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LARGE DEVIATIONS FOR RANDOM PROJECTIONS OF
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Technische Universität München∗ and Brown University†

Let p ∈ [1,∞]. Consider the projection of a uniform random vector from
a suitably normalized �p ball in R

n onto an independent random vector from
the unit sphere. We show that sequences of such random projections, when
suitably normalized, satisfy a large deviation principle (LDP) as the dimen-
sion n goes to∞, which can be viewed as an annealed LDP. We also establish
a quenched LDP (conditioned on a fixed sequence of projection directions)
and show that for p ∈ (1,∞] (but not for p = 1), the corresponding rate func-
tion is “universal,” in the sense that it coincides for “almost every” sequence
of projection directions. We also analyze some exceptional sequences of di-
rections in the “measure zero” set, including the sequence of directions corre-
sponding to the classical Cramér’s theorem, and show that those sequences of
directions yield LDPs with rate functions that are distinct from the universal
rate function of the quenched LDP. Lastly, we identify a variational formula
that relates the annealed and quenched LDPs, and analyze the minimizer of
this variational formula. These large deviation results complement the cen-
tral limit theorem for convex sets, specialized to the case of sequences of �p

balls.
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1. Introduction. Consider the projection of a random n-dimensional vector
X(n) onto some lower-dimensional subspace. Our broad goal is to understand and
analyze distributional properties of the projections of high-dimensional random
vectors (i.e., large n), given certain natural assumptions on the law of X(n). In this
paper, we focus on projections onto one-dimensional subspaces, and we write the
projection of x ∈ R

n onto the direction v ∈ S
n−1 (the unit sphere in R

n), to refer
to 〈x, v〉n .=∑n

i=1 xivi ∈ R; this is for the sake of brevity, since to be precise, the
preceding quantity is the scalar component of the projected vector 〈x, v〉nv ∈R

n.
One prior result in this vein is the central limit theorem (CLT) for projections

of convex bodies: if X(n) is sampled from a log-concave measure (e.g., the uni-
form measure on a convex body) that is also isotropic (i.e., having mean zero and
identity covariance), then for sufficiently large n, and “most” θ(n) ∈ S

n−1, the pro-
jection of X(n) onto θ(n) satisfies 〈X(n), θ(n)〉n ≈ N(0,1), the standard Gaussian
distribution, in some suitable sense. This result is established via a concentration
estimate in [24, 34], drawing from a classical idea of [20, 55] and a conjecture
stated in [2, 13]. Similar central limit results hold for directions of projection �(n)

drawn from the unique rotationally invariant measure on S
n−1, and for projections

onto multidimensional subspaces [34, 38, 39]. In this class of results, the source
of the Gaussian approximation may be attributed to geometric properties of the
original measure.



LDPs FOR RANDOM PROJECTIONS 4421

It is natural to ask if existing CLT results for typical projections of high-
dimensional random vectors from a convex set can be complemented by analyzing
deviations beyond the central limit fluctuation scale. In this work, we initiate such
an analysis by investigating large deviation principles (LDPs) for sequences of
random one-dimensional projections of a certain class of convex bodies, the so-
called �p balls (see Definition 1.1 for a precise definition of an LDP).

One of our motivations for investigating LDPs is to understand which aspects
of random projections can be used to distinguish between different convex bodies.
From a central limit perspective, convex bodies cannot be distinguished by their
random projections; specifically, given any isotropic convex body in high dimen-
sion, its typical random projections will be approximately standard Gaussian. In
fact, Gaussian asymptotics arise not only at the “central limit” scale, but also across
the “moderate deviation” scale [53]. These universal results are quite powerful, but
from another point of view, it is also of interest to precisely identify how a random
projection can encode distinct distributional information about the original random
vector. Our results demonstrate that the large deviation behavior of a random pro-
jection of a convex body depends on the geometry of the underlying convex body.
In particular, we demonstrate sharply different large deviation behavior for random
projections of �p balls for different values of p ∈ [1,∞). That is, compare The-
orem 2.2 for p ∈ [2,∞) against Theorem 2.3 for p ∈ [1,2) (which we comment
on further in Remark 2.4), and also compare Theorem 2.5 against Theorem 2.6,
where the anomalous LDP is for p = 1, the only �p ball for p ∈ [1,∞) with a
nonsmooth “corner.”

Unlike for central limit theorems, where one can quantify the closeness of a ran-
dom vector in a fixed high-dimensional space R

n to the n-dimensional Gaussian
using various metrics, the statement of an LDP for random projections requires an
infinite sequence of convex bodies defined for all dimensions n ∈N. This motivates
our analysis of the uniform measures on �p balls, which offer a natural, fundamen-
tal, yet nontrivial (in particular, nonproduct) example of a sequence of isotropic,
log-concave measures. Specifically, we address the following question:

Do LDPs hold for (suitably normalized) random projections of vectors
uniformly distributed on the �p ball of Rn? If so, then at which speed
and with what rate function? Moreover, how do these LDPs vary with
p ∈ [1,∞)?

These questions have the flavor of the study of LDPs in random environments
(see, e.g., [14]), where in our case the random “environment” is governed by the
random sequence of projection directions. In this setting, it is natural to consider
both the case when one conditions on a fixed sequence of random projection direc-
tions (the so-called quenched case) and also when one incorporates the randomness
of the projection directions (the so-called annealed case).
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Our main results on this question are the following:

Theorems 2.2 and 2.3: annealed LDPs, for p ∈ [2,∞) and p ∈ [1,2), respec-
tively.

Theorems 2.5 and 2.6: quenched LDPs, for p ∈ (1,∞) and p = 1, respectively.
Moreover, for p ∈ (1,∞), but not for p = 1, this LDP
holds with a “universal” rate function that coincides for
“almost every” sequence of directions.

Theorem 2.7: for p ∈ (2,∞), a variational formula that relates the an-
nealed and quenched rate functions via the entropy of an
underlying measure.

Theorem 2.9: a proof of the observation that the particular sequence of
directions (ι(n))n∈N defined in (1.1) below (which corre-
sponds to Cramér’s theorem in the case each X(n) is dis-
tributed according to a product measure) leads to an “atyp-
ical” large deviation rate function.

Observe that in the preceding summary of our main results (stated precisely in
Section 2 and proved in Sections 4–7), we only discuss p <∞, and omit the case
p =∞. However, all of our results have corresponding versions when the random
vectors X(n) are distributed according to general product measures satisfying cer-
tain tail conditions (including the uniform measure on the �∞ ball), in fact with
simpler proofs than in the nonproduct (p <∞) case. We compile all of the cor-
responding statements for product measures in Section 8, where we also provide
brief sketches of the proofs.

We make the distinction between p <∞ and p =∞ because a secondary mo-
tivation for our work is to investigate to what extent large deviation results extend
beyond the classical setting of sums of independent and identically distributed
(i.i.d.) random variables to the more general setting of generic projections of log-
concave measures. More precisely, let X(n,p) be distributed uniformly on the unit
�p ball of Rn. Consider the direction ι(n) ∈ S

n−1 defined by

(1.1) ι(n) .= 1√
n
(1,1, . . . ,1

n times

) ∈ S
n−1.

The classical Cramér’s theorem [15] yields an LDP for the sequence of suit-
ably normalized projections n−1/2〈X(n,∞), ι(n)〉, n ∈ N. In contrast, our work es-
tablishes an LDP for n1/p−1/2〈X(n,p), θ(n)〉, n ∈ N, for p ∈ [1,∞) and general
θ(n) ∈ S

n−1. Figure 1 illustrates our setup.
Note that in the central limit setting, projections onto general θ(n) ∈ S

n−1 ex-
hibit the same properties (Gaussian fluctuations) as projections onto the specific
direction ι(n) ∈ S

n−1; in the large deviation setting, Theorem 2.9 indicates that this
is not the case. We elaborate on this in Section 2.4.
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FIG. 1. Projection of X(n) onto a vector in S
n−1.

Lastly, we are also interested in LDPs because they can yield not only the
asymptotic likelihood of a rare event, but also insight into how a rare event oc-
curs. In particular, large deviation analysis typically yields variational formulas
whose minimizer(s) admit a probabilistic interpretation. This paper initiates an
investigation of a particular kind of “geometric” rare event (large value of a pro-
jection), and we establish an associated variational formula in Theorem 2.7. We
also provide some analysis of a simpler variational formula (for the case p =∞)
in Section 9.

It would be interesting to extend this large deviation analysis to more general
sequences of probability measures beyond the uniform measures on �p balls. An
even broader goal is to determine precisely which geometric aspects of the under-
lying probability measures affect the large deviation behavior of random projec-
tions. We defer these questions for future work.

The outline of this paper is as follows. In the remainder of Section 1, we review
related work and set up the preliminaries for our own results. In Section 2, we pre-
cisely state our main results and provide explicit formulas for the case of p = 2. In
Section 3, we appeal to certain probabilistic representations of the �p balls which
simplify our analysis. Sections 4–7 contain the proofs of our results. In Section 8,
we discuss analogous results for product measures. Lastly, in Section 9, we ana-
lyze the variational problem established in Theorem 2.7. A list of notation can be
found online in the preliminary version on the arXiv [26].

1.1. Relation to prior work. Random projections of high-dimensional random
vectors arise in a variety of applications. In the statistics and machine learning liter-
ature, projections onto random lower-dimensional subspaces are employed for the
purposes of dimensionality reduction [11, 36], clustering [23], regression [37] and
topic discovery [21] in the setting of high-dimensional data. The main idea is that
a practitioner would like to restrict statistical analysis to a low-dimensional space,
but it may be computationally expensive to try to select an “optimal” subspace
(using, e.g., Principal Component Analysis), and that under certain assumptions,
selecting a random subspace may perform “nearly” as well.
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On a more theoretical side, there is significant interest in �p balls due to their
central role in convex geometry. As a small fraction of the extensive literature,
we note results on sections [40], hyperplanes [8], extremal slabs [7], probabilistic
representations [6] and cone/surface measures [33, 42, 43]. The �p balls also arise
in computer science in the context of sketches and low-distortion embeddings [30].
An LDP for projections of �p balls onto canonical basis directions can be found in
[5], but our work provides the first LDPs for projections onto general θ(n) ∈ S

n−1

and random �(n).
In Section 3, we show how our LDPs are related to LDPs for weighted sums of

certain i.i.d. random variables. For a partial survey of large deviation results in the
setting of deterministically weighted sums of i.i.d. random variables, we refer to
Section 2.1 of [27], which details the arguments for quenched LDPs for projections
of product measures.

Also in Section 3, it becomes apparent that our LDP is related to LDPs for self-
normalized sums, as developed in [50]. A similar question as our quenched LDP
(Theorem 2.5) in the case p = 2 can be found in [19] (see Examples 5 and 6 of
Section 3.3 therein), but without specifying the form of the rate function, which
can be found in Section 2.5. We discuss these connections to self-normalized sums
in greater detail in Remark 7.1.

1.2. Setup and notation. Let A .=∏
n∈NR

n denote the space of infinite trian-
gular arrays. That is, z ∈A if z= (z(1), z(2), . . . ) where z(n) ∈R

n for all n ∈N.
We assume that all random variables are defined on a common probability space

(�,F,P), and let E denote the corresponding expectation. Let X be some measur-
able space, and let P(X ) be the space of probability measures on X . For a random
variable ξ : �→ X , and a measure μ ∈ P(X ), we write ξ ∼ μ if the law of ξ is
μ; that is, if P ◦ ξ−1 = μ.

For p ∈ [1,∞), n ∈ N, and x ∈ R
n, let ‖x‖n,p

.= (
∑n

i=1 |xi |p)1/p denote the
�p norm on R

n. For p =∞, let ‖x‖n,∞ .= supi∈{1,...,n} |xi | denote the �∞ norm
on R

n. Let Bn,p be the unit �p ball in R
n:

Bn,p
.= {

x ∈R
n : ‖x‖n,p ≤ 1

}
, p ∈ [1,∞],

and let X(n,p) = (X
(n,p)
1 , . . . ,X

(n,p)
n ) be a random vector that is distributed accord-

ing to the uniform probability measure on Bn,p . Whenever we define a probability
measure on a subset A⊂R

n, we mean a probability measure on the Borel subsets
of A.

Let Sn−1 denote the unit sphere in R
n:

S
n−1 .= {

x ∈R
n : x2

1 + x2
2 + · · · + x2

n = 1
}= {

x ∈R
n : ‖x‖n,2 = 1

}
.

We write σn for the unique rotationally invariant probability measure on S
n−1. For

n ∈N, let �(n) denote a random vector that is distributed according to the uniform
measure σn on S

n−1, independent of X(n,p).
For background on large deviations, we refer to [18]. In particular, recall the

definition of a large deviation principle.
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DEFINITION 1.1. Let 
 be a topological space. A sequence of 
-valued ran-
dom variables (ξn)n∈N is said to satisfy a large deviation principle (LDP) with
speed s :N→R and a rate function I :
→[0,∞] if I is lower semicontinuous,
and for all Borel measurable subsets � ⊂
,

− inf
x∈�◦

I (x)≤ lim inf
n→∞

1

s(n)
logP

(
ξn ∈ �◦

)
≤ lim sup

n→∞
1

s(n)
logP(ξn ∈ �̄)

≤− inf
x∈�̄

I (x),

where �◦ and �̄ denote the interior and closure of �, respectively. Furthermore,
I is said to be a good rate function if it has compact level sets. When no speed is
explicitly stated, we adopt the convention that the default speed is s(n)= n.

In the large deviation setting, we are frequently interested in geometric proper-
ties of an LDP rate function, such as convexity, or the following weakened form of
convexity.

DEFINITION 1.2. A function f : R→ (−∞,+∞] is said to be quasiconvex
if its level sets {x ∈R : f (x)≤ c} are convex for all c ∈R.

Practically, this definition is useful because quasiconvex functions have an
equivalent characterization: f is quasiconvex if and only if there exists some
x0 ∈ R such that f is nonincreasing for x < x0 and nondecreasing for x > x0.
A general review of quasiconvex functions can be found, for example, in Sec-
tion 3.4 of [12]. As a further link to convexity, we recall the following transform
which arises in Cramér’s theorem, and will also play a role in our results.

DEFINITION 1.3. Given a function � : Rn → (−∞,+∞], the Legendre
transform of � is the function �∗ :Rn→ (−∞,+∞] defined by

�∗(τ )
.= sup

t∈Rn

{〈t, τ 〉n −�(t)
}
, τ ∈R

n.

We also define a class of measures that are intimately tied to the �p balls, as
we will demonstrate in Section 3. For p ∈ [1,∞), let μp ∈ P(R) have density fp ,
where

(1.2) fp(y)
.= 1

2p1/p�(1+ 1
p
)
e−|y|p/p, y ∈R.

This is the density of the generalized normal distribution (also known as the expo-
nential power distribution) with location 0, scale p1/p , and shape p. When p = 2,
μ2 corresponds to the standard Gaussian distribution.
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2. Main results. In Sections 2.1–2.5, we precisely state our main results.

2.1. Annealed LDP. Let W(n,p) be the normalized (scalar) projection of X(n,p)

onto an independent random direction �(n), defined as

(2.1) W(n,p) .= n1/p

n1/2

〈
X(n,p),�(n)〉

n =
1

n

n∑
i=1

(
n1/pX

(n,p)
i

)(
n1/2�

(n)
i

)
, n ∈N,

where for p =∞, we abide by the convention n1/∞ ≡ 1. Our first result establishes
an LDP for (W(n,p))n∈N.

REMARK 2.1. As Theorem 2.2 and Theorem 2.5 below show, the scaling
n(1/p)−(1/2) in (2.1)—and also later in (2.6)—turns out to be appropriate for large
deviation analysis. The heuristic reasoning behind this scaling is that the variance
of W(n,p) should be of “order 1/n” in order to prove nontrivial large deviation
principles. To this end, note that both n1/pX

(n,p)
i and n1/2�

(n)
i are typically of

order 1, since they are coordinates of points on n1/p
Bn,p and n1/2

S
n−1, respec-

tively. Thus, the sum over all i = 1, . . . , n is of order n, and upon multiplying by
1/n (which scales the variance by a factor of 1/n2), we find that W(n,p) is of the
appropriate scale.

For an alternative perspective, recall the corresponding central limit results
briefly discussed in Section 1. Note that n1/p is the scaling appropriate for cen-
tral limit fluctuations. To be precise, let cn,p be the isotropic constant (see, e.g.,
page 71 of [4] for a definition) for the law of n1/pX(n,p). A straightforward calcu-
lation shows that limn→∞ cn,p = [p1/p�(3/p)/�(1/p)]1/2, a numerical constant
depending on p. That is, the n1/p factor ensures that the isotropic constants of
n1/p

Bn,p are normalized to be at the same scale for all dimensions n ∈ N. From
this point of view, the scaling n(1/p)−(1/2) is natural for large deviations, as it is
just the CLT scaling multiplied by n−1/2.

For classical sums of i.i.d. random variables, Cramér’s theorem gives the LDP
rate function as the Legendre transform of the logarithmic moment generating
function (log mgf) of the common distribution. In our setting of random projec-
tions, certain analogs of the log mgf arise, which we now define. For p ∈ [2,∞),
let

(2.2) �p(t0, t1, t2)
.= log

∫
R

∫
R

et0z
2+t1zy+t2|y|pμ2(dz)μp(dy), t0, t1, t2 ∈R.

