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Abstract

Cloud computing has hugely impacted over the last few decades the Information Tech-
nology (IT) industry by offering virtually unlimited storage and processing capabilities
at low-cost enabling new computing models where virtualized resources are leased on-
demand. While cloud computing has been dominating the Internet services delivery
model for the past thirty years, new technologies and applications for mobile comput-
ing and the Internet of Things (IoT) have been pushing towards the decentralization of
compute resources. This new trend has been fueled by the requirements of such services
including: (i) reduction of network latency for delay-sensitive application such as aug-
mented reality, (ii) data aggregation and sensor fusion required by the proliferation of
IoT and smart devices in order to reduce uplink bandwidth utilization and optimize
response time in critical situations, and (iii) better customization through context-
awareness of location-dependent services. Traditional cloud offloading techniques are
ill-suited for these scenarios due to the burden of additional network delay intrinsically
encountered while accessing or uploading resources to remote datacenters.

Edge computing is a paradigm in which computing and storage resources are placed
at the edge of the network, in close proximity to mobile devices or smart sensors. It
aims to bring existing cloud services and utilities near end-users to reduce the network
load on the cloud and increase the quality of experience in the case of latency-critical
applications, among others. Hence, it can help in addressing shortcomings of the cloud
by offering localized compute resources and services. However, full integration between
edge and cloud infrastructures is still far from reality. In fact, the deployment and
management of an edge infrastructure remains a more challenging task when compared
to the cloud for multiple reasons such as the presence of resource-constrained devices,
scalability, maintenance, management, and security issues. Therefore, the problem we
tackle in this thesis is multi-faceted. The challenges we discuss are at the intersection
of system design, resource provisioning at scale, and application requirements. Further-
more, it is paramount for edge computing to be compatible with the traditional cloud
technologies so that existing cloud-based applications can be ported to and integrated
in edge environments with minimal overhead. This would also flatten the learning curve
for developers who would be able to naturally make use of the edge-cloud infrastructure.

This thesis identifies critical integration challenges between edge and cloud computing
to create a homogeneous infrastructure abstraction in spite of the apparent duality be-
tween the two technologies. We focus on three facets of our approach: domain-specific
applications, platform orchestration, and resource provisioning. For the first, we look at
examples of different classes of applications that would benefit from the edge computing
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Abstract

paradigm. Then, we deep-dive into novel lightweight virtualization technologies which
can be leveraged to build a flexible edge-cloud offloading platform. In particular, this
thesis contributes a virtualization-dependent orchestration framework based on uniker-
nels supporting distributed tasks execution and stateful service migration. Finally, from
the resource provisioning angle, we provide a latency-energy efficient allocation algorithm
to provision resources for tasks offloaded by mobile devices to a multi-tier edge-cloud
architecture.
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Zusammenfassung

Das Cloud Computing hat in den letzten Jahrzehnten einen enormen Einfluss auf die IT-
Branche ausgeübt, da es praktisch unbegrenzte Speicher- und Verarbeitungskapazitäten
zu niedrigen Kosten bietet und neue Computermodelle ermöglicht, bei denen virtual-
isierte Ressourcen auf Abruf gemietet werden. Während das Cloud Computing in den
letzten dreißig Jahren das Modell für die Bereitstellung von Internetdiensten dominiert
hat, drängen neue Technologien und Anwendungen für das mobile Computing und das
IoT auf die Dezentralisierung von Rechenressourcen. Dieser neue Trend wurde durch
die Anforderungen solcher Dienste angeheizt, darunter: (i) Verringerung der Netzwerk-
latenz für verzögerungsempfindliche Anwendungen wie Augmented Reality, (ii) Date-
naggregation und Sensorfusion, die durch die Verbreitung von IoT und intelligenten
Geräten erforderlich sind, um die Nutzung der Uplink-Bandbreite zu verringern und
die Reaktionszeit in kritischen Situationen zu optimieren, und (iii) bessere Anpassung
durch kontextabhängige Dienste. Herkömmliche Cloud-Offloading-Techniken sind für
diese Szenarien aufgrund der zusätzlichen Netzwerkverzögerung, die beim Zugriff auf
oder Hochladen von Ressourcen in entfernte Rechenzentren auftritt, schlecht geeignet.

Edge Computing ist ein Paradigma, bei dem Rechen- und Speicherressourcen am
Rande des Netzes, in unmittelbarer Nähe zu mobilen Geräten oder intelligenten Sen-
soren, platziert werden. Es zielt darauf ab, bestehende Cloud-Dienste und -Hilfsmittel
in die Nähe der Endnutzer zu bringen, um die Netzbelastung der Cloud zu verringern
und die Qualität der Erfahrung bei latenzkritischen Anwendungen zu verbessern. Sie
kann also dazu beitragen, die Unzulänglichkeiten der Cloud zu beheben, indem sie
lokalisierte Rechenressourcen und Dienste anbietet. Die vollständige Integration von
Edge- und Cloud-Infrastrukturen ist jedoch noch weit von der Realität entfernt. In der
Tat ist der Einsatz und die Verwaltung einer Edge-Infrastruktur im Vergleich zur Cloud
aus mehreren Gründen eine größere Herausforderung, z. B. durch das Vorhandensein
ressourcenbeschränkter Geräte, Skalierbarkeit, Wartung, Verwaltung und Sicherheit.
Daher ist das Problem, das wir in dieser Arbeit angehen, vielschichtig. Die Heraus-
forderungen, die wir erörtern, liegen an der Schnittstelle von Systemdesign, Ressourcen-
belegung in großem Umfang und Anwendungsanforderungen. Darüber hinaus ist es von
größter Bedeutung, dass Edge Computing mit den herkömmlichen Cloud-Technologien
kompatibel ist, damit bestehende Cloud-basierte Anwendungen mit minimalem Aufwand
in Edge-Umgebungen portiert und dort integriert werden können. Dies würde auch die
Lernkurve für Entwickler abflachen, die in der Lage wären, die Edge-Cloud-Infrastruktur
auf natürliche Weise zu nutzen.
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Zusammenfassung

In dieser Arbeit werden kritische Herausforderungen bei der Integration von Edge- und
Cloud-Computing identifiziert, um trotz der scheinbaren Dualität der beiden Technolo-
gien eine homogene Infrastrukturabstraktion zu schaffen. Wir konzentrieren uns auf drei
Facetten unseres Ansatzes: domänenspezifische Anwendungen, Plattform-Orchestrierung
und Ressourcenbereitstellung. Für den ersten Aspekt betrachten wir Beispiele ver-
schiedener Anwendungsklassen, die vom Paradigma des Edge Computing profitieren
würden. Anschließend befassen wir uns eingehend mit neuartigen, leichtgewichtigen
Virtualisierungstechnologien, die für den Aufbau einer flexiblen Edge-Cloud-Offloading-
Plattform genutzt werden können. Insbesondere wird in dieser Arbeit ein virtual-
isierungsabhängiger Orchestrierungsrahmen auf der Basis von Unikerneln vorgestellt,
der die Ausführung verteilter Aufgaben und die zustandsabhängige Migration von Di-
ensten unterstützt. Schließlich bieten wir aus dem Blickwinkel der Ressourcenbereitstel-
lung einen latenz- und energieeffizienten Zuweisungsalgorithmus zur Bereitstellung von
Ressourcen für Aufgaben, die von mobilen Geräten auf eine mehrstufige Edge-Cloud-
Architektur ausgelagert werden.
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1 Introduction

Many years of progress in the field of miniaturization of electronic components allowed
to transform computers from large, bulky, room-sized machines to small devices fitting
in our pocket. Similarly, computational power increased to the point where today’s
smartphones are many orders of magnitude more powerful than the first supercomputer,
the IBM 7030 Stretch [9]. Today, the widespread proliferation of smart devices is fueling
the so called digitalization process which is at the roots of the IoT era. Moreover, the
line separating artificial from natural, as in humanity as biological lifeform, is blurred as
Brain-Computer Interfaces (BCI) and sub-dermal microchips are becoming more mature
[10].

The penetration of embedded devices in our daily life can be seen as a form of compute
resources decentralization, where processing power is distributes across large networks
of devices. In fact, recent studies suggest that there should be more than 50 billion
devices connected to the Internet by 2025 [11, 12]. What we are witnessing can be seen
as the computing equivalent of the everlasting struggle between centralization and de-
centralization forces, a recurrent theme in many aspects of human society (e.g., politics,
energy generation) [13]. As an example, in 1980s a wave of decentralization led to a
shift away from mainframes to PCs which culminated in decentralized systems using the
peer-to-peer (P2P) technology.

Although super-computers are still very well in use, today we refer to them using
the umbrella-term cloud computing. A stepping stone towards what can be seen as
the Internet globalization, cloud computing revolutionized dramatically online services
and applications offering an unprecedented model to offer and manage computational
resources. As a matter of fact, cloud computing turned the odds in favor of centralized
systems by concentrating enormous amounts of control, data and intelligence in remote
datacenters. Today’s cloud computing giants such as Google, Amazon, Microsoft etc.,
possess vast networks of large datacenters scattered around the globe serving millions of
users. However, the recent proliferation of cyber-physical spaces pushed computational
resources towards end-users. In contrast to cloud computing, this trend is in favor of
a resource decentralization process, where hardware resources are not anymore remote
and evanescent but, on the contrary, tangible and nearby. Figure 1.1(from [14]) shows
the information age progress over multiple decades until the advent of cloud computing.

A meeting point between the resource centralization in the cloud and decentralization
of the IoT is edge computing. The origins of edge computing lie in Content Delivery
Networks (CDN) that were created in the late 1990s to serve web and video content
from edge servers that were deployed close to users [15]. The modern concept of edge
computing significantly expanded on this notion and, today, it is a network infrastructure
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Figure 1.1: Information age evolution.

offering processing power and data storage to improve services in different ways, including
reduced response time and bandwidth utilization.

However, there are different opinions regarding the actual placement of edge comput-
ing resources. Researchers have proposed different solutions in this regard including base
stations, the mobile network, hotspots, and servers in the ISP infrastructure as a form
of extension of a datacenter reach [16]. From the mobile network operator’s perspec-
tive, edge computing should be integral part of the mobile network infrastructure and a
key technology towards 5G adoption. Consequently, edge servers should be deployed at
different locations, such as at the LTE base station site, at the 3G Radio Network Con-
troller (RNC) site, at a multi-Radio Access Technology (RAT) cell aggregation site, and
at the edge of the core network [17]. Alternatively, standard network routers potentially
equipped with additional computational resources can be considered as part of an edge
infrastructure and act as edge gateways [18, 19].

Research in edge computing has been driven primarily by the desire to either improve,
or replace, the cloud computing model by pushing the application logic to the network
periphery and closer to the datasource. The work presented in this thesis focuses on
the importance of the interplay between edge and cloud, with, at its core, the trade-off
between data transmission and computational latency. While the cloud has potentially
unlimited computational resources, the additional latency introduced when uploading
data from IoT and consumer devices can be especially detrimental for time-sensitive ap-
plications. Conversely, while offloading latency at the edge is negligible when compared
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to the cloud, the computational delay and cost is higher. These observations call for a
deeper understanding of the application logic semantics in order to repartition and split
a complex software workflow into smaller sections that can be allocated to different net-
work segments (e.g., edge, cloud). This has been explored both in industry and academia
especially in the context of different virtualization and service decomposition techniques
[20, 21]. Edge computing offers the possibility of leveraging the combined computational
power of a large number of small devices by creating distributed execution chains. This
is very similar to the idea of computing streams which are defined as a sequence of func-
tions/computing applied on the data along the data propagation path [22]. However,
this requires proper planning through resource management algorithms based on differ-
ent metrics such as latency, energy cost, bandwidth, and hardware/software specified
limitations to send opportunely the functions/computing [23, 24, 25, 26].

In this thesis, we aim at systematically addressing different edge computing challenges
following a bottom-up approach. At the core of the research effort, there is the quest
to find the meeting point between cloud and edge by taking the best of both worlds
in order to improve existing applications and enable new services for end-users. Future
edge computing deployments will succeed by co-existing with the traditional centralized
cloud infrastructure if supported by proper cooperation and coordination mechanisms.

1.1 Problem Statement

The quest to correctly position edge computing as an emerging technology in relation
to current trends is at the core of many research efforts in the field. Cloud computing
has been thriving both in the research and industry domain by amortizing dramatically
Capex costs in terms of infrastructure and software tools for businesses of any size.
From the research perspective, it sparked interest in many directions including routing,
resource management, virtualization, security, privacy. Currently, edge computing is
receiving progressively more attention by the research community and industry players
[27, 28, 29]. However, industry efforts are focused on using edge computing as an ex-
tension of the existing DC infrastructure and to be deployed inside ISPs networks in
order to optimize the response time of cloud services. Regardless of the growing interest
towards edge computing, it is still struggling to take off for many reasons including tech-
nical, business and deployment aspects to be overcome. Irrespective of the final decisive
factors, we can identify a number of technical challenges including service programma-
bility, service discovery, lack of standards, service orchestration, and privacy/security.
In particular, the deployment and management of an edge infrastructure is, technically,
more challenging when compared to the cloud, for the reasons described below.

� Constrained Hardware. Cloud datacenters are composed of sets of powerful
servers with plenty of storage and computational resources paired with reliable
network infrastructure. Additionally, the presence of many standards and best-
practices guiding the datacenter development process facilitated greatly their suc-
cess [30]. On the other hand, edge computing is often built upon heterogeneous,
resource-constrained devices with may have poor connectivity. This makes not
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only the deployment, but also the management of the computational resources
harder as the involved devices are more prone to failures. In order to simplify the
deployment of edge-cloud applications, it is important to efficiently partition and
make use of the available hardware and network resources.

� Scalability. Distributed systems are at the foundations of modern wide-area
services, offering different levels of abstractions to applications while hiding the
challenges of running over a distributed set of heterogeneous devices. Under the
hood, a distributed system manages multiple resources (e.g., computation, storage)
across a range of devices, to hide latency, cope with malfunctions, and achieve scal-
ability. The latter is harder to address in edge-cloud systems for multiple reasons:
data fragmentation, heterogeneity, latency-sensitive applications and so forth. For
example, data management and access is steadily growing in complexity as infor-
mation becomes scattered across the network including: across devices in a single
location (e.g., a data center), across multiple data centers, and at the points of
collection (e.g., a self-driving car or a mobile phone) [31]. Additionally, scalability
extends also to resource provisioning issues which become critical in multi-tenant
environments. This calls for solutions where applications are automatically parti-
tioned and distributed in order to maximize or improve the service quality.

� Maintenance and Management. Resource centralization in cloud computing
helps in performing routine maintenance operations. The hardware is easier to
access as it is not distributed across a wide geographical area. Edge computing is
distributed in nature which noticeably complicates maintenance operations due to
the physical distance between devices. In fact, in case of hardware faults, replace-
ment requires direct intervention in situ which is comparatively more challenging
and time-consuming than in a datacenter. Predictive maintenance, constant infras-
tructure monitoring, redundant deployment for critical units are example solutions
to mitigate the maintenance burdens [32, 33].

� Vulnerability. Every cloud architecture has different privacy and security con-
cerns. However, the cloud attack surface is smaller compared to the edge due to
its centralized nature. Edge systems face additional security risks when it comes
to data storage, authentication, and access control to mention a few. As a matter
of fact, compromised network appliances, including edge devices, continue to be
one of the most effective attack vectors for advanced threat actors. Unlike hosts
that receive significant administrative security attention and for which security
tools such as anti-malware exist, network devices are often working in the back-
ground with little oversight — until network connectivity is broken or diminished
[34]. Securing the perimeter defense of edge computing devices is a problem that,
if not addressed, can severely hinder also the datacenters these devices are con-
nected to. In fact, once an adversary compromises a set of edge devices, it can
gain full control of the network infrastructure eventually leading to traffic redi-
rection, denial-of-service, data theft, or unauthorized changes to the data. Cloud
services are as secure as the edge devices accessing them: if the latter are com-
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promised, so will be eventually the former. Therefore, there is a need to develop
security and monitoring tools which are compatible with and can be deployed on
resource-constrained devices to strengthen the security of edge networks.

� Virtualization & Application Model. Paired with the widespread adoption
of the many services offered by cloud providers, virtualization and containeriza-
tion thrive as the resource management backbone of datacenter resources. This
trend noticeably affected the development process of many applications fueling
the progressive migration from monolithic software to micro-services architectures
and service decomposition. While cloud datacenters can support any virtualiza-
tion technology and, consequently, adapt to any application needs, the same is not
necessarily true at the edge where hardware heterogeneity makes harder to find a
one-size-fits-all solution. In connection with the points mentioned above, virtual-
ization technologies play a key role in managing resource at the edge, abstracting
hardware heterogeneity, limiting attack surface and fine-tuning the software de-
ployment.

The aforementioned challenges summarize some of the roadblocks for edge computing
to emerge as a disruptive technology which have been identified also in other research
efforts [13]. We argue that edge computing will play a key role in empowering and en-
riching the services offered by the cloud by extending the reach of the latter beyond dat-
acenters. This will bring benefits for both latency-sensitive and latency-insensitive
applications by bringing compute resources closer to the data generators. Several early
results from the research community in the domains of face recognition applications
[35], wearable cognitive assistance [36], and application partitioning and offloading [25]
demonstrated the potential benefits of the edge computing paradigm.

The problem we tackle is multi-faceted as the challenges we discuss are at the inter-
section between system design, resource provisioning at scale, and application require-
ments. Furthermore, the resulting solutions need to be compatible with traditional cloud
computing technologies such that existing cloud-based applications can be ported and
integrated to edge environment with minimal overhead. Moreover, this would facilitate
knowledge transfer for developers which would be able to naturally make use of the
edge-cloud infrastructure.

1.2 Methodology

The research problems investigated in this thesis are centered on the challenges of inte-
grating edge and cloud computing and finding means to facilitate the success and accep-
tance of the former. Specifically, we aim at exploring novel virtualization techniques able
to support service decomposition and fine-grained computation offloading for resource-
constrained devices. The latter promotes offloading of small virtual instances which have
reduced footprint and execution boundaries granted by their minimalist code surface.
Resource limitations at the edge in terms of computational power and storage call for
strict resource optimization procedures especially when multiple services are competing
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Figure 1.2: Methodology outline.

for them. Additionally, we look at problem at scale of edge-cloud infrastructures in
the context of resource provisioning especially for real-time applications. In both cases,
an extensive exploration of related work is conducted in order to identify gaps in past
research to be addressed.

The twofold nature of the research conducted in this thesis required both an imple-
mentation and simulation-based approach to the problem, as shown in Figure 1.2. The
former is necessary in the process of designing and developing from the ground-up a
novel orchestration framework for unikernels. This is in line with the principles of De-
sign Science (DS) research described in [37]. Specifically, we follow the steps advocated
in the study: problem identification and motivation, objectives for a solution, design
and development, evaluation, and communication. Hence, we first conceptualized and
implemented the required software components before performing a quantitative analy-
sis necessary to evaluate the effectiveness of our approach. As we frame our research as
systems research, we consider acceptable the liberties taken in the process of structuring
our framework which might naturally diverge similar approaches in past literature. How-
ever, we compared our solution against existing tools in order to validate our research
and results. Moreover, all the software produced and used in the publications that are
part of this thesis is openly available. Hence, experiments can be reproduced by other
researchers in the spirit of supporting reproducible research in computer science [38].

For the resource provisioning research, we shifted our methodology towards a simulation-
based approach. This is common practice when testing algorithms at scale due to the
massive number of device required for running the experiments which would be infeasible
to deploy in a real-scenario. Nonetheless, the data used in the simulations were gener-
ated from experiments on physical devices using tools provided by the manufacturer or
extracted from past research measurements. As above, the simulator code and all the
data are open-source so that the results can be replicated by other researchers.
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1.3 Where Edge and Cloud Meet

Having framed the research direction and methodology in the previous sections, we
focus on three facets of our approach: orchestration platform, resource provisioning, and
domain-specific applications.

� Orchestration Platform. As mentioned before, cloud computing success was
also fueled by the widespread adoption of virtualization technologies used to en-
capsulate services and flexibly scale those as a function of the utilization demand.
Virtualization technologies are crucial for the success of edge computing as they can
help in addressing the intrinsic heterogeneity found at the edge due to the presence
of different types of hardware platforms. A virtualized platform can also facilitate
the interoperability between cloud and edge by enabling transparent migration of
applications across the infrastructure. Additionally, virtualization enables resource
provisioning, isolation and partitioning among concurrent services. The research
questions prevalent in this layer are as follows.

RQ 1. What virtualization technique is feasible to be employed to match the re-
quirements of both edge and cloud?
RQ 2. What model of computation should be adopted to support the interplay be-
tween edge and cloud in order to support different classes of applications?
RQ 3. How to support stateful services in fault-prone and resource-constrained
edge networks?

RQ1 focuses on understanding how existing and emerging virtualization technolo-
gies can be adapted or leveraged at the edge. Specifically, we focus on Lightweight
Virtualization (LV) and its trade-offs. RQ2 build on top of the previous question
and aims at formalizing a model of computation where edge and cloud collaborate
to perform tasks submitted to the compute infrastructure. Finally, RQ3 expresses
the need to empower LV to support stateful applications so that intermediate re-
sults are not lost in case of malfunction or resource starvation. Together, RQ1 to
RQ3 aim at identifying the building blocks of an edge-cloud orchestration platform
based on LV and a model to partition, distribute, and chain applications scattered
between edge and cloud.

� Resource Provisioning. In order to serve massive numbers of users and ap-
plications, proper management of hardware and software resources is necessary
both in the cloud and at the edge. Depending on requirements such as reliability,
availability, performance, and scalability of the application, users are allocated to
different servers to maximize their Quality of Experience (QoE). As resources are
centralized in the cloud, their monitoring and controlling is less challenging than
at the edge. To fully enable the interplay between edge and cloud, it is necessary
to extend resource provisioning mechanisms to take into account both datacenters
and edge devices alike. Compared to the orchestration challenges discussed above,
we here abstracted from the implementation details and take a more theoretical

7



1 Introduction

standpoint. The discussed challenges are summarized by the following research
question.

RQ 4. How to allocate resource efficiently in an edge-cloud infrastructure to im-
prove QoE for end-users?

RQ4 focuses on analyzing the characteristics of a multi-tier, edge-cloud infrastruc-
ture in order to properly allocate users to different classes of devices. In particular,
we focus on performance degradation in multi-user environments where multiple
applications compete for resources. Additionally, we look at the trade-offs of solv-
ing this problem from different perspectives.

� Domain-specific Applications. One of the major challenges towards adopting
edge computing and its integration with the cloud paradigm is finding its killer-
app. In other words, identifying the application domain(s) where edge computing
can bring definitive benefits still remains an unanswered, pivotal question for the
current research in the field. In our approach, we classify applications as latency-
and non-latency-sensitive. Under the former, we group typical IoT applications of
which some examples are sensors fusion, data aggregation, command-and-control
systems. For the latter, we looked into multimedia-based applications such as
augmented reality.

Figure 1.3 summarizes how the research questions mentioned above are covered in the
publications attached to this thesis. The goal is to have a progressive introduction of the
research presented in this thesis by moving from exploratory work in specific applications
domains towards system design/architecture challenges in order to identify the current
and future potential of edge computing.

1.4 Contributions

This thesis identifies critical integration challenges between edge and cloud computing
to create an homogeneous infrastructure abstraction in spite of the apparent duality
between the two technologies. We explore both fundamental challenges and domain-
specific problems by providing technical solutions for each one of them. The main
contributions are as follows:

� We introduce the concept of Lightweight Virtualization (LV) technologies which we
see as an enabler in the process of integrating the edge and cloud infrastructures.
Specifically, we discuss and compare the applicability of two different LV tech-
nologies as platforms for enabling scalability, security and manageability required
by emerging edge-cloud applications. Additionally, we present open problems and
highlight future directions to serve as a roadmap for both industry and academia.

� We devise an edge-cloud architecture supporting offloading of compact, single pur-
pose tasks at the edge of the network for a variety of IoT and cloud services.
The design principles behind the system we developed (FADES) are meant to
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efficiently exploit the resources of constrained edge devices through fine-grained
computation offloading. Subsequently, we expand our system with a computa-
tional model supporting the execution of distributed tasks called pipelines which
require the cooperation of multiple edge devices.

Consolidate IoT Edge Computing with Lightweight Virtualization

FADES: Fine-grained Edge Offloading with Unikernels

MirageManager: Enabling Stateful Migration for Unikernels
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Figure 1.3: List of publications grouped as fundamentals and domain-specific paired with re-
lated research questions (RQ).

� We approach the problem of service migration in an edge-cloud infrastructure
for stateful applications. This is a crucial problem in a distributed system that
wants to be fault-tolerant or provide a form of dynamic load balancing. Most
service decomposition technologies like lambda functions or containers either only
support stateless applications or offer rudimentary migration tools. Similarly, LV
technologies do not support stateful migration at all. To bridge this gap, we develop
a system developed from the ground-up to perform migration while preserving the
internal application state.

� As part of the resolution of domain-specific challenges, we look at two different
classes of applications. In the domain of non latency-critical applications, we
developed a lightweight Intrusion Detection System (IDS) for constrained devices.
For multimedia applications, we designed and implemented an cyber-physical Aug-
mented Reality (AR) application combining smart devices with holographic inter-
faces for industrial use-cases.
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� Finally, we look at task scheduling and allocation challenges which are common
in multi-tenant, distributed system like an edge-cloud infrastructure. Specifically,
we analyze how to improve the QoE of mobile latency-critical applications by
offloading computationally intensive tasks to the edge-cloud infrastructure. In
particular, we focus on high-concurrency scenarios where many users compete for
a limited set of resources offered by the infrastructure. We provide a latency-energy
efficient allocation algorithm to provision resources for tasks offloaded by mobile
devices. Additionally, we provide a fully-customizable and open-source simulator.

The research reported in this thesis encompasses the work published in eight original,
peer-reviewed articles which also include additional contributions that are not covered
in details in this thesis:

[1]: Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar, and Jörg
Ott. ”Consolidate IoT Edge Computing with Lightweight Virtualization.” IEEE Net-
work 32, no. 1, pp. 102-111. 2018.

[2]: Vittorio Cozzolino, Aaron Yi Ding, and Jörg Ott. ”FADES: Fine-grained Edge
Offloading with Unikernels.” In Proceedings of the Workshop on Hot Topics in Container
Networking and Networked Systems, pp. 36-41. 2017.

[3]: Vittorio Cozzolino, Oliver Flum, Aaron Yi Ding, and Jörg Ott. ”MirageManager:
Enabling Stateful Migration for Unikernels.” In Proceedings of the Workshop on Cloud
Continuum Services for Smart IoT Systems, pp. 13-19. 2020.

[4]: Vittorio Cozzolino, Tonetto Leonardo, Nitinder Mohan, Aaron Yi Ding, and Jörg
Ott. ”Nimbus: Towards Latency-Energy Efficient Task Offloading for AR Services”
IEEE Transactions on Cloud Computing, 2022.

[5]: Vittorio Cozzolino, Oleksii Moroz, and Aaron Yi Ding. ”The Virtual Factory:
Hologram-Enabled Control and Monitoring of Industrial IoT Devices.” In 2018 IEEE
International Conference on Artificial Intelligence and Virtual Reality (AIVR), pp. 120-
123. 2018.

[6]: Vittorio Cozzolino, Aaron Yi Ding, and Jörg Ott. ”Edge Chaining Framework
for Black Ice Road Fingerprinting.” In Proceedings of the 2nd International Workshop
on Edge Systems, Analytics and Networking, pp. 42-47. 2019.

[7]: Vittorio Cozzolino, Nikolai Schwellnus, Jörg Ott, and Aaron Yi Ding. ”UIDS:
Unikernel-based Intrusion Detection System for the Internet of Things.” In Workshop
on Decentralized IoT Systems and Security (DISS), 2020.

[8]: Vittorio Cozzolino, Aaron Yi Ding, Richard Mortier, and Jörg Ott. ”ECCO:
Edge-Cloud Chaining and Orchestration Framework for Road Context Assessment.” In
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2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Im-
plementation (IoTDI), pp. 223-230. 2020.

1.5 Thesis Structure

The thesis is organized as follows. Chapter 2 provides the necessary background knowl-
edge to the thesis. Specifically, it discusses the state of the art in both cloud and edge
infrastructure models followed by a set of scenarios where the interplay between the two
can be leveraged to improve existing services. Then, specific challenges related to the in-
tegration between cloud and edge are introduced. Chapter 3 presents the domain-specific
applications. We discuss non-latency critical scenarios dominated by IoT use-cases es-
pecially in the domain of security. Further, we look at latency-critical applications such
as AR in industry settings. Chapter 4 introduces the main contributions on which
the research presented in this thesis is based. In particular, lightweight virtualization
technologies and task allocation algorithms with a focus on their applicability to edge
computing environments. Finally, Chapter 5 concludes the thesis with a summary of
solutions and outlooks for future work.
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2 Background

This chapter provides the necessary background on edge computing by starting with a
brief introduction of standard cloud infrastructures. After introducing the main compo-
nents and design of a traditional datacenter, we describe in detail how edge computing
came to be and what are the key ideas behind it. Further, we identify a set of application
domains where edge computing can be a key-enabler technology. The chapter includes a
discussion on several edge-cloud architectures proposed in past research and the design
choices which make them suitable for specific application operation.

2.1 Cloud Computing Model

The core aspects of cloud computing have been described by the definition provided by
the National Institute of Standard and Technologies (NIST) [39]: “Cloud computing is
a model for enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort
or service provider interaction“.

Cloud computing has hugely impacted over the IT industry by providing virtually
unlimited storage [40] and processing capabilities at low-cost enabling the realization
of a new computing model where virtualized resources can be leased in an on-demand
fashion, being provided as general utilities [41]. Almost all tech giants (like Google,
Amazon, Dell, Apple, Facebook, etc.) widely adopted this paradigm in order to deliver
services over the Internet, gaining increasing technical and monetary benefits.

The cloud can be split into four layers: datacenter (hardware), infrastructure, plat-
form, and application. Datacenters (DC) are large-scale, distributed network systems
built upon on a set of interconnected servers. Managing a DC is a non-trivial task and
implies practical challenges as airflow management, facility thermal control, and power
distribution. On top of the hardware part, cloud providers classify their services based
on a layer concept. In the upper layers of this paradigm, Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) are stacked [42].
SaaS refers to the provisioning of applications running on Cloud environments. Resource
rental can be done at different granularity, e.g., per server, and following various policies
that provide different degree of freedom and responsibility. For example, PaaS refers and
targets to platform-layer resources (e.g., operating system support, software development
frameworks, etc.). IaaS refers to providing processing, storage, and network resources,
allowing the consumer to control the operating system, storage and applications.

Another classification can be applied to cloud providers as described in [43]: (i) Private
Cloud provisioned for exclusive use by a single organization, typically owned, managed,
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and operated by the organization itself; (ii) Community Cloud — provisioned for exclu-
sive use by a specific community of consumers that have shared concerns; (iii) Public
Cloud — provisioned for open use by the general public; (iv) Hybrid Cloud — com-
position of two or more distinct Cloud infrastructures (private, community, or public);
(v) Virtual Private Cloud—alternative aimed at addressing issues related to public and
private clouds, taking advantage of Virtual Private Network (VPN) technologies for al-
lowing business owners to setup required network settings (e.g. security, topology, etc.).

Regardless of the widespread adoption of cloud technologies, several technical and
business-related issues are still unsolved. Specific issues have been identified for each
service model, which are mainly related to security (e.g., data security and integrity, net-
work security), privacy (e.g., data confidentiality), and service-level agreements, which
could scare away part of potential users [44].

2.2 Edge Computing Model

While cloud computing has been dominating the Internet services delivery model since
a few decades, the forces driving centralization are not the only ones at work. New
services and applications for mobile computing and the IoT are pushing towards compute
resource dispersion. This trend is motivated by multiple reasons including: (i) reduction
of network latency for delay-sensitive application services (e.g., AR, VR, video analytics),
(ii) data aggregation and sensor fusion required by the proliferation of IoT and smart
devices in order to reduce uplink bandwidth utilization and optimize response time in
critical situations, and (iii) better customization through context-awareness of location-
dependent services. Edge computing is a paradigm in which substantial computing and
storage resources are placed at the edge of the network, in close proximity to mobile
devices or smart sensors.

The roots of edge computing reach back to the late 1990s, when Akamai introduced
CDNs to accelerate web performance [45]. With time, CDNs expanded to deliver mul-
timedia content, because the bandwidth savings from caching videos at the edge can be
substantial. As edge computing gained more traction, the concept of CDN evolved again:
instead of being limited to caching web content an delivering multimedia streams, it can
also run arbitrary code just as in cloud computing. This code is typically encapsulated
in a virtual machine (VM) or a lighter-weight container for isolation, safety, resource
management, and metering [45]. Additional details regarding different virtualization
technologies will be presented in Chapter 4.

2.2.1 What and Where is the Edge?

In past research, multiple solutions have been proposed to describe what is and edge net-
work and where is physically located. We hereby discuss five main approaches: cloudlets,
ad-hoc cloud, fog computing, MCC and MEC.

� Cloudlet. The work from Satyanarayanan et al. [46], proposed in 2009, pioneered
the concept of bringing the computation/storage closer to the end-users through
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cloudlets. The idea behind cloudlets is to place devices with high computation
power at strategic locations in order to provide both computational resources and
storage for the end-users in vicinity. Additionally, they are designed with the
intention to support cloud virtualization technologies/protocols and deployable
directly by a cloud provider. One of the main advantages of a cloudlet lies in its
limited deployment footprint, allowing it to considerably reduce the user access
latency compared to a remotely deployed cloud service.

� Ad-hoc Cloud. Another option to enable edge-cloud computing is to exploit the
computational resources of the end-user devices through the so called ad-hoc cloud.
The main idea is to combine the computational power of multiple end-user devices
in proximity to process high demanding applications locally [47, 48, 49, 50, 51].
The key advantage of this approach lies in its proximity to users and sensors
supporting the low-latency requirements of specific applications such as live video
streaming, unmanned drone control. However, as most ad-hoc-based solutions,
there are multiple challenges to be addressed: (i) discovery of nearby devices and
network formation [52, 53], (ii) coordination between devices for task allocation
[54], (iii) energy impact on each device [55, 56], and (iv) security/privacy issues
[57, 58, 59].

� Fog Computing. A more general concept when discussing the edge computing
model is known as fog computing paradigm (commonly called Fog). It was intro-
duced in 2012 by Cisco to enable the processing of data generated by applications
on billions of connected devices at the edge of network. Fog is a virtualized platform
for managed compute resources that are colocated with devices deployed within
the access network, e.g. routers, switches, access points etc. [60]. Fog computing
can be seen as one key enabler of the IoT and big data applications [61, 62]. In
fact, it offers: (i) low latency and location awareness, (ii) widespread geographical
distribution compared to the cloud, (iii) large network of nodes, and (iv) sup-
port for real-time multimedia applications. Additionally, the characteristics of fog
computing can be exploited also in other application domains such as healthcare,
smart vehicles, and blockchain based communication protocols [63, 64, 65, 66].

� Mobile Cloud Computing (MCC). Known also as Cloud Radio Access Net-
work (C-RAN), it is another alternative where cloud capabilities are embedded
directly into the mobile network [67, 42]. The C-RAN leverages the idea of a
distributed protocol stack, where some layers of the protocol are moved from dis-
tributed Radio Remote Heads (RRHs) to centralized baseband units (BBUs). The
BBU’s computation power is, then, pooled together into virtualized resources which
are generally used for baseband processing but may also be used for the computa-
tion offloading to the edge of the network [68]. Similarly, MCC’s primary objective
is to provide a one-hop computation offloading facility for mobile subscribers, di-
rectly at the cell tower. MCC supports cloud virtualization technologies enabling
a smooth integration with centralized solutions.
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� Mobile1 Edge Computing (MEC). The integration of edge computing into
the mobile network architecture has been explored also by the Industry Speci-
fication Group (ISG) within European Telecommunications Standards Institute
(ETSI)[17]. The solution described by ETSI is known as MEC and it is driven
by a strong standardization efforts by prominent mobile operators (e.g., Vodafone,
TELECOM Italia) and manufactures (e.g., Nokia, Ericsson, Huawei, Intel). The
main goal of the ISG ETSI is to integrate cloud computing resources seamlessly
into the mobile network by facilitating the operations of the different involved par-
ties (mobile operators, service providers, vendors, and users). However, MEC also
extends to non-mobile resources. In fact, it incorporates a wide, non-homogeneous
variety of compute devices including desktop PCs, tablets and micro-datacenters.

The concept of MEC is often the model considered to be representative of a stan-
dard edge computing architecture and it is the one we follow in the research pre-
sented in this thesis. In particular, we focus on the non-mobile part of the edge
which is composed of resource-constrained devices equipped with different sensors.
We extensively explore this part of the edge ecosystem as a place where to pre-
process raw sensor data and deploy computation in the form of small, virtualized
applications. More details about our contributions will be provided Chapter 4 and
3.

The majority of the edge computing architectures explored in research is based on
a three-tiered infrastructure, as shown in Figure 2.1. As expected, the edge layer is
closer to the end-devices compared to the cloud. Thus, even though the former has less
computational power than the latter, it can deliver a better Quality of Service (QoS)
by offering lower latency due to the physical proximity to the compute nodes [69]. In
fact, the edge computing paradigm embeds compute nodes into the network, differently
from the cloud perspective where they are concentrated in DCs. Cloud servers are
deployed farther away from the end-users leading to significant increase in the network
communication delay. On the other hand, cloud servers have potentially more computing
power and data storage at their disposal which can be used to provide massive parallel
data processing. Examples of applications that can benefit from it are big data mining,
big data management, and machine learning [70, 71].

The edge layer encompasses heterogeneous devices offering different resources such
as real-time data processing and data caching. They are deployed in proximity of the
end-devices and handle most of the traffic flowing at the edge of the network. By
leveraging this intermediate layer, end-users can benefit of much better performance on
data computing and storage by paying a discounted price in terms of latency compared
to accessing cloud DCs.

The end devices can be categorized in fixed and mobile. The former include smart
sensors and actuators which are, for example, part of the smart infrastructure; the latter
are handheld devices or mixed reality headsets. Although these devices are getting
increasingly more powerful in terms of hardware capabilities, new mobile applications

1The adjective mobile is often replaced with other terms in related literature.
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Figure 2.1: Edge-cloud layers structure.

are getting progressively more sophisticated requiring complex processing, in a short time
window, and for a prolonged amount of time. Consequently, this is also a problem when
considering the energy requirements of interactive multimedia applications such as AR.
In fact, these are power-hungry and can quickly drain the phone’s battery [72]. Fixed
devices in the class of sensors or small embedded boards that are part of the smart
infrastructure are often resource-constrained and require support from more powerful
machines to perform their computation. For example, feedback control systems [73] are
widely used for automatic control [74] loops of many electromechanical systems found,
for instance, in industrial processes. They are based on the principle of measuring
quantities through sensors which lead to changes to the system by means of actuators.
Depending on the complexity of system, additional processing power might be required
to perform advanced sensor fusion or data aggregation/manipulation steps. Therefore,
for both these categories, computation offloading at the edge or in the cloud, depending
on the task complexity and requirements, is needed to support a variety of applications.

In the next Section, we will discuss application domains where and cloud and edge
computing can be used in tandem to enhance current services and potentially enable
new ones.

2.3 Edge-Cloud Applications

Over the past few years, several parts of the computer science research community have
started to explore effective ways to analyze data spread over multiple locations. In some
cases, datasets are collected from multiple locations, such as sensors (e.g., mobile phones
and street cameras) spread throughout a geographic region. Then, these data need to
be processed close to where it is produced in order to meet different application de-
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mands such as: high reliability for critical infrastructure control and self-driving cars,
low latency in real-time multimedia applications (e.g., AR, video analytics), low cost
for sensors data fusion, and data privacy in crowd computing and Multiparty Compu-
tation (MPC) [75]. Additionally, some distributed applications that do have specific
characteristics, such as having distributed, non-overlapping, large datasets spread across
multiple nodes in the network, can naturally benefit from the edge-cloud paradigm by
distributing and spreading the compute load similarly to other approaches used in large
clusters (e.g., map-reduce [76]). Often, some portion of the analysis may take place on
the end-host or edge-cloud (to respect user privacy and reduce the volume of data) while
relying on remote clouds to complete the analysis (to leverage greater computation and
storage resources) [77].

Although cloud computing powers the majority of today’s services, the aforementioned
applications would benefit by shifting from the traditional cloud model to an hybrid edge-
cloud one. We select a subset of scenarios that can benefit from the edge computing
model.

� Deep Learning Applications. The increased processing power afforded by
graphical processing units (GPUs), the enormous amount of available data, and
the development of more advanced algorithms has led to the rise of deep learn-
ing. Much of this growth is being driven by tech giants, such as Facebook, Apple,
Netflix, Microsoft, Google, and Baidu [78]. Deep learning currently fuels manifold
applications including computer vision [79, 80, 81], natural language processing
[82, 83, 84], pharmaceutical research [85] and big data analytics [86, 87] among
many others. Deep learning is based on computationally intensive processes re-
quired to train a model and then use it to perform inference. The latter requires
considerable amount of compute power due to the potentially high dimensionality
of the input data which exacerbates the problem of meeting the stringent real-time
requirements required of modern multimedia applications. Training a deep learn-
ing model is also a computationally expensive task due to millions of parameters
that need to be refined over multiple training steps.

