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ABSTRACT Longitudinal analysis of a disease is an important issue to understand its progression and design
prognosis and early diagnostic tools. From the longitudinal images where data is collected frommultiple time
points, both the spatial structural information and the longitudinal variations are captured. The temporal
dynamics are more informative than static observations of the symptoms, particularly for neurodegenerative
diseases such as Alzheimer’s disease, whose progression spans over the years with early subtle changes.
In this paper, we propose a new generative framework to predict the lesion progression over time. Ourmethod
first encodes images into the structural and longitudinal state vectors, where interpolation or extrapolation
of feature vectors in the time axis can be performed for the manipulation of these feature vectors. These
processed feature vectors can be decoded into image space to predict the image at the time point which we are
interested in. During the training, we force the model to encode longitudinal changes into longitudinal state
features and capture the structural information in a separate vector. Moreover, we introduce a personalized
memory for the online update scheme, which adapts the model to the target subject, which helps the model
preserve fine details of brain image structures in each subject. Experimental results on the public longitudinal
brain magnetic resonance imaging dataset show the effectiveness of the proposed method.

INDEX TERMS Brain MR images, deep learning, generative model, longitudinal analysis, personalized
prediction, memory network.

I. INTRODUCTION
Longitudinal analysis of a disease takes scans of patients
at different time points where structural abnormalities and
temporal changes are captured. The changes of anomalies
over time can be more informative than the static information
for certain disease types such as neurodegenerative diseases,
whose progression span over the years with early subtle
changes [19]. For example, the precursors of Alzheimer’s
disease are present earlier than the first symptoms of
the disease. In addition, the change in certain biomarkers
seems to predict Alzheimer’s disease before the first clinical
symptoms are present [3]. Magnetic Resonance (MR) images
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determine atrophy, and hippocampal volume is a good pre-
dictor for conversion from mild cognitive impairment to
Alzheimer’s disease [6]. Also, lateral ventricular growth is
a distinct feature in Alzheimer’s disease and can assess dis-
ease progression [20]. This structure tends to grow in the
axial slices of the brain MR image in patients developing
Alzheimer’s [20]. Therefore, the disease progression can
easily be assessed using longitudinal structural MR images.
An interesting problem here is to estimate the future condi-
tions of patients using their previous MRI scans. Predicting
future slices of patients can help medical doctors to assess
the disease progression speed and provide proper treatment to
patients [4].

Autoencoders [10], [17], [29] are known that they can
learn a manifold where the input image is mapped to the
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dense and lower-dimensional latent features by the encoder.
Then, the decoder learns to reconstruct the image from
the latent features. From this manifold, new samples can
be generated via interpolations or more complex sampling
schemes between latent features and decoding of it to the
target image space if the latent space is smooth. Lee et al.
use an encoder-decoder structure to generate realistic lesions
by using feature manipulation in the latent space. They show
interpolation and extrapolation in the latent space to generate
new samples [17]. Louis et al. use a recurrent neural network
to predict the parameters of a disease progression model,
which is used to sample vectors corresponding to different
time points [19]. Pathan et al. propose a decoder to generate
a vector field that is used to deform input images to generate
output images, in which the underlying changes in successive
images are captured [21]. Bowles et al. propose aWasserstein
generative adversarial network to model brain MR images
with Alzheimer’s disease features. This allows for synthetic
images based upon an individual subject’s MR image to be
produced, expressing different levels of the features associ-
ated with the disease [4].

In this paper, we propose a new model that generates
patient-specific longitudinal brain images by using personal-
ized memory. Based on two reference scans taken at different
time points of the target patient, our model can generate a
scan at any target time point by modeling the patient-specific
progression in the personalized memory. To better model
the latent features of brain images, we separate the latent
feature vectors to the structural features and longitudinal state
features. During training, the structure vectors of longitudinal
sequences from the same patients are encouraged to be close.
The temporal changes over time are encoded in the tempo-
ral state features. In addition, to improve the quality of the
generated images, we devise a personalized memory with
the online adaptive training where the model is fine-tuned to
the target patient in a short time. The contributions of this
paper can be summarized as

• The proposed method can effectively model the tempo-
ral changes of longitudinal brain MR images by sep-
arating the structural features and the temporal state
features.