Note that �p(t0, t1, t2) <∞ if and only if t0 < 1
2 , t1 ∈R, t2 < 1

p
. The rate function

for the annealed LDP is defined in terms of the Legendre transforms of �p: for
w ∈R, let

(2.3) I
an
p (w)

.= inf
τ0>0,τ1∈R,τ2>0:
τ
−1/2
0 τ1τ

−1/p
2 =w

�∗p(τ0, τ1, τ2).
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THEOREM 2.2 (Annealed LDP, p ∈ [2,∞)). Let p ∈ [2,∞). The sequence
(W(n,p))n∈N satisfies an LDP with the quasiconvex, symmetric, good rate func-
tion I

an
p .

The proof of Theorem 2.2 is given in Section 4.1.
For p < 2, random projections display significantly different large deviation

behavior. For p ∈ [1,2), define

I
an
p (w)

.= 1

rp
|w|rp , w ∈R,(2.4)

rp
.= 2p

2+ p
.(2.5)

Note that rp < 1 for p < 2, so the following large deviation principle holds with a
speed nrp , slower than the speed n associated with the case p ≥ 2.

THEOREM 2.3 (Annealed LDP, p ∈ [1,2)). Let p ∈ [1,2). The sequence
(W(n,p))n∈N satisfies an LDP with speed nrp and the quasiconvex, symmetric, good
rate function I

an
p .

The proof of Theorem 2.3 is given in Section 4.2.

REMARK 2.4. Note that Theorem 2.2 and Theorem 2.3 reveal a sharp differ-
ence between the LDPs for p > 2 and p < 2. Due to the rotational invariance of the
law of �(n), a large deviation of 〈X(n,p),�(n)〉n depends crucially on a large de-
viation of the Euclidean norm of X(n,p). The difference between the cases p > 2
and p < 2 is a consequence of the geometry of the �p balls, highlighted in Fig-
ure 2, which portrays the scaled balls n1/p

Bn,p , with p = 1 in red, and p =∞ in
gray. For p > 2, the vectors in n1/p

Bn,p that attain maximal Euclidean norm are
the “corners” (±1,±1, . . . ,±1). Meanwhile, for p < 2, the vectors in n1/p

Bn,p

FIG. 2. Scaled �1 ball versus scaled �∞ ball.
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that attain maximal Euclidean norm are again “corners,” but this time the corners
are in canonical basis directions (±1,0, . . . ,0), (0,±1,0, . . . ,0), etc. In particu-
lar, this means that for p > 2, a large deviation of the Euclidean norm occurs due
to a combined large deviation of each coordinate. On the other hand, for p < 2, the
large deviation event is caused by the large deviation of a single coordinate. The
behavior in the p < 2 case is similar to the observation that for random walks with
heavy-tailed increments, a large deviation is caused by an extreme of the sam-
ple (see Section 4 of [41]), which is also referred to as the “principle of the big
jump” [25].

2.2. Quenched LDP. We now consider the case where we condition on a fixed
sequence of directions �(n) = θ(n), n ∈ N. Let S .=∏

n∈N S
n−1. Given a sequence

of projection directions θ = (θ(1), θ (2), . . . ) ∈ S, consider the sequence of random
variables W

(n,p)
θ , n ∈N, defined by

(2.6) W
(n,p)
θ

.= n1/p

n1/2

〈
X(n,p), θ(n)〉

n =
1

n

n∑
i=1

(
n1/pX

(n,p)
i

)(
n1/2θ

(n)
i

)
, n ∈N.

Observe that W
(n,p)
θ denotes the normalized (scalar) projection of X(n,p) onto a

particular direction θ(n), whereas W(n,p) of (2.1) denotes the normalized (scalar)
projection of X(n,p) onto an independent random direction �(n). The scaling
n(1/p)−(1/2) follows from the same rationale as in the annealed case, discussed
in Remark 2.1.

In the case of a fixed sequence of directions of projection θ ∈ S (or conditioning
on �= θ ), the corresponding analog of the log mgf is as follows. For p ∈ (1,∞),
ν ∈ P(R), define

�p(t1, t2)
.= log

(∫
R

et1y+t2|y|pμp(dy)

)
;(2.7)

�p,ν(t1, t2)
.=
∫
R

�p(t1u, t2)ν(du), t1, t2 ∈R.(2.8)

Note that �p,ν(t1, t2) <∞ for t2 < 1/p, and is equal to infinity, otherwise. We
define the associated rate function in terms of the Legendre transform of �p,ν : for
w ∈R, let

(2.9) I
qu
p,ν(w)

.= inf
τ1∈R,τ2>0:
τ1τ

−1/p
2 =w

�∗
p,ν(τ1, τ2).

Let πn : S→ S
n−1 be the coordinate map such that for θ ∈ S, we have πn(θ)=

θ(n). Let σ be any probability measure on (the Borel sets of) S such that for all
n ∈N,

(2.10) σ ◦ π−1
n = σn.
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For example, the product measure σ =⊗
n∈N σn satisfies (2.10). Our second result

establishes an LDP for (W
(n,p)
θ )n∈N which holds for σ -a.e. θ ∈ S.

THEOREM 2.5 [Quenched LDP, p ∈ (1,∞)]. Let p ∈ (1,∞). For σ -a.e.
θ ∈ S, the sequence (W

(n,p)
θ )n∈N satisfies an LDP with the quasiconvex, symmet-

ric, good rate function I
qu
p,μ2 .

The proof of Theorem 2.5 is given in Section 5.
Interestingly, note that almost every sequence of directions of projection yields

the same exponential rate of decay. That is, for σ -a.e. θ ∈ S, the rate function
I

qu
p,μ2 does not depend on the particular choice of θ ∈ S. This is not obvious at first

sight, because in principle, the rate function for (W
(n,p)
θ )n∈N should depend on the

particular choice of θ ∈ S. Note that the rate function is measurable with respect
to the tail sigma-algebra generated by the sequence (θ(1), θ (2), . . . ). Hence, if σ

were the product measure σ =⊗
n∈N σn, then the lack of dependence of Iqu

p,μ2 on
θ would follow from the Kolmogorov 0–1 law. However, our result holds for any
σ ∈ P(S) satisfying (2.10). We refer to Remark 3.3 of [27] for further comment.
The key is that the σ -a.e. asymptotic behavior of

√
nθ(n), which is relevant for

the proof of Theorem 2.5, depends only on the row-wise marginal condition on σ

specified by (2.10).
A natural question to ask is whether there exists a subset of S of measure zero

that displays “atypical” behavior; that is, for which an LDP still holds, but with a
rate function that is different from the universal quenched rate function I

qu
p,μ2 . We

address this question in Section 2.4, for p ∈ (1,∞).
On another note, for p = 2, we can strengthen Theorem 2.5 to hold for all θ ∈ S,

not just for σ -a.e. θ ∈ S. This and other unique aspects of the p = 2 case will be
explored further in Section 2.5.

The preceding discussion applies only to the case p ∈ (1,∞). For p = 1, the
integrated log mgf �1,μ2(t1, t2) is infinite if t1 �= 0, and the same techniques as in
the case p ∈ (1,∞) do not apply. Instead, for p = 1 and c > 0, define

(2.11) I
qu
1,c(w)

.= |w|
c

, w ∈R.

THEOREM 2.6 (Quenched LDP, p = 1). Fix θ ∈ S such that

(2.12) lim
n→∞

√
n

logn
max

1≤i≤n
θ

(n)
i = c.

Then (W
(n,1)
θ )n∈N satisfies an LDP with speed n/

√
logn and the good rate func-

tion I
qu
1,c.

The proof of Theorem 2.6 is given in Section 5.4. Note that unlike the “univer-
sal” rate function I

qu
p,μ2 of Theorem 2.5, which is the LDP rate function for σ -a.e.
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θ ∈ S and any σ satisfying (2.10), the quenched LDP for p = 1 (Theorem 2.6)
depends on the particular sequence θ ∈ S through the condition (2.12). We discuss
the condition (2.12) further in Remark 5.14.

2.3. Relationship between the annealed and quenched LDPs. Let mq denote
the qth absolute moment of a measure

(2.13) mq(ν)
.=
∫
R

|x|qν(dx), ν ∈ P(R).

Let H(·|·) denote the relative entropy between two measures; that is, for ν,μ ∈
P(R),

H(ν|μ)
.=
⎧⎪⎨⎪⎩
∫
R

log
(

dν

dμ

)
dν if ν� μ,

+∞ else.

We identify a variational formula that relates the annealed and quenched rate func-
tions.

THEOREM 2.7 (Relationship between annealed and quenched LDPs). Let p ∈
[2,∞). Then, for all w ∈R,

(2.14) I
an
p (w)= inf

ν∈P(R):
m2(ν)≤1

{
I

qu
p,ν(w)+H(ν|μ2)+ 1

2

(
1−m2(ν)

)}
.

In particular, this implies that Ian
p (w)≤ I

qu
p,μ2(w) for all w ∈R.

We prove this theorem in Section 6.3, as a consequence of the groundwork laid
in Section 6.1 and Section 6.2. We also discuss the minimizers of this variational
problem in Section 9.

As established in Proposition 5.3, the term I
qu
p,ν in (2.14) is the large deviation

rate function for projections of the random point X(n,p) onto a particular outcome
of fixed directions of projection � = θ (i.e., a quenched “environment”) corre-
sponding to the measure ν. On the other hand, we will see in Section 6.2 that
H(·|μ2)+ 1

2(1−m2(·)) is the large deviation rate function for the underlying en-
vironment �. That is, an annealed large deviation arises precisely due to the com-
bination of: (i) a deviation of the environment; and (ii) the deviation of a projection
within such an environment.

REMARK 2.8. Although quenched and annealed LDPs have been considered
in other contexts such as random walks in random environments (RWRE), with
the exception of equation (9) in [14], there appear to be relatively few results that
relate quenched and annealed rate functions via a variational formula in the spirit
of Theorem 2.7. See also equation (1.9) in [1] for a weaker comparison. As one
would expect due to the different contexts, the proofs in the RWRE setting are
quite different in nature from our proof.
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2.4. Atypical directions of projection. As noted in the discussion following
Theorem 2.5, the LDP rate function I

qu
p,μ2 is the same for σ -a.e. sequence of di-

rections θ ∈ S. In this section, we compare the σ -a.e. sequences of directions with
sequences in the set of measure zero for which Theorem 2.5 does not hold.

One particular sequence to consider is ι = (ι(1), ι(2), . . . ) ∈ S, where ι(n) is the
normalized vector of 1’s as in (1.1). Then W

(n,p)
ι denotes the projection of X(n,p)

onto a particular “corner” direction. In order to make a comparison between the
particular sequence ι and “generic” sequences θ for which the quenched LDP
holds, we define the following rate functions:

(2.15) I
cr
p (w)

.= inf
τ1∈R,τ2>0:
τ1τ

−1/p
2 =w

�∗p(τ1, τ2), w ∈R.

As we elaborate in Remark 7.1, this rate function is related to large deviations of
self-normalized sums of i.i.d. random variables.

THEOREM 2.9 [Atypicality, p ∈ (1,∞)]. For p ∈ (1,∞), the sequence
(W

(n,p)
ι )n∈N satisfies an LDP with the quasiconvex, symmetric, good rate func-

tion I
cr
p . Moreover, for w ∈ (−1,1), we have the following:

1. for p > 2, Iqu
p,μ2(w)≥ I

cr
p (w), with equality if and only if w = 0;

2. for p = 2, Iqu
p,μ2(w)= I

cr
p (w);

3. for p < 2, Iqu
p,μ2(w)≤ I

cr
p (w), with equality if and only if w = 0.

The proof of Theorem 2.9 is given in Section 7.
An analogous result for product measures is the focus of [27], as we briefly

recall in Section 8.2. See Figure 3 for a sketch of how the universal quenched rate
function compares to the exceptional rate function associated with ι, in the case of
projections of a random variable uniformly distributed on the �∞ ball.

FIG. 3. Quenched versus Cramér rate functions for p =∞.
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REMARK 2.10. A similar notion of atypicality can be found in the work of
[7], where the authors are interested in slabs of convex bodies. In particular, the
authors prove a Cramér-type upper bound for the volume of slabs of certain convex
bodies, and note that this upper bound was asymptotically attained by the sequence
of “extremal” slabs orthogonal to the main diagonal (1,1, . . . ,1). Our result Theo-
rem 2.9 shows that the sequence of directions (1,1, . . . ,1) is not only extremal, but
also particularly distinct, in that almost every other sequence of directions yields a
universal rate function different from that of the extremal direction.

REMARK 2.11. Another particular sequence of directions to consider is the
sequence of canonical basis vectors e1 = (e

(1)
1 , e

(2)
1 , . . . ) ∈ S, where

e
(n)
1

.= (1, 0, . . . ,0
n−1 times

) ∈ S
n−1.

That is, project X(n,p) onto its first coordinate. In the language of [7], this is
the volume of the “canonical slab” of the �p ball. It is known due to [5], Theo-
rem 3.4, that the sequence (〈X(n,p), e

(n)
1 〉n)n∈N satisfies an LDP with speed n and

rate Jp(x) = − 1
p

log(1 − xp). Note, however, that this sequence lacks the n1/p

n1/2

scaling found in W
(n,p)
θ , so the sequence e1 is also atypical in its own sense, for

p �= 2.

2.5. Special case of p = 2. As a brief digression, we consider the special case
of p = 2. First, define the rate function for w ∈R:

(2.16) J2(w)
.=
⎧⎨⎩−

1

2
log

(
1−w2) w ∈ (−1,1);

+∞ else.

Then our results can be summarized as follows.

THEOREM 2.12. For p = 2, the quenched LDP of Theorem 2.5 holds for all
θ ∈ S. In addition, for p = 2, the annealed LDP of Theorem 2.2 holds. Moreover,

(2.17) I
an
2 = I

qu
2,μ2

= J2.

PROOF. Note that X(n,2) is distributed uniformly over the Euclidean ball, so its
distribution is spherically symmetric in the sense that for all n and all η,η′ ∈ S

n−1,

(2.18)
〈
X(n,2), η

〉
n

(d)= 〈
X(n,2), η′

〉
n.

In particular, this implies that for e
(n)
1 = (1,0, . . . ,0) ∈ S

n−1,

P
(〈
X(n,2),�(n)〉

n ∈ ·
)= P

(〈
X(n,2), θ (n)〉

n ∈ ·
)= P

(〈
X(n,2), e

(n)
1

〉
n ∈ ·

)
.
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The upshot is that to analyze either the annealed LDP for (W(n,2))n∈N, or the
quenched LDP for (W

(n,2)
θ )n∈N, it suffices to consider the LDP of (W

(n,2)
e1 )n∈N,

the sequence of projections onto the first coordinate. In this case, it is known from
Theorem 3.4 of [5] that this sequence satisfies an LDP with good rate function J2.
It is also possible to prove the equality (2.17) by direct calculation. �

Note that the key part in the preceding proof is spherical symmetry of X(n,2),
a property which we will use again to a different end in Section 6.1. It is this
spherical symmetry which leads to the “for all” claim in Theorem 2.12, as opposed
to the “σ -a.e.” claim in Theorem 2.5.

REMARK 2.13. While Theorem 2.12 shows that the quenched and annealed
rate functions are identical when p = 2, Proposition 9.2 shows that the quenched
and annealed rate functions do not coincide when p =∞.

3. An equivalent formulation. When p <∞, the nontrivial dependence be-
tween the coordinates that is induced by the uniform measure on Bn,p makes a di-
rect large deviation analysis difficult. To resolve this, we invoke a more convenient
representation for the uniform measure on Bn,p to reduce the analysis of W(n,p)

and W
(n,p)
θ to that of more tractable objects. Furthermore, this representation will

also clarify the role of the density fp introduced in (1.2).

3.1. A probabilistic representation for the uniform measure on Bn,p . Let n ∈
N and p ∈ [1,∞). Consider the following random variables, defined on the same
common probability space (�,F,P) as in Section 1.2:

• U is uniformly distributed on [0,1];
• Y(p) = (Y (n,p))n∈N = ((Y

(n,p)
1 , . . . , Y

(n,p)
n ))n∈N is a triangular array of i.i.d.

real-valued random variables, with common distribution μp defined by (1.2);

• Z = (Z(n))n∈N = ((Z
(n)
1 , . . . ,Z

(n)
n ))n∈N is a triangular array of independent

N(0,1) random variables;
• U , Y(p) and Z are independent.

Then the following properties are well known; see, for example, Lemma 1 of [49],
or Section 3 of [45].

LEMMA 3.1. For p ∈ [1,∞),

(3.1)
(
X(n,p),�(n)) (d)=

(
U1/n Y (n,p)

‖Y (n,p)‖n,p

,
Z(n)

‖Z(n)‖n,2

)
.

