obtain this result from Theorems 1.2 and 1.5.
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46 A. Fribergh et al.

• backtracking, that is, at time n the particle is found around (−nν), thus performing
an unlikely excursion to the left instead of going to the right (this is, of course,
only for RWRE without reflection);

• speedup, which means that the particle is going to the right faster than it should
(but still with sublinear speed): at time n the particle is around nν1 , κ < ν1 < 1
(this is possible only for κ < 1).

We refer to all of the above as moderate deviations, even for the slowdown in the
ballistic case κ > 1. Indeed, in the latter case the deviation from the typical position is
linear in time, but we have that the large deviation rate function I satisfies I (0) = 0,
and the known large deviation results only tell us that slowdown probabilities decay
slower than exponentially in n (see, for instance, [1]).

We mention here that in the literature one can find some results on moderate devia-
tions for the case of recurrent RWRE (often referred to as RWRE in “Sinai’s regime”),
see [2,3], and also [7] for the continuous space and time version.

Now, we state the results we are going to prove in this paper. In addition to (1.2),
we will use the following weak integrability hypothesis:

there exists ε0 > 0 such that E[ρ−ε0
0 ] < ∞. (1.3)

First, we discuss the results about quenched slowdown probabilities. It turns out
that the quenched slowdown probabilities behave differently depending on whether
one considers RWRE with or without reflection at the origin. Also, it matters which
of the following two events is considered: (i) the position of the particle at time n is
at most nν , ν < κ (i.e., the event {Xn < nν}), or (ii) the hitting time of nν is greater
than n (i.e., the event {Tnν > n}). Here we prove that in all these cases the quenched
probability of slowdown is roughly e−nβ

, where β = 1 − ν
κ

for the “hitting time
slowdown” in the reflected case, and β = (1 − ν

κ
) ∧ κ

κ+1 in the other cases. More
precisely, we have

Theorem 1.2 Slowdown, quenched Suppose that (1.1), (1.2) and (1.3) hold. For
ν ∈ (0, 1 ∧ κ) the quenched slowdown probabilities behave in the following way. For
the reflected RWRE,

lim
n→∞

ln(− ln Pω̃[Tnν > n])
ln n

= 1 − ν

κ
, P-a.s., (1.4)

lim
n→∞

ln(− ln Pω̃[Xn < nν])
ln n

=
(

1 − ν

κ

)
∧ κ

κ + 1
, P-a.s. (1.5)

For the RWRE without reflection, we obtain

lim
n→∞

ln(− ln Pω[Tnν > n])
ln n

=
(

1 − ν

κ

)
∧ κ

κ + 1
, P-a.s., (1.6)

lim
n→∞

ln(− ln Pω[Xn < nν])
ln n

=
(

1 − ν

κ

)
∧ κ

κ + 1
, P-a.s. (1.7)
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Slowdown and speedup of transient RWRE 47

For a heuristical explanation of the reason for the different behaviours of the
quenched slowdown probabilities we refer to the beginning of Sect. 6.

For the annealed slowdown probabilities, we obtain that there is no difference
between reflecting/nonreflecting cases (at least on the level of precision we are work-
ing here) and also it does not matter which one of the slowdown events {Tnν > n},
{Xn < nν} one considers. In all these cases, the annealed probability of slowdown
decays polynomially, roughly as n−(κ−ν):

Theorem 1.3 Slowdown, annealed Suppose that (1.1), (1.2) and (1.3) hold. For ν ∈
(0, 1 ∧ κ),

lim
n→∞

ln P[Xn < nν]
ln n

= lim
n→∞

ln P[Tnν > n]
ln n

= −(κ − ν). (1.8)

The same result holds if one changes P to P̃ in (1.8).

In the case of RWRE on Z (i.e., without reflection at the origin) there is another
kind of untypically slow escape to the right. Namely, before going to +∞, the particle
can make an untypically big excursion to the left of the origin. While it is easy to
control the distribution of the leftmost site touched by this excursion (e.g., by means
of the formula (2.8) below), it is interesting to study the probability that at time n the
particle is far away to the left of the origin:

Theorem 1.4 Backtracking Suppose that (1.1), (1.2) and (1.3) hold. For ν ∈ (0, 1),
we have

lim
n→∞

ln(− ln Pω[Xn < −nν])
ln n

= ν ∨ κ

κ + 1
, P-a.s. (1.9)

lim
n→∞

ln(− ln P[Xn < −nν])
ln n

= ν, (1.10)

and

lim
n→∞

ln(− ln P[T−nν < n])
ln n

= lim
n→∞

ln(− ln Pω[T−nν < n])
ln n

= ν P-a.s. (1.11)

Another kind of deviation from the typical behaviour is the speedup of the particle,
i.e., at time n the particle is at a distance larger than nκ from the origin (here we of
course assume that κ < 1). There are results in the literature that cover the large
deviations case, i.e., the case when at time n the particle is at distance O(n) from
the origin, see e.g. Section 2.3 of [16], or [1]. In this paper we are interested in the
probabilities of moderate speedup: the displacement of the particle is sublinear, but
still bigger than in the typical case. Namely, we show that the quenched probability
that Xn is of order nν , κ < ν < 1, is roughly e−nβ

, where β = ν−κ
1−κ

. It is remarkable
that the annealed probability is roughly of the same order. More precisely, we are able
to prove the following result:
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Fig. 1 The plot of f (ν), −1 < ν < 1

Theorem 1.5 Speedup Suppose that (1.1), (1.2) and (1.3) hold. For ν ∈ (κ, 1) we
can control the probabilities of the moderate speedup in the following way:

lim
n→∞

ln(− ln Pω[Xn > nν])
ln n

= lim
n→∞

ln(− ln Pω[Tnν < n])
ln n

= ν − κ

1 − κ
, P-a.s.,

(1.12)

and

lim
n→∞

ln(− ln P[Xn > nν])
ln n

= lim
n→∞

ln(− ln P[Tnν < n])
ln n

= ν − κ

1 − κ
. (1.13)

The same result holds for the RWRE with reflection at the origin.

For the case κ ∈ (0, 1), the quenched moderate deviations for the random walk
on Z are well summed up by the plot of the following function on Fig. 1:

f (ν) =
⎧⎨
⎩

limn→∞ ln(− ln Pω[Xn < −n−ν])/ ln n, if ν ∈ (−1, 0],
limn→∞ ln(− ln Pω[Xn < nν])/ ln n, if ν ∈ (0, κ),

limn→∞ ln(− ln Pω[Xn > nν])/ ln n, if ν ∈ [κ, 1).

The rest of this paper is organized in the following way. In Sect. 2 we give the
(standard) definition of the potential and the reversible measure for the RWRE. We
then decompose the environment into a sequence of valleys. In this decomposition the
valleys do not only depend on the environment but the construction is time-depen-
dent. Also, we derive some basic facts about the valleys needed later. In Sect. 3 we
mainly study the properties of that sequence of valleys. In Sect. 4, we recall some
results concerning the spectral properties of RWRE restricted to a finite interval, and
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Slowdown and speedup of transient RWRE 49

then obtain some bounds on the probability of confinement in a valley. In Sect. 5 we
define the induced random walk whose state is the current valley (more precisely, the
last visited boundary between two neighbouring valleys) where the particle is located.
Theorems 1.2, 1.3, 1.4, 1.5 are proved in Sects. 6, 7, 8, 9 respectively. We denote by
γ, γ0, γ1, γ2, γ3, . . . the “important” constants (those that can be used far away from
the place where they appear for the first time), and by C1, C2, C3, . . . the “local” ones
(those that are used only in a small neighbourhood of the place where they appear
for the first time), restarting the numeration at the beginning of each section in the
latter case. All these constants are either universal or depend only on the law of the
environment.

2 More notations and some basic facts

An important ingredient of our proofs is the analysis of the potential associated with
the environment, which was introduced by Sinai in [13]. The potential, denoted by
V = (V (x), x ∈ Z), is a function of the environment ω. It is defined in the following
way:

V (x) :=
⎧⎨
⎩
∑x

i=1 ln ρi , if x ≥ 1,

0, if x = 0,

−∑0
i=x+1 ln ρi , if x ≤ −1,

so it is a random walk with negative drift, because E[ln ρ0] < 0. This notation is
extended on R by V (x) := V (�x	). We also define a reversible measure

π(x) := e−V (x) + e−V (x−1), for x ∈ Z, (2.1)

(one easily verifies that ωxπ(x) = (1 − ωx+1)π(x + 1) for all x). We will also use
the notation π([x, y]) =∑�y	

i=�x	−1 π(i), for x < y two real numbers.
The function V (·) enables us to define the valleys, parts of the environment which

acts as traps for the random walk. The valleys are responsible for the sub-ballistic
behaviour and hence play a central role for slowdown and speedup phenomena.

We define by induction the following environment dependent sequence (Ki (n))i≥0
by

K0(n) = −n,

Ki+1(n) = min
{

j ≥ Ki (n) : V (Ki (n)) − mink∈[Ki (n), j] V (k) ≥ 3
1∧κ

ln n,

V ( j) = maxk≥ j V (k)
}
.

The dependence with respect to n will be frequently omitted to ease the notations. The
portion of the environment [Ki , Ki+1) is called the i th valley, and we will prove that
for n large enough the valleys are descending in the sense that V (Ki+1) < V (Ki ) for
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Fig. 2 On the definition of the sequence of valleys

all i ∈ [0, n]. We associate to the i th valley the bottom point

bi = inf

{
x ∈ [Ki , Ki+1) : V (x) = min

y∈[Ki ,Ki+1)
V (y)

}
,

and the depth

Hi = max
x∈[Ki ,Ki+1)

(
max

y∈[x,Ki+1)
V (y) − min

y∈[Ki ,x)
V (y)

)
= max

Ki (n)≤ j<k<Ki+1(n)
(V (k) − V ( j)) ,

see Fig. 2.
Let us denote

Nn(m, m′) = {i ≥ 1 : [Ki , Ki+1) ∩ [�m	, �m′	) �= ∅} (2.2)

and again we will often omit the index n. Let us emphasize that we do not include the
valley of index 0, which is different from the others because of border issues.

