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 Abstract 

Highly polar trace organic compounds tend to be mobile in the aquatic environment. If they are 

additionally persistent, they pass natural and technical barriers, accumulate in the water cycle 

and eventually pose a threat to drinking water supplies. In order to analyze compounds of an 

extended polarity range, a serial coupling of reversed-phase liquid chromatography, hydrophilic 

interaction chromatography and mass spectrometric detection was used within in the scope of 

this study. Operating the high-resolution and high-accuracy mass spectrometer in full scan mode 

enabled a so-called non-target screening of samples. From the complex non-target screening 

data, so-called features - described by their accurate mass, chromatographic retention time and 

signal intensity - need to be extracted, ideally corresponding to a chemical compound.  

This thesis presents an analytical method comprising of an instrumental as well as a data 

analysis part. It was developed to screen water samples for molecules of an extended polarity 

range without preselecting substances of interest. In order to meet that objective, the method 

needed to fulfill the following criteria:  

a) Detect as many relevant features as possible, 

b) be of controlled quality,  

c) be adaptable to different research questions,  

d) be applicable to environmental water samples.  

The first criterion was tackled by optimizing the method parameters to detect a plethora of 

molecules but at the same time reduce false positive findings. In that sense, a robust setpoint 

was found for electrospray ionization parameters which maximizes the ionization efficiency of 

multiple model substances with diverse physico-chemical properties. The data evaluation 

method was applied to internal and external standard compounds in order to iteratively maximize 

their recovery. A tool of choice for method optimization herein was statistical design of 

experiment where settings of multiple parameters are varied strategically and simultaneously 

and the results are subsequently modeled.   

Secondly, the measurement of quality control samples and standard compounds provided 

information on the instrumental performance and served as reference points to reduce false 

positive and false negative findings during data processing.    

According to criterion (c), the data processing strategy needed to be flexible enough to adapt to 

different software tools and research questions. Therefore, a core workflow for extracting 

features was identified first and complemented by either prioritization and database matching for 
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compound identification or statistical evaluations for sample comparison.  

The method was applied to comprehensive sample sets of surface water samples and 

(tentatively) identified highly polar and environmentally relevant compounds. Guanylurea, 

melamine, and 1,3-dimethylimidazolidin-2-one were verifiably detected in the Isar river. 4-

hydroxy-2,2,6,6-tetramethylpiperidine-1-ethanol was a suspect of particularly high priority as it 

was found at 47 different locations in the Danube river basin. Finally, the method was able to 

give indications on the (partial) removal of highly polar compounds from surface water by 

treating it with three different types of powdered activated carbon. 
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Kurzzusammenfassung 

Hochpolare organische Spurenstoffe neigen dazu, in der aquatischen Umwelt mobil zu sein. 

Sind sie zudem persistent, überwinden sie natürliche und technische Barrieren, reichern sich im 

Wasserkreislauf an und stellen schließlich eine Gefahr für die Trinkwasserversorgung dar. Um 

Verbindungen eines erweiterten Polaritätsbereichs zu analysieren, wurde im Rahmen dieser 

Arbeit eine serielle Kopplung von Umkehrphasen-Flüssigkeitschromatographie, hydrophiler 

Interaktionschromatographie und massenspektrometrischer Detektion eingesetzt. Der Betrieb 

des hochauflösenden und akkuraten Massenspektrometers im Full-Scan-Modus ermöglichte ein 

sogenanntes nicht-zielgerichtetes Screening der Proben. Aus diesen komplexen Daten müssen 

Merkmale extrahiert werden, die durch ihre genaue Masse, chromatographische Retentionszeit 

und Signalintensität beschrieben werden und denen im Idealfall eine chemische Verbindung 

zugrunde liegt.  

In Rahmen dieser Doktorarbeit wird eine Analysemethode vorgestellt, die sowohl aus einem 

instrumentellen als auch aus einem Datenanalyseteil besteht. Sie wurde entwickelt, um 

Wasserproben auf Moleküle eines erweiterten Polaritätsbereichs zu untersuchen, ohne eine 

molekulare Vorauswahl zu treffen. Um dieses Ziel zu erreichen, musste die Methode die 

folgenden Kriterien erfüllen:  

a) Erkennung möglichst vieler relevanter Merkmale,  

b) kontrollierte Qualität,  

c) Anpassungsfähigkeit an verschiedene Forschungsfragestellungen und  

d) Anwendbarkeit auf Wasserproben.  

Um das erste Kriterium zu erfüllen, wurden die Methodenparameter optimiert, um eine Vielzahl 

von Molekülen zu erkennen und gleichzeitig die Zahl der falsch-positiven Ergebnisse zu 

reduzieren. In diesem Sinne wurde für die Elektrospray-Ionisation eine robuste Kombination der 

Einstellparameter ermittelt, die die Ionisationseffizienz mehrerer Modellsubstanzen mit 

unterschiedlichen physikalisch-chemischen Eigenschaften maximiert. Die 

Datenauswertungsmethode wurde auf interne und externe Standardverbindungen angewandt, 

um deren Widerfindung iterativ zu maximieren. Ein Mittel der Wahl für die Methodenoptimierung 

war hier die statistische Versuchsplanung, bei der die Einstellungen mehrerer Parameter 

strategisch und simultan variiert und die Ergebnisse anschließend modelliert werden.   
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Weiterhin lieferten Messungen von Qualitätskontrollproben und Standardverbindungen 

Informationen über die instrumentelle Leistung und dienten als Referenzpunkt, um falsch-

positive und falsch-negative Befunde während der Datenverarbeitung zu reduzieren.    

Gemäß Kriterium (c) musste die Datenverarbeitungsstrategie so flexibel sein, dass sie an 

unterschiedliche Softwaretools und Forschungsfragestellungen angepasst werden konnte. 

Daher wurde zunächst ein Kernarbeitsablauf für die Extraktion von Merkmalen festgelegt, der 

entweder durch Priorisierung und Datenbankabgleich zur Identifizierung von Verbindungen oder 

durch statistische Auswertungen zum Vergleich von Proben ergänzt wurde.  

Die Methode wurde auf umfassende Probensätze von Oberflächenwasserproben angewandt 

und identifizierte (vorläufig) hochpolare und umweltrelevante Verbindungen. Guanylharnstoff, 

Melamin und 1,3-Dimethylimidazolidin-2-on wurden in der Isar eindeutig nachgewiesen. 4-

Hydroxy-2,2,6,6-tetramethylpiperidin-1-ethanol war ein Kandidat von besonders hoher Priorität, 

da er an 47 verschiedenen Probenahmestellen im Einzugsgebiet der Donau gefunden wurde. 

Schließlich konnte die Methode Hinweise auf die (partielle) Entfernung hochpolarer 

Verbindungen aus dem Oberflächenwasser durch die Behandlung mit drei verschiedenen Arten 

von pulverförmiger Aktivkohle geben. 
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1. Introduction 

1.1 Trace organic compounds in the aquatic environment 

1.1.1 Occurrence and toxicological potential  

Over the past 100 years, global freshwater withdrawals increased by a factor of six with an 

expected future growth rate of 1 % per year [1, 2]. At the same time, the global water quality is 

deteriorating, especially for less developed countries, as 80 % of industrial and municipal 

wastewater is introduced into the environment without any prior treatment [1]. Accompanied 

therewith is the release of trace organic compounds (TOrCs) of anthropogenic origin into the 

aquatic environment. Since the publication of “Silent Spring” [3] in 1962, there is an ever-growing 

public concern of chemical pollution and its effects on the aquatic life and on human health. In 

natural waters, millions of tons of synthetic or natural TOrCs might be universally present at low 

concentrations like those used in industrial or consumer products, biocides and transformation 

products (TPs) [4]. These compounds enter the aquatic environment mainly through wastewater 

treatment plant (WWTP) effluents but also through diffuse sources like urban and agricultural 

surface runoff [5–9]. The number of publications on TOrCs in groundwater and drinking water 

supplies is limited. Nevertheless, a variety of TOrCs (i.e. carbamazepine, sulfamethoxazole, 

ibuprofen, bisphenol A and caffeine) are present at environmentally significant concentrations 

(ng L-1 to µg L-1) in groundwater [10]. Low quantities of TOrCs have already been detected in 

drinking water sources as well [9, 11].  

TOrCs include per- and polyfluoroalkyl substances (PFAS) and disinfection byproducts (DBPs). 

PFAS are used in almost all industry branches with over 200 use cases identified for more than 

1400 individual PFAS [12]. Andrew et al. estimated that 8 – 22 % of the U.S. population receive 

tap water with ≥ 10 ng L-1 of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate 

(PFOS) [13]. DBPs, on the other hand, do not enter the environment like most TOrCs but are 

formed during the water treatment process when disinfectants react with natural organic matter 

(NOM) as the main precursor [14].  

The long-term exposure of water consumers to TOrCs raises concerns of adverse effects on the 

environment as well as on human health. Especially, endocrine disrupting chemicals or 

hormones bioaccumulate into the upper trophic levels of the food chain and modulate hormone 

functions even at trace concentrations [14, 15]. To name one example: Ecotoxicological effects 

were observed on zebra fish when exposed to glucocorticoids as they lead to a decrease in 

muscle contractions, increase in heart rate or expressional alterations of some genes [16, 17]. 
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When considering human health, it is hypothesized that exogenous endocrine disruptors partially 

cause a deterioration in male reproductive health, involving an increase in testicular cancer 

cases [18]. 

1.1.2 Persistent and mobile organic compounds (PMOCs) 

For quite some time, research has been focusing on non-polar to mid-polar TOrCs, such as 

polycyclic aromatic hydrocarbons (PAHs). This is mirrored in the EU regulation on the 

registration, evaluation, authorization and restriction (REACH, EC no. 1907/2006) that requires 

an assessment of the persistent, bioaccumulative and toxic (PBT) properties of a registered 

chemical. However, the focus recently broadened, including now organic compounds which are 

polar and soluble in water and thus mobile and recalcitrant to degradation and thus persistent. 

They are often referred to as PMOCs (“persistent mobile organic compounds”) [19]. A PMOC 

with toxicological potential is considered a PMT-type of substance (i.e. “persistent in the 

environment, mobile in the aquatic environment, and toxic”) [20]. A compound’s mobility in water 

can be described by its water solubility and its sorption tendency. The German Federal Ministry 

for the Environment, suggested the log KOC, namely the coefficient for distribution between 

organic carbon and water, as an approximate measure for aquatic mobility [21]. The log DOC is 

an even more appropriate descriptor as it accounts for the different ionization states of a 

compound. It should be noted that these one-parameter relationships for the prediction of 

equilibrium partitioning do not account for variability between different compound classes or 

between different natural organic phases [22]. Nevertheless, Arp et al. defined a minimum 

mobility criterion of log DOC < 4.5 (pH 4 – 10). They ranked 5155 TOrCs registered under the EU 

REACH legislation (December 2014) and assigned 21% with the highest PMOC score as their 

degradation half-life was > 40 days and log DOC < 1.0 for pH 4 – 10 [23]. Building on that work, 

Schulze et al. recognized a potential of being emitted into the environment for 43 % of PMOCs 

based on tonnage and on certain use characteristics [24]. Polar organic compounds enter 

surface waters through various sources and spread in the aquatic environment due to their 

persistency and mobility: Their intrinsic physico-chemical properties enable PMOCs to pass 

natural or technical barriers such as WWTPs; thereby accumulate in water cycles and threaten 

drinking water resources [25].  

PMOCs could originate from pharmaceuticals, products of consumer or industrial use or 

pesticides. In addition to that, TPs and metabolites are formed by biotic or abiotic reactions 

which tend to be more polar than the precursor molecules [26]. Among environmentally relevant 

PMT substances are for example the antidiabetic drug metformin or the industrial chemical 

trifluoroacetic acid (TFA) [27]. Metformin is insufficiently removed by WWTPs and therefore 
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detected in recipient waters of Europe at a median measured environmental concentration of 

~235 ng L-1 along with its TP guanylurea at ~2000 ng L-1 [28, 29]. TFA caught attention as it was 

detected at a concentration of >100 µg L-1 in a German river where an industrial company was 

identified as the point source. Municipal WWTPs or degradation of precursor compounds are 

suspected as alternative sources of discharge [30]. The occurrence and potential risks of PMT 

substances for drinking water production is reflected by calls to the EU to identify, prioritize and 

regulate these chemicals under REACH considering the precautionary principle [31]. 

1.2 Instrumentation to analyze (polar) organic micropollutants 

1.2.1 Polarity-extended chromatography 

Over the last decades, liquid chromatography (LC) improved the selectivity of analytical methods 

for TOrCs in general. The most widespread technique is reversed-phase liquid chromatography 

(RPLC) in which analytes are retained due to hydrophobic interactions with typically C18-bonded 

stationary phases. However, highly polar and permanently charged compounds are poorly 

retained and separated by RPLC and consequently are ineffectively detected; a fact famously 

described as the “analytical gap” by Reemtsma et al. in 2016 [19]. A compound’s polarity is 

closely related to its mobility in water and often described by the logarithmic octanol-water 

partition coefficient log P or its pH-sensitive pendant log D. The data presented by Arp et al. 

suggests that of all persistent and mobile compounds with a log D ≤ 0, more than 95 % are 

either ionizable or permanently charged [23, 27]. It can be concluded that the analysis of 

approximately half of PMT/ vPvM (very persistent and very mobile) substances requires an 

alternative method to conventional RPLC-MS analysis [27]. In an attempt to remedy this lack of 

retention, the typical C18 chemistry has been modified to polar-embedded (i.e. amide group) or 

polar-endcapped (i.e. alcohol group) phases. However, these phases show slightly reduced 

(polar-endcapped) and significantly reduced (polar-embedded) hydrophobicity [32] and thus 

seem to be a compromise at the expense of the retention of non-polar and mid-polar 

compounds. An orthogonal separation technique to RPLC is hydrophilic interaction liquid 

chromatography (HILIC). It was originally introduced as a variant of normal-phase 

chromatography that works on hydrophilic partitioning between the mobile phase and a water 

layer partially immobilized on the surface of the stationary phase [33]. Thus, polar analytes tend 

to be retained longer and can be eluted using mobile compositions with no more than 50 % 

water due to its high elution strength. The high organic solvent content supports electrospray 

ionization and increases the sensitivity of subsequent mass detection [34]. However, several 

studies have proven the retention process to be multiparametric including adsorption 
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mechanisms such as hydrogen bonding and dipole-dipole interactions and ionic contributions 

with differences in selectivity between various column phases [35–37]. Changing the pH of the 

mobile phase, changes the ionization state of analytes and can therefore influence their 

retention on some HILIC phases [38]. Nevertheless, HILIC has proven to reproducibly separate 

very polar (log D < -2.5) TOrCs [39]. Alternatively, ion chromatography (IC) has been applied in 

environmental analysis to separate polar and charged compounds [40]. Mixed-mode liquid 

chromatography combines different retention mechanisms, i.e. RP and IC extend the application 

range towards charged compounds [27]. An alternative to LC in the separation of compounds 

that fall into the “analytical gap”, appears to be supercritical fluid chromatography (SFC). Bieber 

et al. used SFC to separate 245 out of 274 standard compounds covering a log D range of -7.7 

to 5.4 (pH 7) within an elution window of < 18 min [39].  

1.2.2 Mass spectrometry 

Analytes separated by LC are frequently detected using mass spectrometry (MS) by measuring 

their mass-to-charge ratios (m/z). Over the past decades, the capabilities of MS developed 

vastly from low-resolution (LR) to high-resolution (HR) instruments. For quantitative analysis of 

TOrCs as in environmental monitoring studies, LRMS instruments like triple quadrupoles (QqQ) 

or quadrupole ion trap (QIT) analyzers are well-established, performing selected reaction 

monitoring (SRM) for precursor-product ion transitions. Reference standards and an a priori 

selection of target analytes are prerequisites. LC hyphenated with HRMS has emerged as a 

powerful tool for the analysis of known and unknown compounds in complex environmental 

matrices. With the introduction of time-of-flight (TOF), Fourier transform ion cyclotron resonance 

or Orbitrap and finally hybrid technologies; resolving power, mass accuracy, linear dynamic 

range and sensitivity were improved [41].  

Two frequently applied hybrid HRMS technologies are described in more detail in the following: 

When commercially introduced in 2005, the Orbitrap mass analyzer was presented with a 

preconnected external injection device (LTQ) that traps and stores ions in a C-shaped 

quadrupole and subsequently injects them as pulsed beams into the Orbitrap [42]. There, the 

ions tangentially enter the space between two coaxially arranged electrodes: An outer barrel-like 

electrode and a central spindle-like electrode sustained at high voltage. The electric field induces 

axial harmonic oscillations and the frequencies of the ions are measured and Fourier 

transformed [43]. The Q(q)TOF is another hybrid mass analyzer frequently applied in 

environmental analysis [44]. In the usual configuration three quadrupoles Q0, Q1 and Q2 are 

followed by a TOF analyzer. The Q0 serves the purpose of collisional cooling and focusing after 

the ions entered the instrument. The Q1 can filter masses to transmit only selected precursor 
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ions, before they undergo collision-induced dissociation (CID) in the Q2 usually with argon or 

nitrogen as collision gas. Remaining precursors as well as product ions are cooled and focused 

before they are orthogonally injected by an ion modulator into the acceleration column and finally 

arrive in the field-free drift space of the TOF analyzer. Lastly, a mirror focusses the ions onto a 

horizontal plane at the detector entrance [45].  

After the introduction of the aforementioned hybrid HRMS instruments, they have been 

predominantly used for qualitative analysis of unknown and unexpected TOrCs in the aquatic 

environment [44]. Hybrid HRMS instruments operated in full scan mode or at MS1 level are able 

to screen a broad mass range, i.e. from 60 – 1000 Da. On the MS2 level, spectra enclose 

structural information in the form of characteristic fragmentation patterns. There are two 

experimental approaches to record such MS2 spectra: Data-dependent or data-independent 

acquisition, DDA or DIA, respectively. In DDA mode, the most intense precursor ions are usually 

automatically selected from the MS1 scan for fragmentation if they exceed a predefined intensity 

threshold [46, 47]. In contrast, all analytes are supposed to be fragmented in DIA mode of which 

SWATH is a widely used example: For SWATH, the MS continuously cycles through sequential 

wide isolation windows covering the entire m/z range [48]. The increased selectivity and 

accuracy in combination with the MS2 information enabled confirmation and structural 

elucidation of compounds at a much higher degree of certainty and reduced the false positive 

rate. Accurately screening samples and extracting exact masses from the resulting raw data 

allows to detect a large number of compounds, even if analytical standards are lacking like for 

TPs [49].  

For years, QqQ-MS was considered the gold standard of quantitative analysis due to its high 

sensitivity and selectivity in SRM mode. However, state-of-the-art HRMS instruments are 

capable of reliable and routine quantification with generally similar performance characteristics 

but the advantage of greater selectivity and the possibility of retrospectively analyzing the full-

scan data [50]. Cavaliere et al. compared QqQ-MS operated in SRM mode and Q-Orbitrap-MS 

with data-dependent acquisition of MS2 spectra for the quantification of polyphenols in rosé wine 

[51]. They observed generally lower limits of quantification for HRMS, as well as a better overall 

performance in terms of interday and intraday precision and the ability to cope with matrix 

effects. Only a slightly lower linear dynamic range was observed mostly for negative polarity.   