Moreover, Y (n,p)/‖Y (n,p)‖n,p is independent of ‖Y (n,p)‖n,p , and Z(n)/‖Z(n)‖n,2

is independent of ‖Z(n)‖n,2.
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Define the sequences of random variables (Ŵ (n,p))n∈N and (Ŵ
(n,p)
θ )n∈N as fol-

lows: for n ∈N and θ ∈ S,

Ŵ (n,p) .= n1/p

n1/2 U1/n

∑n
i=1 Y

(n,p)
i Z

(n)
i

‖Y (n,p)‖n,p‖Z(n)‖n,2
;(3.2)

Ŵ
(n,p)
θ

.= n1/p

n
U1/n

∑n
i=1 Y

(n,p)
i

√
nθ

(n)
i

‖Y (n,p)‖n,p

.(3.3)

The definitions (2.1) and (2.6) together with (3.1), (3.2) and (3.3) show that for
n ∈N and θ ∈ S,

W(n,p) (d)= Ŵ (n,p);(3.4)

W
(n,p)
θ

(d)= Ŵ
(n,p)
θ .(3.5)

3.2. Concentration on the boundary. Continue to assume p ∈ [1,∞). In this
section, we show that, for the purposes of both the annealed and quenched LDPs, it
is possible to ignore the contribution of the “radial” term U1/n in the definition of
Ŵ (n,p) given by (3.2). This is related to the fact that the uniform measure on high-
dimensional isotropic convex bodies concentrates strongly on the boundary. Note
that unlike in the central limit setting, our asymptotic result as n→∞ does not
rely on the delicate “thin-shell” estimates derived for finite n dimensions [24, 34].

LEMMA 3.2. Suppose that a sequence of R-valued random variables (ξn)n∈N
satisfies an LDP with a good rate function Iξ (·). Let U be an independent random
variable uniformly distributed on [0,1]. If Iξ is quasiconvex and symmetric, then
the sequence (U1/nξn)n∈N satisfies an LDP with good rate function Iξ .

To prove Lemma 3.2, we begin by appealing to the large deviation behavior of
U1/n as n→∞.

LEMMA 3.3. The sequence (U1/n)n∈N satisfies an LDP with the good rate
function

IU(u)
.=
{− logu u ∈ (0,1];
+∞ else.

PROOF. Let A be a Borel set in R. First, we prove the large deviation upper
bound; that is, lim supn→∞ 1

n
logP(U1/n ∈ A) ≤ − infu∈Ā IU (u). If 1 ∈ Ā, then

infu∈Ā IU (u)= 0, so the upper bound in this case is automatic. Otherwise, let u1 =
sup{u ∈A : u < 1} and u2 = inf{u ∈A : u > 1}. Since IU is convex with minimum
at 1, and infinite outside (0,1],

inf
u∈Ā

IU (u)= IU (u1).
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Using the fact that Ā⊂ (−∞, u1] ∪ [u2,∞), and P(U1/n ≥ u2)= 0, we find that

lim sup
n→∞

1

n
logP

(
U1/n ∈ Ā

)
≤ lim sup

n→∞
1

n
log

(
P
(
U1/n ∈ (−∞, u1])+ P

(
U1/n ∈ [u2,∞)

))
= lim sup

n→∞
1

n
logP

(
U ≤ un

1
)

=
{

logu1, if u1 > 0,

−∞, else

=− inf
u∈Ā

IU (u).

Now we prove the large deviation lower bound, lim infn→∞ 1
n

logP(U1/n ∈
A) ≥ − infu∈A◦ IU (u). If A◦ ∩ (0,1] = ∅, then infu∈A◦ IU(u) =∞, so the lower
bound in this case is automatic. Otherwise, let δ > 0, and let ū ∈ A◦ ∩ (0,1] such
that IU(ū)≤ infu∈A◦ IU (u)+ δ. Since A◦ is open, there exists ε ∈ (0, ū) such that
(ū− ε, ū] ⊂A◦ ∩ (0,1]. Thus,

lim inf
n→∞

1

n
logP

(
U1/n ∈A◦

)
≥ lim inf

n→∞
1

n
logP

(
U1/n ∈ (ū− ε, ū])

= lim inf
n→∞

1

n
logP

(
U ∈ ((ū− ε)n, ūn])

= lim inf
n→∞

1

n
log

(
ūn − (ū− ε)n

)
= log ū

=−IU (ū)

≥− inf
u∈A◦

IU (u)− δ.

This holds for arbitrary δ > 0, so the lower bound follows. �

PROOF OF LEMMA 3.2. By independence, the sequence (U1/n, ξn)n∈N satis-
fies a joint LDP with rate function IU,ξ (u,w)= IU(u)+Iξ (x), where IU is the rate
function computed in Lemma 3.3. By the contraction principle, the sequence of
products (U1/nξn)n∈N satisfies an LDP with the rate function I , where for x̃ ∈R,

I (x̃)= inf
{
IU(u)+ Iξ (x) : u,x ∈R, ux = x̃

}
,

= inf
{− logu+ Iξ (x) : u ∈ (0,1], x ∈R, ux = x̃

}
.
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Let x̃ > 0. By assumption, Iξ is quasiconvex and symmetric, so it is minimized at
x = 0 and nondecreasing for x > 0. Using the fact that x �→ logx is increasing, the
infimum is attained at u= 1 and x = x̃. Therefore, I (x̃)= Iξ (x̃). Likewise, when
x̃ < 0, similar calculations show once again that I (x̃)= Iξ (x̃). �

For p <∞, the equivalence of the LDPs given by Lemma 3.2 motivates the
analysis of the sequences (W̃ (n,p))n∈N and (W̃

(n,p)
θ )n∈N defined as follows: for

n ∈N and θ ∈ S,

W̃ (n,p) .= n1/p

n1/2

∑n
i=1 Y

(n,p)
i Z

(n)
i

‖Y (n,p)‖n,p‖Z(n)‖n,2
,(3.6)

W̃
(n,p)
θ

.= n1/p

n

∑n
i=1 Y

(n,p)
i

√
nθ

(n)
i

‖Y (n,p)‖n,p

.(3.7)

In the following lemma, we claim that it suffices to analyze the sequences defined
by (3.6) and (3.7).

LEMMA 3.4. If the sequence (W̃ (n,p))n∈N [resp., (W̃
(n,p)
θ )n∈N] satisfies an

LDP with good rate function I
an
p (resp., Iqu

p,μ2 for σ -a.e. θ ∈ S), then the sequence

(W(n,p))n∈N [resp., (W
(n,p)
θ )n∈N] satisfies an LDP with the same rate function

(resp., for σ -a.e. θ ∈ S).

PROOF. Due to (3.4) and (3.5), W(n,p) and W
(n,p)
θ are equal in distribu-

tion to Ŵ (n,p) and Ŵ
(n,p)
θ , respectively. Thus, it suffices to show that an LDP

for (W̃ (n,p))n∈N [resp., (W̃
(n,p)
θ )n∈N] implies an LDP for (Ŵ (n,p))n∈N [resp.,

(Ŵ
(n,p)
θ )n∈N] with the same rate function. However, this would follow from

Lemma 3.2 if Ian
p and I

an
p,μ2

could be shown to be quasiconvex and symmetric.
For Ian

p , note that by (2.3),

(3.8) I
an
p (w)= inf

τ0,τ2>0
�∗p

(
τ0,wτ

1/2
0 τ

1/p
2 , τ2

)
, w ∈R.

Since μp and μ2 are symmetric distributions, �p (and thus, �∗p) is symmetric in
the second variable. Then the representation (3.8) implies that Ian

p is symmetric.
As for quasiconvexity, we know that �∗p is convex by definition of the Legendre
transform. Combined with the symmetry of �∗p in the second argument, we see
that for fixed τ0, τ2 > 0, �∗p(τ0, τ1, τ2) is minimized at τ1 = 0, nondecreasing for
τ1 > 0, and nonincreasing for τ1 < 0. Thus, for w′ > w > 0, (3.8) shows that

I
an
p

(
w′
)= inf

τ0,τ2>0
�∗p

(
τ0,w

′τ 1/2
0 τ

1/p
2 , τ2

)≥ inf
τ0,τ2>0

�∗p
(
τ0,wτ

1/2
0 τ

1/p
2 , τ2

)
= I

an
p (w).
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Similar calculations for w′ < w < 0 show that for all c > 0, the set {w ∈ R :
I

an
p (w) ≤ c} is a closed interval containing 0. Thus, Ian

p is quasiconvex (see Defi-
nition 1.2). The argument is essentially identical for Iqu

p,μ2 , and hence, left to the
reader. �

4. The annealed LDP. In this section, we prove Theorem 2.2, the annealed
LDP for random projections of �p balls. When p ∈ [2,∞), the recipe is roughly as
follows: we employ the representations of X(n,p) and �(n) given in Section 3, ap-
ply Cramér’s theorem for a sum of i.i.d. random variables in R

3, and then complete
the proof with the contraction principle. The case p ∈ [1,2) is slightly different,
in that we must prove an LDP at a different speed; for this case, we still employ
the representations of Section 3, but show that deviations of the “numerator” are
relevant for the LDP, whereas the deviations of the “denominator” do not matter.

4.1. Annealed proof for p ∈ [2,∞]. For p ∈ [2,∞), we define the following
empirical mean of i.i.d. R3-valued random variables:

S(n,p) .= 1

n

n∑
i=1

(∣∣Z(n)
i

∣∣2, Y (n,p)
i Z

(n)
i ,

∣∣Y (n,p)
i

∣∣p), n ∈N.

Note that �p of (2.2) is the log mgf of the summands, (|Z(n)
i |2, Y (n,p)

i Z
(n)
i ,

|Y (n,p)
i |p). We write out this sum because W̃ (n,p) of (3.6) can be written as a func-

tion of S(n,p). In our proof below, we will have to recall the following definition.

DEFINITION 4.1. Consider a convex function � : Rd → (−∞,∞]. The ef-
fective domain of � is the set

D�
.= {

x ∈R
d :�(x) <∞}

.

When there is no confusion, we refer to D� as the domain of �.

PROOF OF THEOREM 2.2. The case p = 2 follows from Theorem 2.12. As
for p > 2, let t0 < 1

2 , t1 ∈R, t2 < 1
p

, and using (1.2) and (2.2),

�p(t0, t1, t2)

= log
∫
R

∫
R

et1zy
1

2p1/p�(1+ 1
p
)
e−(1−pt2)|y|p/p dy

1√
2π

e−(1−2t0)z
2/2 dz

=− 1

p
log(1− pt2)− 1

2
log(1− 2t0)

+ log
∫
R

exp
(

1

2
t2
1 (1− pt2)

−2/p(1− 2t0)
−1y2

)
μp(dy).
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Note that the preceding quantity is finite for p > 2. Thus, D◦
�p
= (−∞, 1

2)×R×
(−∞, 1

p
) � 0, and by Cramér’s theorem, the sequence (S(n,p))n∈N satisfies an LDP

in R
3 with the good rate function given by the Legendre transform �∗p(τ0, τ1, τ2).

Note that D�∗p ⊂ (0,∞)×R× (0,∞), and the map Tp : (0,∞)×R→R defined
by

Tp(τ0, τ1, τ2)
.= τ

−1/2
0 τ1τ

−1/p
2 ,

is continuous. Since W̃ (n,p) = T (S(n,p)), we can apply the contraction principle to
obtain an LDP for (W̃ (n,p))n∈N with the rate function:

inf
τ
−1/2
0 τ1τ

−1/p
2 =w

�∗p(τ0, τ1, τ2)= I
an
p (w), w ∈R.

Due to Lemma 3.4, this implies that the same LDP holds for (W(n,p))n∈N. �

4.2. Annealed proof for p ∈ [1,2). First, note that we cannot approach The-
orem 2.3 in the same way as Theorem 2.2 due to the fact that for p < 2,
�p(t0, t1, t2) = ∞ for t1 �= 0. This suggests that the LDP, if it exists, occurs at
a different speed slower than n. To identify the appropriate speed, we begin with a
lemma giving upper and lower bounds for the tails of μp .

LEMMA 4.2. Let p ∈ [1,2). Then, for all x ≥ 0,

x

xp + 1
e−xp/p ≤

∫ ∞
x

e−yp/p dy ≤ 1

xp−1 e−xp/p.

We omit the proof, which follows from standard calculations. Next, we have the
following lemma on the tail decay of a certain heavy-tailed distribution.

LEMMA 4.3. Let p ≥ 1, Y ∼ μp , and Z ∼ μ2, and let Y and Z be indepen-
dent. Then

lim
t→∞

1

t rp
logP(YZ ≥ t)=−r−1

p ,

where rp = 2p
2+p

as in (2.5).

PROOF. First, we prove the lower bound. Fix t > 0. For all s such that 0 <

s < t , by the independence of Y and Z, and the lower bound of Lemma 4.2,

P(YZ ≥ t)≥ P(Y ≥ s)P

(
Z ≥ t

s

)
≥ Cp

s

sp + 1
e−sp/p 1

(t/s)+ (s/t)
e−t2/(2s2),

where Cp <∞ represents a constant that depends on p but not on t nor s. Then
pick the optimal s for the lower bound

st = arg min
s

{
sp

p
+ t2

2s2

}
= t2/(2+p) = t rp/p.



LDPs FOR RANDOM PROJECTIONS 4439

Therefore,

lim inf
t→∞

1

t rp
logP(YZ ≥ t)≥ lim inf

t→∞
1

t rp

(
−s

p
t

p
− t2

2s2
t

)
=−

(
1

p
+ 1

2

)
=−r−1

p .

Now we prove the upper bound. By Lemma 4.2, for some different constant
C̃p <∞,

P(YZ ≥ t)= C̃p

∫ ∞
0

P

(
Y ≥ t

s

)
exp

(
−s2

2

)
ds

≤ C̃p

∫ ∞
0

1

(t/s)p−1 exp
(
− 1

p

(
t

s

)p

− s2

2

)
ds,

(
sp = tp

2/(2+p)u
)= C̃p

tp
2/(2+p)

ptp−1

∫ ∞
0

exp
(
− tp

ptp
2/(2+p)u

− t2p/(2+p)u2/p

2

)
du.

Then, using Laplace’s method,

lim sup
t→∞

1

t rp
logP(YZ ≥ t) ≤ lim sup

t→∞
1

t rp
log

∫ ∞
0

exp
(
−t rp

(
1

pu
+ u2/p

2

))
du

=−min
u>0

{
1

pu
+ u2/p

2

}

=−
(

1

p
+ 1

2

)
=−r−1

p . �

We state an intermediate large deviation result. As in Section 3.1 (but, for ease
of notation, omitting the superscripts (n) and (n,p)), let Y1, . . . , Yn be i.i.d. with
common distribution μp , and let Z1, . . . ,Zn be i.i.d. with common distribution
μ2. Define the empirical mean of i.i.d. random variables,

V (n,p) .= 1

n

n∑
i=1

YiZi.

PROPOSITION 4.4. Let p ∈ [1,2). Then, with rp = 2p
2+p

, the sequence

(V (n,p))n∈N satisfies an LDP with speed nrp and the quasiconvex good rate func-
tion I

an
p (w)= 1

rp
|w|rp .

PROOF. This follows from Theorem 2.1 of [3], where p, bn and a there cor-
respond to rp , n and r−1

p here, respectively. The condition n

n2−rp
→ 0 as n→∞

holds since rp < 1 for p < 2, and the condition n
n+1 → 1 as n→∞ holds trivially.

Then the symmetry of μp and the tail asymptotics of Lemma 4.3 imply the desired
LDP. Note that this result can also be deduced from Theorem 1 of [28]. �
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We now show that at the large deviation scale, W̃ (n,p) of (3.6) is comparable to
V (n,p) in the following sense.

DEFINITION 4.5. Let (ξn) and (ξ̃n) be two sequences of R-valued random
variables such that for all δ > 0, and some speed s(n),

lim sup
n→∞

1

s(n)
logP

(|ξn − ξ̃n|> δ
)=−∞;

then, (ξn) and (ξ̃n) are said to be exponentially equivalent with speed s(n).

PROPOSITION 4.6 (Theorem 4.2.13 of [18]). If (ξn) is a sequence of random
variables that satisfies an LDP with speed s(n) and good rate function I , and (ξ̃n)

is another sequence that is exponentially equivalent to (ξn) with speed s(n), then
(ξ̃n) satisfies an LDP with speed s(n) and good rate function I .

PROOF OF THEOREM 2.3. We will prove that (W̃ (n,p))n∈N and (V (n,p))n∈N
are exponentially equivalent with speed nrp . For δ > 0, ε > 0,

P
(∣∣V (n,p) − W̃ (n,p)

∣∣> δ
)

= 2P

(
1

n

n∑
i=1

YiZi ·
(

1− n1/2n1/p

‖Z(n)‖n,2‖Y (n,p)‖n,p

)
> δ

)

≤ 2P

(
1

n

n∑
i=1

YiZi >
δ

ε

)
+ 2P

(
1− n1/2n1/p

‖Z(n)‖n,2‖Y (n,p)‖n,p

> ε

)

≤ 2P

(
1

n

n∑
i=1

YiZi >
δ

ε

)
+ 2P

(
1

n

n∑
i=1

Z2
i > (1− ε)−1

)

+ 2P

(
1

n

n∑
i=1

|Yi |p > (1− ε)−p/2

)
.

