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Abstract. Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there
exists an infinite ray in the branching random walk that always lies above the line of slope γ − ε, where γ denotes the asymptotic
speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the

branching random walk, we prove that when ε → 0, this probability decays like exp{−β+o(1)

ε1/2 }, where β is a positive constant
depending on the distribution of the branching random walk. In the special case of i.i.d. Bernoulli(p) random variables (with
0 < p < 1

2 ) assigned on a rooted binary tree, this answers an open question of Robin Pemantle (see Ann. Appl. Probab. 19 (2009)
1273–1291).

Résumé. Considérons une marche aléatoire branchante surcritique à temps discret. Nous nous intéressons à la probabilité qu’il
existe un rayon infini du support de la marche aléatoire branchante, le long duquel elle croît plus vite qu’une fonction linéaire de
pente γ − ε, où γ désigne la vitesse asymptotique de la position de la particule la plus à droite dans la marche aléatoire branchante.

Sous des hypothèses générales peu restrictives, nous prouvons que, lorsque ε → 0, cette probabilité décroît comme exp{−β+o(1)

ε1/2 },
où β est une constante strictement positive dont la valeur dépend de la loi de la marche aléatoire branchante. Dans le cas spécial où
des variables aléatoires i.i.d. de Bernoulli(p) (avec 0 < p < 1

2 ) sont placées sur les arêtes d’un arbre binaire enraciné, ceci répond
à une question ouverte de Robin Pemantle (Ann. Appl. Probab. 19 (2009) 1273–1291).

MSC: 60J80
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1. Introduction

We consider a one-dimensional branching random walk in discrete time. Before introducing the model and the prob-
lem, we start with an example, borrowed from Pemantle [19], in the study of binary search trees.

Example 1.1. Let Tbs be a binary tree (“bs” for binary search), rooted at e. Let (Y (x), x ∈ Tbs) be a collection,
indexed by the vertices of the tree, of i.i.d. Bernoulli random variables with mean p ∈ (0, 1

2 ). For any vertex x ∈
Tbs\{e}, let [[e, x]] denote the shortest path connecting e with x, and let ]]e, x]] := [[e, x]]\{e}. We define

Ubs(x) :=
∑

v∈]]e,x]]
Y(v), x ∈ Tbs\{e},
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and Ubs(e) := 0. Then (Ubs(x), x ∈ Tbs) is a binary branching Bernoulli random walk. It is known (Kingman [14],
Hammersley [8], Biggins [2]) that

lim
n→∞

1

n
max|x|=n

Ubs(x) = γbs, a.s.,

where the constant γbs = γbs(p) ∈ (0,1) is the unique solution of

γbs log
γbs

p
+ (1 − γbs) log

1 − γbs

1 − p
− log 2 = 0. (1.1)

For any ε > 0, let �bs(ε,p) denote the probability that there exists an infinite ray1 {e =: x0, x1, x2, . . .} such that
Ubs(xj ) ≥ (γbs − ε)j for all j ≥ 1. It is conjectured by Pemantle [19] that there exists a constant βbs(p) such that2

log�bs(ε,p) ∼ −βbs(p)

ε1/2
, ε → 0. (1.2)

We prove the conjecture, and give the value of βbs(p). Let ψbs(t) := log[2(pet +1−p)], t > 0. Let t∗ = t∗(p) > 0
be the unique solution of ψbs(t

∗) = t∗ψ ′
bs(t

∗). [One can then check that the solution of Eq. (1.1) is γbs = ψbs(t∗)
t∗ .]

Our main result, Theorem 1.2 below, implies that conjecture (1.2) holds, with

βbs(p) := π

21/2

[
t∗ψ ′′

bs

(
t∗
)]1/2

.

A particular value of βbs is as follows: if 0 < p0 < 1
2 is such that 16p0(1 − p0) = 1 (i.e., if γbs(p0) = 1

2 ), then

βbs(p0) = π

4

(
γ ′
bs(p0)

1 − 2p0

)1/2

log
1

4p0
,

where γ ′
bs(p0) denotes the derivative of p 	→ γbs(p) at p0. This is, informally, in agreement with the following

theorem of Aldous ([1], Theorem 6): if p ∈ (p0,
1
2 ) is such that γbs(p) = 1

2 + ε, then the probability that there exists
an infinite ray x with Ubs(xi) ≥ 1

2 i, ∀i ≥ 1, is

exp

(
−π log(1/(4p0))

4(1 − 2p0)1/2

1

(p − p0)1/2
+ O(1)

)
, ε → 0.

As a matter of fact, the main result of this paper (Theorem 1.2 below) is valid for more general branching random
walks: the tree Tbs can be random (Galton–Watson), the random variables assigned on the vertices of the tree are
not necessarily Bernoulli, nor necessarily identically distributed, nor necessarily independent if the vertices share a
common parent.

Our model is as follows, which is a one-dimensional discrete-time branching random walk. At the beginning, there
is a single particle located at position x = 0. Its children, who form the first generation, are positioned according to a
certain point process. Each of the particles in the first generation gives birth to new particles that are positioned (with
respect to their birth places) according to the same point process; they form the second generation. The system goes
on according to the same mechanism. We assume that for any n, each particle at generation n produces new particles
independently of each other and of everything up to the nth generation.

We denote by (U(x), |x| = n) the positions of the particles in the nth generation, and by Zn :=∑|x|=n 1 the number
of particles in the nth generation. Clearly, (Zn,n ≥ 0) forms a Galton–Watson process. [In Example 1.1, Zn = 2n,
whereas (U(x), |x| = 1) is a pair of independent Bernoulli(p) random variables.]

1By an infinite ray, we mean that each xj is the parent of xj+1.
2Throughout the paper, by a(ε) ∼ b(ε), ε → 0, we mean limε→0

a(ε)
b(ε)

= 1.
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We assume that for some δ > 0,

E
(
Z1+δ

1

)
< ∞, E(Z1) > 1; (1.3)

in particular, the Galton–Watson process (Zn,n ≥ 0) is supercritical. We also assume that there exist δ+ > 0 and
δ− > 0 such that

E
(∑

|x|=1

eδ+U(x)

)
< ∞, E

(∑
|x|=1

e−δ−U(x)

)
< ∞. (1.4)

An additional assumption is needed (which in Example 1.1 corresponds to the condition p < 1
2 ). Let us define the

logarithmic generating function for the branching walk:

ψ(t) := log E
(∑

|x|=1

etU(x)

)
, t > 0. (1.5)

Let ζ := sup{t : ψ(t) < ∞}. Under condition (1.4), we have 0 < ζ ≤ ∞, and ψ is C∞ on (0, ζ ). We assume that there
exists t∗ ∈ (0, ζ ) such that

ψ
(
t∗
)= t∗ψ ′(t∗). (1.6)

For discussions on this condition, see the examples presented after Theorem 1.2 below.
Recall that (Kingman [14], Hammersley [8], Biggins [2]) conditioned on the survival of the system,

lim
n→∞

1

n
max|x|=n

U(x) = γ, a.s., (1.7)

where γ := ψ(t∗)
t∗ is a constant, with t∗ and ψ(·) defined in (1.6) and (1.5), respectively.

For ε > 0, let �U(ε) denote the probability that there exists an infinite ray {e =: x0, x1, x2, . . .} such that U(xj ) ≥
(γ − ε)j for all j ≥ 1. Our main result is as follows.

Theorem 1.2. Assume (1.3) and (1.4). If (1.6) holds, then

log�U(ε) ∼ − π

(2ε)1/2

[
t∗ψ ′′(t∗)]1/2

, ε → 0, (1.8)

where t∗ and ψ are as in (1.6) and (1.5), respectively.