The valleys for i ≥ 1 are non-overlapping parts of Z, for any value of n. More-
over the potential in the valleys are i.i.d. up to space-shift, in the sense that for any n and
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Slowdown and speedup of transient RWRE 51

i ≥ 1 the sequence of vectors of random length (V ( j) − V (Ki+1(n)), j = Ki (n), . . . ,

Ki+1(n) − 1), i ≥ 1, is i.i.d.
We introduce the two following indices which will be used regularly

i0 = card N (−n, 0) and i1 = card N (−n, nν). (2.3)

To carry over the proofs easily to the reflected case, we introduce the following
notation

K̃i0 = 0 and K̃i = Ki for i ≥ i0. (2.4)

We can estimate the depth of the valleys using a result of renewal theory which con-
cerns the maximum of random walks with negative drift. We refer to [5] for a detailed
introduction to renewal theory. Denoting S = maxi≥0 V (i), under assumptions (1.1),
(1.2) and (i i i) of Theorem 1.1, we have

P[S > h] ∼ CF e−κh, h → ∞, (2.5)

which is a result due to Feller which can be found in this form in [8].
If (i i i) in Theorem 1.1 fails, ln ρ0 is concentrated on λZ for some λ > 0, so that

V (·) is a Markov chain with i.i.d. increments of law ln ρi . In this case, under our
assumptions (1.1) and (1.2) we can use a result in [15] (p. 218) stating the discrete
version of the previous equation. In the case of an aperiodic Markov chain we have

P[S ≥ nλ] ∼ C ′
F e−κλn, n → ∞, (2.6)

and in the general case we obtain similar asymptotics by noticing that (V (nd +k))n≥0
is aperiodic for k ∈ [0, d − 1] and d the period of V (·) (which is well defined and
finite by (i) and (i i)).

Hence we can easily deduce from the assumptions (1.1) and (1.2) and equations (2.5)
and (2.6) that

P[S > h] = 
(e−κh), (2.7)

where f (n) = 
(g(n)) means that f (n) = O(g(n)) and g(n) = O( f (n)).
Let us recall also the following basic fact. For any integers a < x < b, the

(quenched) probability for RWRE to reach b before a starting from x can be easily
computed:

Px
ω [Tb < Ta] =

∑x−1
y=a eV (y)∑b−1
y=a eV (y)

, (2.8)

see e.g. Lemma 1 in [13] or formula (2.1.4) in [16].
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3 Estimates on the environment

Let us introduce the event

A(n) =
{

max
i≤2n

(Ki+1 − Ki ) ≤ (ln n)2
}

. (3.1)

The following lemma shows that the valleys are not very wide.

Lemma 3.1 We have

P[A(n)c] = O

(
1

n2

)
.

Proof We have

P[A(n)c] = P
[

max
i≤2n

(Ki+1 − Ki ) > (ln n)2
]

≤ 2nP[K2 − K1 > (ln n)2] + P[K 1 > (ln n)2], (3.2)

where

K 1(n) = min

{
j ≥ 0 : − min

k∈[0, j] V (k) ≥ 3

1 ∧ κ
ln n, V ( j) = max

k≥ j
V (k)

}
.

Now

P[K2 − K1 > (ln n)2] = P[K 1 > (ln n)2 | max
i≥0

V (i) ≤ 0]

≤ P[K 1 > (ln n)2]
P[maxi≥0 V (i) ≤ 0] ,

where P[maxi≥0 V (i) ≤ 0] > 0 since E[ln ρ0] < 0. Choose � such that ε0� >

3(1∧κ), with ε0 from (1.3). Note that if V ((ln n)2) ≤ − 3+3�
1∧κ

ln n, min j≤(ln n)2(V ( j)−
V ( j − 1)) ≥ − �

1∧κ
ln n and max j≥(ln n)2 V ( j) − V ((ln n)2) ≤ 3

1∧κ
ln n, then the set

{
i ∈ [0, (ln n)2], V (i) ∈

(
− 3

1 ∧ κ
ln n,−3 + 2�

1 ∧ κ
ln n

)}

is non-empty. Moreover its largest element m is such that max j≥m V ( j) = V (m),
hence we have K 1 ≤ (ln n)2. This yields
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Slowdown and speedup of transient RWRE 53

P[K 1 > (ln n)2] ≤ P
[

V ((ln n)2) > −3 + 3�

1 ∧ κ
ln n

or min
j≤(ln n)2

(V ( j) − V ( j − 1)) < − �

1 ∧ κ
ln n

or max
j≥(ln n)2

V ( j) − V ((ln n)2) >
3

1 ∧ κ
ln n

]
. (3.3)

Using (2.7), we obtain

P
[

max
j≥(ln n)2

V ( j) − V ((ln n)2) >
3

1 ∧ κ
ln n

]
= O(n−3). (3.4)

Furthermore, using Chebyshev’s inequality and (1.3) we get

P
[

min
j≤(ln n)2

(V ( j) − V ( j − 1)) < − �

1 ∧ κ
ln n

]

≤ (ln n)2P
[

ln ρ0 < − �

1 ∧ κ
ln n

]

≤ (ln n)2P
[
ρ

−ε0
0 > exp

(
ε0

�

1 ∧ κ
ln n

)]
≤ (ln n)2E[ρ−ε0

0 ]n−ε0�/(1∧κ)

= o(n−3) . (3.5)

Now, since V (·) is a sum of i.i.d. random variables with exponential moments by
the assumptions (1.2) and (1.3), we can use large deviations techniques to get

P[V ((ln n)2)>−C1 ln n]≤ P
[∣∣∣V ((ln n)2) − E[V (1)](ln n)2

∣∣∣>C2(ln n)2
]

≤ exp(−C3(ln n)2)

= o(n−3), (3.6)

since E[V (1)] = E[ln ρ0] ∈ (−∞, 0). Putting together (3.2), (3.3), (3.4), (3.5)
and (3.6) we obtain the result. ��

Consider a ∈ [0, ν), and define the event

B(n, ν, a)c =
{

card
{

i ∈ Nn(−nν, nν) : Hi ≥ a

κ
ln n + ln ln n

}
≥ nν−a

}
.

The following lemma will tell us that asymptotically, between levels −nν and nν

there are at most nν−a valleys of depth greater than (a/κ) ln n + ln ln n.

Lemma 3.2 For any a ∈ [0, ν), we have

P[B(n, ν, a)c] = O(n−2).
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Proof We have easily that (“≺” means “stochastically dominated”)

card
{

i ≤ Nn(−nν, nν) : Hi ≥ a

κ
ln n + ln ln n

}
≺ Bin

(
2�nν	 + 2, P

[
S ≥ a

κ
ln n + ln ln n

])
,

since we have at most 2�nν	 + 2 integers on the right of which we need an increase
of potential of (a/κ) ln n + ln ln n to create a valley of sufficient depth.

Using (2.7), we have

P
[

S ≥ a

κ
ln n + ln ln n

]
= O

(
n−a

(ln n)κ

)
.

Now, using Chebyshev’s exponential inequality, we can write

P
[
Bin

(
2�nν	 + 2, P

[
S ≥ a

κ
ln n + ln ln n

])
≥ nν−a

]
≤ C4 exp(−nν−a) exp(C5nν−a(ln n)−κ),

and, since ν > a, the result follows. ��
We introduce for m ∈ Z

+ the following event, which, by Lemma 3.2, has proba-
bility converging to 1,

B ′(n, ν, m) =
m−1⋂
k=1

B(n, ν, kν/m). (3.7)

Also, set

G(n)c =
{

max
k≥n

(V (k) − V (n)) ≥ 1

κ
(ln n + 2 ln ln n)

}
⋃{

max
k≥−n

(V (k) − V (−n)) ≥ 1

κ
(ln n + 2 ln ln n)

}
.

Lemma 3.3 We have

P[G(n)c] = O

(
1

n(ln n)2

)
.

Proof This is a direct consequence of (2.7). ��
We now show that Lemma 3.3 implies that asymptotically, in the interval [−n, n],

the deepest valley we can find has depth lower than 1
κ
(ln n + 2 ln ln n). Let

G1(n) =
{

max
i∈[−n,n] max

k≥i
(V (k) − V (i)) ≤ 1

κ
(ln n + 2 ln ln n)

}
. (3.8)
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Slowdown and speedup of transient RWRE 55

Lemma 3.4 For P-almost all ω, there is N = N (ω) such that ω ∈ G1(n) for n ≥ N.

Proof By symmetry, it suffices to give the proof for

G2(n) =
{

max
i∈[0,n] max

k≥i
(V (k) − V (i)) ≤ 1

κ
(ln n + 2 ln ln n)

}
(3.9)

instead of G1(n). Let

n0 := min

{
j ≥ 0 : max

k≥i
(V (k) − V (i)) ≤ 1

κ
(ln i + 2 ln ln i), ∀i ≥ j

}

and

K = max
0≤i≤n0

max
k≥i

(V (k) − V (i)).

Due to Lemma 3.3, n0 is finite P-almost surely. Now, take N large enough such that
N ≥ n0 and

1

κ
(ln N + 2 ln ln N ) ≥ K .

Then for n ≥ N , let � ∈ [0, n] be such that maxi∈[0,n] maxk≥i (V (k) − V (i)) =
maxk≥�(V (k)−V (�)). We have either � ≤ n0 and then maxk≥�(V (k)−V (�)) ≤ K by
the definition of K , or � > n0 and then, by the definition of n0, maxk≥�(V (k)−V (�)) ≤
1
κ
(ln � + 2 ln ln �) ≤ 1

κ
(ln n + 2 ln ln n). ��

Let us define

D(n)c =
{

max
i∈[0,n] max

k≥i
(V (k) − V (i)) ≤ 1

κ
(ln n − 4 ln ln n)

}
⋃{

max
i∈[−n,0] max

k≥i
(V (k) − V (i)) ≤ 1

κ
(ln n − 4 ln ln n)

}
.

Lemma 3.5 We have

P[D(n)c] = O(n−2).

Proof First, we notice that

P[D(n)c] ≤ 2P

⎡
⎣ max

i∈[0, n
�(ln n)2	 ]

max
k≤(ln n)2

V (i(ln n)2 + k) − V (i(ln n)2)

≤ 1

κ
(ln n − 4 ln ln n)

⎤
⎦+ P[A(n)c],

where P[A(n)c] = O(n−2) by Lemma 3.1.
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Let us introduce

D(1)(n) =
{

max
k>�(ln n)2	

V (k) − V (0) ≥ 1

κ
(ln n − 4 ln ln n)

}
,

then we have

P[D(1)(n)] ≤ P
[

max
k≥0

V (k) − V (0) >
1

κ
(ln n − 4 ln ln n)

]

+P
[

max
k≥0

V (k) − V (0) �= max
k≤(ln n)2

V (k) − V (0)

]
= 


(
(ln n)4

n

)
,

using a reasoning similar to the proof of Lemma 3.1 (cf. equations (3.3) and (3.4)) to
show that the second term is at most O(n−2).

So, we obtain for n large enough

P[D(n)c] ≤ 2

(
1 − C6(ln n)4

n

)n/(ln n)2

≤ 2 exp
(
−C7(ln n)2

)
,

hence the result. ��
Finally, let us introduce

F(n) =
{

min
i∈[−n,n](1 − ωi ) > n−3/ε0

}
.

Lemma 3.6 We have

P[F(n)c] = O

(
1

n2

)
.

Proof We notice that 1 − ωi ≥ min(1/2, ρi/2), so that it is enough to prove that
P[ρi < 2n−3/ε0 ] = O(n−3) which is a consequence of (1.3), since by Chebyshev’s
inequality

P
[
ρ−1

i >
n3/ε0

2

]
≤ 2ε0 E[ρ−ε0

0 ]
n3 .