A recent example of a multi-residue quantitative target screening was presented by Gago-

Ferrero et al. [52]: They developed a method for the simultaneous detection of 2316 TOrCs 

including pharmaceuticals, pesticides, illicit drugs, industrial chemicals and TPs and validated it 

for 195 representative substances. The instrumental method involved mixed mode solid phase 

extraction for sample preparation and subsequent LC-QTOF-HRMS analysis with data-
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independent acquisition of MS2 information. Applying the method to the wastewater influent and 

effluent samples yielded 395 findings at concentrations ranging from 0.14 ng L-1 to 431 µg L-1.  

1.2.3 Ionization techniques 

In order for an MS analyzer to determine the m/z of molecular species, their ionization is a 

prerequisite. For gas chromatography this is traditionally done by electron impact (EI). On the 

other hand, condensed-phase analytes need to be transferred to the gas phase prior to MS 

detection. For matrix-assisted laser desorption/ionization (MALDI) a laser pulse forms gaseous 

ions from molecules embedded in a solid matrix [53, 54]. Ionization techniques that are able of 

converting liquid-phase chemical species into gas-phase ions and hence are suitable to connect 

LC and MS, include: Atmospheric pressure chemical ionization (APCI), atmospheric pressure 

photoionization (APPI) [55] and electrospray ionization (ESI). So-called “soft” ionization 

techniques are a common choice for screening methods that run on LC-MS systems since they 

preserve the pseudo-molecular ion. 

Since the introduction of ESI [56], its working principle has been the subject of extensive 

investigations and discussions and was reviewed in detail elsewhere [57–59]. The primary 

mechanistic steps of ESI include formation and charging droplets of the sample solution, droplet 

evaporation and producing gaseous ions. In its basic configuration the ESI source is a two-

electrode system operated at atmospheric pressure with a high potential difference between the 

spray capillary (working electrode) and the MS (counter electrode). The sample solution is 

emitted from the capillary tip as a fine mist of charged droplets supported by a coaxial nebulizer 

gas flow. As the solvent rapidly evaporates, the droplets shrink and the charge density 

increases. Close to or at the Rayleigh limit repulsion between charges overcomes the cohesive 

force of the surface tension and the instability causes fissions of progeny droplets. Finally, ions 

are ejected from the nanodroplets (< 10 nm) into the gas phase following the ion evaporation 

model [60]. This theory is well supported for small analytes. Large globular species and non-

polar polymer chains, however, are released into the gas phase following the charged residue 

model and the chain ejection model, respectively. Kruve et al. conducted a thorough comparison 

of four ion sources for LC-MS under the same conditions using 40 pesticides of a wide range of 

polarity and basicity [61]. Compared to APCI, APPI and multimode ionization, ESI and thermally 

focused/heated ESI (HESI) obtained the lowest limits of detection. HESI appeared to be more 

prone to matrix effects, showing ion suppression or enhancement depending on the run. The 

authors concluded that for trace analysis conventional ESI is a solid choice. Nevertheless, in line 

with the ion evaporation model, a theory was put forward that assumes an enhanced ESI 

response for nonpolar analytes. Compared to more polar analytes, they have higher affinities for 



P a g e  | 7 

 

 
 

the droplet air interface, carry more excess charge and therefore enter the gas phase quicker 

[62, 63].  

1.3 Non-target screening  

1.3.1 Screening strategies 

Due to the aforementioned technological advantages, LC and high-resolution/high-accuracy 

tandem mass spectrometry connected via ESI is now widely applied for multiresidue trace 

analysis. LC-MS expands the analysis repertoire from target screening to suspect and non-

target screening [41]. Other than target screening, suspect screening does not use reference 

standards but rather the accurate mass and other structural information like the isotopic pattern 

or the MS2 spectrum. Based on the theoretical information, the LC-HRMS raw data is then 

searched for pre-defined substances of interest. The non-target screening (NTS) approach was 

introduced by Hernández et al. [64] and refined by Krauss et al. [41]. In 2019, an expert 

committee of the German Water Chemistry Society released for the first time a guideline on the 

“Use of non-target screening by means of LC-ESI-HRMS in water analysis” [65]. NTS was 

described therein as a “[…] procedure without limitation to pre-select substances”. Based on the 

ISO norm ISO/DIS 21253-1:2018(E) and the decision of the European Commission 

2002/657/EG, the authors defined a minimum resolving power for NTS using mass 

spectrometers of 20,000 (full width at half maximum of the mass peak height) and mass 

accuracy < 5 ppm at m/z 200 and recommended the measurements of MS2 spectra. In the 

subsequent data evaluation, so-called features are extracted from LC-HRMS chromatograms, 

which are defined by their accurate mass, chromatographic retention time (RT) and signal 

intensity (peak height or peak area).  

NTS investigations can be a valuable addition to the routine monitoring of surface water quality, 

as was proven by the International Commission for the Protection of the Danube River 

(PCPDR). A periodic survey is conducted, namely the Joint Danube Survey, which was repeated 

for the fourth time in 2019 [66]. Its main purpose was to collect additional data, compare and 

harmonize it between adjacent countries and regions and raise public awareness for protection 

efforts.  

1.3.2 Data processing 

HRMS measurements including full scan as well as MS2 experiments, generate massive 

amounts of complex data. Hundreds of thousands features might be initially extracted from the 

NTS raw data [67], illustrating the need for further data processing in order to reduce noise, 
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artefacts or redundant features. For data processing, there are open source tools such as 

MZmine 2 [68] or XCMS [69], but also commercial and often market-oriented software solutions, 

such as MassHunter Profinder (Agilent Software) or MarkerView (AB Sciex). Building a basic 

NTS data evaluation workflow and possibly being restricted to the software available at the 

institution presents a challenge that needs to be tackled so that NTS approaches can be 

integrated into routine monitoring. General workflows for NTS data evaluation to obtain reliable 

feature lists are presented elsewhere [65, 70]. Letzel and Drewes gathered several 

environmental studies screening for suspects, hidden targets or unknowns and extracted the key 

procedural data processing steps: Peak picking or feature extraction, alignment, integration or 

chromatogram deconvolution, background comparison and componentization [71]. Recent 

trends in data pretreatment and feature extraction are discussed in Appendix A.3. 

1.3.3 Applications 

The NTS approach developed quite diversely in the different fields of research and application. 

Whereas highly specialized techniques using advanced statistics are common in metabolomics, 

NTS approaches in water analysis are often more practical and effect-driven. The approach 

either aims at identifying unknown or unexpected TOrCs or reveal general trends or patterns in 

comparative studies.  

Features which were extracted in an untargeted manner and subsequently annotated with 

substances stated in the literature or chemical databases but unknown to the investigator, are 

called “known unknowns” [72] or “hidden targets” [73]. Analytical information on a feature such 

as accurate mass, isotopic pattern or fragmentation pattern are used to connect it to a real 

compound and create a feature-candidate pair. Additionally, further instrumental constraints 

such as retention behavior can support an unambiguous allocation of features. All the 

information gathered on a feature may be compared to a compound database.  

When aiming at finding relevant feature-candidate pairs, filtering, ranking, and prioritization 

strategies are needed. The relevance is an important criterion to make the hidden-target 

screening approach more feasible. Ideally, only those features should be considered for 

validation with reference material that are  

a) annotated with a high degree of confidence and  

b) relevant to the investigated sample set.  

All the amenable information is accommodated by several filters which allow to rank and classify 

features according to their identification confidence. In NTS analysis of water samples, feature-
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candidate pairs are further prioritized by considering meta-data on a sample, such as proximity 

to conurbations [74]. Additionally, prioritizing features based on their detection frequency in 

larger sample sets has been applied in LC-HRMS screening investigations of surface waters 

before [75]. 

A non-target screening approach can complement the assessment of water treatment processes 

[76, 77]. Instead of focusing on the fate of preselected target compounds, all features extracted 

before and after the treatment are considered. A comparison of the fingerprints reveals the 

removal or transformation/desorption of features during the treatment process or an increase or 

decrease in signal intensities. Individual features that are of interest for the process could be 

further identified. In future investigations, those recently identified features could serve as 

indicators for typically underrepresented compound groups such as TPs. The data evaluation 

process for a comparative NTS analysis needs to be adapted in order to classify features based 

on fold changes (fcs) of their signal intensities and at the same time takes matrix effects under 

consideration.  

1.4 Quality assurance and control for non-target screening 

Measures specifically introduced to assure and control the quality of results are imperative to an 

analytical method. Due to varying research objectives in non-target analysis, universally valid 

quality control (QC) guidelines are lacking. Still, the need for appropriate QC strategies was 

recognized and several procedures proposed and reviewed in the field of metabolomics [78] and 

more recently also within the environmental analysis community [79]. 

Over time the general performance of an LC-MS setup could be compromised by column 

degradation or a decline in mass spectrometric response which contributes to the total variability 

of an analytical method. These effects on repeatability of RT, mass and signal intensity can be 

monitored in a targeted analysis of multiple standard compounds. Those are spiked into an 

external quality control (QC) sample at known concentrations and analyzed throughout a 

measurement campaign, as was established early on for validated metabolomic methods [46]. 

Furthermore, (isotopically-labelled) internal standards can be spiked into each sample for 

optimizing the method and assessing the system’s accuracy and stability, especially considering 

matrix effects. It should be noted though that a typical NTS approach covers a vast amount of 

compounds whose identity is not disclosed prior to the analysis. A limited number of internal 

standards might not be representative for the entire chemical space. Ideally, the set of standard 

compounds represents a broad mass range and diverse physicochemical properties. 

Moreover, including blank samples in the measurement sequence, allows to correct for features 
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which originate from the laboratory background, contamination (i.e. carry-over) and thus reduce 

the false positive rate.  

In 2006, Sangster et al. suggested to combine aliquots of every sample one and repeatedly 

measure it throughout the sequence [80]. These pooled QC samples might provide a more 

representative matrix when, i.e. evaluating the stability of the system on the internal standards. 

For processing the data of pooled QC samples, multivariate statistical methods such as principal 

component analysis (PCA) allow to reveal potential variabilities throughout the measurement 

sequence such as gradual shifts or sudden changes. Ideally, the QC samples would cluster 

closely together in the PCA score plot.  

Through replicate injections of QC samples precision values of mass, RT and intensity can be 

determined. Three technical replicates of each real sample are recommended to increase the 

statistical power of feature recognition [81].  

The two focus points of the QC regime for NTS data processing are reducing the type I (false 

positive) as well as the type II (false negative) error. To achieve the former, data complexity is 

reduced by adding noise thresholds, replicate filter, componentization steps or blank correction. 

When later on compound candidates are assigned to extracted features, a high level of 

identification confidence is sought and the community agreed on a universal scale to 

communicate it [82–84]. In order for the NTS approach to be unbiased it is equally important to 

control the false negative rate. Creating a feature extraction method requires setting up several 

quantitative parameters and filters which affect the quality of the final feature list. In addition to 

controlling the quality of an analytical run, data on standard compounds can be used to optimize 

an NTS method by maximizing their recall. 

1.5 Design of experiment  

Throughout the analytical process, there are multiple parameters that need to be set robustly 

and optimally. Choosing default settings, trial and error or changing one factor at a time (OFAT) 

are common optimization approaches, but strongly rely on the personal experience of the 

experimenter and assume the absence of statistical interaction [85]. Statistical design-of-

experiment (DoE) constitutes a more systematic and efficient approach as it significantly 

reduces the number of necessary experiments. The general idea is to vary parameter settings 

simultaneously following a strategic experimental plan. Subsequently, a model is built based on 

the results, i.e. by Multiple Linear Regression (MLR) [86], which can be used for interpretation, 

prediction, and optimization of the input parameters. Since the foundational work of Ronald 

Fisher [87], numerous experimental designs have been proposed like by Plackett and Burman 

[88] or fractional factorial designs [89] for initial first-order, linear screenings of the investigated 
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input parameters. Since full factorial designs are often resource-intensive, screening designs 

can be augmented by model-specific D-optimal designs [90] in order to fit non-linear models for 

optimization purposes but keeping the experimental effort as low as possible.  

DoE has been picked-up for investigating and optimizing LC-MS method parameters. In various 

applications the effects (main and interactions) of ESI source parameters on the analyte 

response were evaluated and an adequate combination of settings was found to increase 

sensitivity in detection [91, 92]. For processing metabolomics data, DoE was used to optimize 

parameter settings of XCMS software [69] based on a reliability index for assessing the peak 

quality [93, 94]. Hu et al. used a central composite face design and response surface modeling 

to optimize critical peak detection parameters of MZmine 2 software [68]. They validated the 

optimized peak detection method on real surface water samples against a manual target 

screening of a list of TOrCs and found 75 – 100 % of the peaks at an intensity level of 105  [95].  
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2. Research objectives and hypothesis 

In this thesis, an analytical method was developed comprising of an instrumental and data 

processing part. It is supposed to be suited for screening water samples for analytes of an 

extended polarity range in an untargeted manner. The workflow is considered to be suited if it 

fulfills the following criteria which translate to the research objectives of this work: 

a) The method detects as many relevant features as possible. 

b) The quality of the method is controlled. 

c) The method can be adapted to different research questions. 

d) The method is applicable to environmental water samples.  

As was outlined in the chapters 1.1.2 and 1.2, recognition of the “analytical gap” [19], analytical 

techniques emerged within the field of LC-MS, able to detect highly polar compounds [27]. 

Polarity intrinsically implies a compound’s mobility in water. Mobility paired with persistency and 

toxicity characteristics in a molecule render it a risk for surface and drinking waters. The serial 

RPLC-HILIC coupling introduced by Greco et al. [96], covers an extended polarity range and is a 

key instrumental element of this work. Referring to chapter 1.3.1, the molecular scope was 

further expanded by changing the way of investigating a sample from a target screening to a 

non-target/suspect target screening [41]. Following criterion a), aspects of the instrumental as 

well as the data processing method needed to be optimized to exploit the full potential of the 

aforementioned analytical approaches. As a consequence, hypothesis 1 was formulated: 

By optimizing selected parameters of the instrumental as well data processing method, 

unexpected molecules with diverse properties can be detected. 

Since in non-target screening the true composition of sample is unknown to the investigator, 

fixed reference points need to be artificially established for the method. This can be achieved by 

incorporating quality control and assurance measures into the measurement sequence as well 

as the data analysis process (compare chapter 1.4 and references [78, 79]). In order to address 

criterion b), the following hypothesis (#2) was postulated:  

Through introducing quality control (QC) measures, the robust operation of the instrumental 

method can be monitored and the ability of the data processing method to detect molecules 

assured. 

As discussed in the chapters 1.3.2 and 1.3.3, as well as in Appendix A.3, NTS is subjected to 

diverse research questions and analytical platforms. The environmental analyst could either aim 
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at identifying unknown or unexpected compounds or globally assess water treatment processes 

– both entailing entirely different methodological requirements [97]. Furthermore, the 

instrumentation available in the different laboratories could include different front-end systems 

and range from QTOF- to Q-Orbitrap HRMS instruments of various subordinate series equipped 

with ionization sources of different types and designs. Depending on the laboratory, there might 

be access to either commercial software provided by the MS vendor or open source tools for 

feature extraction with specific parameters based on different algorithms. Thus, the NTS data 

processing strategy needs to be flexible and able to adapt to the given circumstances as claimed 

by criterion c). This claim was addressed by hypothesis 3: 

The data processing strategy can be adapted to fit different software tools as well as to different 

non-target screening applications such as identification, trend analysis and comparative 

analysis. 

Finally, the analytical method developed under chapters 3 – 5 (corresponding to hypotheses 1 -

3) was validated on real applications. That meant screening surface water samples taken from 

two German rivers and a reservoir for polar compounds. Criterion d) was addressed by 

hypothesis 4: 

The optimized and adopted workflow is universally able to tentatively identify unexpected (very) 

polar candidate compounds and can be applied to surface water samples and samples after 

water treatment processes.  

The hypotheses are discussed in the chapters 3 – 6 and were tested by 3 – 4 tasks per 

hypothesis, outlined in Fehler! Verweisquelle konnte nicht gefunden werden.The following 

peer-reviewed papers were prepared while testing these four hypotheses: 

 P1: Minkus S, Grosse S, Bieber S, Veloutsou S, Letzel T (2020) Optimized hidden target 

screening for very polar molecules in surface waters including a compound database 

inquiry. Anal Bioanal Chem 412:4953–4966. https://doi.org/10.1007/s00216-020-02743-0 

(Appendix A.1 and 0) 

 P2: Minkus S, Bieber S, Letzel T (2021) (Very) polar organic compounds in the Danube 

river basin: Non-target screening workflow and prioritization strategy for extracting highly 

confident features. Anal Methods 13:2044–2054. https://doi.org/10.1039/D1AY00434D 

(Appendix A.2 and Appendix B.3) 

 P3: Minkus S, Bieber S, Letzel T (2022) Spotlight on mass spectrometric non‐target 

screening analysis: Advanced data processing methods recently communicated for 
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extracting, prioritizing and quantifying features. Anal Sci Adv 3:103–112. 

https://doi.org/10.1002/ansa.202200001 (Appendix A.3) 
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Figure 1: The four hypotheses are presented under the four topics of developing and validating the analytical method. 
Each hypothesis is subdivided into tasks. The results of each task are presented in peer-reviewed articles which are 
listed in text above and referenced by P in brackets.   

 

 



P a g e  | 16 

 

 
 

3. Method optimization 

Hypothesis 1: By optimizing selected parameters of the instrumental as well data processing 

method, unexpected molecules with diverse properties can be detected. 

The hypothesis has been addressed in the following peer-reviewed papers: 

 P1:  

o Reference: Minkus S, Grosse S, Bieber S, Veloutsou S, Letzel T (2020) 

Optimized hidden target screening for very polar molecules in surface waters 

including a compound database inquiry. Anal Bioanal Chem 412:4953–4966. 

https://doi.org/10.1007/s00216-020-02743-0 (Appendix A.1 and B.2) 

o Author contributions: Author contributions: Susanne Minkus curated the data, 

planned and performed the DoE and the NTS data processing workflow, 

interpreted the data and drafted the manuscript. Stefan Bieber contributed to 

collecting the samples and performing the measurements, edited the manuscript 

and contributed to the discussion. Sylvia Grosse contributed to the laboratory 

work. Sofia Veloutsou prepared the samples and contributed to the 

measurements. Thomas Letzel supervised the research project, contributed to 

the discussion and edited the manuscript. 

 P2:  

o Reference: Minkus S, Bieber S, Letzel T (2021) (Very) polar organic compounds 

in the Danube river basin: Non-target screening workflow and prioritization 

strategy for extracting highly confident features. Anal Methods 13:2044–2054. 

https://doi.org/10.1039/D1AY00434D (Appendix A.2 and Appendix B.3) 

o Author contributions: Susanne Minkus contributed to the sample preparation and 

analysis, curated the data, planned, optimized and performed the NTS data 

processing, interpreted the data and prepared the manuscript. Stefan Bieber 

edited the manuscript and contributed to the sample preparation and analysis. 

Thomas Letzel supervised the research project, contributed to the discussion and 

edited the manuscript.  

3.1 Use statistical design of experiment (DoE) to find a robust setpoint for electrospray 

ionization parameters that maximizes ionization efficiency for a wide range of 

molecules 

This chapter has been previously published as an application note with minor modifications. 
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Reference: Minkus S, Bieber S, Moser S, Letzel T (2020) Optimization of electrospray ionization 

parameters in an RPLC-HILIC-MS/MS coupling by design of experiment. AFIN-TS Forum 

March:1–17. 