Note that by Cramér’s theorem, the second and third terms decay exponentially
with speed n, since E[|Y1|p] = E[|Z1|2] = 1, and since E[eα|Y1|p ] < ∞ and
E[eαZ2

1 ] <∞ for sufficiently small α > 0. Thus, for p ∈ [1,2), the first term is
dominant with speed nrp , yielding the limit:

lim sup
n→∞

1

nrp
logP

(∣∣V (n,p) − W̃ (n,p)
∣∣> δ

) ≤ lim sup
n→∞

1

nrp
logP

(
1

n

n∑
i=1

YiZi >
δ

ε

)

=− 1

rp

∣∣∣∣δε
∣∣∣∣rp ,

where the last equality follows from Proposition 4.4 and quasi-convexity. Sending
ε→ 0, we see that (V (n,p))n∈N and (W̃ (n,p))n∈N are exponentially equivalent with
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speed nrp . The LDP for (W(n,p))n∈N then follows from Proposition 4.4, Proposi-
tion 4.6 and the fact that the U1/n factor in (2.1) can be ignored since (U1/n)n∈N
satisfies a large deviation principle with good rate function at speed n (as given by
Lemma 3.3). �

5. The quenched LDP. In this section, we prove Theorem 2.5, the quenched
LDP for random projections of �p balls. To do so, we prove LDPs for the weighted
sum (3.7), which has deterministic weights. This task reduces to proving an LDP
for sums of random variables which are independent but not identically distributed
(in our case due to the inhomogeneous weights θ

(n)
i ), for which the Gärtner–Ellis

theorem is well suited (see Section 2.3 of [18]). We first show in Section 5.1 that
the convergence of a certain empirical measure implies the convergence of a cer-
tain limiting log mgf which arises in the Gärtner–Ellis theorem. Then, in Sec-
tion 5.2, we prove a slight extension of the Glivenko–Cantelli theorem which es-
tablishes convergence of the empirical measure in general settings. We specialize
to our case of the measure σ of (2.10) and complete the proof of the quenched
LDP in Section 5.3.

5.1. Convergence of log mgf’s. In what follows, we require two notions of
convergence of probability measures. Let ⇒ denote weak convergence, and also
recall the Wasserstein topology of probability measures.

DEFINITION 5.1. Let r ∈ [1,∞), let mr be the r th absolute moment as in
(2.13), and let Pr (R)

.= {μ ∈ P(R) :mr(μ) <∞}. The Wasserstein-r topology on
Pr (R) is induced by the following metric:

Wr (μ, ν)
.= inf

π∈�(μ,ν)

∫∫
R2
|x − y|rπ(dx, dy),

where �(μ,ν) denotes the set of probability measures on R
2 with first and second

marginals μ and ν, respectively.

LEMMA 5.2 (See, e.g., Definition 6.8 and Theorem 6.9 of [57]). Let (μn) ⊂
Pr (R) and μ ∈ Pr (R). The following are equivalent:

1. Wr (μn,μ)→ 0;
2. μn⇒ μ and mr(μn)→mr(μ);
3. for all continuous functions ϕ :R→R that satisfy |ϕ(x)| ≤ C(1+|x|r ), x ∈R,

for some constant C ∈R, we have∫
R

ϕ(x)μn(dx)
n→∞−−−→

∫
R

ϕ(x)μ(dx).
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For θ ∈ S, let Ln,θ denote the empirical measure,

Ln,θ
.= 1

n

n∑
i=1

δ√
nθ

(n)
i

.

The goal of this subsection is to prove the following statement that convergence of
(Ln,θ )n∈N implies a quenched LDP.

PROPOSITION 5.3. Let p ∈ (1,∞). Let ρ ∈ P(A) be a probability measure
on the space of triangular arrays A, let ν ∈ Pp/(p−1)(R), and suppose that for
ρ-a.e. θ ∈ S, we have, as n→∞,

Wp/(p−1)(Ln,θ , ν)→ 0.

Then, for ρ-a.e. θ ∈ S, the sequence (W
(n,p)
θ )n∈N satisfies an LDP with the quasi-

convex, symmetric, good rate function I
qu
p,ν of (2.9).

We defer the proof of Proposition 5.3 to the end of this subsection (see
page 4445).

REMARK 5.4. A slightly different approach to proving the “product” version
of Theorem 2.5 can be found in [27]; that argument does not appeal to the con-
vergence of empirical measures assumed by Proposition 5.3. However, Proposi-
tion 5.3 has the benefit of giving a concrete interpretation of the quenched rate
function I

qu
p,ν for any ν ∈ Pp/(p−1)(R) associated with a conditioned “environ-

ment” θ .

We now establish some notation and several preliminary lemmas. For γ ∈
P(R), let

(5.1) Mγ (t)
.=
∫
R

etyγ (dy)

denote the moment generating function (mgf) of γ . Let Tq denote the set of prob-
ability measures on R with tails dominated by the tails of μq , in the following
sense:

(5.2) Tq
.= {

γ ∈ P(R) : ∃C <∞ s.t. ∀t ∈R, log Mγ (t) < C|t |q/q−1 +C
}
.

Note that Tp ⊃ Tq for p < q , and T2 consists of sub-Gaussian measures.

LEMMA 5.5. Suppose γ ∈ P(R) has density f and q ∈ [1,∞) is such that
there exist constants 0 < cγ , dγ <∞ such that for all |x|> dγ ,

f (x)≤ cγ e−cγ |x|q/q .

Then, γ ∈ Tq . In particular, for q ∈ [1,∞), we have μq ∈ Tq .
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PROOF. The first assertion of the lemma follows from a simple application of
Young’s inequality (see Lemma 2.3 of [27] for details). The second assertion is a
simple consequence of the first. �

LEMMA 5.6. Let p ∈ (1,∞). For γ ∈ Tp and t ∈R, the map

(5.3) Pp/(p−1)(R) � ν �→
∫
R

log Mγ (tu)ν(du) ∈R

is continuous with respect to the Wasserstein- p
p−1 topology.

PROOF. Fix t ∈R. Since γ ∈ Tp , it follows from (5.2) that

log Mγ (tu) < C|u|p/(p−1) +C, u ∈R,

for some constant C depending on t and γ , but not u. Therefore, the map
u �→ log Mγ (tu) is clearly continuous, and integrable with respect to any ν ∈
Pp/(p−1)(R). The continuity of (5.3) with respect to the Wasserstein- p

p−1 topol-
ogy follows from the equivalent formulation of Wasserstein convergence given by
Lemma 5.2(3). �

LEMMA 5.7. Let p ∈ [1,∞), and let �p and �p,ν be as defined in (2.7) and
(2.8), respectively. Then

�p(t1, t2)=− 1

p
log(1− pt2)+ log Mμp

(
t1

(1− pt2)1/p

)
, t1 ∈R, t2 <

1

p
.

As a consequence, for p ∈ (1,∞), t1 ∈R, t2 < 1
p

, the map

Pp/(p−1)(R) � ν �→�p,ν(t1, t2) ∈R

is continuous with respect to the Wasserstein- p
p−1 topology.

PROOF. By the change of variables x = (1 − pt2)
1/py and the form of the

density of μp given by (1.2), we write

�p(t1, t2)

= log
∫
R

et1y
1

2p1/p�(1+ 1
p
)
e−(1−pt2)|y|p/p dy

= log
(

1

(1− pt2)1/p

∫
R

exp
(

t1

(1− pt2)1/p
x

)
1

2p1/p�(1+ 1
p
)
e−|x|p/p dx

)

=− 1

p
log(1− pt2)+ log Mμp

(
t1

(1− pt2)1/p

)
.
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We now prove the continuity part of the lemma. Due to Lemma 5.5, μp ∈ Tp and,
therefore, by Lemma 5.6, ν �→ ∫

R
log Mμp(tu)ν(du) is continuous for all t ∈ R.

Combined with the preceding display, this implies that ν �→�p,ν(t1, t2) is contin-
uous for all t1 ∈R and t2 < 1

p
. �

Whereas Lemma 5.7 will be applied to establish the convergence of certain
log mgf’s, Lemma 5.8 and Lemma 5.9 will be used to show that the limit log mgf
satisfies the hypotheses of the Gärtner–Ellis theorem. We refer to Theorem 2.3.6
of [18] for a precise statement. Recall (see Definition 2.3.5 of [18]) that a function
� is said to be essentially smooth if D� �=∅, � is differentiable in D◦

� and � is
steep, meaning that if D� has a boundary ∂D�, then limt→∂D� |∇�(t)| =∞.

LEMMA 5.8. Let p ∈ (1,∞). Then D�p = R× (−∞, 1
p
) and �p is strictly

convex on its effective domain, lower semicontinuous, and essentially smooth. Fur-
thermore, �p is symmetric in its first argument. Lastly, �p is nondecreasing in
its second argument; that is, for fixed t1 ∈ R and t2 < t ′2, we have �p(t1, t2) ≤
�p(t1, t

′
2).

PROOF. This is a basic consequence of standard properties of mgf’s and the
representation of �p established in Lemma 5.7. �

LEMMA 5.9. Let p ∈ (1,∞) and ν ∈ Pp/(p−1)(R). Then, �p,ν is essentially
smooth and lower semicontinuous, and 0 ∈D◦

�p,ν
.

PROOF. Recall from Lemma 5.8 that D�p = R × (−∞, 1
p
). For (t1, t2) /∈

D�p , note that �p,ν(t1, t2)=+∞ for all ν ∈ P(R). Due to the fact that μp ∈ Tp

(see Lemma 5.5) and 5.7, there exists a constant C <∞ such that, for all t1 ∈ R

and t2 < 1
p

,

�p,ν(t1, t2) ≤ − 1

p
log(1− pt2)+

∫
R

(
C

∣∣∣∣ t1z

(1− pt2)1/p

∣∣∣∣p/(p−1)

+C

)
ν(dz)

=− 1

p
log(1− pt2)+C

|t1|p/(p−1)

(1− pt2)1/(p−1)
mp/(p−1)(ν)+C <∞.

That is,

D◦
�p,ν

=R×
(
−∞,

1

p

)
� 0.

As for essential smoothness, first note that the differentiability of �p,ν in D◦
�p,ν

follows from the differentiability of (t1, t2) �→ �p(t1u, t2) for all u ∈ R and an
application of the dominated convergence theorem with the dominating function

gt1,t2(u)
.= ∣∣∇�p

(
(t1 − 1)u, t2

)∣∣+ ∣∣∇�p

(
(t1 + 1)u, t2

)∣∣.
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We refer to Lemma 3.8 of [27] for a similar argument worked out in greater detail.
Note by Lemma 5.8 that ∂t2�p ≥ 0, which implies

∣∣∇�p,ν(t1, t2)
∣∣ ≥ ∣∣∂t2�p,ν(t1, t2)

∣∣= ∣∣∣∣∫
R

∂t2�p(t1u, t2)ν(du)

∣∣∣∣
=
∫
R

∂t2�p(t1u, t2)ν(du).

Then, by Fatou’s lemma, for t ′ ∈R,

lim inf
(t1,t2)→(t ′,1/p)

∣∣∇�p,ν(t1, t2)
∣∣≥ lim inf

(t1,t2)→(t ′,1/p)

∫
R

∂t2�p(t1u, t2)ν(du)

≥
∫
R

lim inf
(t1,t2)→(t ′,1/p)

∂t2�p(t1u, t2)ν(du)=∞,

where the last equality follows from the steepness of �p established in Lemma 5.8.
This shows that �p,ν is steep, and hence, completes the proof of essential smooth-
ness of �p,ν .

For lower semicontinuity, suppose (t
(n)
1 , t

(n)
2 )→ (t1, t2) as n→∞. Then

�p,ν(t1, t2)≤
∫
R

lim inf
n→∞ �p

(
t
(n)
1 u, t

(n)
2

)
ν(du)≤ lim inf

n→∞ �p,ν

(
t
(n)
1 , t

(n)
2

)
,

where the first inequality is due to the lower semicontinuity of �p (from
Lemma 5.8), and the second inequality is due to Fatou’s lemma. �

PROOF OF PROPOSITION 5.3. We begin by proving a ρ-a.e. LDP for the se-
quence (R

(n,p)
θ )n∈N in R

2, defined as

(5.4) R
(n,p)
θ

.=
(

1

n

n∑
i=1

√
nθ

(n)
i Y

(n,p)
i ,

1

n

n∑
i=1

∣∣Y (n,p)
i

∣∣p).

Consider the Gärtner–Ellis limit log mgf: for t = (t1, t2) ∈R
2,

lim
n→∞

1

n
logE

[
exp

(
n
〈
t,R

(n,p)
θ

〉)]
= lim

n→∞
1

n
logE

[
exp

(
n∑

i=1

t1
√

nθ
(n)
i Y

(n,p)
i + t2

∣∣Y (n,p)
i

∣∣p)]

= lim
n→∞

1

n
log

n∏
i=1

E
[
exp

(
t1
√

nθ
(n)
i Y

(n,p)
i + t2

∣∣Y (n,p)
i

∣∣p)]

= lim
n→∞

1

n

n∑
i=1

�p

(
t1
√

nθ
(n)
i , t2

)
,
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with �p given by (2.7). Due to Lemma 5.7, for all t1 ∈ R and t2 < 1
p

, the map

ν �→ ∫
�p(t1u, t2)ν(du) is continuous with respect to the Wasserstein- p

p−1 topol-
ogy. Since by assumption, the empirical measure Ln,θ converges to ν in in the
Wasserstein- p

p−1 topology, we have that for ρ-a.e. θ ∈ S, for all t1 ∈R and t2 < 1
p

,

(5.5) lim
n→∞

1

n

n∑
i=1

�p

(
t1
√

nθ
(n)
i , t2

)= ∫
R

�p(t1u, t2)ν(du).

The same claim holds for all t2 ≥ 1
p

, with both sides in the preceding equality
valued at +∞.

Due to the lower semicontinuity and essential smoothness of �p,ν as established
in Lemma 5.9, for ρ-a.e. θ ∈ S, the Gärtner–Ellis theorem (see, e.g., Theorem 2.3.6
of [18]) yields the LDP for the sequence (R

(n,p)
θ )n∈N, with the good rate function

�∗
p,ν .
Note that D�∗p,ν

⊂R× (0,∞), and the map T̄ :R× (0,∞)→R defined by

(5.6) T̄p(τ1, τ2)
.= τ1τ

−1/p
2 ,

is continuous. Since W̃
(n,p)
θ = T̄p(R

(n,p)
θ ), we can apply the contraction principle

to obtain an LDP for (W̃
(n,p)
θ )n∈N with the rate function I

qu
p,ν . Due to Lemma 3.4,

this implies that an identical LDP holds for (W
(n,p)
θ )n∈N. �

REMARK 5.10. In Proposition 5.3, we make the assumption p > 1 so that the
right-hand side of (5.5) is well defined. In the case of p = 1, the effective domain
is D�1 = (−1,1)× (−∞,1), so the integral over R on the right-hand side of (5.5)
is infinite. This issue does not arise for p > 1 due to Lemma 5.7.

5.2. An extension of the Glivenko–Cantelli theorem. In view of Proposi-
tion 5.3, it is natural to investigate when the empirical measure convergence holds.
Recall the classical Glivenko–Cantelli theorem, which concerns weak convergence
of the empirical measure of an i.i.d. sequence. That is, for ξ1, ξ2, . . . , i.i.d. with
common distribution μ,

1

n

n∑
i=1

δξi
⇒ μ, P-a.s.

In the lemma below, we state a slight extension of the Glivenko–Cantelli theo-
rem, to triangular arrays with some dependence within rows, and to Wasserstein
convergence instead of weak convergence.

LEMMA 5.11. Let μ ∈P(R), and for n ∈N, suppose (ξ (n))n∈N is a sequence
of random variables defined on a common probability space (�,F,P) such that
ξ (n) ∼ μ⊗n. Next, let fn :Rn→R be such that

(5.7) fn

(
ξ (n)) n→∞−−−→ 1, P-a.s.
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Let η(n) .= ξ (n)/fn(ξ
(n)), and consider its empirical measure,

Ln,η
.= 1

n

n∑
i=1

δ
η

(n)
i

.

If mp(μ) <∞ for some p ∈ [1,∞), then

Wp/4(Ln,η,μ)→ 0, P-a.s.

PROOF. Let F be the cumulative distribution function (c.d.f.) of μ. Let Fn and
Gn, respectively, denote the empirical distribution functions of the samples ξ (n)

and η(n):

Fn(t)
.= 1

n
#
{
ξ

(n)
i ≤ t; i = 1, . . . , n

}
,

Gn(t)
.= 1

n
#
{
η

(n)
i ≤ t; i = 1, . . . , n

}
.

First, we prove P-a.s. weak convergence of Gn to F. In other words, we prove that
P-a.s., for any point of continuity t of F,

lim
n→∞Gn(t)= F(t).

Note that we can decompose the preceding difference as follows:

Gn(t)− F(t)= [
Fn

(
fn

(
ξ (n))t)− F

(
fn

(
ξ (n))t)]+ [

F
(
fn

(
ξ (n))t)− F(t)

]
(5.8)

≤ sup
x∈R

∣∣Fn(x)− F(x)
∣∣+ ∣∣F(fn

(
ξ (n))t)− F(t)

∣∣.
The first term on the right-hand side of (5.8) converges to zero by the extension
of the Glivenko–Cantelli theorem to row-wise independent triangular arrays (see
Theorem 1 on page 106 of [51]). The second term converges to 0 due to the
assumption (5.7), since t is a point of continuity of F. Therefore, we have that
Ln,η ⇒ μ, P-a.s.

Next, we prove convergence of suitable moments in order to strengthen the
result to Wasserstein convergence. Due to Lemma 5.2, it suffices to show P-a.s.
convergence of the p/4th moments of Ln,η. That is, P-a.s.,

(5.9) lim
n→∞mp/4(Ln,η)=mp/4(μ).