��
Using the Borel–Cantelli Lemma one can obtain that for P-almost all ω and n large

enough, we have ω ∈ A(n) ∩ B ′(n, ν, m) ∩ G1(n) ∩ D(n) ∩ F(n). That is, the width
of the valleys is lower than (ln n)2, their depth lower than (ln n + 2 ln ln n)/κ , we can
control the number of valleys deeper than a

κ
ln n − ln ln n, and there is at least one

valley of depth (ln n − 4 ln ln n)/κ .
Due to the definition of the valleys, the potential goes down at least by 3

1∧κ
ln n in a

valley and on G1(n) the biggest increase of potential is lower than 1
κ
(ln n+2 ln ln n) for
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all valleys in [−n, n]. In particular, on G1(n), (V (Ki ))i≤2n is a decreasing sequence
and we have

V (bi+1) ≤ V (bi ) − 3

1 ∧ κ
ln n + 1

κ
(ln n + 2 ln ln n)

≤ V (bi ) − 2

1 ∧ κ
ln n + 2

κ
ln ln n

implying using (2.1) that for all valleys in [−n, n],

π(bi ) ≤ 2e−V (bi ) ≤ 2(ln n)2/κ

n2/(1∧κ)
π(bi+1) ≤ 1

2
π(bi+1). (3.10)

In a similar fashion, we can give an upper bound for V (Ki )−V (bi ) on G1(n)∩F(n).
We claim that on G1(n) ∩ F(n), for a constant γ0,

V (Ki ) − V (Ki+1) ≤ V (Ki ) − V (bi ) ≤ γ0 ln n. (3.11)

To show (3.11), let x be the smallest integer larger than Ki such that V (x) ≤ V (Ki )−
(3/(1 ∧ κ)) ln n. By definition of Ki+1 it satisfies V (x) ≤ V (Ki+1). But on F(n) we
know that V (x) ≥ V (Ki )− (3/(1 ∧ κ)+ 3/ε0) ln n. Recalling that on G1(n) we have
V (bi ) ≥ V (Ki+1) − (2/κ) ln n, we get for n large enough

V (Ki ) − V (bi ) ≤ V (Ki ) −
(

V (Ki+1) − 2

κ
ln n

)

≤ V (Ki ) −
(

V (x) − 2

κ
ln n

)

≤
(

3

1 ∧ κ
+ 3

ε0
+ 2

κ

)
ln n .

4 Bounds on the probability of confinement

In this section, let I = [a, c] be a finite interval of Z containing at least four points and
let the potential V (x) be an arbitrary function defined for x ∈ [a − 1, c], with V (a −
1) = 0. This potential defines transition probabilities given by ωx = e−V (x)/π(x),
x ∈ [a, c] where π(x) is defined as in (2.1) (taking V (a−1) = 0 is no loss of generality
since the transition probabilities remain the same if we replace V (x) by V (x)+c, ∀x).
We denote by X the Markov chain restricted on I in the following way: the transition
probability ωa from a to a + 1 is defined as above, and with probability 1 − ωa the
walk just stays in a; in the same way, we define the reflection at the other border c.
We denote

H+ = max
x∈[a,c]

(
max

y∈[x,c] V (y) − min
y∈[a,x)

V (y)

)
,

H− = max
x∈[a,c]

(
max

y∈[a,x] V (y) − min
y∈(x,c] V (y)

)
,
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and

H = H+ ∧ H−.

Let us denote also by

M̃ = max
y∈[a,c] V (y) − min

y∈[a,c] V (y)

the maximal difference between the values of the potential in the interval [a, c]. Also,
we set

f =
{

c, if H = H+,

a, otherwise.

To avoid confusion, let us mention that the results of this section (Propositions 4.1,
4.2, 4.3) hold for both the unrestricted and restricted random walks (as long as the
starting point belongs to I ). First, we prove the following

Proposition 4.1 There exists γ1 > 0, such that for all u ≥ 1

max
x∈I

Px
ω

[
T{a,c}

γ1(c − a)3((c − a) + M̃)eH
> u

]

≤ max
x∈I

Px
ω

[
T f

γ1(c − a)3((c − a) + M̃)eH
> u

]
≤ e−u .

Proof The first inequality is trivial, we only need to prove the second one. In the
following we will suppose that H = H+ (so that f = c), otherwise we can apply
the same argument by inverting the space. We denote by b the leftmost point in the
interval [a, c] with minimal potential.

We extend the Markov chain on the interval I to a Markov chain on the inter-
val I ′ = [a, c + 1] in the following way. Let V (c + 1) := V (b), yielding ωc+1 =(
1 + e−(V (c)−V (b))

)−1
. Again, with probability 1−ωc+1, the Markov chain goes from

c + 1 to c, and with probability ωc+1, the Markov chain just stays in c + 1.
Let us denote by X̂t the continuous time version of the Markov chain on I ′ (i.e.,

the transition probabilities become transition rates). The reason for considering con-
tinuous time is the following: we are going to use spectral gap estimates, and these
are better suited for continuous time in this context (mainly due to the fact that the
discrete-time random walk is periodic). We define the probability measure µ on I ′
which is reversible (and therefore invariant) for X̂ in the following way

µ(x) = π(x)

⎛
⎝∑

y∈I ′
π(y)

⎞
⎠

−1

,
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for all x ∈ I ′, where π is as in (2.1) with the potential defined above, satisfying
V (a − 1) = 0 and V (c + 1) = V (b). Now, the goal is to bound the spectral gap λ(I ′)
from below. We can do this using a result of [10]:

1

4B I ′ ≤ λ(I ′) ≤ 2

B I ′ , (4.1)

where B I ′ = mini∈I ′(B I ′
− (i) ∧ B I ′

+ (i)) and

B I ′
+ (i) = max

x>i

⎛
⎝ x∑

y=i+1

(µ(y)(1 − ωy))
−1

⎞
⎠µ[x, c + 1], i ∈ [a, c]

B I ′
− (i) = max

x<i

(
i−1∑
y=x

(µ(y)ωy)
−1

)
µ[a, x], i ∈ [a + 1, c + 1]

and B I ′
+ (c + 1) = B I ′

− (a) = 0. Obviously, we have B I ′ ≤ B I ′
− (c + 1). Moreover,

since (2.1) implies that ωxπ(x) = e−V (x) for any x ∈ I ′, we can write

B I ′
− (c + 1) = max

x≤c

(
c∑

y=x

1

ωyπ(y)

)(
x∑

y=a

π(y)

)

= max
x≤c

(
c∑

y=x

eV (y)

)(
x∑

y=a

(e−V (y) + e−V (y−1))

)

≤ 2 max
x≤c

(
c∑

y=x

eV (y)

)(
x∑

y=a

e−V (y)

)

≤ 2(c − a)2eH .

This yields

λ(I ′) ≥ 1

8(c − a)2eH
.

Using Corollary 2.1.5 of [12], we obtain that for x, y ∈ I ′ and s > 0

∣∣∣Px
ω [X̂s = y] − µ(y)

∣∣∣ ≤ (µ(y)

µ(x)

)1/2

exp(−λ(I ′)s).

We apply this formula for y = c + 1. Note that, using (2.1), we obtain that (µ(c +
1)/µ(x))1/2 ≤ √

2eM̃/2 for any x ∈ (a, c). So, for s := C1(c − a)2((c − a) + M̃)eH ,
if C1 > 4 is chosen large enough

∣∣∣Px
ω [X̂s = c + 1] − µ(c + 1)

∣∣∣ ≤ √
2e−C1(c−a)/8 <

1

8(c − a)
,
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and, since µ(c + 1) ≥ 1/2(c + 1 − a) ≥ 1/(4(c − a)), we obtain

min
x∈I ′ Px

ω [X̂s = c + 1] ≥ 1

8(c − a)
.

Let us divide [0, t] into N := �t/s	 subintervals. Using the above inequality and
Markov’s property we obtain (T̂ stands for the hitting time with respect to X̂ )

Px
ω [T̂c > t] ≤ Px

ω [T̂c+1 > t]
≤ Px

ω [X̂sk �= c + 1, k = 1, . . . , N ]

≤
(

1 − 1

8(c − a)

)N

≤ exp

(
− N

8(c − a)

)

≤ exp

(
− t

8C1(c − a)3((c − a) + M̃)eH

)
exp

(
1

8(c − a)

)
.

The estimates on the continuous time Markov chain transfer to discrete time. Indeed,
there exists a family (ei )i≥1 of exponential random variables of parameter 1, such that
the nth jump of the continuous time random walk occurs at

∑n
i=1 ei . These random

variables are independent of the environment and the discrete-time random walk.
Moreover, P[e1 + · · · + en ≥ n] ≥ 1/3, for all n. So, for any t ,

1

3
P[Tc ≥ t] ≤ P[Tc ≥ t]P[T̂c ≥ Tc] = P[Tc ≥ t, T̂c ≥ Tc] ≤ P[T̂c ≥ t],

Hence, we have for all v > 0

max
x∈I

Px
ω

[
Tc

8(1 + v)C1(c − a)3((c − a) + M̃)eH
> u

]
≤
(

3e1/8e−vu
)

e−u,

for all u ≥ 0. Hence for u ≥ 1, choosing v large enough in such a way that 3 exp( 1
8 −

v) ≤ 1, we obtain the result with γ1 = 8C1(1 + v). ��
Next, we recall the following simple upper bound on hitting probabilities:

Proposition 4.2 There exists γ2 such that for any x, y and h ∈ [x, y] we have

Px
ω [Ty < s] ≤ γ2(1 + s)

π(h)

π(x)
.

Proof We can adapt Lemma 3.4 of [2] (which used a uniform ellipticity condition). We
remain in the continuous time setting and, considering the event that y is visited before
time s and left again at least one time unit later (on which

∫ s+1
0 1{X̂u = y}du ≥ 1),
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we have

s+1∫
0

Px
ω [X̂u = y]du ≥ Px

ω [T̂y < s] · P[e1 ≥ 1] (4.2)

where e1 is an exponential random variable of parameter 1. Hence

Px
ω [T̂y < s] ≤ Px

ω [T̂h < s]

≤ e

s+1∫
0

Px
ω [X̂u = h]du

= e

s+1∫
0

π(h)

π(x)
Ph

ω [X̂u = x]du

≤ e(s + 1)
π(h)

π(x)
.

Again, one can easily transfer the estimates on the continuous time Markov chain
to discrete time. ��

Let us now introduce

H∗+ = max
x∈[a+1,c−1]

(
max

y∈[x,c−1] V (y) − min
y∈[a+1,x)

V (y)

)
,

H∗− = max
x∈[a+1,c−1]

(
max

y∈[a+1,x] V (y) − min
y∈(x,c−1] V (y)

)
,

and

H∗ = H∗+ ∧ H∗−.

We obtain a lower bound on the confinement probability in the following proposi-
tion. Recall that b is the leftmost point in the interval [a, c] with minimal potential.