Author contributions: Susanne Minkus contributed to planning and performing the DoE and the 

sample preparation and analysis. She curated, processed and interpreted the data and prepared 

the manuscript. Stefan Bieber contributed to planning and performing the DoE as well as to the 

sample preparation and analysis. He edited the manuscript. Stefan Moser contributed to 

planning and performing the DoE and edited the manuscript. Thomas Letzel supervised the 

analytical part of the work, contributed to the discussion and edited the manuscript. 

3.1.1 Introduction 

LC-MS analysis benefitted from the advent of ESI that converts liquid-phase chemical species of 

a broad mass range into gas-phase ions [56]. ESI is considered a “soft” ionization technique as it 

induces very little fragmentation. The working principle is described elsewhere in detail (chapter 

1.2.3 and references [57, 58]) and the ionization source used in this study is schematically 

depicted in Figure 2. 

Briefly, the sample solution is emitted from the tip of the spray capillary as a fine mist of charged 

droplets. The surface tension of the solvent in the spray is pneumatically counteracted by a 

coaxial nebulizer gas flow. The solvent evaporation is accelerated by a heated gas flow from the 

heater. Based on the ion evaporation model ions start to separate from the shrinking 

nanodroplet as charge density increases [60]. The ions follow a decreasing pressure gradient 

towards the ion optics of the mass spectrometer. The so-called curtain gas stream which is 

introduced between the curtain plate and the orifice prevents ambient air, solvent and uncharged 

compounds and particles from entering as well. Additionally, the declustering potential is applied 

to the orifice and hinders ions to cluster from cooling after passing the orifice.  

There are multiple adjustable parameters that influence the ionization efficiency. That raises the 

question of the most suitable combination of settings for a general, but sensitive operation. 

Accordingly, the objective of the present study was to optimize a new ESI source coupled to LC. 

The essential parameters heater gas, temperature, ion spray voltage, nebulizer gas, curtain gas 

and declustering potential were investigated (Figure 2).   

The scientific issue gains more depth when considering that the ionization efficiency depends on 

the physicochemical properties of the analytes as well as on the composition of the mobile 

phase. Herein, a serial coupling of RPLC and HILIC was employed to separate molecules of a 

wide polarity-range [98]. Accordingly, rather heterogeneous elution profiles of the solvents can 
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be expected. The optimization was based on the signal intensities of a set of 30 model 

substances. They covered the entire retention time window of the RPLC-HILIC separation to 

represent the complex and inconsistent solvent composition.   

A common optimization approach is to change one factor at a time (OFAT) which is also 

applicable for ESI optimization. OFAT works well for the optimization of a single ion transfer. 

However, that method strongly relies on the experimenter’s personal experience but what is 

more problematic, implicitly assumes the absence of statistical interaction [85]. Moreover, some 

analytical strategies, like a non-target screening, require efficient ionization of whole spectrum of 

compounds [39]. In such cases, a more systematic approach has to be chosen like statistical 

DoE. The general idea is to vary the relevant input parameters within their appropriate factor 

ranges simultaneously in a methodically designed set of experiments. By using state of the art 

investigation designs the number of necessary experiments can be reduced in a very efficient 

way. The results can be connected by means of a regression model that allows interpretation, 

prediction and finally optimization of the parameters.  

 

Figure 2: Schematic graphic of the Sciex TurbolonSpray™ probe used in this study. Setting parameters that were 
subject of the statistical adaption are depicted in bolt. 
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3.1.2 Methods 

3.1.2.1 Chemicals and solutions 

LC-MS grade acetonitrile and water were obtained from Honeywell (Morristown, USA) and VWR 

(Darmstadt, Germany). Ammonium acetate was obtained from Sigma-Aldrich (Merck KGaA, 

Darmstadt, Germany). Standard compounds were purchased from Alfa Aesar (Thermo Fisher 

Scientific, Karlsruhe, Germany), Fluka (Buchs, Switzerland), Merck KGaA (Darmstadt, Germany) 

and Sigma-Aldrich. Individual standard stock solutions were prepared at 1 mM in either 

acetonitrile or, in case a compound had a log D at pH 7 < 2.0, in acetonitrile/water (50/50, v/v). A 

working mix at 10 µM per compound was prepared in acetonitrile from the stock solutions.  

3.1.2.2 Design of Experiment  

Planning and evaluating the experimental design were done with MODDE Pro software (version 

12.1.0.5491; Sartorius Stedim Data Analytics AB, Umeå, Sweden). 

Six setting parameters of the ESI source (represented graphically in Figure 2) referred to as 

factors were screened and optimized by DoE. They are listed together with the range within they 

were varied in Table 1. Each experiment represents a distinct combination of factor settings. 

They were varied simultaneously by following the system of a fractional factorial design with 

resolution IV [89] complemented by a D-optimal design [90]. The design matrix consisted of 46 

experimental runs and is given in Table S1 (see supplementary material in Appendix B.1). The 

experiments were conducted in random order to prevent systematic noise variation. 

The result of each experiment is reflected in so-called response values. In this case, the 

performance of a certain combination of ESI settings was evaluated by means of the signal 

intensities of 30 model substances. They are listed in Table S2 in Appendix B.1.  

The relationship between the ESI settings and the signal intensities of the 30 molecules was 

modeled using MLR [86]. A quadratic process model was estimated which allows optimizing the 

response values. Therefore, a default minimum peak height of 10,000 Cps was defined similar to 

a study by Bieber et al. where they optimized an ESI source integrated in a SFC-MS system 

[99]. The specification target of each response was set slightly below the predicted maximum 

value. With the implemented optimization algorithm in the software, specification limits were 

adjusted if a response exceeded a probability of failure of 0.5 %. The exact values are 

summarized in Table S2 of the supplementary material (Appendix B.1). A robust setpoint was 

calculated using Monte Carlo simulations. Coming from this setpoint a design space was 

generated with the use of the Manhattan distance algorithm at a resolution of 8, 1000 iterations 

and an acceptance limit of 1 %.  
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The robust setpoint was validated by measuring the model mix three times at the robust ESI 

settings (Table 2). 

Table 1: Six factors of the ESI that were statistically evaluated and optimized (see also Figure 2). For each factor the 
upper and lower limit of the interval and the setting precision are given. 

Factor Abbreviation Lower limit (-1) Upper limit (+1) Precision 

Nebulizer gas G1 30 psi 50 psi 1 psi 

Heater gas G2 20 psi 50 psi 1 psi 

Curtain gas CUR 25 psi 40 psi 1 psi 

Ion spray voltage ISV 2000 V 5500 V 100 V 

Temperature Temp 300 °C 650 °C 10 °C 

Declustering potential DP 20 V 200 V 10 V 

 

3.1.2.3 Instrumentation 

The chromatographic separation was performed on a serial coupling of RPLC and HILIC, which 

is described in detail elsewhere [39]. 

In short, two binary pumps and two online degassers where used (Agilent Technologies, 

Waldbronn, Germany). For RP separation a Poroshell 120 EC-C18 column was used (50.0 x 3.0 

mm, 2.7 µm; Agilent Technologies). The HILIC Separation was performed on a ZIC-HILIC (150 x 

2.1 mm, 5 µmm 200 Å; Merck Sequant, Umea, Sweden). A T-piece connects the two columns 

and a second binary pump. The injection volume was 10 µL. The mobile phase for RPLC 

comprises 10 mM ammonium acetate in water/acetonitrile at a volumetric ratio of 90/10 (solvent 

A) and 10/90 (solvent B). For the HILIC column acetonitrile (solvent C) and water (solvent D) 

were used.  

A schematic representation of the entire set-up along with the flow rates and gradients is given 

in Figure 3.  
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The standard molecules were detected with a QTOF (TripleTOF 4600; AB Sciex, Darmstadt, 

Germany). It was equipped with a DuoSpray™ ion source with a TurbolonSpray™ probe for ESI 

experiments. The probe was operated in positive ionization mode and the source parameters 

were set according to the designed plan (Table S1, Appendix B.1). Prior to each experimental 

run the source was equilibrated for 20 min. A full scan of the mass range from 65 Da to 1000 Da 

was acquired with an accumulation time of 0.25 s. To gather fragmentation information, eight 

independent data acquisition (IDA) experiments were performed with an accumulation time of 

0.10 s. The QTOF was recalibrated automatically every five runs using an implemented 

atmospheric pressure chemical ionization probe.  

3.1.2.4 Data handling 

For HRMS data evaluation SCIEX OS software (version 1.4.0.18069, AB Sciex) was used. The 

protonated ion mass was calculated from the elemental formula of each substance and ion 

chromatograms (EICs) were extracted. Chromatographic peaks were accepted if the mass error 

was < 5 ppm, nearly Gaussian shaped and the MS and MS/MS spectra showed an isotopic 

pattern and a fragmentation pattern that both fitted the analyte. A compound’s peak height was 

determined for each experimental run and recorded as the respective response value for 

modeling and optimization. 

Figure 3: The serial coupling of RPLC and HILIC. The mobile phases are transported by two binary pumps and 
the reference solution by an isocratic pump. The diagrams below each partial system display the flow and solvent 
gradients.   
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3.1.3 Results and discussion 

The ESI parameters temperature (Temp), declustering potential (DP), ion spray voltage (ISV), 

the pressures of the nebulizer gas (G1), heater gas (G2) as well as the curtain gas (CUR) were 

optimized with regards to maximizing the signal intensities of 30 model substances. These 

compounds are likely to occur in environmental samples. The six factors influence the ionization 

efficiency to a varying but significant degree and have partly opposing effects or interactions. 

Thus, they pose a classical optimization problem which was solved in this study by a DoE 

approach.  

3.1.3.1 Strategy 

It is necessary to ensure, that all factor combinations of the investigation are measurable in 

order to derive a valid cause-effect-model. Therefore, certain extreme setting combinations were 

tested in an in-house preliminary study to evaluate the largest possible ranges. The upper and 

lower limits of the setting intervals differed from the operational range specified by the vendor. 

The tests showed that in some cases the QTOF did not get ready for operation due to not 

reachable factor values. Once the minimum and maximum factor values were determined (Table 

1) an experimental plan was successively generated: 

Initially, the factors were screened at two levels (minimum and maximum) in order to investigate 

main effects and get indications for potential non-linearities and interactions. Therefore, an 

efficient fractional factorial design with a resolution of IV was chosen. It consisted of 18 

experimental runs and supported a linear model. The nonlinear effect of the ion spray voltage 

was investigated by three additional runs. Subsequently, the screening model was 

complemented D-optimally to an optimization design. For the D-optimal design a modified K-

exchange algorithm [12] chose an optimal set of 18 design runs out of a candidate set including 

extreme vertices, edge points and centroids of high dimensional surfaces. The optimality 

criterion seeks to maximize the information in a selected set of experiments by maximizing the 

determinant of the matrix X’X with respect to a pre-specified model Y = Xb + ε. With this 

approach the final experimental setup was maximized according to orthogonality, balance and 

symmetry, to get the best base for the regression model. Finally, two center point runs, and four 

replicate experiments were added. Even though as many as 30 molecules were investigated, the 

total number of runs is not affected by the number of response variables. 

3.1.3.2 Model fit and diagnostics  

For each experimental run the EICs of the 30 response molecules were extracted from the mass 

spectrometric data and the peak heights were determined. Based on these results a basic model 
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was fitted for each individual response variable using MLR. As further described in the following, 

the basic model was iteratively refined by inspecting and adjusting a couple of diagnostic 

screws: 

First, the response distribution was checked for skewness, which describes the degree of 

asymmetry of the distribution around the mean, or more figuratively speaking: The degree of 

distortion from the Gaussain curve. Skewed data might impair model estimates and therefore 

needs to be transformed close to a normal distribution. The responses that triggered the 

skewness test were log transformed according to the formula 10Log(Y) and are marked in Table 

S2 (Appendix B.1).  

Furthermore, residuals ri were examined as part of the total variation that cannot be explained by 

the model. They should not display patterns that are not accounted for by the model. For all 30 

responses, residuals were roughly independent of the run order, predicted values and factor 

settings. Moreover, they were approximately normally distributed, as is exemplified on the model 

substance linuron in Figure 4. A total of four outliers that exceeded ± 4 standard deviations were 

identified via the residual analysis and excluded from the experiments. Two outliers (dapsone, 

N,N′-trimethyleneurea ) occurred during experiment 8, one during experiment 11 (moroxydine) 

and one during experiment 22 (panthenol). Experiment 8 was repeated twice and added as the 

additional runs 43 and 46 to the design matrix. Both runs did not exhibit further outliers. 

Experiments 3 and 30 were duplicated as well, since they showed outliers in an earlier stage auf 

the investigation.  

The coefficient of determination R2 was consulted to assess the model’s goodness-of-fit. It 

describes the fraction of variation that cannot be explained by the model and is defined as: 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

With the observed values yi, the predicted values ŷi, the mean value y̅.  

The predictive ability of the model was estimated by Q2 with the predicted response ŷi/i when 

leaving out the i-th object from the training set (cross-validation) [100]: 

𝑄2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖/𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖
𝑛
𝑖=1 − �̅�𝑖)

2
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A model with a value of 1 for both, R2 and Q2, would fit the data perfectly. The basic models 

were refined by eliminating non-significant model terms and adding model supported terms that 

would increase the Q2 value. At the same time, the number of degrees of freedom (DF) of each 

response was maintained above > 20, where replicate DFs are not counted. That means the risk 

of overfitted data is low. For all final models R2 was > 0.75 and Q2 > 0.56 

3.1.3.3 Prediction and Optimization 

After the model was fitted, the six factors influencing the ionization performance were optimized. 

For the optimization desirability functions were used with the objective of maximizing the signal 

intensities of the 30 model substances. These search functions run on specification limits that 

were adjusted iteratively in order to assure that each limit is possible to reach for the search 

functions (Table S2, Appendix B.1). Afterwards, a six-dimensional design space was generated. 

The robust setpoint was found by maximizing the distance from the acceptance boundaries. The 

results are presented in Table 2. The probability of failure was 0.67 %, cumulated over all 30 

responses for the given robust setpoint. Moreover, the hypercube is given: A volume where all 

factors can be changed at the same time without violating the response specifications. It does 

not include the factors heater gas, temperature and declustering potential. However, the 

Figure 4: Normal probability plot for linuron. The deleted studentized residuals of all experiments were ordered by 
size and plotted against their normal probability. Since thy are following a straight line, it can be assumed that 
residuals in the case of linuron are approximately normal distributed. There are no outliers that exceed the ±4 SD 
mark. 
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acceptance limit was as low as 1 %, which means 99 % of the samples were within specification 

limits. Moreover, the factors without a hypercube range had short robust distances to the design 

space limit which were limited by the resolution.  

Table 2: Robust setpoint value for each factor along with the hypercube range and its contribution percentage. 

Factor Setpoint Hypercube 

low edge 

Hypercube 

high edge 

Factor 

contribution [%] 

Nebulizer gas 44 psi 30 psi 47 psi 5 

Heater gas 50 psi 50 psi 50 psi 12 

Curtain gas 29 psi 27 psi  31 psi 2 

Ion spray 

voltage 

2000 V 2000 V 2500 V 12 

Temperature 650 °C 650 °C 650 °C 27 

Declustering 

potential 

46 V 46 V 46 V 42 

 

The most significant impact on the ionization efficiency had the factors temperature (27 %) and 

declustering potential (42 %) which will be discussed in more detail: The effect of both factors on 

an analyte’s peak height is exemplarily depicted for linuron (response 16) in Figure 5. First of all, 

higher temperatures lead to higher signal intensities, which could be explained by more efficient 

solvent evaporation and ultimately more ions reaching the detector. Secondly, the declustering 

potential: It is applied to the orifice at the transition from atmospheric pressure to vacuum and 

assures the analytes’ entry into the MS optics by preventing ions from clustering together. There 

was an optimal declustering potential for each individual analyte that ranged from 50 to 90 V.  

Figure 5 clarifies that from that highest point on the signal intensity decreases with increasing 

declustering potential which could be attributed to in-source fragmentation.  

Still, it should be noted that the effect of a factor is also affected by the difference between its 

minimum and maximum value.  
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3.1.3.4 Robust setpoint validation 

The last step was to validate the robust ESI settings that were preciously calculated. Therefore, 

the same mixture including the 30 model substances was injected three times on the RPLC-

HILIC-coupling. The predicted values for signal intensity were plotted against the mean of the 

three observed values (Figure 6). The trend line (blue) displays very little bias from the identity 

line (black). Furthermore, to summarize the forecast accuracy for signal intensity the mean 

absolute percentage error (MAPE) was calculated at 29 % for the n = 30 mean observations 

according to the following equation:  

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑ |

𝑟𝑖
𝑦𝑖
|

𝑛

𝑖=1
) ∙ 100% 

Somehow, the model accomplished to predict weaker signals more adequately than stronger 

ones.  

 

 

 

Figure 5: Factor effects of the declustering potential and temperature on the signal intensity of linuron (response 
16). The yellow bullets mark the robust settings. All other factors values were kept at the robust setpoint as well.  
The 95 % prediction interval is depicted by the dotted lines and the specification limits by the dashed lines 
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3.1.4 Conclusion 

The objective of this task was to increase the ionization efficiency by optimizing the essential 

input factors of an ESI source by means of DoE. The ESI source was part of an RPLC-HILIC 

serial coupling hyphenated with a high-resolution tandem mass spectrometer. The optimization 

aimed for maximizing the signal intensities of 30 model substances – so-called response 

variables. By considering an entire set of molecules instead for just one, the ionization conditions 

suit the challenges of NTS: When a broad mass range is scanned, compounds covering the 

whole spectrum of physiochemical properties can be expected.   

The experimental plan was based on a fractional factorial screening design with a resolution of 

IV that was complemented by a D-optimal design to create a design capable of response 

surface modeling. For each response variable a model was fitted with MLR with an R2 > 0.75. A 

robust setpoint was computed for the six ESI factors and revealed a major effect of the 

temperature and the declustering potential on the compounds’ signal intensity.  

The setpoint was validated by measuring at the respective combination of factor settings in 

triplicate. The forecast accuracy of the model was adequate (MAPE = 29 %), especially for 

compound with a peak height < 100,000 Cps.  

The ESI method was optimized to ensure a robust and sensitive detection of molecules of a 

broad mass and log D range and therefore hypothesis 1 can be accepted.  

y = 0.92x + 572
R² = 0.98 (n = 30)
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Figure 6: The robust setpoint was validated by comparing the predicted and observed signal intensities of the 30 
model substances. Response 14 (flurtamone) is not displayed since it is an outlier with a predicted an observed 
peak height > 2,000,000 cps. 
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3.2 Adjust the parameter settings of the data processing method by applying it to 

standards compounds and maximizing their recall 

3.2.1 Methods 

Firstly, data processing parameters were optimized with respect to recovering a subset of 51 out 

of 177 external standard compounds prepared in solvent at a concentration of 10 µM per 

compound. They were analyzed along with the environmental samples in question as part of a 

study published elsewhere [101]. The approach for finding suitable parameter settings was 

refined by preparing two synthetic samples where 34 standard compounds were spiked into a 

tap water matrix at concentration levels of 10 nM and 100 nM, respectively (Appendix A.2). The 

parameters of the NTS data evaluation implemented in MZmine 2 [68] were adjusted iteratively 

with the objective of maximum recovery. The parameters were later on adjusted to fit the 

requirements of the process evaluation study (compare chapters 5.4, 6.3), given for example by 

a different type of high-resolution mass spectrometer or research objective. Mass and RT 

tolerances were set based on the targeted analysis of the internal standards as well as the 

spiked HILIC standards. The parameter settings were validated and if necessary optimized on 

the three blank samples with the objective of obtaining full recall of the standard compounds and 

reducing the total feature number as well as the processing time.  