• The online adaptive training scheme to construct the
personalizedmemory is devised, which can significantly
improve the quality of generated images at the test
time.

• Comparative experiments have been conducted to show
the effectiveness of the proposed method. Experimental
results show that the proposed adaptive training scheme
for personalized modeling of longitudinal progression in
the memory can be a promising solution for the future
prediction of brain MR images.

II. RELATED WORK
Longitudinal medical image sequences consist of multi-
ple images taken at different time points from the same

patient [16], [18], [24]. Generative models can be relevant for
predicting missing and future slices in a longitudinal image
sequence.

Recently, the generative models which can learn the
underlying data distribution have been widely explored.
Radford et al. propose a deep convolutional generative adver-
sarial network (GAN) which consists of generator and dis-
criminator [22]. Both generator and discriminator are trained
together in an adversarial way, which makes it possible
to generate perceptually meaningful and smooth images.
Kingma et al. [15] propose a new generative model named
GLOW using normalizing flows [8], [25]. Furthermore, these
studies [15], [22], [26] show that perceptually meaningful
manifold can be mapped into a linear path in the latent space,
and we can generate new images by feature manipulation.
In other words, it is possible to generate an output image in
the desired way.

In the medical domain, Bowles et al. [4] use a Wasserstein
GAN (WGAN) to reconstruct brain MR images from the
random vector. They assumed that the discriminator is a Lip-
schitz function, and it is encouraged to be in a compact space
by clipping the gradient values during the training. However,
the WGAN can only map latent vectors into images, and
they used a gradient descent method on input to find the
latent vector from initialized one. [4] computed the aver-
age latent vectors for three different groups of Alzheimer’s
disease (AD) patients, mild cognitive impairment (MCI)
patients, and conditionally normal (CN) subjects. The limi-
tation of the method is that the progression modeling is not
patient-specific.

Pathan et al. [21] use a vector field which is used to
deform input scan to generate the target scan at different
time points. The diffeomorphic maps are estimated by the
large deformation diffeomorphic metric mapping (LDDMM)
framework for the vector field. In other words, predictingMR
images at different time points is modeled as the problem of
finding the corresponding deformation field. The input for
LDDMM is latent features encoded by long-short term mem-
ory (LSTM) networks. Louis et al. [19] devise a framework
where themodel can learn a low-dimensional space of disease
progression with respect to time. The CNN is used to extract
image features, and the recurrent neural network (RNN)
is used to predict disease progression parameters. How-
ever, the result images lack the fine details of the brain.
Lee et al. [17] propose an autoencoder network to generate
realistic lesions. The linear interpolation or extrapolation of
two latent vectors is used to generate new lesions in the latent
space. As a result, the smooth manifold is learned in the
latent space, which makes it possible to generate realistic
lesions.

Contrary to the existing generative models, in this paper,
we propose the disentanglement of structure features and
longitudinal state features. In addition, we firstly propose
a personalized memory through an online update to better
model the longitudinal progression of the patient at the test
time.
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FIGURE 1. The overall framework of the proposed method. The proposed model consists of an encoder and a
decoder where the latent space learned by the encoder is used to manipulate the latent feature vector. The
latent feature vector is sampled and decoded to predict the image at the target time point.

FIGURE 2. The disease progression in the latent space is encouraged to be linear, therefore the encodings of images
from the longitudinal sequence of a patient align on a line. By using the latent vectors of two reference images, the other
latent vectors can be derived, which can be further used for predicting images.