Note that

mp/4(Ln,η)= 1

n

n∑
i=1

∣∣η(n)
i

∣∣p/4 =
1
n

∑n
i=1 |ξ (n)

i |p/4

fn(ξ (n))p/4 .

Due to the assumption (5.7), in order to prove (5.9), it suffices to show that, P-a.s.,

(5.10)
1

n

n∑
i=1

∣∣ξ (n)
i

∣∣p/4 →mp/4(μ).



4448 N. GANTERT, S. S. KIM AND K. RAMANAN

Note that the strong law of large numbers (SLLN) does not extend (in general) to
row-wise means of i.i.d. triangular arrays, but a standard Borel–Cantelli argument
shows that the SLLN does hold if the common law of the i.i.d. elements has finite
fourth moment (see Example 5.4.1 of [48]). Since μ has finite pth moment, we
have ∫

R

(|x|p/4)4μ(dx)=mp(μ) <∞,

and thus, (5.10) holds, implying Wasserstein-p/4 convergence. �

REMARK 5.12. A weaker version of Lemma 5.11 (that is not sufficient for our
purpose) can be found in page 235 of [54], where μ= μp and fn = n−1/p‖ · ‖n,p ,
so that η(n) ∼Unif(Bn,p); the difference is that the statement in [54] is for conver-
gence in probability (instead of P-a.s.), and weak convergence of measures (instead
of Wasserstein).

5.3. The measure σ ∈ P(S). Recall the measure σ ∈ P(S) which was as-
sumed to satisfy (2.10). It remains to show how σ fits into the framework of
Proposition 5.3 and Lemma 5.11. To do so, we further explore the probabilistic
representation for the surface measure σn on S

n−1 given in Section 3.
Let R :A→A be the map such that for z ∈A, the nth row of R(z) is

(5.11) R(z)(n) .= z(n)

‖z(n)‖n .

Let πn :A→R
n denote the coordinate map such that πn(z)= z(n), outputting the

nth row of a triangular array.

ASSUMPTION 5.13. Let ζ ∈P(A) be such that ζ ◦π−1
n is the standard Gaus-

sian measure on R
n.

PROOF OF THEOREM 2.5. Fix r <∞. Then, for σ -a.e. θ ∈ S, we claim that
we have Wr (Ln,θ ,μ2)→ 0 as n→∞. The proof of the quenched LDP follows
immediately from the preceding claim and Proposition 5.3 with ν = μ2 ∈Pr (R).

To prove the claim, first note that a straightforward application of Lemma 3.1
shows that if σ satisfies (2.10), then for some ζ as in Assumption 5.13, we have
σ = ζ ◦R−1. The upshot is that σ -a.e. claims about θ ∈ S (i.e., Theorem 2.5) can
be reduced to ζ -a.e. claims about R(z) for z ∈A. Thus, it suffices to show that for
ζ -a.e. z ∈A, we have

Wr

(
1

n

n∑
i=1

δ√
nz

(n)
i /‖z(n)‖n,2

,μ2

)
→ 0.

This is a consequence of the fact that ζ -a.e., ‖z(n)‖n,2/
√

n→ 1 (by the SLLN),
combined with Lemma 5.11 applied to μ = μ2 (which has finite moments of all
order) and fn = n−1/2‖ · ‖n,2. �
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5.4. Quenched proof for p = 1.

PROOF OF THEOREM 2.6. For θ ∈ S satisfying (2.12) with limit c > 0, let

V
(n)
θ

.= 1

n

n∑
i=1

Yi

√
nθ

(n)
i ,

where Y1, Y2, . . . are i.i.d. random variables with distribution μ1(dy)
.= 1

2e−|y| dy.
Using an argument similar to that used in the proof of Theorem 2.3, it is easy
to show that (V

(n)
θ )n∈N is exponentially equivalent to (W

(n,1)
θ )n∈N. Therefore, to

prove the LDP for (W
(n,1)
θ )n∈N, it suffices to show that (V

(n)
θ )n∈N satisfies an LDP

with speed n/
√

logn and the good rate function I
qu
1,c. In fact, due to the symmetry

of μ1 and the monotonicity of w �→ I
qu
1,c(w) for w > 0, it suffices to show that for

w > 0, we have the following upper and lower bounds:

lim sup
n→∞

√
logn

n
logP

(
V

(n)
θ ≥w

)≤−w

c
;

(5.12)

lim inf
n→∞

√
logn

n
logP

(
V

(n)
θ ≥w

)≥−w

c
.

First, we prove the upper bound in (5.12). For ε ∈ (0,1), let

tn,ε
.= 1− ε

c(1+ ε)
√

logn
.

Due to (2.12), for all ε > 0, there exists Nε <∞ such that for n ≥ Nε , we have√
ntn,ε max1≤i≤n θ

(n)
i ≤ 1− ε. Recall that the mgf of μ1 is E[etY1] = (1− t2)−1

for |t |< 1, and equals+∞, otherwise. Combined with the Chernoff bound and the
elementary bound − log(1− x)≤ x + x2

2 for x ∈ [0,1), we find that for n≥Nε ,

1

ntn,ε

logP
(
V

(n)
θ ≥w

)≤ 1

ntn,ε

n∑
i=1

− log
(
1− nt2

n,ε

(
θ

(n)
i

)2)−w

≤ tn,ε

n∑
i=1

(
θ

(n)
i

)2 + tn,ε

2

n∑
i=1

(
θ

(n)
i

)2(√
ntn,εθ

(n)
i

)2 −w

≤ tn,ε + tn,ε

2
(1− ε)2 −w.

It follows that lim supn→∞
√

logn
n

logP(V
(n)
θ ≥ w) ≤ −w(1−ε)

c(1+ε)
. Letting ε → 0

yields the upper bound.
Now we prove the corresponding lower bound in (5.12). Again due to (2.12),

there exists some Nε <∞ such that for n ≥ Nε , we have
√

nmax1≤i≤n θ
(n)
i ≥

c(1− ε)
√

logn. For n ∈N, let jn
.= arg max1≤i≤n θ

(n)
i . Then, for n≥Nε ,

(5.13) P
(
V

(n)
θ ≥w

)≥ P

(
Yjn ≥

wn

c(1− ε)
√

logn

)
· P
(∑

i �=jn

Yi

√
nθ

(n)
i ≥ 0

)
.
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The second term on the right-hand side in (5.13) equals 1/2, due to the symmetry
of μ1. As for the first term, it follows from Lemma 4.2 with p = 1 that

lim
ε→0

lim
n→∞

√
logn

n
logP

(
Yjn ≥

wn

c(1− ε)
√

logn

)
= lim

ε→0
− w

c(1− ε)
=−w

c
.

Combining this with (5.13), one obtains the lower bound. �

REMARK 5.14. Until now, we have not clarified why the condition (2.12)
is natural, nor why it is not possible to make the same σ -a.e. claim as in the
quenched LDP for p ∈ (1,∞). Roughly speaking, “almost everywhere” state-
ments about row-wise sums of triangular arrays are essentially identical to the cor-
responding statements for partial sums of sequences; this is clarified in the proof
of Lemma 5.11, and crucial to the proof of Theorem 2.5, the quenched LDP for
p ∈ (1,∞). However, this is not the case for “almost everywhere” statements on
row-wise maxima of triangular arrays, which is relevant for the p = 1 case.

To be precise, first note that the following “in probability” statement is classical
(see page 430 of [29]): for any distribution on triangular arrays ζ ∈ P(A) such
that the law of the nth row is the n-dimensional standard Gaussian measure (as in
Assumption 5.13), and for all ε > 0,

(5.14) lim
n→∞ ζ

(
z ∈A :

∣∣∣∣ 1√
logn

max
1≤i≤n

z
(n)
i −√2

∣∣∣∣> ε

)
= 0.

In fact, it is easy to see that for any σ satisfying (2.10), and for all ε > 0,

(5.15) lim
n→∞σ

(
θ ∈ S :

∣∣∣∣
√

n

logn
max

1≤i≤n
θ

(n)
i −√2

∣∣∣∣> ε

)
= 0.

The scaling in this limit motivates the condition (2.12).
We now consider whether the “almost everywhere” version of (5.14) is satisfied:

(5.16) ζ

(
z ∈A : lim

n→∞
1√

logn
max

1≤i≤n
z
(n)
i =√2

)
?= 1.

As elaborated below, the equality in (5.16) holds for some ζ ∈ P(A) satisfying
Assumption 5.13, but is not satisfied for others.

(a) Suppose ζ is such that ζ(z ∈ A : z(n)
i = z

(i)
i ,∀i ≤ n ∈ N). That is, for ζ -a.e.

z, the array is constant within columns. Then the maximum of the nth row of
the array z is equivalent to the maximum of the first n terms of the sequence
z
(1)
1 , z

(2)
2 , . . . . Under this law, the ζ -a.e. convergence in (5.16) is known to hold

by Remark (viii) of [46].
(b) On the other hand, suppose ζ is such that for a random triangular array Z ∼ ζ ,

the rows of Z are independent (and hence, the elements of Z are i.i.d. standard
Gaussian random variables). Then the limit (5.16) can be shown not to hold
since the ζ -a.e. limit inferior and limit superior differ (see page 123 of [31]).
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In particular, it is possible to show that for ζ -a.e. z, all of the points in [√2,2]
are limit points of the sequence max1≤i≤n z

(n)
i /
√

logn, n ∈N.

Similarly, the “almost everywhere” analog of (5.15) holds for some σ satisfying
(2.10), but not others. Recall the map R of (5.11), and for ζ satisfying Assump-
tion 5.13, let σ = ζ ◦R−1.

(a′) If ζ is as in example (a) above, then condition (2.12) of Theorem 2.6 holds
for σ -a.e. θ ∈ S, with c=√2.

(b′) If ζ is as in example (b) above, then the proof of Theorem 2.6 (which
goes through for subsequences) shows that for σ -a.e. θ ∈ S, the sequence
(
√

logn/n) logP(V
(n)
θ ≥w) has all of the points in [−w/2,−w/

√
2] as limit

points, and hence, does not converge.

The upshot of the two preceding examples is that, unlike for the quenched LDP
when p ∈ (1,∞), it is not possible to state Theorem 2.6 as a result for σ -a.e. θ ∈ S

and any σ satisfying (2.10). Instead, the large deviation behavior of (W
(n,1)
θ )n∈N

depends on the particular sequence θ of projection directions, via the limit (2.12).

6. The relationship between the annealed and quenched LDPs. Fix p ∈
(2,∞). In this section, we prove Theorem 2.7, which establishes a connection
between the family of quenched rate functions I

qu
p,ν , ν ∈ P(R), and the annealed

rate function I
an
p . Additional analysis of this variational problem is deferred to

Section 9.
In Section 5, we obtained the quenched rate function by establishing an LDP for

R
(n,p)
θ of (5.4) and then using the fact that W̃

(n,p)
θ = T̄p(R

(n,p)
θ ), where T̄p : R×

R+ → R is the map defined in (5.6). To establish the variational formula (2.14),
we will find it convenient to use an analogous representation for the annealed case
(as opposed to the approach originally adopted in Section 4). Let R(n,p) be defined
similarly to R

(n,p)
θ of (5.4), but with the deterministic deterministic θ(n) replaced

by random �(n),

(6.1) R(n,p) .=
(

1

n

n∑
i=1

√
n�

(n)
i Y

(n,p)
i ,

1

n

n∑
i=1

∣∣Y (n,p)
i

∣∣p).

Then we have

W̃ (n,p) (d)= T̄p

(
R(n,p)).

We will prove an LDP for (T̄p(R(n,p)))n∈N, and use it to obtain an alternate form
for the annealed LDP that directly relates the annealed and quenched rate func-
tions.

In Section 6.1, we establish an LDP for (R(n,p))n∈N using certain spherical in-
variance properties similar to those discussed in Section 2.5. Then, in Section 6.2,
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we recall a large deviation principle for the empirical measure induced by the coor-
dinates of a random point on the scaled �q sphere n1/q∂Bn,q . Lastly, in Section 6.3,
we apply the aforementioned empirical measure LDP in order to obtain variational
formulas for the limit log mgf’s associated with R(n,p). There, we repeatedly make
use of the continuity results obtained in Lemma 5.7.

6.1. An LDP for (R(n,p))n∈N with a convex rate function. In this subsection,
we prove that (R(n,p))n∈N satisfies an LDP with some convex good rate function.
For our purposes, although the explicit form of the rate function is irrelevant, its
convexity is important. We begin with two elementary lemmas involving convex
analysis.

LEMMA 6.1 (Theorem 5.3 or comment on page 54 of [47]). Let X ,Y be real
vector spaces. Let DF ⊂ X × Y be a convex set, and suppose F : DF → R is a
convex function. Let

F̃ (x)
.= inf

y∈Y:(x,y)∈DF

F(x, y).

Then F̃ is a convex function.

LEMMA 6.2. The map

R
2 � (x, y) �→ J2

(
x

y1/2

)
=−1

2
log

(
1− x2

y

)
∈R

is convex on its domain {(x, y) ∈R
2 : y > x2}.

PROOF. Let f (x, y)
.=−1

2 log(1− x2

y
). We compute the Hessian matrix

(Hf )(x, y)= 1

(y − x2)2

⎛⎝y + x2 −x

−x
1

2y2 x2(2y − x2)
⎞⎠ .

Note that for (x, y) such that y > x2,

det(Hf )= 1

(y − x2)4

x4

2y2

(
y − x2)> 0,

and also

y + x2

(y − x2)2 > 0.

By Sylvester’s criterion, since all leading principal minors are positive, Hf is a
positive definite matrix, so f is convex. �

Next, we exploit the spherical symmetry of �(n) in the following lemma, as we
did previously in Section 2.5, which will then allow us to prove the desired LDP.
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LEMMA 6.3. Fix n ∈ N, and let X(n) = (X1, . . . ,Xn) be a random vector in
R

n independent of �(n) which is uniformly distributed on S
n−1. Then〈√

n�(n),
X(n)

‖X(n)‖n,2

〉
n

(d)= 〈√
n�(n), e

(n)
1

〉
n.

Moreover, 〈√n�(n),X(n)/‖X(n)‖n,2〉n is independent of X(n).

PROOF. Due to the spherical symmetry of
√

n�(n), and since X(n)/‖X(n)‖n,2
lies in S

n−1 and is independent of �(n),

(6.2)
〈√

n�(n),
X(n)

‖X(n)‖n,2

〉
n

(d)= 〈√
n�(n), x

〉
n

(d)= 〈√
n�(n), e

(n)
1

〉
n,

for any x ∈ S
n−1. It remains to show independence. Let π(·, ·) denote the joint

distribution of ( X(n)

‖X(n)‖n,2
,X(n)), with first and second marginals π1 and π2, respec-

tively. For A ∈ B(R) and B ∈ B(Rn), due to the independence of �(n) and X(n),

P

(〈√
n�(n),

X(n)

‖X(n)‖n,2

〉
n

∈A,X(n) ∈ B

)
=
∫
R×Rn

P
(〈√

n�(n), x1
〉
n ∈A

)
1{x2∈B}π(dx1, dx2)

=
∫
R×B

P
(〈√

n�(n), e
(n)
1

〉
n ∈A

)
π(dx1, dx2)

= P
(〈√

n�(n), e
(n)
1

〉
n ∈A

)
P
(
X(n) ∈ B

)
,

= P

(〈√
n�(n),

X(n)

‖X(n)‖n,2

〉
n

∈A

)
P
(
X(n) ∈ B

)
,

where the second and last equalities follow from (6.2). �

PROPOSITION 6.4. Let p ∈ (2,∞). Then the sequence (R(n,p))n∈N defined
by (6.1) satisfies an LDP with a convex good rate function.

PROOF. Applying Lemma 6.3 with X(n) = Y (n,p),

R(n,p) =
(

1

n

n∑
i=1

√
n�

(n)
i

Y
(n,p)
i

‖Y (n,p)‖n,2

∥∥Y (n,p)
∥∥
n,2,

1

n

n∑
i=1

∣∣Y (n,p)
i

∣∣p)

=
(

1

n

〈√
n�(n),

Y (n,p)

‖Y (n,p)‖n,2

〉
n

∥∥Y (n,p)
∥∥
n,2,

1

n

n∑
i=1

∣∣Y (n,p)
i

∣∣p)(6.3)

(d)=
(

1

n

√
n�

(n)
1

∥∥Y (n,p)
∥∥
n,2,

1

n

n∑
i=1

∣∣Y (n,p)
i

∣∣p).
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Define the following R
3-valued sequence of random variables:

Q(n,p) .=
(
�

(n)
1 ,

1

n

n∑
i=1

∣∣Y (n,p)
i

∣∣2, 1

n

n∑
i=1

∣∣Y (n,p)
i

∣∣p), n ∈N.

By Cramér’s theorem in R
2, the sequence Q

(n,p)
2,3

.= ( 1
n

∑n
i=1 |Y (n,p)

i |2,
1
n

∑n
i=1 |Y (n,p)

i |p), n ∈ N, satisfies an LDP with some convex good rate func-
tion, call it Ĵp , with domain DĴp

= R
2+. As obtained in [5] and described in

Section 2.5, (�
(n)
1 )n∈N satisfies an LDP with the convex good rate function

J2(a) = −1
2 log(1− a2) for |a| < 1 (and +∞ elsewhere). Since �(n) and Y (n,p)

are independent, the sequence (Q(n,p))n∈N satisfies an LDP with the convex good
rate function:

JQ,p(a, b, c)
.= J2(a)+ Ĵp(b, c), a, b, c ∈R.