In order to meet the computational requirements of deep learning applications, a
typical approach is to leverage cloud computing. However, there are multiple issues
such as response time (especially for real-time applications), privacy, and scalabil-
ity [88]. While the training time of neural networks remains an operation that does
not affect the end-user experience, inference time strongly influences the respon-
siveness and smoothness of the application. Edge computing is a possible solution
to address the aforementioned challenges. For example, the inherent proximity
of edge computing’s resources to data sources on the end devices amortizes end-
to-end latency, enabling real-time services. Scalability challenges are addressed
by the natively distributed and hierarchical structure of edge computing where
end devices applications can be allocated to different nodes in the networks based
on their requirements. This avoids transferring large amounts of data to remote
DCs and, instead, leverages computational resources in proximity. Additionally,
by pairing edge nodes with cloud DCs, compute resources can scale smoothly with
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the number of clients, avoiding network bottlenecks at a central location. This
is especially beneficial for deep reinforcement learning [89] and federated learning
[90] that leverage the collaboration among edge nodes to exchange the learning
parameters for a better training and inference of the models, and thus enabling
dynamic system-level optimization and application-level enhancement [91]. From
a privacy perspective, edge computing can help by supporting local data process-
ing at trusted edge servers or devices avoiding transfer of potentially sensitive
information across the public Internet [92, 93].

� Smart Infrastructure and Automated Vehicles. The combination of smart
infrastructure and automated vehicles will change our commute and driving expe-
rience. The former provides a physical backbone combined with an information
and communication technology (ICT) and compute network to collect raw data
from the road and enhance existing services and systems such as: rapid transit,
waste management, road and railway networks, traffic lights and so on [94]. The
latter is steadily gaining more traction from both academia and industry with the
promise of offering a safer, more convenient, and more efficient transportation sys-
tem. Apart from onboard sensing, automated vehicles access many cloud services
(e.g., high definition maps, dynamic path planning) through a mobile connection
to precisely understand the real-time driving environments.

However, these automated driving services, which have large content volume, are
time-varying, location-dependent, and delay-constrained [95]. As safety is one of
the primary concerns for automated vehicles, the ultimate challenge is to design
an edge computing infrastructure to deliver enough computing power, redundancy,
and security to guarantee it [96]. As an example, reducing the overall network
latency to distribute critical information about the road conditions or hazards to
vehicles could, in same cases, save lives or reduce damage to property. This can be
achieved by empowering the smart infrastructure in a way that it can autonomously
process raw data from road sensors and distribute information to vehicles.

� Real-time Multimedia Applications. Since the appearance of consumer mo-
bile devices equipped with many sensors and powerful chipsets, multimedia appli-
cations have received increasing interest among smartphone users. Recent studies
report that the mobile AR (MAR) [97, 98, 99] adoption currently stands at 32%,
where 54% of the respondents use mobile AR at least once per week and 36%
percent several times per week [100]. However, MAR applications often rely on
computationally intensive computer vision algorithms with extreme latency re-
quirements. In fact, real-time applications require a Round Trip Time (RTT)
ranging from 150ms to 500ms for online gaming and telemetry, respectively. In
practice, a smooth AR experience requires a much lower latency in the range of
20ms to avoid phenomena such as motion sickness [101]. To compensate for the in-
sufficient mobile computing power or to save on battery utilization, offloading to a
remote device is often desired [102, 103]. Several research approaches focused on of-
floading intensive computer vision operations to cloud datacenters [104, 105, 106].
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However, this introduces additional network delays which makes challenging to
meet the low latency requirements of real-time multimedia applications. Edge
computing can be a valid alternative to support AR applications because, on the
one hand, RTT latency is lower compared to accessing cloud datacenters, on the
other, edge servers can be equipped with powerful GPUs able to quickly perform
complex computer vision tasks.

� Industrial Automation. Research advances in the past years allowed the in-
troduction of Internet of Things (IoT) concepts in many industrial application
scenarios, fueling the advent of the so-called Industry 4.0 or Industrial Internet
of Things (IIoT) [107]. Industrial applications in the IoT domain require loca-
tion awareness and low latency [108]. Due to limitations of the cloud platforms,
different approaches considered the edge computing model as a valid alternative
[13, 109, 110, 111] due to its intrinsic properties of locality and closeness to the
datasource which helps in mitigating latency issues. Additionally, edge computing
helps in the process of re-configuring smart factories, one of the needs of digital
manufacturing enterprises, which must offer highly customizable products based on
the customers requirements or adapt quickly to changes in the production process.

2.4 Challenges

The application scenarios mentioned above highlight how edge computing can play a
crucial role in addressing some of the cloud limitations. However, the integration of
two technologies presents multiple challenges including security, resource management,
workload orchestration, deployment, and maintenance, to mention a few. Due to the
new and dynamic nature of the researched topic, the proposed solutions for such prob-
lems might differ greatly from each other. This adds yet another facet to the problem:
lack of clear standards to guide the development of a framework that addresses all the
aforementioned problems. In this section, we focus on two interconnected aspects: or-
chestration and resource provisioning for which we introduce multiple state-of-the-art
edge computing solutions with their limitations. The discussed solutions lie in the scope
of the contributions presented later in Chapter 3 and 4.

2.4.1 Orchestration Platform

Orchestration is the automated configuration, management, and coordination of com-
puter systems, applications, and services [112, 113]. Often, it is discussed in the context
of virtualization and service provisioning for cloud DCs where it assumes the connotation
of a workflow defining precise action towards larger goals and objectives. In the process
of integrating edge and cloud, the concept of orchestration has to be revisited in order
to support the heterogeneity of the infrastructure and make the best out of the available
hardware resources. In this context, virtualization assumes a fundamental role as it ab-
stracts the available physical resources and presents an abstract computing framework on
which tasks can be easily shifted across the infrastructure. In fact, several researchers
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assume that edge resources are virtualized and support different virtualization tech-
niques ranging from traditional virtual machines (VM) [46], to containers [114, 115],
to lambda-based serverless architectures [116, 117, 118]. Recently, a novel, lightweight,
virtualization technique called unikernels has received increasing attention from the re-
search community. Inspired by past works on library OSes [119, 120, 121], unikernels
are single-purpose appliances that are compile-time specialised into standalone kernels.
They were designed as a new approach to deploying cloud services via applications writ-
ten in high-level source code [122]. We are unaware of any existing work exploring the
applicability, trade-off, and orchestration challenges of unikernels in an edge-cloud in-
frastructure. Differently from traditional VMs orchestration which has been available
and improved over many decades, with unikernels we are just at the beginning. Basic
functionalities to manage, monitor and interact with unikernels are lackluster. Addition-
ally, scaling assumes a different meaning with unikernels due to their impossibility to
scale vertically (e.g., allocate more CPU cores) but only horizontally (e.g., more workers
in parallel). More details will be provided in Chapter 4.

2.4.2 Resource Provisioning

Resource management is a crucial and necessary technique adopted in any system with
limited available resources. Cloud DCs are often assumed to have unlimited resources
but, in reality, this is the result of optimal and precise management of the available
hardware and software resources. This is primarily achieved through tools based on
predictive models or algorithms to profile running applications resource usage. Profiling
is performed by analyzing a set of characteristics such as background workload, historic
data, overhead etc. as a function of the specific profiling goal (cost, application or resource
management) [123]. Additionally, these solutions must be able to scale with the massive
amount of users accessing the DC and using potentially hundreds of thousands of VMs
or similar virtualization technologies [124]. In this context, task assignment as a function
of the resources in the cloud is a difficult problem to be solved, which requires efficient
task scheduling algorithms [125]. In the process of integrating edge and cloud, necessary
steps must be undertaken to incorporate edge devices into previously explored resource
provisioning problems.

2.5 Summary

In this chapter, we described both the cloud and edge computing models highlighting core
characteristics, shortcomings and differences between the two. Especially, we discussed
the different flavors of edge networks proposed in past work while clarifying which one
we embrace and adopt in our research. Then, we focused on application scenarios that
could benefit from the interplay between edge and cloud as we see clear potential in an
hybrid infrastructure. Finally, we described a set of challenges in the path of integrating
this two technologies. In particular, we emphasized platform orchestration and resource
provisioning that are the two research domains into which this thesis falls. For the
former, we will focus on virtualization technologies which cover a crucial role in the
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creation of an homogeneous edge-cloud infrastructure. For the latter, we will look into
provisioning algorithms which, as already mentioned in this chapter, are integral part
of cloud DC management operations and requires additional investigation to be ported
to the edge. Both these core topics will be discussed later in Chapter 4. In fact, in the
following chapter we will make a short digression by looking at scenarios where and how
the edge computing model can help improving existing application.
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Chapter 2 introduced the multitude of edge computing models which were proposed
in past research to address specific challenges and requirements. Such models support
multiple use-cases of which some were already mentioned in Chapter 1. Here, we present
two use-cases demonstrating the applicability of different technologies in combination
with the edge computing model to improve or support existing services. Figure 3.1
summarizes the thesis structure and in this chapter we will focus on contributions in the
Applications domain. Specifically, UIDS and the Virtual Factory which are exploratory
works aimed at bringing to light the potential of edge computing in two different domains:
network security and multimedia applications.

3.1 UIDS: Unikernel-based Intrusion Detection System for the
Internet of Things

As mentioned in Chapter 1, one important aspect to take into account in the edge
computing and IoT domains is security, which is the greatest risks of the uncontrolled
proliferation of resource-constrained devices. Most manufacturers’ top priority appears
to be getting their product into the market quickly, rather than taking the necessary
steps to build security from the start, due to high competitiveness of the field [126].
Additionally, IoT devices are often not powerful enough to run traditional security tools,
which renders edge computing networks more exposed to attacks.

What is required are security tools that are lightweight, modular, and easily deploy-
able. Hence, we bring forward the concept of composable security through LV, with
the latter embedding self-contained security functionality that can be quickly deployed
on-demand. In this section, we present UIDS: a signature-based intrusion detection sys-
tem for IoT. Our prototype is based on the IncludeOS unikernel, ensuring low resource
utilization, high modularity, and a minimalist code surface.

3.1.1 System Design and Implementation

An IDS is a system that monitors network traffic for suspicious activity and alerts
when such activity is discovered. IDSes are classified primarily into signature-based
and anomaly-based. The former uses knowledge of previous attacks to detect them.
Hence, one downside is that new attacks cannot be detected as long as their signatures
is not known in advance. As a result, frequent updates of the signatures database are
required to keep the IDS effective. Anomaly-based IDSes require learning phase during
which a normal operation model is constructed based on regular network traffic traces.
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Figure 3.1: Domain-specific contributions.

The actual network traffic characteristics are then compared to this baseline, and if an
anomaly is found, the IDS will generate an alert. Machine learning is often used to
build models trained on non-malicious traffic. Incoming packets not fitting the model
are classified as abnormal and an alert is generated. A downside of this approach is
that no malicious traffic must be present during the model learning phase, otherwise the
baseline would be compromised.

UIDS was designed as a signature-based IDS capable of detecting common DoS at-
tacks, such as TCP SYN flood, TCP ACK flood, and UDP flood. Additionally, it can
detect the most common port scans in three different variations: one-to-one, distributed
and decoy scans. We implemented our prototype on top of the IncludeOS [127] unikernel
which follows the zero-overhead principle and is written in C++.

UIDS builds on top of and expands the rudimentary connection tracking capabilities of
IncludeOS in order to classify traffic as suspicious or benign. Additionally, it keeps state
information regarding possible malicious packets. We take advantage of many useful
features offered by the state-keeping functionality of IncludeOS for network connections,
UDP and ICMP, and a more sophisticated one for TCP. In addition, its modular network
stack allows us to easily capture packets on the wire and redirect them to custom modules
for additional processing. Figure 3.2 shows the modifications made to capture packets
and detect attacks.
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Figure 3.2: UIDS structure and packet reception path.

In order to detect malicious traffic, UIDS performs the following steps. First, packets
received by the virtio device are passed up in the network stack hierarchy of IncludeOS.
After the Ethernet layer, we redirect packets to a custom capture module bypassing the
standard one as marked in Figure 3.2 with a red cross. Subsequently, we forward them to
the core of our system: the UIDSConnTrack module which contains the complete logic
to track suspicious packets. As this is a signature-based IDS, we use a set of rules to
identify potentially malicious packets. The UIDSConnTrack module stores information
about malicious packets on a per-host, per-port basis using trackers. The latter are
implemented as unordered maps, saving the address of the sending host, in addition to
the scan type and time. DoS detection is implemented similarly to port scan but with a
different ruleset. In this case, trackers are simple packet counters, as common practice
for such attacks, and store less information about the sender to save on resources. More
details about the detection of malicious packets and data structures used in our system
can be found in the research article attached to this thesis (Publication VII).
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Figure 3.3: Setup for traffic replay.

3.1.2 Evaluation Setup

UIDS was benchmarked against different datasets normally used to evaluate the effective-
ness of an IDS capabilities. These are often developed to train and test anomaly-based
IDSs using machine-learning but can also be used to evaluate signature-based IDS. In
our evaluation, we use two publicly available datasets containing DoS attacks and port
scans in a packet-based format: TRAbID [128] and CICIDS 2017 [129]. In addition to
existing datasets, we use a small-scale testbed of our design to stress-test UIDS. Both
port scans and DoS flooding attacks are used to stress-test our implementation and eval-
uate the accuracy of alerts raised by UIDS and Snort [130]. Snort is also a lightweight
intrusion detection system developed for small, lightly utilized networks. We compared
our system against it because it is one of the most widely known network IDSes and has
been used as reference benchmark in past literature [131, 132, 133].

Traffic replay. For this experiment, we run both UIDS and Snort on top of Kernel-
based Virtual Machine (KVM) with Quick EMUlator (QEMU) using bridge networking
to expose an interface to replay traffic to. We replay the dataset network traffic on
the traffic-generator node and send it to the device hosting the IDSs via the incoming
network interface, as shown in Figure 3.3. On the receiving host, traffic is forwarded to
the bridge interface using the tool tcpbridge included in the tcpreplay tool suit. Finally,
the bridge interface (bridge43 ) is connected each Virtual Machine (VM). Figure 3.3
shows the complete network architecture.

The CICIDS2017 traffic is split into port scan and DoS to reduce the evaluation period.
However, such a procedure can introduce false-positives in the first parts of the network
traffic since some connections might have been established right before the split. These
false-positives were filtered out from the analysis. The TRAbID dataset provides two
traffic captures for port scan and DoS. We use the probe known attacks capture for the
evaluation of the port scan detection accuracy.

Live traffic. Besides testing UIDS against existing datasets, we also generated our
own network traffic traces. To do so, we connect two hosts to a switch supporting port-
mirroring. An additional host running UIDS and/or Snort is connected to the mirrored
port, to intercepts all traffic generated between the hosts. Figure 3.4 illustrates the
described setup. To generate the traces, we uses the tool sourcesonoff 1, which outputs
realistic Internet-like traffic using statistical models, detailed in [134].

1http://www.recherche.enac.fr/~avaret/sourcesonoff
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Figure 3.4: Setup for live traffic.

3.1.3 Results

We now present some of the results obtained by testing UIDS with the datasets described
above and using Snort as baseline. In particular, we report here only the results with
the CICIDS2017 dataset while the ones for TRAbID and with the custom testbed can
be found in the respective research article [7]. We focus primarily on CPU and RAM
utilization to evaluate the compatibility of UIDS with resource-constrained devices.

The memory footprint of UIDS is only ≈2.3MB and it boots in some 200 ms on a
non-optimized version of KVM (we did not use Solo52). We use two hardware platforms
in our tests: a laptop equipped with an Intel i7-4710@2.5GHz (LAP) and a Raspberry
Pi 3B+ with an A53 ARMv8@1.4GHz (RPI). On the former, both IDSes run virtualized
on top of KVM. On the latter, due to the lack of support for ARM, IncludeOS can
not be directly virtualized using KVM. Instead, we emulate the x86 architecture on
top of ARM using QEMU. As a result, UIDS suffers a performance penalty due to the
additional emulation overhead which shows in the results as well. Conversely, Snort runs
baremetal, which gave it a considerable advantage in terms of performance.

The CICIDS2017 results are divided into port scan and DoS attacks, and are described
as follows.

Port scan. Both UIDS and Snort are able to detect most TCP/UDP-based scans con-
tained in the dataset. They are executed at specific time windows for which additional
details can be found in the respective research article [7]. The CICIDS dataset suppos-
edly contained FIN-, NULL-, and XMAS-scans, but we could not find any evidence of
such scans in the downloaded dataset. The only difference in port scan detection between
Snort and UIDS is the ICMP ping scan, which is not implemented, and therefore, not
detected by UIDS. The TCP version and window scans have similar characteristics as

2https://github.com/Solo5/solo5
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Figure 3.5: UIDS vs. Snort (CICIDS2017, LAP) — Port scans (a) and DoS (b).
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Figure 3.6: UIDS vs. Snort (CICIDS2017, RPI) — Port scans (a) and DoS (b).

TCP SYN or connect scans, and are detected by both IDSs but classified as TCP SYN
scans. Snort and UIDS generate false positive alerts for FIN scans in the first 120 sec-
onds of the dataset. As mentioned previously, this is due to splitting the dataset which
led both systems to see finalization packets that belonged to connections lost during the
splitting.

Figure 3.5a shows the resource utilization of both systems. Overall, the CPU usage is
low for both IDSs because the packet rates in the CICIDS dataset average around ≈330
pps and approximately 1 Mbps. Memory consumption is definitely higher for Snort,
with 400-600MB, against UIDS, with less than 100MB (4-6x lower). A spike in memory
usage can be seen after the first port scan is executed. This spike is modest for UIDS
with a variation of ≤10MB but substantial for Snort with ≥130MB.

Flood-based DoS. The DoS attack contained in the CICIDS2017 datasets was gen-
erated with the open-source tool Low Orbit Ion Cannon (LOIT)3. Both Snort and UIDS
emit alerts correctly during the active phase of the attack. Figure 3.5b clearly shows the
beginning and end of the DoS attack in relation to the CPU utilization. As foreseen,
memory consumption remain stable and marginal during the attack since the very little
state information needed storing to detect flood-based DoS attacks. UIDS proves to be
extremely lightweight compared to Snort in this benchmark. In fact, it allocates ≈4x
less memory than Snort during the attack peak and on average 3x less CPU.

3https://sourceforge.net/projects/loic/
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Figures 3.6a and 3.6b show CPU and RAM usage for the Raspberry Pi for CICIDS2017
port scan and DoS traffic, respectively. While UIDS CPU usage is 5-6x higher compared
with Snort, memory allocation is reduced as we take advantage of the lightweight nature
of unikernels. Hence, considering that we are running in an emulated x86 environment,
UIDS can handle moderately fast traffic (up to ≈34Mbps) and reliably detect the same
attacks also when running on an embedded board.

3.1.4 Discussion

UIDS is the first prototype of signature-based unikernel. In connection to what already
discussed in previous chapters, our work shows the applicability of LV in the edge com-
puting domain. UIDS showed great potential by delivering better resource efficiency,
isolation, and a small memory footprint without sacrificing on the security aspects. In
fact, it required 2-3x less CPU and up to 8x times less memory than Snort without
influencing the detection capabilities.

The work presented in this section shows the potential of LV and suggests possible
application domains where edge computing can be helpful. Instead of running complex,
monolithic software stacks, with our approach we point in the direction composable
security. Specifically, the use of unikernels allows to activate on-demand different security
features on edge devices which can be stacked or composed as needed. Additionally, when
combined with our unikernels framework (ECCO), the security functionalities deployed
on different edge node can communicate and cooperate creating a distributed security
tools network.

3.2 The Virtual Factory: Hologram-Enabled Control and
Monitoring of Industrial IoT Devices

The foreseen massive diffusion of smart devices offers opportunities to build immer-
sive human-computer interfaces where physical and virtual world blend. In domestic,
industrial, and commercial settings, IoT offers innovative ways to interact with our sur-
roundings. For example, at the core of Industry 4.0, there is the increasing digitalization
of all manufacturing and manufacturing-supporting tools. This leads to an increasing
amount of actor- and sensor-data supporting functions of control and analysis [135].

As machines and industrial physical processes change, the interfaces to interact with
them should evolve and adapt. Today, most information about the state of physical pro-
cesses is collected using Supervisory control and data acquisition (SCADA) systems and
monitored by human operators. However, in the near future this might change dramat-
ically due to the proliferation of VR/AR which can support human workers in a rapidly
changing production environment. In fact, factory workers will be faced with a large
variety of jobs ranging from specification and monitoring to verification of production
strategies [136]. AR can help, for example, by providing a virtual walk-through to guide
an inexperienced worker through unfamiliar tasks (e.g. assembly of new products) by
visualizing information directly in the relevant spatial context [137].
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Figure 3.7: System overview.

AR headsets usually receive data wirelessly and in real-time or quasi-real time in order
to provide an attractive user experience and avoid unpleasant symptoms such as motion
sickness. In this scenario, edge computing can support in-situ operations by providing
local computing power and low latency communication to observe the AR application
QoS requirements.

In this section, we present our work on building a system and evaluate the extent
to which AR can help to interact with complex machines through direct, visual, three
dimensional (3D) feedback. Figure 3.7 shows that, with AR, the physical model of a
machine is represented by inputs, outputs, and readings from sensors. The physical
model becomes a virtual, dynamic model based on these parameters. Hence, a poten-
tial worker can actually see the way a machine works, given the availability of a 1:1
holographic model matching it.

3.2.1 System Design

Figure 3.8 and 3.9 show the three-layer architecture of the system and its workflow,
respectively. The IoT layer is a network of IoT devices, such as smart sensors and
actuators, which allow the user to interact with our system. The available physical
devices have to register with our system and share their capabilities via a REST protocol.
Hence, a bootstrapping phase is required to detect the available sensors and actuators
in the network and associate them with a physical machine. To do so, a semantic
representation of the device functionality is exchanged with the end-user layer and used
for automated building of a holographic interface.

The end-user layer is the core of our system and provides the holographic abstraction
of the physical world. The edge layer is primarily responsible for storage, administration,
and organization of the network of sensors. It is built as an event-driven application and
it is composed of four main modules. The UI Manager is responsible for automated
generation of holographic interfaces based their semantic representation. The Event
Manager stores the information about IoT devices and processes device detection and
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interaction events to update the UI Manager. The Server Manager is responsible for all
data exchanges between the devices in the system. The Semantic Module is the data
layer of the application and stores information about the IoT devices and their virtual
twin plus the exposed functionalities.

3.2.2 Evaluation

We conduct two types of evaluations: a user study and application benchmarking. We
prepare a room with multiple embedded boards equipped with sensors and actuators.
Each actuator or sensor controls a specific component of the machine (e.g., a spinning
gear). Physical manipulation of these devices changes the state of the associated com-
ponent in the holographic twin of the machine in real-time. For the user-study, we have
the system starting in an unstable state, which means that one or more parameters are
not set properly and need to be adjusted. Hence, the goal for the user is to bring the
machine to a stable state by interacting with different components (e.g. align spinning
gears, control their speed, avoid overheating). Users are then notified about the task
completion through the interface they were using: an Head-Mounted Display (HMD)
with holograms or a SCADA-like web-interface on a tablet. When using the HMD,
the hologram changes in real-time accordingly to the user inputs. In contrast, the web
interface only provides textual feedback. In the following, we report only the applica-
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tion benchmarking results while the ones for the user-study can be found in the relative
research paper attached to the thesis (Publication V).

For our experiments, we used the Microsoft Hololens (version one)[138]. Figure 3.10
shows the performance results of our application collected with the Windows Perfor-
mance Recorder4 and subsequently analysed with the Windows Performance Analyzer5.

The CPU utilization shows peaks caused by the image recognition library, which
includes the loading of recognition data paired with the IoT components discovery.
Thus, based on the overall CPU load during the application usage, we conclude that
the HoloLens has sufficient CPU power to perform image recognition tasks without neg-
atively impacting the user experience. The Graphic Processing Unit (GPU) usage is
heavily affected by the User Interface (UI) panel rendering, which also influences place-
ment of and interaction with holograms. Frames per Second (FPS) were definitely suffi-
cient to avoid motion sickness with an average of 48 and the usability testing showed that
even with just 20 FPS (during complex holographic visualizations) the user experience
was not compromised.

System power consumption represents the amount of power complexly used by the
Hololens while SoC power consumption amounts only for CPU, GPU and memory. All
values (except FPS) are represented as percentage. Power consumption was substantial
during all our experiments as the application stressed particularly the embedded GPU,

4https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-recorder
5https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-analyzer
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Figure 3.10: Application benchmark.

leading to a high System-on-a-Chip (SoC) power consumption value. Considering the
device’s autonomy of 113 minutes and its charging time of 1 hour, we conclude that
battery life can be a serious problem in situations where prolonged utilization of the HMD
is required. Hence, developers should pay great attention in designing their applications
to avoid excessive power drain.

In our experiments, it emerged that the Hololens can overheat leading to unexpected
shutdowns and discomfort for the user. We used a SeekThermal CompactXR6 infrared
camera to monitor the device temperature over time. After an average of 30 minutes,
it reached a peak of 43.3◦ Celsius (our lab temperature was 29◦ Celsius) before shutting
down effectively preventing any kind of interaction.

Edge computing can help address some of the problems emerged in our study. For
example, overheating could be mitigated by offloading some parts of the computation
such as rendering step in order to reduce the strain on the embedded GPU. The same
holds for deep learning models required to recognize the machine to interact with its
components. In this case, battery consumption could be potentially reduced — a topic
that will be explored in more details later in Section 4.8.1.

3.2.3 Discussion

In this section, we presented a hologram-based framework for the manipulation and con-
trol of IoT devices in industrial settings. We built a prototype where a network of IoT
devices connected to an edge gateway allows to manipulate the state of a virtual machine
presented as an hologram to the end-user. From our evaluation it emerged that this AR
applications are still in their infancy. In fact, our system benchmarks revealed the limita-
tions of existing HMDs that can, however, be mitigated by leveraging the functionalities
offered by edge computing. The presence of nearby devices offering extra computational
power has multiple benefits. For example, it is possible to offload complex computational
steps dramatically increasing multimedia applications performance in terms of latency.

6https://www.thermal.com/
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Other benefits are extended battery life for the mobile device or support for old devices
that would not be able to run such multimedia applications at all. We will come back
on this topic at the end of Chapter 4, where edge-cloud resource provisioning challenges
are discussed especially in the context of mobile AR applications.

3.3 Summary

In this chapter, we presented two domain-specific contributions leveraging the advantages
provided by edge computing in different fields. UIDS can be seen as non-latency critical
applications as its main selling point is its lightweightness and efficiency in running on
constrained devices while not compromising on any security features. On the other hand,
the virtual factory looks at the role of latency in the QoE of AR industrial applications
while highlighting the advantage of using the support of an edge node in proximity. In
this chapter, we looked at domain-specific problems that can be mitigated or solved with
the support of edge computing. As a consequence, they are not application-agnostic and
rather focused on specific use-cases. In the next chapter, we will take on a different set
of challenges found at the intersection between edge computing and distributed systems.
Hence, we will present the core contributions made by this thesis aimed at building a
virtualized and distributed edge-cloud platform.
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Chapter 3 explored the potential of edge computing in two specific application con-
texts. Here, we focus on fundamental questions which are decoupled from a specific
scenario or use-case. One aspect that is shared by the majority of research proposals
and industry applications is the importance of resource management especially when
serving many users. Network bandwidth, storage, compute capacity (CPU, GPU) and
I/O are constantly managed in datacenters to decide how and where to execute ser-
vices to maximize throughput. The process of managing resources it tightly coupled
with the practice of virtualization which was introduced at first in the 1960s: a method
of logically dividing the system resources provided by mainframe computers between
different applications. 1 Over the years, virtualization has become a key component
for the majority of the cloud providers. In fact, it provides the capability of pooling
computing resources from clusters of servers and dynamically assigning or reassigning
virtual resources to applications, on-demand [43]. However, it comes at a cost as virtu-
alization technologies introduce another complexity level for the infrastructure provider,
which has to manage both physical and virtualized resources [139]. In order to manage
resources in a DC, extensive use is made of resource provisioning algorithms and tools
such as Google Borg [140] and Apache Mesos [141]. Cloud DCs extensively use such
tools to reactively [142, 143, 144, 145] or proactively [146, 147, 148] re-distribute the
current load (e.g., by replacing or migrating VMs) in a datacenter to avoid potential
performance degradation due to overload [149, 150]. Provisioning insufficient resources
to customer applications can violate the Service Level Agreement (SLA). Algorithms
behind VMs migration are only one of the facets of resource management challenges.
In edge-cloud infrastructures, one of the main problems is deciding how and where to
schedule tasks offloaded to the system by end-users (e.g., mobile devices) [151] in order
to meet the application requirements. In this case, the research questions shift towards
an user-centric perspective where the goal is to improve the delivered QoE.

To summarize, in this chapter we expand on the role of these two aspects in the edge
computing domain. We look at ways of optimizing, adjusting and fine-tuning virtualiza-
tion techniques and resource management algorithms for edge computing infrastructures.
We will start by discussing how emerging virtualization techniques can be exploited at
the edge in combination with the necessary orchestration platform support. Subse-

1As a matter of fact, there are two types of virtualization: virtualization of resources within the OS
(e.g., processes) and virtualization of baremetal resources across multiple OSes. In this thesis, we
focus on the latter.
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quently, we tackle the problem of managing compute capacity at scale in a distributed,
multi-tier, edge-cloud infrastructure.

4.1 Virtualization Techniques

In this section, we introduce the different available virtualization techniques which is a
crucial step in later understanding the design choices embraced in our research work.
We start with the origin of the system virtualization concept and progressively introduce
the latest available techniques.

System virtualization has drastically evolved in the last years offering system archi-
tects and developers a vast array of techniques. The virtualization technique of choice for
most open platforms over the past 5 years has been the Xen hypervisor [152]. However,
there are other tools available such VMWare ESX [153], Oracle VirtualBox [154], Par-
allels Virtuozzo [155], OpenVZ [156]. Understanding how and when to utilize a specific
technology based on the hardware constraints and application requirements becomes a
crucial step in the system design phase. Today, many forms of virtualization are avail-
able and extensively used in datacenters to cater for the needs and requirements of large
numbers of users and applications [157].

At the heart of a virtualized system there is the Hypervisor or Virtual Machine Monitor
(VMM). Based on Popek and Goldberg’s 1974 paper [158], there are three essential
characteristics for a system software to be considered a VMM: fidelity, performance
and safety. Fidelity assumes that the software on the VMM executes identically to its
execution on hardware, barring timing effects. Performance requires that most guest
instructions are executed by the hardware without the intervention of the VMM. Safety
is achieved when the VMM manages all hardware resources so that it is impossible for
an arbitrary program to affect the system resources, e.g. memory, available to it by
bypassing the VMM. Classical virtualization was based on a technique called trap-and-
emulate which, originally, was not supported by x86 architectures. As mentioned before,
the VMM as complete control over any guest OS. In some cases, the VMM will intervene
whenever one OS is attempting to do something that conflicts with what another OS
wants to do. With the support of the CPU (VT-x instructions on x86 architectures),
the OS is able to trap such attempts, and allow the VMM to emulate the effect that is
desired by one OS, but in a manner that does not interfere with any other OS. With the
introduction of binary translation (BT) and hardware extensions, it became possible to
overcome such limitation and open to the virtualization technologies described in this
section.

4.1.1 Classic Hypervisors and VMs

The physical resource partitioning is usually performed by hypervisors, which are soft-
ware, firmware or hardware components that create and run virtual machines. They are
classified in two types [158]: Type-1 and Type-2, as shown in Figure 4.1. The former,
also known as bare-metal or native, run directly on the host’s hardware to control the
device resources and to manage guest operating systems. Xen [159] and VMware ESXi
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Figure 4.1: Comparison between Type-1 and Type-2 hypervisors.

[160] are examples of such hypervisors. Type-2 hypervisors instead run on top of con-
ventional OS without directly taking control of the hardware resources. As a results,
guest operating systems run as processes on the host. KVM [161] and QEMU [162] fall
into this category.

Although the purpose of Type-1 and Type-2 hypervisors is identical, the presence
of an underlying OS with Type-2 hypervisors introduces unavoidable latency as all of
the hypervisor’s operations and the work of every VM pass through the host OS. Also,
security flaws or vulnerabilities in the host OS could potentially compromise all of the
VMs running above it. Therefore, Type-2 hypervisors are generally not used in DCs and
are reserved for client or end-user systems – sometimes called client hypervisors – where
performance and security are lesser concerns.

Depending on the type of emulation provided by the hypervisor, the hardware virtual-
ization can be divided into full-virtualization, para-virtualization, and hardware-assisted :

� Full-virtualization. In this case, the virtual hardware exposed is functionally
identical to the underlying machine [163]. Full-virtualization is usually based on bi-
nary translation which allows to detect and replace unsafe or privileged instructions
(e.g., I/O operations) which can affect the state of other VMs or the underlying
hardware. No modifications of the guest OS are required, such as host interfaces
like para-API. Full-virtualization entails a considerable performance degradation
in comparison to natively executed systems [159]. This overhead comes from the
need for the hypervisor to fully simulate the actual hardware, which noticeably
increases the complexity of the VMM. However, there are cases in which it is de-
sirable for the hosted operating systems to see real as well as virtual resources. For
example, providing both real and virtual time allows a guest OS to better support
time-sensitive tasks, and to correctly handle TCP timeouts and RTT estimates.
Exposing real machine addresses allows a guest OS to improve performance by
using superpages [164] or page coloring [165].
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� Para-virtualization. It is a technique which simulates a virtual hardware plat-
form and enables the execution of virtualized guest OSes. Para-virtualization is
necessary to obtain high performance and strong resource isolation [159]. Since the
hardware is simulated, the guest OS requires modifications in order to be compati-
ble with the physical hardware [166]. Specifically, so called front-end interfaces (or
para-APIs) translate commands from the actual hardware to the simulated one.
Such interfaces reduce the complexity of the hypervisor by moving the execution of
some complex operations to the host domain. However, there is no need to apply
any changes to the Application Binary Interface (ABI), and hence no modifications
are required to guest applications. For example, the MirageOS unikernel, which
we used extensively in our work, only knows how to create para-virtualized Xen
images when compiled to run as a virtual process on top of the Xen backend.

� Hardware-assisted Virtualization. Today, modern CPUs offer hardware in-
built virtualization support to boost virtualization performance. Examples in-
clude Intel Virtualization Technology (VT) [167] and ARM Virtualization Exten-
sions [168]. Hardware-assisted virtualization reduces the maintenance overhead of
para-virtualization as it reduces the changes needed in the guest operating system.
It is also considerably easier to obtain better performance. This depends primarily
on the frequency of exits of the guest, which are triggered, for example, in case of
I/O operations. VM exits in response to certain instructions and events (e.g., page
fault) mark the point at which a transition is made between the VM currently run-
ning and the VMM. A guest that never exits and only computes, can run at native
speed. However, this is seldom the case for standard VMs. The exit rate is a func-
tion of guest behavior, hardware design, and VMM software design: a guest that
only computes never needs to exit; hardware provides means for throttling some
exit types; and VMM design choices, particularly the use of traces and hidden page
faults, directly impact the exit rate [158]. Therefore, it was important to reduce the
frequency of exits calls with the first generation of hardware-assisted virtualization
in order to maximize its usefulness and performance. With time, virtualization
techniques have evolved and introduced new features such as the input/output
memory management unit (IOMMU) which helps in reducing the communication
overhead with peripherals including Ethernet, GPU, and HDD controllers (also
known as Peripheral Component Interconnect (PCI) passthrough [169]).

In the next section, we will move on to a more recent form of virtualization which is
currently heavily used by many cloud management tools such as Kubernetes [170] and
is generally known as containerization.

4.1.2 OS-level Virtualization and Containers

Differently from standard hypervisors, OS-level virtualization is an operating system
paradigm in which the kernel allows the existence of multiple isolated userspace instances.
These run and rely upon the underlying host system meaning that every single one also
shares the same host kernel through the virtualization engine. Instead of virtualizing all
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Figure 4.2: Comparison of different virtualization technologies.

the physical hardware, only the software stack sitting on the kernel is virtualized. As
a consequence, OS-level virtualization offers little to no overhead as the containers are
running directly on top of a shared kernel. This form of virtualization is often called
containers of which some popular implementations are Docker [171] and LXC [172].
While VMs encapsulate the entire state of a running system, including both user-level
applications and kernel mode operating system services, containers provide operating
system services from the underlying host and isolate the applications using virtual-
memory hardware. In a nutshell, a VM provides an abstract machine that uses device
drivers targeting the host machine, while a container provides an abstract OS [173].

4.1.3 Library Operating Systems and Unikernels

Radical OS architectures from the 1990s introduced the concept of library operating sys-
tem (libOS). In a libOS, protection boundaries are pushed towards the lowest hardware
layers, providing: (i) an ensemble of libraries to interact with hardware or network pro-
tocols, and (ii) rulesets to set protection boundaries for the application layer. Some
examples are Exokernel [119] and Nemesis [120]. A few advantages of a libOS are in-
creased performance due to reduced context switch between user and kernel space, tiny
attack surface compared to VMs and containers, fast boot-up time, and extremely small
footprint with only around 4% the size of the equivalent code bases using a traditional OS
[174]. However, libOS also have drawbacks among which the biggest ones are additional
complexity in isolating multiple applications resources and the cost of rewriting device
drivers to fit the new architecture. The advent of hypervisors helped mitigating these
issues and opened the doors to unikernels. In particular, para-virtualization brought to
unikernels virtualized disk and network drivers, interrupts and timers, emulated moth-
erboard and legacy boot, and privileged instructions and page tables.
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Unikernels are single-purpose appliances that are at compile time specialized into
standalone kernels [122], and sealed against modification after deployment. They are
written in a high-level language and act as individual software components. Generally, a
full application consists of a set of running unikernels working together as a distributed
system [175]. Figure 4.2 shows the differences between the virtualization technologies
discussed before and unikernels.

Unikernels can be seen as an extreme form of lightweight virtualization emerged from
the observation that most virtualized applications are often burdened by additional, un-
necessary functionalities and libraries inherited from the underlying OS. For example,
VMs have many software layers while, ultimately, performing a single function including
a database or Web service. This represents a real opportunity for optimization both in
terms of performance, by adapting the virtual instance to its task, but also for improving
security by eliminating needless functionality. Their attack surface is strictly confined
to the running application logic as everything that is part of the unikernel is directly
compiled into the application layer. Therefore, each unikernel may have a different set
of vulnerabilities, implying that an exploit that can penetrate one may not be threat-
ening the others. However, the high degree of specialization means that unikernels are
unsuitable for general purpose applications. Adding functionality or editing a compiled
unikernel is generally not possible, and instead the approach is to compile and deploy a
new unikernel with the desired changes.

Initially designed for public clouds, unikernels are also potential virtualization can-
didates for edge-cloud networks due to their small footprint and flexibility, as shown
in other research efforts [176]. Unikernels have been primarily designed to be state-
less, similarly to lambda functions. Therefore, they are a good fit for standard state-
less functional algorithms [177] or for Network Function Virtualization (NFV) [178].
There are multiple available unikernel implementations which differ mainly in the sup-
ported programming language. MirageOS [122] (architecture outlined in Figure 4.3)
is a unikernel based on the OCaml functional language which aims at unifying both
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kernel and application userspace into a single, high-level framework. Among other ben-
efits this brings static type-checking, automatic memory management, modularity and
meta-programming (optimizing compiled code based on runtime parameters). Similarly,
HaLVM [179] is a unikernel based on Haskel with pervasive type-safety in the running
code. IncludeOS [127] and ClickOS [180] support C++ with the former coming in the
form of a framework to which is possible to bind any application. The latter is highly
specialized in offering functions to do network traffic processing (based on the Click mod-
ular router [181]). OSv [182] is a Java based unikernel offering more flexibility at the cost
of additional overhead introduced by the Java Virtual Machine (JVM). Unikraft [183]
is another micro-library OS that fully modularizes OS primitives so that it is easy to
customize the unikernel and include only relevant components. Additionally, it exposes
a set of composable, performance-oriented APIs in order to make it easy for developers
to obtain high performance.

Unikernels are good candidates for the creation of systems based on microservices
and serverless architectures. This is especially true at the edge, where we can benefit
the most from the unikernels perks such as small memory footprint and reduced attack
surface. In this context, lambda functions are also a promising option which will be
described in the next section.

4.1.4 Lambda Functions

In the past 15 years, many serverless services have emerged such as Google App Engine2,
AWS Lambda3, Kubeless [184], and OpenLambda [185]. In the cloud context, serverless
meant that developers should not worry about servers and in particular just uses SaaS
platforms or services [186]. This means that a developer can focus on writing code
without having to manage underlying infrastructure or worry about challenges such
application scaling or security [187]. The latest serverless solutions are server-hidden
and built to host functions that may be part of a pre-existing service (e.g., Google Cloud
Datalab4) or offered as an independent service in a Function as a service (FaaS) fashion.
In particular, FaaS platforms based on lambda functions have received increasingly more
attention due to the simplicity with which code can be deployed into production. The
principle is to offer a compute runtime where stateless, non-virtualized, functions are
executed. The challenge is to design such a system while considering metrics such as
cost, scalability, and fault tolerance [188]. Functions must be rapidly booted to process
their input. The system also needs to queue events and based on them schedule the
execution of functions, and manage stopping and deallocating resources for idle function
instances. In addition, the system has to handle failures in a cloud environment, at
scale. The serverless computing paradigm can excel in short-running, stateless, and
event-driven systems. However, it is not the best fit for complex, long-running, and
stateful computations or real-time demands.