3.2.2 Discussion 

When optimizing the NTS data processing parameters of a preliminary study, the required 

recovery rate for external standard compounds was defined at 75 % [101]. However, the matrix 

as well as the concentration of the external multicomponent standards do not represent realistic 

conditions. As a consequence, TOrCs present in a real surface water sample, might not be 

extracted by the peak picking algorithm or false positives might be erroneously detected.  

Within the scope of the study Appendix A.2, the parameters of the feature extraction method 

intensity threshold, mass tolerance, peak duration range and RT wavelet range (Appendix B.3, 

Table S4) were adjusted based on the synthetic samples. Therefore, target compounds were 

analyzed in matrix and at concentrations realistic for surface waters. The acquired data was 

handled as an NTS test set and the parameters iteratively adjusted to maximize the recovery of 

standard compounds. The final feature extraction method was validated on both synthetic 

samples, leading to a > 90% recovery at higher concentrations and > 60% at lower 

concentrations. This difference could be attributed to an increased variability in feature 

properties at lower concentrations. The RT threshold for the feature extraction method needed to 

account for some outliers in RT repeatability by specifying relatively conservative values of 0.9 
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min (Appendix A.1) and 1.6 min (Appendix A.2), compare also chapter 4.1. The parameter 

settings were transferred to the NTS data processing strategy of the process evaluation study 

(chapters 5.4 and 6.3), and adjusted until all of the internal standards were recovered. 

Alterations were necessary due to a different study design and different instrumental conditions: 

a) Orbitrap Exploris 120 mass spectrometer (Thermo Fisher Scientific) was used instead of 

a TripleTOF series 4600 (AB Sciex)  

b) The research aimed at evaluation a water treatment process instead of (tentatively) 

identifying TOrCs 

The results are presented in Appendix B.4, page Table S3. 

The input parameters and filter criteria of the NTS data processing method can readily be 

adjusted based on fixed reference points, namely standard compounds. To address hypothesis 

1, they can be chosen to cover a wide range of masses, RTs and log D values. As a 

consequence, the hypothesis can be accepted since unexpected molecules with diverse 

properties can be detected. However, the assortment most likely does still not cover the entire 

chemical space. 

3.3 Use DoE to find a robust setpoint for the input parameters and filters of the data 

processing method that maximizes predefined performance descriptors 

3.3.1 Methods 

Eight critical parameters and filters of the feature extraction method presented in Appendix A.1, 

Figure 1 were optimized using MODDE Pro software (version 12.1.0.5491; Sartorius Stedim 

Biotech GmbH). Features were extracted from HRMS full scan data of a subset of six out of 33 

real samples. The eight factors were varied simultaneously following a Plackett-Burman 

screening design [48]. Six response variables were calculated from the feature lists which 

resulted from each experiment (0, Table S6). A model was fitted to connect all the results using 

multiple linear regression. The eight responses were minimized using desirability functions 

based on specified limits (0, Table S6). 

3.3.2 Discussion 

The optimization of the feature extraction parameters was performed on a sample subset in 

order to reduce the time that would be required to process the entire sample batch. Five input 

parameters and three filters were identified as critical and optimizable factors: Noise threshold, 

charge state, RT tolerance, mass tolerance and mass tolerance for EIC extraction and three 
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peak intensity filters. Six response variables in the form of numerical descriptors were defined to 

assess the performance of each feature extraction experiment. For each individual response, the 

coefficient of determination R2 was > 0.7 and the predictive ability Q2 > 0.6, suggesting that the 

general model was sufficiently significant (0, Table S7). A robust combination of factor settings 

was calculated and is presented in Appendix A.1, Table 1. For a more general result, the initial 

noise threshold for the peak picking was found to be optimal at zero and was counteracted by 

two rather rigid signal intensity filter applied further downstream of the workflow (compare 

chapter 4.2). In contrast, the tolerance windows for mass and RT are more specific to the mass 

analyzer used for this study (6230 TOF-MS, Agilent Technologies) and the five-month time 

period it took to measure the entire sample set. A systematically designed experimental plan 

was presented that is able to optimally adapt the feature extraction method to fluctuating data 

quality. The thorough statistical analysis of a DoE approach could deepen the understanding of 

complex and sometimes undisclosed algorithms.  

When trying to find the optimal combination of software settings as claimed by hypothesis 1, 

conflicts might arise: Distinguishing between reliable features from artefacts and noise, 

introducing statistical value but also reducing experimental efforts, or customizing the workflow 

to the individual data set by keeping it reproducible. Statistical DoE offered the possibility of 

systematically compromising on these problems by finding an optimal combination of software 

settings for critical parameters and filters. In conclusion, in the study presented in Appendix A.2, 

again unexpected TOrCs were identified and thus hypothesis 2 can be accepted.  
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4. Quality assurance of the method 

Hypothesis 2: Through introducing quality control (QC) measures, the robust operation of the 

instrumental method can be monitored and the ability of the data processing method to detect 

molecules assured. 

The hypothesis has been addressed in the following peer-reviewed papers: 

 P1:  

o Reference: Minkus S, Grosse S, Bieber S, Veloutsou S, Letzel T (2020) 

Optimized hidden target screening for very polar molecules in surface waters 

including a compound database inquiry. Anal Bioanal Chem 412:4953–4966. 

https://doi.org/10.1007/s00216-020-02743-0 (Appendix A.1 and B.2) 

o Author contributions: Author contributions: Susanne Minkus curated the data, 

planned and performed the DoE and the NTS data processing workflow, 

interpreted the data and drafted the manuscript. Stefan Bieber contributed to 

collecting the samples and performing the measurements, edited the manuscript 

and contributed to the discussion. Sylvia Grosse contributed to the laboratory 

work. Sofia Veloutsou prepared the samples and contributed to the 

measurements. Thomas Letzel supervised the research project, contributed to 

the discussion and edited the manuscript. 

 P2:  

o Reference: Minkus S, Bieber S, Letzel T (2021) (Very) polar organic compounds 

in the Danube river basin: Non-target screening workflow and prioritization 

strategy for extracting highly confident features. Anal Methods 13:2044–2054. 

https://doi.org/10.1039/D1AY00434D (Appendix A.2 and Appendix B.3) 

o Author contributions: Susanne Minkus contributed to the sample preparation and 

analysis, curated the data, planned, optimized and performed the NTS data 

processing, interpreted the data and prepared the manuscript. Stefan Bieber 

edited the manuscript and contributed to the sample preparation and analysis. 

Thomas Letzel supervised the research project, contributed to the discussion and 

edited the manuscript.  
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4.1 Use QC samples, external and internal standards at different concentrations and in 

different matrices to assess the variability between RPLC-HILIC-HRMS measurements 

4.1.1 Methods 

Generally, solvent and matrix blank samples were injected throughout the analytical sequence 

(Appendix A.1, Appendix A.2, reference [101]). Analytical standards were handled in stock 

solutions at a concentration of 1 mM per compound in acetonitrile or acetonitrile/water (50/50, 

v/v) and subsequently combined to mixtures of 10 µM per compound in acetonitrile. The external 

multicomponent standards were injected multiple times, evenly spread over the course of the 

measurement sequence. The raw data was evaluated to generally assess the performance of 

the RPLC-HILIC coupling with special focus on the RT precision (Appendix A.1, Appendix A.2). 

Within the scope of a study not presented here but was part of the fourth Joint Danube Survey 

[101], 177 reference standards covering a polarity range of -5.60 ≤ log D (pH 7) ≤ 4.90 were 

measured in triplicates to assess the stability of the serial coupling hyphenated to QTOF-MS 

(TripleTOF 4600; AB Sciex, Darmstadt, Germany). The approach was further advanced by 

preparing two synthetic samples in tap water matrix and spiking them with 34 standard 

compounds (Appendix B.3, Table S2) at two concentration levels (c1 = 10 nM, c2 = 100 nM; 

Appendix A.2). 

In the process evaluation study presented in chapter 6.3, internal standards covering a log D 

range at pH 7 of -2.47 – 3.59 were prepared in stock solutions (Appendix B.4, Table S1). 

Subsequently, they were spiked into treated and untreated samples for activated carbon 

treatment evaluation at a final concentration of 5 µM. Aliquots of all the samples were combined 

at equal volumes and also spiked with internal standards. Two triplicates of the pooled QC 

samples were measured at the beginning and the end of the sequence. In R (version 4.0.2) 

[102] and RStudio (version 1.3.959) [103], PCA was carried out for the blank samples, the 

treated samples and six pooled QC samples for each ionization mode. The data comprised 

normalized peak heights and “0” was put for missing values. The data was scaled and centered 

before being submitted to the prcomp function. 

4.1.2 Results and discussion 

The instrumental performance of the RPLC-HILIC coupling was assessed on external 

multicomponent standards in solvent and matrix and is presented in Appendix B.2, Table S3 and 

Appendix B.3, Tables S1 and S2. Precision values of mass, RT, peak height and peak width are 

given, as well as mass accuracy values. Those, however, could differ from study to study since 

throughout the course of thesis three HRMS instruments were used (TOF, QTOF and Orbitrap-
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MS). Compounds that were retained from the RPLC column exhibited an average standard 

deviation of 0.3 min (0.9%, n = 43). The RTs of the external HILIC standards deviated by 0.2 min 

(1.9%, n = 25, Appendix A.1) and 0.1 min (1.0%, n = 100, Appendix A.2). However, in some 

isolated cases, like for gabapentin or histamine, the RTs shifted > 1.0 min. These “jumps” could 

be caused by switching between water samples and matrix-free QC samples, as the equilibrium 

at the HILIC stationary phase might be disturbed [104]. 177 target analytes were measured three 

times on the RPLC-HILIC-QTOF-MS system and the repeatability and accuracy determined 

separately for very polar (log D < -2.50), polar (-2.50 < log D < 2.00) and non-polar (log D > 

2.00) [39, 101]. The results are summarized in Table 3. The probability of RT outliers seems to 

increase for highly polar compounds (log D < 2.5, pH 7, Table 3).  

Table 3: Maximum values of RT precision, mass precision and mass accuracy assessed on 177 reference 
compounds measured three times on the RPLC-HILIC-QTOF-MS setup. Standard compounds are classified by their 
polarity. Log D values are given for a pH of 7. This table has been published before [101]. 

 Number of 

reference 

standards  

Maximum 

RT shift 

[%] 

Maximum 

deviation from 

average mass 

[%] 

Maximum 

deviation from 

target mass 

[ppm] 

Very polar  

(log D < -2.5) 

29 6.2 2.4 3.8 

Polar  

(-2.5 < log D < 2.0) 

117 3.0 5.0 5.0 

Non-polar  

(log D > 2.0) 

31 2.3 1.6 4.2 

 

In addition to causing instabilities at the HILIC stationary phase, external multicomponent 

standards do not factor matrix effects into the mass spectrometric response. This creates a need 

for an advanced QC regime in environmental analysis, such as internal standards and pooled 

QC samples [79, 80, 105] as was done in the process evaluation study presented in the 

chapters 5.4 and 6.3. Internal standards allow to monitor matrix effects and – if necessary – can 

be used for intensity normalization. Including external and internal standards in a measurement 

sequence allows to control the total variability of an analytical method and adjust the respective 

settings accordingly (Appendix A.1, Appendix A.2, reference [101] and Table S3 of Appendix 

B.4).  
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Checking field, transport, procedural or analytical blank samples for contamination or carry-over 

is common procedure. For process evaluation, however, the untreated samples served as blank 

samples.   

As part of the study described in chapter 6.3, a PCA was computed using the feature lists prior 

to alignment in order to determine how individual samples group together based on the 

normalized peak heights. As an unsupervised, multivariate method, it further served the purpose 

to examine the pooled QC samples which were measured at the beginning and the end of 

sequence, as suggested by Sangster et al [80]. Figure 7 displays the score plot for the data 

acquired in positive ionization mode. The equivalent for the negative mode is given in Figure S3 

of the supplementary material (Appendix B.4). The first dimension (principal component 1, PC 1) 

explains 22.4 % of the variation and the second dimension (PC 2) 16.5 %. Technical replicates 

are overall grouped closely together in both ionization modes. Samples subjected to different 

treatments (PAC of different types and at different concentrations) are mostly separated on the 

first principal component whereas the isotherm of PAC H118 (Table 4, chapter 6.3) is also 

separated on the second dimension. The samples of the H120 isotherm (green) are grouped 

together suggesting very little treatment effects. It was expected that the QC samples cluster 

tightly together and thus the variability among the test samples reflects the differences caused 

by treatment effects. However, the samples (black crosses) are positioned far apart on the PC 1 

axis. In summation, these findings indicate that the run order is responsible for some variability 

between measurements. That a gradual change throughout the analytical sequence rendered 

the results less reproducible cannot be fully excluded at this point. On the other hand, the 

feature lists were investigated by PCA prior to alignment and the recursive gap filling (compare 

Figure 11, chapter 6.3). Consequently, some of the observed effects might be softened later on 

in the data processing regime.    

Hypothesis 2 can be accepted since the aforementioned efforts give information on the 

variability of the instrumental setup and thus allow to monitor its robust operation. 
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4.2 Add filters to the data processing workflow to remove noise, artefacts, redundant and 

false positive features 

4.2.1 Methods 

As presented in the articles of Appendix A.1, Appendix A.2 and the process evaluation study 

(chapters 5.4 and 6.3), componentization and alignment steps were added to the NTS data 

processing workflows. Thereby, peaks such as adducts or isotopes, belonging to the same 

mother compound (i.e. the [M+H]+ ion) are either grouped together or removed based on their 

RT and mass. Similarly, features that are assumed to represent the same compound are aligned 

across technical replicates and samples. After the alignment step, a replicate filter was 

incorporated in the workflows to eliminate features detected in less than a defined number of 

times. Noise filters remove peaks below a user-defined intensity threshold and had to be set at 

different points of the workflow (Appendix A.1 Figure 1, Appendix B.3 Table S4, Appendix B.4 

Table S3). The feature extraction method was applied to the blank samples just like to the real 

samples and the detected features were excluded from the final list based on their RTs and 

masses (Appendix A.1 and Appendix A.2). A peak filter and a duplicate filter were added to the 

process evaluation NTS workflow, depicted in Figure 11. 

Figure 7: Scores plot of the PCA based on the normalized peak heights of the feature extracted from each 
individual measurement. 
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4.2.2 Discussion 

Processing steps like componentization, alignment and several filters are supposed to reduce 

redundant peaks [65]. On the one hand, prioritization of features for their identification is 

supported since false positive findings decrease. When comparing samples by their molecular 

fingerprint for process evaluation (chapter 5.4), rather than filtering for features that could readily 

be matched with real compounds, it is important to curate the data to avoid skewness and create 

a final feature list that is statistically reliable. Thus, the data needs to be cleaned from noise, 

artefacts and redundant peaks when comparing samples treated with activated carbon to 

untreated samples (compare chapter 6.2.2). Regions of increased data density were observed in 

the total ion chromatogram (Figure S2, Appendix B.4), i.e. around RT 25.6 min, where non-

target peaks accumulate. Within these regions the peak quality deteriorates and the probability 

for the algorithm to erroneously extract artefacts might be increased. Therefore, an additional 

peak filter was applied after the initial peak picking step. Peaks were filtered by shape and 

number of data points before further processing. However, parameter ranges had to be set 

relatively wide to avoid false negative features. As a result, the bands of high feature density 

persist even after completing the full data processing regime (Figure 13, chapter 6.3). This 

matter is arguably better resolved by adapting the chromatographic separation rather than on a 

data processing level. 

Another filtering step for refining the NTS data processing workflow for sample comparison was 

the duplicate filter. It was included after the alignment of replicates and created consensus rows 

from features that were missed by the alignment algorithm. Thereby, false negative detects 

caused by the replicate filter as explained in chapter 4.3, can be reduced.  

In Appendix A.1 critical input parameters and filters were modeled based on the DoE approach 

(chapter 3.3). The results suggest to keep the initial noise threshold low but include a more rigid 

intensity filter further downstream of the process. This avoids missing peaks and at the same 

time reduces the number of falsely deconvoluted peaks and single ions. Consequently, noise 

thresholds at early stages of the NTS data analysis workflow are critical to the false negative 

rate. Nevertheless, when using open source software without parallelization strategies to speed 

up the processing times, thresholds close to zero might not be feasible. The open source 

platform patRoon is addressing this problem [106] as is further discussed in Appendix A.3. 

Depending on the algorithm more than 10,000 peaks might be detected per sample during initial 

peak picking [107]. Data reduction by componentization and filtering is imperative to obtain 

features that likely represent a real compound.  

These steps improve the quality of the final feature list as they mitigate the risk of false positive 

findings and increase the statistical reliability of the data. Consequently, hypothesis 2 can be 
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accepted as the ability of extracting molecules from the raw HRMS data is assured. Still, the true 

amount of false positives in a sample is unknown.  

4.3 Identify the points of losses of false negative features by accessing intermediate 

stages of the data processing workflow 

4.3.1 Methods 

Synthetic samples, comprising standard compounds spiked into a tap water sample at two 

concentration levels (10 nM and 100 nM), were subjected to the feature extraction method for 

retrospective validation as part of the study presented in Appendix A.2. The 34 target analytes 

were tracked throughout the data analysis workflow.  

4.3.2 Discussion 

For false negative compounds the points of losses in the data treatment process were 

determined and are presented in Appendix B.3, Table S5. At the higher concentration level, 

> 90 % of the standard compounds were recovered, at the lower level > 60 %. Generally 

speaking, more variability in the data occurs for compounds at lower concentrations which leads 

to more losses during feature extraction.  

Most of these false negatives were caused by the replicate filter applied after the alignment step. 

In cases like vidarabine, L-glutamic acid or lisinopril, a peak could not be deconvoluted in one of 

the replicates which constitutes a complex step during feature extraction and is thus prone to 

missing peaks. These findings highlight the need for retrospective targeted peak searches to fill 

these gaps as well as a duplicate filter to compensate for misalignments (compare chapters 4.4 

and 4.2).  

Retrospectively determining the processing steps within the workflow where known reference 

points (standard compounds) were lost, is a useful strategy to control the quality of the data 

processing method as proposed in hypothesis 2 which can consequently be accepted. However, 

it requires NTS software such as MZmine 2 [68] or patRoon [106] that is accessible at 

intermediate stages of the workflow.  

4.4 Introduce recursive target searches to the data processing workflow to 

retrospectively improve the quality and statistical confidence of final feature lists 

4.4.1 Methods 

Post-hoc target screenings based on non-target features were implemented into the NTS data 

analysis strategies developed as parts of the studies presented in reference [101], Appendix A.1 
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and chapters 5.4, 6.3. For the first approach, peak picking and alignment was performed on 

MarkerView software (version 1.3.1; AB Sciex) and afterwards chemical formulae were derived 

from matching the features’ accurate masses with entries of a compound database. Based on 

the list of chemical formulae, EICs were extracted from the raw data using SCIEX OS software 

(version 1.4.0.18067; AB Sciex).  

Secondly, MassHunter Workstation Profinder software (Agilent Technologies) includes a 

recursive algorithm as well that uses median mass and RT values of a previously extracted 

feature to search for missing peaks in a targeted manner [105, 108]. A similar step was added to 

the workflow developed for comparative NTS analysis using the open source software MZmine 2 

[68]. Missing peaks are searched for within the m/z and RT ranges given by the other peaks of 

the feature. An extra m/z tolerance of 0.0015 Da (for an Orbitrap Exploris 120 HRMS instrument, 

Thermo Fisher Scientific) was added to each range to achieve full recovery of the internal 

standards during method optimization.  