By (6.3) and the contraction principle, (R(n,p))n∈N satisfies an LDP with the good
rate function JR,p defined as follows: for x ∈R and z≥ 0,

JR,p(x, z)
.= inf

{
JQ,p(a, b, c) : |a|< 1, b≥ 0, c ≥ 0, x = ab1/2, z= c

}
= inf

y:y>x2≥0
JQ,p

(
x

y1/2 , y, z

)
.

We now show that JR,p is convex. By Lemma 6.1, it suffices to prove that

(x, y, z) �→ JQ,p

(
x

y1/2 , y, z

)
=−1

2
log

(
1− x2

y

)
+ Ĵp(y, z), 0≤ x2 < y;

is (jointly) convex, which follows from Lemma 6.2, the convexity of Ĵp , and the
fact that the sum of two convex functions is convex. �

6.2. LDP for the empirical measure under the cone measure on n1/q∂Bn,q .
The connection between the annealed and quenched LDPs will make critical use
of a particular LDP for the following sequence of empirical measures. Let Ln,�

denote the empirical measure of
√

n�(n):

(6.4) Ln,�
.= 1

n

n∑
i=1

δ√
n�

(n)
i

.

In Proposition 6.5 below, we state a Sanov-type LDP for this sequence of empirical
measures, with the rate function H : P(R) → [0,∞] defined to be a perturbed
version of relative entropy: for ν ∈ P(R), let

(6.5) H(ν)
.=
⎧⎨⎩H(ν|μ2)+ 1

2

(
1−m2(ν)

)
if m2(ν)≤ 1,

+∞ else,

where recall m2(ν) is the second moment of ν.
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PROPOSITION 6.5. Let r < 2. Then the empirical measure (Ln,�)n∈N satis-
fies an LDP in Pr (R) (equipped with the Wasserstein-r topology) with the strictly
convex good rate function H of (6.5).

This LDP, with respect to the weak topology, can be found in Theorem 6.6 of
[9]. A strengthening to the Wasserstein topology (and in fact, a mild extension to
the surface measure on �q spheres for q ∈ [1,∞] other than q = 2) can be found
in Theorem 1.4 of [33].

6.3. Application of Varadhan’s integral formula. In this section, in order to
obtain an expression for the rate function, we will apply the Gärtner–Ellis theorem.
In view of this, we introduce the limit log mgf �̃p : R2 → R. For t2 ≥ 1

p
, let

�̃p(t1, t2)
.=+∞ and for t1 ∈R, t2 < 1

p
, let

(6.6) �̃p(t1, t2)
.= lim

n→∞
1

n
logE

[
exp

(
n∑

i=1

(
t1
√

n�
(n)
i Y

(n,p)
i + t2

∣∣Y (n,p)
i

∣∣p))],

where
√

n�(n) is distributed according to the cone measure on n1/2∂Bn,2 (i.e., the
rotationally invariant probability measure on n1/2

S
n−1). Before applying Varad-

han’s lemma, we introduce the following technical lemma.

LEMMA 6.6 (Theorem 2.11(2) of [5]). For all n ∈N, the collection of random
variables (|�(n)

1 |, . . . , |�(n)
n |) is sub-independent. That is, for nonnegative nonde-

creasing functions g1, . . . , gn,

E

[
n∏

i=1

gi

(∣∣�(n)
i

∣∣)]≤ n∏
i=1

E
[
gi

(∣∣�(n)
i

∣∣)].
Using the preceding technical result, the following lemma introduces the con-

nection between the limit log mgf’s of (6.6) and (8.11) and the entropy-like rate
function H of (6.5).

LEMMA 6.7. Let p ∈ (2,∞). Then

(6.7) �̃p(t1, t2)= sup
ν∈P(R)

{
�p,ν(t1, t2)−H(ν)

}
, t1, t2 ∈R.

PROOF. The equality in (6.7) is clear for t2 ≥ 1
p

, since then both sides of (6.7)

equal +∞. Thus, fix t1 ∈ R, t2 < 1
p

. Conditioning on �, and using the assumed

independence of � and Y(p), as well as the definition of �p from (2.7), the expec-



4456 N. GANTERT, S. S. KIM AND K. RAMANAN

tation on the right-hand side of (6.6) can be rewritten as

�̃p(t1, t2)= lim
n→∞

1

n
logE

[
n∏

i=1

E
[
exp

((
t1
√

n�
(n)
i Y

(n,p)
i + t2

∣∣Y (n,p)
i

∣∣p))|√n�(n)]]

= lim
n→∞

1

n
logE

[
exp

(
n∑

i=1

�p

(
t1
√

n�
(n)
i , t2

))]

= lim
n→∞

1

n
logE

[
exp

(
nψp,t1,t2(Ln,�)

)]
,

where ψp,t1,t2 : P(R)→R is defined as

ψp,t1,t2(ν)
.=
∫

�p(t1a, t2)ν(da)=�p,ν(t1, t2), ν ∈ P(R).

Recall from Proposition 6.5 that for all r < 2, the sequence (Ln,�)n∈N satisfies an
LDP in Pr (R) equipped with the Wasserstein-r topology, with the good rate func-
tion H. Thus, the variational formula (6.7) would follow from Varadhan’s integral
formula (see Theorem 4.3.1 of [18]), if we can show that the following hypotheses
hold:

(a) for some r < 2, ψp,t1,t2 is continuous with respect to the Wasserstein-r topol-
ogy;

(b) for some κ > 1, ψp,t1,t2 satisfies the exponential moment condition

(6.8) lim sup
n→∞

1

n
logE

[
eκnψp,t1,t2 (Ln,�)]<∞.

We first check condition (a). The continuity of ψp,t1,t2 with respect to the
Wasserstein- p

p−1 topology follows from Lemma 5.7. Condition (a) follows since

for p > 2, we have p
p−1 < 2.

We now establish a strong version of condition (b) that shows the exponen-
tial moment is finite for any κ > 1. Let κ > 1. Because μp is symmetric, �p of
(2.7) is symmetric in its first argument, so �p(t1a, t2) depends on a only through
|a|. Moreover, for fixed t1 ∈ R and t2 < 1

p
, the mapping |a| �→ �p(t1|a|, t2) is

nonnegative and nondecreasing, as can be seen from the expression for �p given
in Lemma 5.7. Thus, the sub-independence property of Lemma 6.6, the fact that
μp ∈ Tp by Lemma 5.5, and the definition (5.2) of Tp imply that for a constant
Cp,t1,t2 not depending on n, κ,�(n),

E
[
exp

(
κnψp,t1,t2(Ln,�)

)] ≤ n∏
i=1

E
[
exp

(
κ�p

(
t1
√

n�
(n)
i , t2

))]

≤
n∏

i=1

E
[
exp

(
κCp,t1,t2 + κCp,t1,t2

∣∣√n�
(n)
i

∣∣p/(p−1))](6.9)

= exp(nκCp,t1,t2)E
[
exp

(
κCp,t1,t2

∣∣√n�
(n)
1

∣∣p/(p−1))]n
.
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Let (Z1,Z2, . . . ) be a sequence of i.i.d. standard Gaussian random variables, and
note that due to Lemma 3.1 and the strong law of large numbers,

√
n�

(n)
1

(d)=
√

nZ1

‖Z(n)‖n,2

n→∞−−−→
P-a.s.

Z1.

Applying logarithms, dividing by n, and taking limits in (6.9) shows that for r =
p

p−1 ,

lim sup
n→∞

1

n
logE

[
exp

(
κnψp,t1,t2(Ln,�)

)]
≤ κCp,t1,t2 + lim sup

n→∞
logE

[
exp

(
κCp,t1,t2

∣∣√n�
(n)
1

∣∣r)]
≤ κCp,t1,t2 + logE

[
exp

(
κCp,t1,t2 |Z1|r)]<∞,

where the interchange of lim sup and expectation is due to Fatou’s lemma, and the
last display is finite since r < 2 for p > 2. �

In the following two lemmas, we establish some properties of the minimizers
of the variational problem of Lemma 6.7. We later massage these results to obtain
the variational formula of Theorem 2.7.

LEMMA 6.8 (Lemma 2.4 of [33]). Let K2
.= {ν ∈ P(R) :m2(ν)≤ 1}. The set

K2 is convex, nonempty, and compact with respect to the Wasserstein-r topology
for all r < 2.

LEMMA 6.9. Let p ∈ (2,∞) and for fixed (t1, t2) ∈ R
2, let φ : P(R)→ R

denote the functional being maximized in (6.7),

φ(ν)
.=�p,ν(t1, t2)−H(ν).

Then φ is strictly concave and upper semicontinuous [with respect to the
Wasserstein- p

p−1 topology on Pp/(p−1)(R)]. As a consequence, the supremum in
(6.7) is uniquely attained at some optimal ν◦ such that m2(ν

◦)≤ 1.

PROOF. From the definition of H in (6.5), it follows that the domain of H is
the convex compact nonempty set K2 of Lemma 6.8, so it suffices to restrict the
supremum in the variational problem (6.7) to K2 ⊂ P(R). For ν ∈ K2, we see
that φ is the sum of a linear functional ν �→ �p,ν(t1, t2), and the negative of the
strictly convex rate function H of (6.5). As for upper semicontinuity, first note
that ν �→ �p,ν(t1, t2) is continuous due to Lemma 5.7. Since p

p−1 < 2 for p > 2,
it follows from Proposition 6.5 that −H is upper semicontinuous with respect to
Wasserstein- p

p−1 . This shows that φ is strictly concave and upper semicontinuous
on its domain K2, so the supremum of φ is uniquely attained on K2. �
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THEOREM 6.10 (minimax theorem, see Corollary 3.3 of [52]). Let X ,Y be
topological vector spaces. Suppose C ⊂ X is a compact convex nonempty subset,
and D ⊂ Y is a convex subset. Let F : C ×D→R be a function such that:

• for all y ∈D, F(·, y) is lower semicontinuous and convex on C;
• for all x ∈C, F(x, ·) is upper semicontinuous and concave on D.

Then

inf
x∈C

sup
y∈D

F(x, y)= sup
y∈D

inf
x∈C

F(x, y).

LEMMA 6.11. Let p ∈ (2,∞). Then, for τ1, τ2 ∈R,

(6.10) �̃∗p(τ1, τ2)= inf
ν∈P(R)

{
�∗

p,ν(τ1, τ2)+H(ν)
}
.

PROOF. We apply the minimax theorem (Theorem 6.10) to the following:

• X =M(R), the space of finite signed measures on R with finite p
p−1 th absolute

moment, equipped with the Wasserstein- p
p−1 topology;

• Y =R
2;

• C =K2 = {ν ∈X : ν ∈ P(R),m2(ν)≤ 1};
• D =R× (−∞, 1

p
).

• Fix τ1, τ2 ∈R. For ν ∈ C and (t1, t2) ∈D, let

(6.11) F
(
ν, (t1, t2)

) .= t1τ1 + t2τ2 −�p,ν(t1, t2)+H(ν),

where �p,ν and H are defined as in (2.8) and (6.5), respectively.

It is clear that X ,Y,D satisfy the hypotheses of the minimax theorem. The hy-
potheses for C =K2 follow from Lemma 6.8, since p

p−1 < 2.
To verify the desired properties of F , we first fix (t1, t2) ∈ D. Then the lower

semicontinuity and convexity of F(·, (t1, t2)) on C follows from Lemma 6.9. Next,
fix ν ∈ C. The lower semicontinuity of �p,ν follows from Lemma 5.9. As for
convexity, Lemma 5.8 says that �p is convex on D, and hence, by linearity of
expectation, �p,ν is convex on D. Since (t1, t2) �→ t1τ1 + t2τ2 is continuous and
linear, it follows that F(ν, ·) is upper semicontinuous and concave on D.

Lastly, substitute the representation obtained in Lemma 6.7 into the expression
for the Legendre transform �̃∗p , and then apply Theorem 6.10 to F as defined
in (6.11):

�̃∗p(τ1, τ2)= sup
t1∈R,t2∈R

{
t1τ1 + t2τ2 − �̃p(t1, t2)

}
= sup

t1∈R,t2∈R

{
t1τ1 + t2τ2 − sup

ν∈P(R)

{
�p,ν(t1, t2)−H(ν)

}}
= sup

(t1,t2)∈D

inf
ν∈C

{
t1τ1 + t2τ2 −�p,ν(t1, t2)+H(ν)

}
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= inf
ν∈C

sup
(t1,t2)∈D

{
t1τ1 + t2τ2 −�p,ν(t1, t2)+H(ν)

}
= inf

ν∈P(R)

{
�∗

p,ν(τ1, τ2)+H(ν)
}
,

where the third and fifth equalities hold since �p,ν(t1, t2)=+∞ for t2 > 1
p

, and
H(ν)=+∞ if either ν ∈M(R) \P(R) or m2(ν) > 1. �

LEMMA 6.12. The variational formula (2.14) of Theorem 2.7 holds for p = 2,
and the infimum is attained at ν = μ2.

PROOF. For p = 2, it follows from elementary calculations that for w ∈ R

such that w2 ≥m2(ν), we have I
qu
2,ν(w)=+∞, and for w2 < m2(ν),

I
qu
2,ν(w)=−1

2
log

(
1− w2

m2(ν)

)
.

It is clear that for all w ∈R, Iqu
2,ν(w) is nonincreasing in m2(ν) ∈ (w2,∞]. Observe

from (6.5) that H(ν)≥ 0, with equality if and only if ν = μ2. Hence, for w ∈R,

I
qu
2,μ2

(w)= I
qu
2,μ2

(w)+H(μ2)≥ inf
ν∈P(R):
m2(ν)≤1

{
I

qu
2,ν(w)+H(ν)

}≥ inf
ν∈P(R):
m2(ν)≤1

I
qu
2,ν(w)

= I
qu
2,μ2

(w).

Thus, μ2 minimizes the variational formula (2.14). �

PROOF OF THEOREM 2.7. For p = 2, the theorem follows from Lemma 6.12.
As for p ∈ (2,∞) consider the quantity R(n,p) of (6.1). By Proposition 6.4, the
sequence (R(n,p))n∈N satisfies an LDP with a convex good rate function, which
we denote here by JR,p . Note that �̃p of (6.6) satisfies

�̃p(t1, t2)= lim
n→∞

1

n
logE

[
exp

(
n
〈
(t1, t2),R

(n,p)〉)], t1 ∈R, t2 <
1

p
.

For t1 ∈R, t2 < 1
p

, there exist ε1, ε2 > 0 such that �̃p(t1(1+ ε1), t2(1+ ε2)) <∞.
Therefore, we can apply Varadhan’s lemma; see, for example, Theorem 4.3.1 and
condition (4.3.3) of [18] in order to write

(6.12) �̃p(t1, t2)= sup
τ1,τ2

{
t1τ1 + t2τ2 − JR,p(τ1, τ2)

}
, t1 ∈R, t2 <

1

p
.

We claim that the equality (6.12) in fact holds for all t1, t2 ∈ R. It remains to
show that the right- hand side is infinite for t2 ≥ 1

p
. Due to Cramér’s theorem, the

sequence (R
(n,p)
2 )n∈N, defined by

R
(n,p)
2

.= 1

n

n∑
i=1

∣∣Y (n,p)
i

∣∣p,
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satisfies an LDP with the good rate function �̂∗p , where

�̂∗p(τ2)
.= sup

t2∈R
{
t2τ2 − �̂p(t2)

}
, τ2 ∈R;

�̂p(t2)
.= log

∫
R

et2|y|pμp(dy), t2 ∈R.

Due to the contraction principle and the continuity of the projection map
(τ1, τ2) �→ τ2, we have

�̂∗p(τ2)= inf
τ1

JR,p(τ1, τ2).

Note that the infimum is attained at some τ ∗1 ∈R, because JR,p is lower semicon-
tinuous and has compact level sets (since it is a good rate function). Then we find
that for all t1, t2 ∈R,

sup
τ1,τ2

{
t1τ1 + t2τ2 − JR,p(τ1, τ2)

}≥ sup
τ2

{
t2τ2 + t1τ

∗
1 − JR,p

(
τ ∗1 , τ2

)}
= t1τ

∗
1 + sup

τ2

{
t2τ2 − �̂∗p(τ2)

}
= t1τ

∗
1 + �̂p(t2).

But from the definition of �̂p , it is clear that �̂p(t2)=∞ for t2 ≥ 1
p

. Thus, (6.12)
is true for all t1, t2 ∈ R, so due to the convexity of JR,p , Legendre duality (see,
e.g., Lemma 4.5.8 of [18]) implies that JR,p = �̃∗p .

Applying the contraction principle, (6.10), and the definition (2.9) of Iqu
p,ν , we

write the annealed rate function as

I
an
p (w)= inf

τ1∈R,τ2∈R:
τ1τ

−1/p
2 =w

�̃∗p(τ1, τ2)

= inf
τ1∈R,τ2>0:
τ1τ

−1/p
2 =w

inf
ν∈P(R)

{
�∗

p,ν(τ1, τ2)+H(ν)
}

= inf
ν∈P(R)

inf
τ1∈R,τ2>0:
τ1τ

−1/p
2 =w

{
�∗

p,ν(τ1, τ2)+H(ν)
}

= inf
ν∈P(R)

{
I

qu
p,ν(w)+H(ν)

}
.