Since (U(x), |x| = 1) is not a deterministic set (excluded by the combination of (1.6) and (1.3)), the function ψ is
strictly convex on (0, ζ ). In particular, we have 0 < ψ ′′(t∗) < ∞.

We now present a few simple examples to illustrate the meaning of assumption (1.6). For more detailed discussions,
see Jaffuel [11].

Example 1.1 (Continuation). In Example 1.1, conditions (1.3) and (1.4) are obviously satisfied, whereas (1.6) is
equivalent to p < 1

2 . In this case, (1.8) becomes (1.2). Clearly, if p > 1
2 , �bs(ε,p) does not go to 0 because the

vertices labeled with 1 percolate, with positive probability, on the tree.

Example 1.3. Consider the example of Bernoulli branching random walk, i.e., such that U(x) ∈ {0,1} for any |x| = 1;
to avoid trivial cases, we assume E(

∑
|x|=1 1{U(x)=1}) > 0 and E(

∑
|x|=1 1{U(x)=0}) > 0.

Condition (1.4) is automatically satisfied as long as we assume (1.3). Elementary computations show that con-
dition (1.6) is equivalent to E(

∑
|x|=1 1{U(x)=1}) < 1. (In particular, if we assign independent Bernoulli(p) random

variables on the vertices of a rooted binary tree, we recover Example 1.1.) Again, if E(
∑

|x|=1 1{U(x)=1}) > 1, �U(ε)

does not go to 0 because the vertices labeled with 1 percolate, with positive probability, on the tree.
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Example 1.4. Assume the distribution of U is bounded from above, in the sense that there exists a constant C ∈ R

such that sup|x|=1 U(x) ≤ C. Let sU := ess sup sup|x|=1 U(x) = sup{a ∈ R: P{sup|x|=1 U(x) ≥ a} > 0} < ∞. Under
(1.3) and (1.4), condition (1.6) is satisfied if and only if E(

∑
|x|=1 1{U(x)=sU }) < 1.

Example 1.5. Assume that (1.3) holds true. If ess sup sup|x|=1 U(x) = ∞, then condition (1.6) is satisfied.

We mention that the question we address here in the discrete case has a continuous counterpart, which has been
investigated in the context of the F-KPP equation with cutoff, see [5–7].

The rest of the paper is organized as follows. In Section 2, we make a linear transformation of our branching random
walk so that it will become a boundary case in the sense of Biggins and Kyprianou [3]; the linear transformation is
possible due to assumption (1.6). Section 3 is devoted to the proof of the upper bound in Theorem 1.2, whereas the
proof of the lower bound is in Section 4.

2. A linear transformation

We define

V (x) := −t∗U(x) + ψ
(
t∗
)|x|. (2.1)

Then

E
(∑

|x|=1

e−V (x)

)
= 1, E

(∑
|x|=1

V (x)e−V (x)

)
= 0. (2.2)

Since t∗ < ζ , there exists δ1 > 0 such that

E
(∑

|x|=1

e−(1+δ1)V (x)

)
< ∞. (2.3)

On the other hand, by (1.4), there exists δ2 > 0 such that

E
(∑

|x|=1

eδ2V (x)

)
< ∞. (2.4)

The new branching random walk (V (x)) satisfies limn→∞ 1
n

inf|x|=n V (x) = 0 a.s. conditioned on non-extinction.
Let

�(ε) = �(V, ε) := P
{∃ infinite ray {e =: x0, x1, x2, . . .}: V (xj ) ≤ εj,∀j ≥ 1

}
. (2.5)

Theorem 1.2 will be a consequence of the following estimate: assuming (2.2), then

log�(ε) ∼ − πσ

(2ε)1/2
, ε → 0, (2.6)

where σ is the constant in (2.7) below.
It is (2.6) we are going to prove: an upper bound is proved in Section 3, and a lower bound in Section 4.
We conclude this section with a change-of-probabilities formula, which is the raison d’être of the linear transfor-

mation. Let S0 := 0, and let (Si − Si−1, i ≥ 1) be a sequence of i.i.d. random variables such that for any measurable
function f : R → [0,∞),

E
(
f (S1)

)= E
(∑

|x|=1

e−V (x)f
(
V (x)

))
.
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In particular, E(S1) = 0 (by (2.2)). In words, (Sn) is a mean-zero random walk. We denote

σ 2 := E
(
S2

1

)= E
(∑

|x|=1

V (x)2e−V (x)

)
= (t∗)2ψ ′′(t∗). (2.7)

Since E(Z1+δ
1 ) < ∞ (condition (1.3)) and E(

∑
|x|=1 e−(1+δ1)V (x)) < ∞ (see (2.3)), there exists δ3 > 0 such that

E(euS1) < ∞ for all |u| ≤ δ3.
In view of (2.2), we have, according to Biggins and Kyprianou [3], for any n ≥ 1 and any measurable function

F : Rn → [0,∞),

E
(∑

|x|=n

e−V (x)F
(
V (xi),1 ≤ i ≤ n

))= E
[
F(Si,1 ≤ i ≤ n)

]
, (2.8)

where, for any x with |x| = n, {e =: x0, x1, . . . , xn := x} is the shortest path connecting e to x.
We now give a bivariate version of (2.8). For any vertex x, the number of its children is denoted by ν(x). Condi-

tion (1.3) guarantees that P{ν(x) < ∞,∀x} = 1. In light of (2.2), we have, for any n ≥ 1 and any measurable function
F : Rn × R

n → [0,∞),

E
(∑

|x|=n

e−V (x)F
[
V (xi), ν(xi−1),1 ≤ i ≤ n

])= E
(
F [Si, νi−1,1 ≤ i ≤ n]), (2.9)

where (Si − Si−1, νi−1), for i ≥ 1, are i.i.d. random vectors, whose common distribution is determined by (recalling
that Z1 := #{y: |y| = 1})

E
[
f (S1, ν0)

]= E
(∑

|x|=1

e−V (x)f
(
V (x),Z1

))
(2.10)

for any measurable function f : R2 → [0,∞).
The proof of (2.9), just as the proof of (2.8) in Biggins and Kyprianou [3], relies on a simple argument by induction

on n. We feel free to omit it.
[We mention that (2.9) is a special case of the so-called spinal decomposition for branching random walks, a pow-

erful tool developed by Lyons, Pemantle and Peres [16] and Lyons [15]. The idea of spinal decomposition, which goes
back at least to Kahane and Peyrière [12], has been used in the literature by many authors in several different forms.]

We now extend a useful result of Mogulskii [18] to arrays of random variables.