2https://cloud.google.com/appengine
3https://aws.amazon.com/lambda/
4https://cloud.google.com/datalab/docs
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Figure 4.4: Application scenarios enabled by LV and the edge-cloud infrastructure.

There are many similarities between lambda functions and unikernels, especially in
terms of orchestration requirements from the underlying system managing them. Never-
theless, we will not discuss them further and, from now on, we will focus on virtualization-
based solutions.

4.2 Virtualization for Edge-Cloud Computing

Virtualization is core enabler technology for the interplay between cloud and edge by
offering an abstraction layer where resource-contrained devices and servers can coexist
in an unified infrastructure. In our approach we focus on what we call Lightweight
Virtualization (LV) and, in particular, unikernels which are a promising candidate to
address the manifold challenges found at the edge and in the IoT domain such as secu-
rity, scalability, hardware heterogeneity, resource-constrained devices. LV includes and
represents all forms of virtualization that do not rely on heavy-weight, full-blown VMs
but rather slim, compact virtualized applications using a bare-minimum OS stack. This
was also shown previously in Figure 4.2.

A direct benefit emerging from employing LV at the edge is flexibility. Within a
lightweight virtualized instance (e.g., container, unikernel) we can efficiently deploy an
application able to manage and use different technologies offered by the host device.
Equipping edge devices with newer services becomes easier, since we only need to con-
figure and instantiate stand-alone virtualized applications. In particular, referring to the
edge-cloud architecture discussed in Chapter 2, it is crucial to provide simple and yet
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efficient instantiation methods that are technology-independent in terms of hardware
capabilities and cloud provider. The tools used at the edge layer should share com-
mon functionalities and exploit similar APIs to orchestrate and interconnect different
networking and computing technologies. However, services and application might have
different requirements such as scalability, multi-tenancy, privacy & security, latency, and
extensibility.

Compared to classic virtualization solutions, we envision a trend towards using LV
technologies in an edge-cloud infrastructure. A direct benefit emerging from employing
LV at the edge is flexibility. Within a lightweight virtualized instance (e.g., container,
unikernel) we can efficiently deploy an application able to connect and use different
technologies offered by the host device. In addition, equipping edge devices with newer
services becomes easier, since we only need to configure and instantiate stand-alone
virtualized applications. Complex re-programming and updating operations that are
part of the software lifecycle management are, therefore, avoided. In fact, updating a
particular service requires changes only within a specific virtualized instance. LV can also
enable cross-platform deployment, providing a common execution environment across
cloud, edge, and constrained IoT devices. This would allow the whole infrastructure to
speak the same language and adapt to each layer capabilities and requirements. Based
on these, a service deployed on an edge-cloud infrastructure is split into a set functions
which are then deployed on the different devices based on the their capabilities. This lays
the foundations for a decentralized edge-cloud service provisioning architecture where
tasks are performed in a cooperative fashion.

Figure 4.4 gives on overview of possible application scenarios that can be enabled
by LV in conjunction with and edge-cloud infrastructure. We identified three main
areas: autonomous vehicles, smart city, and augmented reality. In the following, we will
focus on two selected use-cases (one latency and one non-latency sensitive): the smart
infrastructure and real-time applications, respectively. We will discuss the reasons for
adopting a specific LV technology for both cases. Specifically, we focus on unikernels as
an essential element of this thesis.

4.2.1 LV for Smart Infrastructure

Over the last decade, the development of the Internet of Things has been fueled by the
cloud-based infrastructures that aim to cope with the increasing number of IoT ser-
vices provided by various connected devices. This has (obviously) generated an intrinsic
association between IoT and cloud, where the cloud-based network infrastructures are
optimized to support a multitude of IoT-centric operations such as service management,
computation offloading, data storage, and offline analysis of data. This model has its
limits as already discussed in Chapter 1 and 2.

One problem that edge computing can help addressing is hardware reusability. In
fact, different cloud providers will aim at deploying their own, customized sensors which
will be only able to talk to a specific service. This creates a considerable amount of
redundancy in terms of deployed hardware and waste of resources. Moreover, this fuels
the problem of e-waste [189] which is considered the fastest-growing waste stream in the
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world [190]. With edge computing, this problem can be addressed by introducing an
intermediate management layer between cloud and IoT where different services can be
scheduled allowing the re-use of sensors for different applications. The edge layer will
take care of managing the hardware resources which become agnostic to the business
logic running in the cloud. Additionally, by offloading part of the application logic at
the edge, with this model we reduce the amount of data that needs to be uploaded to the
cloud and leverage local compute capabilities. There are multiple examples where this
solution can be applied such as environmental data monitoring, smart lighting, smart
grid, and traffic management [191]. For example, this is especially fruitful in situations
where the infrastructure is deployed by the public administration and lent to private
cloud service providers based on specific SLAs.
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An example for which we provide additional details is the measurement of environmen-
tal data which has become an crucial issue especially for densely populated metropolises.
Currently, air pollution monitoring is achieved with a sparse deployment of stationary,
expensive measurement units embedding both sensors5 and computing units. Air pollu-
tion is predicted based on the measured data in combination with complex mathematical
models [192]. As the deployment and maintenance cost of such such pollution station
is often prohibitive, we envision crowd-sensing as a tangible solution that combines LV
and edge computing.

The edge computing layer offers resources close to the crowd-sensing entities, which
can offload their data to the edge node in proximity which will take care of processing
them locally. In relation to the virtualization technologies discussed above, unikernels
can be used to take care of the computation with multiple of them spawned on-demand.
Each one would contain only the code necessary to process a subset of the received data
as a function, for example, of the sensor data type or to serve a particular application.
The partial results will be then subsequently uploaded to a more powerful edge node
(e.g. edge micro-server) to be merged or receive additional processing. Some of the
benefits of this approach are reduction of the load on the core network and of the cloud
(and air pollution stations) provisioning costs. In this case, unikernels are a good match
as the algorithms used to assess air pollution levels are generally static and stateless.
In other words, they can be considered as black-boxes with a defined set of inputs and
outputs. Figure 4.5 shows an example architecture in line with what we described. In
particular, while the bottom part of the figure is specific to use-case described above,
the middle and top part are general purpose. To be more precise, this architecture can
be applied also to other scenarios and extended to support other services.

4.2.2 Real-time and Multimedia Applications

Since the advent of consumer mobile devices equipped with multiple sensors and powerful
chipsets, multimedia applications have garnered increasing interest amongst smartphone
users. Currently, mobile AR adoption stands at 32% with 54% of its users using it at
last once a week [100]. Despite the increasing popularity of the technology, mobile AR
applications often offer substandard QoS and user QoE. The reason for this is two-fold.
Firstly, AR depends on complex deep-learning algorithms which are a bottleneck [193]
as the front-end devices are often not powerful enough to execute them with acceptable
latency for the end user [194]. Secondly, extended usage of multimedia applications
results in a considerable power consumption, which leads to significant battery drain
and overheating [195, 196]. One solution to the problem is offloading AR tasks to
cloud backends in order to cut on the device power consumption and compensate with
potentially insufficient the mobile device processing capabilities. However, cloud services
introduce additional latency, which negatively affects real-time applications especially in
terms of user immersion and motion-to-photon delay. For example, a study revealed the

5Usually gas detection sensors (NO, NOx , O3, CO, CO2 and particulate matter) plus humidity, rain
detection and wind speed/direction.

45



4 Building Blocks for Lightweight Edge Computing

requirements of virtual reality applications to achieve perpetual stability [197]. Longer
delays in such highly interactive, real-time applications degrade the end-user experience.
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Figure 4.6: Real-time application scenario. (A) Cyclist receiving personalized advertisements
rendered in AR on their smart glasses; (B) A smart car populating its augmented
windshield with contextualized, live feed information; (C). Augmented smart home,
where we control IoT devices in proximity through virtual interfaces.

Referring to Figure 4.4, one interesting application is personalized infotainment for
mobile users such as bike riders or smart vehicles. Information collected and processed
by the roadside infrastructure are sent to the road users which can use them to enrich
their mixed reality experience. For instance, such information could be traffic conditions,
personal agenda, news feed, gaming interfaces, social networks and so forth. In order
to craft and manage such a visually-rich experience, an edge board mounted on the
car is considered necessary. Based on the capabilities of the mobile device, the edge-
cloud network can provide different levels of support. Powerful mobile devices might
not immediately need to offload computer vision tasks and require only preprocessed
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information from the smart infrastructure. Low-end clients, instead, might want to
offload some computationally expensive computer vision steps of the AR pipeline to
edge nodes in proximity. The use of virtualization in this context is motivated by the
need to multiplex and manage discrete resources (e.g., embedded GPU) across different
services and users. Additionally, isolation and privacy are important to preserve as
sensitive, user data might be used in some parts of the processing steps.

Another use-case highly dependent on latency is cloud gaming [198]. This is based on
streaming a live feed of the game directly to a device while the game itself is processed
and running in a datacenter. Cloud gaming companies aim at building edge servers as
close to gamers as possible in order to reduce latency and provide a fully responsive
and immersive gaming experience. Additionally, the edge enables new cloud gaming
platforms to eliminate the need of dedicated devices, such as a console or high-end
personal computer, while helping solve the latency issues in transferring data from the
cloud to the user and the rendering of graphically intensive video [199, 200, 201]. The
scenarios mentioned above call for different functions to be executed and work together in
the form of a pipeline. As shown in Figure 4.6, we consider the combination of containers
(e.g., Docker) and unikernels as a potential approach. In fact, a container embedding
multiple unikernels can be built and shipped, where each one of the latter contains either
data or image processing operations. In this case, the container would offer orchestration
and control APIs to external applications with, under the hood, unikernels embedding
the application logic.

4.3 Deployment and Management

In our idea of a distributed edge-cloud infrastructure, device orchestration becomes a
crucial problem to tackle. Without orchestration and synchronization, it is not possi-
ble to have different devices cooperate to solve a task. Additionally, specific tools are
required to deal with different processor architectures, storage capacity and network con-
figurations of edge devices and cloud DCs. Making the best use of the edge infrastructure
calls for proper knowledge of the available hardware resources in order maximize their
utilization without overloading the devices at the edge. This calls for a lean orchestration
framework supporting LV technologies seeking a fair balance between synchronization
and network load. Other key aspects concern the definition of optimized policies for an
efficient vertical scaling, in which applications are automatically prioritized and scaled
up/down in the edge-cloud infrastructure, according to specific QoS requirements or
eventual computing resources saturation at the edge.

Mobility is also a relevant aspect. User devices might move in relation to the edge-
processing node providing the service. Therefore, the computation may need to be re-
deployed or migrated multiple times at different locations to transparently serve mobile
users. This is challenging especially for custom, stateful services bound to individual
users which require also application state migration or synchronization. In this case, for
cloud-native service an option is to avoid storing state locally or only to use soft state.
For services requiring local state, there is the possibility to store the current state at
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an external stable location before exiting and load it again on restart. Consequently,
particular attention must be paid to ensure that destination edge device has enough
available resources to run the service. Otherwise, an alternative candidate should found
to run the service to avoid resource overbooking.

4.4 Orchestrating Unikernels

With unikernels, application are treated as libraries within a single application, allowing
the developer to configure them using either simple library calls for dynamic parameters
or meta-programming tools for static parameters [175]. The result is a reduction in the
effort needed to configure complex multi-service application VMs. Currently, there are
no publicly available unikernel orchestration tools and hypervisors are lagging behind in
evolving towards the structured unikernel worldview. In our work, we progress in the
direction of an agile set of intercommunicating, tiny virtualized instances that can be
scheduled and restarted independently, in the spirit of a distributed system of micro-
services.

We dedicated part of the research effort in this thesis to designing and implementing
the first unikernel orchestration framework compatible with both resources-constrained
devices and cloud servers. Specifically, expanding on the previously shown image describ-
ing our methodology (Figure 1.2), we introduce the three fundamentals block explored
in the first half of this chapter as shown in Figure 4.7:

� FADES (Orchestration). An edge-cloud offloading architecture allowing to run
MirageOS unikernels to support a variety of IoT and cloud services. The design
principle behind FADES is to efficiently exploit the resources of constrained edge
devices through fine-grained computation offloading.

� ECCO (Chaining, Distributed Computing). This evolution of FADES en-
ables edge-cloud collaborative computing through on-demand task execution pipelines
spanning multiple, potentially resource-constrained edge-nodes.

� MirageManager (Migration). To address the problem of stateful applications
migration, we developed an unikernel migration system enabling lossless migration
supported by a function-level, application logic checkpointing library of our design.

4.5 FADES

Simplicity is key to the Internet of Things. Regardless of back-end services, resource-
constrained edge devices should execute simple operations on data locally available in
order to maximize efficiency. Therefore, by splitting a complex application into manifold
simple and single-purpose tasks we can ship them in the shape of lightweight containers
(specifically, unikernels). This approach follows the best-practices of microservices based
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Figure 4.7: Contributions: implementation-driven branch.

architecture where developed components are re-used in multiple systems in a plug-and-
play fashion.

IoT diversity is a double-edged sword. In fact, on one side we face the problem of
heterogeneity and lack of standards. On the other, the massive scale of devices is can
prove to be a powerful source of information and computational power. The core motive
behind FADES is exactly to make use of this power in an efficient way. As a matter
of fact, the trifecta of locally available resources, computational power and hardware
capabilities is the key metric to drive the task offloading process from the cloud to the
edge.

In this section, we build on top of these observations and present FADES: the first
prototype of our unikernel orchestration framework. We introduce the design and im-
plementation of our system and then discuss some of the limitations that we addressed
in the final version.

4.5.1 System Design

In order to run, orchestrate, and manage unikernels on edge devices, we designed and
implemented from scratch a framework called FADES (Function virtulizAtion basED
System). It is a modular system offering reliability, scalability and flexibility by leverag-
ing MirageOS unikernels to embed application logic fragments (e.g., similarly to micro-
services) in small, Xen-bootable images.

One of the core observations driving our system design is data locality : a principle
based on which computation should gravitate towards the data source in order to cut
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data transmission overheads. As edge devices have limited resources, they can only
execute simpler tasks on locally available data compared to cloud services. Therefore,
an application can be split into manifold simple and single-purpose tasks which can be
shipped to the edge in the shape of lightweight virtual instances (specifically, unikernels).
For example, we can offload at the edge parts of the application logic which need to access
or process raw data generated by sensors, as shown in Figure 4.8. As a consequence,
FADES takes advantage of edge devices as an intermediate layer where to offload selected
stages of a compute flow with the goal of redistributing computation across the edge-
cloud infrastructure. This multi-stage data and compute pipeline is also motivated by
the necessity of reducing the uplink access parallelism. By offloading computation, we
progressively aggregate data along the path to the cloud which also reduces the amount
of data sent to the cloud, especially at scale. However, not everything can be offloaded.
Application complexity, priority, criticality, power consumption and required physical
resources play a key role in determining what can be offloaded and on which device. For
example, applications requiring considerable computational power such as data mining
or the learning phase of deep learning algortihms are better hosted in DCs rather than
moved at the edge.

Figure 4.9 shows the system design of FADES. The entities on the left side of the fig-
ure are sensors, actuators, or other data sources from which raw information is collected
(or to which commands sent, in the case of actuators). The External Services (ESes)
are back-end applications interacting with the FADES framework which offload parts of
their application logic in the form of unikernels. These ES can be seen as a repository of
deployment-ready tasks designed for different scenarios and purposes. The main compo-
nents of FADES include the Orchestrator (ORC), the Data Resource Broker (DRB) and
Data Manipulation Functions (DMF). FADES is an event-based system using so called
Metadata Task Wrapper (MTW) issued by the ES to exchange information about the
offloaded task. An MTW is composed of three parts:

MTW Credentials contain passport-like information (e.g., task ID, associated user
or service, priority) and are mainly used to keep track of the received MTWs and schedule
their execution.

DRB Metadata are a list of Data Retrieval Operations (DTO) containing details
about what data to retrieve, and these source and destination.
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DMF Metadata provides application-specific details about the DMF. For instance,
the MTW issuer can specify additional information about eventual extra runtime con-
figuration parameters or minimal required hardware resources and capabilities.

The main components of our framework shown in Figure 4.9 are listed below:

� Data Resource Broker (DRB). This module localizes and extracts resources
from the registered datasources which, in turn, will exchange with the DRB details
about the available data and the policies to access them. The DRB is completely
computation-agnostic. Its execution cycle is event-based and driven by the com-
mands received by the orchestration module.

� Data Manipulation Functions (DMF). It embeds the application logic rel-
ative to a specific service and it is booted only when deemed necessary by the
orchestrator. For example, when a specific event occurs (e.g., reception of new
data from a sensor) or after an interval of time in case of DMFs scheduled to run
periodically. DMFs can be persistent or ephemeral, based on their life-cycle. Long
running or recurring applications might run in the form of daemons that only exit
when meeting specific conditions. Single-execution tasks, such as ephemeral data
aggregation procedures, are deallocated immediately after completion.

� Orchestrator (ORC). Is the interface between our system and the outside world.
With a supervisory role, it monitors and controls the system by periodically check-
ing that both the DRB and DMF are running correctly. The ORC also takes care
of forwarding the required information to the DRB when a new MTW arrives. It
ensures the overall system integrity by monitoring the DRB, following the life-cycle
of each DMF, validating uploaded tasks and decommissioning terminated DMFs.

Recalling the air pollution monitoring example shown previously in this Chapter (Fig-
ure 4.5), we can map FADES components to the following tasks: (i) the ORC receives
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from cloud the tasks to be executed plus additional metadata with the requirements its
execution (e.g., type of sensor to access, CPU and RAM requirements), (ii) the DRB
locates the accessible pollution sensors (or weather stations) to be queried and retrieves
the data, (iii) the DMF manipulates the raw data received from the DRB and produces
an aggregated results such as the level of pollution in a specific part of the city.

4.5.2 Implementation

FADES is developed as a virtualized, unikernel-based system running on top of the
Xen hypervisor. Our tool of choice is the MirageOS library operating system, which
is specifically designed to build modular systems and to run natively on Xen. Both
the DRB and DMFs were embedded into MirageOS unikernels compiled against Xen
as Para-Virtualized Machines (PVM). The DRB is implemented as a daemon unikernel,
and to communicate with other components of our architecture, it uses two Xen modules:
the virtual network stack and the XenStore. The former is used to internally exchange
data with the DMFs while the latter is exclusively used to exchange synchronization
messages with the ORC.

The DRB validates and schedules each MTW received from the ORC following differ-
ent scheduling policies (e.g., sorting by task priority, execution deadline, task ID). Each
DMF can execute a different operations (e.g., sensor fusion, image processing) and it is
possible to run multiple of them in parallel. Once the result of the computation is ready,
the DMF sends to the ORC the processed data through the Xenstore.

The ORC is implemented in Python and it is the only non-virtualized module in
FADES. Moreover, the ORC is the only module that handles reads and writes towards the
persistent storage. Our design choice focused on establishing a loose coupling between
the host system and the unikernels managed by FADES, with the latter being exclusively
dependent on virtual resources such as CPU, RAM and network. By following this
practice, our goal is to minimize the assumptions and dependencies our system introduces
in relation to the hosting device and in terms of libraries, OS, and special hardware
capabilities.

4.5.3 Evaluation

Being our initial prototype, with FADES6 we aim at understanding the applicability of
unikernels at the edge where one of the main drawbacks is the presence of resources-
constrained devices. Specifically, our goal is to produce a set of baseline benchmarks
to understand the performance of our system. For the measurements, we used three
devices: Cubietruck (ARM), Intel NUC, and a Dell PowerEdge R520 server. Additional
details about the hardware capabilities and conducted experiments can be found in the
research paper attached to this thesis (Publication II).

� Memory Analysis. When offloading to resource-constrained devices, it is im-
portant to make efficient use of the already limited available hardware resources.

6Open-source code available at: https://gitlab.lrz.de/vit.cozzolino/mirageos-iot
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We analyse how the available RAM affects the DMF performance. The goal is
to avoid over/under dimensioning issues that could lead to waste of resources or
memory depletion. respectively. Figure 4.10a shows the ratio between available
heap memory and pre-allocated RAM with different architectures (x86 and ARM).
On both architectures, the effective available memory is less than the amount allo-
cated at the beginning but the behavior varies between x86 and ARM. In the first
case, the gap is much more prominent, and this directly affects the amount of data
processable by the unikernel especially in the case of a PVM with low allocated
RAM.

Two main factors influence the available memory for a unikernel PVM: underly-
ing architecture and imported libraries. The latter is a function of the specific
application logic embedded in the unikernel. Therefore, it is a responsibility of
the developer to avoid unnecessary tools or libraries. For the former, we noticed
how different system architectures influence the available runtime memory. In fact,
on ARM processors the output of the build process is a Linux kernel ARM boot
executable zImage (.xen) together with an ELF 32-bit LSB executable (.elf) while
on x86 only a single .elf file is generated. The difference between the the two build
processes influences the size of the generated Xen image and affects the available
memory at runtime, as shown in Figure 4.10a.

� System Analysis: Overhead and Offloading. We compare the performance
of running a task at the edge, where the required raw data is directly available,
against the cloud. Figure 4.10b shows the results with different payload sizes and
providing a detailed breakdown of the execution time of a task in FADES. Each
payload contained a times-series of varying length measurements obtained from
our internal testbed composed of multiple Intel Edison7 boards deployed in dif-
ferent office rooms in our university campus. Four main factors affect the overall
execution time: (i) required time to boot the DMF, (ii) time required to transfer
the data between the DRB and the DMF, (iii) time to run the computation logic
in the DMF, and (iv) the time required to retrieve the data to be processed. The
latter is only present for the cloud, which has an additional cost (in terms of la-
tency) to retrieve the data from the edge. The bars in the figure are grouped by
the amount of data to be processed. The processing executed inside the unikernel
was a simple sensor fusion algorithm aimed at correlating raw sensors data (e.g.,
temperature, humidity, light intensity) to human behaviors/actions. Specifically,
we embedded simple manipulation and aggregation functions (e.g., calculate min-
imum, maximum, average) over sensors data streams in the DMFs. Details about
the source of the used data can be found in the respective research paper (Publi-
cation II). The results show that the presence of a sufficiently powerful edge device
can complete the given task faster than the cloud, if the computation is moved
closer to the datasource. In fact, while the Dell PowerEdge outperforms the edge
devices in terms of computation time due to its faster CPU, it pays heavily in

7https://en.wikipedia.org/wiki/Intel Edison
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Figure 4.10: FADES benchmarks.

terms of data transmission time. As the amount of data to be retrieved increases,
the more this time penalty grows. Considering that often edge and IoT networks
have limited uplink bandwidth and are unreliable, we consider offloading compu-
tation at the edge a valid solution to reduce overall task execution time, uplink
bandwidth utilization, and the need for retransmissions due to eventual network
instabilities. More details regarding the network bandwidth and topology used for
this can be found in Publication II.

Our evaluation shows some preliminary results about FADES, which were also
crucial to spot limitations in our initial work and to open a discussion on how to
address them in our future work. In Section 4.6, we discuss the limitations in our
original design and elaborate on the introduced changes.

4.5.4 Discussion and Limitations

At the time of its development, FADES showed some limitations originating from prac-
tical issues with the MirageOS unikernel. Nevertheless, it had the crucial role of laying
the groundwork on which we built a more advanced version of our system. Therefore, we
modified the original system design also to improve its performance and capabilities, and
enable the possibility to create chains of unikernels: a mechanism to build distributed
execution flows across multiple edge devices in the network. In fact, one of the strengths
of edge computing is the possibility to distribute computation across multiple devices
in order to leverage the data locality principle (described in the previous section) and
avoid to pipe raw data directly to cloud DCs. The concept will be described in the next
section together with the refined version of our system.
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4.6 ECCO: Edge-Cloud Chaining and Orchestration Framework

FADES showed the power of our edge computing platform backed by results emerged
from our evaluation. However, the limited scope of our preliminary work prevented us
from generalizing and highlight additional insights about our solution. Based on the
experience gained from this work, we developed an extended and augmented version
of FADES called ECCO which is a system supporting the deployment of what we call
edge-cloud pipelines. To do so, we devised a computational model to dynamically create
distributed execution chains spanning both cloud datacenters and edge devices. This
concept is crucial to support applications which require data scattered across multiple
locations in the network combined with multiple, intermediate processing steps. To sup-
port such applications, we posit the deployment of a networked computing, sensing and
actuation infrastructure similarly to [202]. The challenge then becomes how to enable
developers to write and deploy distributed applications on a potentially shared infras-
tructure in an efficient way. In fact, the system itself should take care of distributing the
application without having the developer adjust their code to match the infrastructure
characteristics. This calls also for extra system intelligence to manage services deployed
by multiple providers competing for hardware resources at the edge. In this part of our
work, we build on top of these requirements to upgrade FADES and deliver the following
improvements:

� A distributed computational model supporting edge-cloud offloading with uniker-
nels.

� Restructuring of FADES’s initial design in order to improve its performance and
streamline the implementation.

� An edge function chaining protocol to create multi-node, edge-cloud execution
pipelines on-demand.

� A pass-through library for unikernels enabling access multiplexing to the edge node
hardware interfaces (e.g., sensors and actuators).

In order to better describe our system and contextualize it to practical applications,
we frame our discussion around a set of sample use-cases leveraging the roadside infras-
tructure in order to improve the services delivered to road users. For example, delivering
detailed metropolitan maps coupled with citywide pollution fingerprinting to improve
citizen health or helping pedestrians and cyclists select less polluted routes. However,
our system is not tied to this specific application scenario and can be applied also in
other contexts.

4.6.1 Model of Computation

Our model of computation is based on three core elements: the — potentially heteroge-
neous — inputs received by the edge infrastructure, the functions (edge functions, EF)
manipulating them, and the outputs enabling different services. Figure 4.11 illustrates
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Figure 4.11: Visual representation of an ECCO pipeline.
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Figure 4.12: ECCO example use-cases. (a) Car crash detection, (b) road hazards detection,
(c) smart parking.

how these elements are connected to form an ECCO pipeline. In order to better describe
our distributed model of computation, we take advantage of three practical examples
based on the smart road infrastructure. Specifically, we choose (a) car crash detection,
(b) road hazards detection, and (c) smart parking as shown in Figure 4.12.

Running a pipeline requires infrastructure on which to execute it, planning to select
the appropriate resources on which to instantiate it and, furthermore, orchestration to
move compute tasks to the suitable nodes as required by, e.g., the end-user making use
of the service. We next describe the pipeline components (network, functions, nodes) in
more detail, as well as their deployment and execution strategy.

4.6.1.1 Pipeline Components

In our scenario, the road users receive the pipeline output. For example, autonomous
vehicles might receive the information processed by the infrastructure via long-range
communication radios such as LoRaWAN [203] or LTE-V2X for Vehicle Fog Comput-
ing [204, 205].

Edge Nodes (EN). We define an EN as a device close to the end-user, such as a
mobile phone, PC, or wireless access point. In other contexts, the definition might be
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extended to include Radio Access Network (RAN) micro-servers [206]. In our case, we
focus on the roadside units or equipment which are deployed on the road to monitor it
and collect data. As they are stationary, we assume good connectivity to the cloud and
to other ENs forming what we call an edge network.

Edge Functions (EF) are self-contained, atomic8 functions embedding a small piece
of the application logic that can be executed standalone. When chained together, they
form what we call a pipeline. Each instance of EF plays a specific role and is hosted on
a EN. They need to be placed based on the available data sources, the current load of
the hosting device and the geographic position.

Edge-Cloud Pipeline. The pipeline describes the execution of a distributed task
involving a set of ENs. Each EN listed in the pipeline takes part in execution chains and
collaborates to run it. The principles and rules behind the deployment of a pipeline will
be described next.

4.6.1.2 Pipeline Deployment

We envision two levels of control in the pipeline deployment and management process:
(i) the cloud, which defines the high-level, application-driven pipeline deployment plan
and (ii) the edge which locally makes scheduling decisions based on the parameters
described in the remainder of this section. The details of a pipeline structure are defined
by the cloud provider, which also monitors its execution.

We assume that each EN is reachable from the cloud and can report its status and
current load in terms of active EFs and pipelines. Based on this, the service provider
can plan a pipeline based on a set of parameters shown in Figure 4.14 and of which some
will be described as follows.

b

a

Detector

Worker

Broadcaster

Start EF
Midsection
Finale EF

Worker
Broadcaster

Detector
EN semantic role

EF role in the pipeline

Figure 4.13: Pipelines’ execution graphs based on ENs capabilities and EFs roles.

ENs have limited resources that are shared by multiple concurrent services. A schedul-
ing procedure is required in order to make decision regarding which services should be
executed at a specific time based on policies established by the service provider. Ad-
ditionally, such policies are matched with the local status and capabilities of the edge

8They are atomic in the sense that, once started, they execute without external interruption and
cannot be further subdivided without breaking their purpose as a service.
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nodes which has to, eventually, multiplex multiple tasks. Parameters such as priority
and execution present in the pipeline configuration decide when a pipeline should be
executed. The priority field assumes different values based on the application criticality.
For instance, car crash detection will always have higher priority than smart parking.
This information allows the system to dynamically terminate low priority services when
additional resources are demanded by the high priority ones.

The parameter execution can assume two values: on-demand and automatic. On-
demand pipelines are only deployed when requested explicitly by the service provider.
For example, only during a specific time window. Conversely, pipelines flagged as auto-
matic are dedicated to safety critical applications which will be scheduled to run con-
stantly. Additionally, deployed pipelines can run indefinitely or for a specific amount of
time. The deadline parameter specifies how long a pipeline should be running on a set
of nodes.

Pipelines are flexible and adapt based on the available ENs. The execution flow can be
represented as directed acyclic graph (DAGs) or directed cyclic graphs with topological
ordering [207]. In some cases, branching of the execution flow (as shown in Figure
4.13b can happen to support specific use-cases or address corner-cases. For instance,
in Figure 4.12a the pipelines branch to disseminate the alert regarding a car crash to
as many repeater nodes in close proximity. If an EN is unreachable, a substitute is
found to replace it or the pipeline is adjusted to skip and remove it from the execution
tree. Specifically for Figure 4.12a, this means that some vehicles will not be notified
if the failure affects a broadcaster EN. Conversely, if a detector node crashes, there
will be another node able to detect the car crash. Branching can be eventually used
to introduce redundancy in the computation to achieve a raw form of consensus and
circumvent well-known problems of result validation in unreliable distributed systems
[208, 209, 210].

Branching can happen also as a function of the hardware resources available at the
edge. For instance, one EN might only have cameras, another one only a proximity
sensor and a broadcasting interface. This information is collected by the cloud and used
to opportunely plan the pipelines structure. ENs without a broadcasting interface can
only have a detector role which in turn is defined by its sensors’ capabilities. By analogy,
there can be ENs with both the detector and broadcaster role. In other cases, we might
need an additional worker node to perform a computationally intensive task. These are
ENs offering more computational power than their peers or equipped with specialized
hardware (e.g., GPU). An example could be the integration of feeds of different type
of sensors to detect hazard on the roads which requires additional compute power and
resources as shown in Figure 4.12b.

4.6.1.3 Pipeline Execution

The pipeline configuration shown in Figure 4.14 is generated by the cloud provider
once the execution plan is ready. The ENs receiving it will parse it and identify the
sections they can execute in relation to the other nodes. Each pipeline is thus split into
sub-pipelines, and transformed into multiple executable stages. Execution order of EFs
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Figure 4.14: Pipeline configuration.

within an EN can be based on various parameters, e.g., priority, expected load, and
deadline.

ENs scan the received pipeline configuration and each identifies the group of EFs it
should execute. The classification determines the order to execute and chain EFs, and
the role of each EF. An EF has one of three roles: (i) Start, starting a sequence; followed
by (ii) zero or more Midsections; culminating in (iii) a Finale which closes the sequence.
Sequence ordering parameters are used to correctly unfold execution onto the ENs. The
nomenclature adopted in Figure 4.12 (detectors, broadcasters and workers) applies to
the EN while the one just introduced only to the EFs and it is used internally by the
system to properly order the pipeline graph. What matters for the pipeline engine is
the relative execution order of the EFs and not their actual task in relation to the EN
capabilities. The relationship between this two concepts is shown in Figure 4.13.

4.6.2 ECCO Design

Here, we provide an overview of ECCO shown in Figure 4.15. ECCO is designed to
achieve two goals: (i) provide an offloading for lightweight services orchestrated by
the cloud and running on constrained devices at the edge; and (ii) support seamless
cooperation and interconnection of ENs to run distributed pipelines. ECCO retains
some similarities with FADES but differs in many aspects. The changes made to ECCO
aim at addressing functional limitations or improve the performance of its predecessor.
Below, we describe the most important ones.

� Merging the DRB into ECCO host modules. One of the limitations of
FADES was the overhead introduced by the communication between the Data Re-
source Broker (DRB) and the Data Manipulation Functions (DMFs) 9. As the two
entities communicated through a network interface, a considerable overhead was
introduced in the application complexity combined with a non-marginal boot-up
penalty due to the cost of loading the unikernel network library in each EF10. For

9DMF and EF are interchangeable terms. From now on, we will exclusively use the latter.
10In our tests and with the MirageOS version we used, this value ranged between hundreds of milliseconds

and multiple seconds, depending on the underlying hardware.
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Figure 4.15: ECCO design.

the DRB, it was necessary to progressively enrich it with new libraries and connec-
tors required to access different external data sources. This violated our principle of
keeping the virtualized instances running on our framework task-specific (inspired
by the libOS principle described in Section 4.1.3) by steadily increasing their com-
plexity. Moreover, the use of the DRB proved to be an unwanted approach that
would introduce a single point of failure in our system.

� EFs Communication. The nature of communications in a distributed system
is an important aspect as increased coordination and cooperation demands more
information to be exchanged at a higher communication rate. Protocols that keep
this form of synchronization overhead to a minimum are desirable. The spectrum
of communication methodologies can be delineated into three areas: the paradigm
by which communication takes place, the semantic content of the information,
and the protocols adopted [211]. We discuss here the first one which is the most
relevant for the changes we introduced in ECCO. Generally, the paradigm by
which communication takes place in distributed system is either shared global
memory, message passing, or a combination of these. In ECCO — as we wanted
to avoid using network interfaces to have the EFs communicate — we opted for a
shared memory approach. Precisely, we used a single-layer blackboard [212] model
where the shared memory is viewed, in fact, as a blackboard on which to write
and read messages or results. To reduce the communication overhead, each EF
was notified of the memory blocks to use to communicate with other EFs. By
making use of watchdogs, the EF would wait until the data would be available
before executing its computation. Therefore, the execution flow is event-driven
or, equivalently, data-driven as the presence of new data at a specific location is
a trigger starting the EF. Additional synchronization channels are also available
and are only used in case of data transmission errors similarly to expectation-
driven communication [213] (and potentially other models with non-conflicting
agents such as tacit bargaining [214, 215]). With this approach, communication
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overhead is minimized when an agent has a model of the state of other agents
and, therefore, only needs to communicate when that model incorrectly reflects an
agent’s perceived reality [211]. This matches perfectly our communication protocol
as each EF follows the same workflow, which will be described in the next bullet-
point.

Regarding ECCO, depending on pipeline structure, data can be exchanged in two
ways: (i) Intra-node communication occurs when the transfer involves two co-
located EFs or an EF and the host module; and (ii) Inter-node communication
occurs when the transfer takes place between two EFs on different ENs. For the
former, a set of parameters is provided to determine the source and destination
addresses of the shared memory page blocks used to transfer the data. For the
latter, the ECCO host module takes care of transferring the data over the network
to the destination EN. In fact, EFs are unable to fetch data directly from the
local or remote source; they exist in a completely sealed environment. Hence, the
ECCO data acquisition module must retrieve the required data specified in the
pipeline configuration. In case of access to sensors, specific hardware registers can
be exposed to the EF which then will be able to directly access them.

� The EF Workflow is composed of four phases: data acquisition, data validation,
data processing, and data distribution as shown in Figure 4.15. This is similar
to the workflow for a DMF in FADES, but it has been modified in order to be
compatible with ECCO’s distributed computing model.

During the data acquisition phase, an EF waits for the necessary data from ECCO
which identifies the correct data source and retrieves the data on behalf of the
EF. In fact, ECCO exposes to EFs different end-points to access sensors or local
databases identified during the bootstrapping phase. The specifics of the data
retrieval phase depend on the datasource type. For instance, in case of hardware
sensors, the driver code is embedded directly into the EFs, while for external
sources (e.g., databases) ECCO would use host libraries to read the data and
transfer it to the EF. The data validation phase checks the received data for errors,
possibly requesting a re-transmission. The data processing phase is the core of the
EF as it contains application logic code. By customizing this part of the EF,
it is possible to execute arbitrary code in the EF, provided that the required
external dependencies and libraries are available. Finally, the data distribution
phase determines whether the result of the computation should be passed to ECCO
or propagated to the next EF waiting in the local pipeline.

� Sensor Access Controller (SAC). Access to physical components such as sen-
sors and actuators is often necessary in many use-cases associated with edge com-
puting. In such situations, it is desirable to offer a unified interface to access
such resources. Moreover, due to the presence of multiple services which might
compete for the same hardware component, access multiplexing to the available
physical components is required. ECCO allows EFs to directly access data stored
into registers of GPIO sensors and actuators. Additionally, when multiple EFs try
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to access the same sensor, ECCO takes care of scheduling them by tracking which
sensors are currently in use by the running pipelines. Another advantage of this
approach is that the driver logic necessary to manage the peripheral is completely
embedded into the EF. Hence, no assumptions are necessary regarding the drivers
available on the host machine.

4.6.3 ECCO Implementation

In this section, we will provide implementation details for the components discussed in
the previous section as they are the biggest modifications made to FADES. More details
can be found in the attached research paper (Publication VIII).

� EF Pipelining. Before an EF can send or receive data, it needs to know its
memory space coordinates. Regardless of the exchange between host and EF or
two EFs, ECCO makes use of the communication channels offered by XenStore, a
key-value storage space shared between virtual domains running on top of Xen. It
allows to exchange details about the memory location and size of the data required
by an EF. Access to specific key/value pairs is granted per EF to reduce malicious
access by non-authorized virtualized instances. We designed a communication
protocol to initialize, mediate, and terminate the transfer of data between two
EFs. This protocol was built on top of Xen event channels, the basic primitives
provided by Xen for event notifications. For every transfer, four communication
channels are used. These are closed when no longer needed in order to avoid
channel pool depletion.

� EF Memory Manager (EF-MM) provides a generic mechanism to share mem-
ory pages between domains. Each domain has its own grant table and ECCO
allocates to each EF a set of memory pages. Then, it maps them into the grant ta-
ble and receives back a list of mappings. Through the XenStore, the list is shared
with the associated EF which is then free to access the content of the shared
pages. It is a zero-copy procedure where only the page ownership is modified by
setting specific access flags. Figure 4.16 shows the sharing data process between
ECCO and an EF. The procedure is the same when transferring data between two
EFs with the only difference being the use of Xen event channels to support the
synchronization protocol. In order to enable this mechanism, we made extensive
changes to a set of functionalities of MirageOS.
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Figure 4.16: ECCO EF-MM implementation.

� Sensor Access Controller (SAC). It manages the general-purpose input/out-
put (GPIO) registers to read/write the state of sensors or actuators. Sensors are
accessed with GPIO operations. Once the correct GPIO address is identified, we
map the respective physical page into the virtual memory space. Depending on
the architecture, as shown in Figure 4.17, a two- or three- steps address translation
procedure for ARM or x86 is required, respectively. After the translation phase,
the page is mapped into the grant table and shared with a specific EF. Each phys-
ical register is shared inside a memory page which is similar to how the OS maps
physical registers. Access granularity is down to the register bits and it is achieved
using a procedure called pinmuxing [216]. This allows to map to a GPIO pin name
a GPIO pin multiplexing name by using a specific pin multiplexing table. The
procedure is fairly complex as it requires a combination of base address and offset
value for each GPIO device connected. As there are multiple registers per GPIO
device (e.g. nine for the Tegra186 chipset [217]), the offset value is used change
values of registers controlling specific properties or send commands to the GPIO
device (such as on/off for simple sensors).

In the current implementation, we focus only on sensors that can be controlled
by modifying the GPIO data registers. Nevertheless, we port the driver code of a
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Figure 4.17: SAC memory translation procedure.

micro-controller based sensor (DHT-11) into Mini-OS and wrapped the complete
driver code into an unikernel. Proper functioning of the kernel module depends
on knowledge of the physical addresses exposed by the GPIO controller and the
correlation with the physical GPIO pins. To each GPIO device a set of registers
are assigned by the GPIO controller that can be used, for example, to control the
device behavior.

In the next Section, we will provide an evaluation of ECCO and discuss in details the
results emerged from it.