The definition of H in (6.5) allows the restriction of the variational problem to
measures ν satisfying m2(ν)≤ 1, which completes the proof. �

REMARK 6.13. The essence of the proof of Theorem 2.5 is a strong law of
large numbers for 1

n

∑n
i=1 �p(t1

√
n�

(n)
i , t2). Similarly, the essence of the proof
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of Theorem 2.7 is a large deviation principle for 1
n

∑n
i=1 �p(t1

√
n�

(n)
i , t2). The

nontriviality of establishing such an LDP is due to the fact that[
�p

(
t1
√

n�
(n)
i , t2

)]
i=1,...,n;n∈N

is an infinite triangular array of dependent random variables. Similar random struc-
tures have previously been analyzed, for example, in [44] for LLN and in [22, 56]
for LDP. Note that this triangular array does have rich structure. For example,
each row is a finite exchangeable vector. In addition, the Maxwell–Poincaré–Borel
lemma (see, e.g., Lemma 1.2 of [35]) says that for fixed k, the random variables(√

n�
(n)
1 , . . . ,

√
n�

(n)
k

)
are asymptotically independent as n→∞. Nonetheless, none of the existing lit-
erature on general triangular arrays with such structure appears to be immediately
applicable in our setting, which is why we appealed to the empirical measure ver-
sions (i.e., for Ln,�) of the LLN (in the proof of Theorem 2.5) and LDP (Proposi-
tion 6.5). As a side note, observe that the corresponding CLT for Ln,� (a Donsker-
type theorem) can be found in [54].

7. Atypical directions of projection. The goal of this section is to prove The-
orem 2.9. We state some preliminary results in Section 7.1. Then we address the
quenched case in Section 7.2 and the annealed case in Section 7.3.

REMARK 7.1. For θ = ι [i.e., the sequence of directions 1√
n
(1,1, . . . ,1) ∈

S
n−1, n ∈ N], note that W̃

(n,p)
ι of (3.7) corresponds to the following “self-

normalized sum”:

(7.1) W̃ (n,p)
ι =

1
n

∑n
i=1 Y

(n,p)
i

( 1
n

∑n
i=1 |Y (n,p)

i |p)1/p
.

The quantity W̃
(n,p)
ι when Y

(n,p)
i has a general law (not necessarily μp) has been

analyzed in [10, 17, 32, 50]. In particular, [50] establishes upper-tail large devi-
ation asymptotics for (W̃

(n,p)
ι )n∈N even if the law of Y

(n,p)
i does not satisfy any

exponential moment conditions. In our setting where Y
(n,p)
i ∼ μp , it is natural to

ask how the rate function of [50] compares with our universal rate function I
qu
p,μ2 .

A consequence of Theorem 2.9 is that the large deviation rate function for the self-
normalized sums (W̃

(n,p)
ι )n∈N is atypical, in the sense that it does not coincide

with I
qu
p,μ2 .

7.1. Preliminary properties of the rate functions. In this section, we establish
some elementary properties of our various rate functions.
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LEMMA 7.2. The domains of the rate functions Iqu
p,μ2 of (2.9), �∗p the Legen-

dre transform of the function �p of (2.7), and I
cr
p of (2.15) satisfy the following:

1. for p ∈ [2,∞), D◦
I
qu
p,μ2

⊂ (−1,1);

2. for p ∈ (1,∞), D◦
�∗p = {(τ1, τ2) ∈R×R+ : |τ1|p < τ2};

3. for p ∈ (1,∞), D◦
Icr
p
= (−1,1).

PROOF. We first prove 1. By Hölder’s inequality, for x ∈R
n and p > 2,

n∑
i=1

x2
i ≤

(
n∑

i=1

|xi |p
)2/p( n∑

i=1

1

)(p−2)/p

⇒ ‖x‖n,2 ≤ ‖x‖n,pn
1
2− 1

p .

Thus, n1/p
Bn,p ⊆ n1/2

Bn,2, and they intersect at “corners” of the form (±1,±1,

. . . ,±1) ∈R
n. As a consequence,

sup
{∣∣〈x, y〉n

∣∣ : x ∈ n1/p
Bn,p, y ∈ n1/2

Bn,2
}= n.

This shows that the supports of the laws of W(n,p) of (2.1) and W
(n,p)
θ of (2.6) are

both equal to [−1,1], and hence, D◦
I
qu
p,μ2

⊂ (−1,1).

Now we prove 2. Note that �∗p is the Cramér rate function for the sequence of

sums of i.i.d. random variables 1
n

∑n
i=1 ηi , where in our case ηi = (Yi, |Yi |p) ∈R

2

for Yi ∼ μp , i ∈N. A classical fact from large deviation theory says that the closure
of the domain of the Legendre transform of the log mgf of a probability measure
ν ∈ P(Rd) is equal to the closure of the convex hull of the support of ν [16],
Lemma 2.4. In our setting, this says that

D�∗p = conv
{
(τ1, τ2) ∈R×R+ : |τ1|p = τ2

}= {
(τ1, τ2) ∈R×R+ : |τ1|p ≤ τ2

}
.

Since D�∗p is convex, this implies 2.
Lastly, the fact that Icr

p is obtained from �∗p via the contraction principle under

the map (τ1, τ2) �→ τ1τ
−1/p
2 shows that D◦

Icr
p
= (−1,1). �

The preceding lemma explains why in Theorem 2.9, we limit our results to the
case w ∈ (−1,1). In the following lemma, we show that the relevant variational
problems achieve their optima within these domains.

LEMMA 7.3. Fix p ∈ (1,∞):

1. Let (τ1, τ2) ∈D�∗p . Then, in the variational problem (i.e., the Legendre trans-
form) that defines �∗p ,

(7.2) �∗p(τ1, τ2)
.= sup

t1∈R,t2<1/p

{
t1τ1 + t2τ2 −�p(t1, t2)

}
,

the supremum is uniquely attained.
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2. Let w ∈D
I
qu
p,μ2

. Then, in the variational problem of (2.9) that defines Iqu
p,μ2 , the

infimum is (not necessarily uniquely) attained.

PROOF. 1. Since �p is strictly convex by Lemma 5.8, it follows from standard
results (see, e.g., Theorem 23.5 and Theorem 26.3 of [47]) that the supremum in
(7.2) is uniquely attained.

2. For τ > 0 and w ∈ (−1,1), let gw(τ)
.=�∗

p,μ2
(wτ 1/p, τ ). Note that for w ∈

(−1,1), we can rewrite (2.9) as

I
qu
p,μ2

(w)= inf
τ2>0

gw(τ2).

Note that gw is lower semicontinuous due to the lower semicontinuity of �∗
p,μ2

and
the continuity of the map τ �→ (wτ 1/p, τ ). To show that the infimum is attained,
it suffices to show boundedness of lower level sets, which implies compactness
since gw is lower semicontinuous. Note that for all τ > 0, the function �∗

p,μ2
(·, τ )

is symmetric about 0 and convex, and hence minimized at 0. As a consequence,
for all w ∈ (−1,1),

gw(τ)≥�∗
p,μ2

(0, τ )= sup
t1∈R,t2<

1
p

{
t2τ −�p,μ2(t1, t2)

}
≥ sup

t2<
1
p

{
t2τ −�p,μ2(0, t2)

}

= sup
t2<

1
p

{
t2τ + 1

p
log(1− pt2)

}

= 1

p
(τ + 1− log τ),

where the equality in the third line follows from Lemma 5.7 and the fact that
�p,μ2(0, ·) = �p(·) by the definition of �p,μ2 in (2.8). Since limτ→∞(τ + 1 −
log τ)=∞, we find that limτ→∞ gw(τ)=∞, so gw has bounded level sets. �

7.2. Comparison of quenched and unweighted LDPs. In this section, we
present the proof of Theorem 2.9, which entails a comparison of the log mgf’s
for the quenched and “Cramér”-type LDPs. We begin by setting some notation
that will allow us to state two lemmas that identify conditions under which a log
mgf is “more” or “less” convex than t �→ t2.

Let β > 0, and for p ∈ [1,∞), let μp,β(dy) be the absolutely continuous
probability measure on R with density fp,β(y)

.= Cp,βe−|y|p/(pβ), for an ap-
propriate normalization constant Cp,β . For p = ∞, let μ∞,β(dy) = μ∞(dy) =
1[−1,1](y) dy. Note that μp = μp,1 and elementary calculations show that Cp,β =
Cp,1β

−1/p .
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LEMMA 7.4 (Theorem 8 of [7]). The map R+ � t �→ log Mμp,1/p
(
√

t) is con-
cave for p ∈ [2,∞] and convex for p ∈ [1,2].

We can mold this lemma to apply to the function �p of (2.7).

LEMMA 7.5. Let p ∈ [1,∞) and t2 < 1
p

. The map R+ � t1 �→�p(
√

t1, t2) is
concave but not linear for p > 2, linear for p = 2, and convex but not linear for
p < 2.

PROOF. It is easy to see that Mμp,β (t)=Mμp,1(tβ
1/p)=Mμp,1/p

(tp1/pβ1/p).
Together with Lemma 7.4, this implies that for all β > 0, the map t �→
log Mμp,β (

√
t) is concave for p ∈ [2,∞] and convex for p ∈ [1,2]. For t1 ∈ R,

t2 < 1
p

, we consider the case β = (1− pt2)
−1 and apply Lemma 5.7 to see that

(7.3) �p(t1, t2)=− 1

p
log(1− pt2)+ log Mμ

p,(1−pt2)−1 (t1).

This proves the concavity (resp., convexity) of t1 �→�p(
√

t1, t2) for p ≥ 2 (resp.,
p ≤ 2).

It remains to show that linearity holds if and only if p = 2. Note that for all
β > 0, μ2,β is a Gaussian measure with mean 0 and variance β; thus, for t ∈ R+,
we have

log Mμ2,β
(
√

t)= β√
2
t.

Conversely, if t1 �→ �p(
√

t1, t2) is linear, then (7.3) implies that t1 �→
log Mμ

p,(1−pt2)−1 (t1) is quadratic, so μp,(1−pt2)
−1 must be Gaussian, hence p = 2.

�

We apply the concavity and convexity of the preceding lemma to prove inequal-
ities for the function �p,ν defined in (2.8).

LEMMA 7.6. Let ν ∈ P(R) be nondegenerate (i.e., not a Dirac mass at a
single point). If p ∈ (2,∞) and m2(ν)≤ 1, then

�p,ν(t1, t2)≤�p(t1, t2), t1 ∈R, t2 <
1

p
,

with equality if and only if t1 = 0. If p ∈ (1,2) and m2(ν)≥ 1, then

�p,ν(t1, t2)≥�p(t1, t2), t1 ∈R, t2 <
1

p
,

with equality if and only if t1 = 0.
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PROOF. Fix p ∈ (2,∞) and nondegenerate ν ∈ P(R) such that m2(ν) ≤ 1.
Let X ∼ ν. Due to the concavity of t1 �→�p(

√
t1, t2) from Lemma 7.5, Jensen’s

inequality and the fact that t1 �→�p(t1, t2) is symmetric and increasing for t1 > 0,

�p,ν(t1, t2)= Eν

[
�p

((
t2
1 X2)1/2

, t2
)]≤�p

((
Eν

[
t2
1 X2])1/2

, t2
)≤�p(t1, t2).

Since t1 �→�p(
√

t1, t2) is not linear for p > 2, it follows that the first inequality
above is an equality if and only if t1 = 0 (i.e., when the random variable t2

1 X2 is
degenerate). The result for p ∈ (1,2) and m2(ν)≥ 1 follows from similar calcula-
tions. �

REMARK 7.7. The primary argument in the preceding proof of Lemma 7.6 is
the concavity (or convexity) of �◦√· and Jensen’s inequality. A similar combina-
tion of tools was employed in [7], but to a different end; in particular, on pages 2,
16 and 19 of [7], Jensen’s inequality is applied to a log-concave function f and a
vector v ∈R

n to obtain the inequality
n∏

i=1

f (vi)
1/n ≤ f

(
1

n

n∑
i=1

vi

)
.

In that setting, this yields an upper bound on the volume of a slab orthogonal to
any θ(n) ∈ S

n−1—an upper bound that is attained by the slab orthogonal to ι(n). On
the other hand, we use Jensen’s inequality in a slightly different way (with respect
to a general measure instead of a discrete measure) to show that the precise rate
function for projections onto σ -a.e. θ ∈ S differs (i.e., < rather than just ≤) from
the rate function for projections onto ι.

PROOF OF THEOREM 2.9. As observed in Remark 7.1, as a consequence of
the representation in Lemma 3.1 and Lemma 3.2, (W

(n,p)
ι )n∈N satisfies the same

LDP as the sequence (W̃
(n,p)
ι )n∈N of self-normalized sums defined in (7.1). The

LDP for (W̃
(n,p)
ι )n∈N with rate function I

cr
p of (2.15) follows from Cramér’s the-

orem in R
2 for 1

n

∑n
i=1(Y

(n,p)
i , |Y (n,p)

i |p), n ∈ N, and the contraction principle
applied to the map T̄p of (5.6).

As for comparing the quenched and self-normalized sums rate functions, let
p ∈ (2,∞), (τ1, τ2) ∈D�∗p , and define(

t
τ1,τ2
1 , t

τ1,τ2
2

) .= arg max
t1∈R,t2<

1
p

{
t1τ1 + t2τ2 −�p(t1, t2)

}
,

where the supremum is uniquely attained due to Lemma 7.3. Then it follows from
the definition of the Legendre transform and Lemma 7.6 that

�∗
p,μ2

(τ1, τ2) ≥ t
τ1,τ2
1 τ1 + t

τ1,τ2
2 τ2 −�p,μ2

(
t
τ1,τ2
1 , t

τ1,τ2
2

)
(�)≥ t

τ1,τ2
1 τ1 + t

τ1,τ2
2 τ2 −�p

(
t
τ1,τ2
1 , t

τ1,τ2
2

)
(7.4)

= �∗p(τ1, τ2).
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Note that Lemma 7.6 shows that the inequality (�) is an equality if and only if
t
τ1,τ2
1 = 0. Due to the strict convexity of �p , we have (t

τ1,τ2
1 , t

τ1,τ2
2 )=∇�∗p(τ1, τ2).

Since by Lemma 5.8, �p is essentially smooth (resp., symmetric in its first argu-
ment), �∗p is strictly convex (resp., symmetric in its first argument). Therefore,
t
τ1,τ2
1 = ∂τ1�

∗
p(τ1, τ2)= 0 if and only if τ1 = 0.

Recall from Lemma 7.2 that D◦
I
qu
p,μ2

⊂ (−1,1)=D◦
Icr
p

. For w ∈ (−1,1) \D
I
qu
p,μ2

,

we have I
cr
p (w) < I

qu
p,μ2(w)=∞. For w ∈D

I
qu
p,μ2

, let(
τw

1 , τw
2
) ∈ arg min

τ1∈R,τ2>0:
τ1τ

−1/p
2 =w

�∗
p,μ2

(τ1, τ2),

where a minimizer exists due to Lemma 7.3(2). Then it follows from (7.4) and the
definition of Icr

p from (2.15), that

∞> I
qu
p,μ2

(w)=�∗
p,μ2

(
τw

1 , τw
2
) (‡)≥ �∗p

(
τw

1 , τw
2
)≥ inf

τ1∈R,τ2>0:
τ1τ

−1/p
2 =w

�∗p(τ1, τ2)= I
cr
p (w).

The assumption that w ∈D
I
qu
p,μ2

implies that (τw
1 , τw

2 ) ∈D�∗p . Thus, the inequality

(‡) is strict if and only if the corresponding inequality (�) from (7.4) is strict,
which is the case if and only if τw

1 �= 0. If w �= 0, then the constraint w = τ1τ
−1/p
2

implies that τw
1 �= 0, so (‡) is a strict inequality. On the other hand, if w = 0, then

I
qu
p,μ2(0)= 0= I

cr
p (0). This completes the proof for p > 2.

The proof is essentially identical for p < 2, with convexity replacing concavity.
The identification in the case p = 2 follows from Theorem 2.12, which states that
the rate function associated with (W

(n,2)
θ )n∈N is the same for all θ ∈ S, in particular

for θ(n) = ι(n) = 1√
n
(1,1, . . . ,1). �

7.3. Comparison of annealed and unweighted LDPs. Using similar methods
as for Theorem 2.9, combined with the limit log mgf �̃p of (6.6), we obtain the fol-
lowing result which compares the sequence of fixed directions ι with the sequence
of random directions �.

PROPOSITION 7.8. For p ∈ (2,∞),

I
an
p (w)≥ I

cr
p (w), w ∈ (−1,1),

with equality if and only if w = 0.