Lemma 2.1 (A triangular version of Mogulskii [18]). For each n ≥ 1, let X
(n)
i , 1 ≤ i ≤ n, be i.i.d. real-valued

random variables. Let g1 < g2 be continuous functions on [0,1] with g1(0) < 0 < g2(0). Let (an) be a sequence of

positive numbers such that an → ∞ and that a2
n

n
→ 0. Assume that there exist constants η > 0 and σ 2 > 0 such that

sup
n≥1

E
(∣∣X(n)

1

∣∣2+η)
< ∞, E

(
X

(n)
1

)= o

(
an

n

)
, Var

(
X

(n)
1

)→ σ 2. (2.11)

Consider the measurable event

En :=
{
g1

(
i

n

)
≤ S

(n)
i

an

≤ g2

(
i

n

)
, for 1 ≤ i ≤ n

}
,

where S
(n)
i := X

(n)
1 + · · · + X

(n)
i , 1 ≤ i ≤ n. We have

lim
n→∞

a2
n

n
log P{En} = −π2σ 2

2

∫ 1

0

dt

[g2(t) − g1(t)]2
. (2.12)
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Moreover, for any b > 0,

lim
n→∞

a2
n

n
log P

{
En,

S
(n)
n

an

≥ g2(1) − b

}
= −π2σ 2

2

∫ 1

0

dt

[g2(t) − g1(t)]2
. (2.13)

If the distribution of X
(n)
1 does not depend on n, Lemma 2.1 is Mogulskii [18]’s result. In this case, condition (2.11)

is satisfied as long as X
(n)
1 is centered, having a finite (2 + η)-moment (for some η > 0), and such that it is not

identically zero.3

The proof of Lemma 2.1 is in the same spirit (but with some additional technical difficulties) as in the original work
of Mogulskii [18], and is included as an appendix at the end of the paper. We mention that as in [18], it is possible to
have a version of Lemma 2.1 when X

(n)
1 belongs to the domain of attraction of a stable non-Gaussian law, except that

the constant π2

2 in (2.12)–(2.13) will be implicit.

3. Proof of Theorem 1.2: The upper bound

In this section, we prove the upper bound in (2.6):

lim sup
ε→0

ε1/2 log�(ε) ≤ − πσ

21/2
, (3.1)

where �(ε) is defined in (2.5), and σ is the constant in (2.7).
The main idea in this section is borrowed from Kesten [13]. We start with the trivial inequality that for any n ≥ 1

(an appropriate value for n = n(ε) will be chosen later on),

�(ε) ≤ P
{∃x: |x| = n,V (xi) ≤ εi,∀i ≤ n

}
.

Let (bi, i ≥ 0) be a sequence of non-negative real numbers whose value (depending on n) will be given later on. For
any x, let H(x) := inf{i: 1 ≤ i ≤ |x|,V (xi) ≤ εi − bi}, with inf∅ := ∞. Then P{H(x) = ∞} + P{H(x) ≤ |x|} = 1.
Therefore,

�(ε) ≤ �1(ε) + �2(ε),

where

�1(ε) = �1(ε, n) := P
{∃|x| = n: H(x) = ∞,V (xi) ≤ εi,∀i ≤ n

}
,

�2(ε) = �2(ε, n) := P
{∃|x| = n: H(x) ≤ n,V (xi) ≤ εi,∀i ≤ n

}
.

We now estimate �1(ε) and �2(ε) separately.
By definition,

�1(ε) = P
{∃|x| = n: εi − bi < V (xi) ≤ εi,∀i ≤ n

}
= P

{∑
|x|=n

1{εi−bi<V (xi )≤εi,∀i≤n} ≥ 1

}

≤ E
(∑

|x|=n

1{εi−bi<V (xi )≤εi,∀i≤n}
)

,

the last inequality being a consequence of Chebyshev’s inequality. Applying the change-of-probabilities formula (2.8)
to F(z) := ezn1{εi−bi<zi≤εi,∀i≤n} for z := (z1, . . . , zn) ∈ R

n, this yields, in the notation of (2.8),

�1(ε) ≤ E
(
eSn1{εi−bi<Si≤εi,∀i≤n}

)≤ eεnP{εi − bi < Si ≤ εi,∀i ≤ n}. (3.2)

3In this case, we even can allow η = 0; see [18].
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To estimate �2(ε), we observe that

�2(ε) ≤
n∑

j=1

P
{∃|x| = n: H(x) = j,V (xi) ≤ εi,∀i ≤ n

}

≤
n∑

j=1

P
{∃|x| = n: H(x) = j,V (xi) ≤ εi,∀i ≤ j

}
.

Since {∃|x| = n: H(x) = j,V (xi) ≤ εi,∀i ≤ j} ⊂ {∃|y| = j : H(y) = j,V (yi) ≤ εi,∀i ≤ j}, this yields

�2(ε) ≤
n∑

j=1

P
{∃|y| = j : εi − bi < V (yi) ≤ εi,∀i < j,V (yj ) ≤ εj − bj

}
.

We can now use the same argument as for �1(ε), namely, Chebyshev’s inequality and then the change-of-probability
formula (2.2), to see that

�2(ε) ≤
n∑

j=1

E
(∑

|y|=j

1{εi−bi<V (yi )≤εi,∀i<j,V (yj )≤εj−bj }
)

=
n∑

j=1

E
(
eSj 1{εi−bi<Si≤εi,∀i<j,Sj ≤εj−bj }

)

≤
n∑

j=1

eεj−bj P{εi − bi < Si ≤ εi,∀i < j}.

Together with (3.2), and recalling that �(ε) ≤ �1(ε) + �2(ε), this yields

�(ε) ≤ eεnP{εi − bi < Si ≤ εi,∀i ≤ n} +
n∑

j=1

eεj−bj P{εi − bi < Si ≤ εi,∀i < j}

= eεnI (n) +
n−1∑
j=0

eε(j+1)−bj+1I (j),

where I (0) := 1 and

I (j) := P{εi − bi < Si ≤ εi,∀i ≤ j}, 1 ≤ j ≤ n.

The idea is now to apply Mogulskii’s estimate (2.12) to I (j) for suitably chosen (bi). Unfortunately, since ε

depends on n, we are not allowed to apply (2.12) simultaneously to all I (j), 0 ≤ j ≤ n. So let us first work a little bit
more, and then apply (2.12) to only a few of the I (j).

We assume that (bi) is non-increasing. Fix an integer N ≥ 2, and take n := kN for k ≥ 1. Then

�(ε) ≤ eεkNI (kN) +
k−1∑
j=0

eε(j+1)−bj+1I (j) +
N−1∑
�=1

(�+1)k−1∑
j=�k

eε(j+1)−bj+1I (j)

≤ eεkNI (kN) + k exp(εk − bk) + k

N−1∑
�=1

exp
(
ε(� + 1)k − b(�+1)k

)
I (�k). (3.3)
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We choose bi = bi(n) := b(n − i)1/3 = b(kN − i)1/3, 0 ≤ i ≤ n, and ε := θ

n2/3 = θ

(Nk)2/3 , where b > 0 and θ > 0
are constants. By definition, for 1 ≤ � ≤ N ,

I (�k) = P
{
θ

(
�

N

)2/3
i

�k
− b

(
N

�
− i

�k

)1/3

<
Si

(�k)1/3
≤ θ

(
�

N

)2/3
i

�k
,∀i ≤ �k

}
.

Applying (2.12) to g1(t) := θ( �
N

)2/3t − b(N
�

− t)1/3 and g2(t) := θ( �
N

)2/3t , we see that, for 1 ≤ � ≤ N ,

lim sup
k→∞

1

(�k)1/3
log I (�k) ≤ −π2σ 2

2b2

∫ 1

0

dt

(N/� − t)2/3
= −3π2σ 2

2b2

N1/3 − (N − �)1/3

�1/3
,

where σ is the constant in (2.7). Going back to (3.3), we obtain:

lim sup
k→∞

θ1/2

(Nk)1/3
log�

(
θ

(Nk)2/3

)
≤ θ1/2αN,b,

where the constant αN,b = αN,b(θ) is defined by

αN,b := max
1≤�≤N−1

{
θ − 3π2σ 2

2b2
,

θ

N
− b

(
1 − 1

N

)1/3

,

θ(� + 1)

N
− b

(
1 − � + 1

N

)1/3

− 3π2σ 2

2b2

N1/3 − (N − �)1/3

N1/3

}
.