III. METHOD
In this paper, we develop a model that generates patient-
specific (i.e., personalized) missing and future MR images
using two reference images. For this purpose, we propose
an autoencoder network that first encodes images to latent
vectors, then decodes latent vectors back to image space.
In other words, two reference images, which are from dif-
ferent time points and show different stages of the disease,
are firstly encoded to latent vectors. Then, the target time
point image’s latent vectors are calculated by interpolation or
extrapolation using the reference image’s latent vectors. For
each longitudinal sequence and each two image pair that can
be chosen within that sequence, we choose those two images
as the reference and generate the brainMR image at the target
time point.

To better model the structure of the brain and temporal
changes over time, we devise the proposed model as fol-
lows. Our model encodes input images into two vectors in

the bottleneck layer: structure feature and longitudinal state
feature. The structure feature is responsible for encoding the
brain structures in the image that are stationary. In contrast,
the longitudinal state feature is responsible for encoding the
states of the structures that are changing over time. The
decoder reconstructs the output image using the structure
data encoded in the structure feature and the states of the
changing structures encoded in the longitudinal state feature
as in Figure 1. The structure features of the reference images
are averaged for decoding brain images at the target time
point.

A. FEATURE MANIPULATION IN LATENT SPACE FOR
IMAGE PREDICTION
We train our model to learn a latent space where the disease
progression is mapped to a linear path in the latent space, and
the position of latent vectors on the line is a function of time as
can be seen in Figure 2.We canmodel the disease progression
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by training this latent space by using the two encoded latent
vectors. And the latent vector of the image corresponding to
any target time point can be computed via linear interpolation
or extrapolation of the encoded latent vectors of two reference
images.

Let {ti,ui}Ni=1 be a longitudinal image sequence where ui
denotes the MR image at the time ti. N denotes the number
of images in the sequence. Then the encoder network maps
input image ui to the structure feature si and the longitudinal
state feature l i as E(ui) = [si, l i]. Also, let D(·) be a function,
that represents the decoder network, where it maps structure
feature si and longitudinal state feature l i to the image ui
as D(si, l i) = ui.

To encode the disease progression on a line in the latent
space where we can manipulate the latent features with the
longitudinal state feature, we enforce the model that the
structural features of the images from the same patients be
the same. This assumption constrains the network to encode
the temporal changes into the longitudinal state features
and brain structures common within images in the longitu-
dinal sequence into the structure features. In other words,
a longitudinal image sequence can be represented with the
patient-specific structure features sc and associating longitu-
dinal state features {l i}Ni=1 by the encoder:

{ti,ui}Ni=1
encoder
�

decoder
{si, l i}Ni=1, (1)

where si = sc for all i.
The sampling in the latent space is performed using a linear

model of disease progression as in Figure 2, which means
the difference vectors among latent vectors are proportional
to relative time differences in the longitudinal sequence.
To learn the linear space with respect to time, we intro-
duce a new training scheme which will be explained in
Subsection III. B. As a result, we can predict brain images
at any time point on the disease progression line using
two latent vectors.

Since the structural features are the same for all samples
within a longitudinal sequence, it is enough to manipulate
longitudinal state features. Let (t1,u1) and (t2,u2) be two ref-
erence samples that are from the same patient at the different
time points, and (s1, l1) and (s2, l2) be the latent features of
the corresponding samples. Then we can generate the latent
features sx and lx at the target time point tx as

sx = s1 = s2, (2)

lx =
tx − t1
t2 − t1

(l2 − l1). (3)

Finally, the image at the target time point tx is predicted as

D([sx , lx]) = ûx. (4)

In practice, we use the mean structure features calculated
from (s1, s2) for sampling.