Proposition 4.3 Suppose that c − 1 has maximal potential on [b, c − 1] and a has
maximal potential on [a, b]. Then, there exists γ3 > 0, such that for all u ≥ 1

min
x∈I

Px
ω

[
γ3 ln(2(c − a))

T{a,c}
eH∗ ≥ u

]
≥ 1

2(c − a)
e−u,

if eH∗ ≥ 16γ2.

Proof Noticing that

min
b<h<c−1

π(h)

π(b)
≤ 2e−H∗+ and min

a+1<h<b

π(h)

π(b)
≤ 2e−H∗− ,
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we can apply Proposition 4.2 to obtain that

for all s ≥ 1, Pb
ω[T{a,c} < s] ≤ 8γ2se−H∗

, (4.3)

Hence for s = eH∗
/(16γ2) ≥ 1, the right-hand side of the previous inequality

equals 1/2.
Now, using the exit probability formula (2.8), we obtain that

min
x∈I

Px
ω [Tb < T{a,c}] ≥ (c − a)−1. (4.4)

Denoting N = �t/s�, we obtain for x ∈ I ,

Px
ω [T{a,c} > t] ≥ (2(c − a))−(N+1)

≥ exp

(
−C2t ln(2(c − a))

eH∗

)
(2(c − a))−1.

We used the following reasoning in the above calculation. Start from any x ∈ (a, c),
by (4.4) the particle hits b before {a, c} with probability at least (c − a)−1. Then,
during s time units, {a, c} will not be hit with probability at least 1/2. After that, the
particle is found in some x ′ ∈ (a, c) and at least s time units elapsed from the initial
moment. So the cost of preventing the occurrence of T{a,c} during any time interval of
length s is at most (2(c − a))−1. The result follows for γ3 large enough. ��

Our main application of Proposition 4.1 and Proposition 4.3, will be to control the
exit times of valleys, more precisely we will be able to give upper bounds on the tail
of T{Ki ,Ki+1} and lower bounds on the tail of T{Ki −1,Ki+1+1} in terms of Hi .

5 Induced random walk

Let us denote (sk(n))k≥0 the sequence defined by

s0(n) = 0,

si+1(n) = min{ j ≥ si (n) : X j ∈ {Kl(n), l ≥ 0}}.
Then, we define Yi = Xsi , the embedded random walk with state space {Kl , l ≥ 0},

enumerating the successive valleys we visit and ln(ν) = max{i : si ≤ Tnν } the num-
bers of steps made by the embedded random walk to reach [nν;∞). For the reflected
case, we will use the same notation, replacing {Kl , l ≥ 0} with {K̃l , l ≥ 0} defined
in (2.4).

Recall (2.3) and let us denote

ξν(i) = card{ j ∈ [0, ln(ν)] : Y j = Ki+1, Y j+1 = Ki } for i = i0 + 1, . . . , i1 − 1,

and in order to carry over the proofs to the reflected case

ξ̃ ν(i) = card{ j ∈ [0, ln(ν)] : Y j = K̃i+1, Y j+1 = K̃i } for i = i0 + 1, . . . , i1 − 1.
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Moreover, we introduce the real time elapsed, i.e. in the clock of Xn , during the
first left-right crossing of the i th valley

T next(i) = TKi+1 ◦ θ(next(i)) − next(i),

where θ denotes the time-shift for the random walk and

next(i) = inf{n ≥ 0 : Xn = Ki , TKi+1 ◦ θ(n) < TKi−1 ◦ θ(n)}.

In this way, each time the embedded random walk backtracks, T next(i) is the time the
walk will need to make the necessary left-right crossing of the corresponding valley.
Recall (2.2). Conditionally on (Yi )i≥1 we have that (“dir” stands for “direct”, and
“back” stands for “backtrack”)

Tnν = Tinit + Tdir + Tback + Tleft + Tright, (5.1)

where

Tinit =
{

TKi0+1 , if TKi0+1 < TKi0
,

TKi0
+ T next(i0) ◦ θ(TKi0

), else,

Tleft =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

card{i ≤ Tnν : Xi < K1} without reflection,

∑ln(ν)
j=0 1{Y j = K̃i0+1, Y j+1 = K̃i0}

× (TKi ◦ θ(s j ) − s j + T next(i) ◦ (TKi ◦ θ(s j ))
)

with reflection,

Tright = Tnν ◦ θ(next∗(i1)) − next∗(i1),

Tdir =
i1−1∑

i=i0+1

T next(i) ◦ θ(TKi ),

Tback =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑i1−1
i=1

∑ln(ν)
j=0 1{Y j = Ki+1, Y j+1 = Ki }

× (TKi ◦ θ(s j ) − s j + T next(i) ◦ (TKi ◦ θ(s j ))
)

without reflection,

∑i1−1
i=i0+1

∑ln(ν)
j=0 1{Y j = Ki+1, Y j+1 = Ki }

× (TKi ◦ θ(s j ) − s j + T next(i) ◦ (TKi ◦ θ(s j ))
)

with reflection,

where next∗(i1) = inf{n ≥ 0 : Xn = Ki1 , Tnν ◦ θ(n) < TKi1−1 ◦ θ(n)}. In the

reflected case, replace Ki with K̃i in all the above definitions except for that of Tleft.
This decomposition is illustrated on Fig. 3 for the non-reflected case.
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Fig. 3 On the decomposition (5.1) of Tnν

In the non-reflected case, we have the following equalities in law (for each ω):

Tinit = τ(0), (5.2)

Tright = τ(nν), (5.3)

Tdir =
i1−1∑

i=i0+1

τ
(0)
+ (i), (5.4)

Tback =
i1−2∑
i=1

(τ
(1)
+ (i) + τ

(1)
− (i) + · · · + τ

(ξν(i))
+ (i) + τ

(ξν(i))
− (i))

+
ξν(i1−1)∑

j=1

τ
( j)
+ (i1 − 1) + τ

last,(j)
− , (5.5)
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where τ
( j)
+ (i), τ ( j)

− (i) and τ
last,(j)
− are independent sequences of i.i.d. random variables

described as follows. First, τ ( j)
+ (i) is a sequence of independent random variables with

the same law as TKi+1 under P Ki
ω [ · | TKi+1 < TKi−1]. Then, τ

( j)
− (i) is a sequence of

independent random variables with the same law as TKi (under P Ki+1
ω [ · | TKi <

TKi+2 ]) and τ
last,j
− is a sequence of independent random variables with the same law as

TKi1−1 under P
Ki1
ω [ · | TKi1−1 < Tnν ]. Clearly, the random variable τ(0) (respectively,

τ(nν)) has the same law as TKi0+1 (respectively, Tnν ) under Pω[ · | TKi0+1 < TKi0−1]
(respectively, P

Ki1
ω [ · | Tnν < TKi1−1]).

In the reflected case, we simply replace Ki by K̃i , ξν(i) by ξ̃ ν
i and ω by ω̃.

We want to give bounds on the number of backtracks between valleys before the
walk reaches �nν	. Denote

B(n) := card{i ≥ 1 : si+1(n) ≤ Tnν , Yi+1 < Yi } =
i1−1∑
i=1

ξν(i). (5.6)

By (2.8), we obtain that for i ≤ i1, P-a.s. for n large enough,

P Ki
ω [TKi+1 > TKi−1] =

⎛
⎝Ki+1−1∑

j=Ki−1

eV ( j)

⎞
⎠

−1
Ki+1−1∑

j=Ki

eV ( j)

≤ max
i≤n

(Ki − Ki−1)
(ln n)2/κ

n2/(1∧κ)

≤ n−3/2, (5.7)

since maxi≤n(Ki+1 − Ki ) ≤ (ln n)2 on A(n) and, due to Lemma 3.4, with the same
argument as for (3.10), we have V (Ki−1) − V (x) ≥ 2

1∧κ
ln n − 2

κ
ln ln n for x ∈

[Ki , Ki+1].
Using (2.8) and (3.11), we obtain a lower bound: for ω ∈ A(n)∩ F(n)∩ G1(n) we

have

P Ki
ω [TKi+1 > TKi−1 ] ≥ 1

Ki+1 − Ki−1

1

eV (Ki−1)−V (Ki+1)
≥ n−(1+2γ0). (5.8)

During the first 3n steps of the embedded random walk there are two cases, either
the walk has reached nν or there are at least n steps back. But then if nν is reached
in less than 3n steps, B(n) is stochastically dominated by a Bin(3n, n−3/2) by (5.7).
Moreover, we get for f (·) such that f (n) = O(n), P-a.s. for n large enough,

Pω[B(n) ≥ f (n)] ≤
(

3n

n

)(
1

n3/2

)n

+ P
[
Bin(3n, n−3/2) ≥ f (n)

]
,
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Fig. 4 The three strategies for the slowdown

and so using Stirling’s formula and Chebyshev’s exponential inequality, P-a.s. for n
large enough,

Pω[B(n) ≥ f (n)] ≤ exp(−C1n) + C2 exp(− f (n))

≤ C3 exp(− f (n)). (5.9)

6 Quenched slowdown

In this section, we prove Theorem 1.2. Before going into technicalities, let us give an
informal argument about why we obtain different answers in Theorem 1.2.

Suppose that κ
κ+1 < 1 − ν

κ
, or equivalently, ν < κ

κ+1 . Consider the three strategies
depicted on Fig. 4:

1: The particle goes to the biggest valley in the interval [0, nν], and stays there up to
time n.

2: The particle goes to the biggest valley in the interval [0, n
κ

κ+1 ], stays there up to
time n − n

κ
κ+1 , and then goes back to the interval [0, nν].
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3: The particle goes to the biggest valley in the interval [−n
κ

κ+1 , 0] (so that typically
it has to go roughly n

κ
κ+1 units to the left), and stays there up to time n.

By Lemmas 3.4 and 3.5, the biggest valley in the interval [0, nν] has depth of approx-
imately ν

κ
ln n. Using Proposition 4.3, we obtain that the probability of staying there

up to time n is roughly exp(−n1− ν
κ ). As for the strategy 2, analogously we find that

the biggest valley in the interval [0, n
κ

κ+1 ] has depth around 1
κ+1 ln n, and the proba-

bility of staying there is roughly exp(−n
κ

κ+1 ). Then, the probability of backtracking
is again around exp(−n

κ
κ+1 ). The situation with the strategy 3 is the same as that with

strategy 2 (for the strategy 3, we first have to backtrack and then to stay in the valley,
but the probabilities are roughly the same).

So, in the case ν < κ
κ+1 the strategies 2 and 3 are better than the strategy 1. The

only situation when we cannot use neither 2 nor 3 is when the RWRE has reflection
in the origin, and we are considering the hitting times.

6.1 Time spent in a valley

We have

Proposition 6.1 There exists γ4 > 0 such that for P-almost all ω, for all n large
enough we have for i ≤ 2n + 1 and u ≥ 1,

P Ki
ω

[
TKi+1 > u

(
γ4(ln n)10eHi−1∨Hi

)
| TKi+1 < TKi−1

]
≤ e−u,

P Ki
ω

[
TKi−1 > u

(
γ4(ln n)10eHi−1∨Hi

)
| TKi−1 < TKi+1

]
≤ e−u .