4.6.4 Evaluation

We evaluated ECCO from different angles but here we will focus on providing insights
primarily regarding the pipelining process and the functionality connected to it. Different
devices were used to understand the performance gap between the edge and cloud. In
our tests, the edge devices were comparable to micro-servers rather than base stations.
The nodes used in our tests were an Intel NUC (NUC), Dell Optiplex (OPX) and two
high-end Dell PowerEdge 730 servers (SRV1, SRV2), all connected to the same LAN
network and for which detailed specs are provided in Table 4.1. The results obtained
from the experiments are averaged over 100 repetitions.

Table 4.1: Devices specifications.

Device CPU RAM Ocaml Xen OS

Dell PowerEdge
R530 (SRV1, SRV2)

Intel Xeon E5-2640
2.60GHz — 32 Cores

128 GB 4.04.2 4.6.0
Ubuntu 14.04
Kernel 3.19.0

Intel NUC (NUC)
Intel i5-6260U
1.80GHz — 4 Cores

16 GB 4.04.2 4.6.6
Ubuntu 14.04
Kernel 4.4.0

Dell Optiplex 7050
(OPX)

Intel i5-7500T
2.70GHz — 4 Cores

8 GB 4.04.2 4.6.6
Ubuntu 14.04
Kernel 4.4.0

ECCO is profiled under different loads, with different devices, and varying pipeline
topologies, as shown in Figure 4.18. For each case, we use the same abstraction model
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Figure 4.18: ECCO pipeline topologies.

introduced in the previous section: the starter node is always both a detector and broad-
caster, the remaining ones are only detectors. Case P1 represents a pipeline involving
only two nodes, and the results reflect the processing load of the edge computing nodes;
P2 and P3 are pipelines with increasing complexity having more ENs and EFs. This
allows us to profile our system under different configurations. Each pipeline begins
and ends with Start and Final EFs which are identified by the blue and brown blocks,
respectively. The green blocks represent Midsection EFs deployed in the middle of the
execution chain. A pipeline block is delimited by braces and contains sequences of blocks
delimited by angle brackets. Case P4 has two pipelines delimited by curly brace blocks.
Each node executes only the blocks assigned to it. These will be executed in a specific
order (represented here with a character in each block). For instance, in Case P1 we will
execute first the EF with tag A on the NUC. Then, the output of the computation will
be sent to the EF with tag B running on SRV1. Finally, the output will be transferred to
the EF with tag C on the NUC. After this step, the pipeline is completed. When there
are multiple EF having the same tag, it means that they start in parallel (Case P4).
For our benchmarks, we measure the pipeline completion time, shown in Figure 4.19
using an EF running simple image processing operations. The EFs exchange a complete
post-processed image instead of a single value. This configuration is typical in situations
where the preprocessed data has to be aggregated downstream by a worker node. Details
about the EF performance can be found in the respective paper [8].

Figure 4.19 displays the Empirical distribution function (ECDF) of the edge-cloud
pipeline execution time for the cases presented in Figure 4.18. The pipeline execution
time includes the computational and memory overhead time in addition to the network
inter-node transfer time and the unikernel boot-up time. The pipeline execution time
grows roughly linearly with the number of EFs. Even though they are not directly com-
parable, the first three topologies (P1 to P3) differ in the number of EFs and nodes, while
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Figure 4.19: Pipeline execution time — ECDF.

the pipeline workflow remains roughly unchanged. We note that hardware differences do
not play a major role since performances is similar. In each case, we double the number
of EFs and add one EN. By adding more nodes we reduce the overall completion time
by leveraging the parallel compute capabilities of many ENs. Additionally, this reduces
the slope of the linear growth. This is important in long pipelines, where the EF to EN
ratio has a noticeable effect. In other words, balancing the amount of EFs allocated to
each EN have a non-trivial effect on performance. Stacking multiple EFs on a a single
EN is not advised, as we are not taking advantage of the system carnality but rather
overloading a single machine. We will come back to this important aspect in a different
context later on in Section 4.8.1.

4.6.5 Discussion

ECCO brought many improvements over the first version of our framework including
the possibility to distribute computation across multiple edge nodes leveraging the data
locality principle. In such a distributed environment, one important challenge to ad-
dress is how to migrate a stateful EF while preserving their state. In fact, edge and IoT
networks may be unreliable [218] and composed of resource-constrained devices that are
more prone to failures. Ideally, the edge infrastructure should be able to self-adapt in
case of malfunctions and quickly move the computation to a stable node in order to
maintain high service responsiveness and avoid data loss. Therefore, service migration
and recovery play a crucial role in strengthening the reliability of an edge-cloud infras-
tructure especially for stateful services. This is the problem that we will address in
the next section by presenting a framework supporting stateful migration of unikernels
through state checkpointing. This is our last contribution dedicated to the unikernel
ecosystem.
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4.7 MirageManager: Enabling Stateful Migration for
Unikernels

As discussed before, unikernels are a new form of Lightweight Virtualization (LV) that
can be successfully leveraged for service provisioning at the edge. However, the unikernel
ecosystem is still in its infancy and lacks critical functionalities found in other virtualiza-
tion technologies. In particular, stateful migration is a highly desirable feature for mobile
edge services in distributed environments which is not yet supported by unikernels. In
the work presented in this section, we introduce MirageManager: a ready-to-deploy
unikernel migration system enabling lossless migration supported by a function-level,
application logic checkpointing library.

4.7.1 System Design

We added the required migration logic directly at the application layer instead of making
any changes at the kernel level (as MiniOS [219] does) or in the hypervisor. This is a
practice also followed in past work for VM-independent migration of stateful applications
or to capture the application state before migrating it [220, 221].

We designed a set of functionality in the shape of a library allowing the unikernel to
keep track of its own internal state. When the unikernel needs to suspend, it serializes
its state so it can be transferred to the migration target, which will process the state
before proceeding with the execution flow. Aside from state tracking, we require an
additional component to support the migration process which we call MirageManager.
It is a web service exposing an interface to commission and manage unikernels on any
registered host and transfer the unikernel state using a repository.

MirageManager is the core of our system: it manages the life-cycle (e.g., creation,
migration, destruction) of unikernels deployed on multiple hosts and it provides a repos-
itory for writing and retrieving the unikernel state before and after a migration. The
set of information necessary to describe an unikernel is generated before the hypervisor
creates the guest domain and will exist even after its destruction, regardless of whether
it is the result of a migration procedure or a regular shutdown. During the guest lifetime,
the representation will change to reflect changes in its state. Once the service embedded
in a migrated unikernel has terminated its life-cycle, also its previously checkpointed
state stored in the MirageManager repository is removed.

Figure 4.20 gives an overview of the migration procedure. When an unikernel is cre-
ated, MirageManager will create a guest domain of the corresponding image on the target
host. Afterward, to confirm a successful boot, the unikernel queries MirageManager and
start a lookup procedure for a previous state associated to it. This procedure is required
so that, even if no state is retrieved, MirageManager is aware of the current state of
the unikernel (specifically, started) and change it to connected. Therefore, every newly
booted unikernel will at least once interact with the MirageManager to notify it of its
existence on a specific machine. At the moment of a migration, MirageManager issues
a suspend command to the unikernel. Hence, the latter transfers its state to the repos-
itory and thereby confirm that the suspension was successful. On the target machine,
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Figure 4.20: Unikernel migration with MirageManager.

a unikernel with the same image is created, a previous state is retrieved from Mirage-
Manager and the just created guest unikernel uses it to update itself before resuming
its workflow exactly from where it was interrupted before the migration. This process
can be repeated indefinitely until the unikernel is permanently stopped, completes its
intended task, or exits due to an error/fault. Potentially, the unikernel could invoke by
itself the migration procedure without the need for an external trigger.

4.7.2 State Checkpointing

In order to manage the lifecycle of a unikernel, MirageManager requires a complete
representation of its execution state. Therefore, we developed a module able to store
and serialize the unikernel application logic state so that execution can be resumed from
it. We call this procedure checkpointing and it is described as follows. For the purpose
of creating checkpoints, we implement a library for MirageOS that defines a central state
object representing the state of the unikernel. Additionally, we defined a programming
model that allows to express the application logic routines in a serializable format, so
that the execution state can be written to the store and transferred to the repository.
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This store is called Unimem and it is implemented as a key-value store using strings as
keys and a polymorphic data-type for the values.

To enable the application to write its execution state to Unimem, we translate the
unikernel into a series of atomic procedures, each constituting a step. Hence, we define
the application workflow as a directed graph with labeled edges where each node is a
computational step. Every step is identified by a unique string identifier (ID) so that
the currently active step can be dumped into the store just by using its ID. Edges are
guarded by expressions using the variables present in the store that determine how the
control flow is directed from one step to the next.

In case multiple edges originate from the same computational step (e.g., execution logic
branching), the program decides which one to follow by evaluating what we call transi-
tion guards; these are conditional equations evaluated on variables stored in Unimem.
Therefore, the control flow can be expressed as an adjacency matrix where each entry
aij describes the transition from step i-th to j-th and its value acts as a guard for the
transition. The truth condition of the transition guard is obtained from evaluating spe-
cific functions on a set of variables in the store. The first condition evaluating to true
in a row of the adjacency matrix determines the next transition in the execution flow.
One limitation is that guard functions must be mutually exclusive to avoid ambiguities
in the process of selecting which transition to take at any given moment. If no guard
condition evaluates to true, the application logic is considered to be completed and the
unikernel terminates. This is very similar to state machine models [222] which in our
case match well the compile-time defined behavior of unikernels.

When an unikernel is requested to suspend or migrate, the identifier of the currently
executed function is written to Unimem. As every variable used to evaluate the transi-
tion guards is stored as well, the content of Unimem fully describes the application state.
In fact, the current position in the graph as well as the next transition to be traversed
can be inferred from the stores content only. To protect against state corruption and
potential information loss, all variables belonging to an execution scope spanning multi-
ple computational steps must be stored. This is facilitated by not using return values or
parameters for the steps, but rather writing from and reading to the store. As compu-
tational steps are atomic, the information contained in Unimem is sufficient to recreate
the application state after a migration. Finally, there is no specific structure imposed on
the content of Unimem by MirageManager as long as the state is serializable. Therefore,
also other state information, such as the state of an object-oriented application, could
theoretically be stored.

4.7.3 Implementation and Migration Workflow

MirageManager is implemented as a distributed system consisting of an application
server developed with Express [223] and written in JavaScript. It exposes a REST
API to issue migration commands and for the unikernel to transfer its state to the
central repository. Additionally, each host wishing to use MirageManager needs to run
a controller so that the central application server can communicate with the hypervisor
on that machine. In Figure 4.21, the ServerNode hosts the application server while the
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Figure 4.21: MirageManager system components.

Figure 4.22: MirageManager migration workflow.

EdgeNode is as device using the migration functionalities. In our implementation, we
used Xen as hypervisor [159] but other options are possible.

The migration procedure follows a set of steps shown in Figure 4.22 for which addi-
tional details can be found in Publication III.

4.7.4 Evaluation

To evaluate MirageManager, we selected as baseline Podman which is an engine for
running Open Container Initiative (OCI) containers with support for Checkpoint/Re-
store In Userspace (CRIU)-based migration. We embedded an application with the same
functionality as our MirageOS unikernel inside an OCI container and then performed
the migration tests. The application we used to test our system was a simple incremen-
tal counter which was enough to prove that the stateful migration mechanism works.
Additional details about the experiment setup and collected metrics can be found in
Publication III. Here, we focus on service migration at scale which is an important fac-
tor in distributed systems such as an edge-cloud infrastructure. Therefore, we evaluate
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how migration with MirageManager fares in comparison with Podman when both tools
perform multiple migrations simultaneously and measured the overall migration time.
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Figure 4.23: Scalability analysis — MirageManager (top) vs. Podman (bottom).

Figure 4.23 shows the overall time required to migrate multiple services in parallel.
The top part of the figure shows the results for MirageManager while the bottom part
shows those for Podman. For both, we measured the overall migration time with five
different network bandwidth settings. Edge networks may suffer from limited network
bandwidth which may severely impact migration operations when the migrated service
state has a considerable size. This stresses the need not only to follow best-practices of
service decomposition but also to reduce the state size as much as possible. For both,
unikernels can be the answer.

We can gain multiple insights from Figure 4.23. First, MirageManager migration time
is seemingly unaffected by the network bandwidth and it grows quasi-linearly with the
number of services migrated in parallel. The same cannot be said for Podman, which
is definitely suffering in low bandwidth conditions as it needs to transfer the complete
memory dump as part of its migration technique. This tendency is exacerbated with
the network bandwidth capped at 100 and 500 Kbps. In this case, MirageManager is
up to ∼6x times faster than Podman. On the other hand, Podman outperforms Mi-
rageManager as the available bandwidth increases. It is worth noticing that, as the size
of the migrated service status gets closer to the Podman dump size, the migration time
becomes the same for both approaches. However, unikernels usually embed simple ap-
plications which seldom require massive amount of synchronization data. Hence, we can
conclude that the effectiveness of our approach also depends on the specific application
and the size of its migrated state.
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Finally, while migration with Podman is transparent to the migrated application,
MirageManager requires changes to the application logic in order to work correctly.
Based on this, we state that MirageManager generally outperforms in downtime and data
transfer volume cold migration with containers while offering competitive performance
in terms of overall migration time.

4.7.5 Discussion

While MirageManager outperforms well-known migration tools for other virtualization
techniques such as containers, it is still open to many improvements. One of its biggest
limitations is that developers that want to use our framework need to translate their
existing software stack (or parts of it) into the library OS specific programming language
(in this case, OCaml). Our system could be extended and ported to work with other
unikernels [127, 180, 182, 224], which would bring more freedom in terms of usable
programming languages. However, this would cost additional integration effort due to the
different programming models. Another limitation is the additional overhead introduced
by the programming style demanded by our state checkpointing library. While these
restrictions can rule out using MirageManager in some cases, our framework remains the
first system enabling the migration of unikernels. Moreover, our design allows to easily
extend the implementation to accommodate diverse hypervisors and library operating
systems.

4.8 Edge-Cloud Resource Provisioning

The three pieces of work described in the previous sections focus on system design and
implementation challenges that are at the core of our research in the direction of lever-
aging LV techniques in the context of an edge-cloud infrastructure. In this section, we
shift our focus towards scaling challenges while preserving the research context. Specif-
ically, we focus on resource provisioning and task allocation challenges which are yet
applicable to the LV framework we discussed beforehand. Additionally, we take a user-
in-the-loop perspective to better assess the impact of our solution in terms of quality of
service improvement. We conclude this Chapter by discussing our edge-cloud, resource
provisioning framework called Nimbus.

4.8.1 Nimbus: An Edge-Cloud Allocation Algorithm for Task Offloading

Unlike other driver applications for edge computing discussed in the previous sections,
real-time multimedia applications impose much stricter constraints on offloading com-
putations to edge devices. Considering the complexities levied by deep learning-based
real-time applications, it is challenging to exploit a nearby edge infrastructure in a scal-
able manner. However, supported by the interplay between edge and cloud, it is possible
to extend cloud computing outside of datacenters, and enhance its services by leveraging
an infrastructure closer to the end-users.
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Figure 4.24: Mobile applications requiring deep learning steps.

In this context, one important challenge is how to select the best offloading candi-
date in order to maximize user satisfaction, as allocating multiple users to an already
overloaded edge node can negatively impact the application performance. Hence, the
algorithm described in Nimbus is designed as an optimal task placement strategy for
real-time applications (in particular image processing), such as the ones shown in Fig-
ure 4.24. Nimbus goal is to minimize the overall mobile-to-edge latency (or maximize
FPS) while avoiding the increase in battery consumption. Additionally, our algorithm
aims at distributing the computational load across the edge-cloud infrastructure avoiding
to saturate the resources of the edge devices. In fact, Nimbus’s offloading policy ensures
a balanced load distribution across the edge nodes participating in the infrastructure
similarly to load balancing practices used for web servers [225].

4.8.1.1 System Overview

We consider a multi-tier, edge-cloud infrastructure similar to the model discussed in
Chapter 2. Figure 4.25 shows the entities in our system – mobile devices (MD) and edge
nodes (EN) interacting over the network. The former interact with the infrastructure as
users of AR applications and the latter are responsible for handling tasks offloaded by
the MDs and constitute the core of our infrastructure. We assume a hierarchical edge
architecture where compute and caching capabilities of ENs increase with increasing
distance from the MD.

We logically divide the network into three layers – each one offering different capa-
bilities and, as we approach the core of the infrastructure, latency and computational
capacity of resources’ increase.

Tier One Edge Nodes (T1-EN). The outer-most layer (denoted by blue circles in
Figure 4.25) is a set of augmented access points (AP) and routers with minimal compute
capabilities. We assume these APs to be either equipped with (or directly connected
to) an embedded device with low-end GPUs, e.g. Nvidia Jetson Nano or Intel NCS.
Resources in this layer act as entry points to the network, offering limited computation
in addition to standard routing and connectivity functionality.

Tier Two Edge Nodes (T2-EN). Shown as pink squares, they form the second
layer of our multi-tier edge cloud infrastructure. Logically, these devices can be seen as
backbone routers co-located close to T1-ENs. T2-ENs have at their disposal increased
computational power and network bandwidth that allows them to serve multiple users
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Figure 4.25: Nimbus Infrastructure.

in parallel. T2-EN resources are a mid-range micro-server equipped with a dedicated
GPU.

Tier Three Edge Nodes (T3-EN). At the core of our architecture we find T3-EN
(shown as orange hexagons) which are powerful servers equipped with multiple GPUs,
offering the most significant computational power of all layers. The capabilities of T3-
EN are similar to traditional cloud datacenters, both in terms of the number of users
that can be served in parallel and available network bandwidth. However, due to their
proximity to the network core, the network latency incurred to access the resources in
this layer is the highest compared to the rest of the edge infrastructure.

4.8.1.2 Nimbus Algorithm

We consider a system where a controller estimates the feasibility of offloading a task
proposed by a mobile device to the edge infrastructure. This controller can be either
centralized or decentralised (which entails the presence of multiple controllers). Fig-
ure 4.26 shows a high-level, concise workflow representing the interaction of a MD with
the Nimbus controller. It explains how an MD can offload the execution of a task to
the edge-cloud infrastructure. The latter is composed of N interconnected and heteroge-
neous ENs, which, based on their computing capacity, can serve several concurrent tasks.
An MD can offload its task via a T1-EN, which acts as gateway to the infrastructure.
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Figure 4.26: Nimbus Workflow.

The controller is responsible for making sure that the offloaded tasks are assigned to
ENs with two goals in mind: minimize latency and reduce battery consumption for the
MD.
Assuming that the i -th task is executed by j -th EN, the task latency and battery con-
sumption incurred by the device can be formalized as (see Table 4.2 for a summary of
the notation):

Lij = (Ltij + Leij) =

[
(

di
BWij

) +RTTij

]
+ (TETj + qj) (4.1)

Bij = Btij = Ltij × w (4.2)

To solve for both latency and battery consumption, we make use of specific techniques
to adjust the problem space and reshape a multi-obecjtive optimization problem into
a single-objective function. Mathematically, let xij denote the case when the j -th EN
serves the i -th device. By using the ε-constrained method which helps in solving multiple-
criteria decision making problems [226] by limiting the solution search space, we can
express the latency minimization problem as follows:
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Table 4.2: List of parameters used by the algorithm.

Term Description Unit

di Amount of data transferred by the i-th MD KB

BWij Bandwidth between i-th MD i and j-th EN Mbps

TETj Inference time on the j-th EN ms

TECi Local energy execution cost for i-th MD mJ

qj Queuing time at j-th EN ms

w Transmission module power mJ/ms

εt Latency threshold ms

εb Energy budget J/s

RTTm RTT matrix ms

κ, α, β Additional coefficients —

min
N∑

i=1

M∑

j=1

xijLij(p) (4.3)

subject to
N∑

i=1

xij = 1, ∀j ∈M, (4.4)

Lij ≤ εt, ∀j ∈M, (4.5)

Bij ≤ εb ≡ TECi,∀j ∈M, (4.6)

xij ∈ {0, 1}, ∀i ∈ N, ∀j ∈M (4.7)

where N and M are the set of mobile devices and EN, respectively, and with p= 〈 di,
BWij , TETj , RTTij , qj 〉 vector containing part of the parameters shown in Table 4.2.
Equation 4.3 is our objective function. Equation 4.4 and 4.7 limit each MD to offload
its task to as single EN, at most. Equation 4.5 and 4.6 are formalization of the latency
and energy consumption constraints limiting the feasible solution space.

Then, we trace back our optimization problem to a convex form that we solved using a
meta-heuristic. Algorithm 1 describes Nimbus’s task offloading approach. The algorithm
is divided into three phases. The Warmup phase identifies a list of ENs that are accessible
from the AP the MD is connected to and are the best candidates to offload computation.
In the Core phase, the algorithm calculates the latency and battery cost for offloading to
each of EN. Afterwards, it selects the best EN based on the balance-ensuring allocator.
In the Fallback phase, if the algorithm failed to find a suitable EN for offloading the
task, it looks for a cloud server that best satisfies the latency and energy consumption
constraints of the task.
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Algorithm 1: Nimbus allocation algorithm.

Input : Refer to Table 4.2.
Output: Best offloading target for the i-th MD.

// Warmup

1 ~ENr ← FilterAndMinimize(AP,RTTm, εt)

2 ~EN ← LookAheadLoad( ~ENr, κ)
// Core

3 for ENj in ~EN do

4 Lij = (Ltij + Leij) =
[
( di
BWij

) +RTTij

]
+ (TETj + qj)

5 Bij = Btij = (Ltij × w)
6 if Lij ≥ εt or Bij ≥ εb then

7 Drop(ENj , ~EN)
8 end

9 end

10 if ~EN 6= ∅ then

11 for ENj in ~EN do

12 return arg min[α ∗ Lij

εt
+ β ∗ loadj

maxloadj
]

13 end

14 else
// Fallback

15 cloud← FindClosest(εt)
16 if Lcloud ≤ εt and Bcloud ≤ εb then
17 return cloud
18 end

19 end
20 return ∅

4.8.1.3 Evaluation and Results

We explored and analyzed multiple facets of our algorithm, namely network latency, in-
ference and queuing time, and specifications of MD and T1-EN. In order to test Nimbus
in realistic conditions, we conducted several experiments and measurements to collect
data concerning multiple variables used in our algorithm. In particular, the most in-
teresting ones are inference and queuing time on different GPUs as a function of the
number of requests. This is necessary to understand the performance drop as multiple
MDs are allocated to the same edge node. Details about these measurements can be
found in the attached research paper (Publication IV). In this section, we report only
a subset of the results gathered from our experiments. In particular, the improvements
in terms of QoE for the end-users and trade-off of running Nimbus in a centralized vs.
decentralized fashion.
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Scalability & Performance. To assess the QoE improvements for the end-users, we
analyze the effective task latency and energy benefits of Nimbus for processing tasks
offloaded by MDs. We select four combinations of edge infrastructure and MDs. For
the former, we selected a set of configurations covering scenarios with an increasing
number of ENs, at different tiers. For the latter, we used a dataset providing information
regarding the number of users connected to a WLAN network in a specific time interval11.
Based on that, we grouped the users using four concentrations as shown in the x-axis of
Figure 4.27. More details about the dataset can be found in the attached research paper
(Publication IV).
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Figure 4.27: Task latency and energy saving in various setups.

Figure 4.27 is divided in two parts. The left panel shows the task execution time (in
milliseconds) as a function of the MDs in the network and different configurations of ENs.
The right panel shows the overall amount of energy saved by the MDs when offloading
the computation (per 1 second, or 15 frames), in milliJoule. The plotted values are
obtained after combining the results from 100 simulation iterations. The details of the
EN configurations are indicated in the inset plot illustrating, for each color, the number
of deployed T1,T2, and T3 edge nodes, respectively. By looking at the task execution
time panel, we notice that even in the worst case, the expected task latency achieved by
Nimbus is ∼2× lower than running it locally on the fastest MD in our dataset. From a
performance standpoint, this offloading strategy can exceptionally boost deep learning
based applications and increase the quality of experience for its end-users. As the number
of MDs increases, the performance proportionally decreases. With more congestion and
tasks offloaded, the delivered performance drops, as multiple MDs crowd the same EN
and influence each other’s execution time by increasing the overall queuing time. This
saturation behavior is mirrored by the MDs allocation ratio.

Figure 4.28 shows the percentage of mobile devices served by the edge infrastructure,
for four different configurations of ENs for which additional details can be found in
Publication IV. As the number of users increases, the edge resources tend to deplete more
quickly, forcing most of the mobile devices to run their computation locally or utilize
the cloud. Task offloading also allows MDs to save energy (right panel of Figure 4.27),

11The time interval was roughly 12 months.
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Figure 4.28: Fraction of task offloaded to the edge.

reducing the power consumption in all cases. Our results show a nontrivial margin of
gain in offloading using Wi-Fi to the edge infrastructure. Even considering the most
power-hungry smartphone in our dataset and the average energy saving in the worst-
case, Nimbus still consumes ∼77% less battery.

Nimbus Variants (Centralized, Decentralized and Hybrid). We developed three
versions of Nimbus. The original version was single-threaded (ST), meaning that the
decision process was handled by a single controller node with complete knowledge of the
edge infrastructure. From a practical viewpoint, this approach offers limited scalability,
especially when both the size of the edge infrastructure and density of participating
MDs increase. In this case, the convergence time of the single-threaded variant becomes
prohibitive. Hence, we developed a multi-threaded (MT) variant of Nimbus, termed
MT Nimbus, which is deployable in a distributed fashion. We applied a partitioning
procedure to the edge-cloud infrastructure in order to distribute our algorithm to many
solver units. Transforming an algorithm from centralized to distributed has additional
cost such as synchronizing different entities increases communication overheads. Here,
our goal is to demonstrate the possibility of transforming our algorithm into a distributed
form and characterize its performance. While the principal benefit for our distributed
algorithm is reduced time to allocated all the tasks from the MDs, we sacrifice in quality
of the solution as the algorithm is now less capable of fully exploiting the available
edge-cloud infrastructure resources. In fact, each single solver will only see a slice of
the full network infrastructure and therefore less offloading candidates for the MDs
tasks. This happens because we logically split the ensemble of ENs into non-overlapping
subsets which are then associated one to each solver. The consequences of this choice
are explored discussed as follows.

Figure 4.29 shows the convergence time and task execution latency with an increasing
number of threads. It can be observed that the more we divide the network, the fewer
MDs are offloaded because each slice becomes smaller, thus reducing the degrees of
exploration for the algorithm. However, the convergence time per-thread reduces by up
to ∼15× when Nimbus uses four threads instead of one.
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Figure 4.29: Performance of MT-Nimbus.
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Figure 4.30: Performance of 2PMT-Nimbus (Multi-threaded (MT), Single-threaded (ST)).

To mitigate the inefficient use of the edge-cloud infrastructure, we developed a two-
stage solver version of Nimbus. In this variant, all the MDs not offloaded in the first
distributed stage are scheduled for a second allocation pass. This final variant is called
2PMT Nimbus and the results obtained are shown in Figure 4.30.

While there is an additional cost in terms of convergence time due to the presence of
a final aggregation step, the number of non-offloaded MDs reduces drastically, especially
with an increasing number of threads. With only two threads, 2PMT-Nimbus achieves
similar MD allocation ratios as the single-threaded version while almost halving the
convergence time. With eight threads, 2PMT-Nimbus converges almost 3× faster than
two-threads and offloads the majority of the users.

Note the anomaly in convergence time trend of 2PMT-Nimbus – where the convergence
time increases despite an increased degree of parallelism. We explain the exception as
follows. By assigning more threads, the generated network slices become shallower and
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fewer EN candidates are available to allocate MDs. The fewer users are allocated, the
more effort is required by the centralized solver to complete the final reallocation step.
This means that the law of diminishing returns applies to the threads parallelism. In
fact, with ten threads, the multi-threaded convergence time decreases, but the single-
threaded increases. However, the overall performance in terms of allocation ratio looks
better with increasing thread count. Consequently, if we would progressively increase the
assigned threads boundlessly, we would circle back to the single-threaded performance,
both for allocation and convergence time (close to saddle-shaped curve).

4.8.1.4 Discussion

Edge computing will play a crucial role in reshaping the future of cloud networks infras-
tructure. New services will leverage the processing capabilities offered at the network
edge for different purposes. However, there are many orthogonal problems currently
affecting edge computing which also emerged from the results gathered in our research
work. Here, we will discuss two aspects fundamentally connected to QoE delivered to
end-users as a function of offloading computation to the edge-cloud infrastructure.

Application & Network. Immersive applications, such as AR/VR, have strict latency
requirements as even small delays can results in motion sickness and dizziness. As QoS
of network communication technologies (e.g., 5G and millimeter waves) improve (i.e.,
shorter network delay and higher throughput [227, 228, 229]), it becomes crucial to
optimize the utilization of the compute capabilities and task allocation mechanisms at
edge.

In spite of that, end-to-end application latency still accounts for the most significant
fraction of the perceived user experience, as shown in the results presented in this sec-
tion and the attached research paper (Publication IV). We focused on task execution
time and network latency while ignoring the non-marginal overhead introduced by other
components. These additional delays may have many sources, including the operating
system, bloated network queues, application logic, network fluctuations (retransmissions,
packet loss), to name a few.

With Nimbus, we did not take into account these variables to keep the problem
tractable, since added delay caused by some of the above is hardly predictable. Conse-
quently, our results are to be considered an optimistic estimate on top of which applica-
tion logic and context overhead must be added.

Smartphone evolution. In Nimbus, we looked at possibilities to offload demanding
computational steps from mobile devices to the edge infrastructure. However, the ever-
increasing computational capacities of smartphones [230, 231, 232], and more general-
purpose utility of edge computing demands re-thinking the applicability of edge for
mobile clients. For example, high-end smartphones equipped with powerful mobile GPUs
benefit more from running computations locally than offloading, due to higher efficiency
(in energy consumption and inference time) offered by their processor architectures and
algorithms [233]. On the other hand, with many applications competing for the mobile
GPU, the performance might decrease due to throttling. Edge resources can be used to
further enhance what can be achieved by a smartphone. An example are sophisticated
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and accurate neural networks – which are often prohibitive for smartphones as they
require considerably more RAM and computational power.

4.9 Summary

In this chapter, we presented our work in two categories of system research for edge com-
puting. We started with a prototype version of the our unikernel orchestration frame-
work, FADES. Then, we addressed some of its limitations in ECCO on top of enabling
distributed, edge-cloud execution pipelines. In a distributed environment, migration is
crucial to move computation across different nodes to address unforeseen situations such
as failures or resource depletion. Therefore, we added the last piece to the puzzle by
presenting MirageManager: the first, stateful, unikernel migration system. Finally, we
looked at the same problem but at scale and stepped back from implementation-specific
challenges. In Nimbus, we crafted a resource provisioning algorithm to manage hard-
ware resources at scale in a distributed, multi-tier, edge-cloud infrastructure. This last
piece of research work acts as a wrapper around our orchestration framework by dealing
with fundamental question of how to opportunely allocate resources without saturating
the infrastructure. In the next chapter, we will conclude the thesis by going over the
research questions introduced in Chapter 1 and summarize the contributions presented
in the previous chapters.
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This thesis proposed several solutions for the integration of edge and cloud computing
towards finding a sweet spot where their interplay can bring benefits to existing services.
In this chapter, we summarize our contributions in relation to the problem and research
questions posed in Chapter 1. We further discuss limitations of the presented solutions
and opportunities for future work.

5.1 Research Questions Summary

RQ1 What virtualization technique should be employed to match the require-
ments of both edge and cloud?

Edge and cloud exhibit different requirements which need to be accommodated in
order to make the best out of their interplay. This extends also to virtualization
techniques which, as described in Chapters 2 and 4, are extensively used in DCs
to orchestrate applications. In our work, we aimed at identifying a solution to
virtualize resources at the edge and in the cloud without creating a gap between
the two architectures. To answer the research question, we identified unikernels
as promising technology designed for the cloud and, as well, very well-suited to
match the edge networks requirements. In Section 4.2, we showed the potential of
unikernels in comparison to other virtualization techniques such as containers and
classical VMs.

RQ2 What model of computation should be adopted to support the interplay
between edge and cloud in order to support different classes of applica-
tions?

As discussed in Chapter 1, one of the challenges for edge computing and distributed
systems in general is scalability. In fact, there is a need for solutions where ap-
plications are automatically partitioned and distributed in order to maximize or
improve the service quality. In Chapter 4, we introduced our unikernel orchestra-
tion framework paired with a distributed task (pipelines) chaining mechanism. In
our computational model, services are split, distributed, and moved towards the
data source in contrast to the opposite paradigm typically found with cloud-based
applications. Our model of computation allows to re-partition the compute respon-
sibility between cloud and edge with the goal of reducing unnecessary uplink data
transfers and optimize performance by leveraging spare computational resources
found at the edge.
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RQ3 How to support stateful services in fault-prone and resource-constrained
edge networks?

The Internet of Things and edge networks are primarily composed of resource-
constrained devices bringing many challenges such as resource provisioning, secu-
rity, faults and updates management, and so forth. In Chapter 2 and 4 we provided
details about this challenges and focused on the problem of supporting stateful ap-
plications in an edge infrastructure. In Section 4.7, we introduced one approach
based on moving computation from one machine to the next without losing data.
Specifically, we presented MirageMigration: a tool to enable stateful migration of
unikernels by means of a state checkpointing library. By that, we answered our
RQ of how to maintain the state of stateful applications without invasive changes
to the underlying virtualization technology Additionally, in Section 3.1 we intro-
duces a unikernel-based application (UIDS) which would benefit from preserving
its state migration in order to deliver its monitoring capabilities (e.g., keeping track
of malicious connections).

RQ4 How to allocate resource efficiently in an edge-cloud infrastructure to
improve QoE for end-users?

The last research question addresses the problem of provisioning resources in an
edge-cloud infrastructure, at scale. The considerable number of heterogeneous de-
vices at the edge complicates non-trivially the effort required to allocate services
and tasks to these devices while guaranteeing specific QoE requirements. With
Nimbus, introduced in Section 4.8.1, we tackle this problem especially in the con-
text of real-time applications such as AR — a use case which we also explored
in Section 3.2. Our resource provisioning algorithm showed how it is possible to
increase the quality of experience of mobile, multimedia applications by following
a best-effort approach. By leveraging a multi-layer, edge-cloud infrastructure we
allocate mobile users tasks solving a multi-objective optimization problem striking
a balance between performance and infrastructure load.

The research work presented in this thesis is a non-comprehensive excursus on edge
computing covering both system and application challenges in relation to different use-
case. There are many lessons to be learned from this research journey which can be
re-conducted to the above research questions. For example, we found many reasons
why unikernels can be a promising technique to deploy edge applications and enhanced
them with extra features (e.g., stateful migration) to show their adaptability to different
requirements. However, unikernels should not be considered the silver bullet of virtual-
ization technologies, at least for the time being. Depending on the specific application,
other solutions (such as Docker containers or classic VM) might be a better fit. The con-
clusions drawn in this thesis aim at showing the potential of unikernels and elevate them
to be considered a valid alternative to existing, consolidated, virtualization technologies.

From a system perspective, we advocate for the interplay between edge and cloud. The
shape and level of interconnection between these two infrastructure paradigm might vary
but the only way ahead for them is together. Nowadays, we can see how the boundary
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between the two is already becoming more and more evanescent, with cloud providers
extending the reach of their data centers to the edge with servers deployed in proximity
of end users. However, managing such a vast architecture can prove to be challenging. In
this thesis, we just scratch the surface of a complex problem such as QoE-aware resource
provisioning. Many variables needs to be taken into account of which many are hard
to model (e.g., network latency). Hence, another lesson learned in this research journey
is that no matter how precise we model a system, there will be always some amount of
unpredictability to be accounted for. From an engineering perspective, this is a synonym
of aiming at a very good solution, rather than the optimal, as long as all no constraints
are violated. This is what we explored with Nimbus as a conclusion of the research
effort.

In the next section, we will discuss about the future work that could be conducted to
continue this journey and give more insights about the limitations and challenges of our
solutions.

5.2 Future Work

We presented several techniques to bridge the gap between the edge and cloud infras-
tructures. While our solutions were complete in terms of required functionalities, they
are still open to improvements. The infrastructure design still requires adjustments and
modifications to adapt to different use-cases and scenarios. Our edge-cloud platform is
based on unikernels which are still in their infancy and have much less support compared
to other well-established solutions such as Docker. When using Docker, a developer just
needs to embed their application into the container without no major changes required
to the actual service code. What the developer needs to learn is only how to use Docker.
With unikernels, there is also the extra burden of porting (and, eventually, modifying)
the original service code into the unikernels and compiling it against the underlying li-
bOS. Moreover, while unikernels are available in different languages (e.g. OCaml, C++,
etc.), their implementation can vary greatly in terms of functionality and maturity of the
build engine (e.g., MirageOS, IncludeOS). Libraries which are commonly available for
standard OSes require substantial work to be ported and used into an unikernel which
is by design built against a minimalist OS. These limitations call for sophisticated tools
able to automatically translate or adapt existing software artifacts to be directly used
inside an unikernel. For example, this extends also to our framework MirageManager.
In that case, the presence of an automated tool to build programmatically the execution
graph of the unikernel application logic would greatly reduce the developer effort. On
the other hand, unikernels benefit from a behavior defined at compile-time which opens
to the possibility of using formal proof management system like Coq [234] and Com-
pCert [235] (verified C compiler). These can help in verifying components of MirageOS
(such as the garbage collector), as well as to support hardware compilation to FPGAs for
datacenters or new experimental CPU targets such as the BERI processor [236]. Based
on this observations, it is important that future research on unikernels is aimed at low-
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ering this entry barriers for the developers to foster the adoption of this new technology
and help the proliferation of new open-source projects.

In terms of resource management, there is still considerable work to be done in order to
build a scalable edge-cloud platform able to serve many users. With Nimbus, we showed
how proper allocation of end user tasks can boost performance of real-time applications.
However, we left aside some aspects such as security and specifically policies to create
a fair environment. For example, we do not restrict an end-user to a maximum time
for which they can utilize the edge-cloud infrastructure. This can lead to numerous
problems: a malicious user might decide to offload tasks forever and on multiple servers
to leech resources from the infrastructure, which may lead to starvation. One solution
could be a credit system, where each user can only utilize services offered by the edge-
cloud by spending some virtual currency. Naturally, this can be based of largely explored
technologies such as blockchain and smart contracts [237]. Other possible approaches
could be introducing a fixed time limit after which the user is forcefully rescheduled.
However, all these solutions require users to be registered so that system can keep track
of their credit or the amount of time spent using the service.

Data and analysis has moved further out to the edge, with a wide range of sensors and
monitoring devices gathering information for almost every conceivable purpose. The by-
product of this trend is the inevitable temptation to exploit edge devices vulnerabilities,
compromise the data, or take over large edge networks to create botnets. Moreover,
edge devices are often deployed outside a centralized data infrastructure, making it
fundamentally harder to monitor from both a digital and physical security standpoint.
As part of our research on edge computing, we also looked into the topic of network
security with UIDS: a lightweight IDS deployable at the edge. While our solutions showed
great potential, it still falls short in addressing a few challenges. For example, signature-
based detectors are static in the sense that in order to detect new attacks an update is
necessary. Advances in machine learning make anomaly-based IDSes interesting as future
exploration venue due to their flexibility and capability to adapt and learn online new
attack vectors. Consequently, one possible future venue of exploration could be extending
UIDS with anomaly based detection using machine learning libraries. Eventually, this
could be combined with ECCO to create a network of IDSs leveraging federated learning
to constantly improve while making use of the distributed resources found at the edge.
Finally, IDS are just one component in the security landscape which cannot protect alone
an infrastructure. Therefore, further research is required to ensure privacy and security
of edge application providers to deliver an effective edge-cloud infrastructure.

Concluding, edge computing is an exciting and promising research field where multiple
challenges remain to be addresses. It has received significant attention from the research
community to resolve several pressing issues obstructing its real-world adoption. In this
thesis, we tackled primarily system research challenges by developing and improving from
the ground-up a unikernel orchestration framework addressing many short-comings of
current systems. Our work progressively improved with each contribution by adding
new fundamentals functionality (e.g., distributed task execution, stateful migration)
motivated by concrete use-cases. At the pinnacle of our edge computing journey, we
investigated research provisioning issues in large scale, distributed systems which have
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a key role in improving end-users experience - one of the crucial selling points of hybrid,
edge-cloud infrastructures.
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Acronyms

2PMT Two-Phase Multi Threaded.
3D Three Dimensional.

ABI Application Binary Interface.
AP Access Point.
API Application Programming Interface.
AR Augmented Reality.

BBUs Baseband Units.
BCI Brain-Computer Interfaces.
BT binary translation.

C-RAN Cloud Radio Access Network.
CDN Content Delivery Networks.
CPU Central Processing Unit.
CRIU Checkpoint/Restore In Userspace.

DAG Directed Acyclic Graph.
DC Datacenter.
DMF Data Manipulation Functions.
DoS Denial of Service.
DRB Data Resource Broker.
DS Design Science.
DTO Data Retrieval Operation.

ECDF Empirical distribution function.
EF Edge Function.
EN Edge Node.
ESes External Services.
ETSI European Telecommunications Standards Institute.

FaaS Function as a service.
FPS Frames per Second.

GPIO General-purpose input/output.
GPU Graphic Processing Unit.
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Acronyms

HMD Head-Mounted Display.