B. NETWORK TRAINING
To train the proposed network, we construct training data
consisting of longitudinal sequences of three images from
the same patient at different time points and the image times-
tamps. Each image is predicted using the other two images by
setting the other two images as the reference images in each
sequence. The total loss is the summation of the three losses
calculated from the prediction of three images in the sequence
in an iterative way. The loss for each sample has two con-
tributing parts: target image reconstruction loss and structure
feature loss. The target image reconstruction loss computes
the mean squared error between the predicted image and the
ground truth image to ensure that the reconstruction is close
to the target scan (real image at the target time point). In con-
trast, the structure feature loss computes the mean squared
error between the encoded structure features between the two
reference images. The structure feature loss constrains the
deep network to encode the disease progression only in the
longitudinal state features.

In detail, let {tx ,ux} be the target sample that the image at
time point tx . Then ux is generated using the other reference
images {t1,u1} and {t2,u2} in the sequence as described in
subsection III.A. Therefore, the loss for predicting the sample
{tx ,ux} from the reference samples {ti,ui}i6=x is as follow:

L({tx ,ux}) =
∑
|ux − ûx |2︸ ︷︷ ︸

Target Image Reconstruction Loss

+ w
∑
|s1 − s2|2︸ ︷︷ ︸

Structure Feature Loss

, (5)

where w is the weight for balancing two loss functions.

C. PERSONALIZED MEMORY WITH ONLINE ADAPTIVE
TRAINING
The strength of our method is that it can generate sharp and
detailed images, and the disease progression is well-captured
in the generated longitudinal sequence, which is boosted by
the online adaptive training in the personalized memory. The
network trained on a training dataset is capable of capturing
the temporal changes, i.e., the growth of the lateral ventricles,
as well as the general structure in the reference images. But
it lacks reconstructing the fine details of the complex brain
images in each patient. In particular, the brain folds and the
shape of the lateral ventricles in the predicted image are
slightly different from those in the reference images.

To overcome this limitation, we propose an online adaptive
training method as shown in Fig. 3. The proposed method
updates the trained model to the personalized memory for
the target patient by using the reference images. Training the
network for a few steps to make it personalized for the given
patient makes the deep network generate sharper and more
detailed images and captures the disease progression better.

The training scheme is similar to the training explained in
Subsection II.B, but the difference is that a target image is
unavailable. Instead, we use the reference images for image

VOLUME 9, 2021 143215



S. T. Kim et al.: Longitudinal Brain MR Image Modeling Using Personalized Memory for Alzheimer’s Disease

FIGURE 3. The proposed personalized memory with online update at the test time. The trained model is shortly updated to better model the
progression in the personalized memory at the test time based on the reference images from the target patient.

reconstruction loss as

Lonline = |u1 − û1|2 + |u2 − û2|2 + w|s1 − s2|2. (6)

IV. EXPERIMENTS
A. DATASET
To verify our method, we use the public ADNI dataset [1],
which includes longitudinal brain MRI scans of three dif-
ferent groups of patients: Alzheimer’s disease (AD), Mild
cognitive impairment (MCI), and Cognitively normal (CN).
The ADNI was launched in 2003 as a public-private partner-
ship led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial
MRI, position emission tomography (PET), other biologi-
cal markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and
early AD.1 We select dataset (ADNI1:Complete 2Yr
1.5T [1]) which includes screening, 6 months, 1 year,
18 months (MCI only), and 2 years scans for each patient.
To extract axial slices from each scan, we first register
the follow-up scans of a patient to its first scan using
3D rigid-body registration using nibabel2 and DIPY3

libraries. The rigid-body registration is performed by apply-
ing the center of mass transform, translation transform, and
rigid body transform successively to the follow-up scan. The

1For up-to-date information, see www.adni-info.org
2https://nipy.org/nibabel/
3https://dipy.org/

TABLE 1. Statistics of the dataset used in this study (ADNI1:Complete 2Yr
1.5T [1]). The numbers represent the number of patients (and the number
of extracted images).

mutual information is used as the metric with a multi-level
optimization scheme.

We extract four axial slices showing lateral ventricles from
each volume and form four longitudinal image sequences for
each patient. First, we choose the location of slices in the
image, then extract from all scans, reference, and registered
follow-up scans. Table 1 shows the dataset statistics for the
training, validation, and test set used in this study.