Since ε 	→ �(ε) is non-increasing, this yields

lim sup
ε→0

ε1/2 log�(ε) ≤ θ1/2αN,b.

We let N → ∞. By definition,

lim sup
N→∞

αN,b ≤ max

{
θ − 3π2σ 2

2b2
,−b,f (θ, b)

}
,

where f (θ, b) := supt∈(0,1]{θt − b(1 − t)1/3 − 3π2σ 2

2b2 [1 − (1 − t)1/3]}.
Elementary computations show that as long as b < 3π2σ 2

2b2 ≤ b+3θ , we have f (θ, b) = θ − 3π2σ 2

2b2 + 2
3(3θ)1/2 ( 3π2σ 2

2b2 −
b)3/2. Thus max{θ − 3π2σ 2

2b2 ,−b,f (θ, b)} = max{f (θ, b),−b}, which equals −b if θ = π2σ 2

2b2 − b
3 . As a consequence,

for any b > 0 satisfying b < 3π2σ 2

2b2 ,

lim sup
ε→0

ε1/2 log�(ε) ≤ −b

√
π2σ 2

2b2
− b

3
= −

√
π2σ 2

2
− b3

3
.

Letting b → 0, this yields (3.1) and completes the proof of the upper bound in Theorem 1.2.

4. Proof of Theorem 1.2: The lower bound

Before proceeding to the proof of the lower bound in Theorem 1.2, we recall two inequalities: the first gives a useful
lower tail estimate for the number of individuals in a super-critical Galton–Watson process conditioned on survival,
whereas the second concerns an elementary property of the conditional distribution of a sum of independent random
variables. Let us recall that Zn is the number of particles in the nth generation.
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Fact 4.1 (McDiarmid [17]). There exists ϑ > 1 such that

P
{
Zn ≤ ϑn | Zn > 0

}≤ ϑ−n, ∀n ≥ 1. (4.1)

Fact 4.2 ([9]). If X1,X2, . . . ,XN are independent non-negative random variables, and if F : (0,∞) → R+ is non-
increasing, then

E

[
F

(
N∑

i=1

Xi

) ∣∣∣∣ N∑
i=1

Xi > 0

]
≤ max

1≤i≤N
E
[
F(Xi) | Xi > 0

]
.

This section is devoted to the proof of the lower bound in (2.6):

lim inf
ε→0

ε1/2 log�(ε) ≥ − πσ

21/2
, (4.2)

where �(ε) and σ are as in (2.5) and (2.7), respectively.
The basic idea consists in constructing a new Galton–Watson tree G = G(ε) within the branching random walk,

and obtaining a lower bound for �(ε) in terms of G.
Recall from (1.7) that conditioned on survival, 1

j
max|z|≤j V (z) converges almost surely, for j → ∞, to a finite

constant. [The fact that this limiting constant is finite is a consequence of E(
∑

|x|=1 eδ2V (x)) < ∞ in (2.4).] Since the
system survives with (strictly) positive probability, we can fix a sufficiently large constant M > 0 such that

inf
j≥0

P
{

max|x|≤j
V (x) ≤ Mj

}
≥ 1

2
, κ := inf

j≥0
P
{
Zj > 0, max|x|≤j

V (x) ≤ Mj
}

> 0, (4.3)

where, as before, Zj := #{x: |x| = j}.
Fix a constant 0 < α < 1. For any integers n > L ≥ 1 with (1 − α)εL ≥ M(n − L), we consider the set Gn,ε =

Gn,ε(L) defined by4

Gn,ε :=
{
|x| = n: V (xi) ≤ αεi, for 1 ≤ i ≤ L; max

z>xL:|z|≤n

[
V (z) − V (xL)

]≤ (1 − α)εL
}
.

By definition, for any x ∈ Gn,ε , we have V (xi) ≤ εi, for 1 ≤ i ≤ n.
If Gn,ε �= ∅, the elements of Gn,ε form the first generation of the new Galton–Watson tree Gn,ε , and we con-

struct Gn,ε by iterating the same procedure: for example, the second generation in Gn,ε consists of y with |y| = 2n

being a descendant of some x ∈ Gn,ε such that V (yn+i ) − V (x) ≤ αεi, for 1 ≤ i ≤ L and maxz>yn+L:|z|≤2n[V (z) −
V (yn+L)] ≤ (1 − α)εL.

Let qn,ε denote the probability of extinction of the Galton–Watson tree Gn,ε . It is clear that

�(ε) ≥ 1 − qn,ε,

so we only need to find a lower bound for 1 − qn,ε . In order to do so, we introduce, for b ∈ R and n ≥ 1,

�(b,n) := P
{∃|x| = n: V (xi) ≤ bi, for 1 ≤ i ≤ n

}
. (4.4)

Let us first prove some preliminary results.

Lemma 4.3. Let 0 < α < 1 and ε > 0. Let n > L ≥ 1 be such that (1 − α)εL ≥ M(n − L). Then

P{Gn,ε �= ∅} ≥ 1

2
�(αε,n).

4We write z > x if x is an ancestor of z.
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Proof. By definition,

P{Gn,ε �= ∅} = E
(

1{∃|y|=L:V (yi )≤αεi,∀i≤L}P
{

max|z|≤n−L
V (z) ≤ (1 − α)εL

})
.

Since (1 − α)εL ≥ M(n − L), it follows from (4.3) that

P{Gn,ε �= ∅} ≥ 1

2
P
{∃|y| = L: V (yi) ≤ αεi,∀i ≤ L

}
,

and the r.h.s. is at least 1
2�(αε,n). �

Lemma 4.4. Let 0 < α < 1 and ε > 0. Let n > L ≥ 1 be such that (1 − α)εL ≥ M(n − L). We have

P
{
1 ≤ #Gn,ε ≤ ϑn−L

}≤ 1

κϑn−L
, (4.5)

where κ > 0 and ϑ > 1 are the constants in (4.3) and (4.1), respectively.

Proof. By definition,

#Gn,ε =
∑

|x|=L

ηx1{V (xi )≤αεi,∀i≤L},

where

ηx := #
{
y > x: |y| = n

}
1{max{z>x:|z|≤n}[V (z)−V (x)]≤(1−α)εL}.

By Fact 4.2, for any � ≥ 1, with F(x) = 1{x≤�},

P{#Gn,ε ≤ � | #Gn,ε > 0} ≤ P
{
Zn−L ≤ �

∣∣Zn−L > 0, max|z|≤n−L
V (z) ≤ (1 − α)εL

}
,

where, as before, Zn−L := #{|x| = n − L}. Since (1 − α)εL ≥ M(n − L), it follows from (4.3) that P{Zn−L > 0,
max|z|≤n−L V (z) ≤ (1 − α)εL} ≥ κ > 0. Therefore,

P{1 ≤ #Gn,ε ≤ �} ≤ 1

κ
P{Zn−L ≤ � | Zn−L > 0}.

This implies (4.5) by means of Fact 4.1. �

To state the next estimate, we recall that ν(x) is the number of children of x, and that (Si − Si−1, νi−1), i ≥ 1, are
i.i.d. random vectors (with S0 := 0) whose common distribution is given by (2.10).

Lemma 4.5. Let n ≥ 1. For any 1 ≤ i ≤ n, let Ii,n ⊂ R be a Borel set. Let rn ≥ 1 be an integer. We have

P
{∃|x| = n: V (xi) ∈ Ii,n,∀1 ≤ i ≤ n

}≥ E[eSn1{Si∈Ii,n,νi−1≤rn,∀1≤i≤n}]
1 + (rn − 1)

∑n
j=1 hj,n

,

where

hj,n := sup
u∈Ij,n

E
(
eSn−j 1{S�∈I�+j,n−u,∀0≤�≤n−j}

)
(4.6)

and I�+j,n − u := {v − u: v ∈ I�+j,n}.
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Proof. Let

Yn :=
∑
|x|=n

1{V (xi )∈Ii,n,ν(xi−1)≤rn,∀1≤i≤n}.