IaaS Infrastructure as a Service.
ICMP Internet Control Message Protocol.
ICT Information and Communication Technology.
IDS Intrusion Detection System.
IIoT Industrial Internet of Things.
IOMMU Input/Output Memory Management Unit.
IoT Internet of Things.
ISG Industry Specification Group.
IT Information Technology.

JVM Java Virtual Machine.

KVM Kernel-based Virtual Machine.

LibOS Library Operating System.
LOIT Low Orbit Ion Cannon.
LTE Long Term Evolution.
LV Lightweight Virtualization.

MCC Mobile Cloud Computing.
MD Mobile Device.
MEC Mobile Edge Computing.
MPC Multiparty Computation.
MT Multi Threaded.
MTW Metadata Task Wrapper.

NFV Network Function Virtualization.
NIST National Institute of Standard and Technologies.

OCI Open Container Initiative.
ORC Orchestrator.
OS Operative System.

P2P Peer-to-Peer.
PaaS Platform as a Service.
PC Personal Computer.
PCI Peripheral Component Interconnect.
PVM Para-Virtualized Machines.

QEMU Quick EMUlator.
QoE Quality of Experience.
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Acronyms

QoS Quality of Service.

RAM Random Access Memory.
RAN Radio Access Network.
RAT Radio Access Technology.
REST Representational state transfer.
RNC Radio Network Controller.
RRHs Radio Remote Heads.
RTT Round Trip Time.

SaaS Software as a Service.
SAC Sensor Access Controller.
SCADA Supervisory Control and Data Acquisition.
SLA Service Level Agreement.
SoC System-on-a-Chip.
ST Single Threaded.

TCP Transmission Control Protocol.

UDP User Datagram Protocol).
UI User Interface.

V2X Vehicle-to-Everything.
Virtual Reality VR.
VM Virtual Machine.
VMM Virtual Machine Monitor.
VPN Virtual Private Network.
VT Intel Virtualization Technology.

WLAN Wireless Local Access Network.
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neous ad hoc mobile cloud computing network. The Scientific World Journal,
2014, 2014.

[58] Yanmin Gong, Chi Zhang, Yuguang Fang, and Jinyuan Sun. Protecting location
privacy for task allocation in ad hoc mobile cloud computing. IEEE Transactions
on Emerging Topics in Computing, 6(1):110–121, 2015.

[59] Ahmed Hammam and Samah Senbel. A trust management system for ad-hoc
mobile clouds. In 2013 8th International Conference on Computer Engineering &
Systems (ICCES), pages 31–38. IEEE, 2013.

[60] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. In Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, pages 13–16, 2012.

97



Bibliography

[61] Jiang Zhu, Douglas S Chan, Mythili Suryanarayana Prabhu, Preethi Natarajan,
Hao Hu, and Flavio Bonomi. Improving web sites performance using edge servers
in fog computing architecture. In 2013 IEEE Seventh International Symposium
on Service-Oriented System Engineering, pages 320–323. IEEE, 2013.

[62] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog computing:
A platform for internet of things and analytics. In Big data and internet of things:
A roadmap for smart environments, pages 169–186. Springer, 2014.

[63] Tuan Nguyen Gia, Mingzhe Jiang, Amir-Mohammad Rahmani, Tomi Westerlund,
Pasi Liljeberg, and Hannu Tenhunen. Fog computing in healthcare internet of
things: A case study on ecg feature extraction. In 2015 IEEE international con-
ference on computer and information technology; ubiquitous computing and com-
munications; dependable, autonomic and secure computing; pervasive intelligence
and computing, pages 356–363. IEEE, 2015.

[64] Tanweer Alam. Iot-fog: A communication framework using blockchain in the
internet of things. arXiv preprint arXiv:1904.00226, 2019.

[65] Mohammad Aazam and Eui-Nam Huh. Fog computing and smart gateway based
communication for cloud of things. In 2014 International Conference on Future
Internet of Things and Cloud, pages 464–470. IEEE, 2014.

[66] Cheng Huang, Rongxing Lu, and Kim-Kwang Raymond Choo. Vehicular fog com-
puting: architecture, use case, and security and forensic challenges. IEEE Com-
munications Magazine, 55(11):105–111, 2017.

[67] Aleksandra Checko, Henrik L Christiansen, Ying Yan, Lara Scolari, Georgios Kar-
daras, Michael S Berger, and Lars Dittmann. Cloud ran for mobile networks—a
technology overview. IEEE Communications surveys & tutorials, 17(1):405–426,
2014.

[68] Jinkun Cheng, Yuanming Shi, Bo Bai, and Wei Chen. Computation offloading
in cloud-ran based mobile cloud computing system. In 2016 IEEE International
Conference on Communications (ICC), pages 1–6. IEEE, 2016.

[69] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie Lin, and
Xinyu Yang. A survey on the edge computing for the internet of things. IEEE
access, 6:6900–6919, 2017.

[70] Wei Yu, Guobin Xu, Zhijiang Chen, and Paul Moulema. A cloud computing based
architecture for cyber security situation awareness. In 2013 iEEE conference on
communications and network security (cNS), pages 488–492. IEEE, 2013.

[71] Zhijiang Chen, Guobin Xu, Vivek Mahalingam, Linqiang Ge, James Nguyen, Wei
Yu, and Chao Lu. A cloud computing based network monitoring and threat de-
tection system for critical infrastructures. Big Data Research, 3:10–23, 2016.

98



Bibliography

[72] A First Inside Look at Pokémon GO Battery Drain. http://

mobileenerlytics.com/a-first-inside-look-at-pokemon-go-battery-
drain-you-wont-catch-many-if-your-battery-dies-so-quickly/. Ac-
cessed: 2020-04-02.

[73] Charles L Phillips and Royce D Habor. Feedback control systems. Simon & Schus-
ter, Inc., 1995.

[74] Benjamin C Kuo. Automatic control systems. Prentice Hall PTR, 1987.

[75] Ronald Cramer, Ivan Bjerre Damg̊ard, et al. Secure multiparty computation. Cam-
bridge University Press, 2015.

[76] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[77] Rachit Agarwal, Jen Rexford, and with contributions from numerous workshop
attendees. Wide-area data analytics, 2020.

[78] Deep Learning – Past, Present, and Future. https://www.kdnuggets.com/2017/
05/deep-learning-big-deal.html. Accessed: 2020-09-07.

[79] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International journal of computer
vision, 115(3):211–252, 2015.

[80] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios
Protopapadakis. Deep learning for computer vision: A brief review. Computational
intelligence and neuroscience, 2018, 2018.

[81] Yanming Guo, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael S
Lew. Deep learning for visual understanding: A review. Neurocomputing, 187:27–
48, 2016.

[82] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent
trends in deep learning based natural language processing. ieee Computational
intelligenCe magazine, 13(3):55–75, 2018.

[83] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. Neural architectures for named entity recognition. arXiv preprint
arXiv:1603.01360, 2016.

[84] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144, 2016.

99

http://mobileenerlytics.com/a-first-inside-look-at-pokemon-go-battery-drain-you -wont-catch-many-if-your-battery-dies-so-quickly/
http://mobileenerlytics.com/a-first-inside-look-at-pokemon-go-battery-drain-you -wont-catch-many-if-your-battery-dies-so-quickly/
http://mobileenerlytics.com/a-first-inside-look-at-pokemon-go-battery-drain-you -wont-catch-many-if-your-battery-dies-so-quickly/
https://www.kdnuggets.com/2017/05/deep-learning-big-deal.html
https://www.kdnuggets.com/2017/05/deep-learning-big-deal.html


Bibliography

[85] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas
Blaschke. The rise of deep learning in drug discovery. Drug discovery today,
23(6):1241–1250, 2018.

[86] Maryam M Najafabadi, Flavio Villanustre, Taghi M Khoshgoftaar, Naeem Seliya,
Randall Wald, and Edin Muharemagic. Deep learning applications and challenges
in big data analytics. Journal of Big Data, 2(1):1, 2015.

[87] Xue-Wen Chen and Xiaotong Lin. Big data deep learning: challenges and per-
spectives. IEEE access, 2:514–525, 2014.

[88] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review. Pro-
ceedings of the IEEE, 107(8):1655–1674, 2019.

[89] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[90] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine
learning: Concept and applications. ACM Transactions on Intelligent Systems
and Technology (TIST), 10(2):1–19, 2019.

[91] Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen, and Min
Chen. In-edge ai: Intelligentizing mobile edge computing, caching and communi-
cation by federated learning. IEEE Network, 33(5):156–165, 2019.

[92] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui
Zhang, and Yi Zhou. A hybrid approach to privacy-preserving federated learning.
In Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security,
pages 1–11, 2019.

[93] Yongfeng Qian, Long Hu, Jing Chen, Xin Guan, Mohammad Mehedi Hassan, and
Abdulhameed Alelaiwi. Privacy-aware service placement for mobile edge comput-
ing via federated learning. Information Sciences, 505:562–570, 2019.

[94] Saraju P Mohanty, Uma Choppali, and Elias Kougianos. Everything you wanted to
know about smart cities: The internet of things is the backbone. IEEE Consumer
Electronics Magazine, 5(3):60–70, 2016.

[95] Quan Yuan, Haibo Zhou, Jinglin Li, Zhihan Liu, Fangchun Yang, and
Xuemin Sherman Shen. Toward efficient content delivery for automated driving
services: An edge computing solution. IEEE Network, 32(1):80–86, 2018.

[96] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. Edge
computing for autonomous driving: Opportunities and challenges. Proceedings of
the IEEE, 107(8):1697–1716, 2019.

[97] Tobias Höllerer and Steve Feiner. Mobile augmented reality. Telegeoinformatics:
Location-based computing and services, 21, 2004.

100



Bibliography

[98] Ronald Azuma, Yohan Baillot, Reinhold Behringer, Steven Feiner, Simon Julier,
and Blair MacIntyre. Recent advances in augmented reality. IEEE computer
graphics and applications, 21(6):34–47, 2001.

[99] Zhanpeng Huang, Pan Hui, Christoph Peylo, and Dimitris Chatzopoulos. Mobile
augmented reality survey: a bottom-up approach. arXiv preprint arXiv:1309.4413,
2013.

[100] How is Mobile AR Landing with Consumers? https://virtualrealitypop.com/
how-is-mobile-ar-landing-with-consumers-cbc4b14e5957. Accessed: 2020-
04-27.

[101] Latency – the sine qua non of AR and VR. http://blogs.valvesoftware.com/
abrash/latency-the-sine-qua-non-of-ar-and-vr/. Accessed: 2020-04-27.

[102] Tristan Braud, Farshid Hassani Bijarbooneh, Dimitris Chatzopoulos, and Pan Hui.
Future networking challenges: The case of mobile augmented reality. In 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS), pages
1796–1807. IEEE, 2017.

[103] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge. ACM SIGARCH Computer Architecture News, 45(1):615–
629, 2017.

[104] Zhanpeng Huang, Weikai Li, Pan Hui, and Christoph Peylo. Cloudridar: A cloud-
based architecture for mobile augmented reality. In Proceedings of the 2014 work-
shop on Mobile augmented reality and robotic technology-based systems, pages 29–
34, 2014.

[105] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. Glimpse: Continuous, real-time object recognition on mobile de-
vices. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems, pages 155–168, 2015.

[106] Dimitris Chatzopoulos, Carlos Bermejo, Zhanpeng Huang, and Pan Hui. Mobile
augmented reality survey: From where we are to where we go. Ieee Access, 5:6917–
6950, 2017.

[107] Toward Industry 4.0 With IoT: Optimizing Business Processes in an Evolv-
ing Manufacturing Factory. https://www.frontiersin.org/articles/10.3389/
fict.2019.00017/full. Accessed: 2020-09-08.

[108] Baotong Chen, Jiafu Wan, Antonio Celesti, Di Li, Haider Abbas, and Qin Zhang.
Edge computing in iot-based manufacturing. IEEE Communications Magazine,
56(9):103–109, 2018.

101

https://virtualrealitypop.com/how-is-mobile-ar-landing-with-consumers-cbc4b14e5957
https://virtualrealitypop.com/how-is-mobile-ar-landing-with-consumers-cbc4b14e5957
http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
https://www.frontiersin.org/articles/10.3389/fict.2019.00017/full
https://www.frontiersin.org/articles/10.3389/fict.2019.00017/full


Bibliography

[109] Pankesh Patel, Muhammad Intizar Ali, and Amit Sheth. On using the intelligent
edge for iot analytics. IEEE Intelligent Systems, 32(5):64–69, 2017.

[110] Dimitrios Georgakopoulos, Prem Prakash Jayaraman, Maria Fazia, Massimo Vil-
lari, and Rajiv Ranjan. Internet of things and edge cloud computing roadmap for
manufacturing. IEEE Cloud Computing, 3(4):66–73, 2016.

[111] Takuo Suganuma, Takuma Oide, Shinji Kitagami, Kenji Sugawara, and Norio
Shiratori. Multiagent-based flexible edge computing architecture for iot. IEEE
Network, 32(1):16–23, 2018.

[112] Thomas Erl. Service-oriented architecture: concepts, technology, and design. Pear-
son Education India, 1900.

[113] What is orchestration? https://www.redhat.com/en/topics/automation/what-
is-orchestration. Accessed: 2020-09-09.

[114] Bukhary Ikhwan Ismail, Ehsan Mostajeran Goortani, Mohd Bazli Ab Karim,
Wong Ming Tat, Sharipah Setapa, Jing Yuan Luke, and Ong Hong Hoe. Eval-
uation of docker as edge computing platform. In 2015 IEEE Conference on Open
Systems (ICOS), pages 130–135. IEEE, 2015.

[115] Muhammad Alam, Joao Rufino, Joaquim Ferreira, Syed Hassan Ahmed, Nadir
Shah, and Yuanfang Chen. Orchestration of microservices for iot using docker and
edge computing. IEEE Communications Magazine, 56(9):118–123, 2018.

[116] Luciano Baresi, Danilo Filgueira Mendonça, and Martin Garriga. Empowering low-
latency applications through a serverless edge computing architecture. In European
Conference on Service-Oriented and Cloud Computing, pages 196–210. Springer,
2017.

[117] Eyal de Lara, Carolina S Gomes, Steve Langridge, S Hossein Mortazavi, and
Meysam Roodi. Hierarchical serverless computing for the mobile edge. In 2016
IEEE/ACM Symposium on Edge Computing (SEC), pages 109–110. IEEE, 2016.

[118] Lambda@Edge. http://docs.aws.amazon.com/lambda/latest/dg/lambda-
edge.html. Accessed: 2020-09-09.

[119] Dawson R Engler, M Frans Kaashoek, and James O’Toole Jr. Exokernel: An
operating system architecture for application-level resource management. ACM
SIGOPS Operating Systems Review, 29(5):251–266, 1995.

[120] Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul Barham,
David Evers, Robin Fairbairns, and Eoin Hyden. The design and implementation
of an operating system to support distributed multimedia applications. IEEE
journal on selected areas in communications, 14(7):1280–1297, 1996.

102

https://www.redhat.com/en/topics/automation/what-is-orchestration
https://www.redhat.com/en/topics/automation/what-is-orchestration
http://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html


Bibliography

[121] Donald E Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C
Hunt. Rethinking the library os from the top down. In Proceedings of the sixteenth
international conference on Architectural support for programming languages and
operating systems, pages 291–304, 2011.

[122] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
Unikernels: Library operating systems for the cloud. ACM SIGARCH Computer
Architecture News, 41(1):461–472, 2013.
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Publication Summary

We looked at how Lightweight virtualization (LV) technologies have refashioned the
world of software development by introducing flexibility and new ways of managing and
distributing software. Today, edge computing complements today’s powerful centralized
data centers with a large number of distributed nodes that provide virtualization close
to the data source and end users. This emerging paradigm offers ubiquitous process-
ing capabilities on a wide range of heterogeneous hardware characterized by different
processing power and energy availability.

In this article, we present an in-depth analysis on the requirements of edge computing
from the perspective of three selected use cases that are particularly interesting for har-
nessing the power of the Internet of Things. We discuss and compare the applicability of
two LV technologies, containers and unikernels, as platforms for enabling the scalability,
security, and manageability required by such pervasive applications that soon may be
part of our everyday lives. Additionally, we identify open problems and highlight future
directions to serve as a road map for both industry and academia.

Author’s Contribution

The paper idea originated with Roberto Morabito, Aaron Yi Ding, and I. Roberto Mora-
bito and I equally contributed to the content of the article. I contributed to the formu-
lation of the problem and discussed the applicability of a specific form of Lightweight
Virtualization to a set of application scenarios. In particular, I was involved in the anal-
ysis of how unikernels can be applied to sensor data processing in IoT scenarios and for
real-time applications. The discussion section was a shared work between all the authors
and I specifically focused on elasticity in service provisioning and application portability.
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Consolidate IoT Edge Computing with
Lightweight Virtualization

Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar, and Jörg Ott

Abstract—Lightweight Virtualization (LV) technologies have
refashioned the world of software development by introducing
flexibility and new ways of managing and distributing software.
Edge computing complements today’s powerful centralized data
centers with a large number of distributed nodes that provide
virtualization close to the data source and end users. This
emerging paradigm offers ubiquitous processing capabilities on a
wide range of heterogeneous hardware characterized by different
processing power and energy availability. The scope of this
article is to present an in-depth analysis on the requirements
of edge computing in the perspective of three selected use cases
particularly interesting for harnessing the power of the Internet
of Things (IoT). We discuss and compare the applicability of
two LV technologies, containers and unikernels, as platforms
for enabling scalability, security and manageability required by
such pervasive applications that soon may be part of our every-
day life. To inspire further research, we identify open problems
and highlight future directions to serve as a road map for both
industry and academia.

Index Terms—IoT, Edge Computing, Container, Unikernel

I. INTRODUCTION

OVER the last decade, the development of the Internet
of Things (IoT) has been uphold by the cloud-based

infrastructures that aim to cope with the increasing number of
IoT services provided by various connected devices. From the
initial design, IoT was conceived as extending the Internet with
a new class of devices and use cases [1]. This has obviously
generated an intrinsic association between IoT and cloud,
where the cloud-based network infrastructures are optimized to
support a multitude of IoT-centric operations such as service
management, computation offloading, data storage, and off-
line analysis of data.

However, this notion of cloud-connected IoT deployment
assumes that most IoT edge networks need to be connected
to the cloud, e.g., through some edge gateway and tunnel
approach. This centralized model has been challenged recently
for meeting the more and more stringent performance require-
ments of IoT services, especially in terms of latency and
bandwidth. In specific, the existing model is not suitable when:
a) IoT edge networks create data that needs to be accessed
and processed locally, b) piping everything to the cloud and
back is not acceptable under delay constraints, and c) the
amount of data is too large to transfer to the cloud (in real-
time) without causing congestion on the backhaul. Clearly,
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Figure 1: A subset of use cases and services enabled by IoT
edge computing

the highly fragmented and heterogeneous IoT landscape needs
to encompass novel and reactive approaches for dealing with
these challenges.

One emerging paradigm, edge computing, represents a new
trend to improve the overall infrastructure efficiency by de-
livering low-latency, bandwidth-efficient and resilient services
to IoT users. Although this new approach is not intended to
replace the cloud-based infrastructure, it expands the cloud by
increasing the computing and storage resources available at
the network edge. One typical example is IoT edge offloading
[2], which revisits the conventional cloud-based computation
offloading where mobile devices resort to resourceful servers
to handle heavy computation [3]. To cater for the demands
of new IoT services, the computation is reversely dispatched
by the servers to constrained devices deployed at the network
edge, close to users and data generators.

By harnessing the power of distributed edge resources, the
IoT edge computing model can support novel service scenarios
such as, for example, autonomous vehicles/drones, smart cities
infrastructure and augmented reality (AR). As highlighted in
Figure 1, these three representative domains intersect with
each other. Edge computing is the linking knot that helps
spawn and promote appealing joint services.

Concerning the key aspects of edge computing including
scalability, multi-tenancy, security, privacy and flexibility, the
fast evolving lightweight virtualization technologies (discussed



in Section IV) have been sorted to fulfill the requirements
given their matching features. Meanwhile, we still lack com-
prehensive guidelines to illustrate how can we exploit the
full potential of lightweight virtualization to enhance edge
computing, especially for those pleading IoT use cases.

As a solid step towards realizing the IoT edge computing
vision, we aim to answer through this article a major question:
Can Lightweight Virtualization (LV), in its different flavors, be
exploited for empowering edge architectures and be suitable
in a wide range of IoT pervasive environments? Our use-
case study, comparison analysis, and prospect outlook further
address the following questions:
• Which LV features can match the increasingly strict re-

quirements of IoT services in constrained environments?
• How can LV and IoT edge scenarios be efficiently utilized

together?
• Which challenges must be tackled to effectively exploit

the benefits introduced by LV in this context?
The remainder of this article is organized as follows.

Motivations of the proposed work are presented in Section
II. Section III introduces first the requirements that different
Edge for IoT cases entail, and then the suitability of LV on
mitigating and satisfying them. We introduce LV technologies
and illustrate three specific use cases in Section IV and V.
Finally, we unveil the open issues and challenges before
concluding the article.

II. MOTIVATION

In the context of IoT, edge computing introduces an in-
termediate layer in the conventional IoT-Cloud computing
model. The envisioned edge-driven IoT environment consists
of three components: IoT devices, edge layer, and cloud
backend. Being a central part of the ecosystem, the edge layer
owns the crucial role of bridging and interfacing the central
cloud with IoT. Essentially, an edge element in this layer
can be characterized by a small to medium size computing
entity that aims to provide extra computing, storage, and
networking resources to the applications deployed across IoT
devices, edge and cloud. Depending on the specific scenario,
its functionalities can be executed in cellular base stations,
IoT gateways, or more generally, low-power nodes and small
data-centers. These may be owned and operated by the user,
by a cloud provider or a telecom operator (in Mobile Edge
Computing).

Although the placement of a “middle layer" between the
end devices and cloud is an architectural concept that is widely
utilized in common network infrastructures, such conventional
middle layer targets mainly connectivity, routing, and network-
oriented functionalities. For example, Network Function Virtu-
alization (NFV) [4], [5] virtualizes typical network elements,
such as firewalls, network address translators, switches, and
core network components.

For IoT ecosystems, edge computing aims to meet IoT
service providers’ demand of owning a dedicated infrastructure
that is independent of a given technology or use case, and
which is capable of satisfy the demanding IoT services’
performance requirements. More importantly, in contrary to

the plain middle layer solutions, the IoT-centric edge com-
puting must entail programmability and flexibility to deliver
ubiquitous processing capabilities across a wide range of
heterogeneous hardware. For instance, besides managing IoT
home network, the edge layer can simultaneously provide
image processing for home camera and data pre-processing
operations.

Obviously, the heterogeneous characteristics of various in-
stances and applications deployed on top of the edge layer
will generate unique challenges that need to be addressed.
From the architectural perspective, this implies that edge layer
has to efficiently and mutually cooperate both with cloud-
based services and IoT devices, by acting as a bridge between
elements that require distinct way of interaction.

In this context, it is crucial to equip the edge layer with
tools that allow a flexible, performing, and automated way of
efficient services provisioning. Hence, edge elements have to
embed service provisioning methods that are independent of
the managed applications and communication patterns, and at
the same time suitable to different types of traffic and to the
application needs, through a cross-layer support. The key is
to ensure a virtuous trade-off between design requirements,
specific performance targets, and applications manageability
spanning the entire three-tier IoT edge computing architecture.

III. EMPOWERING IOT EDGE COMPUTING WITH LV
To fully attain the potential of edge computing for IoT, we

need to address four concerns: abstraction, programmability
interoperability, and elasticity. In particular for the three-tier
IoT edge computing architecture, it is crucial to provide simple
and yet efficient configuration and instantiation methods that
are independent of the technologies used by different IoT and
cloud providers. The tools embedded in edge layer should
share common functionalities, exploit common APIs for or-
chestrating interconnections different networking technologies.

To help us acquire a synoptic view, we highlight the
dominant requirements of representative use cases in Figure
2, which encompasses scalability, multi-tenancy, privacy &
security, latency, and extensibility.

Compared to alternative virtualization solutions such as
hypervisors, we envision a trend towards using lightweight
virtualization (LV) technologies in the IoT edge computing.
These emerging software solutions can provide the needed
supports in terms of hardware abstraction, programmability
interoperability, and elasticity. A direct benefit that emerges
from employing LV in the IoT edge domain is by avoiding
the strict dependency on any given technology or use case.
Within a lightweight virtualized instance, either container
or unikernel (discussed in Section IV), we can efficiently
deploy applications designed to manage and use extremely
different technologies. In addition, equipping edge elements
with newer services will be made easier since we only need to
configure and instantiate stand-alone virtualized applications.
This feature avoids complex re-programming and updating
operations that are part of the software lifecycle management.
Through LV, such complexity is circumvented because updat-
ing a particular service requires changes only within a specific
virtualized instance.
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Scenarios Requirements

Scalability Multi-tenancy Privacy & Security Latency Extensibility (Open API)
Autonomus Vehicles Non critical Non critical Critical. Autonomous vehicles possess sensitive 

information about the user. Moreover, the con-
stant need of sensors data for navigation make 
cars a primary target for malicious users.

Critical. Cars have strict real-time 
requirements

Non critical. Each car manufacturer will 
probably run exclusively their own software 
to ensure security and reliability.

Augmented Reality Critical Critical Critical when processing sensitive multimedia 
streams.

Critical. AR applications require 
real-time information feed to 
ensure a smooth and acceptable 
experience.

Critical. Open API are important in this 
case to enable new services and features.

Smart Sensors Networks Critical Critical due to the num-
ber of potential users.

Depends on the specific Smart context (for 
Smart Health it’s critical but not for Smart 
Environment). Strict control over which data 
can be public is required.

Depends. For example, in the case 
of Machine Type Communications 
(MTC) it’s critical.

Critical to enable the creation of an ‘IoT 
Marketplace’ where developers can offer 
new and innovative application exploiting 
collected data.

Smart Grid Non critical. Data and 
messages are exchanged at a 
fixed, predefined rate.

Non critical. The 
infrastructure is usually 
controlled by a single 
provider.

Critical. Disclosure and analysis of energy con-
sumption information can lead to user profiling 
and tracking.

Critical especially for messages as 
Phasor Measurement Unit (PMU) 
or Advanced Metering Infrastruc-
ture (AMI).

Non critical

E-Health Critical. IoT healthcare net-
works must be able to meet 
the growing demand of ser-
vices from both individuals 
and health organizations.

Critical as multiple 
healthcare organizations 
and/or heterogeneous 
IoT medical devices 
could share the same 
network infrastructure.

Critical. IoT-edge medical devices deal with 
personal heath data, which need to be securely 
stored. Integrity, privacy, and confidentiality 
must be kept.

Depends. It’s critical in use-cases 
as remote surgery. Nevertheless, 
response time can be acceptable in 
other scenarios.

Critical to support new application able to 
offer a more accurate patients health condi-
tion monitoring.

Distributed Surveillance Critical. Several control 
units are needed in order to 
grant the system of better 
usability and robustness.

Non-critical. A single 
provider usually controls 
the infrastructure.

Critical considering the sensitive information 
handled.

Critical to promptly identify 
suspects or recognize on-going 
crimes.

Non-critical. Same as Autonomous vehicles. 

Big Data Analytics Critical. A big data analytics 
system must be able to 
support very large datasets. 
All the components must be 
scalable to accommodate the 
constantly growing amount 
of data to be handled.

Critical. A single Big 
Data system has to be 
able to co-locate different 
use cases, applications, 
or data sets.

Critical. Users share large amount of personal 
data and sensitive content through their person-
al devices towards applications (e.g., social net-
works) and public clouds. Equipping Big Data 
systems of secure frameworks capable to store 
and manage user data with high sensitiveness 
represents a critical aspect.

Non critical Critical to improve and deploy different 
algorithms and tools.

Network Function Vir-
tualization (NFV)

Critical. Demand of new 
services is high and con-
stantly growing.

Critical. Resources are 
shared among custom-
ers. A large number of 
multi-tenant networks 
run over a physical 
network.

Critical. The use of additional software (e.g., 
hypervisors, containers or unikernels) ex-
tends the chain of trust. Resource pooling and 
multi-tenancy bring further security/privacy 
threats.

Critical. NFV need to leverage 
real-time delivery services. NFV 
introduces additional sources of 
latency through the virtualization 
layer.

Non critical

Figure 2: Example of Edge-IoT scenarios requirements

To foster integration with the cloud, LV can also enable
cross-platform deployment, allowing a common execution
environment across cloud, edge elements, and even constrained
IoT devices. The cross-platform deployment benefit introduced
by LV further allows both cloud and edge, regardless of
their computational hardware capability, to “speak the same
language". As suggested in [2], using the same LV instance
will enable us to efficiently run them both at the edge and in
the cloud, hence achieving a decentralized IoT edge service
provisioning architecture. This consequently meets the strict
performance requirements of demanding IoT scenarios, and
further ensures the crucial requirement of multi-tenancy.

We also note that there are scenarios where virtualization
technology is not a suitable option, for manifold reasons. In
general, virtualization entails additional delay and resources
utilization, which can be challenging for certain real-time or
mission-critical tasks that demand low and predictable latency.
Moreover, there are fundamental hardware requirements to run
a virtualized environment (e.g. a CPU with specific architec-
tural features) that are not easily found on low-end IoT and
edge devices.

IV. OVERVIEW OF LIGHTWEIGHT VIRTUALIZATION

System virtualization has drastically evolved in the last
years offering system architects and developers a plethora of

tools to exploit. Therefore, understanding how and when to
utilize a specific technology based on the hardware constraints
and applicative requirements is a crucial step of the system
design phase. Shifting our focus on edge computing and
IoT, we identify two main candidates that could address the
challenges unique to this domain: containers and unikernels.

Figure 3 presents both quantitative metrics and architectural
differences between the aforementioned technologies, high-
lighting their main characteristics.

A. Container-based Virtualization: Docker

Container-based virtualization provides a different level of
abstraction in terms of virtualization and isolation when com-
pared to other virtualization solutions. In particular, containers
can be considered as one of the lightweight alternatives to
hypervisor-based virtualization. The conventional hypervisor-
based virtualization has been the de facto technology used
during the last decade for implementing server virtualization
and isolation. Hypervisors operate at the hardware level — that
is, building customizable virtual hardware and virtual device
drivers — thus supporting standalone Virtual Machines (VMs)
that are independent and isolated from the underlying host
system. In each VM instance, a full Operating System (OS)
is typically installed on top of the virtualized hardware, thus
generating large VMs images. Furthermore, the emulation of
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LV Technique Property

Instantiation time Image size Memory footprint Programming language dependency Hardware portability Live migration support

Virtual Machine
•	 KVM
•	 QEMU

~5/10 secs ~1000 MBs ~100 MBs No High Yes

Container
•	 Docker (http://www.docker.com/)
•	 rkt (https://coreos.com/rkt)
•	 OpenVZ https://openvz.org/
•	 LXC https://linuxcontainers.org/

~800/1000 msecs ~50 MBs ~5 MBs No High No

Unikernel 
•	 MirageOS (https://mirage.io/)
•	 HaLVM (http://galois.com/project/)
•	 IncludeOS (www.includeos.org)
•	 ClickOS (http://cnp.neclab.eu/clickos/)
•	 OSv (osv.io)

~< 50 msecs ~< 5MBs (bundle) ~8 MBs Yes (i.e., MirageOS unikernels can only be 
written in OCaml)

High No. Requires manual imple-
mentation

(a)

(b)

Figure 3: LV techniques comparison. (a) Quantitative analysis; (b) Core architectural differences

virtual hardware devices and related drivers produces non-
negligible performance overhead.

Differently, containers implement processes isolation at the
OS level, thus avoiding the virtualization of hardware and
drivers [6]. In specific, containers share the same OS kernel
with the underlying host machine, meanwhile making it pos-
sible to isolate stand-alone applications that own independent
characteristics, i.e., independent virtual network interfaces,
independent process space, and separate file systems. This
shared kernel feature allows containers to achieve a higher
density of virtualized instances on a single machine thanks to
the reduced image volume.

Containers have achieved much more relevance and prac-
tical use recently with the advent of Docker, a high-level
platform that has made containers very popular in a short
time frame. Docker introduces an underlying container engine,
together with a practical and versatile API, which allows
easily building, running, managing, and removing container-
ized applications. A Docker container, which is a runnable
instance of Docker image, uses a base image stored in specific
private or public registries. Docker uses an overlay file-system
(UnionFS) to add a read-write layer on top of the image.
UnionFS allows to store Docker images as a series of layers
and consequently saving disk space. In fact, the different image
layers can be cached in the disk allowing to speed up the
building process, and re-use the same cached layer for the
building of different images.

The lightweight features embedded in containers ease the
integration of such technology in various networking fields.
In specific to IoT edge computing, containers can enable us

to efficiently run containerized applications even in devices
characterized by lower processing capabilities, such as Single-
Board Computers [7].

B. Library Operating Systems: Unikernels
Unikernels are single-purpose appliances that are at compile

time specialized into standalone kernels [8], and sealed against
modification after deployment. The concept of unikernels has
emerged from the observation that most applications running
in the cloud do not require many of the services coming with
common operating systems. Additionally, unikernels provide
increased security through a reduced attack surface and better
performance by dropping unnecessary components from the
applications.

Unikernels were designed initially with the cloud in mind
but their small footprint and flexibility make them fit also
well with the upcoming IoT edge ecosystem as illustrated
through different research attempts [9]-[2]. The main differ-
ences among existing unikernel implementations sprout from
the underlying programming language in use. MirageOS [8]
and HaLVM are unikernels based on functional languages
with pervasive type-safety in the running code. Other solutions
like IncludeOS and ClickOS are C++ unikernels; the former
offering a C++ platform to which bind generic applications,
while the latter is highly specializing in offering dynamic
network processing (based on Click modular router). OSv is
based on Java and therefore heavier than the others, but more
flexible.

Security and unikernels are tightly coupled. The attack
surface of a unikernel is strictly confined to the application
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Figure 4: a) Vehicular Edge Computing scenario in its entirety. Vehicular-to-Edge (V2E) interactions examples: b) Car-to-Car
V2E communication, c) and Base Station-to-Car V2E communication; d) Container-based virtualization is used for an easier
OBU’s customization. Furthermore, within the same vehicle orchestration tools are exploited for task offloading among different
OBUs.

embedded within. There is no uniform operating layer in a
unikernel, and everything is directly compiled into the applic-
ation layer. Therefore, each unikernel may have a different
set of vulnerabilities, which implies that an exploit that can
penetrate one may not be threatening the others. Unikernels are
principally designed to be stateless. Therefore, they are perfect
to embed generally algorithms (e.g. compression, encryption,
data aggregation functions) or NFV.

V. USE-CASE SCENARIOS

In this section, we present three use cases matching the
scenarios presented in Figure 1. Additionally, we illustrate the
reasons for adopting a specific LV technology for each case.

A. Towards the Vehicular Edge Computing

The importance of virtualization in vehicular scenarios has
been widely acknowledged in the past. Vehicular Cloud-
Computing (VCC) represents an efficient architectural model
in supporting the Internet of Vehicles (IoV) [10]. However, we
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The air pollution server (datacenter) selects 
and offloads tasks towards the edge stations. 
Part of the complete application logic running 
in the Cloud is selected, extracted and recom-
piled in the shape of a unikernel. Each func-
tionality is embedded in a different unikernel 
(MirageOS).

Edge devices are connected to specific sub-
sets of sensor nodes, geographically distrib-
uted. Therefore, from each edge device we can 
gather insights about the conditions of a specif-
ic area of the city.

Each MirageOS unikernels run inside the 
Xen Hypervisor as a ParaVirtualized Machine 
(PVM). In this case, it embeds the logic to cal-
culate the AQI (or part of it). Additionally, there 
is an orchestration layer that monitors the exe-
cution of the unikernels and communicates with 
the Cloud.

Figure 5: Air pollution scenario. An offloadable task is Air Quality Index (AQI) calculation, a number used by government
agencies to communicate to the public how polluted the air currently is or how polluted it is forecast to become. Calculation
of the AQI can be executed locally by edge nodes enhancing real-time monitoring.

envision the need to establish a Vehicular Edge Computing
(VEC) paradigm, which will play a crucial role in future
development of more efficient Vehicle-to-Everything (V2X)
systems. VEC can cope with the increasingly strict require-
ments of V2X applications, and will rely on the growing pro-
cessing capabilities that the different actors of IoV encompass,
including cars’ On-Board Unit (OBU), Edge Elements (EEs),
Cloud Services. In VEC environments, various units can play
the role of EE. Base stations, IoT gateways, and other vehicles
themselves can operate as EE by executing specific tasks
e.g., lightweight data mining operations, generic off-loading
processing, dashcam images filtering, etc. In such context, LV
can enable the VEC paradigm, and be exploited in multiple
scenarios, spanning from an efficient and flexible customiza-

tion of cars’ OBU to Vehicular-to-Edge (V2E) interactions.
Figure 4 depicts the VEC scenario in its entirety (Fig. 4a),

together with practical examples of the way in which LV can
be employed in V2E Interactions (Fig. 4b-c) and distributed
In-Car Platforms (Fig. 4d).

V2E Interactions. Differently from already well-
established Vehicular-to-Vehicular (V2V) communication,
V2E aims to encompass computation offloading, tasks
outsourcing, and software management operations. In
practice, LV-enabled OBU can execute a specific task issued
by another vehicle or any other EEs, and vice versa, as shown
in the two examples shown in Fig. 4b-c.

In-Car Platforms. Container-based virtualization can be
used for OBUs customization. It offers high flexibility in the
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platform’s software management, and allows overcoming the
complex software updating procedures required by OBUs [11].
Through conventional VM, car manufacturers can access all
CAN (Controller Area Network) bus sensors through OBD and
dashcam. However, given OBUs are embedded systems with
limited computational resources, LV’s lightweight features
avoid the performance overhead and allow scaling up/down
the running applications according to specific priorities. Fur-
thermore, by taking into consideration that several OBUs can
be distributed within a car, virtualization orchestration tools
can be used for OBUs’ tasks outsourcing — still by following
specific OBU resource management policies. More details
about the usage of LV in In-Car platforms can be found in
Fig. 4d

B. Edge Computing for Smart City
In the context of Smart City, the measurement of envir-

onmental data has become an important issue especially for
highly crowded metropolis. Currently, air pollution monitoring
is achieved with a sparse deployment of stationary, expensive
measurement units embedding both sensors1 and computing
units. Air pollution is predicted based on the measured data
in combination with complex mathematical models [12]. Since
the cost of deploying and maintaining such pollution station
are often prohibitive, we envision crowd-sensing as a tangible
solution that combines LV and edge computing.

Edge computing offers resources close to the crowd-sensing
entities, which can offload through a direct connection their
collected data without using a mobile connection. LV al-
lows to offload, distribute and execute part of the required
mathematical computation on the EEs without worrying about
compatibility issues. For instance, multiple LV images can
be created on demand, each one containing only the code
necessary to process the data of a single sensor. The partial
results will be then subsequently uploaded to a more powerful
edge device (e.g. edge data-center) to be merged. Figure 5
provides more details regarding how unikernels can support
both the execution of specific algorithms related to air pol-
lution control and provide pre-processing of input data for
simulations running in the Cloud.

The described approach can reduce the load on the core
network, end-to-end latency and also the cloud (and air
pollution stations) provisioning costs. Regarding specific LV
technology, we consider unikernels a promising candidate. The
algorithms used to assess air pollution levels are generally
static and stateless. In other words, they can be considered as
black-boxes with a defined range of inputs/outputs. In case of
necessity, the algorithm can be simply changed by replacing it
with a new unikernel instance without incurring a long network
transfer time2.

C. Augmented Reality
Wearable devices are typically resource-constrained com-

pared to computer hardware of same vintage PC. The core

1Usually gas detection sensors (NO, NOx , O3, CO, CO2 and particulate
matter) plus humidity, rain detection and wind speed/direction.

2Unikernels are, by design, much smaller than other virtualization tech-
niques.

features of a wearable/mobile device are light-weight, comfort,
design and battery life. CPU speed, memory and system
capabilities are only secondary, contrary to what are required
by the PC market. Therefore, it is not surprising that, overall,
wearable/mobile devices are not designed to run computation-
ally intensive tasks.

A common approach to solve the problem is offloading
AR tasks to cloud services in order to reduce the power con-
sumption on the device and cope with, eventually, insufficient
mobile processing. The drawback is that using cloud service
will introduce additional latency, which is crucial for real-time
applications. This is especially important for AR applications,
where responsiveness and user immersion are paramount.
Humans are extremely sensitive to delays affecting real-time
interactions (e.g., a phone call). Different studies revealed
the speed at which the human brain can identify faces in a
dark scene and the requirements of virtual reality application
to achieve perpetual stability [13]-[14]. Longer delays in
such highly interactive and multimedia-based applications will
lower the end-users’ experience.

An use cases where there is a strong interplay between
local computational resources and AR (or, broadly speaking,
computer vision) is augmented windshields for autonomous
vehicles. The driver, at this point, passive, might shift is
attention completely on the windscreen instead of checking
the console in search for speed information. Additionally, the
windshield will also provide traffic conditions information,
personal agenda, news feed, gaming interfaces, social networks
and so forth. In order to craft and manage such a visually-rich
experience, an edge board mounted on the car is considered
necessary.