4.4.2 Discussion 

Recursive target screening algorithms are considered to be more precise and thus complement 

a non-targeted one. They soften the replicate filter as they fill in single peaks missing from one of 

multiple sample injections as discussed in chapter 4.3. Peak integration can be improved by 

targeted integration algorithms such as MQ4 implemented in the SCIEX OS software and 

additional information can be gained on isotopes and MS2 spectra [101]. Because the search 

criteria depend on preceding processing steps, they should be applied rather late in the workflow 

when the data has already been cleaned-up. Parameter settings of the non-targeted and the 

targeted part of the feature extraction method were coordinated by means of DoE in Appendix 

A.1. Comparing the feature lists of two samples based on fcs  of the feature intensity (chapters 

5.4, 6.3), can give indications on concentration changes. However, there are several reasons 

why a feature could not be detected in one of the two samples:  

a) It was only present in one. 

b) Its concentration fell under the limit of detection of the instrumental setup.  

c) It was not extracted by the data processing method.  

In the case of option c), a recursive target screening could recover the feature as it is more 

focused, simplistic and robust than the NTS algorithm. In the cases a) and b) it might still be 

more beneficial to subsequent statistical analysis to integrate baseline signal to fill the gaps than 

imputing assumed non-zero values.  

A recursive target screening step within an NTS workflow improve the reliability in non-target 
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features and improve the statistical confidence as it is able to detect peaks previously missed by 

the peak picking algorithm. Through this measure, the quality of the data processing method can 

be controlled and hypothesis 2 accepted. However, the majority of available software tools do 

not offer gap filling solutions and performing missing value imputation is critical to univariate and 

multivariate statistical analysis [109].  

Through introducing quality control (QC) measures, the robust operation of the instrumental 

method can be monitored and the ability of the data processing method to detect molecules 

assured. 
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5. Method adaptation 

Hypothesis 3: The data processing strategy can be adapted to fit different software tools as well 

as to different non-target screening applications such as identification, trend analysis and 

comparative analysis. 

The hypothesis has been addressed in the following peer-reviewed papers: 

 P1:  

o Reference: Minkus S, Grosse S, Bieber S, Veloutsou S, Letzel T (2020) 

Optimized hidden target screening for very polar molecules in surface waters 

including a compound database inquiry. Anal Bioanal Chem 412:4953–4966. 

https://doi.org/10.1007/s00216-020-02743-0 (Appendix A.1 and B.2) 

o Author contributions: Author contributions: Susanne Minkus curated the data, 

planned and performed the DoE and the NTS data processing workflow, 

interpreted the data and drafted the manuscript. Stefan Bieber contributed to 

collecting the samples and performing the measurements, edited the manuscript 

and contributed to the discussion. Sylvia Grosse contributed to the laboratory 

work. Sofia Veloutsou prepared the samples and contributed to the 

measurements. Thomas Letzel supervised the research project, contributed to 

the discussion and edited the manuscript. 

 P2:  

o Reference: Minkus S, Bieber S, Letzel T (2021) (Very) polar organic compounds 

in the Danube river basin: Non-target screening workflow and prioritization 

strategy for extracting highly confident features. Anal Methods 13:2044–2054. 

https://doi.org/10.1039/D1AY00434D (Appendix A.2 and Appendix B.3) 

o Author contributions: Susanne Minkus contributed to the sample preparation and 

analysis, curated the data, planned, optimized and performed the NTS data 

processing, interpreted the data and prepared the manuscript. Stefan Bieber 

edited the manuscript and contributed to the sample preparation and analysis. 

Thomas Letzel supervised the research project, contributed to the discussion and 

edited the manuscript.  

 P3: 

o Reference: Minkus S, Bieber S, Letzel T (2022) Spotlight on mass spectrometric 

non‐target screening analysis: Advanced data processing methods recently 
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communicated for extracting, prioritizing and quantifying features. Anal Sci Adv 

3:103–112. https://doi.org/10.1002/ansa.202200001 

o Author contributions: Susanne Minkus searched, reviewed and managed the 

literature and drafted the manuscript. Stefan Bieber contributed to the discussion 

and edited the manuscript. Thomas Letzel contributed to the literature search and 

the discussion and edited the manuscript.  

 

5.1 In a top-down approach, all necessary processing tools are gathered first, identified in 

the specific vendor and open access software and used to construct a feature 

extraction workflow 

5.1.1 Methods 

The feature extraction core method was realized so far on three different software tools: 

 MassHunter Workstation Profinder (version B.06.00, Agilent Technologies) using the 

proprietary “Molecular Feature Extraction” algorithm coupled to the recursive “Find by 

Ion” algorithm with the “Agile 2” integration method (Appendix A.1) 

 MarkerView (version 1.3.1, AB Sciex) (Reference [101]) 

 MZmine 2 using the algorithms of the “Automated Data Analysis Pipeline” (ADAP) [110] 

(Appendix A.2 and chapters 5.4, 6.3) 

5.1.2 Discussion 

A feature extraction workflow was developed and refined as part of a hidden-target screening for 

polar, small and organic molecules.  

It was realized on three different software tools – two commercial and one open source. Letzel 

and Drewes defined the five key processing steps as peak picking, alignment, integration, 

background comparison and componentization [71]. They formed the core of a workflow which 

was then adjusted and extended to serve the following research objective:  

Suggesting relevant polar, organic, and small candidate molecules detected in environmental 

real samples for validation via reference material. The key processing steps were identified in 

the NTS workflows and are shown in Figure 8. It should be noted that “peak picking” often 

describes a technique where data points are binned together within defined limits. There are 

alternative feature extraction methods, such as ROIMCR, as is discussed in more detail in 

Appendix A.3. “Integration” herein is replaced by “deconvolution” since some programs employ 
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different methods for peak detection such as the “centWave” algorithm that applies continuous 

wavelet transformation [111]. All the modules were somehow integrated into each of the three 

workflows, but the underlying algorithms, especially for peak picking and deconvolution differed 

considerably. That is reflected in a portion of very software-specific parameters, such as the 

subtraction offset in MarkerView or the minimum scan group size in MZmine 2. It can be 

concluded that information on the RT and mass tolerance, the noise threshold or the charge 

state was required for all the tools. Hohrenk et al. found that the overlap of features extracted 

with four different processing tools was about 10% [112]. Accordingly, there is a need for quality 

control in NTS data processing workflows as discussed in chapter 4. The core workflow was 

somehow identified in a process evaluation study as well (compare Figure 11). Rather than 

identifying individual features, a global comparison of treated and untreated samples was 

pursued. The workflow is similar to the one presented in Figure 8C. However, for background 

comparison the untreated sample that has undergone the entire feature extraction and clean-up 

process was considered instead of dedicated blank samples as part of the QC regime as was 

also discussed by Schollée et al. [70]. Treated and untreated samples were measured under the 

same conditions and in the same sequence. Hence laboratory background was assumed to be 

the same for both. Since only features of which the signal intensities presented significant 

differences between treated and untreated sample were considered, artefacts and background 

noise would be of no consequence. However, grouping redundant peaks by alignment and 

componentization became all the more important to maintain statistical accuracy fur further 

interpretations.  

With respect to hypothesis 3, a core workflow as identified in different NTS investigations and 

was implemented in different software tools. Hypothesis 3 can therefore be accepted. However, 

the order of processing steps and the parameters might differ substantially. Especially, for 

research goals other than feature identification, further data treatment is necessary. In 

conclusion, the claim of 5.1 can only be partially accepted.   
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Figure 8: The methods for extracting features from data acquired with polarity-extended chromatography coupled to 
ESI-HRMS are presented schematically. The workflow was built into three different software tools: A) MassHunter 
Workstation Profinder, B) MarkerView and C) MZmine 2. The core procedural modules are depicted in colored boxes 
along with the relevant setting parameters. Additional processing steps which were necessary to adapt the workflow to 
the respective software and data set are displayed in dashed boxes.   
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5.2 Use specialized databases to match a feature with a candidate compound using exact 

mass and physicochemical properties 

5.2.1 Methods 

Features of the HILIC or the RPLC retention interval were uploaded separately to the FOR-

IDENT platform [113] and compared to trace organic compounds of anthropogenic origin stored 

in the STOFF-IDENT database [73]. If available, detected MS2 spectra were matched with in 

silico spectra predicted by MetFrag (version 2010) [114]. As for the input parameters, a pH level 

of 7 was selected and the mass tolerance for precursor and fragment ions was adjusted to the 

specific data set (Appendix A.1, Appendix A.2). For RPLC features log D values were calculated 

by means of retention time indexing (RTI) [101]. Therefore, the log D values of nine standard 

compounds were related to their normalized RTs by linear calibration. The log D values of 

charged molecules were corrected following the rules explained elsewhere [115]. Compounds 

assigned to features retained on the HILIC column were matched with compound database 

entries by accurate mass and subsequently filtered for compound candidates with a negative log 

D value. 

5.2.2 Discussion 

Features were extracted from the HILIC and the RPLC elution windows and handled separately 

in the annotation process. Firstly, features extracted from the HRMS raw data were matched by 

accurate mass with trace organic compounds of anthropogenic origin stored in the database. 

The STOFF-IDENT database specializes in anthropogenic TOrCs that are relevant to the 

aquatic environment. Confining the chemical space for compound annotation by using reduced 

compound databases is discussed in Appendix A.3.  

An elemental composition and at least one candidate substance were assigned to a successfully 

matched feature. If available, MS2 spectra observed for a feature were compared to the in silico 

spectrum predicted for a matched compound (see Appendix A.2). In case of multiple hits, MS2 

scores between 0 and 1 were calculated which indicate structural similarity between feature and 

compound. For RPLC features an RTI score between 0 and 1 was calculated. It expresses the 

difference between the real log D value of a compound and the log D value calculated by a 

linear correlation with the observed RTs of nine standard compounds. The regression line as 

presented in Figure 9, was extrapolated to a log D of 0 whereas an RT window from 22.7 to 

31.6 min was covered.  
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Candidate lists generated for HILIC features were filtered by their log D value at pH 7. 

Compounds predominantly retained by the HILIC column are expected to be (very) polar and 

accordingly have a negative log D value. Three different targeted analysis on the RPLC-HILIC 

coupling using multicomponent standards, showed that > 97% of the targets which eluted from 

the HILIC column had a log D < 0 [39, 116, 117]. Besides accurate mass screening, MS2 and 

RTI scorings as well as a log D filter were successfully used to reduce the number of candidate 

compounds assigned to features detected on the RPLC-HILIC-ESI-HRMS system.  

A feature annotation workflow was presented which was able to differentiate between polar and 

nonpolar candidate molecules. As stated by hypothesis 3, the NTS data processing strategy can 

adapt to the purpose of identifying features: A compound database search is simply added to the 

feature extraction core workflow. 

5.3 Add prioritization and classification steps to the feature extraction workflow to 

facilitate identification at a high level of confidence 

5.3.1 Methods 

The first data set derived from 33 surface water sample taken on three different dates from 

eleven sites (Table S1, Appendix B.2). The feature fingerprints upstream and downstream of an 
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Figure 9: For the RTI normalization, nine standard compounds were measured three times. Their log 
D values were plotted against the mean RTs and a linear calibration function was fitted. The trend 
line (solid black line) was extrapolated to a log D (pH 7) value of 0 (dashed red line). This Figure has 
been previously published elsewhere [101]. 
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urban area were compared. 

For the second data set which comprised of 51 surface water samples (Appendix B.3, Table S3), 

a classification system was introduced. It ranked features and their potential annotations based 

on their identification confidence by considering the analytical factors accurate mass, 

fragmentation pattern and retention behavior. Furthermore, they were prioritized on how 

frequently they were detected in the sample set. 

5.3.2 Discussion 

As anticipated for urban areas, a local increase of polar features was observed and investigated 

in more detail within the first study (Figures 3 and 4, Appendix A.1). Features which were 

detected before and after the urban area are depicted in Figure 10 (see below). They were 

compared based on their mere presence or absence as well as their absolute signal intensities. 

Using this prioritization method, a feature was suggested for validation as its absolute peak 

height increased by a factor of 34. However, due to the lack of calibration data no definite 

quantitative statement can be made.  

In the second surface water study, a two-step prioritization strategy was applied. For one, 

features extracted from the 51 samples were divided into six classes indicating how much 

analytical information was available and how certainly they were allocated to candidate 

compounds. The highest class (A) was attributed to four features “[…] which were unequivocally 

annotated by querying the compound database and were assigned an MS2 score > 0.6” 

(Appendix A.2). Class A complies with a level 2-3 in identification confidence according to 

Schymanski et al. [82]. For querying the compound database, it was differentiated between 

features eluting during the RPLC or HILIC retention interval. If the latter were matched with one 

or more compound candidates, only those with a negative log D were considered. Features 

retained by the RPLC column can be prioritized based on the RTI score as described in the 

previous chapter and in reference [101]. An unambiguous allocation by matching features by 

their accurate mass with entries of a compound database is often not possible due to i.e. 

structural isomers. The Δ log D value as implemented on the FOR-IDENT platform is calculated 

from RTI normalization and experimental data. Rostkowski et al. suggested an acceptance 

interval of Δ log D ± 0.70 during a collaborative trial performing NTS on house dust samples 

[118]. Thereby, it was possible to distinguish between to structural isomers allocated with a 

feature (RT 31.6 min/ mass 301.1768 Da) detected in the Danube river (Austria, rkm 2113). It 

was assigned with dapoxetine (InChI key USRHYDPUVLEVMC-FQEVSTJZSA-N) since its 

Δ log D was 0.62 and thus < 0.70 [101]. Chromatographic parameters like RT for complementing 

accurate mass diagnostic evidence during feature identification is discussed in more detail in 
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Appendix A.3. 

In a further prioritization step, features which were detected at the most sampling sites were 

marked as high priority for validation by reference standard. Eight features occurred in ten or 

more samples out of a total of 51 samples (Table 2, Appendix A.2). The frequent detection of 

polar features in coherent surface waters indicates their persistence and mobility and thus their 

environmental relevance.  

 

It was hypothesized that the NTS data processing workflow can adapt to different research 

objectives which in this case was tentatively identifying relevant candidate substances. However, 

the data analysis method needs adjustments such as additional prioritization steps and thus 

hypothesis 3 must be rejected considering the outcome of this task.  

Figure 10: The dot plot displays features that were detected in the March samples either upstream or 
downstream of Munich (circles, location IDs 8 and 9, Table S1; Appendix B.2) or just downstream of 
Munich (crosses). The features eluted from the HILIC column and were proposed by the STOFF-
IDENT database. Only matches with a negative log D value were considered. The numbers indicate 
the ID of the database queries as are listed in Table 2 of Appendix A.1. This figure was published as 
presented in Appendix A.1. 
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5.4 Add the necessary processing steps to the workflow and adjust related parameters 

for comparative analysis of samples 

5.4.1 Introduction 

The occurrence and fate of TOrCs throughout treatment processes is typically assessed via 

targeted analyses. Focusing on a limited number of prioritized or probably already regulated 

target analytes could cause a partially distorted view of the molecular fingerprint as unknown or 

unexpected TOrCs are missed. At this point, it cannot be determined whether a decrease in 

concentration of a target analyte indicates its removal or merely its transformation. This leads to 

TPs being underestimated, even though they tend to be more polar (and thus mobile) and might 

even have enhanced toxicity potential compared to their parent compounds [26, 119–121]. The 

NTS approach, powered by HRMS often in combination with LC, allows a more comprehensive 

assessment of TOrCs as it refrains from preselecting substances [41, 65]. When evaluating NTS 

data, features characterized by their RT, mass and signal intensity are extracted from full scan 

HRMS data and further processed following two general objectives: 

 Identification with the methodological consequence of prioritizing features based on i.e. 

the amount and quality of information available and their environmental relevance [97, 

107, 117]. 

 Bulk characterization by a non-discriminatory feature extraction workflow followed by 

statistical analysis [70]. 

The latter is a suitable method to globally evaluate water treatment processes, often based on 

features’ signal intensities, that gives indications of the removal of TOrCs and formation of TPs 

[67, 122, 123]. 

5.4.2 Methods 

The non-targeted data analysis were performed in MZmine 2 [68]. Figure 11 schematically 

presented the workflow for extracting features from NTS data, filtering and bringing the feature 

lists of the treated and untreated sample together for comparative analysis. The workflow is 

shortly outlined in the following:  

First, masses were detected on MS1 and MS2 level whereas the RPLC as well as the HILIC 

retention intervals (5 min – 33 min) were considered (for the instrumental method compare 

chapter 6.3). Then, chromatograms were built and peaks deconvoluted using the ADAP 

algorithm (“Automated Data Analysis Pipeline”) [110]. Chromatograms were smoothed by 

applying a Savitzky-Golay filter. Peaks were filtered out if the number of data points, tailing factor 
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and/or asymmetry factor fell outside a predefined range. Thereafter, isotopic patterns of singly 

charged molecular ions were detected and isotopic peaks as well as sodium, potassium and 

ammonium adducts were removed. The feature lists were aligned across the three technical 

replicates using the RANSAC aligner [68, 124] and subsequently duplicates were removed. 

Finally, the features that were detected in less than three replicates were eliminated.  

The cleaned-up feature lists of the treated and the untreated sample were subsequently aligned 

for comparative analysis. For features which were only present or detected in one of the two 

samples, the respective gap was filled by a recursive targeted search in the raw data. Feature 

rows whose gaps could not be filled, were removed from the list. Finally, the features’ signal 

intensities (peak heights) were normalized using the internal standards. All the standard 

compounds contributed to the normalization factor, but were weighted based on the m/z and RT 

distance to the feature [125]. The final feature list was exported to comma-separated values 

(CSV) format.  
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5.4.3 Results and discussion 

The method for extracting features from HRMS full scan data as depicted by the black and grey 

boxes in Figure 11. The core workflow presented in chapter 5.1, was extended to meet the 

requirements for analyzing fcs of features between a treated and an untreated sample. In order 

to minimize statistical errors, additional processing steps were added as are depicted in the 

yellow boxes.  

Chromatographic peaks which were identified as isotopologues or adducts of features were 

removed in order to reduce redundancy in the feature lists. Features were aligned in two 

separate steps, first across technical replicates and then across both samples. An alignment 

method was chosen based on the iterative RANSAC (“random sample consensus”) algorithm 

Figure 11: NTS data processing workflow for comparing a treated and an untreated surface water sample. The 
processing steps for extracting and filtering features from the technical replicates of a single sample are depicted in 
black. The orange boxes are processing steps that enable the comparative analysis of the treated and the untreated 
sample. 
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[68, 124]. It allows to correct for some RT deviations which were observed for some HILIC-

influenced analytes (compare chapter 4.1). In an attempt to eliminate misaligned features, the 

list was searched for duplicates which might occur due to misalignment. Duplicates were then 

merged to consensus rows.  

There are features which are only detected in one or the other sample, either because they were 

only present in one, their concentrations fell below the limit of detection or the feature was not 

extracted from the data. Missing values pose an issue in comparative non-target screening 

analysis, as they hamper the calculation of fcs. Missing value imputation to replace zeros should 

be chosen with care as different univariate or multivariate analysis require different methods 

[109]. Instead, a gap filling step was implemented into the data processing workflow that 

conducts a targeted search to retrospectively pick missed peaks or baseline from the raw data.  

The first replicate filter removed features that were found in less than three technical replicates 

and the second one caught features missed by the second gap filling step. 