By definition,

E
(
Y 2

n

) = E
(∑

|x|=n

∑
|y|=n

1{V (xi )∈Ii,n,ν(xi−1)≤rn,V (yi )∈Ii,n,ν(yi−1)≤rn,∀1≤i≤n}
)

= E(Yn) + E

(
n−1∑
j=0

∑
|z|=j

1{V (zi )∈Ii,n,ν(zi−1)≤rn,∀i≤j}Dj+1,n(z)

)
(4.7)

with

Dj+1,n(z) :=
∑

(xj+1,yj+1)

∑
(x,y)

1{V (xi )∈Ii,n,ν(xi−1)≤rn,V (yi )∈Ii,n,ν(yi−1)≤rn,∀j+1≤i≤n}

≤
∑

(xj+1,yj+1)

∑
(x,y)

1{V (xi )∈Ii,n,ν(xi−1)≤rn,V (yi )∈Ii,n,∀j+1≤i≤n},

where the double sum
∑

(xj+1,yj+1)
is over pairs (xj+1, yj+1) of distinct children of z (thus |xj+1| = |yj+1| = j + 1),

while
∑

(x,y) is over pairs (x, y) with |x| = |y| = n such that5 x ≥ xj+1 and y ≥ yj+1.

The E[∑n−1
j=0

∑
|z|=j 1{···}Dj+1,n(z)] expression on the right-hand side of (4.7) is bounded by

E

(
n−1∑
j=0

∑
|z|=j

1{V (zi )∈Ii,n,ν(zi−1)≤rn,∀i≤j}
∑

(xj+1,yj+1)

∑
x

1{V (xi )∈Ii,n,ν(xi−1)≤rn,∀j+1≤i≤n}hj+1,n

)
,

where hj+1,n := supu∈Ij+1,n
E[∑|y|=n−j−1 1{V (y�)∈I�+j+1,n−u,∀0≤�≤n−j−1}], which is in agreement with (4.6), thanks

to the change of probability formula (2.8). [The sum
∑

x is, of course, still over x with |x| = n such that x ≥ xj+1.]
Thanks to the condition ν(xj ) ≤ rn (i.e., ν(z) ≤ rn), we see that the sum

∑
yj+1

in the last display gives at most

a factor of rn − 1; which yields that the last display is at most (rn − 1)E(
∑n−1

j=0 Ynhj+1,n). In other words, we have
proved that

E

(
n−1∑
j=0

∑
|z|=j

1{V (zi )∈Ii,n,ν(zi−1)≤rn,∀i≤j}Dj+1,n(z)

)
≤ (rn − 1)

n−1∑
j=0

E(Yn)hj+1,n.

This yields E(Y 2
n ) ≤ [1 + (rn − 1)

∑n−1
j=0 hj+1,n]E(Yn). Therefore,

E(Y 2
n )

[E(Yn)]2
≤ 1 + (rn − 1)

∑n
j=1 hj,n

E(Yn)
= 1 + (rn − 1)

∑n
j=1 hj,n

E(eSn1{Si∈Ii,n,νi−1≤rn,∀1≤i≤n})
, (4.8)

the last inequality being a consequence of (2.9). By the Cauchy–Schwarz inequality, P{Yn ≥ 1} ≥ [E(Yn)]2

E(Y 2
n )

. Recalling

the definition of Yn, we obtain from (4.8) that

P
{∃|x| = n: V (xi) ∈ Ii,n, ν(xi−1) ≤ rn,∀1 ≤ i ≤ n

}
≥ E[eSn1{Si∈Ii,n,νi−1≤rn,∀1≤i≤n}]

1 + (rn − 1)
∑n

j=1 hj,n

. (4.9)

5We write y ≥ x if either y > x or y = x.
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Lemma 4.5 follows immediately from (4.9). �

The key step in the proof of the lower bound in Theorem 1.2 is the following estimate.

Lemma 4.6. For any θ > 0,

lim inf
n→∞

log�(θn−2/3, n)

n1/3
≥ − πσ

(2θ)1/2
,

where σ > 0 is the constant in (2.7).

Proof. Let 0 < λ < πσ

(2θ)1/2 , and let Ii,n := [ θi

n2/3 − λn1/3, θi

n2/3 ] (for 1 ≤ i ≤ n). Since �(θn−2/3, n) ≥ P{∃|x| = n:
V (xi) ∈ Ii,n,∀1 ≤ i ≤ n}, it follows from Lemma 4.5 that for any integer rn ≥ 1,

�
(
θn−2/3, n

)≥ E[eSn1{Si∈Ii,n,νi−1≤rn,∀1≤i≤n}]
1 + (rn − 1)

∑n
j=1 hj,n

=: �n

1 + (rn − 1)
∑n

j=1 hj,n

,

where hj,n is defined in (4.6), while (Si − Si−1, νi−1), i ≥ 1, are i.i.d. random vectors (with S0 := 0) whose common
distribution is given by (2.10).

For any θ1 < θ , we have

�n ≥ eθ1n
1/3

P
{
Si ∈ Ii,n, νi−1 ≤ rn,∀1 ≤ i ≤ n,Sn ≥ θ1n

1/3}
= eθ1n

1/3
P
{
θ

i

n
− λ ≤ Si

n1/3
≤ θ

i

n
, νi−1 ≤ rn,∀1 ≤ i ≤ n,

Sn

n1/3
≥ θ1

}
.

For any n ≥ 1, we consider i.i.d. random variables X
(n)
i , 1 ≤ i ≤ n, having the same distribution as S1 conditioned

on ν0 ≤ rn. Let S
(n)
0 = 0 and Si := X

(n)
1 + · · · + X

(n)
i for 1 ≤ i ≤ n. Then

�n ≥ eθ1n
1/3[

P{ν0 ≤ rn}
]nP
{
θ

i

n
− λ ≤ S

(n)
i

n1/3
≤ θ

i

n
,∀1 ≤ i ≤ n,

S
(n)
n

n1/3
≥ θ1

}
.

We now choose rn := �en1/4�. By definition, P{ν0 > rn} = E(
∑

|x|=1 e−V (x)1{Z1>rn}), where Z1 = ∑
|y|=1 1

as before. By Markov’s inequality, P{Z1 > rn} ≤ E(Z1+δ
1 )

r1+δ
n

. Since E(Z1+δ
1 ) < ∞ (condition (1.3)) and

E(
∑

|x|=1 e−(1+δ1)V (x)) < ∞ (see (2.3)), an application of Hölder’s inequality confirms that P{ν0 > rn} ≤ r
−δ4
n for

some δ4 > 0 and all sufficiently large n. In view of our choice of rn, we see that [P{ν0 ≤ rn}]n → 1. Therefore, for all
sufficiently large n,

�n ≥ 1

2
eθ1n

1/3
P
{
θ

i

n
− λ ≤ S

(n)
i

n1/3
≤ θ

i

n
,∀1 ≤ i ≤ n,

S
(n)
n

n1/3
≥ θ1

}
.