Therefore, with the support of edge computing and LV,
we have the possibility to offload expensive image processing
tasks to EEs in proximity instead of resorting to the cloud back
ends. Therefore, we can limit the latency impact, assuming
that the computation time is device-invariant. The use of
virtualization in such context is additionally motivated by the
following factors: multi-tenancy (i.e., multiple users executing
multiple tasks) and tasks isolation for privacy.

For this specific use case, a combination of Docker and
Unikernel represents a potential approach, as shown in Figure
6. A Docker image containing multiple unikernel can be
composed and shipped, each one representing a different
AR stage/task. Therefore, the Docker image can offer the
orchestration and control API to external applications while,
under the hood, unikernels would take care of running the
required computations.

VI. OPEN ISSUES AND CHALLENGES

In this section, we discuss the technical challenges for
integrating LV into IoT edge computing and further identify
open directions for future research.

A. Orchestration and Monitoring

Orchestration of edge elements (EE) and cloud architectures
brings several challenges. Edge-IoT scenarios require specific
tools to deal with the different processor architectures and
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The orchestration and control layer takes care of monitoring 
and organizing execution and pipelining the unikernels.

Each unikernel represent a single-purpose task. In the case of 
augmented reality, such tasks could be image processing, 
tempalte matching, object recognition and so on. In our 
execution model, we require such tasks to be non cross-corre-
lated, in order to build a loop-free execution pipeline.
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wrapper composed of a container embedding a collection of 
unikernels. In the figure, a unikernel is represented by the “f” 
box.
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Each edge device hosts the same environment, but the 
collection of unikernel is different based on the capabilities 
(I/O interfaces, CPU, RAM) and available data possesed by 
the hosting device.

1. Matching Phase. It’s the phase during which the 
orchestrator identify a group of unikernels (each represent-
ing a specific function) to be pipelined.
2. Pipelining Phase. In this phase, the selected unikernels 
are opportunely pipelined based on their function.
3. Execution Phase. The pipeline is started and, after 
termination, the result is ready to be sent to devices in 
proximity and to the Cloud.

A B C

Figure 6: A. Biker receiving personalized advertisements rendered in augmented reality on his smart glasses; B. A smart car
populating its augmented windshield with contextualized, live feed information; C. Augmented smart home, where we control
IoT devices in proximity through virtual interfaces.

storage capacity of EEs and cloud services. Controlling the
network traffic requires to orchestrate cloud and edge, an
increasingly challenging task with manifold EEs deployed.
Hence, it becomes crucial deploying lightweight orchestration
modules that do not overburden the EE, and that seeks
a fair balance between synchronization and network load.
Other key aspects concern the definition of optimized policies
for an efficient vertical scaling, in which applications are
automatically prioritized and scaled up/down between EE and
Cloud, according to specific QoS requirements or computing
resources saturation of EEs. Mobility is also a relevant aspect.
User devices might move in relation to the edge-processing
device providing the service. Therefore, the service may need
to be re-deployed multiple times at different locations to serve

transparently mobile users. In particular, if the service is
specific to an individual user, the number of transfers may
be high. Destroying and re-deploying is preferred instead of
moving the service together with its running state. For cloud-
native service the general recommendation is to avoid storing
state locally or only to use disposable state. For services
requiring local state, the service must store the current state at
an external stable location before exiting and load it again
on restart. Particular attention must be paid to ensure that
the new edge node has available resources for serving the
new device, and the platform may provide alternative nodes
or prioritization among services in case of over allocation.

As regards as monitoring solutions, both technologies need
high-performing, lightweight and scalable monitoring frame-
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works. This requirement is strictly related to the fact that
these tools may need to run on EEs characterized by lower
resource computation capabilities. Another key requirement
for monitoring engines is the possibility to track on real-
time the individual resources’ of each virtualized instance.
Implementation of such frameworks becomes, in parallel with
orchestration mechanisms, crucial in resource optimization
and on developing efficient edge-cloud instances-placement
algorithms and policies.

B. Security and Privacy

In the analyzed domain, one challenge is the certification
of virtualized applications. We need to guarantee their au-
thenticity and validity, by including a signing and validation
infrastructure to discriminate legit from tampered instances.
Without such mechanisms, there is the concrete risk of execut-
ing malicious code and infringe the security requirements. It is
crucial to encourage the development of lightweight security
mechanisms, which take into account the strict requirements
of IoT applications/scenarios and not impair the lightweight
features of the analyzed virtualization technologies, preserving
their capacity to not generate performance overhead. From
the privacy perspective, EEs may be shared between multiple
tenants. It is crucial to be able to isolate tenants’ data, but also
controlling the use of tenants’ dedicated resources — e.g.,
CPU and memory. Finally, sharing data between tenants at
the EE level, without going through the cloud-infrastructure,
requires the definition of EE policies and specific access
control mechanisms.

C. Standards and Regulations

IoT and EC are developing faster than standards and
regulations. The presence of multiple industry partners and
researchers working in this field gave birth to different rami-
fications and interpretations of the same paradigm. Without
standards and regulations, merging different approaches will
be a non-trivial task exacerbated by the heterogeneity of the
involved technologies. For LV technologies, lately there has
been a growing effort to lay some guidelines and describe the
challenges in the process of building NFV platforms [5]. Nev-
ertheless, this only partially covers the type of functionalities
we advocate to offload to EE nodes. Therefore, we consider
necessary an additional standardization effort which seeks to
lay down precise guidelines towards the employment of LV in
a wider range of IoT use-case scenarios.

D. Elasticity in service provisioning

This feature is strictly dependent to the LV engines capacity
of quickly allocating/deallocating virtualized instances. Data
reported in Table 3a clearly show how both container and unik-
ernel can promptly scale up/down. Furthermore, LV API also
allow to freeze the execution of an instance and quickly restore
it through checkpoint/restore mechanisms. However, there is
still a lack of research to evaluate the interactions among
multiple EEs, without neglecting that current LV engines
implementations not provide fully support for live migration.

Specific frameworks that support proactive service migrations
for stateless applications have been already proposed [15].
However, support for stateful applications migration need to
be soon integrated for fully exploiting LV benefits in these
scenarios.

E. Management Frameworks and Applications portability

Employment of containers technologies have had disruptive
rise in the last years, and the enormous effort that open source
communities have provided on continually improving fully
featured management frameworks has paid off. Unikernels
seem to be still not enough mature for being included in
production-ready environments, and a greater effort is required
for featuring the same portability of containers. Packaging
applications through unikernel may require an implementation
effort that somehow slows down, and in some cases limits, the
adaptability towards existing software and hardware platforms.
This difference comes from the different way in which the
two technologies are built. Containers are application agnostic
while unikernels are limited by the programming language and
libraries exposed by the underlying minimalistic OS.

F. Data Storage

Containers and, in particular, unikernels are not suitable
for storing persistent data, such as data collected from IoT
sensors. Moreover, storing important data on edge nodes can
be risky both because of the volatile nature of edge nodes and
because of the security risks related to easier physical exposure
of the nodes. Therefore, data typically needs to be stored in
centralized nodes and retrieved on demand. This may reduce
the feasibility of LV based edge computation in very data
intensive applications. Moreover, some applications requiring
nodes to access data of all other nodes data, e.g. for distrib-
uted analytics, may be unfeasible to distribute. Automatically
optimizing the data storage location of distributed applications
is a topic requiring further research. On the other hand, many
IoT applications use volatile data locally while persistent data
can be minimized and stored centrally.

G. Telco Industry Readiness and Perspectives

The telecommunication sector is currently in a major
paradigm shift moving in the direction of softwarization of
the former hardware based network elements – a concept
called NFV [4]. As a first step, the current network functions
are directly mapped to corresponding virtualized versions
implemented as VMs. The fifth generation (5G) will move
toward a more cloud native approach, where different net-
work functions are divided into smaller components that can
be individually deployed and scaled and communicate to
each other using a message bus. Using MEC as a platform,
virtualized network functions (VNFs) can be placed at the
edge of the network, and decomposition further encourages
the use of LV technologies and the allocation of individual
service components to the edge. From the operator perspect-
ive, edge typically means the base station, but virtualization
on Customer Premise Equipment (CPE), such as residential

9



gateways, may extend the edge further. NFV is the main
driver for edge computing in the mobile networks, and a
necessity for opening the operator network for third party
applications. While operators may have difficulties competing
with established players in the cloud market, their presence
close to the user make them more competitive for edge-
dominated computation. The adoption of LV technologies in
telco networks requires a change of mindset in the industry but
also technology questions remain for ensuring the reliability
and security required for telecommunication networks. As
unikernels can be deployed on the same hypervisors as VMs
with minor impact on orchestration infrastructure, they are
more likely than containers as replacements for VMs.

VII. OUTLOOK

In this article, we examine the challenging problem of
integrating LV with IoT edge networks. We first discuss
which are the current issues involving EC and IoT network
architectures. Therefore, we present three different IoT use-
cases, in which LV solutions can bring a set of benefits and
a desirable design flexibility. Our analysis provides a clear
holistic vision of such integration, which promotes innovative
network designs to fully exploit the advantages of LV and IoT
resources. Finally, we also discuss key technical challenges
and identify open questions for future research in this area.
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Publication Summary

In recent years, edge computing and Internet of Things (IoT) have become closely cou-
pled. IoT was initially conceived as extending the Internet with a new class of devices and
use cases (e.g., personal devices, constrained networks). Early architectures and frame-
works introduced the notion of cloud-dependent IoT deployments, with the assumption
that most/all IoT edge networks need to be connected to the cloud. We noticed how this
tight coupling between cloud and IoT is not desirable in some cases, which we analyzed
in our work. For example, when: a) data needs to be processed at the edge, b) delay
sensible applications require real-time responses, or c) the amount of data is too large
to upload to the cloud (in real-time) without congesting the backhaul.
To address this situations, we created FADES: an edge offloading architecture that em-
powers us to run compact, single purpose tasks at the edge of the network to support
a variety of IoT and cloud services. We designed FADES to efficiently exploit the re-
sources of constrained edge devices through fine-grained computation offloading. We
took advantage of MirageOS unikernels to isolate and embed application logic in concise
Xen-bootable images. We implemented FADES and evaluated the system performance
under various hardware and network conditions. The results show that FADES can
effectively strike a balance between running complex applications in the cloud and sim-
ple operations at the edge. In our experiments, we revealed the limitation of existing
IoT hardware and virtualization platforms, which shed light on future research to bring
unikernel into IoT domain.

Author’s Contribution

I came up with the idea for the paper as a foundation for an unikernel-based orchestration
system. I have designed, implemented, and evaluated the entire system.



FADES: Fine-Grained Edge Offloading with Unikernels
Vittorio Cozzolino

Technical University of Munich
cozzolin@in.tum.de

Aaron Yi Ding
Technical University of Munich

ding@in.tum.de

Jörg Ott
Technical University of Munich

ott@in.tum.de

ABSTRACT
FADES is an edge offloading architecture that empowers us to run
compact, single purpose tasks at the edge of the network to support
a variety of IoT and cloud services. The design principle behind
FADES is to efficiently exploit the resources of constrained edge
devices through fine-grained computation offloading. FADES takes
advantage of MirageOS unikernels to isolate and embed application
logic in concise Xen-bootable images. We have implemented FADES
and evaluated the system performance under various hardware and
network conditions. Our results show that FADES can effectively
strike a balance between running complex applications in the cloud
and simple operations at the edge. As a solid step to enable fine-
grained edge offloading, our experiments also reveal the limitation
of existing IoT hardware and virtualization platforms, which shed
light on future research to bring unikernel into IoT domain.

CCS CONCEPTS
• Information systems→ Data management systems; • Applied
computing → Service-oriented architectures; • Computer sys-
tems organization → Distributed architectures;
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1 INTRODUCTION
Edge computing and Internet of Things (IoT) have become closely
coupled in recent developments. IoT was initially conceived as
extending the Internet with a new class of devices and use cases
(e.g., personal devices, constrained networks). Early architectures
and frameworks introduced the notion of cloud-dependent IoT
deployments, with the assumption that most/all IoT edge networks
need to be connected to the cloud. However, there are some cases
in which this tight coupling between cloud and IoT is not desirable.
For example, when: a) data needs to be processed at the edge, b)
delay sensible applications require real-time responses, or c) the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotConNet ’17, August 25, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5058-7/17/08. . . $15.00
https://doi.org/10.1145/3094405.3094412

amount of data is too large to upload to the cloud (in real-time)
without congesting the backhaul. Based on this observation, we
advocate a divide and conquer approach where IoT and edge devices
actively participate in the completion of a task instead of being
passively polled by cloud services.

In this context, a key domain that will benefit from the interplay
of edge and IoT is Smart Cities: complex environment with manifold
IoT devices deployed by different providers and serving many pur-
poses. Moreover, each device would posses different computational
and sensory capabilities with varying geographic locations adding
to the system convolution. Edge devices will have the responsibility
to handle adequately the IoT resources and execute tasks follow-
ing the back-end instructions. Meanwhile, not everything can be
offloaded. A classification based upon application complexity, prior-
ity, criticality, power consumption and required physical resources
can help in assessing which task to offload. The combination of
hardware capabilities and software requirements will ultimately
guide the choice.

We define this approach as edge offloading. Edge 1 offloading re-
visits the conventional cloud-based computation offloading, where
mobile devices resort to resourceful servers to handle heavy compu-
tation [6]. To cater for the demands of IoT services, our approach is
reversed: we promote a paradigm where computation is dispatched
by the servers to constrained devices deployed at the network edge,
close to users and data generators.

To enable edge offloading, recent technological breakthrough
in virtualization has provided us new opportunities. For instance,
Docker completely revisited the concept of VM by introducing con-
tainers. Containers focus on virtualizing at the operating system
level, whereas other hypervisor-based solutions focus on abstract-
ing the hardware layer. In the process of creating smaller and more
specialized VM, unikernels have emerged as a promising techno-
logy. In essence, unikernels are single-purpose appliances that are
compile-time specialized into standalone kernels [7]. Unikernels
contain exclusively the application code guaranteeing a reduced
image size, improved security and greater manageability.

Our main contribution is FADES (Function virtulizAtion basED
System), a modular system architecture designed for IoT edge of-
floading. To achieve reliability, scalability and flexibility, FADES
takes advantage of MirageOS unikernels to isolate and embed ap-
plication logic fragments in small, Xen-bootable images.We decided
to adopt the unikernel technology for our implementation because
it fits exactly our requirement to run single-purpose tasks without
offloading complete application logic. Security is a core benefit but
not the main motif behind our choice. Besides system design, the

1Currently, there is no accepted definition of the difference between Edge and Fog. In
this paper, we will use the term Edge to refer to groups of constrained devices deployed
at the edge of network and able to process local data.
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lessons learned from our experiments across different IoT hard-
ware and platforms also shed light on future research to integrate
unikernel into the IoT domain.

The rest of the paper is structured as follows: motivation and
background (§ 2), related work (§ 3), system architecture descrip-
tion (§ 4), system implementation (§ 5), system evaluation (§ 6),
discussion (§ 7) and finally future work and conclusions (§ 8).

2 MOTIVATION AND BACKGROUND
Simplicity is key to the IoT. Regardless of the back-end services,
edge devices have to execute simple operations on data locally avail-
able. Therefore, by splitting a complex application into manifold
simple and single-purpose tasks we can ship them in the shape
of lightweight containers (specifically, unikernels). Task fragment-
ation grants also the possibility to hide the complete application
logic for security concern.

IoT diversity and cardinality are like double-edged blades. On
one hand we face the problem of heterogeneity and lack of stand-
ards. On the other hand, the massive scale of envisioned devices is
a powerful source to harness. The core motive behind our system is
exactly to leverage this power in the right way. The combination of
locally available resources, computational power and capabilities
are key elements to properly offload tasks and, therefore, exploit IoT
resources. Moreover, heterogeneity is less troublesome when we
have intermediate nodes supervising and managing clusters of IoT
devices instead of entrusting all this knowledge and responsibility
to the cloud. This multi-level (cloud, edge and IoT) information
pipeline is also motivated by the necessity of reducing the uplink
access parallelism. By offloading computation we progressively
aggregate data along the pipeline reducing massively the data to
be uploaded and easing the burden on the cloud. Latency is also
affected when we move computation closer to the data to be ma-
nipulated. However, not everything can be offloaded. Parameters
as application complexity, priority, criticality, power consumption
and required physical resources have to be taken into account.

Last but not least, security and privacy in IoT are increasingly
important [12]. Small IoT devices are not powerful enough to guar-
antee the required degree of security. Therefore, we advocate the
presence of intermediate control units across the communication
pipeline between IoT and Cloud in a way to introduce additional
resiliency and control. Privacy enabling modules can be deployed
directly next to the source of the data, combined with security con-
trols. Still, these features wouldn’t be possible without a hardened
execution environment. Our design principles offer functionality
isolation and reduced attack surface. Moreover, deployed tasks run
inside a virtualization platform (hypervisor) adding an additional
layer of isolation and protection (subverting the system requires to
find vulnerabilities in the hypervisor rather than the OS, which is
more difficult).

3 RELATEDWORK
Our work follows the trend of exploiting computational resources
outside cloud deployment combinedwith use of unikernels [2, 7, 14].
Computation and data offloading has been explored in different
flavors in [4, 5, 13] for aspects as energy efficiency and offloading

FADES

Cloud

Application Logic

Edge 
O�oading

IoT ResourcesEdge Device

Data 
Acquisition

Figure 1: Edge Offloading

decision policies. Instead, [15] is a pioneer in the field of compu-
tation offloading supported by VMs migration. Their approach is
based on leveraging infrastructure resources based on mobile nodes
proximity with the support of cloudlets: a trusted, resource-rich
computer or cluster of computers. To this end, they adopt dynamic
VM synthesis: a process of merging a static part of a VM with a
dynamic component provided by a mobile device.

Unikernels have been explored in multiple research fields. Some
research directions that make use of unikernels to improve existing
services or propose new system architectures are [1], [10], [11], and
[17].

More recently, Madhavapeddy et al. [8] proposed on-demand
specialized VM instantiation. We leverage the idea of the embedded
cloud presented in this paper and bring it further into the IoT do-
main. Compared with Jitsu, our work is geared towards IoT services
and focuses on the system architecture. Additionally, our evaluation
revealed the limits of unikernels by studying the performance with
bigger payloads and in different network settings.

Airbox [3] presents a software platform based on onloading
and backend-driven cyberforaging. It shares the general direction
presented in our paper in terms of offloading the Edge Functions
(EF). Compared with their solution, FADES achieves fine-grained
offloading by using unikernels instead of Docker technology.

Databox [9] proposes a hybrid physical and cloud-hosted system
for personal data management. The prototype of Databox is based
on Docker. The authors have indicated MirageOS as a possible
candidate to implement future extensions. To this end, FADES is a
unikernel-based system dedicated for IoT edge offloading. Inspired
by one of the use-cases of Databox, we further share our insights
of processing sensors data at the edge through unikernels.

4 SYSTEM DESIGN
Data locality is the key property that drives our system design
principles. We see into this physical distance between cloud and
IoT a gap to be exploited. Therefore, our design introduces an
intermediate unit to enrich and augment the interaction between
IoT resources and External Services (ES), as depicted in Figure 2.

The IoT resources offer physical capabilities to interact with
the environment and carry out basic tasks. The ES are back-end
applications interacting with our system by offloading parts of
their operation logic. In our design, we consider ES as a repository
of deployment-ready tasks designed for different scenarios and
purposes.
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Figure 2: System Design

Recalling the Smart City example, pollution control is achieved
by querying pollution sensors in the IoT, aggregating the informa-
tion at the edge, and sending the final result to the cloud. In this
regard, FADES resembles a middlebox and oversees groups of IoT
devices based on spatial proximity, as Figure 1 shows. Therefore,
each FADES unit supervises a subset of IoT devices (e.g. pollution
sensors) scattered across the Smart City. Moreover, it has the re-
sponsibility to map and monitor the available IoT resources and
retrieve data from them following the offloaded task requirements.

Based on the definition of edge offloading, our system is designed
to support only pull workflows (from the cloud to the IoT). Push
workflows, where edge devices offload tasks to the cloud, are not
yet supported mostly because covered already in mobile offloading
research.

The main components of FADES include Orchestrator (ORC),
Data Resource Broker (DRB) and Data Manipulation Functions
(DMF). As shown in Figure 2, FADES is an event-based system
that responds to external commands referred to as Metadata Task
Wrapper (MTW), which are issued on-demand by services and
applications. The MTW can be divided into 3 types:

MTW Credentials: This type contains passport-like informa-
tion (e.g., task ID, associated user or service, priority). It’s mainly
used to keep track of the received MTW and schedule its execution.

DRB Metadata: This type contains a list of data retrieval oper-
ations (DTO), which conveys details about what data to retrieve.
DRB Metadata also specifies the source and destination of the data.

DMF Metadata: This type contains application specific details
about the DMF. For instance, the MTW issuer can specify addi-
tional information about extra runtime configuration parameters
or minimal required hardware resources.

4.1 FADES
The core of FADES consists of three components:

Orchestrator (ORC). The Orchestrator is the interface between
the system and the outsideworld. Being a "supervisor" thatmonitors
and controls the system, ORC frequently checks that both DRB and
DMF are running correctly. ORC also takes care of dispatching the
required information to the DRB the moment a new MTW arrives.
It ensures the overall system integrity by monitoring the DRB,
following the life-cycle of each DMF, validating uploaded tasks and
decommissioning terminated DMFs.

Data Resource Broker (DRB). The DRB module localizes and
extracts resources from a groups of IoT devices. Hence, it possesses
the required knowledge regarding which IoT devices to query. The
DRB is completely computation agnostic, whose execution cycle is
event-based and driven by DRB Metadata contained into the MTW
and received by the orchestrator.

Data Manipulation Functions (DMF). A DMF embeds exclus-
ively the relative service logic and stays in a dormant state until
it receives the correct data from the DRB. DMFs can be persistent
or ephemeral, depending on the embedded application logic. Long
running or recurrent tasks might exhibit a persistent behavior while
single-execution tasks have to be deallocated after completion.

Recalling the pollution control example, we can map each FADES
component onto the following roles: 1) the ORC receives from
cloud the tasks to be executed and additional metadata, 2) the DRB
will locate the correct pollution sensors (or weather stations) to
be queried and retrieve the data, 3) the DMF will manipulate the
pollution data received from the DRB, produce the final results and
send them to the ORC.
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5 IMPLEMENTATION
FADES is a virtualized, unikernel-based system hosted by the Xen
hypervisor (except for ORC). Our tool of choice is the MirageOS
library operating system, which is specifically designed to build
modular systems and runs natively on Xen. MirageOS offers static
type-safety combined with single-address space layout. Moreover,
being compile-time defined and sealed, any code not presented
inside a MirageOS unikernel during compiling time will never be
executed, and hence preventing any sort of code injection attack
[7].

In FADES, both the DRB and DMFs are MirageOS unikernels
running on Xen as Para-Virtualized Machines (PVM). The former
exclusively retrieves information and the latter process the received
data. We enforce component isolation and independent develop-
ment by confining functionality overlapping.

The DRB is implemented as a daemon unikernel. For internal
communications, it uses two modules offered by Xen: the virtual
network and the XenStore. The virtual network is used to internally
transfer data to the DMFs. On the other hand, XenStore is exclus-
ively used to exchange synchronization messages with the ORC.
The DRB validates and schedules each MTW received from the
ORC. In our implementation, we implemented different scheduling
policies (e.g. sorting by task priority, execution deadline, task ID)
but in the current stage we used a simple FIFO. Currently, the DRB
is able to process in parallel multiple data retrieval operations but is
only able to prosecute a single MTW at a time.

The DMFs used in our implementation execute simple aggrega-
tion operations over streams of sensors data (Section 6 will cover
more details about this choice). The result of the computation is
sent to the ORC through Xenstore. DMFs are hooked on the same
virtual network of the DRB and do not have external network ac-
cess. One limitation of using the virtual network is that we need to
manage carefully the IP addresses to avoid collisions. In our current
implementation, we didn’t implement any automated deployment
functionality covering this matter. The system currently supports
parallel execution of multiple DMFs even thought it has not been
fully tested on that regard.

The ORC is developed in Python and it’s the only non-virtualized
module in FADES. We choose Python because it has the right com-
bination of performance and features that make prototyping fast
and flexible. Moreover, the ORC is the only module that handles
reads and writes towards the persistent storage. Our design choice
focused on establishing a loose coupling between the host system
and the unikernels managed by FADES, with the latter being ex-
clusively dependent on virtual resources: CPU, RAM and network.
In order to be independent from the hosting edge device, the DRB
and DMF should be as flexible as possible and ephemeral.

6 EVALUATION
The goal of our evaluation is answering the following questions:

Q1. How different architectures (x86, ARM) affect the perform-
ance of MirageOS? What are the Unikernel PVM memory sizing
requirements in relation to the amount of data to be manipulated?

Q2. How does our system perform under different workloads
and what is the overhead introduced by using multiple modules?

Q3. How much edge deployed services can benefit from data
locality? What is the trade-off?

For our tests, we selected three different devices: a Cubietruck
(Allwinner A20 ARM Cortex-A7 dual-core @ 1GHz, 1GB RAM,
100Mb Ethernet), an Intel NUC (Intel(R) Core(TM) i5-6260U CPU@
1.80GHz, 16GB RAM, 1000Mb Ethernet) and a Dell PowerEdge R520
(Intel(R) Xeon(R) CPU E5-2640 v3@ 2.60GHz, 140GB RAM, 1000Mb
Ethernet) running Xen 4.4, InfluxDB v1.0 and an Ubuntu 14.04 dom0.
Additionally, we used MirageOS 2.9.1 (the latest stable version at
the time of writing), OCaml 4.02.3, OPAM 1.2.2 and Python 2.7.6.

We gleaned the data for the tests from our Intel Edison IoT test-
bed. The testbed is composed by 5 Intel Edison boards deployed in
different office rooms on the campus. Each board continuously col-
lects environmental data through a set of sensors (humidity, temper-
ature, light intensity, audio, proximity). At the time of writing, the
testbed collected roughly 300 millions of data points equally divided
among the 5 sensor classes. Each data point is a row in our database
containing: timestamp, sensor value, sensor type, measurement
unit and location. The deployment has been running constantly
since June 2016.

The testbed is to carry out user-context modeling and correl-
ate sensors readings with human behaviors/actions in each room.
Some of the aggregation operations carried out on the testbed have
inspired the algorithm embedded in our unikernels. Therefore, the
DMFs used for our test execute simple manipulation and aggrega-
tion functions (e.g., calculate minimum, maximum, average) over
sensors data streams.

Memory Analysis. When offloading to resource constrained
devices, it’s important not to abuse the already limited available
hardware resources. In this section we analyze how the available
RAM memory affects DMFs performance. This study serves as a
guideline to the process of correctly dimensioning a MirageOS
PVM. Therefore, we aim at avoiding the over/under dimensioning
issues that could lead to, respectively, waste of resources and out
of memory exceptions.

Figure 3 shows the ratio between available heap memory and
pre-allocated RAM with different architectures (x86 and ARM). On
both architectures the effective available memory is lesser than the
amount allocated at the beginning but the behavior varies between
x86 and ARM. In the first case, the gap is muchmore prominent, and
this directly affects the amount of data processable by the Unikernel
especially in the case of PVM with low allocated RAM memory.

Two main factors influence the available memory for an unik-
ernel PVM: underlying architecture and imported libraries. We
cannot economize on the latter, given that it depend on the specific
application logic. On the other hand, different system architectures
constantly generate different unikernel images. While on ARM
the building output is a Linux kernel ARM boot executable zImage
(.xen) plus a ELF 32-bit LSB executable (.elf), on x86 we have a single
.elf file. The ultimate difference in size of the generated Xen image
on the two architectures affects directly the available memory at
runtime.

Figure 4 shows the correlation between pre-allocated RAM and
maximum amount of processable data. These data has been obtained
by studying in details the performance of a single DMF completely
isolated from the system. We monitored its limits by feeding an
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increasing amount of data to process. From our tests, we noticed
that the device resources doesn’t influence at all the maximum
amount of processable data. Hence, the graph shows a generic
comparison between ARM and x86.

The gap between these two architecture is muchmore prominent
in the case of PVM equipped with low RAM memory, whereas it
tends to disappear with 512MB. In some cases, we are only able to
process half of the data on x86 architecture. The red error bar is
the standard deviation.

System Analysis: Overhead and Offloading. The purpose of
this section is to show a performance comparison when executing
task at edge instead of in the cloud.

Figure 5 shows an answer to Q2 by highlighting the system
performance with different data payload sizes and providing a
detailed breakdown of the execution time of a task in FADES. Four
main factors affect the overall execution time: 1) required time to
boot-up the DMF unikernels, 2) time required to transfer the data
between the DRB and the DMF, 3) computation time of the DMF
and 4) the time required to retrieve the data to manipulate.

In particular, factor 1) is an aggregated value representing the
overhead introduced by the ORC module. For now, the ORC is a
thin layer that handles requests from the external services and
doesn’t process data or applies any changes to the tasks executed
by the DMFs. It checks that everything works correctly but doesn’t
take part in any computation phases. Factor 4) only affects the
scenario where the Dell PowerEdge server has to retrieve data from
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a remote network. The bars are grouped by amount of data to be
processed. For example, the first group shows the performance for
each devices given a payload of 1.5Mb.

The results show that the presence of a sufficiently powerful
device at the edge of the network combined with data locality
makes edge offloading the best decision. Particularly, the Intel NUC
outperforms the Dell PowerEdge while the Cubietruck is highly
hindered by the intra-unikernel transmission time overhead.

Figure 6 shows an answer toQ3 by presenting in details how data
locality strongly affects performance regardless of the hardware
capabilities. Therefore, we focused on observing how data locality
affects computation time. The Cubietruck and the Intel NUC had
a local copy of the sensors data while the Dell PowerEdge (the
cloud) was forced to retrieve the data from a remote location. To
this avail, we deployed our Intel NUC and the Cubietruck into
another building and used them as a data source. In the graph we
can clearly see that having data locally can improve performance
even on resource constrained devices.

The remote data location is accessed by the Dell PowerEdge
through a standard broadband connection with the following spe-
cifications: 45.38 Mbps downlink and 0.574 Mbps uplink (effective).

Connection speed is a critical factor in our evaluation; we are
aware that faster/slower connections will lead to different result.
Still, we want to point out that even by reducing to zero the data
acquisition overhead factor, the Intel NUC performance are surely
vying with the Dell PowerEdge.

The cost of uploading the unikernel has been removed from
our evaluation. This factor it’s directly bound to the nature of the
application logic. In a real scenario, it is very well possible that a
DMF could actually be reused multiple times (and by multiple users)
before it’s updated. In other words, the frequency at which the data
changes is greater than the one of the deployed task. On the other
hand, the task might need to be updated constantly rendering it
obsolete at every new compute cycle. The chances for the latter to
happen are dim, yet possible.

Last but not least, we are aware of the asymmetric nature of
common broadband subscriptions with a ratio of 1:10 between
upload/download speed. Hence, the cost of uploading data from
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Figure 6: Effect of Data Locality on Computation Time

the Cloud to the edge will generally be marginal compared to the
opposite.

7 DISCUSSION
We have learned several practical lessons from system development
and experiments, which can be summarized as hardware limitations,
platform support, and security concern. First of all, it’s demanding to
find suitable embedded boards that can support Xen and MirageOS,
regardless of x86 and ARM architectures. In most cases, the main
culprits are hardware incompatibilities and poor documentation (if
there is any). Our experiments on Cubietruck have benefited from
the MirageOS discussion group, where we found detailed setup
guidelines. On the other hand, the deployment on mini-PC (e.g.
Intel NUC) is much easier, since those devices essentially resemble
the standard PC.

Secondly, our system performance is affected by the limitation
of MirageOS. In particular, we struggled with the network API
when transferring data between two unikernels. The main issue
comes from a bug in the TCP/IP MirageOS stack that doesn’t handle
properly writing packets larger than the MTU. In consequence, we
had to introduce an extra chunking function at the application
layer to split, and later reconstruct the data. This negative effect is
reflected in Figure 5 where the overhead of this operation prolongs
the completion time, especially on constrained devices like the
Cubietruck.

Finally, it takes extra steps to enhance system security. FADES
enables an execution paradigm where single-purpose functional-
ities are offloaded from the service provider (e.g., cloud) to edge
devices. We hence need to guarantee the authenticity and validity
of the offloaded tasks. Without a signing and validation infrastruc-
ture to discriminate legit from tampered unikernels, we might risk
executing malicious code and infringe the security requirements.
Furthermore, if a FADES module is compromised or hijacked, re-
gardless of the offloaded code, the attacker is able to manipulate
the results of trustworthy DMFs. Therefore, a strict control over
the system execution pipeline and constant monitoring of FADES
is mandatory, as suggested in [16].

8 CONCLUSION AND FUTUREWORK
FADES is a modular offloading architecture that leverages light-
weight virtualization to enable fine-grained edge offloading for

IoT. The underlying idea is to bridge the gap between complex
applications running in the Cloud and simple operations running
at the edge. It’s in this gap that we spot the opportunity to util-
ize unikernels as an ideal vessel to ship single-purpose tasks for
achieving modularity, flexibility and multi-tenancy. As a first step
to explore the potential of lightweight virtualization in IoT and
edge computing, our experimental insights shed light on the hard-
ware deployment and performance optimization for both system
engineers and researchers.

Our future work will focus on three aspects. Firstly, we plan
to investigate the system scalability by running multiple function
instances in parallel. Secondly, we will evaluate FADES against
real-world applications. Lastly, we will harden the system security
design to meet the security requirements of IoT. In addition, we
will also compare our system with other existing solutions.
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Publication Summary

In edge computing environments, offloading computation to the nearest edge node is
key to cutting network latency and improving user experience. We found edge and IoT
networks to be unreliable and composed of resource-constrained devices that are more
prone to failures. Ideally, the edge infrastructure should be able to self-adapt in case of
malfunctions and quickly move the computation to a stable node in order to maintain
high service responsiveness and avoid data loss. We identified fast service migration
and recovery (e.g. reinstantiation) to play a crucial role in reducing the overall service
downtime.

While migration based on VMs or containers in the edge computing domain has been
explored in numerous studies, the same is not true for unikernels. In fact, unikernels
have only recently gained popularity as an alternative to virtual machines and contain-
ers. However, the unikernels ecosystem is still in its infancy and lacks quintessential
functionalities found in more well-established virtualization technologies. We identified
stateful migration as an a highly desired feature for mobile edge services in distributed
environments which is not yet supported by unikernels. Therefore, our work in this
manuscript is focused on addressing this shortcoming.

We built MirageManager: a ready-to-deploy unikernel migration system enabling loss-
less migration supported by a function-level, application logic checkpointing library of
our design. Our evaluation results show that MirageManager is able to lower the ser-
vice downtime by 80%, and drastically reduce the state transfer data by almost 100%
when comparing against Podman. Additionally, MirageManager also beats Podman, a
container-based engine, in parallel service migration across constrained edge networks
reducing the overall migration time by up to 6x.

Author’s Contribution

I came up with the idea for the paper as a foundation for the stateful migration of
unikernels. I contributed to the system design aspects and research foundation, while
Oliver Flum implemented and evaluated the system.
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ABSTRACT
Unikernels are a new lightweight virtualization technology born as
an alternative to virtual machines and containers. Geared towards
service provisioning for the Internet of Things (IoT) and edge com-
puting, they offer extremely small memory footprint and strong
isolation properties. However, the unikernels ecosystem is still in
its infancy and lacks quintessential functionalities found in more
well-established virtualization technologies. For example, stateful
migration is a highly desired feature for mobile edge services in
distributed environments which is not yet supported by unikernels.
This is one of the shortcomings preventing us from reaping the full
benefits of unikernels outside of stateless applications.

In this work, we aim bridging this gap with MirageManager:
a ready-to-deploy unikernel migration system enabling lossless
migration supported by a function-level, application logic check-
pointing library of our design. Our evaluation results show that
MirageManager is able to lower the service downtime by ∼80%,
and drastically reduce the state transfer data by almost ∼100%
when comparing against Podman. Additionally, MirageManager
also beats Podman, a container-based engine, in parallel service
migration across constrained edge networks reducing the overall
migration time by up to ∼6x.
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1 INTRODUCTION
In edge computing environments, offloading computation to the
nearest edge node is key to cutting network latency and improving
user experience [1–5]. However, edge and IoT networks may be
unreliable [6] and composed of resource-constrained devices that
are more prone to failures. Ideally, the edge infrastructure should
be able to self-adapt in case of malfunctions and quickly move
the computation to a stable node in order to maintain high service
responsiveness and avoid data loss. Therefore, fast servicemigration
and recovery (e.g. reinstantiation) play a crucial role in reducing
the overall service downtime.

Migration based on VMs or containers in the edge computing
domain has been explored in numerous studies. VM handoff [7]
has been proposed to accelerate service handoff across offloading
edge nodes. It divided VM images into two stacked overlays based
on Virtual Machine (VM) synthesis [8] techniques. In contrast, the
wide deployment of containers platforms provides a base for high
speed service handover. The Docker storage driver employs layered
images inside containers, enabling fast packaging and shipping of
any application as a container. Many container platforms, such as
OpenVZ [9], LXC [10], and Docker [11], either completely or par-
tially support container migration, but none of them are suitable for
the edge computing environment [5]. In fact, LXC migration and
Docker migration are based on Checkpoint/Restore In Userspace
(CRIU) [12] and need to transfer the whole container file system dur-
ing the migration, resulting in inefficiency and increasing network
overhead as a function of the filesystem size.

To cope with future Internet architectural trends fueled by a
pressing need to support edge/fog computing environments, new
forms of service decomposition such as lambda functions [13] and
unikernels [14] have been developed. While both approaches are
designed for stateless applications, we argue that for specific use-
cases it is necessary to preserve the execution state. For example,
in security applications that collect network traffic data and trigger
events if suspicious behavior is detected [15], this data would be lost
in a simple image duplication of stateless migration. Time variant
computations, such as sensor fusion, would deliver different results
depending on when they start or how long they run. In addition,
services deployed in radio access networks that are tightly coupled
with their mobile user would have to preserve their data in order
to stay in sync with their users physically moving from one access
point to another [16]. However, unikernel migration has not yet
been explored in past research. Most approaches opted for fine-
tuned container-based solutions to reduce service downtime at the
edge. Meanwhile, we found no tool offering stateful migration for
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unikernels which, due to their properties (discussed in §2), are a
promising option for edge computing applications.

To fill this gap, we developed MirageManager: a checkpoint-
based, live migration solution for unikernels. Our contribution is
two-fold: (i) an architecture and workflow to manage the migration
of unikernels and (ii) a library called Unimem which can preserve
the unikernel state at function level during the migration. Our
prototype is based on MirageOS and we strive to abstract from any
platform-specific implementation details by handling the execution
state explicitly within the application itself before transferring it.
Initially geared towards MirageOS, MirageManager is designed
to be later ported to other unikernel implementations.

The remainder of this paper is structured as follows. We pro-
vide background information and review related work in §2. We
describe our system design and checkpointing technique in §3 and
§4, respectively. We discuss the details of our implementation in §5
followed by preliminary results in §6. Finally, we discuss pros and
cons of our approach in §7 and conclude the paper in §8.

2 MOTIVATION AND RELATEDWORK
We begin by looking at the need for stateful unikernel migration in
respect to current trends in the edge computing and IoT domains.

With the rapid development of the edge computing model, many
researchers have developed applications exploiting the edge com-
puting paradigm. Machine learning, computer vision and signal
processing are just examples of classes of applications that bene-
fit from offloading intensive computation [17–19] to nearby edge
devices. Similarly, research exploring service migration for edge
computing followed [16, 20–22], highlighting pros and cons of the
different approaches adopted. Originally, the idea of shipping and
migrating computation was supported by code slicing or VM and
container migration [23, 24]. However, these mechanisms require
transmission of a considerable amount of data over the network
due to sheer size of the execution environment that needs to be
migrated, which also has energy consumption impact [25]. The
advantage is portability since less assumptions need to be made
regarding the destination machine.

Containers require less data to be transferred as the OS is not mi-
grated during the procedure and are overall more lightweight than
VMs [26]. On the other hand, containers depend on OS-specific
functions which makes the migration procedure difficult due to the
presence of external dependencies [27]. A sweet-spot between these
two approaches are unikernels: a new, emerging multi-purpose vir-
tualization technology tailored for resource-constrained devices
commonly found at the edge [28–30]. Due to their strong isolation
properties, reduced attack surface, and small memory footprint,
unikernels represent an intersection between containers and tradi-
tional VMs. Additionally, their compilation model enables whole-
system optimization across device drivers and application logic. In
particular, by being in the order of a few MBs in terms of image
size, the migration of an unikernel is more resilient to the unfavor-
able network conditions (e.g., unreliable, intermittent connectivity,
limited bandwidth) often found in edge and IoT networks [6]. For ex-
ample, operations like image or state retransmission are less costly
in terms of transmitted data when compared to other virtualization
techniques.