The single intensities of the features were normalized based on the internal standards in order to 

mitigate matrix effects that might otherwise affect the fcs. Where a bulk characterization of the 

NTS data is favored over extracting single features for identification, advanced statistical 

analysis (i.e. PCA) facilitates revealing general patterns [70].  

The NTS workflow that was developed according to this task enables the comparative analysis 

of samples, ranging from spatial and temporal trends to two-sample comparisons (before and 

after treatment). But here again, the core workflow had to be complemented by additional 

processing steps and some were considerably adapted (handling the untreated sample as a 

blank rather than conventional background subtraction). Consequently, hypothesis 3 must be 

rejected.  
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6. Application of the method 

Hypothesis 4: The optimized and adopted workflow is universally able to tentatively identify 

unexpected (very) polar candidate compounds and can be applied to surface water samples and 

samples after water treatment processes.   

The hypothesis has been addressed in the following peer-reviewed papers: 

 P1:  

o Reference: Minkus S, Grosse S, Bieber S, Veloutsou S, Letzel T (2020) 

Optimized hidden target screening for very polar molecules in surface waters 

including a compound database inquiry. Anal Bioanal Chem 412:4953–4966. 

https://doi.org/10.1007/s00216-020-02743-0 (Appendix A.1 and B.2) 

o Author contributions: Author contributions: Susanne Minkus curated the data, 

planned and performed the DoE and the NTS data processing workflow, 

interpreted the data and drafted the manuscript. Stefan Bieber contributed to 

collecting the samples and performing the measurements, edited the manuscript 

and contributed to the discussion. Sylvia Grosse contributed to the laboratory 

work. Sofia Veloutsou prepared the samples and contributed to the 

measurements. Thomas Letzel supervised the research project, contributed to 

the discussion and edited the manuscript. 

 P2:  

o Reference: Minkus S, Bieber S, Letzel T (2021) (Very) polar organic compounds 

in the Danube river basin: Non-target screening workflow and prioritization 

strategy for extracting highly confident features. Anal Methods 13:2044–2054. 

https://doi.org/10.1039/D1AY00434D (Appendix A.2 and Appendix B.3) 

o Author contributions: Susanne Minkus contributed to the sample preparation and 

analysis, curated the data, planned, optimized and performed the NTS data 

processing, interpreted the data and prepared the manuscript. Stefan Bieber 

edited the manuscript and contributed to the sample preparation and analysis. 

Thomas Letzel supervised the research project, contributed to the discussion and 

edited the manuscript.  
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6.1 Evaluate the spatial and temporal distribution of polar features in the Isar river and 

tentatively identify them 

6.1.1 Methods 

Grab samples were taken from the Isar river in southern Germany at eleven locations (Appendix 

B.2, Table S1). Each sampling pass was completed within a single day and repeated in March, 

May and July of 2015. Samples were prepared following a two-step solid-phase extraction (SPE) 

protocol involving two cartridges: An RP C18-endcapped (Strata-X, Phenomenex, 

Aschaffenburg, Germany) for non-polar analytes and a ZIC-HILIC (DiChrom GmbH, Appendix 

A.1. The extracts were filtered (22 µm; polyvinylidene fluoride, PVDF) and stored at 4 °C until 

the analysis. The samples were measured on the RPLC-HILIC serial coupling connected to a 

TOF-MS. Polar features were extracted from the HILIC retention interval by applying the method 

presented in Figure 2 A (chapter 5.1). They were annotated by querying a compound database 

followed by a filtering step for compounds with a negative log D value at pH 7 (chapter 5.2).  

6.1.2 Discussion 

Processing the data of 33 environmental samples yielded 46 HILIC features that were assigned 

with 64 candidate substances with a log D < 0 at pH 7 (Appendix A.1, Table 1). The Isar river 

was sampled starting near the spring at the Austrian-German border, covered the metropolitan 

area of Munich and ended in the town of Dingolfing. The estimated wastewater effluent 

contribution in the river varied from 5 to >50% after the discharge points of wastewater treatment 

plants (WWTP) [126]. There, an increase in anthropogenic trace organic compounds was 

expected including polar ones. The spatial distribution is presented in Appendix A.1, Figure 3 

and illustrates a significant amplitude of polar features at the sampling location downstream of 

Munich. Furthermore, the campaign unraveled seasonal differences as the number of polar 

features was higher in March than in May or July due to relatively low precipitation in February. 

Three tentative polar compounds, listed in Appendix A.1, Table 3, were confirmed by RT and 

accurate mass matching with reference standards. The respective EICs and isotopic ratios are 

given in Figures S1-S3 and Table S8 of Appendix B.2. Among these substances was guanylurea 

which was prioritized based on its absolute abundance as was described under chapter 5.3. It is 

an aerobic bacterial degradation product of the antidiabetic drug metformin [127] which was also 

observed in this study. Guanylurea has already been detected in the North Sea [128] pointing to 

its mobility in water cycles. Thus, it is expected to be a high-risk candidate for affecting drinking 

water supplies. 

This application sought to accommodate the central research objective: Finding and validating 
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relevant polar, organic, and small candidate molecules in real environmental samples. Of further 

interest was their spatial and temporal distribution along the Isar river in southern Germany. 

Therefore, the hidden-target screening method as described above was applied to real samples 

of the Isar river. Three polar, organic small molecules were definitely identified. Consequently, 

hypothesis 4 can be accepted. 

6.2 Classify, prioritize and tentatively identify polar features in ground and surface water 

samples of the Danube river basin 

6.2.1 Methods 

The Danube and its major tributaries were sampled as part of the fourth Joint Danube survey 

(JDS4) in 2019 [66]. Grab samples for direct injection were taken from 51 locations and 20 mL 

aliquots were sent to our laboratory [129]. The samples were filtered (0.22 µm, PVDF) and 

stored at 4 °C until the measurement. The chromatographic separation was carried out on the 

serial RPLC-HILIC coupling and masses were analyzed on a QTOF-MS instrument (Appendix 

A.2). Besides the full scan experiment to acquire NTS data, product ion scans were recorded 

using an information-dependent acquisition (IDA) method to gather fragmentation information on 

automatically selected precursor ions. 

6.2.2 Discussion 

In total, 77 features (class B) which were extracted from the HILIC retention interval were 

unequivocally assigned to 67 candidate substances with a negative log D value which are listed 

in Table S6 of Appendix B.3. The classification system describes how reliably a feature was 

identified, is explained in further detail in chapter 5.3. The spatial binary trends of features 

assigned to different classes are shown in Appendix A.2, Figure 2. A binary trend describes the 

mere presence or absence of feature at the individual sampling points. A trend analysis of a 

continuous variable such as a feature’s signal intensity was not possible since only qualitative or 

at best semi-quantitative data can be derived from an NTS investigation. The binary trend of 

polar features (class C) could disclose potential sources of discharge. An elevated number of 

polar features was observed in the samples JDS4-7 (rkm 2113) and JDS4-37 (rkm 488) which 

were taken 7 km and 9 km downstream of the WWTPs of Asten (Austria) and Giurgiu 

(Romania), respectively. Loos et al. found that the highest concentrations of polar organic 

compounds are often detected in the Danube’s tributaries [130]. In line with their findings, an 

amplitude of polar features was detected in the Hron river (Slovakia; sample JDS4-20, 

confluence rkm 1716). In direct comparison to tributaries of lower discharge, the number of polar 
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features is often significantly lower in the Danube river itself (JDS4-22, rkm 1707) due to dilution 

effects. Of the 67 polar candidate compounds, eleven features listed in the Tables 1 and 2 of 

Appendix A.2 were prioritized for validation via reference material. Among these high-priority 

suspects was 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-ethanol (class A) which was detected in 

47 out of 51 samples. It was described as ecotoxicologically relevant and highly mobile and 

persistent in ground and surface waters and could thus pose a risk to drinking water supplies 

[23, 131].  

In the study presented in Appendix A.1, 64 candidate substances were assigned to 46 features 

which were extracted from the HILIC retention interval of chromatograms acquired from 

analyzing 33 environmental samples. 18 features had more than one candidate compound 

annotated to them. This example illustrates the need for additional amenable information on a 

feature in order to reduce the number of annotations. The approach for finding polar, organic, 

and small compounds in surface water samples presented in the previous task was extended by 

MS2 experimentation. Additionally, the feature extraction and prioritization strategies were 

developed further. The method was successful in detecting polar, organic and small features in 

real samples of the Danube river and thus hypothesis 4 can be accepted. 

6.3 Characterize different types and concentrations of powdered activated carbon by 

comparing the fingerprints of polar candidate molecules 

6.3.1 Introduction 

TOrCs, i.e. pharmaceuticals, enter the aquatic environment frequently through municipal or 

industrial wastewater and have already been detected in drinking water at ng L-1 levels [9, 11]. In 

urbanized areas in Germany the contributions of wastewater effluents to streams can in some 

cases be > 50 % in the summer months [126]. The de facto reuse of wastewater could increase 

the risk of introducing TOrCs into drinking water sources. Conventional water treatment 

processes have been reported to ineffectively remove certain TOrCs, such as hydrophilic 

compounds [9]. Measures that aim at further reducing the discharge of TOrCs include upgrading 

WWTPs with advanced treatments like ozonation or powdered activated carbon (PAC), a 

strategy currently pursued by Switzerland [132, 133].   

PAC is commonly used for drinking water purification due to its adsorptive qualities: In batch 

experiments, Hernández-Leal et al. treated ultrapure water spiked with TOrCs of personal care 

products (20 – 1600 µg L-1) with PAC at a dose of 1.25 g L-1 and found the removal efficiency to 

be > 94% for all compounds after 5 min of contact time [134]. Kovalova et al. showed that 

23 mg L-1 of PAC (hydraulic residence time of one day) removed 62 % of the load of 56 TOrCs 
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including pharmaceuticals, metabolites and industrial chemicals from hospital wastewater pre-

treated by a membrane bioreactor. In their investigation, all compounds with a log D > 2 (pH 9) 

were eliminated completely or fell below the limit of quantification [135]. Adsorption capacities of 

polar TOrCs are expected to be lower than those of non-polar or mid-polar ones, in some cases 

up to one order of magnitude [136]. However, depending on the pH, some charged or 

zwitterionic polar compounds exhibit strong sorption, probably due to electrostatic interactions 

[135]. 

In this study, three different types of PAC at three different concentrations are assessed in batch 

experiments using the NTS approach. The polarity range of the analytical method is extended by 

coupling RPLC to HILIC in series and screening a mass window for small molecules using 

HRMS equipped ESI. It should be noted that this study does not provide adsorption kinetics but 

rather presents a non-target screening method that enables a comprehensive comparison of 

untreated and treated samples, explicitly considering (very) polar compounds. 

6.3.2 Methods 

6.3.2.1 Chemicals 

Ultrapure water and acetonitrile were obtained at LC-MS grade from Supelco (Darmstadt, 

Germany) and Honeywell (Morristown, New Jersey, U.S.A). Ammonium acetate was purchased 

from Sigma-Aldrich (Seelze, Germany). Information on (internal) standard compounds is given in 

Tables S1 and S2 of the supplementary material (Appendix B.4). The polar standard compounds 

for spike-in (log D at pH 7 of 0.30 to -4.10) were obtained from Neochema (Bodenheim, 

Germany), handled in four stock solutions at 10 µg mL-1 in methanol and stored at -18 °C. The 

compounds that served as internal standards were purchased from Sigma-Aldrich (Seelze 

Germany) and Dr. Ehrenstorfer (Augsburg, Germany). They were prepared in individual stock 

solutions at 1000 µM, except for sotalol (586 µM), vidarabine (337 µM) and monuron (970 µM). 

They were dissolved in acetonitrile (etilefrine, sotalol, chlortoluron and metobromuron), 

acetonitrile/water (50/50, v/v; 6-amino-1,3-dimethyl-5-(formylamino)uracil, vidarabine and 

chloridazon) or methanol (chlorbromuron, metconazol and monuron) and stored at 4 °C.  

6.3.2.2 Samples 

For bench-scale batch sorption experiments, a surface water sample was taken from a German 

reservoir and filtered with a glass fiber filter (type GF 9; Schleicher & Schuell GmbH, Whatman, 

NH, U.S.A) The dissolved organic carbon (DOC) concentration of the sample was 6.1 mg L-1, the 

pH 8.02 and the conductivity 526 µS cm-1 at 25 °C. The sample was spiked with 12 polar 

standard compounds at a final concentration of 50 µg L-1 per compound prior to treatment. The 
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sample was separated into aliquots and treated with three different types of PAC (Table 4) at 

different concentrations. For each of the three PAC types, four 1 L-batches were prepared in 

beakers, adding no carbon (blank), 2 mg, 7 mg and 30 mg to the surface water sample. The 

batches were stirred at 250 rpm for 4 h at room temperature. Aliquots of all the batches were 

passed through a syringe filter (GF and 0.45 µm cellulose acetate, Minisart NML; Sartorius, 

Göttingen Germany) and transferred to baked-out vials (450 °C). Treated samples were spiked 

with internal standards to a final concentration of 5 µM per compound prior to LC-MS analysis.  

Table 4: The types of PAC used for the batch sorption experiments. 

Laboratory name H118 H120 H121 

Commercial name Hydraffin CCP 90 

plus 

Carbopal AP supra Aquasorb MP 23 

PAC-S 

Manufacturer  Donau Carbon 

GmbH (Frankfurt am 

Main, Germany) 

Donau Carbon GmbH Jacobi (Frankfurt am 

Main, Germany) 

Water content 8.1 % 1.5 % 2.0 % 

Ash content 6.7 % 13.6 % 10.2 % 

Contact pH 10.79 9.85 10.14 

Iodine number 1088 mg g-1 1019 mg g-1 944 mg g-1 

Particle size 

distribution (wet 

sieving) 

   

<150 µm 99.1 99.1 99.7 

<50 µm 72.0 88.6 70.2 

 

6.3.2.3 LC-MS analysis 

The LC setup consisted of a HILIC and a RPLC system coupled in series via a T-piece with a 

mixing frit (Upchurch, IDEX Europe GmbH, Erlangen, Germany) [96]. 

Each LC system (1260 Infinity series; Agilent Technologies, Waldbronn, Germany) consisted of 

a binary pump, an online degasser and a mixing chamber. The RP separation was carried out 

on a Poroshell 120 EC-C18 column (50.0 × 3.0 mm, 2.7 µm; Agilent Technologies). The mobile 

phase consisted of 10 mM ammonium acetate in aqueous solution and acetonitrile at volumetric 

ratios of 90/10 and 10/90. For the HILIC subsystem a ZIC-HILIC column was employed (150.0 × 

2.1mm, 5 µm, 200 Å; Merck Sequant, Umeå, Sweden) and the mobile phase consisted of 
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acetonitrile and water. Information on the gradients can be found in previous publications [39, 

116]. The injection volume was 10 µL.  

The chromatographic system was connected to an Orbitrap Exploris 120 mass spectrometer 

(Thermo Fisher Scientific; Waltham, MA, U.S.A) equipped with an ESI source. The source was 

operated at spray voltages of 3.5 and -2.5 kV in positive and negative mode, respectively. 

Sheath gas, auxiliary gas and sweep gas were set to 50, 8 and 0 (arbitrary units). The capillary 

temperature and the vaporizer temperature were set to 320 and 400 °C, respectively. In order to 

obtain NTS data, a mass range of 70 – 1000 Da was scanned at a resolution of 60,000 (full 

width at half maximum at m/z 200). MS2 spectra were acquired in data-dependent acquisition 

mode at a resolution of 30,000 by employing a collision energy ramp of 15 – 45 eV. The four 

most abundant precursor ions were selected to trigger after one scan cycle and afterwards 

excluded for 7 s.  

6.3.2.4 Data analysis 

The targeted analysis was performed in MZmine 2 [68]. The internal standards as well as the 

polar standard compounds were extracted at a mass tolerance of 3 ppm and a RT tolerance of 

5 min. For further confirmation, detected MS2 spectra were compared to experimental MS2 

spectra stored in the mass spectral databases MassBank [137, 138] and MassBank of North 

America (MoNA) [139]. For the RTs and masses of the internal standards the precision values 

were calculated, expressing the closeness of observed values to each other. Additionally, the 

mass accuracy was determined, expressing the closeness of detected masses to theoretical 

masses.  

After a target screening for the polar standard compounds, the HMRS raw data was processed 

employing the NTS method described in chapter 5.4 including QC measures detailed in chapter 

4.1. The samples treated with 2, 7 and 30 mg L-1 of activated carbon were compared to the 

untreated sample. The processing steps along with the parameter settings and explanatory 

comments are listed in Table S3 of the supplementary material (Appendix B.4). The parameters 

were optimized as part of the study presented in Appendix A.2 on two synthetic water samples 

containing environmentally relevant and polar standard compounds at different concentration 

levels and adapted to fit the requirements of the present study (chapter 3.2). 

For further statistical analysis, the fcs were calculated as the ratio of the mean signal intensities 

across the technical replicates in the treated and the untreated sample. For each comparison 

(e.g. H118, (7/0) mg) the mean fc and the standard deviation of all the features were calculated. 

The threshold values for signal increase and decrease of a feature after activated carbon 
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treatment were defined at log2(fc) >1 and log2(fc) <-1, respectively [123]. Further statistical 

evaluations were performed in R (version 4.0.2) [102] and RStudio (version 1.3.959) [103]. 

Whether the feature intensities are significantly different between the treated and the untreated 

sample was evaluated using Welch’s t-test [140] and Benjamini-Hochberg adjustment [141] at a 

significance level of 0.05.   

6.3.3 Results and discussion 

In the following, the results of the target evaluation are presented considering the internal 

standards and the polar standard compounds. Moreover, features extracted before and after 

PAC treatment are globally assessed with the objective of getting indications on removal and/or 

transformation/desorption of TOrCs. Therefore, fcs and multiple hypothesis tests were 

interpreted. Variabilities throughout the measurement sequence were evaluated based on the 

feature lists of all samples including pooled QC samples. 

6.3.3.1 Targeted evaluation 

A targeted search for the internal standards (n = 10, added prior to sample analysis) and the 

polar standard compounds (n = 10, added prior to PAC treatment) was performed on the ESI(+) 

data. The RT and mass precision as well as the mass accuracy of the RPLC-HILIC-HRMS 

system was evaluated on the internal standards. In positive ionization mode, the precision was 

better than 1.5 % for RT (n = 35 injections) and better than 1.5 ppm for mass. The mass 

accuracy was < 2.1 ppm for all compounds. One measurement (absorbent H118 at 7 mg L-1, 

third replicate) appeared to be an outlier in the three parameters mass, RT and signal intensity, 

and was therefore discarded. In negative ionization mode, precision values for RT and mass 

were < 0.8 % and 1.5 ppm, respectively. The masses of the internal standards were detected 

more accurately than 2.0 ppm (n = 36 injections). Based on these findings, the instrumental 

setup performed reproducibly and accurately.   

Furthermore, the consistency interval for the fcs of the signal intensities was validated on the 

internal standards. It was defined as -1.00 ≤ log2(fc) ≤ 1.00 which corresponds to 0.50 ≤ fc ≤ 2.00 

[123]. Since the internal standards were spiked into the samples after treatment and prior to 

analysis, the log2(fc) was expected to fall into the consistency interval and be close to 0. In all of 

the sample comparisons in positive ionization mode, all internal standards fell into the 

consistency interval with at least ±9 standard deviations (see Table 5). The same was observed 

in negative ionization mode with at least ±8 standard deviations (see Table S4, Appendix B.4). 