Proof We prove only the second part of the proposition, the first one uses the same
arguments. First, we have

max
x∈(Ki−1,Ki+1)

(
max

y∈[x,Ki+1)
V (y) − min

y∈[Ki−1,x)
V (y)

)
= Hi−1 ∨ Hi .

Using (5.8) (or (5.7) for the first part of the proposition), we obtain P-a.s. for n
large enough,

P Ki
ω

[
TKi−1 > u

(
γ4(ln n)10eHi−1∨Hi

)
| TKi+1 > TKi−1

]
≤ n1+2γ0 P Ki

ω

[
T{Ki−1,Ki+1} > u

(
γ4(ln n)10eHi−1∨Hi

)
, TKi+1 > TKi−1

]
.

To estimate this last probability, we may consider the random walk reflected at Ki−1
and Ki+1. On A(n) we have Ki+1 − Ki−1 ≤ 2(ln n)2 and on G1(n) ∩ F(n) we
have maxy∈[Ki−1,Ki+1] V (y) − miny∈[Ki−1,Ki+1) V (y) ≤ 2γ0 ln n by (3.11). Hence for
n such that γ0 ≤ (ln n)2 we can apply Proposition 4.1 with a = Ki−1, c = Ki+1,
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M̃ ≤ 2(ln n)2 and H = Hi−1 ∨ Hi to get

P Ki
ω̂

[
T{Ki−1,Ki+1} > u

(
γ4(ln n)10eHi−1∨Hi

)]
≤ exp

(
−uγ4(ln n)2/(32γ1)

)
,

where ω̂ denotes the environment with reflection at Ki−1 and Ki+1, so that

P Ki
ω

[
TKi−1 > u

(
γ4(ln n)10eHi−1∨Hi

)
| TKi+1 > TKi−1

]
≤ exp

(
−uγ4(ln n)2/(32γ1) + (1 + 2γ0) ln n

)
≤ e−u,

for γ4 > 32γ1((1 + 2γ0) + 1) and n large enough. ��

Let Zi be a random variable with the same law as TKi+1 under P Ki
ω [ · | TKi+1 <

TKi−1]. Then, for i ∈ N (−na, nb) and H = maxi∈N (−na ,nb) Hi , we have that P-a.s.
for n large enough

Zi

γ4eH (ln n)10 ≺ 1 + e, (6.1)

where e is an exponential random variable with parameter 1. Since ω ∈ G1(na∨b)

P-a.s. for n large enough, there is a constant γ > 0 (depending only on κ) such that

Zi

γ4n(a∨b)/κ (ln n)γ
≺ 1 + e. (6.2)

The same inequality is true when Ki−1 and Ki+1 are exchanged. We point out that
the same stochastic domination holds in the reflected case, even for TK̃i0+2

under

P
K̃i0+1

ω̃
[ · | TK̃i0+2

< TK̃i0
] = P

K̃i0+1

ω̃
[ · ] in which case it is a direct consequence of

Proposition 4.1.
Using the same kind of arguments as in the proof of Proposition 6.1 we obtain

Proposition 6.2 There exists a positive constant γ4 (without restriction of generality,
the same as in Proposition 6.1) such that for P-almost all ω, we have for all n large
enough, with i0 = card Nn(−n, 0) and u ≥ 1,

Pω

[
TKi0+1(n) > u

(
γ4(ln n)10eHi0−1∨Hi0

)
| TKi0+1(n) < TKi0−1(n)

]
≤ e−u,

Pω̃

[
TKi0+1(n) > u

(
γ4(ln n)10eHi0−1∨Hi0

)]
≤ e−u .

Similarly we obtain
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Proposition 6.3 There exists a positive constant γ4 (without restriction of generality,
the same as in Proposition 6.1) such that for P-almost all ω, we have for all n large
enough with i1 = card Nn(−n, nν) and u ≥ 1,

P
Ki1
ω

[
Tnν > u

(
γ4(ln n)10eHi1−1∨Hi1

)
| Tnν < TKi1 (n)

]
≤ e−u .

and

P
Ki1
ω

[
TKi1−1 > u

(
γ4(ln n)10eHi1−1∨Hi1

)
| TKi1−1 < Tnν

]
≤ e−u .

This proposition implies that

τ last−
γ4nν/κ (ln n)γ

≺ 1 + e. (6.3)

6.2 Time spent for backtracking

Recalling the definitions (5.5) and (5.6), we obtain, for the reflected case,

Proposition 6.4 For 0 < a < b < c < 1, we have P-a.s. for n large enough,

Pω̃

[ Tback

γ4nν/κ (ln n)γ
≥ nc,B(n) ∈ [na, nb)

]
≤ exp(−nc/4),

where γ is as in (6.2).

Proof On the event {B(n) ∈ [na, nb)}, we have
∑

i∈N (0,nν ) ξ ν(i) = B(n) < nb, so
we can use (6.2) and (6.3) to get that P-a.s. for n large enough,

Tback

γ4nν/κ (ln n)γ
≺ 2nb + Gamma(2nb, 1). (6.4)

(note that Tback is the time spent in valleys from 0 to nν because we have a reflection at
0). The factor 2 arises from the fact that each backtracking creates one right-left cross-
ing and one left-right crossing. We use the following bound on the tail of Gamma(k, 1):

P[Gamma(k, 1) ≥ u] ≤ e−u/2 E[exp(Gamma(k, 1)/2)] = e−u/22k . (6.5)

Hence we have P-a.s. for n large enough,

Pω̃

[ Tback

γ4nν/κ (ln n)γ
≥ nc,B(n) ∈ [na, nb)

]
≤ P[Gamma(2nb, 1) ≥ nc − 2nb],

and since (nc −2nb)/2 −2nb ln 2 ≥ nc/4 for n large enough, we conclude with (6.4).
��
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In the same way, we get, still for the reflected case

Proposition 6.5 For 0 < a < b < c < 1, we have P-a.s. for n large enough,

Pω̃

[ Tleft

γ4nν/κ (ln n)γ
≥ nc,B(n) ∈ [na, nb)

]
≤ exp(−nc/4),

where γ only depends on κ .

Proof On the event {B(n) ∈ [na, nb)}, Tleft is lower than the time spent in the valleys
of indexes i0 and i0 + 1 during backtrackings from K̃i0+1 to K̃i0 . Since, there are
at most nb backtracks for this valley and since (6.2) is valid even for TKi0+2 under

P
Ki0+1

ω̃
[ · ], we can use the same argument as in the proof of Proposition 6.4. ��

Next, recalling the definition (5.5), we obtain

Proposition 6.6 For 0 < a < b < 1 and c ∈ (b ∨ ν, 1), we have P-a.s. for n large
enough,

Pω

[ Tback

n(b∨ν)/κ (ln n)γ
≥ nc,B(n) ∈ [na, nb)

]
≤ exp(−nc/4),

where γ only depends on κ .

Proof On the event {B(n) ∈ [na, nb)}, Tback consists of the time spent in the valleys
indexed by Nn(−nb, nν), once this is noted we use the same argument as in the proof
of Proposition 6.4. ��

6.3 Time spent for the direct crossing

We can control Tdir with the following proposition. Recall (3.7) and (3.8).

Proposition 6.7 For all m ≥ m0(κ, ν), we have for n large enough

Pω [Tdir ≥ n] ≤ C(m) exp(−n1−(1+2/m) ν
κ ).

Proof Recall the definition (5.4) and let us take ω ∈ B ′(n, ν, m) ∩ G1(n). Let us
introduce for k = −1, . . . , m,

N (k) = card{i ∈ N (−nν, nν) : Hi ≥ νk

κm
ln n + 2 ln ln n}, (6.6)

σ(k) = card

{
i ≤ Tnν : Xi ∈ [K j (n), K j+1(n)

)
for some j

with Hj ∈
[

ln n
νk

κm
+ 2 ln ln n, ln n

ν(k + 1)

κm
+ 2 ln ln n

]}
. (6.7)
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If Tdir ≥ n, then for some k ∈ [−1, m] the particle spent an amount of time greater

than n/(4m) in the valleys of depth in
[

νk
κm ln n + 2 ln ln n,

ν(k+1)
κm ln n + 2 ln ln n

]
because ω is in G1(n), so that

Pω[Tdir > n] ≤ 4m max
k∈[−1,m] Pω[σ(k) ≥ n/(4m)]. (6.8)

Using Proposition 6.1, since ω ∈ B ′(n, ν, m)∩ G1(n), we have N (k) ≤ nν(1−k/m),
and so

σ(k)

γ4(ln n)11nν(k+1)/(κm)
≺ 2nν(1−k/m) + Gamma(2nν(1−k/m), 1).

For m > (1 − ν)−1 we have that nν(1−k/m) = o(n1−ν(k+1)/m(ln n)−11), and for n
large enough (depending on ν and m), we use (6.5) to obtain

Pω[σ(k) ≥ n/(4m)] ≤ P

[
Gamma(2nν(1−k/m), 1) ≥ n1−ν(k+1)/(κm)

(ln n)12

]

≤ 4nν(1−k/m)

exp

(
−n1−ν(k+1)/(κm)

(ln n)12

)

≤ exp
(
−2n1−ν(k+2)/(κm) + ln 4nν(1−k/m)

)
.

We need to check that n1−(1+2/m)ν/κ ≥ ln 4nν(1−kε) for any k, if we take m large
enough, but this can be done by considering the cases k = 0 and k = m. Hence we
get Proposition 6.7. ��

6.4 Upper bound for the probability of quenched slowdown for the hitting time

In this section we suppose that ω ∈ A(n) ∩ G1(n) ∩ B ′(n, ν, m), which is satisfied P-
a.s. for n large enough. First, we consider RWRE with reflection at the origin. Because
of (5.1)

Pω̃ [Tnν > n] ≤ Pω̃ [Tdir ≥ n/5] + Pω̃ [Tback ≥ n/5] + Pω̃ [Tinit ≥ n/5]

+Pω̃

[
Tright ≥ n/5

]+ Pω̃ [Tleft ≥ n/5] . (6.9)

Let ε > 0 and recall (5.6), then

Pω̃ [Tback ≥ n/5] ≤ Pω̃[B(n) > n1−(1+2/m)ν/κ ]
+Pω̃[Tback ≥ n/5,B(n) ≤ n1−(1+2/m)ν/κ ].