Voxel intensity is normalized after clipping outlier values.
To normalize the image range, we calculate the average µ
and standard deviation σ of pixels on the brain in each slice,
separately. The background is not included in this calculation.
Then, the outlier values which are bigger than µ + 1.8 × σ
are clipped, and a min-max normalization is conducted from
the clipped image. As a result, we obtain a dataset that con-
sists of registered longitudinal axial slice images, as shown
in Figure 4.

B. IMPLEMENTATION DETAILS
For training the model, ADAM optimizer [14] is used with
a learning rate of 0.0001 and weight decays of β1 = 0.5
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FIGURE 4. Longitudinal axial brain MRI slices of a mild cognitive
impairment patient from ADNI dataset [1]. We extracted four such
sequences for each patient, each showing a different part of the
lateral ventricle.

and β2 = 0.999 for all models. For online adaptive training,
we use two reference images of patients, which makes the
model learn the shapes of the structures in the personalized
memory.

The whole brain is resized to 64 × 64 and it is used as
an input for the model in this study. For the encoder, four
convolutional layers with the filter size of 3 with a stride
of 2 are used. Each convolutional layer is followed by Swish
activation function [23]. Swish activation is used in this study
because it shows stable and superior performances for various
tasks including image construction and restoration tasks [9],
[27], [28]. The number of filters in the convolutional layers
are 64, 128, 256, 512, respectively. The size of the input is
halved at each layer. The output of the final convolutional
layer is reshaped into a vector, which is transformed into two
vectors of structure vector and longitudinal state vector by
using separate fully-connected layers. For the structure vec-
tor, the hyperbolic tangent function is used as the activation
function. The size of structural features and longitudinal state
feature are 100 and 1, respectively.

For the decoder, the inputs are structure feature vector and
longitudinal state vector, each of which is transformed to
a higher dimensional vector using a fully connected layer.
First, two feature vectors are aggregated by adding them,
and then the feature vector is reshaped into a 3D feature
map. The reshaped 3D feature map is first upsampled
and then processed with a 2D convolutional layer with
Swish activation [23]. The upsampling operation doubles the
height and width of the feature map. The upsampling layer,
2D convolutional layer, and activation layer are repeated four
times in total. The filter size of 3 with a stride of 1 is used for
the convolutional layers in the decoder. The number of filters
in the convolutional layers are 256, 128, 64, 1, respectively.
The Swish activation function [23] is used for the first three
convolutional layers, and the sigmoid activation function is
used for the last convolutional layer. Figure 5 shows the
detailed structure of the encoder and the decoder used in this
study. The code is publicly available.4

The number of training steps in online adaptive training
is empirically set to 100, which takes around 20 seconds
per patient on an Nvidia Tesla T4 GPU. The effect of train-
ing steps in the online adaptive training will be introduced
in Subsection V.B.

4https://github.com/umutkucukaslan/longitudinalMR

TABLE 2. Summary of method with different architectures and the
training configurations used in this paper. S.L., Dis., P.M. denote sequence
learning, disentanglement of structure and longitudinal state features,
and personalized memory, respectively.

C. EVALUATION
We evaluate the quality of the predicted images by using
Structural Similarity Index (SSIM) [30] and mean squared
error (MSE) on the independent test data. For each lon-
gitudinal sequence, we predict target images by using two
reference images and compute the evaluation score between
the predicted and ground truth images. It includes predicting
previous, missing, and future scans.

D. COMPARISON
For comparison, we implement different methods for encod-
ing latent features as follows:

• Wasserstein GAN [4]: Reimplementation of [4].
• Autoencoder [17]: This method is implemented based
on [17]. The autoencoder is trained for each sample by
using the reference image reconstruction loss.

• Autoencoder (+ sequence learning): It is an extension
of baseline autoencoder where the model is trained with
the target image reconstruction loss by considering the
longitudinal sequence.