The polar standard compounds were spiked into the samples prior to PAC treatment. In positive 

ionization mode, their mean log2(fc) decreased with increasing PAC load and the variability of 
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fcs increased (Table 5). It can therefore be assumed that some of the standard compounds 

absorbed onto the activated carbon. Figure 12 represents the log2(fc)-RT plots of the PAC type 

H121 at different concentrations (2, 7 and 30 mg L-1). The internal standards (orange circles) all 

fall into the consistency interval (dashed lines). The polar standard compounds (blue diamonds) 

eluted earlier than 15.6 min have log D values ≤ 0.30 and are thus expected to be primarily 

retained by the HILIC column. At 2 mg L-1 of PAC H121, they did not show any increase or 

decrease. At 7 mg L-1, a decrease in signal intensity (log2(fc) < -1) was observed for famotidine 

and 2,4-diamino-6-(hydroxymethyl)pteridine, complemented by 2-aminopyridine and 3-

pyridinemethanol at 30 mg L-1. The respective plots for PAC H118 and H120 are given in Figure 

S1, Appendix B.4. Only miglitol and acamprosate were detected in all measurements conducted 

in negative ionization mode and their fcs did not suggest any removal. Other polar standard 

compounds were partially filtered out during data processing. 

Table 5: Means and standard deviations of log2(fc) values for the internal standards and the polar standard 
compounds measured in positive ionization mode. H118, H120 and H121 are the laboratory names of the different 
PAC types (Table 4) which were tested for surface water treatment at three different concentrations.   

 H118 H120 H121 

Internal standards n = 10 n = 10 n = 10 

2 mg L-1 0.09 ± 0.05 -0.20 ± 0.07 0.03 ± 0.04 

7 mg L-1 -0.04 ± 0.09 -0.25 ± 0.14 0.08 ± 0.04 

30 mg L-1 -0.03 ± 0.10 -0.21 ± 0.16 -0.01 ± 0.10 

Polar standard 

compounds 

n = 10 n = 10 n = 10 

2 mg L-1 -0.40 ± 0.49 -0.21 ± 0.49 -0.17 ± 0.22 

7 mg L-1 -1.22 ± 1.46 -0.70 ± 1.30 -0.65 ± 0.95 

30 mg L-1 -2.31 ± 2.21 -2.07 ± 2.45 -1.59 ± 1.88 
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6.3.3.2 Non-targeted evaluation  

The results of the NTS investigation were nine final feature lists for each ionization mode (three 

PAC types, three concentrations). For each feature list the mean log2(fc)-value and the 

respective standard deviation were calculated and are listed in Table 6 for positive ionization 

mode and Table S5 (supplementary material Appendix B.4) for negative mode. In contrast to 

what was suggested by the target compounds, no general decrease in signal intensity was 

observed as result of PAC treatment. On the contrary, the portion of non-target features with a 

log2(fc) > 1 increased at higher concentrations to a maximum of 13.4 % at 30 mg L-1 of PAC 

H121. This result are visualized in Figure 13. The portion of predominantly HILIC-influenced 

features with RTs < 17 min exhibit an increase in signal intensity rather than a decrease. This 

could be attributed to contaminations desorbing from the PAC or, even though less likely, 

formation of TPs. For post-treatments with granulated activated carbon and PAC dosed onto a 

sand filter, formation of TPs has been observed before, possibly due to biological degradation 

[67, 122]. Nevertheless, variability in the gap filling results due to a noisy baseline could impair a 

clear distinction of consistent and increasing features. Our partner laboratory investigated the 

adsorption characteristics of (among others) the same PAC types under comparable 

experimental conditions, except they did not include a HILIC separation into their analytical 

platform [142]. For samples treated with 7 mg L-1 PAC compared to untreated samples they 

found median fcs of 0.54, 0.49 and 0.69 for H118, H120 and H121, respectively. Since these 

Figure 12: The base-2 logarithm of the fcs of the HILIC standards (added prior to PAC treatment, blue diamonds) and the internal 
standards (added prior to analysis, orange circles) are plotted versus their RTs. The dashed lines mark the consistency interval 
where no compound removal is assumed. 
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values are in or close to the defined lower limit of the consistency interval, no or little adsorption 

can be derived from these findings as well.  

Table 6: Means and standard deviations of log2(fc) values for the non-target features in positive ionization mode. 
H118, H120 and H121 are the laboratory names of the different PAC types which were tested for surface water 
treatment at three different concentrations. 

 Number of 

features 

Mean log2(fc) Increasing/ decreasing 

features [%] 

Significant 

features 

H118     

2 mg L-1 2981 -0.16 ± 0.38 0.6/2.7 38 

7 mg L-1 3366 -0.26 ± 0.43 0.4/5.1 0 

30 mg L-1 3000 0.07 ± 0.57 4.5/2.7 13 

H120     

2 mg L-1 2941 0.11 ± 0.39 2.1/0.8 40 

7 mg L-1 2856 0.11 ± 0.39 1.7/1.2 29 

30 mg L-1 3058 0.17 ± 0.42 3.0/0.7 95 

H121     

2 mg L-1 2842 -0.04 ± 0.37 1.1/1.8 28 

7 mg L-1 2886 0.17 ± 0.41 3.5/0.7 2 

30 mg L-1 3099 0.36 ± 0.62 13.4/0.8 336 
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6.3.3.3 Further statistical analysis 

To figure out whether the features’ signal intensities were significantly different between the 

untreated and the treated sample, a Welch’s test was performed on signal intensities. Since the 

probability of wrongfully rejecting a true hypothesis increases for multiple comparisons (here 

around 3000 features), p-values need to be corrected [143, 144]. In this study, the Benjamini-

Hochberg method for controlling the false discovery rate was applied [141]. Finally, an 

exemplary volcano plot for PAC H121 at a concentration of 30 mg L-1 was constructed and 

presented in Figure 14. The features’ negative log10-transformed and adjusted p-values were 

plotted against the corresponding log2-transformed fcs. Features with adjusted p-values < 0.05 

(horizontal dashed line) and log2(fc)-values < -1 and log2(fc) > 1 (vertical dashed lines) were 

considered to be of significant decrease and significant increase, respectively. Out of a total of 

439 features that fell outside the consistency interval, 340 were statistically significant, of which 

four were annotated with standard compounds. This additional level of security substantiates the 

assumption that either TPs were built or compounds desorbed from the H121 PAC material. 

However, for PAC H118 only 13 significant features with decreasing or increasing feature 

intensities were detected (Table 6), even though the PCA suggested otherwise. Features with 

Figure 13: Non-target features (black crosses) and polar standard compounds (blue diamonds) are plotted by their 
base-2 logarithmic fcs and RT. The dashed lines mark the consistency interval. Log2(fc) values < -1 and > 1 are 
defined as a decrease and increase in signal intensity, respectively. Here the sample treated with 30 mg L-1 of PAC 
H121 was compared to the untreated blank sample, both measured in positive ionization mode. 
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signal intensities close to the limit of detection as well as background signals deconvoluted by 

the gap filling algorithm, tend to introduce variability into the data. Since the standard error 

factors into the denominator of the t-statistic, the t-value decreases and the degrees of freedom 

increase which leads to higher p-values. For this reason, fcs need to be considered as a criterion 

besides significance testing.   

6.3.4 Conclusions 

NTS was carried out in order to evaluate the treatment of surface water samples with PAC.  

A target screening in ESI(+) mode of the polar standard compounds, spiked into the samples 

prior to PAC treatment, indicated the reduction of famotidine, 2,4-diamino-6-

(hydroxymethyl)pteridine, 2-aminopyridine and 3-pyridinemethanol. No reduction was observed 

for 4-(2-hydroxyethyl)morpholine when treated with PAC H120 in contrast to PAC types H118 

and H121. 2,2,6,6-tetramethyl-4-piperidone was only reduced by PAC H118. According to 

criteria defined within this study, PAC treatment did not affect 1,3-dimethyl-2-imidazolidinone, 

ectoine, miglitol and N,N'-ethylenebisacetamide.  

Non-target screening data was evaluated using fcs, principal component analysis and multiple 

hypothesis testing. Derived from the results, features exhibit repeatable peak heights across 

technical replicates, however, the run order appeared to introduce some variability throughout 

Figure 14: The volcano plot depicts features extracted during the comparative analysis of the sample 
treated with PAC type H121 at 30 mg L-1 and the respective blank sample. The horizontal dashed line 
marks the cut-off p-value of –log10(0.05) and the vertical dashed lines the consistency interval. Features 
which were annotated with polar standard compounds are marked with blue diamonds. 
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the sequence of measurements. The mean fcs of non-target features fall into the consistency 

interval, overall suggesting no removal or occurrence of compounds due to transformation or 

desorption. However, the variability increases with PAC concentration indicating removal or 

transformation/desorption of individual compounds. The fraction of features with increasing 

signal intensities (fc > 2.00) was elevated at the highest tested PAC concentration of 30 mg L-1 

with up to 13 % and the highest number of significant features (based on differences in their 

signal intensities) observed for PAC type H121.  

Different types and concentrations of PAC for treating real samples were assessed by 

comparing the molecular fingerprints with a particular focus on polar features. In this aspect, 

hypothesis 4 can be accepted as it is applicable to an investigation subjected to a research 

objective other than compound identification. 

For future references, the priority features (showing significant increase or decrease in feature 

intensities) could be identified and their (eco)toxicological relevance assessed. 
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7. Conclusion and final discussion 

This thesis strived to develop a methodological concept for the non-targeted analysis of TOrCs 

in water, with special focus on polar and very polar compounds.  

The method needs to meet certain criteria and thus four research hypotheses were formulated 

and tested by tackling specific tasks derived from the hypotheses (compare chapter 2).  

The first hypothesis can be accepted as the input parameters of the polarity-extended NTS 

method can be optimized to widen the scope of detectable compounds. What is more, facing 

multiple parameters and having to satisfy several requirements (i.e. increase sensitivity, 

decrease the false positive and false negative rates), poses a classical optimization problem. 

DoE offers the possibility of strategically managing several input and response variables. Firstly, 

DoE was employed to optimize six instrumental parameters of an ESI source for non-targeted 

LC-HRMS analysis. This approach has been reported before, however, the response variables 

are often limited to maximizing the signal intensity of one or two substances [91, 92, 145]. Even 

though time-consuming, this might be sufficient for developing a targeted and/or quantitative LC-

MS method. Since in an NTS measurement a broad range of molecules is supposed to be 

detected, the study presented in chapter 3.1 optimized the signal intensities of 30 model 

substances. To ensure sensitive analysis of highly polar TOrCs retained by the polarity-extended 

chromatographic setup, model substances with log D values down to -5.42 (moroxydine at pH 7) 

were included. Considering the complexity of setting NTS data processing, the DoE approach 

was applied extracting features from HRMS raw data as well (Appendix A.1). A similar approach 

has been published in the field of environmental analysis by Hu et al. [95] who maximized the 

recovery of target compounds spiked into synthetic samples. However, the presented method 

does not reflect the false negative rate. Moreover, there might be other compounds present in 

the sample besides the spiked-in target substances. The fact that the true composition of a 

sample is unknown to the analyst poses a general problem in NTS investigations, and is 

discussed in sections below. The authors of the study presented as part of this theses, defined 

numerical descriptors as response variables for DoE that were based on actually observed non-

target features. These descriptors give indications on the quality of componentization of peaks 

as well as missed and wrongfully detected peaks and artefacts. Finally, the accuracy of the 

recursive algorithm to improve the overall quality of extracted features (chapter 4.4) was 

assessed. Nevertheless, study designs and constraints vary from case to case and need to be 

adapted for DoE optimization as becomes evident in this thesis.  

Hypothesis 2 dealt with controlling and assuring the quality of the instrumental as well as the 

data processing method. Monitoring the robust and accurate operation of the analytical platform 
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is well-established and a prerequisite also for NTS. The system’s suitability can be assessed 

based on external and internal standards and blank samples. Measuring pooled QC samples in 

combination with subsequent PCA allowed to check for inter- and intra-sample variability. 

Besides the representative matrix, all of the detectable non-target features are considered rather 

than a limited number of pre-selected standard compounds which renders this QC method 

suitable for NTS [78, 79]. Hypothesis 2 can be accepted with some reservations concerning the 

QC for data analysis. A feature list containing only true positives would comply with the highest 

theoretical quality. This standard can only be approximated since the actual false positive and 

false negative rates in NTS are unknown to the investigator. Apart from well-established filtering 

steps [70, 71] (chapter 4.2), the author would suggest tracking standard compounds (internal or 

in synthetic samples) throughout the data processing workflow and performing recursive target 

searches to decrease the false negative rate.  

A general data analysis workflow including peak picking, alignment, deconvolution, background 

comparison and componentization was found to be applicable to multiple study designs. Having 

a more or less universal starting point might lower the barrier for new researchers to enter the 

NTS field. Nevertheless, as discussed in chapter 5.1, the order of processing steps, algorithms 

and parameters and finally results differ considerably between different software tools [112]. 

Further individual processing is required for the different objectives overarching every NTS 

investigation of environmental water samples. Of those, two can be generally identified in this 

thesis: 

 Suggesting relevant polar, organic, and small candidate molecules detected in 

environmental real samples for validation via reference material. 

 Comparative analysis of the molecular fingerprint of samples in order to evaluate a water 

treatment process. 

For the first NTS objective, the RPLC-HILIC chromatographic setup used throughout this thesis 

allowed for a polarity-dependent extraction of non-target features. The differentiation can be 

picked up by compound databases STOFF-IDENT [73] storing physico-chemical information (log 

D, RTI score) on compounds. Another crucial aspect of the STOFF-IDENT was the fact that it 

specializes in environmentally relevant TOrCs of anthropogenic origin and by this means 

streamlines the feature annotation process as it confines the chemical space. Similarly, 

Schymanski et al. distilled the PubChem database [146] down to a selection of compounds 

stored in the PubChemLite [147] (compare also Appendix A.3).  

Special attention must be payed to the clean-up process of extracted features lists when 

attempting to globally assess the molecular fingerprint of a sample (compare chapter 5.4). 
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Reducing the amount of artefacts, redundant and missed peaks to a minimum is beneficial to 

subsequent statistical interpretation of the data. In conclusion, hypothesis 3 can only be partially 

accepted since the rudimentary core workflow needs considerable adjustments depending on 

the software tool and its implemented algorithms and parameters as well as the research 

objective. 

The analytical method developed under hypotheses 1 – 3 was finally applied on real 

environmental water samples. As a result, 46 non-target features detected in 33 samples taken 

from the Isar river and were allocated with 64 candidate compounds. Melamine (InChI key 

JDSHMPZPIAZGSV-UHFFFAOYSA-N, log D at pH 7 of -2.0), guanylurea 

(BKMMTJMQCTUHRP-UHFFFAOYSA-N, -2.1) and the solvent 1,3-dimethylimidazolidin-2-one 

(CYSGHNMQYZDMIA-UHFFFAOYSA-N, -0.6) were exemplarily confirmed with reference 

material (Appendix A.1).  

4-hydroxy-2,2,6,6-tetramethylpiperidine-1-ethanol (STEYNUVPFMIUOY-UHFFFAOYSA-N, -

2.62) is an especially concerning TOrC which was identified by our group in the Danube river 

basin as part of the fourth Joint Danube survey [66]. It was detected at 47 out of a total of 51 

sampling locations. It is acutely harmful to aquatic organisms [131] and was assigned the 

highest scores for persistence in surface and ground waters as well as mobility [23].  

According to the results presented for the evaluation of PAC treatment (chapter 6.3) half of the 

highly polar standard compounds (log D < 0.30 at pH 7) adsorbed onto the PAC, possibly due to 

electrostatic interactions [135]. However, more and quantitative data is necessary to substantiate 

these findings. NTS results suggest that either compounds were transformed or desorbed from 

the PAC material. It should be noted, that the results could be affected by the feature extraction 

and data clean-up process, especially the gap filling step.  

Concluding from these applications, hypothesis 4 can be accepted since the analytical method 

presented in this thesis, was successfully applied to real surface water samples. It (tentatively) 

identified polar, organic and small compounds in samples of the Isar and the Danube rivers and 

gave indications on the treatment effectiveness when considering features of an extended 

polarity range.   
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8. Outlook 

As NTS evolved from the trial phase to complement monitoring activities, parameter optimization 

and QC must be part of a comprehensive data processing phase. Developers have picked up on 

that by integrating automated parameter optimization into analytical workflows, like patRoon with 

IPO [106, 148] or SLAW [149]. The matter was also discussed in the literature study presented 

in Appendix A.3. Further efforts are required when defining response variables for NTS to base 

the optimization on since the true sample composition is unknown to the investigator. Using 

internal or external compounds as reference points might be an obvious choice, however, 

covering the entire chemical space seems unfeasible [79]. As a consequence, more work could 

be invested in designing synthetic samples as were discussed in chapter 3.2. Artificial matrices, 

ultra-pure chemicals and a large set of carefully chosen standard compounds at different 

concentrations, could serve as a more universal and clearly defined model sample to build the 

NTS workflow on.   

The review in Appendix A.3 discusses regions of interest – multivariate curve resolution as an 

alternative feature extraction method that might gain relevance in the future.  

Besides accurate mass, RT can serve as evidence for compound annotation. It can be 

connected to the physico-chemical properties of a candidate compound by means of a 

compound database. The matter is also reviewed in more detail in Appendix A.3. It facilitates the 

prioritization of relevant features and enables the (tentative) identification of highly polar 

compounds.  

To improve the reproducibility of NTS studies general instructions are helpful, especially to users 

outside of the research community [65]. To further remedy the problem, transparency could be 

promoted through good reporting practice which as of now, mainly entails communicating the 

confidence in feature identification via the Schymanski system [82]. More recently the reporting 

tool BP4NTA was developed to guide researches, reviewers and editors through NTS studies 

[150].  

Finally, trend analyses and two-sample comparisons based on NTS data might benefit from 

quantitative data. The group of Anneli Kruve presented a quantification without reference 

standards based on ionization efficiency [151] which is presented in the review article in  

Appendix A.3.  
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Table S1: The design matrix on which the experimental plan depended. The lower and upper limit of the setting range is depicted by -1 
and +1, respectively. Find the factor values in Table 1. Experiments 1 – 18 derived from a fractional factorial screening design with 
resolution IV. Experiments 19 – 21 were conducted to check for non-linearities if the factor ISV and 22 – 46 were a D-optimal 
complement. 