Using (5.9), we can write

Pω̃[B(n) > n1−(1+2/m)ν/κ ] ≤ C2 exp(−n1−(1+2/m)ν/κ ),
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and for n large enough by Proposition 6.4,

Pω̃[Tback ≥ n/5,B(n) ≤ n1−(1+2/m)ν/κ ]
≤ Pω̃

[ Tback

nν/κ (ln n)γ
≥ n1−(1+1/m)ν/κ ,B(n) ≤ n1−(1+2/m)ν/κ

]
≤ exp(−n1−(1+1/m)ν/κ/4)

≤ exp(−n1−(1+2/m)ν/κ ),

so we obtain

Pω̃ [Tback ≥ n/5] ≤ exp(−n1−(1+2/m)ν/κ ). (6.10)

By Proposition 6.2, recalling (5.2), we have

Pω̃ [Tinit ≥ n/5] ≤ exp(−n1−(1+2/m)ν/κ ). (6.11)

Recalling (5.3), using Proposition 6.3 and the fact that ω ∈ G1(n), we get

Pω̃

[
Tright ≥ n/5

] ≤ exp(−n1−(1+2/m)ν/κ ). (6.12)

Finally, using (6.9), (6.10), (6.11), (6.12) and Proposition 6.7, we get that for all
ε > 0

Pω̃ [Tnν > n] ≤ C3 exp(−n1−(1+2/m)ν/κ ).

Hence, letting m go to ∞ we obtain

lim inf
n→∞

ln(− ln Pω̃ [Tnν > n])

ln n
≥ 1 − ν

κ
, P-a.s. (6.13)

Now, we consider RWRE without reflection. All estimates remain true except (6.10)
for Tback. Concerning the estimates on Tleft it is easy to see that since {Tleft > 0} implies
that B(n) ≥ n/(ln n)2 − 1, we have using (5.9)

Pω[Tleft ≥ n/5] ≤ exp(−n1−(1+2/m)ν/κ ). (6.14)

It remains to estimate Pω[Tback ≥ n], hence we take m and we note that

Pω[Tback > n] ≤
m∑

k=0

Pω[Tback > n,B(n) ∈ [nk/m, n(k+1)/m)].

Using (5.9), we obtain that P-a.s. for n large enough,

Pω[Tback > n,B(n) ∈ [nk/m, n(k+1)/m)] ≤ C3 exp(−nk/m).
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Using Proposition 6.6, we obtain that

Pω[Tback > n,B(n) ∈ [nk/m, n(k+1)/m)] ≤ C4 exp(−C5n1−(ν∨((k+1)/m))/κ ).

Hence, with these estimates on Tback, (6.9), (6.11), (6.14), (6.12) and Proposition 6.7
we obtain that P-a.s. for n large enough,

lim inf
n→∞

ln(− ln Pω[Tnν > n])
ln n

≥ min
k∈[−1,m+1]

(
k

m
∨
(

1 − ν ∨ ((k + 1)/m)

κ

))
,

minimizing we obtain,

lim inf
n→∞

ln(− ln Pω[Tnν > n])
ln n

≥
(

1 − ν

κ

)
∧ κ

κ + 1
− 2

(1 ∧ κ)m
, P-a.s.

Taking the limit as m goes to infinity yields the upper bound in (1.6), i.e.,

lim inf
n→∞

ln(− ln Pω[Tnν > n])
ln n

≥
(

1 − ν

κ

)
∧ κ

κ + 1
, P-a.s. (6.15)

6.5 Upper bound for the probability of quenched slowdown for the walk

The argument of this section applies for both reflected and non-reflected RWREs,
for the proof in the reflected case, just replace “Pω” with “Pω̃”. We assume that
ω ∈ A(n) ∩ G1(n) ∩ B ′(n, ν, m) which is satisfied P-a.s. for n large enough.

Set m ∈ Z
+, we have using Markov’s property

Pω[Xn < nν] ≤
m∑

k=0

Pω[Tnν+(k−1)/m < n]

× max
i≤n

Pnν+(k−1)/m

ω [Xi < nν, Tnν+k/m > n − i]. (6.16)

First let us notice that

max
i≤n

Pnν+(k−1)/m

ω [Xi ≤ nν, Tnν+k/m > n − i]

≤
(

max
i≤n

Pnν+(k−1)/m

ω [Xi < nν]
)

∧ Pnν+(k−1)/m

ω [Tnν+k/m > n]. (6.17)

Using reversibility we have for any x ∈ Z (omitting integer parts for simplicity),

Pnν+(k−1)/m

ω [Xi = x] ≤ π(x)

π(nν+(k−1)/m)
,
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hence

max
i≤n

Pnν+(k−1)/m

ω [Xi < nν] ≤ 1 ∧ π([−n, nν])
π(nν+(k−1)/m)

.

Recall (2.3), then by (2.1) and the definition of bi we get π(bi1) ≤ 2e−V (bi1 ) and

π(bi1) ≤ 2e−V (bi1 ) ≤ C6(ln n)2/κn1/κe−V (Ki1+1(n)),

since, due to (3.8), the increase of potential in a valley is at most 1
κ
(ln n + 2 ln ln n).

Hence, using (3.10) and the fact that the width of the valleys is at most (ln n)2, we get
that

π([−n, nν]) ≤ C7(ln n)2+2/κn1/κe−V (Ki1+1(n)).

Furthermore, denoting by i2 the index of the valley containing nν+(k−1)/m , for n large
enough we have using (2.1)

π(nν+(k−1)/m) ≥ π(Ki2−1(n)),

since on the event G(n) both V (Ki2−1(n)) and V (Ki2−1(n) − 1) are bigger than
V (nν+(k−1)/m) and V (nν+(k−1)/m − 1).

On A(n), we have |(i2 − 1) − i1| ≥ ∣∣nν+(k−1)ε − nν
∣∣ /(ln n)2 − 2. Since V (Ki ) −

V (Ki+1) ≥ 1/(1 ∧ κ) ln n for ω ∈ G1(n), we have for k ≥ 2

π([−n, nν])
π(nν+(k−1)/m)

≤ C8(ln n)2+2/κn1/κ exp(−(V (Ki1+1) − V (Ki2−1)))

≤ C9(ln n)2+2/κn1/κ exp

(
−C10

nν+(k−1)/m − nν

(ln n)2

)
. (6.18)

Moreover, using (1.6) in the non-reflected case (or (6.13) in the reflected case), we
have

Pnν+(k−1)/m

ω [Tnν+k/m > n] ≤ exp(−n(1−(ν+(k/m))/κ)∧(κ/(κ+1))−1/m).

Hence, using this last inequality and (6.18), the inequality (6.16) becomes

Pω[Xn < nν]
≤ max

k∈[−1,m+1]

[
1 ∧

[
C9mn1/κ (ln n)2+2/κ exp

(
−C10

nν+(k−1)/m − nν

(ln n)2

)]

∧ exp(−n(1−(ν+(k/m))/κ)∧(κ/(κ+1))−1/m)

]
,
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so that P-a.s.,

lim inf
n→∞

ln(− ln Pω[Xn < nν])
ln n

≥ min
k∈[−1,m+1]

[(
1
{

k − 1

m
≥ 0

}(
ν + k − 1

m

))

∨
((

1 − ν + k/m

κ

)
∧ κ

κ + 1
− 1

m

)]
.

Minimizing over k, we obtain

lim inf
n→∞

ln(− ln Pω[Xn < nν])
ln n

≥
(

1 − ν

κ

)
∧ κ

κ + 1
− 1

m
, P-a.s.

Letting m goes to infinity, we obtain

lim inf
n→∞

ln(− ln Pω[Xn < nν])
ln n

≥
(

1 − ν

κ

)
∧ κ

κ + 1
, P-a.s. (6.19)

6.6 Lower bound for quenched slowdown

In this section we assume ω ∈ A(n) ∩ D(n) ∩ F(n) which is satisfied P-a.s. for n
large enough. First, we consider RWRE with reflection at the origin.

For all ε > 0, note that for n large enough there is a valley of depth at least (1−ε)ν
κ

ln n
strictly before level nν and denote by i2 the index of the first such valley. Hence

Pω̃[Tnν > n] ≥ P
K̃i2
ω̃

[TK̃i2+1+1 > n],

and using Proposition 4.3 we obtain

P
K̃i2
ω̃

[TK̃i2+1+1 > n] ≥ exp(−n1−(1−ε)ν/κ+ε).

Letting ε go to 0, yields

lim sup
n→∞

ln(− ln Pω̃[Tnν > n])
ln n

≤ 1 − ν

κ
. (6.20)

This yields the lower bound for the exit time, so, recalling (6.13), we obtain (1.4).
Now let us deduce the results on the slowdown. Set a ∈ [0, κ − ν), for n large

enough there is a valley of depth (ν + (1 − ε)a)/κ ln n strictly before nν+a whose
index is denoted i3. One possible strategy for the walk is to enter the i2th valley at
K̃i2 + 1 ≤ nν+a , stay there up to time n − (nν+a − nν) − (ln n)2, then go to the left
up to time n. The probability of this event can be bounded from below by

Pω̃[Xn < nν] ≥ Pω̃

[
Tnν+a < n/2

]
min
j≤n

P
K̃i3+1
ω̃

[
T{K̃i3−1,K̃i3+1+1} > j

]
×n−(3/ε0)(nν+a−nν+(ln n)2).
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The first term is bigger than 1/2 for n large enough (one can see this by using
e.g. (6.20)). The second can be bounded by Proposition 4.3

min
j≤n

P
K̃i3+1
ω̃

[
T{K̃i3−1,K̃i3+1+1} > j

]
≥ exp(−n1−(ν+(1−ε)a)/κ+ε),

for n large enough. Then, the last term (going left) was dealt with using the fact that
ω ∈ F(n).

This yields for any a ≥ 0,

lim sup
n→∞

ln(− ln Pω̃[Xn < nν])
ln n

≤ 1{a > 0}(ν + a) ∨
(

1 − (1 − ε)
ν + a

κ
+ ε

)
,

and if we choose a = 0 ∨ (κ/(κ + 1) − ν), we obtain

lim sup
n→∞

ln(− ln Pω̃[Xn < nν])
ln n

≤
(

1 − ν

κ

)
∧ κ

κ + 1
+ 2ε

κ
+ ε, P-a.s.

Together with (6.19), this yields (1.5) by letting ε go to 0.
Now, we consider the case of RWRE without reflection. Using the same reasoning,

we write

lim sup
n→∞

ln(− ln Pω[Tnν > n])
ln n

≤ 1 − ν

κ
, P-a.s. (6.21)

Now we can see that, if we denote by i4 the index of a valley of depth at least
(1 − ε)/(κ + 1) ln n between −nκ/(κ+1) and 0, since we are on D(n), we can go to
this valley before reaching nν and then stay there for a time at least n. This yields,

Pω[Tnν > n] ≥ Pω[T−nκ/(κ+1) < Tnν ]P
Ki4
ω [TKi4+1+1 > n],

bounding the first term by the probability of going to the left on the nκ/(κ+1) first steps,
we get using Proposition 4.3 that for all n large enough

P0
ω[Tnν > n] ≥ n−(3/ε0)nκ/(κ+1)

exp(−n1−(1−2ε)/(κ+1)),

and hence

lim sup
n→∞

ln(− ln P0
ω[Tnν > n])
ln n

≤ κ

κ + 1
+ 2

ε

κ + 1
, P-a.s. (6.22)

Moreover, it is clear that

Pω[Xn < nν] ≥ Pω[Tnν > n], (6.23)

and letting ε go to 0 in (6.22) and using (6.21) and (6.15), we obtain (1.6) and (1.7).
This finishes the proof of Theorem 1.2. ��
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7 Annealed slowdown

7.1 Lower bound for annealed slowdown

Let us define the events

A′(n, ν, a) =
{

there exists x ∈ [−nν, nν] : max
y∈[x,nν ] V (y) − V (x) ≥ (1 + a) ln n

}
,

and

A′+(n, ν, a) =
{

there exists x ∈ [0, nν] : max
y∈[x,nν ] V (y) − V (x) ≥ (1 + a) ln n

}
.