To deal with the probability expression on the right-hand side, we intend to apply (2.13); so we need to check
condition (2.11). Recall that S1 has finite exponential moments in the neighbourhood of 0. Thus, the first condition in
(2.11), namely, supn≥1 E(|X(n)

1 |2+η) < ∞ for some η > 0, is trivially satisfied. To check the second condition, we see

that since E(S1) = 0, we have E(X
(n)
1 ) = −E[S11{ν0>rn}]

P{ν0≤rn} . Since P{ν0 > rn} ≤ r
−δ4
n for some δ4 > 0 and all sufficiently

large n, and since S1 has some finite exponential moments, the second condition in (2.11), E(X
(n)
1 ) = o( an

n
), is also

satisfied (regardless of the value of the sequence an → ∞) in view of the Cauchy–Schwarz inequality. Moreover,
E(X

(n)
1 ) → 0, which yields Var(X(n)

1 ) → E(S2
1) − 0 = σ 2: the third and last condition in (2.11) is verified.
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We are therefore entitled to apply (2.13): taking g1(t) := θt − λ and g2(t) := θt , we see that for any λ1 ∈ (0, λ)

and all sufficiently large n,

�n ≥ 1

2
eθ1n

1/3
exp

(
−π2σ 2

2λ2
1

n1/3
)

,

which implies, for all sufficiently large n,

�
(
θn−2/3, n

)≥ (1/2) exp[(θ1 − π2σ 2/(2λ2
1))n

1/3]
1 + (rn − 1)

∑n
j=1 hj,n

. (4.10)

To estimate
∑n

j=1 hj,n, we observe that

hj,n = sup
u∈Ij,n

E
(
eSn−j 1{Si∈[θ(i+j)/n2/3−λn1/3−u,θ(i+j)/n2/3−u],∀0≤i≤n−j}

)
= sup

v∈[0,λn1/3]
E
(
eSn−j 1{Si∈[θi/n2/3−λn1/3+v,θi/n2/3+v],∀0≤i≤n−j}

)
≤ eθ(n−j)n−2/3+λn1/3

sup
v∈[0,λn1/3]

P
{

θi

n2/3
− λn1/3 + v ≤ Si ≤ θi

n2/3
+ v,∀0 ≤ i ≤ n − j

}
.

We now use the same trick as in the proof of the upper bound in Theorem 1.2 by sending n to infinity along a
subsequence. Fix an integer N ≥ 1. Let n := Nk, with k ≥ 1. For any j ∈ [(� − 1)k + 1, �k] ∩ Z (with 1 ≤ � ≤ N ), we
have

hj,n ≤ eθ(N−�+1)kn−2/3+λn1/3
sup

v∈[0,λn1/3]
P
{
v − λn1/3 ≤ Si − θi

n2/3
≤ v,∀i ≤ (N − �)k

}
.

Unfortunately, the interval [0, λn1/3] in supv∈[0,λn1/3] P{· · ·} is very large, so we split it into smaller ones of type

[ (m−1)λn1/3

N
, mλn1/3

N
] (for 1 ≤ m ≤ N ), to see that the supv∈[0,λn1/3] P{· · ·} expression is

≤ max
1≤m≤N

P
{

(m − 1)λn1/3

N
− λn1/3 ≤ Si − θi

n2/3
≤ mλn1/3

N
,∀i ≤ (N − �)k

}
= max

1≤m≤N
P
{
− (N − m + 1)λ

N2/3
≤ Si

k1/3
− θ

N2/3

i

k
≤ mλ

N2/3
,∀i ≤ (N − �)k

}
.

We are now entitled to apply (2.12) to n := (N − �)k, g1(t) := θ

(N−�)1/3N2/3 t − (N−m+1)λ

(N−�)1/3N2/3 and g2(t) :=
θ

(N−�)1/3N2/3 t + mλ

(N−�)1/3N2/3 , to see that for any 1 ≤ � ≤ N and uniformly in j ∈ [(� − 1)k + 1, �k] ∩ Z (and in

j = 0, which formally corresponds to � = 0),

lim sup
k→∞

1

N1/3k1/3
loghj,Nk ≤ θ(N − � + 1)

N
+ λ − π2σ 2

2

(N − �)N

(N + 1)2λ2
,

which is bounded by θ(N+1)
N

+ λ − π2σ 2

2
N2

(N+1)2λ2 (recalling that θ > π2σ 2

2λ2 ). As a consequence,

lim sup
k→∞

1

N1/3k1/3
log

n∑
j=0

hj,Nk ≤ θ(N + 1)

N
+ λ − π2σ 2

2

N2

(N + 1)2λ2
=: c(θ,N,λ).

Going back to (4.10), we get

lim inf
k→∞

log�(θN−2/3k−2/3,Nk)

N1/3k1/3
≥ θ1 − π2σ 2

2λ2
1

− c(θ,N,λ).
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By the monotonicity of n 	→ �(θn−2/3, n), we obtain:

lim inf
n→∞

log�(θn−2/3, n)

n1/3
≥ θ1 − π2σ 2

2λ2
1

− c(θ,N,λ).

Sending N → ∞, θ1 → θ , λ → πσ

(2θ)1/2 and λ1 → πσ

(2θ)1/2 (in this order) completes the proof of Lemma 4.6. �

We now have all the ingredients for the proof of the lower bound in Theorem 1.2.

Proof of Theorem 1.2 (The lower bound). Fix constants 0 < α < 1 and b > max{ M
1−α

,
(3πσ)2

α(logϑ)2 }. Let n > 1. Let

ε = ε(n) := b

n2/3
, L = L(n) := n − ⌊n1/3⌋.

Then (1 − α)εL ≥ M(n − L) for all sufficiently large n, say6 n ≥ n0.
Consider the moment generating function of the reproduction distribution in the Galton–Watson tree Gn,ε :

f (s) := E
(
s#Gn,ε

)
, s ∈ [0,1].

It is well known that qn,ε , the extinction probability of Gn,ε , satisfies qn,ε = f (qn,ε). Therefore, for any 0 < r <

min{qn,ε,
1
16 },

qn,ε = f (0) +
∫ qn,ε

0
f ′(s)ds = f (0) +

∫ qn,ε−r

0
f ′(s)ds +

∫ qn,ε

qn,ε−r

f ′(s)ds.

Since s 	→ f ′(s) is non-decreasing on [0,1], we have
∫ qn,ε−r

0 f ′(s)ds ≤ f ′(1 − r). On the other hand, since f ′(s) ≤
f ′(qn,ε) ≤ 1 for s ∈ [0, qn,ε], we have

∫ qn,ε

qn,ε−r
f ′(s)ds ≤ r . Therefore,

qn,ε ≤ f (0) + f ′(1 − r) + r.

Of course, f (0) = P{Gn,ε = ∅}, whereas f ′(1−r) = E[(#Gn,ε)(1−r)#Gn,ε−1], which is bounded by 1
1−r

E[(#Gn,ε)×
e−r#Gn,ε ] (using the elementary inequality 1 − u ≤ e−u for u ≥ 0). This leads to (recalling that r < 1

16 < 1
2 ):

1 − qn,ε ≥ P{Gn,ε �= ∅} − 2E
[
(#Gn,ε)e

−r#Gn,ε
]− r.

Since u 	→ ue−ru is decreasing on [ 1
r
,∞), we see that E[(#Gn,ε)e−r#Gn,ε ] is bounded by E[(#Gn,ε)e−r#Gn,ε ×

1{#Gn,ε≤r−2}] + r−2e−1/r ≤ r−2P{1 ≤ #Gn,ε ≤ r−2} + r−2e−1/r . Accordingly,

1 − qn,ε ≥ P
{
Gn,ε �= ∅

}− 2

r2
P
{
1 ≤ #Gn,ε ≤ r−2}− 2e−1/r

r2
− r

≥ 1

2
�(αε,n) − 2

r2
P
{
1 ≤ #Gn,ε ≤ r−2}− 2r,

the last inequality following from Lemma 4.3 and the fact that sup{0<r≤ 1
16 }

1
r3 e−1/r < 1

2 .