Exp. No. G1 G2 CUR ISV Temp DP 

1 -1 -1 -1 -1 -1 -1 

2 1 -1 -1 -1 1 -1 

3 -1 1 -1 -1 1 1 

4 1 1 -1 -1 -1 1 

5 -1 -1 1 -1 1 1 

6 1 -1 1 -1 -1 1 

7 -1 1 1 -1 -1 -1 

8 1 1 1 -1 1 -1 

9 -1 -1 -1 1 -1 1 

10 1 -1 -1 1 1 1 

11 -1 1 -1 1 1 -1 

12 1 1 -1 1 -1 -1 

13 -1 -1 1 1 1 -1 

14 1 -1 1 1 -1 -1 

15 -1 1 1 1 -1 1 

16 1 1 1 1 1 1 

17 0 0 0 -0.286 0 0 

18 0 0 0 -0.286 0 0 

19 0 0 0 -1 0 0 

20 0 0 0 1 0 0 

21 0 0 0 0 0 0 

22 -1 -1 1 1 -0.333 1 
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23 -1 -1 0.333 1 -1 -1 

24 -1 -1 -0.333 1 1 1 

25 -1 1 -1 1 -0.333 1 

26 -1 1 1 1 1 0.333 

27 -1 -0.333 -1 -1 -1 1 

28 -1 0.333 -1 -1 1 -1 

29 1 -1 -1 1 0.333 -1 

30 1 -1 1 1 1 -0.333 

31 1 -1 -0.333 1 -1 1 

32 1 1 -1 1 1 0.333 

33 1 1 1 1 -1 0.333 

34 1 1 0.333 1 1 -1 

35 1 -0.333 1 -1 -1 -1 

36 1 -0.333 1 -1 1 1 

37 0.333 -1 -1 -1 1 1 

38 -0.333 -1 1 -1 1 -1 

39 -0.333 1 -1 -1 -1 -1 

40 0.333 1 1 -1 -1 1 

41 0 0 0 0 0 0 

42 1 -0.333 1 -1 1 1 

43 1 1 1 -1 1 -1 

44 1 -1 1 1 1 -0.333 

45 -1 1 -1 -1 1 1 

46 1 1 1 -1 1 -1 
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Table S2: The 30 model substances below were chosen to check their response in signal intensity when varying the factor settings of 
the ESI source. In addition, the response specifications for each substance are listed. Responses that were logarithmically transformed 
in order to achieve a normal distribution are marked “~”. 

Response Name InChi Key Log D 

(pH 7) 

Specification 

minimum 

[Cps] 

Specification 

target [Cps] 

1 ~ 2,2,6,6-

tetramethyl-4-

piperidone 

JWUXJYZVKZKLTJ-

UHFFFAOYSA-N 

-0.32 10000 320000 

2 ~ 2,4-Diamino-6-

hydroxymethylpt

eridine 

CYNARAWTVHQH

DI-UHFFFAOYSA-N 

-1.37 10000 140000 

3 ~ 3-

Dimethylaminop

ropiononitrile 

MTPJEFOSTIKRSS-

UHFFFAOYSA-N 

-0.30 2000 24000 

4 ~ 2-

Morpholinoetha

nol 

KKFDCBRMNNSAA

W-UHFFFAOYSA-N 

-1.13 10000 280000 

5 ~ 4-

Methylumbellifer

one 

HSHNITRMYYLLCV

-UHFFFAOYSA-N 

1.72 10000 29000 

6 ~ Candesartan HTQMVQVXFRQIK

W-UHFFFAOYSA-N 

-0.12 10000 290000 

7  Dapsone MQJKPEGWNLWLT

K-UHFFFAOYSA-N 

1.27 10000 27000 

8 DEET MMOXZBCLCQITD

F-UHFFFAOYSA-N 

2.5 10000 540000 

9 Dimethoate MCWXGJITAZMZE

V-UHFFFAOYSA-N 

0.34 10000 53000 

10 ~ Dorzolamide IAVUPMFITXYVAF-

XPUUQOCRSA-N 

-0.32 10000 98000 

11 ~ Etilefrine SQVIAVUSQAWMK

L-UHFFFAOYSA-N 

-1.42 10000 260000 

12 ~ Panthenol SNPLKNRPJHDVJA

-UHFFFAOYSA-N 

-1.70 10000 100000 

13 ~ Flufenacet IANUJLZYFUDJIH-

UHFFFAOYSA-N 

3.22 20000 240000 

14  Flurtamone NYRMIJKDBAQCH

C-UHFFFAOYSA-N 

4.64 10000 2.5e+06 

15 ~ Haloxyfop GOCUAJYOYBLQR

H-UHFFFAOYSA-N 

0.77 7000 30000 
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16 ~ Linuron XKJMBINCVNINCA-

UHFFFAOYSA-N 

2.3 10000 55000 

17 L-Phenylalanin COLNVLDHVKWLR

T-QMMMGPOBSA-

N 

-1.19 2000 8000 

18 Malathion JXSJBGJIGXNWCI-

UHFFFAOYSA-N 

1.86 10000 133161 

19 ~ Melamine JDSHMPZPIAZGSV

-UHFFFAOYSA-N 

-1.97 10000 100000 

20 Metazachlor STEPQTYSZVCJPV

-UHFFFAOYSA-N 

2.98 10000 170000 

21 ~ Metconazol XWPZUHJBOLQNM

N-UHFFFAOYSA-N 

3.59 10000 520000 

22 ~ Methylisothiazoli

none 

BEGLCMHJXHIJLR-

UHFFFAOYSA-N 

0.23 10000 110000 

23 ~ Metobromuron WLFDQEVORAMCI

M-UHFFFAOYSA-N 

2.24 10000 100000 

24 Metolachlor WVQBLGZPHOPPF

O-UHFFFAOYSA-N 

3.45 10000 260000 

25 ~ Metribuzin FOXFZRUHNHCZP

X-UHFFFAOYSA-N 

1.96 10000 290000 

26 ~ Minoxidil ZIMGGGWCDYVHO

Y-UHFFFAOYSA-N 

-2.25 10000 500000 

27 Molinate DEDOPGXGGQYY

MW-UHFFFAOYSA-

N 

2.34 5000 30000 

28 Monuron BMLIZLVNXIYGCK-

UHFFFAOYSA-N 

1.93 10000 59000 

29 ~ Moroxydine KJHOZAZQWVKILO

-UHFFFAOYSA-N 

-5.43 10000 350000 

30 N,N′-

Trimethyleneure

a 

NQPJDJVGBDHCA

D-UHFFFAOYSA-N 

-1.03 10000 45000 
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Appendix B.2 Electronic supplementary material - Optimized hidden target screening for very polar 

molecules in surface waters including a compound database inquiry 
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Appendix B.3 Electronic supplementary information - (Very) polar organic compounds in the Danube 

river basin: Non-target screening workflow and prioritization strategy for extracting highly 

confident features 
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Appendix B.4 Supplementary material - Characterizing powdered activated carbon treatment of surface 

water samples using polarity-extended non-target screening analysis  
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Table S1: Table of internal standards spiked into samples after treatment and prior to LC-MS analysis  

Name InChIKey Chemical 

formula 

Log D 

(pH 7) 

Solvent 

stock 

C(Stock) 

[µM] 

Manufacturer 

6-amino-1,3-

dimethyl-5-

(formylamino)uracil 

ZNDGAXCBZGSJGU-

UHFFFAOYSA-N 

C7H10N4O3 -2.00 ACN/H2O 

(50/50) 

1000 Sigma 

Etilefrine SQVIAVUSQAWMKL-

UHFFFAOYSA-N 

C10H15NO2 -1.42 ACN 

 

1000 Sigma 

Sotalol ZBMZVLHSJCTVON-

UHFFFAOYSA-N 

C12H20N2O3S -2.47 ACN 586 Sigma 

Vidarabine OIRDTQYFTABQOQ-

UHTZMRCNSA-N 

C10H15N5O5 -2.10 ACN/H2O 

(50/50) 

337  

Chloridazon WYKYKTKDBLFHCY-

UHFFFAOYSA-N 

C10H8ClN3O 1.11 ACN/H2O 

(50/50) 

1000 Sigma 

Chlorbromuron NLYNUTMZTCLNOO-

UHFFFAOYSA-N 

C9H10BrClN2O2 2.85 Methanol 1000 Dr. 

Ehrenstorfer 

Chlortoluron JXCGFZXSOMJFOA-

UHFFFAOYSA-N 

C10H13ClN2O 2.44 ACN 1000 Sigma 

Metconazole XWPZUHJBOLQNMN-

UHFFFAOYSA-N 

C17H22ClN3O 3.59 Methanol 1000 Sigma 

Metobromuron WLFDQEVORAMCIM-

UHFFFAOYSA-N 

C9H11BrN2O2 2.24 ACN 1096 Sigma 

Monuron BMLIZLVNXIYGCK-

UHFFFAOYSA-N 

C9H11ClN2O 1.93 Methanol 970 Sigma 

 

Table S2: Polar standard compounds spiked into samples prior to PAC treatment. 

Name InChIKey Chemical 

formula 

Log D 

(pH 7) 

1,3-Dimethyl-2-imidazolidinone CYSGHNMQYZDMIA-

UHFFFAOYSA-N 

C5H10N2O -0.64 

2,2,6,6-tetramethyl-4-piperidone JWUXJYZVKZKLTJ-

UHFFFAOYSA-N 

C9H17NO -0.32 

2,4-diamino-6-(hydroxymethyl)pteridine  CYNARAWTVHQHDI-

UHFFFAOYSA-N 

C7H8N6O -1.37 

2-aminopyridine ICSNLGPSRYBMBD-

UHFFFAOYSA-N 

C5H6N2 0.30 

3-pyridinemethanol MVQVNTPHUGQQHK-

UHFFFAOYSA-N 

C6H7NO -0.01 
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Ectoine WQXNXVUDBPYKBA-

UHFFFAOYSA-N 

C6H10N2O2 -2.53 

Famotidine XUFQPHANEAPEMJ-

UHFFFAOYSA-N 

C8H15N7O2S3 -3.04 

4-(2-hydroxyethyl)morpholine KKFDCBRMNNSAAW-

UHFFFAOYSA-N 

C6H13NO2 -1.12 

Miglitol IBAQFPQHRJAVAV-

ULAWRXDQSA-N 

C8H17NO5 -3.89 

N,N'-ethylenebisacetamide; (N,N'-

ethylenedi(diacetamide)) 

WNYIBZHOMJZDKN-

UHFFFAOYSA-N 

C6H12N2O2 -1.78 

Acamprosate AFCGFAGUEYAMAO-

UHFFFAOYSA-N 

C5H11NO4S -4.10 

L-Leucine ROHFNLRQFUQHCH-

UHFFFAOYSA-N 

C6H13NO2 -1.59 

 

Table S3: Parameter settings of each processing step of the non-target screening workflow for comparative analysis of an untreated 
and a treated sample. Parameters that were sufficiently optimized in a previous study1 are highlighted in green. Parameters that were 
adapted to the circumstances of the present investigation are marked in red. In case there was no need to optimize default settings they 
are depicted in blue. If parameter settings differed for negative ionization mode, the values are given in brackets.  

Processing step Description Parameter Setting Comment 

Mass detection  Algorithm Wavelet 

transform 

Detects peaks using continuous 

wavelet transformation using 

“Mexican Hat” wavelet  

Noise level 10,000 Minimum intensity of a data point to 

be considered in chromatogram 

Scale level 6 Stretches or compresses the 

wavelet 

Wavelet window 

size 

30 % Window size used to calculate 

wavelet 

RT range 5 min –  

33 min 

Corresponds to the HILIC and RPLC 

elution intervals 

MS levels 1+2  

Polarity +(-)  

                                                
 

1 Minkus S, Bieber S, Letzel T (2021) (Very) polar organic compounds in the Danube river basin: Non-target screening 
workflow and prioritization strategy for extracting highly confident features. Anal Methods 13:2044–2054. 
https://doi.org/10.1039/D1AY00434D 
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Spectrum type Profile Adapted to the raw data format of 

the vendor (Thermo Fisher 

Scientific)  

Chromatogram 

building 

Constructs EICs 

using the ADAP 

algorithms[110] 

Minimum group 

size in number of 

scans 

5  

Group intensity 

threshold 

20,000 Optimized to minimize total number 

of features and processing time and 

maximize recall of standard 

compounds (n=20) 
Minimum highest 

intensity 

50,000 Optimized to minimize total number 

of features and processing time and 

maximize recall of standard 

compounds (n=20) 

m/z tolerance 0.0012 Da Derived from targeted analysis: 

Maximum m/z span over all sample 

injections (n=35) and standard 

compounds (n=20), rounded up to 

4th decimal 

Smoothing Applies Savitzky-

Golay filter to EICs 

Filter width 25 Adapted to noisier data 

Chromatogram 

deconvolution 

Separates each 

chromatogram into 

individual peaks 

Algorithm Wavelets 

(ADAP) 

 

S/N threshold 10  

Minimum feature 

height 

100,000 

(50,000) 

Optimized to minimize total number 

of features and processing time and 

maximize recall of standard 

compounds (n=20) 

Coefficient/area 

threshold 

30  

Peak duration 

range (low) 

0.13 min   

Peak duration 

range (high) 

8.00 min Adapted to achieve full recall of 

standard compounds (n=20) 

RT wavelet range 

(low) 

0.03 min  

RT wavelet range 

(high) 

2.00 min Adapted to achieve full recall of 

standard compounds (n=20) 

m/z center 

calculation 

Median  

Peak filter Number of data 

points 

2 – 1600 
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Eliminates peaks 

which do not meet 

the specified criteria 

Tailing factor 0.40 – 8.30 Derived from targeted analysis: 

Minimum and maximum of all 

sample injections (n=35(36)) and 

standard compounds (n=20), 

rounded up and down, respectively   

Asymmetry factor 0.05 – 13.59 

Isotope grouping 

and removal 

Recognizes isotopic 

patterns within 

defined RT and m/z 

ranges and removes 

all peaks except the 

highest isotope 

m/z tolerance 0.0012 Da Derived from targeted analysis: 

Maximum m/z span over all sample 

injections (n=35) and standard 

compounds (n=20), rounded up to 

4th decimal 

RT tolerance 0.62 min Derived from targeted analysis: 

Maximum RT span over replicate 

injections and standard compounds 

(n=20), rounded up to 2nd decimal 

Maximum charge 1  

Representative 

isotope 

Lowest m/z  

Adduct tagging 

and removal 

Recognizes adduct 

peaks within defined 

RT and mass range 

RT tolerance 0.62 min Derived from targeted analysis: 

Maximum RT span over replicate 

injections and standard compounds 

(n=20), rounded up to 2nd decimal 

Adduct m/z 

differences 

21.9825 Da, 

37.9559 Da, 

17.0265 Da 

 

m/z tolerance 0.0012 Da Derived from targeted analysis: 

Maximum m/z span over all sample 

injections (n=35) and standard 

compounds (n=20), rounded up to 

4th decimal 

Maximum relative 

adduct peak 

height 

100 %  

Intra-sample 

alignment 

Aligns peaks across 

technical replicates 

and corrects RT 

deviations based on 

RANSAC algorithm 

and non-linear 

regression 

model[68] 

m/z tolerance 0.0015 Da Adapted to achieve full recall of 

standard compounds (n=20) 

RT tolerance 1.00 min Sets RT range to create the model 

for RT correction 

RT tolerance after 

correction 

0.62 min Derived from targeted analysis: 

Maximum RT span over replicate 

injections and standard compounds 

(n=20), rounded up to 2nd decimal 

RANSAC 

iterations 

2000 Maximum number of iterations to 

find model 
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Minimum number 

of points 

20 % Minimum portion of points required 

for a valid model 

Threshold value 0.07 min Threshold for a data point to fit the 

model 

Duplicate filter Finds features of 

which the m/z and 

RT difference is 

lower than the 

predefined 

tolerances 

Filter mode New average Creates consensus feature from 

duplicates 

m/z tolerance 0.0015 Da Adapted to achieve full recall of 

standard compounds (n=20) 

RT tolerance 0.62 min Derived from targeted analysis: 

Maximum RT span over replicate 

injections and standard compounds 

(n=20), rounded up to 2nd decimal 

Replicate filter  Minimum peaks 3  

Inter-sample 

alignment 

Aligns peaks across 

treated and 

untreated sample 

and corrects RT 

deviations based on 

RANSAC algorithm 

and non-linear 

m/z tolerance 0.0015 Da Adapted to achieve full recall of 

standard compounds (n=20) 

RT tolerance 1.00 min Sets RT range to create the model 

for RT correction 

RT tolerance after 

correction 

0.62 min Derived from targeted analysis: 

Maximum RT span over replicate 

injections and standard compounds 

(n=20), rounded up to 2nd decimal 

RANSAC 

iterations 

2000 Maximum number to find model 

Minimum number 

of points 

20 % Minimum portion of points required 

for a valid model 

Threshold value 0.07 min Threshold for a data point to fit the 

model 

Gap filling Searches for 

missing peaks using 

the m/z and RT 

range defined by the 

rest of the aligned 

peaks 

m/z tolerance 0.0015 Da Adapted to achieve full recall of 

standard compounds (n=20) and 

added to the m/z range constituted 

by the other peaks of the feature 

Replicate filter  Minimum peaks 6  

Intensity 

normalization  

The peak heights of 

a feature are 

normalized using 

internal standards 

Normalization 

type 

Weighted 

contribution of 

all standards 

 

Peak 

measurement 

type 

Peak height  
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Standard 

compounds 

Internal 

standards 

N = 10, compare Table S1 

 

Table S4: Means and standard deviations of log2(fc) values for the internal standards and the polar standard compounds measured in 
negative ionization mode. H118, H120 and H121 are the laboratory names of the different PAC types (Table 4) which were tested for 
surface water treatment at three different concentrations. 

 H118 H120 H121 

Internal standards n = 10 n = 10 n = 10 

2 mg L-1 0.07 ± 0.05 -0.24 ± 0.05 0.06 ± 0.07 

7 mg L-1 0.14 ± 0.09 -0.32 ± 0.08 0.18 ± 0.07 

30 mg L-1 0.04 ± 0.08 -0.37 ± 0.07 0.23 ± 0.07 

HILIC standards n = 2 n = 3 n = 5 

2 mg L-1 -0.13 ± 0.12 -0.12 ± 0.24 -0.35 ± 1.16 

7 mg L-1 0.20 ± 0.73 -0.25 ± 0.37 -2.16 ± 3.04  

30 mg L-1 0.18 ± 0.86 -0.75 ± 1.19 -1.59 ± 2.94 
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Figure S1: The base-2 logarithm of the fcs of the HILIC standards (blue diamonds) and the internal standards (orange 
circles) are plotted versus their retention times. The dashed lines mark the consistency interval where no compound 
removal is assumed. The data was recorded in positive ionization mode. The plots indicate that PAC H118 adsorbed 
the compounds famotidine, 2,4-diamino-6-(hydroxymethyl)pteridine, 3-pyridinemethanol, 2-aminopyridine  and 4-(2-
hydroxyethyl)morpholine. No decrease was observed for 4-(2-hydroxyethyl)morpholine when treating the sample with 
PAC H120.  
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Table S5: Means and standard deviations of log2(fc) values for the non-target features in negative ionization mode. H118, H120 and 
H121 are the laboratory names of the different PAC types (Table 4) which were tested for surface water treatment at three different 
concentrations. 

 Number of 

features 

Mean 

log2(fc) 

Increasing/decreas

ing features [%] 

Significant 

feature 

H118     

2 mg L-1 2318 -0.02 ± 0.31 0.3/0.5 0 

7 mg L-1 2433 -0.13 ± 0.51 1.6/4.5 121 

30 mg L-1 2482 -0.05 ± 0.55 2.6/3.7 118 

H120     

2 mg L-1 2378 0.19 ± 0.34 2.9/0.0 17 

7 mg L-1 2332 0.21 ± 0.36 3.5/0.2 50 

30 mg L-1 2333 0.30 ± 0.38 6.7/0.2 125 

H121     

2 mg L-1 2277 -0.03 ± 0.35 0.2/0.7 0 

7 mg L-1 2357 -0.10 ± 0.37 0.2/1.6 0 

30 mg L-1 2402 -0.06 ± 0.38 0.1/1.3 4 
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Figure S2: The total ion chromatograms (blue line, primary y-axis) and the non-target peaks (black crosses, secondary y-axis) are 
exemplarily displayed for the sample treated with the H118 PAC at 30mg L-1, third replicate. 
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Figure S3: Scores plot of the PCA based on the normalized peak heights of the features extracted from each individual measurement in 
negative ionization mode. 

 

 

 

 

 

 

 