Unikernels are still in their infancy and do not offer the suite
of functionalities provided by other well-established virtualization
tools. This applies also to migration, which, to the best of our knowl-
edge, is still an unexplored path. In fact, unikernels are advertised
primarily as stateless appliances which, by definition, do not require
migration as no information should be preserved across subsequent
executions. However, unikernels have been recently used also in
stateful contexts as in [15, 31] where preserving the state of exe-
cution is necessary to maintain consistency and avoid gaps in the
collected data. Security applications, for example, collect data on
network traffic and trigger events if suspicious behavior is detected.
For example, in [15] a unikernel based intrusion detection system
(IDS) is proposed. In this case, loss of the data structures during
service re-instantiation could expose the network to attacks as
malicious connection could not be tracked anymore. Additionally,
time-variant computations such as sensor fusion will deliver dif-
ferent results depending on when they start or how long they run.
Another possible application is motion patterns detection in a video
stream, which requires to preserve information from past processed
video frames during a migration [32]. However, in this case the
unikernel would eventually require access to additional hardware
resources (e.g., GPU) for which support is yet not available. For the
use-cases mentioned above, stateful migration can help in increas-
ing the service reliability in case of faults and prevent data losses
in case of service reinstatiation.

3 SYSTEM DESIGN
Typically, service migration is achieved by dumping the content
of a virtual instance into a file and transferring it to a destination
host. Then, the hypervisor will take care of restoring the service.
However, this procedure also requires support by the guest operat-
ing system. While most hypervisors support migration, this is not
necessarily the case for all guest OSes. In fact, unikernels do not
support it for the reasons explained in §2.

We added the required migration logic directly at the applica-
tion layer instead of making any changes at the kernel level (e.g.,
MiniOS [33]) or in the hypervisor. This is a practice followed also
in past work for VM-independent migration of stateful applications
or to capture the application state at a high-level before migrating
it [32, 34]. Hence, we designed a set of functionality in the shape
of a library allowing the unikernel to keep track of its own state
internally. When the unikernel needs to suspend, it serializes its
state so it can be transferred to the migration target, which will
process the state before proceeding with the execution flow.

Aside from state tracking (discussed in §4), we require an addi-
tional component to support the migration process which we call
MirageManager, shown in Figure 1. It is a web service exposing an
interface to commission and manage unikernels on any registered
host and transfer the unikernel state using a repository. It is the
core of our system and it manages the life-cycle (e.g., creation, mi-
gration, destruction) of unikernels deployed on multiple hosts and
it provides a repository for writing and retrieving the unikernels
state before and after a migration. MirageManager is installed at
the edge and we assume that there will be multiple instances of it to
manage clusters of edge nodes. The representation of a unikernel
is populated before the hypervisor creates the guest domain and
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will exist even after its destruction, regardless of whether it is the
result of a migration procedure or a regular shutdown. During the
guest lifetime, the representation will change to reflect changes in
its state.

Admin MirageManager
Hypervisor

VM VM VM VM

Hypervisor

VM VM VM VM

Host 1

Host 2

Figure 1: MirageManager.

When a unikernel is started, MirageManager will create a guest
domain of the corresponding image on the target host. Afterward, to
confirm a successful boot, the unikernel will query MirageManager
and start a lookup procedure for a previous state associated to it.
This procedure is required so that, even if no state is retrieved,
MirageManager will be aware of the current state of the unikernel
(specifically, started) and change it to connected.

At the moment of a migration, MirageManager will issue a sus-
pend command to the unikernel. Hence, the latter will transfer its
state to the repository and thereby confirm that the suspension
was successful. When resumed on the target machine, a state will
be retrieved from MirageManager and the guest will use it to up-
date itself before resuming its workflow exactly from where it was
interrupted before the migration. This process can be repeated in-
definitely until the unikernel is permanently stopped, completes
its intended task, or exits due to an error/fault. Potentially, the
unikernel could invoke by itself the migration procedure without
the need for an external trigger. However, this functionality is not
yet supported in the current version of our system.

4 STATE CHECKPOINTING
In order to manage the lifecycle of a unikernel, MirageManager
requires a complete representation of its execution state. Therefore,
we developed a module able to store and serialize the unikernel
application logic state so that execution can be resumed from it.
We call this procedure checkpointing, described below.

For the purpose of creating checkpoints, we implement a library
for MirageOS that defines a central state object representing the
unikernel’s state. Additionally, we defined a programming model
which allows to express the application logic routines in a serializ-
able format, so that the execution state can be written to the store
and transferred to the repository. Such store is called Unimem and

it is implemented as a key-value store using strings as keys and
a polymorphic data-type for the values. The currently supported
data-types are single element, list, or list of lists. The application
can decide to write either variables (e.g., intermediate execution
results) or details about its execution state into Unimem, depending
on the context. Additionally, Unimem also encapsulates the commu-
nication protocol semantics used to dialogue with MirageManager,
which are shown in Figure 5.

Started

Connected

Suspended

Stop or Terminate

Create

Query 
Repository

Suspend

Resume

Figure 2: MirageManager — Unikernel lifecycle.
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Figure 3: Checkpointing execution graph.

To enable the application to write its execution state to Unimem,
we translate the unikernel into a series of atomic procedures, each
constituting a step. Hence, we define the application workflow as
a directed graph with labeled edges where each node is a compu-
tational step. Every step is identified by a unique string identifier
(ID) so that the currently active step can be dumped into the store
just by using its ID. Edges are guarded by expressions using the
variables present in the store that determine how the control flow
is directed from one step to the next.

In the case of multiple edges originating from the same compu-
tational step (e.g., execution logic branching), the program decides
which one to follow by evaluating what we call transition guards
which are conditional equations evaluated on variables stored in
Unimem. Therefore, the control flow can be expressed as an adja-
cency matrix where each entry 𝑎𝑖 𝑗 describes the transition from
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Mirage Manager
(server)

OS (GNU/Linux)
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Mirage Manager (host

controller)

OS (GNU/Linux)
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Application Logic

MirageOS

dom0

EdgeNode

Xen Hypervisor

Figure 4: MirageManager components.

step i-th to j-th and its value acts as a guard for the transition. The
truth condition of the transition guard is obtained from evaluating
specific functions on a set of variables in the store. The first condi-
tion evaluating to true in a row of the adjacency matrix determines
the next transition in the execution flow. One limitation is that
guard functions should be mutually exclusive to avoid ambiguities
in the process of selecting which transition to take at any given
moment. If no guard condition evaluates to true, the application
logic is considered to be completed and the unikernel terminates.

When the unikernel is requested to suspend or migrate, the
identifier of the currently executed function is written to Unimem.
As every variable used to evaluate the transition guards is stored as
well, Unimem’s content fully describes the application state. In fact,
the current position in the graph as well as the next transition to be
traversed can be inferred from the stores content only. To protect
against state corruption and potential information loss, all variables
belonging to an execution scope spanning multiple computational
steps must be stored. This is facilitated by not using return values
or parameters for the steps, but rather writing from and reading
to the store. As computational steps are atomic, the information
contained in Unimem is sufficient to recreate the application state
after a migration.

Finally, there is no specific structure imposed on the content
of Unimem by MirageManager as long as the state is serializable.
Therefore, also other state information, such as the state of an
object-oriented application, could theoretically be stored.

5 IMPLEMENTATION
MirageManager is implemented as a distributed system consisting
of an application server developed with Express [35] and written
in JavaScript. It exposes a REST API for the admin user to issue
migration commands, and for the unikernel to transfer its state
to the central repository. Additionally, each host wishing to use
MirageManager needs to run a controller so that the central applica-
tion server can communicate with the hypervisor on that machine.
In Figure 4, the ServerNode hosts the application server while the
EdgeNode is as device using the migration functionalities. In our
implementation, we used Xen as hypervisor [36] but other options
are possible, as discussed in §7.

The communication between application server and host con-
troller is performed by remote procedure calls using gRPC [37].
The controller programmatically issues commands to Xen via the
xl tool in order to create and destroy domains. Additionally, it uses
xenstore-write to communicate with the unikernel guest domains.
The application server API is invoked using HTTP requests for

issuing commands and transferring states which are encoded using
the JSON format.

Inside the unikernel, the state is stored in a Unimem object which
is a singleton instantiated from an object class in our library’s
store module. At the core of Unimem there is a key-value store
implemented using the OCaml Map module. We expressed the
adjacency matrix so that the keys are the origin compute step IDs
and the values are a list of records containing the tuple destination
node ID and transition guard. The OCaml code snippet in Listing 1
shows the implementation of the execution flow in Figure 3.

Unimem also embeds the communication protocol functions
to communicate with MirageManager and serialize the unikernel
state.

let get_adjacency store =

let g12 = ((( Store.to_int

(store#get "rand" (Store.VInt 0)))>= 5)

&& ((Store.to_int

(store#get "round" (Store.VInt 0))) <=250)) in

let g13 = ((( Store.to_int

(store#get "rand" (Store.VInt 0))) < 5)

&& ((Store.to_int

(store#get "round" (Store.VInt 0))) <=250)) in

let gt = ((Store.to_int

(store#get "round" (Store.VInt 0))) > 250) in

let assoc_adj_list = [

("f1", [

{step = "f2"; condition = f12};

{step = "f3"; condition = f13};

{step = "terminate"; condition = gt};

]);

("f2", [{step = "f1"; condition = true }]);

("f3", [{step = "f1"; condition = true }]);

] in

let amap = StringMap.of_seq (List.to_seq

assoc_adj_list) in

amap

Listing 1: Unimem code snippet.

In addition to the Unimem class, there are utility functions for
converting the store value types to normal OCaml types in the store
module. Finally, the library offers a control module providing a set
of functionalities allowing the unikernel to communicate with the
controller through Xenstore [38].

6 EVALUATION
For our evaluation, we selected Podman as candidate baseline to
compare against MirageManager. Podman is an engine for running
Open Container Initiative (OCI) containers with support for CRIU-
based migration for Docker. We embedded an application with
the same functionalities as our MirageOS unikernel inside an OCI
container and then performed the migration tests. The application
consisted of a simple numeric counter printing the current number
of iterations, at every second. As we focus on the IoT domain, we
decide to keep the application logic simple. At this stage, we did
not consider the possibility to run and embed complex applications
in an unikernel running on a contained device. We did not compare
MirageManager against Docker’s native container migration tool
because it is still in an experimental stage and required excessive
modifications and workarounds to use it in our tests. Therefore, we
excluded it from our evaluation.
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Figure 5: MirageManager migration workflow.

The migrations operations were performed between two Intel
NUCs connected to the same subnet with a 100Mbps connection
and running Ubuntu 18.04 with a downgraded kernel version (due
to incompatibilities with CRIU). The hosts using MirageManager do
not necessarily need to be on the same subnet to use the migration
functionality. In this specific case, the choice was out of simplicity.
To provide a quantitative analysis of our solutions against Podman,
we selected four metrics:

Downtime. The time elapsed between service suspension and
restart. It is the most critical metric for evaluating the performance
of a live migration, as it shows for how long the service is not able
to perform its task. From a user perspective, only the downtime
is noticeable. As timestamps are logged for every iteration of the
unikernel application logic, we can precisely measure the downtime
by subtracting the two timestamps between suspension and restart.

Migration Time. It is the time required by MirageManager to
perform the state migration of a unikernel between source and tar-
get machine, including the resume operation. Compared to down-
time, it is a compound metric covering different steps of our mi-
gration workflow and it is calculated differently for Podman and
MirageManager. For the former, a timestamp is logged both when
the suspend command is issued and when Podman completes the
resume command. The difference between the two values amounts
to the migration time. For the latter, the first timestamp is generated
at suspension time, but the second is created by the unikernel after
successfully retrieving its state from the repository. We can break-
down this time interval even further. The init time tantamount to
the kernel boot plus the initialization of a TCP/IP network connec-
tion. During the wait time, the new unikernel awaits for the old one
to suspend and save its state. Finally, the retrieval time represents
the time interval to query the state from the repository. These three
phases show the proceeding in time of the migration workflow
shown in Figure 5.

State Size. Amounts to the data needed to be transferred be-
tween hosts in order to perform the migration. This metric is less
crucial for migrations happening in datacenters where bandwidth
is not an issue. However, as we focus on migration in edge net-
works, it assumes much more relevance as the available bandwidth
is limited. The state size is calculated in Bytes and for Podman is

the size of the state tarball while, for MirageManager, of the JSON
message embedding the state of the unikernel.

Image Size. The size of the image. Both, for Podman and Mi-
rageManager it is defined by the size of the image stored in the
filesystem.

Results
Table 1 shows the migration results as the average of 200 migrations
mapped to the respective steps shown in Figure 5. MirageManager
provides slightly worse performance, as it takes longer than a cold
migration with Podman. However, this is due to MirageManager al-
ready starting the target unikernel before transferring its state over
the network. This is a time consuming operation due to the time
required for MirageOS to successfully setup the network channel,
especially with DHCP enabled.

Table 1: MirageManager vs. Podman

MirageManager Podman

Migration
Time

Init [s] (Steps 1 and 2) 0.91 +/- 0.20 -
Wait [s] (Steps 2 and 2.1.1.1) 2.61 +/- 0.45 -
Retrieve [s] (Steps 4 and 4.1) 0.02 +/- 0.006 -
Total [s] 3.54 +/- 0.48 1.96 +/- 0.06
Downtime [s] (Steps 2.1 to 4.1) 0.33 +/- 0.02 1.80 +/- 0.05
State Size [B] 79.00 195175.28 +/- 113.39
Image Size [B] 27780862 70730752

The benefit of our approach can clearly be seen in terms of
downtime. In fact, MirageManager downtime is ∼80% shorter than
Podman’s. Regarding data usage, MirageManager is clearly in ad-
vantage. The container migration requires a full memory dump
transfer, while MirageManager only transfers the necessary vari-
ables to preserve the application logic state. As a consequence, the
amount of data needed to transfer the state between machines is
more than ∼2000x smaller with MirageManager, when compared
to Podman. This is also a function of the application logic which
can affect the state transfer cost.
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An important factor when evaluating service migration in dis-
tributed systems is scalability. Therefore, we evaluated how mi-
gration with MirageManager fares in comparison with Podman
when both tools perform multiple migrations simultaneously and
measured the overall migration time. Figure 6 shows the overall
time required to migrate multiple services in parallel. The top part
of the plot shows the results for MirageManager while the bot-
tom part shows those for Podman. In both cases, we measured
the overall migration time with four different bandwidth settings.
As we discussed previously, edge networks suffer from bandwidth
constraints which severely impact migration operations when the
transferred state is not small. This stresses the need not only to
follow best-practices of service decomposition but also to reduce
the state size as much as possible. For both, unikernels can be the
answer.

We can gain multiple insights from Figure 6. First, MirageM-
anager’s migration time is seemingly unaffected by the available
network bandwidth and it grows quasi-linearly with the amount
of services migrated in parallel. The transferred state is extremely
small, as we do not include the domains full memory. The same
cannot be said for Podman, which is definitely suffering in low band-
width conditions because it needs to transfer the complete memory
dump as part of its migration technique. This tendency is exacer-
bated with the network bandwidth capped at 100 and 500 Kbps. In
this case, MirageManager is up to ∼6x times faster than Podman.
On the other hand, Podman outshines MirageManager as the avail-
able bandwidth increases. In fact, the latter it heavily penalized by
the long wait time (as shown in Table 1) which is the major culprit
of the long migration time. However, this is a limitation of the
specific unikernel rather than our system which can be addressed
in the future to drastically improve MirageManager performance.

Finally, while migration with Podman is transparent to the mi-
grated application, MirageManager requires changes to the appli-
cation logic in order to work correctly. Based on this, we state
that MirageManager generally outperforms in downtime and data
transfer volume cold migration with containers while offering com-
petitive performance in terms of overall migration time.

7 DISCUSSION
In this section we discuss the limitation of our approach in relation
to the our implementation and design choices.

MirageOS & OCaml. Currently, MirageManager only supports
MirageOS unikernels. While MirageOS is a promising project, this
results in MirageManagers biggest limitation as it forces the devel-
oper to write all code in a specific programming language (OCaml).
Additionally, MirageOS unikernels compiled against Xen do not
support the full set of libraries available to POSIX processes. This
is due to the restricted set of libraries that have been ported to be
compatible with MiniOS. However, our system could be extended
and ported to work with other unikernels [39–42], which would
bring more freedom in terms of available programming languages.

Virtualization.MirageManager uses Xen as hypervisor. How-
ever, in recent years we noticed howmore flexible and user-friendly
solutions, such as KVM [43], have received increasing attention.
MirageOS is compatible with KVM and especially Solo5 [44]: a
sandboxed execution environment for unikernels based on KVM.

Our system could be adapted to run on top of this hypervisor, too,
which would also drop some stringent requirements inherited from
Xen in terms of, for example, hardware prerequisites.

Application Design. MirageManager imposes further design
and implementation restrictions on a newly developed unikernel.
The developer must build the application logic so that it can be
serialized for a migration. This adds complexity to the development
phase and requires specific knowledge of the underlying migration
system. On the other hand, MirageOS unikernels benefit from a
compile-time defined behavior which opens to the possibility of
programmatically generating the adjacency matrix representing
the execution flow. Formal proof management system like Coq [45]
are natively compatible with OCaml and can help in this regard.
Alternatively, we contemplate the possibility of using tools such
as pre-processors in order to cope with the code modifications and
language implications (e.g. return values) discussed earlier.

While these restrictions can rule out using MirageManager in
some cases —what we presented is an initial prototype. Still, it is the
first system enabling the migration of unikernels while managing
multiple Xen hosts and their guest domains. Our design allows to
easily extend the implementation to accommodate diverse hyper-
visors and library operating systems and, yet at an early stage, it
performs competitively when compared to more mature solutions.

8 CONCLUSION AND FUTUREWORK
In this paper, we presented MirageManager: a checkpoint-based,
live migration solution for unikernels. We discussed the motivation
and reasoning behind our design which stems by a surging interest
for service migration at the edge. In order for unikernels to keep
growing as a virtualization technology, functionalities like migra-
tion must be made available in order to extend their applicability
also to stateful services. MirageManager was developed on top of
MirageOS and Xen. Our evaluation showed the potential of our solu-
tion in comparison to a well established service migration approach.
Nevertheless, there are limitations which open to manifold explo-
ration paths for our future work. Improving scalability, reducing the
implementation effort by automatically extracting the execution
flow, testing our solution with other unikernel technologies are the
first challenges we plan on tackling.
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Publication Summary

Widespread adoption of mobile augmented reality (AR) and virtual reality (VR) ap-
plications depends on their smoothness and immersiveness. Modern AR applications
applying computationally intensive computer vision algorithms can burden today’s mo-
bile devices, and cause high energy consumption and/or poor performance. To tackle
this challenge, it is possible to offload part of the computation to nearby devices at the
edge. We found that this calls for smart task placement strategies in order to efficiently
use the resources of the edge infrastructure. Therefore, the core of our work in this
article is Nimbus: task placement and offloading solution for a multi-tier, edge-cloud
infrastructure where deep learning tasks are extracted from the AR application pipeline
and offloaded to nearby GPU-powered edge devices.

We focused on minimizing the latency experienced by end-users and the energy costs
on mobile devices. We provide a multifaceted evaluation, based on benchmarked perfor-
mance of AR tasks, shows the efficacy of our solution. Overall, Nimbus reduces the task
latency by 4̃x and the energy consumption by 77% for real-time object detection in AR
applications. We also benchmark three variants of our offloading algorithm, disclosing
the trade-off of centralized versus distributed execution.
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Nimbus: Towards Latency-Energy Efficient Task
Offloading for AR Services

Vittorio Cozzolino, Leonardo Tonetto, Nitinder Mohan, Aaron Yi Ding, Jörg Ott
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Abstract—Widespread adoption of mobile augmented reality (AR) and
virtual reality (VR) applications depends on their smoothness and im-
mersiveness. Modern AR applications applying computationally intensive
computer vision algorithms can burden today’s mobile devices, and cause
high energy consumption and/or poor performance. To tackle this chal-
lenge, it is possible to offload part of the computation to nearby devices
at the edge. However, this calls for smart task placement strategies
in order to efficiently use the resources of the edge infrastructure. In
this paper, we introduce Nimbus — a task placement and offloading
solution for a multi-tier, edge-cloud infrastructure where deep learning
tasks are extracted from the AR application pipeline and offloaded to
nearby GPU-powered edge devices. Our aim is to minimize the latency
experienced by end-users and the energy costs on mobile devices. Our
multifaceted evaluation, based on benchmarked performance of AR
tasks, shows the efficacy of our solution. Overall, Nimbus reduces the
task latency by ∼4× and the energy consumption by ∼77% for real-time
object detection in AR applications. We also benchmark three variants
of our offloading algorithm, disclosing the trade-off of centralized versus
distributed execution.

Index Terms—Edge Computing, Augmented Reality, Optimization, Re-
source Management, Cloud Computing.

1 INTRODUCTION

Since the advent of consumer mobile devices equipped with
multiple sensors and powerful chipsets, multimedia applica-
tions have garnered increasing interest amongst smartphone
users. A recent study reports that the mobile AR adoption
currently stands at 32%, where 54% of the respondents use
mobile AR at least once per week and 36% percent several
times per week [7]. Despite the increasing popularity of
the technology, most current mobile AR applications often
offer poor user perceived performance. The reason for this is
two-fold. Firstly, object recognition and detection algorithms
are a bottleneck for AR [97] as the front-end devices are
often insufficiently equipped to execute them with acceptable
latencies for the end user [1, 23]. Secondly, extended usage of
such applications results in high power consumption, which
leads to significant battery drain and overheating [35, 77].

Edge computing allows applications developers to ac-
celerate their services’ performance by offloading computa-
tionally intensive tasks to nearby powerful machines instead
of the distant cloud datacenter. Latency critical applications

• V. Cozzolino, L. Tonetto. N. Mohan and J. Ott are with the Technical
University of Munich, Germany.

• A.Y. Ding is with the Delft University of Technology, Netherlands

operating on mobile devices, such as AR/VR, benefit most
from the availability of the edge as they can utilize more
powerful hardware, in addition to on-board processors,
without traversing long paths to the cloud [88, 91]. As
shown in previous research, such approaches not only allow
smartphones to run multimedia applications and games
with better visual quality [17, 21, 30, 34, 41, 80, 81, 93],
but also enable older mobile devices (provided they are
equipped with the required spatial sensors) to support such
applications in the first place.

Unlike other driving applications for edge computing (e.g.
smart homes), real-time multimedia applications impose
much stricter constraints on offloading computations at
edge devices. Since such applications need to incorporate
tightly-coupled user interactions, they operate under strict
delay thresholds imposed by the human vestibular system
– bordering between 75ms for online gaming and 250ms
for telemetry [66]. In practice, requirements for seamless
interaction between the physical world and the virtual
overlay are estimated to be much lower, ∼7ms [10, 25].
Currently, a modern smartphone can run object detection in
∼200ms per frame using an optimized model [78], which is
some orders of magnitude off from the strict requirements of
AR applications. Preserving loss of smoothness and excessive
delays in applications relying on virtual environment is
paramount to prevent phenomena such as motion sickness
[66].

Additionally, AR/VR applications are power-hungry and
can quickly drain the phone’s battery [9]. The growing
demand for higher precision deep learning models and
increased immersiveness of the augmented experience can
cost even more battery power. Chen et al. [28] show that
a smartphone can spend significant portion of its battery
capacity while running a mobile-optimized object recognition
service. Pairing this workload with client-side rendering, net-
work communications, and running specific AR application
logic can reduce the expected battery life even further.

Considering the complexities levied by deep learning
based real-time applications, it is challenging to exploit a
nearby edge infrastructure in a scalable manner. Moreover,
while the cloud has potentially unlimited resources, the same
cannot be assumed for the edge computing paradigm. In fact,
the latter is by definition distributed across multiple edge
networks and hence associated with considerable heterogene-
ity in bandwidth and compute resources [61]. On the other
hand, recent large-scale measurement studies have shown



Camera
Input

Frame
Pre-processing

Object
Detection

Feature
Extraction

Object
Recognition

Template
Matching

Object
Tracking

Annotation
Rendering

Camera
Input Decode/ISP Image

Processing Batching DNN(s)
Detect and Classify Tracking Visualization Display/

Storage

AR Pipeline

Video Analytics
Pipeline

Fig. 1: Mobile applications requiring deep learning steps.

that despite the significant growth in cloud infrastructure,
the network latencies from users to nearest cloud datacenters
exceed the strict operational boundaries of AR applications
almost globally [31, 32, 36]. As a result, we see edge-cloud
interplay as key to extend cloud computing reach outside
of datacenters, and enhance its services by leveraging an
infrastructure closer to the end-users [66, 87]. We believe that
effective application offloading is a crucial problem for edge-
cloud computing that must be addressed when thinking at
scale. For that, selecting an appropriate offloading candidate
must be at the core of maximizing user satisfaction, as
allocating multiple users to an already overloaded edge node
can negatively impact an AR application’s performance [28].

To summarize, the motivation behind our work is boosting
the performance of mobile applications that use DNNs (as
shown in Figure 1) by offloading part of their execution
pipeline to the edge-cloud infrastructure. The ultimate goal
is to improve the quality of experience and enable poten-
tially new classes of applications which have strict latency
constraints (such as real-time mobile VR). We approach the
problem from a system design perspective and proceed by
using an algorithm for resource provisioning to measure
the effectiveness of our architecture.

Contributions. In this paper, we present Nimbus, a real-time
task offloading system designed to determine an optimal
task placement strategy. We aim at reducing the latency gap
afflicting the execution of real-time deep learning models
required by AR and similar applications by making use of
resources offered at the network edge, at scale. We select and
support the execution of mobile-optimized, object detection
convolutional neural network (CNN) for AR applications,
as shown in Figure 1. This shows also the pipeline for live
video analytic applications which programmatically share
core components of AR/VR applications and are becoming
the solution to many safety and management tasks [95].
The design principles of Nimbus are devised to address
three crucial constraints of target applications: (1) latency
as a primary measure of the application QoS, (2) battery
consumption which defines the extent of the user’s QoE,
and (3) task coordination as the role of the infrastructure in
orchestrating, load balancing and distributing computation
based on the users’ demands. Nimbus aims at minimizing
the overall mobile-to-edge latency while avoiding increasing
battery consumption. Additionally, Nimbus’s offloading
policy ensures a balanced load distribution across the edge
nodes participating in the infrastructure. Our contributions
in this paper are as follows:

• We benchmark the performance of different classes of edge
devices to understand their support towards real-time
object detection for mobile AR.

• We devise a multi-tier edge-cloud infrastructure and
propose a best-effort resource provisioning algorithm ad-
dressing the problem of serving multiple users competing
for heterogeneous resources. Overall, our approach reduces
task latency by∼4× and the energy consumption by∼77%
for real-time object detection.

• We develop an edge infrastructure simulator1 to evaluate
the performance of Nimbus against other related solutions.
From an empirical analysis based on extensive measure-
ments in real testbeds, we extract the parameters of the
simulator to closely mimic the realistic operations of edge
devices and core network latencies.

• We develop and evaluate several variants of Nimbus
reflecting both centralized and distributed execution of
the task placement algorithm.

2 RELATED WORK

The intuition of offloading computationally intensive tasks
from mobile devices towards powerful servers has been
explored vastly in the past decade. Originally, the offloading
procedure targeted powerful datacenters in the cloud [39, 42].

With the rise of edge computing, the status quo changed
drastically with new possibilities to mitigate the most
prominent drawback of cloud offloading: latency. In fact, the
introduction of cloudlets and edge envisioned a collaborative
computational infrastructure where intensive tasks could
be offloaded to nearby edge microservers, thus saving on
access latency [20, 79]. Moreover, edge computing can also
help in reducing energy consumption of mobile devices.
For example, with Voltaire [27] it is proposed to perform
code offloading to enables resource-constrained devices to
leverage idle computing power of remote resources.

Nevertheless, edge nodes have limited computational
resources, limiting the number of clients that can be served at
the same time. Approaches based on offloading to the nearest
edge-cloud can lead to situations where too many clients are
allocated to the same node, competing for limited resources.
Multiple works have focused on solving a similar problem
by using either hierarchical edge-cloud architectures or load
balancing among edge-cloud [24, 29, 47, 58, 62, 63, 90, 92].
In particular, MCDNN [45] developed a compiler together

1. Code and dataset are available here https://github.com/
vitcozzolino/nimbus.
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with a runtime scheduler to balance between accuracy and
resource consumption by reasoning about on-device/cloud
execution tradeoffs, while Markov decision processes [46]
were used for VMs load management to reduce energy
consumption in datacenters. A similar approach was pro-
posed by Tan et al. [84] to minimize the expected response
time, where tasks uploaded from mobile device are sent to
an edge-cloud infrastructure and scheduled by an online
job dispatching algorithm. While their method is limited
– assuming a server can only process one job at a time
– we instead consider parallel execution of multiple jobs.
Other approaches have focused on reconfiguration of edge-
clouds [51], specifically on how to optimize the placement of
cloudlets in a given network. The approach of using a hierar-
chical edge-cloud infrastructure has been proposed already
by Tong et al. [85] to efficiently handle the peak load and
satisfy the requirements of remote program execution. Recent
work from Braud et al. [26] introduces a task allocation
algorithm based on a latency model leveraging multipath
computation to offer multiple resources in parallel. The key
difference from the these approaches is that our system
tackles the problem of parallel tasks execution offloaded
to the same edge device while they focus on sequentially
placed workloads. Additionally, previous solutions focused
only on latency (computational and/or communication)
without factoring in mobile energy consumption in the
offloading decision. Finally, many scheduling algorithms
translate task complexity in the number of CPU cycles
required for its execution eventually combined with other
parameters such RAM, disk, and bandwidth [38, 53, 98].
We instead focus on GPU workloads and their performance
variance with overlapping tasks — a parameter which is
seldomly explored.
While most of the previous work aimed to minimize mobile
task execution time, we focus specifically on AR application
offloading [57, 89]. By doing so, we gain a clear under-
standing of how and where a task should be offloaded
since we are aware of the inherent requirements of such
applications. Our scheduling algorithm focuses primarily
on improving the perceived performance for the mobile
user. Similar work has been done for visual applications
offloading in the past. LAVEA [96] is a system built on top
of an edge computing platform, which offloads computation
between clients and edge nodes, to provide low-latency video
analytics at places closer to the users. The work closest to ours
is [72] – a framework that ties together front-end devices with
more powerful backend servers to support complex deep
learning tasks. However, unlike our work, the authors do not
consider a multi-tier edge infrastructure and scenario where
multiple users are competing for the resources offered by the
infrastructure.

For mobile-cloud offloading, some work has been con-
ducted in the past for optimizing DNNs. Kang et al. [52]
and Xia et al. [94] identified how to optimally slice a
model to offload only a part of it to the cloud in order
to minimize either latency or energy consumption. DynO
[16] is a distributed inference framework addressing several
challenges, such as device heterogeneity, varying bandwidth
and multi-objective requirements. Key components that
enable this are its novel CNN-specific data packing method,
which exploits the variability of precision needs in different
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Fig. 2: Multi-tier edge-cloud infrastructure.

parts of the CNN when onloading computation, and its
novel scheduler that jointly tunes the partition point and
transferred data precision at run time to adapt inference to
its execution environment. Our work is inspired by those
studies and strives to characterize the problem in a multi-
tenant environment where resource contention is the primary
issue.

Recapping, Nimbus differentiates from the aforemen-
tioned research works in many ways. It tackles the problem
of parallel task execution instead of makespan optimization
(sequential). Our offloading solution revolves around a joint
latency and mobile battery optimization procedure with a
focus on GPU workloads and their scaling properties. Finally,
Nimbus performance is rooted in a set of real measurements
gathered from devices which are part of our envisioned
edge-cloud infrastructure.

3 SYSTEM OVERVIEW

Figure 2 shows the entities in our system – mobile devices
(MD) and edge nodes (EN) interacting over the network.
While the former interact with the infrastructure as users of
AR applications, the latter are responsible for handling tasks
offloaded by the MD. In our case, an MD is a battery-powered
mobile device that can offload part of its computation to the
edge-cloud infrastructure. We assume a hierarchical edge
architecture where compute and caching capabilities of EN
increase with increasing distance from the MD. Nodes in
different (logical) layers of the edge network can be accessed
via ad-hoc connections or gateways [33, 56, 60, 65, 67, 83].

The design of our edge computing infrastructure is
inspired by networks like Eduroam2. The deployment of
Eduroam is widespread as it can be found outside academic
facilities, e.g., libraries and study centers. While such a
network (currently) only offers Internet access to clients, we
acknowledge its capabilities to support an edge computing
infrastructure due to the presence of multiple connected

2. https://www.eduroam.org
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networked resources capable of running computations on
behalf of the connected users. We logically divide the
network into three layers – each one offering different
capabilities and, as we approach the core of the infrastructure,
latency and computational capacity of the resources increases.
Conceptually, the architecture proposed by Tong et al. [85]
and Mohan and Kangasharju [64] come closest to ours and
we use them as point of reference in our system design.

Tier One Edge Nodes (T1-EN). The outer-most layer (de-
noted by blue circles in Figure 2) is a set of augmented
access points (AP) or base stations with minimal compute
capabilities. We assume these APs to be either equipped with
(or directly connected to) an embedded device with low-end
GPUs, e.g. NVIDIA Jetson Nano or Intel NCS2. Resources in
this layer act as entry points to the network, offering limited
computation in addition to standard routing and connectivity
functionalities.

Tier Two Edge Nodes (T2-EN). T2-EN (denoted with squares
Figure 2) form the second layer of our multi-tier edge
cloud infrastructure. Logically these devices can be viewed
as backbone routers co-located close to T1-EN. However,
unlike T1-ENs, T2-ENs posses more computational power
and network bandwidth that allows them to serve multiple
users in parallel. An example of T2-EN resources in the real
world is a mid-range micro-server equipped with a discrete
GPU.

Tier Three Edge Nodes (T3-EN). The core of our architecture
comprises of T3-EN (shown as orange hexagons) that are
powerful servers equipped with multiple GPUs, offering
the most significant computational power of all layers. The
capabilities of T3-EN are analogous to traditional cloud
datacenters, both in terms of the number of users that can
be served in parallel and network bandwidth connecting
servers within the layer. However, due to their proximity to
the network core, the network latency incurred to access
the resources in this layer is the highest amongst edge
infrastructure.

We consider a system where a mobile device hosting an
AR application can offload component tasks in the pipeline
(e.g. those requiring deep learning) to the edge infrastructure.
Considering the inherent heterogeneity that exists in the
infrastructure — different hardware capabilities, network
latency to server, task requirements etc. — an effective task
offloading strategy is required ensuring that the application
performance meets the required expectations. Additionally,
we assume that ENs in our system are managed resources
and can communicate/exchange details regarding their
current processing load with other ENs. This assumption
roughly resembles the current state of resource management
in cloud datacenters and it allows our task offloading
algorithm (presented in the following section) to have fresh
information regarding the edge network state.

4 TASK OFFLOADING AT THE EDGE

We consider a system where a controller estimates the
feasibility of offloading a task proposed by a mobile device
to the edge infrastructure. Since our objective is to showcase
the effectiveness of our offloading solution, we start by con-
sidering a centralized controller located in the cloud. Later
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in the paper (§6), we design a distributed and hybrid variant
of our offloading mechanism and compare the operational
differences of all approaches. Figure 3 shows a high-level
concise workflow representing the MD-Controller interaction.
The infrastructure is composed of N interconnected and het-
erogeneous ENs, which, based on their computing capacity,
can serve several concurrent tasks. An MD can offload its
task via T1-EN, which act as gateways to the infrastructure.

Before entering the handshake phase, the MD performs
a one-time procedure called benchmark lookup. Normally,
games and other multimedia applications run benchmarks
to estimate their runtime performance in order to tune and
set configuration parameters. Similarly, there are tools to
profile deep learning models on mobile devices [50]. In
our model, we assume that benchmarked results for each
MD are uploaded to a repository that is looked-up by
the system to identify MD’s capabilities. Afterwards, the
handshake procedure begins and the MD exchanges with
the infrastructure controller its requirements in terms of
deliverable performance (in FPS and battery consumption).
In the offloading phase, the MD connects to the network
to offload and it receives a list of offloading candidates
from the controller obtained by running Nimbus (details
about the algorithm logic will be provided in §5). Then, the
MD will interact with the selected EN until required by
the underlying application. Finally, in the release phase, the
resources booked for the MD on the EN are released, and
the controller is notified. The Nimbus offloading decision is
based on minimizing deep learning based task latency (i.e.,
maximizing FPS) as it directly affects the QoE for mobile AR
applications.

Offloaded Tasks. As shown previously in Figure 1, AR/VR
applications (especially games) can be decomposed into
subroutines executed at each rendering step [97]. Some of
these steps are not tied to the application logic and are
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TABLE 1: List of parameters used by the algorithm.

Term Description Unit
di Amount of data transferred by the i-th MD KB
BWij Bandwidth between i-th MD i and j-th EN Mbps
TETj Inference time on the j-th EN ms
TECi Local energy execution cost for i-th MD mJ
qj Queuing time at j-th EN ms
w Transmission module power mJ/ms
εt Latency threshold ms
εb Energy budget J/s
RTTm RTT matrix ms
κ, α, β Additional coefficients (described in § 5) —

perfect offloading candidates. Let us take the example of
tracking-by-detection principle [19, 55, 71] for object tracking.
The principle requires that the object is detected in the first
and all subsequent frames. The object is tracked simply by
associating detection results to form target trajectories. This is
a necessary component in all AR applications where smooth
integration with real world is paramount. While tracking
requires sophisticated application logic to interpolate objects
positions across frames, detection is oblivious to past ex-
ecutions and depends only on the latest frame. Therefore,
object detection is a prime candidate for offloading to the
edge. In practice, a stream of pictures can be sent by the MD
towards the target EN for processing. Even if the EN becomes
unresponsive, the MD can switch to executing the task locally
so that the underlying offloading process is transparent
to the end-user who would experience no interruptions
in the service. We consider each task submittable to the
infrastructure as atomic (i.e., indivisible and uninterruptible).
In this work, we focus on stateless tasks that are resilient
to the loss of connectivity due to their independence from
past transactions. However, our solutions proposed in this
paper can be extended to stateful tasks as well with proper
synchronization mechanisms. That, we leave them for future
work as hereby we concentrate our efforts on the offloading
strategy and algorithm formulation.

Our problem formulation assumes that MDs offload tasks
to the system in bulks, which translates into a constant, worst-
case arrival rate. This allows us to devise a solution that
does not assume any prior knowledge about the offloaded
task makespan nor use it to optimize the decision making
process. It is not realistic for an MD to know in advance for
how long the user will run the application (e.g., minutes to
hours). The only information available are inference time
of the DNN task and its energy cost (estimated during
the benchmarking phase shown in Figure 3). Therefore, we
optimize the resources allocation in a maximum concurrency
scenario – where all the MD are concurrently using the
infrastructure and all resources, from network bandwidth to
compute, must be shared.

In a practical scenario, tasks can have different complexity
and requirements. For simplicity, we select a class of tasks
for which we provide execution time distributions for the
device executing them. We used the NVIDIA Triton [14] suite
to benchmark MobileNetv2, a common CNN-model central
to image classification tasks, with an increasing number
of clients. We run benchmarks on three device types, each
representative of the different tiers of our multi-tier edge
infrastructure. Figure 4 shows the results we gathered in our
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experiments and specifically the inference and queue time
for different EN tiers. More details will be discussed in §6.

Objective 1: Minimize Latency. The total task latency
consists of transmission time Ltij between the i-th mobile
device and the j-th edge node, plus the execution time
Leij of the required tasks at the j-th node. Transmission
time depends on the network bandwidth BWij and on the
amount of data di sent by a mobile device. Furthermore,
this communication delay can be negatively affected by
multiple clients interacting with an EN if they share the
same access medium (e.g., WiFi). Hence, a fair queuing best-
effort communication model is assumed where each client
connecting to an EN perceives a connection bandwidth equal
to R/N, where R is the total offered data rate and N the
number of active users.

Execution time represents the amount of time an MD
has to wait in the processing queue before its request can
be served, i.e the time to execute a task (TETj) plus the
GPU queuing time (qj) on the j-th EN. Queue time can
grow substantially depending on the EN’s capabilities and
the number of concurrently served clients. Figure 4 shows
inference and queue time for each edge device tier and the
number of users concurrently using the device. As expected
for T1-EN, the queue time increases with the number of
served clients due to the limited hardware capabilities of
devices in this tier. On the other hand, powerful discrete
GPUs found in expensive workstations can handle many
more clients with a minimal queue time penalty. Another
key insight from Figure 4 is that unlike inference time,
queue time is heavily influenced by the number of parallel
users and is a primary variable to model highly concurrent
scenarios. Moreover, ENs equipped with powerful GPUs
incur a queuing penalty only after concurrently serving many
MDs, as shown for the T3-EN in Figure 4. Eventually, this
leads to a point where even a powerful EN can not meet the
QoE requirements of the MDs.

Objective 2: Reduce battery consumption for the MD. When
mobile phones receive or transmit data, they consume energy
depending on the network bandwidth and the amount of
data to be transferred. Additionally, in real scenarios, wireless
mobile devices often experience high variances in link
quality [36, 68], directly affecting the data transfer latency and
the final energy consumption. When offloading or accessing
cloud resources, it is important to take into account the
additional delay introduced by the network load pattern as
they change throughout the day [59]. Therefore, network
conditions for mobile devices experience high variance, and
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Device Name Inference
Energy Cost Time

OnePlus 5T Mobile_A 182 mJ 154 ms
OnePlus 3 Mobile_B 318 mJ 116 ms

Redmi Note 4X Mobile_C 268 mJ 190 ms

TABLE 2: Mobile inference time and energy cost for Mo-
bileNetv2.

narrowing down to a single energy consumption model for
all kinds of mobile devices in all network conditions is very
challenging. In this paper, we build on top of previous work
from Xia et al. [94] and Kang et al. [52] to express the energy
cost of transferring data Bt as a function of the transmission
module power w and the overall transmission time Lt as
shown below:

Lt =
d

BW
+RTT (1)

Bt = Lt × w (2)

where d is the amount of transferred data, BW the upload
bandwidth and RTT the network round-trip time.