PROOF. Recall the definition of the limit log mgf �̃p given in (6.6). Due to
the variational representation stated in Lemma 6.7 and Lemma 6.9, there exists an
optimal probability measure ν◦p such that

(7.5) �̃p(t1, t2)=�p,ν◦p(t1, t2)−H
(
ν◦p
)
.
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Note that m2(ν
◦
p)≤ 1, so by Lemma 7.6,

�p,ν◦p(t1, t2)≤�p(t1, t2), t1 ∈R, t2 <
1

p
,

with equality if and only if t1 = 0. Together with (7.5), this shows that

�̃p(t1, t2)≤�p(t1, t2)−H
(
ν◦p
)≤�p(t1, t2),

with equality only if t1 = 0 and ν◦p = μ2. From this inequality, the same consid-
erations as in the proof of Theorem 2.9—except with �p,μ2 there replaced by �̃p

here—complete the proof. �

8. Analogous results for product measures. In this section, we consider pro-
jections of a random vector distributed according to a product measure, and state
the analogous “product measure” versions of the “�p ball” results of Section 2. For
n ∈N and γ ∈ P(R), let

(8.1) X(n,γ ) = (
X

(n,γ )
1 , . . . ,X(n,γ )

n

)∼ γ⊗n,

independent of �(n). Let μ∞ be the uniform measure on [−1,1], whose density
is the limit f∞ = limp→∞ fp of the densities fp defined in (1.2). The p = ∞
analogs of our results stated in Section 2 follow as a consequence of the results in
this section with γ = μ∞.

The results in the product measure case are proved using very similar arguments
as in the proofs of the �p ball case for p <∞, given in Sections 4–7. In fact,
the arguments in this section are typically slightly simpler, because the a priori
independence of the coordinates of X(n,γ ) eliminates the need to appeal to the
representation of the uniform measure on the �p ball given in Section 3. For this
reason, we will mostly only sketch the proofs in this section, highlighting only the
main differences.

8.1. Annealed LDP. For n ∈N and γ ∈ P(R), let

W(n,γ ) .= 1

n1/2

〈
X(n,γ ),�(n)〉

n,(8.2)

�γ (t0, t1)
.= log

∫
R

∫
R

et0z
2+t1zxμ2(dz)γ (dx), t0, t1 ∈R,(8.3)

I
an
γ (w)

.= inf
τ0>0,τ1∈R:
τ
−1/2
0 τ1=w

�∗γ (τ0, τ1).(8.4)

THEOREM 8.1. Let γ lie in the space T2 defined in (5.2). Then the sequence
(W(n,γ ))n∈N satisfies an LDP with the quasiconvex good rate function I

an
γ .
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PROOF. Let Z(n) = (Z
(n)
1 , . . . ,Z

(n)
n ) be a standard Gaussian random vector

(i.e., distributed according to μ⊗n
2 ), independent of X(n,γ ). Define

(8.5) W̃ (n,γ ) .= 1

n1/2

〈
X(n,γ ),

Z(n)

‖Z(n)‖n,2

〉
n

,

and consider the associated sum of i.i.d. R2-valued random variables,

S(n,γ ) .= 1

n

n∑
i=1

(∣∣Z(n)
i

∣∣2,X(n,γ )
i Z

(n)
i

)
.

Note that �γ of (8.3) is the log mgf of the summands of S(n,γ ).

Since �(n) (d)= Z(n)/‖Z(n)‖n,2 as shown in Lemma 3.1, we have W(n,γ ) (d)=
W̃ (n,γ ), so it suffices to prove an LDP for (W̃ (n,γ ))n∈N. Note that W̃ (n,γ ) =
T (S(n,γ )), where T :R2 →R is defined by

(8.6) T (τ0, τ1)= τ
−1/2
0 τ1.

It is straightforward to check that if γ ∈ T2, then 0 ∈D◦
�γ

(see the proof of The-
orem 2.2 in Section 4.1 for a related calculation), so by Cramér’s theorem, the
sequence (S(n,γ ))n∈N satisfies an LDP in R

2 with the good rate function �∗γ .
Due to the continuity of T on D�∗γ , the contraction principle yields the LDP for

(W̃ (n,γ ))n∈N with the desired rate function I
an
γ . �

8.2. Quenched LDP and atypical projection directions. Recall the mgf Mγ of
(5.1). For n ∈N and γ, ν ∈ P(R), define

W
(n,γ )
θ

.= 1

n1/2

〈
X(n,γ ), θ (n)〉

n,(8.7)

�γ,ν(t1)
.=
∫
R

log Mγ (t1u)ν(du), t1 ∈R,(8.8)

I
qu
γ,ν(w)

.=�∗
γ,ν(w).(8.9)

THEOREM 8.2. Let γ ∈ Tq for some q > 1. Then, for σ -a.e. θ ∈ S, the se-

quence (W
(n,γ )
θ )n∈N satisfies an LDP with the convex good rate function I

qu
γ,μ2 .

A version of Theorem 8.2 with weaker conditions can be found in Theorem 2.4
of [27]. The reader can also find in Theorem 2.5 of [27] a comparison of I

qu
γ,μ2

and (log Mγ )∗; the latter is the large deviation rate function for the sequence of
empirical means of X(n,γ ), as given by Cramér’s theorem.
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8.3. Variational formula.

THEOREM 8.3. Let γ ∈ Tq for some q > 2. Then, for all w ∈R,

(8.10) I
an
γ (w)= inf

ν∈P(R):
m2(ν)≤1

{
I

qu
γ,ν(w)+H(ν|μ2)+ 1

2

(
1−m2(ν)

)}
.

In particular, this implies that for all w ∈R, Ian
γ (w)≤ I

qu
γ,μ2(w).

To prove Theorem 8.3, we first establish appropriate versions of the lemmas
established in Section 6. Let γ ∈ Tq for some q > 2, and define the functional
�̃γ :R→R as follows:

(8.11) �̃γ (t)
.= lim

n→∞
1

n
logE

[
exp

(
n∑

i=1

t
√

n�
(n)
i X

(n,γ )
i

)]
, t ∈R.

LEMMA 8.4. Let γ ∈ Tp . Then

(8.12) �̃γ (t)= sup
ν∈P(R)

{
�γ,ν(t)−H(ν)

}
, t ∈R.

In addition, �̃γ (t) <∞ for all t ∈R.

SKETCH OF PROOF. The proof of Lemma 8.12 centers around Varadhan’s
lemma, and follows from similar calculations as in the proof of Lemma 6.7, except
with log Mγ in place of �p . �

LEMMA 8.5. Let γ ∈ Tp , and for fixed t ∈ R, let φ : P(R)→ R denote the
functional being maximized in (8.12):

φ(ν)
.=�γ,ν(t)−H(ν).

Then φ is strictly concave and upper semicontinuous [with respect to the
Wasserstein- p

p−1 topology on Pp/(p−1)(R)]. As a consequence, the supremum in
(8.12) is uniquely attained at some optimal ν◦ such that m2(ν

◦)≤ 1.

SKETCH OF PROOF. The proof is essentially identical to the proof of
Lemma 6.9, except the continuity of ν �→�γ,ν(t) is given by Lemma 5.6 instead
of Lemma 5.7. �

LEMMA 8.6. Let γ ∈ Tp . Then, for τ ∈R,

(8.13) �̃∗γ (τ )= inf
ν∈P(R)

{
�∗

γ,ν(τ )+H(ν)
}
.
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SKETCH OF PROOF. The proof of Lemma 8.6 is similar to the proof of
Lemma 6.11, where the main task is to verify the conditions of the minimax theo-
rem (Theorem 6.10), in order to apply it to the variational formula (8.12). Using the
notation of Lemma 6.11, the main differences in this case are: we set Y =R, D =
R, and for fixed τ , the functional F is set equal to F(ν, t)

.= tτ −�γ,ν(t)+H(ν)

for ν ∈ C and t ∈D. We omit the details. �

PROOF OF THEOREM 8.3. A straightforward modification of the proof of
Proposition 6.4 shows that (W(n,γ ))n∈N satisfies an LDP with a convex good rate
function. Also note that the domain of the limit log mgf �̃γ is all of R. We utilize
the following fact for large deviations in a topological vector space X : if a given
rate function is convex in X , and the domain of the associated limit log mgf is the
entire dual space X ∗, then the rate function can be identified with the Legendre
transform of the limit log mgf (see, e.g., Theorem 4.5.10 on page 152 of [18]).
Therefore, the rate function for (W(n,γ ))n∈N is �̃∗γ , the Legendre transform of the
limit log mgf �̃γ defined in (8.11). This observation and the variational formula
(8.13) complete the proof. �

9. Analysis of the variational problem. In this section, we analyze the vari-
ational problems that relate the annealed and quenched rate functions. In Sec-
tion 9.1, we analyze the variational problem of Theorem 8.3 for γ = μ∞. In
Section 9.2, we formulate some conjectures for the variational problem of The-
orem 2.7.

9.1. Comparison of quenched and annealed rate functions for p =∞. Note
that for w = 0 and p ∈ [2,∞), the infimum in the variational problem (2.14) is
attained at μ2. Roughly speaking, this occurs because w = 0 is the (LLN) limit of
the random projection W(n,p), and the Gaussian measure μ2 is the (LLN) limit of
the empirical measure defined in (6.4),

Ln,� = 1

n

n∑
i=1

δ√
n�

(n)
i

⇒ μ2 as n→∞.

For general w �= 0, the minimizer (assuming it exists) may not necessarily be the
Gaussian measure.

For p = 2, Lemma 6.12 states that the infimum is attained at μ2 for all w ∈ R.
This is because the spherical symmetry of the uniform law on Bn,2 is such that a
projection onto a random direction has the same law as a projection onto a fixed
direction (say, the canonical first coordinate e

(n)
1 ). In other words, large deviations

of the random directions of projection play no role in the annealed large deviations,
when p = 2.

In contrast, as clarified in Proposition 9.2 below, the random directions of pro-
jection do play a role when the random vector to be projected is drawn according
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to the uniform measure on [−1,1]n instead of the uniform measure on Bn,2. That
is, the unique minimizer of (8.10) is not μ2, which suggests the that deviations of
the underlying “environment” (the directions of projection) play a nontrivial role
in the overall annealed large deviations.

LEMMA 9.1. For γ ∈ T2 and w ∈ R such that Ian
γ (w) <∞, there exists a

unique minimizer νγ,w ∈ P(R) that attains the infimum in (8.10).

PROOF. The idea is similar to Lemma 8.5, which considers the related vari-
ational problem (8.12). Let r ∈ (1,2), and equip Pr (R) with the Wasserstein-r
topology. By Lemma 6.8, it follows that the infimum in (8.10) is over a convex,
compact set. In addition, ν �→ I

qu
γ,ν(w) is convex and lower semicontinuous, since

it is the supremum of the maps ν �→ tw − �γ,ν(t), which are continuous due to
Lemma 5.6, and also clearly linear by definition. Moreover, H is lower semicon-
tinuous and strictly convex due to Proposition 6.5. Thus, the infimum in (8.10) is
the infimum of a lower semicontinuous strictly convex function over a compact
convex set, so the infimum is uniquely attained. �

NOTATION. Fix the following notational convention for the remainder of this
section: replace μ∞ by ∞ in our notation for the mgf’s and rate functions (i.e.,
write M∞, �∞,ν , �∞, Iqu∞,ν , Ian∞), as well as in our notation for the optimizing
measure of Lemma 9.1, replace νμ∞,w with ν∞,w .

PROPOSITION 9.2. Let p = ∞. There exists w∗ ∈ (0,1) such that if w∗ ≤
|w|< 1, then ν∞,w �= μ2; that is, for some w ∈ (−1,1), the minimizer in (8.10) is
not standard Gaussian. This implies that for such w, the following strict inequality
holds: Ian∞(w) < I

qu∞,μ2(w).

To prove this, we begin by analyzing the asymptotics of the function �∞,ν

defined in (8.8).

LEMMA 9.3. Let M∞ be the log mgf of μ∞, as defined in (5.1). Then

(9.1) lim|t |→∞
log M∞(t)

|t | = 1.

Moreover, let m1(·) be the first moment map, as defined in (2.13). Then, for ν ∈
P(R),

(9.2) lim|t |→∞
�∞,ν(t)

|t | =m1(ν).

In addition, �∞,ν is strictly convex. As a consequence, we have

(9.3)
(−m1(ν),+m1(ν)

)⊂D�∗∞,ν
⊂ [−m1(ν),+m1(ν)

]
.
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PROOF. The limit (9.1) follows from basic calculus. That is, applying the sym-
metry of log M∞, using the explicit expression log M∞(t)= log( sinh t

t
), and apply-

ing L’Hôpital’s rule to compute the limit

lim|t |→∞
log M∞(t)

|t | = lim
t→∞

log M∞(t)

t
= lim

t→∞(log M∞)′(t)

= lim
t→∞

(
coth t − 1

t

)
= 1.

As for the second limit (9.2), by the monotone convergence theorem, for ν ∈ P(R),

lim|t |→∞
�∞,ν(t)

|t | = lim
t→∞

∫
R

|u|
(

coth(tu)− 1

tu

)
ν(du)=m1(ν).

Note that log M∞ is strictly convex due to basic properties of log mgf’s and,
therefore, �∞,ν is also strictly convex for all ν ∈ P(R), since integration with
respect to ν is a linear functional.

We now prove the first inclusion of (9.3). The strict convexity of �∞,ν and
the asymptotic linearity given by (9.2) imply that for all c < m1(ν), there exists
some tc ∈ R such that �∞,ν(t) > c|t | for |t | ≥ tc. The upshot is that if ε > 0 and
|w|< m1(ν)− ε, then

lim sup
|t |→∞

[
tw−�∞,ν(t)

]≤ lim sup
|t |→∞

|t |(|w| −m1(ν)+ ε
)=−∞.

Hence, the function Fw,ν defined by Fw,ν(t)
.= tw − �∞,ν(t) has compact up-

per level sets. Since Fw,ν is upper semicontinuous (due to the lower semicon-
tinuity of �∞,ν ), it follows that Fw,ν is bounded above in R, implying that
�∗∞,ν(w) <∞ when |w| < m1(ν)− ε. As this holds for all ε > 0, we have that
(−m1(ν),+m1(ν))⊂D�∗∞,ν

.
To prove the the second inclusion of (9.3), a similar argument as above shows

that for ε > 0, if w > m1(ν)+ ε, then

lim inf
t→+∞

[
tw−�∞,ν(t)

]≥ lim inf
t→+∞ t

(
w−m1(ν)− ε

)=+∞,

and if w <−(m1(ν)+ ε), then

lim inf
t→−∞

[
tw−�∞,ν(t)

]≥ lim inf
t→−∞ t

(
w+m1(ν)+ ε

)=+∞.

Therefore, �∗∞,ν(w)=∞ for |w|> m1(ν)+ ε. Because this holds for all ε > 0, it
follows that D�∗∞,ν

⊂ [−m1(ν),+m1(ν)]. �

REMARK 9.4. Note that m1(μ2)=√2/π ≈ 0.798, which lies on the bound-
ary of the domain of Iqu∞,μ2 , as depicted in Figure 3.

PROOF OF PROPOSITION 9.2. To show that the minimizer of the variational
problem (8.10) is not μ2, it suffices to show that there exists some measure ν◦ ∈
P(R) such that:
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(a) ν◦ is absolutely continuous with respect to Lebesgue measure;
(b) m2(ν◦)≤ 1;
(c) m1(ν◦) > m1(μ2).

There exist several such measures, but for a concrete example, consider the uni-
form measure on [−√3,

√
3]. Given any measure ν◦ satisfying (a), (b), and (c),

it follows that H(ν◦|μ2) <∞, and the definition of Iqu
γ,ν in (8.9) and Lemma 9.3

imply that for w ∈ (−1,1) such that m1(μ2) < |w|< m1(ν◦), we have

I
qu∞,ν◦ =�∗∞,ν◦(w) <∞=�∗∞,μ2

(w)= I
qu∞,μ2

.

Therefore, the functional ν �→ I
qu∞,ν(w)+H(ν|μ2)+ 1

2(1−m2(ν)) is finite when
ν = ν◦ but infinite when ν = μ2, which proves the proposition. �

9.2. Conjectures regarding the variational problem. We believe that Proposi-
tion 9.2 can be extended to all w �= 0 in the domain of Ian∞, and that an analogous
result should hold for all p ∈ (2,∞) as well as for products of measures other than
γ = μ∞. To be precise, we mean the following.

CONJECTURE 9.5. Let p ∈ (2,∞). For w ∈ (−1,1) \ {0}, the minimizer in
(2.14) is not μ2. Similarly, for γ ∈ Tp and w ∈DIan

γ
\ {0}, the minimizer in (8.10)

is not μ2. This implies that except at w = 0, the annealed rate function lies strictly
below the quenched rate function.

This would require a new approach since: (i) our current proof relies on the
exact asymptotics of Lemma 9.3 for the case p =∞, which makes generalization
to other product measures difficult; and (ii) for general �p balls, the variational
problem is more complicated, due to the additional contraction step.

One possible approach to Conjecture 9.5 would be to analyze the intermediate
variational problems (6.7) and (8.12). In the case p =∞, it is possible to establish
the following lemma.

LEMMA 9.6. Let Ft(ν)
.= �∞,ν(t) − H(ν). There exists t∗ > 0 such that if

|t | ≥ t∗, then the maximizer of (8.12) is not the standard Gaussian. That is, for
some probability measure νt �= μ2, we have Ft(νt ) > Ft(μ2).

SKETCH OF PROOF. First, we can rewrite Ft and (8.12) in terms of the en-
tropy of ν. Then Lemma 9.3 can be applied to transform (8.12) into a penalized
maximum entropy problem, amenable to exact calculations. �

The main issues with this approach are that the claim is for t sufficiently large,
and the “optimal” measure is not identified. Nonetheless, this approach offers an
alternative variational problem which may be simpler to analyze than (8.10).
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