• Proposed method (+ disentanglement): It encodes the
structure features and the longitudinal state features sep-
arately, as in Figure 1. The model is trained by the target
image reconstruction loss and the structure feature loss
in Eq. (4).

• Proposed method (+ personalized memory): It uses
personalized memory with online adaptive training at
the test time. In other words, the prediction is conducted
from the model which is trained by Eq. (4) and Eq. (5).

Table 2 shows the summary of the method with different
architectures and the training configurations. After training
the model, at the test time, Autoencoder [17], Autoencoder
(+ sequence learning), Proposed method (+ disentangle-
ment), Proposed method (+ personalized memory) manip-
ulate (e.g., interpolation or extrapolation) the two feature
vectors from the reference images and decode the image of
the target time as described in III.A. Please note that the
Wasserstein GAN model does not provide a suitable way
to predict images at the target time points. For that reason,
we reconstruct images themselves from [4] (not a prediction
but a reconstruction) and calculate the evaluation metric to
show the general image quality of Wasserstein GAN in this
study.

VOLUME 9, 2021 143217



S. T. Kim et al.: Longitudinal Brain MR Image Modeling Using Personalized Memory for Alzheimer’s Disease

FIGURE 5. Overall structure of the encoder and the decoder used in this study.

V. RESULTS
A. ABLATION STUDIES
In this paper, we propose a new model with sequence learn-
ing, disentanglement of structure features and longitudinal
state features, and personalized memory with online adaptive
training. Firstly, we evaluate the effectiveness of each module
for predicting longitudinal brain MR images. Table 3 shows
the results of the ablation study where we compare autoen-
coder, autoencoder (+ sequence learning), proposed method
(+ disentanglement), and the proposed method (+ personal-
ized memory). SSIM and MSE are calculated on the test set.
As shown in the table, autoencoder (+ sequence learning),
which uses the targe image reconstruction loss, improves
the SSIM (from 0.528 to 0.535) and MSE (from 0.0272 to
0.0266) compared to the baseline autoencoder. The proposed
method (+ disentanglement) achieves SSIM of 0.543±0.060
andMSE of 0.0301±0.0071. The improvement is statistically
significant compared to autoencoder (+ sequence learning)
and baseline autoencoder (p<0.05 by t-test [2]). Furthermore,
by using personalized memory based on an online adaptive
training scheme, the proposed method achieves SSIM of
0.953±0.015 andMSE of 0.0041±0.0020. The performance
improvement is statistically significant compared to the pro-
posed method (+disentanglement) (p<0.01). Based on the
ablation studies, we verify the effectiveness of each module,
and in particular, the effect of using personalized memory is
significant.

B. EFFECT OF NUMBER OF TRAINING STEPS IN ONLINE
ADAPTIVE TRAINING
In this subsection, the number of training steps for online
adaptation is investigated. For this purpose, we measure the
SSIM with respect to the number of training steps in every
10 training steps in the range of [0, 120]. The number of
training steps of 0 denotes the model without online adap-
tation, which is only trained with the loss function (Eq. 4).
Figure 6 shows SSIM with respect to the number of training
steps. As shown in the figure, the SSIM is significantly
increased when the online adaptation is applied. The biggest

TABLE 3. Ablation study on the test set. The statistics of SSIM and MSE
scores for different methods are reported. The average and standard
deviation are reported. ∗ denotes the case that the difference with the
proposed method is statistically significant (p<0.05).

FIGURE 6. SSIM with respect to the number of training steps in the online
adaptation.

improvement is observed when the number of training steps
is changed from 0 to 10. The SSIM is increased as the number
of training steps increases but it seems to be saturated and it is
not sensitive near the number of training step 100. Therefore,
we set the number of training steps as 100.