We choose r := 1
16�(αε,n). [Since �(ε) ≥ 1 − qn,ε , whereas limε→0 �(ε) = 0 (proved in Section 3), we have

qn,ε → 1 for n → ∞, and thus the requirement 0 < r < min{qn,ε,
1
16 } is satisfied for all sufficiently large n.]

6Without further mention, the value of n0 can change from line to line when other conditions are to be satisfied.
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By Lemma 4.6, r−2 ≤ ϑn−L for all n ≥ n0 (because 2πσ

(αb)1/2 < logϑ by our choice of b). Therefore, an application

of Lemma 4.4 tells us that for n ≥ n0, P{1 ≤ #Gn,ε ≤ r−2} ≤ 1
κϑn−L , which, by Lemma 4.4 again, is bounded by r3

(because 3πσ

(αb)1/2 < logϑ ). Consequently, for all n ≥ n0,

1 − qn,ε ≥ 1

2
�(αε,n) − 2r − 2r = 1

4
�(αε,n).

Recall that �(ε) ≥ 1 − qn,ε . Therefore,

lim inf
n→∞

1

n1/3
log�

(
b

n2/3

)
≥ − πσ

(2αb)1/2
.

Since ε 	→ �(ε) is non-increasing, we obtain:

lim inf
ε→0

ε1/2 log�(ε) ≥ − πσ

(2α)1/2
.

Sending α → 1 yields (4.2), and thus proves the lower bound in Theorem 1.2. �

Appendix: Proof of Lemma 2.1

We write S
(n)
j :=∑j

i=1 X
(n)
i (for 1 ≤ j ≤ n) and S

(n)
0 := 0. We need to prove the lower bound in (2.13), and the upper

bound in (2.12).

Lower bound in (2.13)

We want to prove that for any b > 0,

lim inf
n→∞

a2
n

n
log P

{
En,

S
(n)
n

an

≥ g2(1) − b

}
≥ −π2σ 2

2

∫ 1

0

dt

[g2(t) − g1(t)]2
.

Let g : [0,1] → R be a continuous function such that g1(t) < g(t) < g2(t) for all t ∈ [0,1]. It suffices to prove the
lower bound in (2.13) when b > 0 is sufficiently small; so we assume, without loss of generality, that g(1) ≥ g2(1)−b.

Let δ > 0 be such that

g(t) − g1(t) > 3δ, g2(t) − g(t) > 9δ, ∀t ∈ [0,1]. (A.1)

Let A be a sufficiently large integer such that

sup
0≤s≤t≤1:t−s≤2/A

(∣∣g1(t) − g1(s)
∣∣+ ∣∣g(t) − g(s)

∣∣+ ∣∣g2(t) − g2(s)
∣∣)≤ δ. (A.2)

Let rn := �Aa2
n�, N = N(n) := � n

rn
�. Let mN := n and mk := krn for 0 ≤ k ≤ N − 1.

Since g(1) ≥ g2(1) − b, we have, by definition,

P
{
En,

S
(n)
n

an

≥ g2(1) − b

}
≥ P

(
N⋂

k=1

{
g1

(
i

n

)
≤ S

(n)
i

an

≤ g2

(
i

n

)
,∀i ∈ (mk−1,mk] ∩ Z,

g

(
mk

n

)
≤ S

(n)
mk

an

≤ g

(
mk

n

)
+ 6δ

})
.
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Applying the Markov property successively at times mN−1, mN−2, . . . ,m1, we obtain, by writing yk := g(
mk

n
) for

1 ≤ k ≤ N ,

P
{
En,

S
(n)
n

an

≥ g2(1) − b

}
≥ p1,n(0) ×

N∏
k=2

inf
y∈[yk−1,yk−1+6δ]pk,n(y),

where7 for 1 ≤ k ≤ N and y ∈ R,

pk,n(y) := P
{
αi,k,n ≤ S

(n)
i

an

+ y ≤ βi,k,n,∀i ≤ �k;yk ≤ S
(n)
�k

an

+ y ≤ yk + 6δ

}
,

αi,k,n := g1

(
i + mk−1

n

)
, βi,k,n := g2

(
i + mk−1

n

)
, �k := mk − mk−1.

Uniform continuity of g guarantees that when n is sufficiently large, |yk − yk−1| ≤ δ (for all 1 ≤ k ≤ N , with
y0 := 0). In the rest of the proof, we will always assume that n is sufficiently large, say n ≥ n0, with n0 depending on
A and δ.

We need to bound p1,n(0) × ∏N
k=2 infy∈[yk−1,yk−1+6δ] pk,n(y) from below. Let us first get rid of the infimum

infy∈[yk−1,yk−1+6δ], which is the minimum between infy∈[yk−1,yk−1+3δ] and infy∈[yk−1+3δ,yk−1+6δ]:

inf
y∈[yk−1,yk−1+6δ]pk,n(y) ≥ min

{
p

(1)
k,n,p

(2)
k,n

}
, n ≥ n0,2 ≤ k ≤ N,

where, for 1 ≤ k ≤ N ,

p
(1)
k,n := P

{
αi,k,n − yk−1 ≤ S

(n)
i

an

≤ βi,k,n − yk−1 − 3δ,∀i ≤ �k; δ ≤ S
(n)
�k

an

≤ 2δ

}
,

p
(2)
k,n := P

{
αi,k,n − yk−1 − 3δ ≤ S

(n)
i

an

≤ βi,k,n − yk−1 − 6δ,∀i ≤ �k;−2δ ≤ S
(n)
�k

an

≤ −δ

}
.

And, of course, p1,n(0) ≥ p
(1)
1,n ≥ min{p(1)

1,n,p
(2)
1,n}. We arrive at the following estimate:

P
{
En,

S
(n)
n

an

≥ g2(1) − b

}
≥

N∏
k=1

min
{
p

(1)
k,n,p

(2)
k,n

}= min
{
p

(1)
N,n,p

(2)
N,n

}N−1∏
k=1

min
{
p

(1)
k,n,p

(2)
k,n

}
.

First, we bound p
(1)
k,n and p

(2)
k,n from below, for 1 ≤ k ≤ N − 1 (in which case �k = rn). We split the indices k ∈

(0,N − 1] ∩ Z into A blocks, by means of (0,N − 1] ∩ Z =⋃A
�=1 J�, where J� = J�(n) := (

(�−1)(N−1)
A

,
�(N−1)

A
] ∩ Z.

For indices k lying in a same block J�, we use a common lower bound for min{p(1)
k,n,p

(2)
k,n} as follows: assuming k ∈ J�,

we have, by (A.2), αi,k,n ≤ g1(
�
A

)+ δ, βi,k,n ≥ g2(
�
A

)− δ (for n ≥ n0 and i ≤ rn), and |yk−1 −g( �
A

)| ≤ δ, which leads

to: p
(1)
k,n ≥ q

(1)
�,n, and p

(2)
k,n ≥ q

(2)
�,n (for n ≥ n0, 1 ≤ � ≤ A and k ∈ J�), where (recalling that �k = rn for 1 ≤ k ≤ N − 1)

q
(1)
�,n := P

{
g1

(
�

A

)
− g

(
�

A

)
+ 2δ ≤ S

(n)
i

an

≤ g2

(
�

A

)
− g

(
�

A

)
− 5δ,∀i ≤ rn; δ ≤ S

(n)
rn

an

≤ 2δ

}
,

q
(2)
�,n := P

{
g1

(
�

A

)
− g

(
�

A

)
− δ ≤ S

(n)
i

an

≤ g2

(
�

A

)
− g

(
�

A

)
− 8δ,∀i ≤ rn;−2δ ≤ S

(n)
rn

an

≤ −δ

}
.