Lemma 7.1 We have for a ∈ (−1, 1),

lim
n→∞

ln P[A′(n, ν, a)]
ln n

= lim
n→∞

ln P[A′+(n, ν, a)]
ln n

= −(κ − ν) − aκ.

Proof From (2.7), it is straightforward to obtain that

P[A′+(n, ν, a)] ≤ P[A′(n, ν, a)]
≤ 2nνP

[
max
i≥0

V (i) ≥ (1 + a) ln n

]
= 
(nν−(1+a)κ ).

In order to give the corresponding lower bound, let us define the event

A1(n, a) =
{

there exists k ∈ [0, (ln n)2] such that V (k) ≥ (1 + a) ln n
}

,

we have

P[A1(n, a)] ≥ P
[

max
i≥0

V (i) ≥ (1 + a) ln n

]
− P[V (ln n)2 > − ln n]

−P
[

max
i≥(ln n)2

V (i) − V ((ln n)2) > (2 + a) ln n

]

= 
(n−(1+a)κ ),

where we used (2.7) and a reasoning similar to the proof of Lemma 3.1. Now, we write

P[A′(n, ν, a)] ≥ P[A′+(n, ν, a)] ≥ nν

�(ln n)2	P[A1(n)] = 


(
nν−(1+a)κ

(ln n)2

)
,

and Lemma 7.1 follows. ��
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For any ε > 0, on the event A′+(n, ν, ε) there exists a valley [Ki , Ki+1] with
V (Ki+1) − V (bi ) ≥ (1 + ε) ln n contained in [0, nν) and we denote by i5 its index.
Then we have by Proposition 4.2

Pω[Tnν > n] ≥ P
bi5
ω [TKi5+1+1 > n] ≥ 1 − γ2(1 + n)e−(1+ε) ln n ≥ 1

2

for n large enough. So

P[Tnν > n] ≥ E[1{A′+(n, ν, ε)}Pω[Tnν > n]] ≥ 1

2
P[A′+(n, ν, ε)].

Hence we obtain by Lemma 7.1 that for any ε > 0

lim inf
n→∞

ln P[Tnν > n]
ln n

≥ −(ν − κ) − κε.

Using (6.23), we obtain the corresponding lower bound for P[Xn < nν] as well.
Replacing Pω by Pω̃ and P by P̃, exactly the same argument can be used to obtain the
result in the reflected case.

7.2 Upper bound for annealed slowdown

We prove the upper bound in the non-reflected case, the reflected case follows easily;
indeed a simple coupling argument shows that Tnν in the environment ω̃ is stochasti-
cally dominated by Tnν in the environment ω. For m ∈ N such that 1/m ∈ (0, ν), we
have

P[Tnν > n] ≤ P[A′(n, ν,−1/m)] + E
(

1{A′(n, ν,−1/m)c}P0
ω[Tnν > n]

)
.

The second term can be further bounded by

E
(

1{A′(n, ν,−1/m)c}P0
ω[Tnν > n]

)
≤ P[A(n)c ∪ B ′(n, ν, m)c]

+E
(

1{A′(n, ν,−1/m)c ∩ A(n) ∩ B ′(n, ν, m)}P0
ω[Tnν > n]

)
,

where B ′(n, ν, m) is defined in (3.7).
Using Lemma 7.1 we have that 1/n = o(P[A′(n, ν,−1/m)]), and thus Lemma 3.1

and Lemma 3.2 imply that

P[A(n)c ∪ B ′(n, ν, m)c] = o(P[A′(n, ν,−1/m)]).

We can turn (6.1) into the following, for i ∈ N (−nε, nν) we have

on A′(n, ν,−1/m)c ∩ A(n) ∩ B ′(n, ν, m),
Z

C8n(1−1/m)(ln n)γ
≺ 1 + e,
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where Z has the same law as TKi+1(n) under P Ki (n)
ω [ · | TKi+1(n) < TKi−1(n)]; γ = γ (κ)

and e denotes an exponential random variable of parameter 1. The same inequality is
true when Ki−1(n) and Ki+1(n) are exchanged.

This stochastic domination is the key argument for Sect. 6.4. We can adapt the proof
of Proposition 6.4, so that on A′(n, ν,−1/m)c ∩ A(n) ∩ B ′(n, ν, m) we obtain for all
u ≥ 1,

Pω

[ Tback

n1−1/m(ln n)γ
≥ exp(n1/(2m)),B(n) ≤ n1/(4m)

]
≤ e−n1/(2m)/4,

and

Pω

[
Tright >

n

5

]
≤ C1 exp(−n1/(4m)).

Moreover, (5.9) still holds, so that

Pω[B(n) ≥ n1/(4m)] ≤ C2 exp(−n1/(4m)),

which yields

Pω

[
Tleft >

n

5

]
≤ C3 exp(−n1/(4m)).

Finally, recalling (5.2) and using Proposition 4.1 on A′(n, ν,−1/m)c ∩ A(n), we
obtain

Pω

[
Tinit >

n

5

]
≤ C4 exp(−n1/(4m)).

Since Proposition 6.7 remains true and A′(n, ν,−1/m)c ⊂ G(n), we get that for
all ω ∈ A′(n, ν,−1/m)c ∩ A(n) ∩ B ′(n, ν, m)

Pω[Tnν > n] ≤ C5 exp(−n1/(4m)).

Loosely speaking it costs at least exp(−n1/(2m)) to backtrack n1/m times, hence, on
A′(n, ν,−1/m)c ∩ A(n) ∩ B ′(n, ν, m), we can only see valleys of size lower than
(1 − 1/m) ln n. To spend a time n in those valleys would cost at least exp(−n1/(2m)).
This finally implies that for all m > 0,

lim sup
n→∞

ln E
[
1{A′(n, ν,−1/m)c, A(n)c, B ′(n, ν, m)c}P0

ω[Tnν > n]]
ln n

= 0,

so that

lim sup
n→∞

ln P[Tnν > n]
ln n

≤ −(κ − ν) + κ

m
, (7.1)

the result for the hitting time follows by letting m go to infinity.
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It is simple to extend this result to the position of the walk, indeed if Xn < nν then
Tn(1+1/m)ν > n or B(n) ≥ n1/(2m) and hence using (5.9) , we get for all m > 0

P[Xn < nν] ≤ P[Tn(1+1/m)ν > n] + C6e−n1/(2m)

,

and the result follows by using (7.1) and letting m go to infinity.
This concludes the proof of Theorem 1.3. ��

8 Backtracking

In this section we prove Theorem 1.4.

8.1 Quenched backtracking for the hitting time

Set ν ∈ (0, 1) and consider Pω[T−nν < n]. First, we get that

for all ω ∈ F(n), Pω[T−nν < n] ≥ n−(3/ε0)nν

,

since the particle can go straight to the left during the first nν steps, hence

lim sup
n→∞

ln(− ln Pω[T−nν < n])
ln n

≤ ν. (8.1)

Second, we remark that if (−∞,−nν] has been hit before time n then, at some time
i ≤ n the particle is at Xi ∈ [−n,−nν] and hence for all ω

Pω[T−nν < n] ≤
n∑

i=1

Pω[Xi ∈ [−n,−nν]]

≤ n max
i≤n

Pω[Xi ∈ [−n,−nν]]. (8.2)

In order to estimate this quantity, we use arguments similar to those in Sect. 6.5,
i.e., first we use the reversibility of the walk to write

max
i≤n

Pω[Xi ∈ [−n,−nν]] ≤ π([−n,−nν])
π(0)

,

then, the right-hand side can be estimated in the same way as we obtained (6.18), and
so we get on A(n) ∩ G1(n) that

π([−n,−nν])
π(0)

≤ C1(ln n)2+2/κn1/κ exp(−C2nν/(ln n)2).
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The previous inequality and (8.2) yield

for all ω ∈ A(n) ∩ G(n), Pω[T−nν < n] ≤ C3n1+2/κ exp(−C2nν/(ln n)2),

so that

lim inf
n→∞

ln(− ln Pω[T−nν < n])
ln n

≥ ν.

Together with (8.1), this proves (1.11).

8.2 Quenched backtracking for the position of the random walk

Let us denote a0 = κ
κ+1 ∨ ν. We give a lower bound for Pω[Xn < −nν]. For n large

enough, there exists P-a.s. a valley of depth (1 − ε)(a0/κ) ln n of index i2, between
−na0 and 0. Consider the event that the walker goes to this valley directly and stays
there up to time n − na0 and then goes to the left for the next na0 + 1 steps. On this
event we have Xn < −na0 , so we obtain

Pω[Xn < −nν] ≥ n−(3/ε0)2(na0 +1) P
Ki2+1−1
ω [T{Ki2 −1,Ki2+1+1} ≥ n]

≥ n−(3/ε0)2(na0 +1) exp(−n1−(1−2ε)a0/κ ),

where we used Proposition 4.3 and ω ∈ F(n). Hence we obtain

lim sup
n→∞

ln(− ln Pω[Xn < −nν])
ln n

≤ a0 + 2εa0

κ
,

and letting ε go to 0 we have

lim sup
n→∞

ln(− ln Pω[Xn < −nν])
ln n

≤ a0. (8.3)

Turning to the upper bound, we have for m ∈ N,

Pω[Xn < −nν]≤
m∑

k=0

Pω[Tn(k−1)/m < n] max
i≤n

Pn(k−1)/m

ω [Tnk/m >n − i, Xi <−nν],

(8.4)

where once again

max
i≤n

Pn(k−1)/m

ω [Tnk/m > n − i, Xi < −nν]

≤
(

max
i≤n

Pn(k−1)/m

ω [Xi < −nν]
)

∧ Pn(k−1)/m

ω [Tnk/m > n].
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First, using (1.6), for n large enough

Pn(k−1)/m

ω [Tnk/m > n] ≤ exp(−n(1−(k/m)/κ)∧(κ/(κ+1))−1/m). (8.5)

Then, as in Sect. 6.5, the reversibility of the walk yields that

max
i≤n

Pn(k−1)/m

ω [Xi ∈ [−n,−nν]] ≤ π([−n,−nν])
π(n(k−1)/m)

, (8.6)

the right-hand side can be estimated in the same way we obtained (6.18) and we get
on A(n) ∩ G(n)

π([−n,−nν])
π(n(k−1)/m)

≤ C4 exp(−C5(n
(k−1)/m + nν)/(ln n)2). (8.7)

Putting together (8.4), (8.5), (8.6), and (8.7), we obtain

lim inf
n→∞

ln(− ln Pω[Xn < −nν])
ln n

≥ min
k∈[0,m]

(((
1 − k

mκ

)
∧ κ

κ + 1

)
∨
(

k − 1

m
∨ ν

))
− 1

m
,

minimizing yields that

lim inf
n→∞

ln(− ln Pω[Xn < −nν])
ln n

≥ a0 − 2

m
,

letting m go to infinity and recalling (8.3) we obtain (1.9).