C. COMPARISON WITH OTHER METHODS
In this subsection, we compare the proposed method with
other approaches [4], [17]. Table 4 shows the SSIM and
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FIGURE 7. Examples of generated sequences using two reference images. Stars show the reference images. Upper left numbers show relative months.
The first row shows ground truth images, whereas the second row shows the generated sequence.

MSE measured on the test set from the different methods.
Lee et al. [17] achieves SSIM of 0.528 ± 0.063 and MSE
of 0.0272 ± 0.0067. Please note that Wasserstein GAN
model (Bowles et al. [4]) does not provide a suitable way
to predict images at the target time points. For that reason,

we evaluate the reconstruction quality instead of prediction
quality. We reconstructed images from their encoded latent
features themselves without any manipulation with respect to
time information, which enables us to examine image quality
degradation just due to the encoding-decoding procedure, and
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TABLE 4. Comparison with other methods on the test set. The statistics
of SSIM and MSE scores for different methods are reported. The average
and standard deviation are reported. ∗ denotes the case that the
difference with the proposed method is statistically
significant (p<0.05).

sets an upper bound for SSIM and MSE scores for the target
time point image predictions. Bowles et al. [4] achieves SSIM
of 0.679 ± 0.058 and MSE of 0.0198 ± 0.0055. It cannot
predict the patient-wise target timepoint prediction, and the
quality will further decrease if it conducts prediction, not
reconstruction. Compared to these two approaches, the pro-
posed method can achieve SSIM of 0.953± 0.015 and MSE
of 0.0041±0.0020, which significantly outperforms previous
approaches [4], [17] (p<0.01).

D. VISUAL RESULTS
Figure 7 shows example sequences predicted by using the
proposed method (+ personalized memory). As shown in the
figure, the proposed method can predict the MR images with
high quality at the target time point.

E. DISCUSSION
In this study, we propose a new method to model the longitu-
dinal progression of brain MR images by using personalized
memory. With the online adaptive training, it is possible to
achieve high-quality brain MR images which can represent
the personalized variations. Although the method is new and
experiments show promising results, there are limitations that
are not covered in this paper.

Firstly, we assume that the disease progression is linear in
the latent space the model learned. However, it might not be
enough to fully model the progression of the brain in the real
world. More sophisticated non-linear modeling of the brain
progression with a larger dataset will be interesting future
work.

Second, the assessment of the predicted images is limited
to the evaluation with image quality metrics. In other words,
we use SSIM and MSE metrics for evaluating the proposed
method. It is reasonable to measure the structural similarity
between the actual image and the predicted image. But it will
be a meaningful extension to explore the user evaluation and
follow-up use cases.

Third, the amount of training data is limited. Although
we use the largest public longitudinal dataset (i.e., ADNI),
the number of MR images is 426 subjects in this study. For
that reason, we design this study based on 2D slice images
instead of full 3D MR images. In addition, the limited res-
olution of brain image with 64 × 64 is used in this study.
Further study with the larger dataset to extend the idea of

personalized memory to high-resolution 3D MRI prediction
will be the meaningful research direction.

Nevertheless, this paper shows the new personalized
memory-based longitudinal modeling of brain images and
shows the effectiveness of the proposed method. To the best
of our knowledge, this is the first study to use online adaptive
training for personalized modeling in deep learning-based
longitudinal MRI modeling. Moreover, the proposed method
is not limited to capturing the lateral ventricle growth in
brain images. It can be extended to predict any temporal
changes such as other diseases, tumors, and other parts of the
image. Extension of this method to other applications such as
longitudinal image analysis [7], [11] and video analysis [5],
[12], [13] will be interesting future work.

VI. CONCLUSION
In this work, we proposed a new method for predicting
longitudinal brain MR images using personalized memory.
Ourmethod effectively preserved brain structure and encoded
temporal changes of the brain in MR images, which enabled
the model to predict future and missing scans in a better
way. Moreover, the online adaptive training to model the
personalized memory progression significantly boosted the
quality of complex brain MR images and changes.
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