7For notational simplification, we write ∀i ≤ �k instead of ∀i ∈ (0,�k] ∩ Z.
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Therefore,

P
{
En,

S
(n)
n

an

≥ g2(1) − b

}
≥ min

{
p

(1)
N,n,p

(2)
N,n

} A∏
�=1

(
min

{
q

(1)
�,n, q

(2)
�,n

})#J� .

Since #J� ≤ N
A

≤ n
rnA

≤ n

(Aa2
n−1)A

, this yields

P
{
En,

S
(n)
n

an

≥ g2(1) − b

}
≥ min

{
p

(1)
N,n,p

(2)
N,n

} A∏
�=1

(
min

{
q

(1)
�,n, q

(2)
�,n

})n/[(Aa2
n−1)A]

. (A.3)

It is well known that the linear interpolation function t (∈ [0,1]) → 1
an

{S(n)
�rnt� + (rnt − �rnt�)X(n)

�rnt�+1} converges

in law to (σ
√

AWt,0 ≤ t ≤ 1), where W denotes a standard one-dimensional Brownian motion.8 So, if we write

f (a, b, c, d) := P
{
a ≤ Wt ≤ b,∀t ∈ [0,1]; c ≤ W1 ≤ d

}
for a < 0 < b and a ≤ c < d ≤ b, then for any 1 ≤ � ≤ A,

lim
n→∞q

(1)
�,n = f

(
g1(�/A) − g(�/A) + 2δ

σA1/2
,
g2(�/A) − g(�/A) − 5δ

σA1/2
,

δ

σA1/2
,

2δ

σA1/2

)
,

lim
n→∞q

(2)
�,n = f

(
g1(�/A) − g(�/A) − δ

σA1/2
,
g2(�/A) − g(�/A) − 8δ

σA1/2
,− 2δ

σA1/2
,− δ

σA1/2

)
.

[Thanks to (A.1), the limits are (strictly) positive.] The function f is explicitly known (see for example, Itô and
McKean [10], p. 31):

f (a, b, c, d) =
∫ d

c

2

b − a

∞∑
n=1

exp

(
− n2π2

2(b − a)2

)
sin

(
nπ|a|
b − a

)
sin

(
nπ(z − a)

b − a

)
dz, (A.4)

from which it is easily seen that for all A sufficiently large, say A ≥ A0 (A0 depending on δ), uniformly in 1 ≤ � ≤ A,

lim
n→∞q

(1)
�,n ≥ exp

(
−σ 2π2

2

(1 + δ)A

[g2(�/A) − g1(�/A) − 7δ]2

)
,

lim
n→∞q

(2)
�,n ≥ exp

(
−σ 2π2

2

(1 + δ)A

[g2(�/A) − g1(�/A) − 7δ]2

)
.

Similarly, we have a lower bound for min{p(1)
N,n,p

(2)
N,n}, the only difference being that �N is not exactly rn but lies

somewhere between rn and 2rn. This time, we only need a rough estimate: there exists a constant C > 0 such that

lim inf
n→∞ min

{
p

(1)
N,n,p

(2)
N,n

}≥ C.

In view of (A.3), we get that, for all A sufficiently large (how large depending on δ),

lim inf
n→∞

a2
n

n
log P

{
En,

S
(n)
n

an

≥ g2(1) − b

}
≥ −σ 2π2

2

1

A

A∑
�=1

1 + δ

[g2(�/A) − g1(�/A) − 7δ]2

≥ −σ 2π2

2
(1 + 2δ)

∫ 1

0

dt

[g2(t) − g1(t) − 7δ]2
.

Letting A → ∞ and δ → 0 (in this order), we obtain the desired lower bound in (2.13).

8In fact, finite-dimensional convergence is easily obtained by verifying Lindeberg’s condition in the central limit theorem, whereas tightness is
checked using a standard argument, see for example Billingsley [4].
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Upper bound in (2.12)

The upper bound in (2.12) is needed in this paper only in the form of the original result of Mogulskii [18] (i.e., for
sequences, instead of arrays, of random variables). We include its proof for the sake of completeness. It is similar to,
and easier than, the proof of the lower bound in (2.13).

Let g be as before. Let δ > 0 and A > 0 satisfy again (A.1) and (A.2), respectively. Let again rn := �Aa2
n�,

N = N(n) := � n
rrn

�. Let mk := krn for 0 ≤ k ≤ N − 1, but we are not interested in mN any more. Write again

αi,k,n := g1(
i+mk−1

n
) and βi,k,n := g2(

i+mk−1
n

).
By the Markov property,

P(En) ≤
N−1∏
k=2

sup
y∈[g1(

mk−1
n

),g2(
mk−1

n
)]

p̃k,n(y),

where

p̃k,n(y) := P
{
αi,k,n ≤ S

(n)
i

an

+ y ≤ βi,k,n,∀0 < i ≤ rn

}
.

Since g1 and g2 are bounded, we know that g1(
mk−1

n
) and g2(

mk−1
n

) lie in a compact interval, say [−Kδ,Kδ] (K being
an integer depending on δ). Therefore

sup
y∈[g1(mk−1/n),g2(mk−1/n)]

p̃k,n(y) ≤ max
j∈[−K,K−1]∩Z

sup
y∈[jδ,(j+1)δ]

p̃k,n(y).

As in the proof of the lower bound in (2.13), we cut the interval (1,N − 1] ∩ Z into A blocks, by means of
(1,N − 1] ∩ Z =⋃A

�=1 J�, where J� = J�(n) := (
(�−1)(N−2)

A
+ 1,

�(N−2)
A

+ 1] ∩ Z. For k ∈ J�, we have, by (A.2),
αi,k,n ≥ g1(

�
A

) − δ and βi,k,n ≤ g2(
�
A

) + δ, which leads to: supy∈[jδ,(j+1)δ] p̃k,n(y) ≤ q̃�,n(j), where

q̃�,n(j) := P
{
g1

(
�

A

)
− (j + 2)δ ≤ S

(n)
i

an

≤ g2

(
�

A

)
− (j − 1)δ,∀i ≤ rn

}
.

Therefore,

P(En) ≤
A∏

�=1

[
max

j∈[−K,K)∩Z

q̃�,n(j)
]#J�

.

We have #J� ≥ N−2
A

− 1 ≥ n

A2a2
n

− 3
A

− 1. On the other hand, for each pair (�, j), q̃�,n(j) converges (as n → ∞)

to P{g1(
�
A

) − (j + 2)δ ≤ σA1/2Wt ≤ g1(
�
A

) − (j − 1)δ,∀t ∈ [0,1]}, which, in view of (A.4), is bounded by

exp{−π2σ 2

2
(1−δ)A

[g2(�/A)−g1(�/A)−3δ]2 } for all sufficiently large A and uniformly in (�, j). Accordingly,

lim sup
n→∞

a2
n

n
log P(En) ≤ −π2σ 2

2

1

A

A∑
�=1

1 − δ

[g2(�/A) − g1(�/A) − 3δ]2

≤ −π2σ 2

2
(1 − 2δ)

∫ 1

0

dt

[g2(t) − g1(t) − 3δ]2

for all sufficiently large A. Since δ can be as close to 0 as possible, this yields the upper bound in (2.12).
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