8.3 Annealed backtracking

Let θ0 = E [ln ρ0] < 0. Define

R =
{
ω : V (x) ≤ θ0

3
nν for x ∈ [0, n], |V (x) + θ0x | ≤ |θ0|

3
nν for x ∈ [−nν, 0)

}
.

Since V is a sum of i.i.d. random variables having some finite exponential moments,
we can use large deviations techniques to obtain C6 such that

P[R] ≥ 1 − 2ne−C6nν

. (8.8)

Then, on R, using (2.8), we obtain

Pω[T−nν < n] ≤ Pω[T−nν < Tn]
≤ C7n exp

(
−2θ0

3
nν

)
. (8.9)
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Using (8.8) and (8.9), we obtain

P[Xn < −nν] ≤ P[T−nν < n] ≤ e−C8nν

. (8.10)

On the other hand, we easily obtain that

P[T−nν < n] ≥ P[Xn < −nν] ≥
(

δ

2

)nν

n−C9 , (8.11)

where δ > 0 is such that P[1 − ω0 ≥ δ] > 1/2. Indeed on the event of probability at
least (1/2)nν

that 1 − ωx ≥ δ for x ∈ (−nν, 0], the particle can go “directly” (to the
left on each step) to (−nν), and then the cost of creating a valley of depth 2 ln n there
is polynomial and then it costs nothing to stay there for a time n by Proposition 4.2.
Now, (8.10) and (8.11) imply (1.10). This finishes the proof of Theorem 1.4. ��

9 Speedup

In this section we prove Theorem 1.5. So, we have κ < 1, ν ∈ (κ, 1); let us denote
g(α) = ν+ α

κ
−α, and let α0 = κ 1−ν

1−κ
. Clearly, g(α) is a linear function, g(0) = ν < 1,

g(ν) = ν
κ

> 1, and g(α0) = 1; note also that ν − α0 = ν−κ
1−κ

.
The discussion in this section is for the RWRE on Z (i.e., without reflection), the

proof for the reflected case is quite analogous.

9.1 Lower bound for the quenched probability of speedup

We are going to obtain a lower bound for Pω[Xn > nν].
By Lemma 3.2 and Borel–Cantelli, for any fixed m, ω ∈ B ′(n, α0, m)∩ A(n)∩F(n)

for all n large enough, P-a.s. (recall the definition of A(n) and B ′(n, α0, m) from
Sect. 3). So, from now on we suppose that ω ∈ B ′(n, α0, m) ∩ A(n).

Let us denote M = Nn(0, nν), define the index sets

I0 = {i ∈ M : Hi−1 ∨ Hi ≤ ln ln n},
Ik =

{
i ∈ M : (Hi−1 ∨ Hi ) − ln ln n ∈

[
(k − 1)α0

mκ
ln n,

kα0

mκ
ln n

)}

for k ∈ [1, m − 1], and

U =
{

i ∈ M : Hi−1 ∨ Hi ≥ (m − 1)α0

mκ
ln n + ln ln n

}
.

Note that on B ′(n, α0, m)

card U ≤ nν−α0+ α0
m = n

ν−κ
1−κ

+ α0
m , (9.1)

card Ik ≤ nν− kα0
m , for all k = 1, . . . , m − 1. (9.2)
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Recalling (2.3) we define the quantities σi0 = TKi0+1 , σi1 = Tnν − TKi1
, and

σ j = TK j+1 − TK j for j = i0 + 1, . . . , i1 − 1. Then for ε > 0, we can write

Pω[Xn > n(1−ε)ν] ≥ Pω

⎡
⎣m−1∑

k=0

∑
i∈Ik

σi ≤ n

2

⎤
⎦ Pω

[∑
i∈U

σi ≤ n

2

]

×Pnν

ω

[
X j > n(1−ε)ν for all i ∈ [0, n − nν]

]
. (9.3)

Let us obtain lower bounds for the three terms in the right-hand side of (9.3). First,
we write using (9.2)

Pω

⎡
⎣m−1∑

k=0

∑
i∈Ik

σi ≤ n

2

⎤
⎦ ≥

m−1∏
k=0

Pω

⎡
⎣∑

i∈Ik

σi ≤ n

2m

⎤
⎦

≥
m−1∏
k=0

Pω

[
σi ≤ 1

2m
n1−(ν− kα0

m ) for all i ∈ Ik

]
. (9.4)

Now, consider any � ∈ Ik and write

Pω

[
σ� ≤ 1

2m
n1−(ν− kα0

m )

]
≥ P K�

ω [TK�+1 < TK�−1 ]
×P K�

ω

[
T{K�−1,K�+1} ≤ 1

2m
n1−(ν− kα0

m ) | TKl+1 < TKl−1

]
.

By the formula (5.7), on A(n) we have

P K�
ω [TK�+1 < TK�−1 ] ≥ 1 − n−3/2,

and by Proposition 6.1,

P K�
ω

[
T{K�−1,K�+1} ≤ 1

2m
n1−(ν− kα0

m ) | TKl+1 < TKl−1

]

≥ 1 − exp

(
− C1

m(ln n)γ
n1−(ν− kα0

m )− kα0
mκ

)
,

so

Pω

[
σ� ≤ 1

2m
n1−(ν− kα0

m )

]
≥(1 − n−3/2)

(
1−exp

(
− C1

m(ln n)γ
n1−g(

kα0
m )

))
. (9.5)

Now, for k ≤ m − 1 we have

1 − g

(
kα0

m

)
≥ (1 − κ)α0

mκ
,
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so (9.4) and (9.5) imply that

Pω

⎡
⎣m−1∑

k=0

∑
i∈Ik

σi ≤ n

2

⎤
⎦ ≥

m−1∏
k=0

[
(1 − n−3/2)

)(
1 − exp

(
− C1

m(ln n)γ
n

(1−κ)α0
mκ

))]nν

→ 1 as n → ∞. (9.6)

Now, we obtain a lower bound for the second term in the right-hand side of (9.3). On
G1(n), we get an upper bound on ρi for i ∈ [−n, n] and hence we have ωx ≥ n−C2 ,
we obtain for any � ∈ U (imagine that, to cross the corresponding interval, the particle
just goes to the right at each step)

Pω

[
σ� ≤ 1

2
n1−(ν−α0)− α0

m

]
≥ n−C2(ln n)2

, (9.7)

so,

Pω

[∑
i∈U

σi ≤ n

2

]
≥ Pω

[
σ� ≤ 1

2
n1−(ν−α0)− α0

m for all � ∈ U
]

≥
(

n−C2(ln n)2
)n

ν−κ
1−κ

+ α0
m

= exp
(
−C2(ln n)3n

ν−κ
1−κ

+ α0
m

)
(9.8)

(recall that ν − α0 = ν−κ
1−κ

).
As for the third term in (9.3), using (2.8) we easily obtain that, on A(n) ∩ G(n),

Pnν

ω

[
X j > n(1−ε)ν for all j ∈ [0, n − nν]

]
≥ Pnν

ω [Tn < Tn(1−ε)ν ] > C3 > 0. (9.9)

Now, plugging (9.6), (9.8), and (9.9) into (9.3) and sending m to ∞, we obtain that

lim sup
n→∞

ln(− ln Pω[Xn > n(1−ε)ν])
ln n

≤ ν − κ

1 − κ
, P-a.s.

applying this for ν′ = ν/(1 − ε) and letting ε go to 0,

lim sup
n→∞

ln(− ln Pω[Xn > nν′ ])
ln n

≤ ν′ − κ

1 − κ
, P-a.s. (9.10)

Since obviously Pω[Tnν < n] ≥ Pω[Xn > nν], (9.10) holds for Pω[Tnν < n] as well.
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9.2 Upper bound for the quenched probability of speedup

Fix ε > 0 such that α0 + ε < ν. Define

W =
{

i ∈ Nn(0, nν) : Hi ≥ α0 + ε

κ
ln n − 4 ln ln n

}
,

�ε
n =

{
ω : card W ≥ 1

3
nν−α0−ε

}
.

By Lemma 3.5, on each subinterval of length nα0+ε we find a valley of depth at least
α0+ε

κ
ln n − 4 ln ln n with probability at least 1/2. Since the interval [0, nν] contains

nν−α0−ε such subintervals, we have

P[�ε
n ] ≥ 1 − exp(−C4nν−α0−ε), (9.11)

in particular by Borel–Cantelli’s Lemma, P-a.s. we have ω ∈ �ε
n for n large enough.

For i ∈ W , define σ̃i = TKi+1+1 − TKi +1, and let

s0 = 1

4γ2(ln n)4 n
α0+ε

κ .

Then, by Proposition 4.2, for any i ∈ W ,

Pω[σ̃i < s0] ≤ 2γ2s0 exp

(
−α0 + ε

κ
ln n + 4 ln ln n

)

= 2γ2s0n− α0+ε

κ (ln n)4

= 1

2
. (9.12)

Define the family of random variables ζi = 1{σ̃i < s0}, i ∈ W . These random vari-
ables are independent with respect to Pω, and Pω[ζi = 1] ≤ 1/2 by (9.12). Suppose
without restriction of generality that (recall that g(α0) = 1)

1

3
s0 × 1

3
nν−α0−ε = 1

36γ2(ln n)4 ng(α0+ε) > n.

Then, since card W ≥ 1
3 nν−α0−ε for ω ∈ �ε

n , we see using large deviations techniques
that for n large enough

Pω[Tnν < n] ≤ Pω

[∑
i∈W

ζi >
2

3
card W

]

≤ exp
(
−C5n

ν−κ
1−κ

−ε
)

(9.13)
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(recall that ν − α0 = ν−κ
1−κ

). Since ε > 0 is arbitrary, we obtain

lim inf
n→∞

ln(− ln Pω[Tnν < n])
ln n

≥ ν − κ

1 − κ
P-a.s. (9.14)

Together with (9.10), this shows (1.12).

9.3 Annealed speedup

As usual, the quenched lower bound obtained in Sect. 9.1 also yields the annealed
one, i.e. (9.10) implies that

lim sup
n→∞

ln(− ln P[Xn > nν])
ln n

≤ ν − κ

1 − κ
. (9.15)

Turning to the upper bound, we have by (9.11) and (9.13) that

P[Tnν < n] =
∫

Pω[Tnν < n] dP

≤
∫
�ε

n

Pω[Tnν < n] dP + P[(�ε
n)c]

≤ exp
(
−C5n

ν−κ
1−κ

−ε
)

+ exp
(
−C4n

ν−κ
1−κ

−ε
)

,

and this implies (1.13). This finishes the proof of Theorem 1.5. ��
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