We follow Xia et al. [94] and define three classes of mobile
devices, each one with different hardware resources and
power consumption profiles. We benchmark the performance
of all three device classes for executing MobileNetv2. For
Mobile_A and Mobile_B class, we use a single, CPU core
while for Mobile_C we use 8 CPU cores. The energy cost and
inference time achieved by all classes is shown in Table 2.
In all cases, no model partitioning was applied. Also, the
amount of energy spent to execute inference locally on the
mobile device allows us to compare the cost of offloading
the task against running it locally. While many contributions
model both network transfer and mobile inference energy
cost [43], we favor the approach described above due to its
comprehensiveness and precise results — especially for the
object detection task we focus on in our study.

Mathematical formulation. Assume that the i-th task is exe-
cuted by j-th EN, the task latency and battery consumption
incurred by the device can be formalized as:

Lij = (Ltij + Leij) =

[
(

di
BWij

) +RTTij

]
+ (TETj + qj) (3)

Bij = Btij = Ltij × w (4)

We ignore the downlink cost for the energy consumption
calculations as we assume it to be negligible when compared
to the uplink, especially for object detection applications.
While the input can be an image of arbitrary size, the output
are bounding boxes of comparatively smaller in size for
which the network transmission has a negligible energy cost.
Therefore, when a task is offloaded, both its latency and
mobile energy consumption are affected by the process of
communicating with the edge infrastructure. In other cases,
the task is running locally and its execution latency and
energy consumption are described in Table 2.

Based on the system described above, we define the
task assignment problem as selecting an EN for assigning a
task to minimize latency (L) and battery consumption (B) for the

mobile device. The problem translates into a multi-objective
optimization problem with two objective functions in the
form of min g(L(~x ), B(~x )) with ~x ∈ X and X the space of
feasible decision vectors. In our case, we focus on identifying
a set of Pareto optimal solutions which, by definition, cannot
be improved in any of the objectives without degrading at
least one of the others.

To solve for both latency and battery consumption, we
make use of an approach called scalarizing. Scalarizing is
an a priori method that allows us to formulate a single-
objective optimization problem such that optimal solutions to
it are Pareto optimal solutions to the original multi-objective
optimization problem [49]. In our case, it would lead to the
following reformulation of the problem: min g(L(x), B(x), φ)
with x ∈ Xφ and Xφ set depending on the vector φ. Of the
multiple scalarization techniques, we adopt the ε-constraint
method [37] to reformulate the multi-objective optimization
problem by just keeping one of the objectives and restricting
the rest within user-specified values (which fits our scenario).
Based on the system described before, the offloading problem
demands us to identify the best EN to run a user submitted
task to minimize the experienced task latency while not
violating the stated constraints. Mathematically, let xij ∈
{0, 1} denote the case when the j-th EN serves the i-th device.
We express the ε-constrained latency minimization problem
as follows:

min
N∑

i=1

M∑

j=1

xijLij(p) (5)

subject to
N∑

i=1

xij = 1,∀j ∈M, (6)

Lij ≤ εt,∀j ∈M, (7)
Bij ≤ εb ≡ TECi,∀j ∈M, (8)
xij ∈ {0, 1},∀i ∈ N, ∀j ∈M (9)

where N and M are the set of mobile devices and EN, re-
spectively, and with p= 〈di, BWij , TETj , RTTij , qj〉 vector
containing part of the parameters shown in Table 1. Equation
5 is our objective function. Equation 6 and 9 limit each MD
to offload its task to as single EN, at most. Equation 7 and
8 are formalization of the latency and energy consumption
constraints limiting the feasible solution space.

Constraints. The εt represents a predefined latency threshold
after which offloading computation does not benefit the
mobile device. The value covers both the transmission
time and remote execution of the task. Depending on the
mobile devices’ requirements, εt can be a different value
reflecting the specific user or application needs. Therefore,
the threshold value depends on many factors, e.g., FPS
requirements of the offloaded task. εb represents the battery
consumption threshold, exceeding which offloading the task
becomes too expensive in terms of energy. Fundamentally,
εb depends solely on the cost of running the task locally
(TECi) on the i-th device. This constraints are a function
of the MD capabilities. For example, a powerful MD will
have a much lower value for εt and, potentially, εb as it can
complete locally its task quickly and efficiently (in terms of
energy cost).
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Algorithm 1: Nimbus allocation algorithm.
Input : Refer to Table 1.
Output : Best offloading target for the i-th MD.

// Warmup

1 ~ENr ← FilterAndMinimize(AP,RTTm, εt)

2 ~EN ← LookAheadLoad( ~ENr, κ)
// Core

3 for ENj in ~EN do
4 Lij = (Ltij + Leij) =[

( di
BWij

) +RTTij

]
+ (TETj + qj)

5 Bij = Btij = (Ltij × w)
6 if Lij ≥ εt or Bij ≥ εb then
7 Drop(ENj , ~EN)
8 end
9 end

10 if ~EN 6= ∅ then
11 for ENj in ~EN do
12 return argmin[α ∗ Lij

εt
+ β ∗ loadj

maxloadj
]

13 end
14 else

// Failover
15 cloud← FindClosest(εt)
16 if Lcloud ≤ εt and Bcloud ≤ εb then
17 return cloud
18 end
19 end
20 return ∅

Src
Dst T1-EN T2-EN T3-EN

EN0 ... ENn−1 ENn EN0 ... ENn−1 ENn EN0 ... ENn

T1− EN0 c ... ... ... ... ... ... ... ... ... ...
... ... c ... ... ... ... ... ... ... ... ...

T1− ENn−1 ... ... c ... ... ... ... ... ... ... ...
T1− ENn ... ... ... c ... ... ... ... ... ... ...

TABLE 3: RTT matrix structure.

5 ALGORITHM

Following the ε-constrained approach in §4, we are able
to re-construct our optimization problem in convex form
that we solve using a meta-heuristic. The adopted search
strategy for our meta-heuristic is inspired by the hill climbing
algorithm [3] that is widely used due to its effectiveness and
simplicity in different convex optimization problems (e.g.,
artificial intelligence) for which it can provide the optimal
solution [74]. Algorithm 1 describes Nimbus task offloading
approach.

Nimbus operation is divided into three phases: Warmup,
Core, and Failover. The Warmup phase identifies a list of ENs
that are accessible from the AP the device is connected to and
are the best candidates to offload computation. In the Core
phase, the algorithm calculates the latency and battery cost
for offloading to each EN in the list using the formulation
described in §4. Afterwards, it selects the best EN based on
the balance-ensuring allocator. In the Failover phase, if the
algorithm failed to find a suitable EN for offloading the task,
it looks for a cloud server that best satisfies the latency and
energy consumption constraints of the task.

Algorithm 2: LookAheadLoad procedure.

Input : ~EN , exploration coefficient κ, εt.
Output : List of compatible EN.

1 ~compatibleEN = ∅
2 for ENj in ~EN do
3 if devicesListj 6= ∅ then
4 mnl = argmax deviceNetworkLatencyj
5 if size(devicesList)�

maxServableDevicesj(εt −mnl) then
6 ~compatibleEN ← ENj
7 end
8 else
9 ~compatibleEN ← ENj

10 end
11 end
12 if kappa ≡ 0 then
13 return ~compatibleEN
14 else
15 return randomSet(κ, ~compatibleEN)
16 end

Warmup Phase: To start off, Nimbus identifies a list of
EN candidates for offloading the task. The function Fil-
terAndMinimize extracts the set of ENs reachable from the
AP to which the mobile device is connected. For reducing
the search space, Nimbus filters out all ENs for which the
network latency or the queue time is already greater (or
equal to) the maximum threshold εt for the i-th mobile device.
Subsequently, LookAheadLoad removes those EN candidates
which are already close to their critical mass and serving
another MD would violate the εt constraint. In fact, whenever
we offload a task to an EN, the queue time increases for
all the other tasks. As we can quantify this domino effect
(discussed in §4), it is possible to use the MD experiencing
the highest network latency as a reference point. If, for such
device, we violate the task latency constraint, that EN is
excluded from the list of viable offloading targets. Algorithm
2 describes the procedure in details. The parameter κ controls
the search space by setting an upper bound to the number of
ENs we want to consider. In our evaluation, κ will be used
as a tradeoff parameter between convergence time and the
solution’s goodness. The output of the Warmup phase is a list
of ENs that are passed to the next phase of the algorithm.
Core Phase: As the name suggests, this phase is the core of
the algorithm as it identifies the best offloading target by
solving the minimization problem defined in §4. For each of
the candidate ENs collected by the Warmup phase, Nimbus
calculates the execution latency and battery consumption
for offloading the task. We then use these estimates in the
optimization step to identify which ENs respect the latency
and battery constraints and avoid overloading the EN. This
step is necessary for an effective task offloading at the edge
as any new mobile device allocated to an EN impacts the QoS
of all the other device being served by that EN. We assume
that MDs do not change their requirements after being
offloaded. If, in case they do, the device needs to resubmit
the updated requirements triggering a new schedule by
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the algorithm. The α and β coefficients strike a balance
between minimizing the latency for the MDs and avoiding
infrastructure overload. If latency optimization is the only
objective for the infrastructure’s orchestrator, it can easily
achieve it by setting β to zero. In our evaluation, we set α to
0.7 and β to 0.3 to strongly favor latency optimization rather
than balancing the infrastructure load. Other combinations
can be used depending on the specific optimization goals
and on the infrastructure capacity. Additionally, loadj and
maxloadj represent the current and maximum load in terms
of devices for the j-th EN, respectively. We calculate the latter
using an inverse formula of the queue time growth, which
we omit for brevity.
Failover Phase: The final phase of Nimbus is optional as it is
only reached if the algorithm is unable to find any suitable
candidate in the edge infrastructure that can meet the mobile
device requirements. In this phase, FindClosest identifies the
best datacenter (in terms of network RTT) for offloading the
task. We do not assume any prior knowledge of the compute
and hardware capabilities of the target datacenter. Instead,
we assume constant execution latency for the cloud, making
network RTT the main discriminating factor.

Finally, if the Failover step fails, the mobile device fallbacks
to local execution and exits the scheduling algorithm.

6 MEASUREMENT AND EVALUATION SETUP

To evaluate Nimbus’s performance in realistic settings, we
conduct several experiments and measurements to collect
data concerning multiple variables of the algorithm. In this
section, we explore and analyze all facets of our algorithm,
namely network latency, inference and queuing time, and
specifications of MD and T1-EN. Note, however, that we do
not simulate or model network flows. From the network
perspective, we elevate our point of view so that all the
consequences of routing queues, path selection, and network
connection fluctuations are reflected solely by the network
RTT. We delve deeper into the consequences of our choice in
§ 8.
Network latency. As mentioned in § 3, we target an aca-
demic network infrastructure like Eduroam. At the time
of writing, no network latency datasets were available for
such a network. Nevertheless, to provide a meaningful
distribution of the network latency across different layers
of the infrastructure, we followed two approaches. The first
approach focused on measuring network RTTs targeting
some of our devices connected to the Eduroam infrastructure.
We performed measurements from three vantage locations:
overseas (connecting USA to Europe), from a different city
(∼20 miles away), and directly connected in the same subnet.
By analyzing these data, we generated three probability
distributions, one for each EN tier.

We utilized two publicly available RTT datasets from
two p2p-based networks: Seattle [11] and PlanetLab [8]. The
dataset is publicly available at [4]. In order to assign network
RTT to each EN, we identified three latency classes through
k-nn clustering and subsequently generated the respective
distributions, shown in Figure 5. The distributions were then
used to generate relative RTT matrices (Table 3) that we feed
to our solver. The row and column of the matrix represent
an AP and EN in the network respectively. The values of the
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Fig. 5: Latency distributions for selected datasets.

matrix represent the network RTT to reach any of the EN
from an AP. As the probe’s data are anonymized, we do not
have information about the relative distance of the nodes or
their location.

Since our results from Seattle and PlanetLab datasets
were almost similar, we only estimate latencies within
our edge infrastructure using numbers from the Seattle
dataset in § 7. As described in the Failover phase, MDs are
allowed to connect to a cloud server if the performance
offered by the edge network is not satisfactory. To estimate
user latency to the cloud, we utilize our large-scale ping
measurements from 3200+ RIPE Atlas probes [82] to 101
datacenters operated by seven major cloud providers globally.
Our measurements over five months resulted in ≈3.2M
datapoints spanning several GBs [31]. We make our dataset
publicly-available at [40].

Inference and queuing time. To measure the computational
cost of the task, we selected three different devices: an
NVIDIA Jetson TX2, a laptop with an NVIDIA 1060 GTX,
a micro-server with 2x NVIDIA 2080 RTX. We used the
NVIDIA Triton [14] suite to benchmark MobileNetv2 with an
increasing number of clients. Finally, as shown in Figure 4,
we extracted the inference and queuing time. While the
former remains constant regardless of the number of users,
the latter instead, grows quasi-linearly with the number
of clients. Note that this also depends on the amount of
model instances loaded into the memory, as GPUs with
more available VRAM can host more models in parallel,
effectively boosting the overall performance by being able
to concurrently serve more clients in parallel. T3-EN nodes
have plenty of VRAM but this is not the case for T1-EN
which might only be able to load concurrently a handful of
models.

MD and T1-EN setting. The MDs are assigned hardware
specs based on § 4. For simplicity, we uniformly distribute the
total mobile devices across the three available hardware specs.
The ratio of APs that are also T1-EN nodes is variable and
depends on the experiment we run. However, for each AP,
the maximum nominal Wi-Fi bandwidth is set to 300 Mbps.
We assume that all devices connected to an AP experience the
same connection quality apart from the effective bandwidth.
Additionally, we do not account for any transmission-related
issues that could negatively affect the signal.

We extrapolate data from the publicly accessible Leibniz-
Rechenzentrum (LRZ) dataset [5, 6] to assign a location to
each AP in the edge-cloud network plus their respective
loads in terms of connected MDs. We extracted nine months’
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worth of network association data of public buildings and
networks from the LRZ dataset. This contains over 4500
access points scattered across ∼450 buildings. The data are
aggregated in 15 minutes slices, which we use as MD-batches
in our system (see § 4). We partitioned the dataset in different
approaches, described further in the following section. We
also compare the performance of several variants of our
algorithm in the evaluation and discuss the tradeoff between
convergence speed and efficiency of Nimbus.

7 RESULTS

The results presented in this section cover two parts: (i)
performance gain on MD and (ii) algorithm capability. We ran
multiple experiments in different conditions (summarized
in Table 4), highlighting different characteristics of our
algorithm. Due to space constraints, we select a set of
scenarios to showcase out system capabilities.

(A) Scalability & Performance. We first analyze the effective
task latency and energy benefits3 of Nimbus for processing
tasks offloaded by MDs. We select four combinations of
edge infrastructure and MDs, plus we set the required FPS
threshold to 15 (frame interval ∼66.6 ms). We select four
configurations where the number of connected MDs are 500,
1000, 2000, and 4000. Figure 6 depicts distributions of total
task execution time and saved energy (per 1 second, or 15
frames) for 100 simulation iterations.

Even in the worst case (left panel of Figure 6), the
expected task latency achieved by Nimbus is∼2× lower than
running it locally on the fastest MD in our dataset (see Table
2 in § 4). From a performance standpoint, this offloading
strategy can boost deep learning based applications and
increase the quality of experience for its end-users. As the
number of MDs increases, the performance proportionally
decreases. With more congestion and tasks offloaded, the
delivered performance drops, as multiple MDs use the same
EN and influence each other’s execution time by increasing
the overall queuing time. This saturation behavior is mirrored
by the MDs allocation ratio. Figure 7 shows the percentage
of mobile devices served by the edge infrastructure, for four
different configurations of ENs shown in Table 4-(A). With
an increasing number of users, the edge resources tend to
saturate more quickly, forcing most of the mobile devices to
run their computation locally or utilize the cloud. We find
that, with the largest infrastructure used in our experiments
(constituting 4000 MDs), roughly 75% can offload to the
edge. Conversely, only 25% utilized the edge in our smallest
infrastructure configuration.

Task offloading also allows MDs to save energy (right
panel of Figure 6), reducing the power consumption in all
cases. These results are significant as battery consumption is
hugely relevant for high user satisfaction and retention [99].
Offloading tasks from more modern phones will lead to lesser
energy savings due to their more efficient hardware compo-
nents, decreasing the battery cost for running deep learning
tasks. However, our results show a non-trivial margin of gain
in offloading using Wi-Fi to the edge infrastructure. Even
if we consider the most power-hungry smartphone in our

3. We calculate energy benefits by comparing the energy cost for
offloading the task to running it locally at the MD.
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Fig. 7: Fraction of task offloaded to the edge (see Table 4).

dataset and the average energy saving in the worst-case,
Nimbus still consumes ∼77% less battery. Note that using a
mobile connection (e.g., 4G) alongside task offloading leads
to different results, which we discuss in the next experiment.

Takeaway 1. The offloading strategy of Nimbus can
boost deep learning based applications and increase the
perceived performance for its end-users. The expected task
latency achieved by Nimbus is ∼2× lower compared to
the fastest MD in our dataset. Additionally, MDs consume
up to ∼77% less battery when offloading with Nimbus.

(B) Full dataset. For this test, we run our algorithm on the
entire nine-month LRZ dataset but limited to the top five
most-populated buildings. Additionally, we set a minimum
threshold of 30 MDs to simulate a reasonable load on the
infrastructure. We fix the other parameters to values shown
in Table 4. This experiment provides a broader view of the
algorithm performance over an extended period with a fixed-
sized edge infrastructure.

The time-series in Figure 8 shows the task execution
latency (top) and MD density (bottom) for the entire nine-
month period. To obtain these results, we progressively feed
our algorithm with 15-minutes snapshots of MD densities
from the LRZ dataset for the selected set of buildings. We
further group the results by months for ease of readability.
The selected buildings are part of a university campus,
therefore, they exhibit a lower concentration of MDs during
summer holiday period (July-September). Consequently,
between October and January, the higher delivered task
latency grows with the concentration of users connected
to the network. However, due to the fairly low number
of devices (between 30 and 500) and the generous size of
the edge infrastructure, the median task latency is low. For
example, the fastest MD in our dataset has a local inference
time of 116 ms, which is almost 4× higher than the average
task latency that our edge infrastructure can deliver.

Figure 9 shows the relationship between the amount of
saved energy for the MD and task latency, giving additional
insights compared to Figure 6. For this plot, we calculated
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Configuration Edge-cloud Infrastructure Mobile Devices FPS RTT DatasetC# AP T1-EN T2-EN T3-EN Density Low-End Mid High-End

(A) Scalability &
Performance

C0 4371 350 200 10 (500,
1000,
2000,
4000)

33% 33% 33% 15 SeattleC1 4371 250 100 5
C2 4371 150 50 2
C3 4371 100 25 0

(B) Full Dataset — 182 182 30 3 ≥ 30 33% 33% 33% 15 Seattle
(C) Nimbus Baseline — 4371 100 50 2 1000 33% 33% 33% 10 Seattle
(D) Nimbus Variants — 4371 100 50 2 1000 33% 33% 33% 10 Seattle

TABLE 4: Evaluation settings.
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the energy consumption when the algorithm allocates all the
MDs. The trend line demonstrates that with a higher task
latency, we tend to save less energy. The leading cause can
be a longer transmission time due to lower available uplink
bandwidth. As an additional observation, we note having
a static edge-cloud infrastructure might not always be the
best option as the MD density changes at different times of
the year. We hypothesize the possibility of a dynamic edge-
cloud infrastructure where EN can be added dynamically in
response to an increased density and demand of MDs. This
would be similar to cloud computing, where resources are
managed on-demand.

Finally, we analyzed the overall MD allocation ratio for
the slice of data extracted from the dataset. Notice how 28.3%
and 51.6% of total the MDs are allocated to T1- and T2-EN,
respectively. The reasons for this can be manifold. Firstly, the

number of T1-EN exceeds other tiers in our infrastructure
and offers the lowest network RTT which compensates for
the longer execution time. However, due to their limited
resources, they can only serve a handful of MDs. T2-ENs, on
the other hand, are more powerful and strike a good balance
between scalability and network latency. Only 18% of the
MD were offloaded to T3-EN as they offer low computation
time but at the expense of longer network RTT. We remind
that the MD population is small for this experiment. In
fact, increasing the MD density pushes the algorithm to
allocate more on T3-EN, as it is the only class of edge nodes
capable of scaling efficiently without hindering performance.
Finally, 1.1% of the MD ran the task locally, and the remaining
1.1% used the cloud. In the next section, we investigate how
infrastructure size and the amount of MDs affect these ratios.

(C) Nimbus Baseline. For the baseline comparison, we
evaluate our algorithm against a greedy version for 100
repetitions. Additionally, we also compare against a scenario
where only cloud datacenters are available as offloading
candidates, and MDs access them via either WiFi or 4G. We
do not compare directly against other related algorithms
(discussed in § 2) as our task allocation is fundamentally
different from these approaches. Unlike related approaches,
we do not rearrange and serialize the tasks to minimize the
makespan but allow them to execute in parallel. For a fair
comparison, we set side by side our approach with variants
of Nimbus, which closely mimic the core ideology of related
task offloading algorithms.

The greedy variant of Nimbus is fundamentally selfish: it
selects the most profitable offloading candidate regardless
of the possible performance degradation for the other MDs.
While the standard version of the algorithm will use an
unlimited search space, the greedy one will instead favor
a quicker, local solution that minimizes network latency.
This approach is typical of greedy algorithms that make
the locally optimal choice at each stage [22]. We exploit the
exploration parameter (κ) to limit greedy Nimbus’s search
space. The parameter also allows us to force the algorithm
to produce the best offloading target from the network
latency perspective and ignore the current load on edge
nodes. Additionally, in the greedy version, the LookAheadLoad
procedure is deactivated, and the weights α and β are set to
1 and 0, respectively.

Figure 10 illustrates the results of our multifaceted
analysis. From a latency standpoint, the greedy algorithm is
able to find good offloading candidates for mobile devices.
As a matter of fact, the difference in terms of median latency
achieved by greedy compared to the standard version of
Nimbus is minimal. However, the standard deviation is
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much more noticeable due to the increasing number of non-
offloaded MDs. Nimbus offloads ∼30% more MDs than
the greedy version and, specifically, minimizes MDs that
resort to using local resources for task execution. Note
that these results are drawn over a largely homogeneous
edge infrastructure, with only three classes of participating
ENs. In a highly heterogeneous environment, the limited
search scope used in the greedy configuration could lead
to unstable results, since there is an increased chance of
missing good offloading targets in the search procedure.
We extract the cloud network RTTs from the RIPE Atlas
dataset discussed in § 6). We obtained the network RTTs
using probes pinging datacenters co-located in the same
region. Additionally, we set the inference latency in the
cloud to 5 ms (comparable to a T3-EN) regardless of the
served devices (e.g., no queue time). The cloud-only approach
(labeled Cloud in Figure 10) produces acceptable results, but
at the cost of slight higher median task latency and greater
variance compared to Nimbus. Additionally, the approach
is unable to offload tasks from many MDs, forcing them to
run locally. Finally, the cloud-only variant with mobile access
network (labeled Cloud4G) delivers the worst performance –
with close to 100% MDs unable to offload their computation.
The primary reasons are significantly expensive transmission
and energy costs, and higher network RTT to the processing
server. Our result is in line with previous research, which
shows that mobile connections require significantly more
energy per bit in transmission compared to Wi-Fi [43].

Figure 11 shows the relationship between percentage
of edge-offloaded MD, convergence time of the algorithm,
and value of κ for an edge-cloud infrastructure of 152 ENs
and 1000 MDs. Regarding the algorithm convergence time,
the greedy version performs one order of magnitude faster
compared to the standard one (inset plot in Figure 10).
It should be noted that the Nimbus cloud-only variants
converge much faster due to their simplified solver logic.
When in need to allocate high densities of MDs, properly
tuning the exploration parameter κ allows us to find a
convenient tradeoff between offloaded MDs ratio and al-
gorithm convergence time. Selecting a value of 10 for κ
allows to already offload ∼91% of the MD while keeping a
sub-second convergence time. During our experiments with
different infrastructure and ENs configurations, we noticed
that setting κ between 10-20% of the total EN in the network
strikes a good balance between MDs allocation percentage
and convergence time. However, this cutoff point might

D

D

Fig. 11: Exploration Tradeoff (152 ENs, ∼1000 MDs).

also be affected by the rather strong homogeneity of our
infrastructure, since we only consider three classes of ENs.
We hypothesize that with a more heterogeneous network,
the cutoff point would be higher which translates into a
greater range of exploration and an increased cost in terms
of convergence time.

Note that the convergence time in Figure 11 represents
the time required to allocate all the MDs in the batch. The
allocation operation does not run for every offloaded frame,
but only once when the mobile devices initiate an offload
request to the infrastructure. Additionally, the system is
designed in such a way that, while the MD waits be offloaded,
the end-user will not experience any service interruptions
as the task will keep running locally until the allocation on
the edge-cloud infrastructure is completed. In this case, we
assume that the MD is capable of executing the task locally.
Finally, it is valid to assume that the amount of time the
user will spend using the infrastructure offsets greatly the
allocation waiting time similarly to start-up latency in video
streaming.

Takeaway 2. The greedy algorithm is able to find good
offloading candidates for MDs faster than Nimbus at the
cost of sub-optimal utilization of the edge-cloud resources
(e.g., skipping good offloading targets in the search pro-
cedure). The cloud-only variant is effective but provides
higher median task latency, increased energy consumption
for the MD, and greater variance compared to Nimbus.

(D) Nimbus Variants. We developed three versions of
our solver. The one used in the previous benchmarks was
single-threaded (ST), meaning that the decision process was
handled by a single controller node which had complete
knowledge of the edge infrastructure. From a practical
viewpoint, such a solver offers limited scalability, especially
when both the size of the edge infrastructure and density of
participating MDs increases. For such cases, the convergence
time of the single-threaded variant becomes prohibitive.
Therefore, we developed a multi-threaded (MT) variant of
Nimbus, termed MT Nimbus, that makes it deployable in
a distributed fashion. We applied a partitioning procedure
to the edge-cloud infrastructure. For a simple-yet-effective
solution, we adopted a naive approach where we created non-
overlapping sets of ENs so that every thread (or, equivalently,
the entity managing a network slice) is independent of the
others. We are aware that the procedure followed to split
the edge-cloud network resources is not optimal, but, in this
context, it suffices the evaluation purpose. Transforming an
algorithm from centralized to distributed entails additional
costs as synchronizing different entities increases communi-
cation overheads. Our goal is to demonstrate the possibility
of transforming our algorithm into a distributed form
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and characterize its performance. In this work, we do not
delve into communication and cross-node synchronization
challenges of a distributed system and leave it for future
work.

As the number of ENs for each tier can be non-
proportional to the number of threads, the network slices
created can be unbalanced. For example, with ten solver
threads and three T3-EN, the first three threads would
have in their network slice at most one T3-EN. While the
principal benefit for our distributed algorithm is decreased
convergence time, we sacrifice in quality of the solution
as the algorithm is now less capable of fully exploiting
the available edge-cloud infrastructure resources. Figure
12 shows the convergence time and task execution latency
with an increasing number of threads. It can be observed
that the more we slice the network, the fewer MDs are
offloaded because each slice becomes shallower, thus reducing
the degrees of exploration for the algorithm. However, the
convergence time per-thread reduces by up to ∼15× when
Nimbus uses four threads instead of one.

To mitigate the inefficient use of the edge-cloud infrastruc-
ture, we developed a two-stage solver version of Nimbus. In
this variant, all the MDs not offloaded in the first distributed
stage are scheduled for a second allocation pass. The second
stage executes centrally and is modified so that it attempts
to allocate the remaining MDs on the entire edge-cloud
infrastructure (updated with the current load). This final
variant is called 2PMT Nimbus and the results obtained are
shown in Figure 13.

While there is an additional cost in terms of convergence
time due to the presence of a final aggregation step, the
amount of non-offloaded MDs reduces drastically, especially
with an increasing number of threads. The effective ratio of
offloaded users also increases compared to MT-Nimbus as
2PMT-Nimbus tends to fit more MDs into the edge-cloud
infrastructure. Overall, 2PMT-Nimbus does not violate any
of the inherent constraints and is able to deliver the required
quality of experience (e.g., FPS) to all the offloaded users.
With only two threads, 2PMT-Nimbus achieves similar MD
allocation ratios as the single-threaded version while almost
halving the convergence time. With eight threads, 2PMT-
Nimbus converges almost 3× faster than two-threads and
offloads the majority of the users. While the convergence
time achieved by 2PMT-Nimbus is much slower than MT-
Nimbus, the former is able to allocate many more MDs at
the edge-cloud infrastructure.

Note the anomaly in convergence time trend of 2PMT-
Nimbus – where the convergence time increases despite an
increased degree of parallelism. We explain the exception
as follows. By assigning more threads, the generated net-
work slices become shallower and fewer EN candidates are
available to allocate MDs. The fewer users are allocated,
the more effort is required by the centralized solver to
complete the final reallocation step. This entails that the law
of diminishing returns applies to the threads parallelism. In
fact, with ten threads, the multi-threaded convergence time
decreases, but the single-threaded increases. However, the
overall performance in terms of allocation ratio looks better
with increasing thread count. Consequently, if we would
progressively increase the assigned threads boundlessly, we
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Fig. 12: Performance of MT-Nimbus.
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Fig. 13: Performance of 2PMT-Nimbus.

would circle back to the single-threaded performance, both
for allocation and convergence time.
Takeaway 3. The ST version of Nimbus scales poorly as the
size of the edge infrastructure and density of participating
MDs increases. The MT variant is much faster but cannot
fully makes use of the edge-cloud infrastructure. Finally,
2PMT-Nimbus provides the best performance in terms of
ratio of offloaded MDs.

8 LIMITATIONS AND OUTLOOK

Edge computing will play a significant role in reshaping the
future of cloud networks infrastructure. New applications
and services will leverage information and processing capa-
bilities offered at the network edge for varying purposes –
including but not limited to data aggregation and analysis,
multimedia content delivery, machine learning and AI. In
this section, we explore orthogonal problems affecting edge
computing putting our findings into a broader perspective.

Application & Network. Immersive applications, such as
AR/VR, necessitate the deployment of edge servers in the
network due to the strict latency constraints they impose.
Such applications are guided by the human vestibular system
which requires sensory inputs and interactions to be in
complete sync; failure of which results in motion sickness and
dizziness. As QoS of network communication technologies
(e.g., 5G and millimeter waves) improve (i.e., shorter network
delay and higher throughput [73, 76, 86]), optimizations
in compute capabilities and task allocation mechanisms
at edge become paramount to support multimedia QoE
requirements.
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However, end-to-end application latency still accounts for
the most significant fraction of the perceived user experience,
as discussed in § 7. Therefore, in this work, we focused on
task execution time and network latency while ignoring the
non-marginal overhead introduced by other components.
These additional delays may have multiple sources, includ-
ing the operating system, bloated network queues, network
fluctuations (retransmissions, packet loss), to name a few.
We ignore these variables in this work to keep the problem
tractable since added delay caused by some of the above
is predictable only to a certain extent. Consequently, our
results should be considered as an optimistic estimate on
top of which application logic and context overhead must be
added. The Nimbus system presented in this paper manages
the interaction between edge infrastructure and MDs and
offers a device-independent framework to offload tasks to the
edge. In our future work, we plan to extend the platform to
calculate the additional application overheads, as discussed
above.

Smartphone evolution. The symbiosis between edge com-
puting and mobile-based applications is complicated. Fac-
tors like ever-increasing computational capacities of smart-
phones [12, 13], and more general-purpose utility of edge
computing begs re-thinking the applicability of edge for
mobile clients. For example, high-end smartphones equipped
with powerful mobile GPUs benefit more from running
computations locally than offloading, due to higher efficiency
(in energy consumption and inference time) offered by
their processor architectures and algorithms [15]. On the
other hand, essential operations utilizing local GPU may
become throttled as number of applications competing
for the shared GPU cycles increases. We feel that edge
resources can be used to further enhance (or enable) what
can be achieved by a smartphone. An example could be
executing more sophisticated and accurate neural networks –
which are often prohibitive for smartphones as they require
considerably more RAM and computational power. Until
mobile devices are battery-powered, there will always be a
trade-off in performance versus battery consumption. One
can also envision smartphones becoming part of the edge
infrastructure [48], which poses new and exciting challenges
for managing transient, mobility capable compute nodes.

Security Implications. We purposefully avoid delving into
possible security vulnerabilities of Nimbus since we consider
it out-of-scope. Here, we explore possible security holes in
our system and provide hints on how to mitigate them. In
our approach, we do not restrict an MD to the maximum
time for which they can utilize the edge-cloud infrastructure.
This can lead to numerous problems: a malicious MD might
decide to offload tasks forever and to multiple servers to
leech resources from the infrastructure, which may lead to
starvation. One solution could be to use a credit or reputation
system [54], where an MD can only utilize services offered
by the edge-cloud by spending some virtual currency. Other
possible approaches could be introducing a fixed time limit
after which the MD is forcefully rescheduled. However, all
these solutions require MD to be registered so that system
can keep track of their credit or the amount of time spent
using the service. Distributed ledgers and blockchain might

be useful in this scenario to help keep track of the user credit
and enable point-to-point payments [44, 70].

In § 7, we discussed the possibility of an elastic infrastruc-
ture composed of consumer ENs offering compute resources
similarly to [18] to respond to network overloads. There
are several issues associated with such an infrastructure,
including reduced control over ENs, intermittent resource
availability, reliability, inconsistent execution and queue time
predictions, and security and privacy concerns. Additionally,
trust can be a problem for such an infrastructure as malicious
ENs might extract sensitive information while computing a
task or deliberately modify the outcome to disrupt the service.
Possible resolutions could be employing Trust Execution
Environments (TEE) [69, 75] to secure the compute steps at
the cost of operational complexity.

Deployment Challenges. When discussing changes advo-
cated by edge computing, it is essential to keep in mind
its adoption cost. Depending on the type of deployed ENs,
the Capital Expenditures (CapEx) [2] and Operational Ex-
penditures (OpEx) cost demand careful planning of the
infrastructure as function of the QoS to be delivered over
a period of time. Similar to cloud and ISP services, edge-
cloud could employ a subscription-based operation model.
End-users could choose from different subscription plans
that best cater to desired QoE of targeted applications, e.g.
gaming, healthcare, video analytics, etc.

9 CONCLUSION

In this paper we presented Nimbus, a multi-objective task
allocation solution that can minimize the latency of mobile
real-time object detection models by offloading them to an
edge-cloud infrastructure. Based on an extensive set of real
data and measurements, our multifaceted evaluation bench-
marks three ever-improving variants of Nimbus addressing,
especially, the problem of scalability from the infrastructure
and end-users point of view. We verify the effectiveness
of Nimbus through trace-driven simulations. Based on an
extensive set of real data and measurements, we show the
potential of Nimbus in boosting the performance of AR
applications when offloaded from mobile devices to an
edge-cloud infrastructure. Additionally, our multifaceted
evaluation presents three ever-improving variants of Nim-
bus addressing, especially, scalability issues of edge-cloud
infrastructure. Finally, in light of our algorithm and approach,
we discuss several crucial open questions concerning edge
computing and highlights future research directions.
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Publication Summary

The integration of smart devices in domestic, industrial and commercial environments
has profoundly reshaped the way we interact with our surrounding. Specifically within
industry, Internet of Things (IoT) is currently adopted to solve multiple problems such
as smart labeling, energy management, control and monitoring , demonstrating the
constructive uses of digitalization and smart automation. As machines and industrial
physical processes change, the interfaces to interact with them should also change. Until
a few years ago, fixing or tuning machines in a factory required manual intervention. To
build the interaction between the physical and virtual worlds, we promote the exploration
of new interactive experiences via augmented reality (AR). In this work, we focus on
understanding and evaluating the extent to which AR can help to interact with complex
machines through direct, visual, three-dimensional (3D) feedback.

For this work, our contributions can be summarized as follows: (i) design and imple-
mentation of a flexible AR platform where new IoT devices can be easily plugged-in and
integrated into the virtual factory workflow, (ii) a user study to determine the effective-
ness of AR based interaction versus classic SCADA-like systems, and (iii) insight from
the performance evaluation that reveals the limitations of existing HMD devices that
deserve future research from the community.

Our prototype implementation was the mean through which we conducted the user-
study aimed at evaluating holographic interfaces compared against traditional interfaces.
Our study showed that the majority of the participants found holographic manipulation
more attractive and natural to interact with. However, what emerged was that current
performance characteristics of head-mounted displays must be improved to be applied
in production.

Author’s Contribution

I came up with the idea for the paper as a foundation for the integration of IoT devices
with augmented reality (AR) interfaces. I contributed to the system design aspects and
research foundation while Oleksii Moroz implemented and evaluated the system.
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Abstract—Augmented reality (AR) has been ex-
ploited in manifold fields but is yet to be used at its full
potential. With the massive diffusion of smart devices,
opportunities to build immersive human-computer in-
terfaces are continually expanding. In this study, we
conceptualize a virtual factory: an interactive, dy-
namic, holographic abstraction of the physical ma-
chines deployed in a factory. Through our prototype
implementation, we conducted a user-study driven
evaluation of holographic interfaces compared to tra-
ditional interfaces, highlighting its pros and cons. Our
study shows that the majority of the participants found
holographic manipulation more attractive and natural
to interact with. However, current performance char-
acteristics of head-mounted displays must be improved
to be applied in production.

I. Introduction

The integration of smart devices in domestic, industrial
and commercial environments has profoundly reshaped the
way we interact with our surrounding. Specifically within
industry, Internet of Things (IoT) is currently adopted to
solve multiple problems as smart labeling [1], energy man-
agement, control and monitoring [2], demonstrating the
constructive uses of digitalization and smart automation.

As machines and industrial physical processes change,
the interfaces to interact with them should also change.
Until a few years ago, fixing or tuning machines in a
factory required manual intervention. Today, most infor-
mation about the state of physical processes is collected
using Supervisory control and data acquisition (SCADA)
systems and monitored by human operators. Particularly,
virtual sensors are already explored in the industry to
visualize exact simulations of motors [3]. To strengthen
the relation between the physical and virtual worlds, we
promote the exploration of new interactive experiences via
AR. Our primary concern is to understand and evaluate
the extent to which AR can help to interact with complex
machines through direct, visual, three-dimensional (3D)
feedback (although this could easily be extended to other
environments).

The wide-spread diffusion of portable head-mounted
displays (HMD), such as HoloLens, Lenovo Explorer Head-
set, HTC Vive, and Oculus Rift, has opened doors to
a new paradigm in which the physical world becomes
the user interface. AR and virtual reality (VR) have

White box machine. A static 3d model 
combined with feeds from sensors 
allows the worker to directly see how 
the machine internally works.
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Fig. 1. Bridging Physical and Virtual World

been already utilized in diverse fields, such as tourism,
navigation, education, information management. In each
of these instantiations, the augmented interface is meant
to provide auxiliary information about the surrounding
environment to users, thereby helping them to complete
specific tasks significantly faster and more accurately [4].
Narrowing our focus to a fabrication scenario, we aim to
provide factory workers a more contextualized and visual
representation of the real-time, evolving state of a complex
machine in the virtual world (through holograms).

Fig.1 shows that with AR, the physical model is repre-
sented by inputs, outputs, and readings from sensors. The
physical model becomes a virtual, dynamic model based on
these parameters. Hence, a potential worker can actually
see the way a machine works, given the availability of a
1:1 holographic model matching it. Such an interaction has
another benefit: it simplifies the knowledge transfer from
old to new employees. Half of the human brain is directly
or indirectly devoted to processing visual information and
visual feedback is represented in our brain into a spatio-
temporal pattern of cerebral excitation [5]. Additionally,
visual stimuli generates neural signals in the amygdala
tying the brain reinforcement learning process to emotions,
possibly enhancing the cognitive behaviour [6].

Both HMDs and latest smartphones can provide AR
experiences. Herein, we focus on the importance of HMD
as they offer hands-free interaction, which is a clear benefit
when working in a factory (or any other work environ-
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ment). However, AR glasses (or HMDs) are not supported
by a majority of currently available AR solutions. Instead,
most AR solution frameworks are aimed at hand-held
devices or particular operating systems, such as Android
or iOS [7]. Therefore, there is a need to bridge the gap
and develop new AR applications especially for industrial
environment where the use of hand-held devices is often
not possible.

This study presents a prototype framework to enable
users to interact with complex machinery and complete
tasks via hologram-based interaction. By supplying a
dynamic, 3D hologram that changes according to the
interaction with nearby smart devices, we want to assess
the benefit of providing visual dynamic representation on
top of virtual information about the system (as in AR
annotations [8]). The system comprises three main ele-
ments: smart sensors and actuators, the HoloLens HMD,
and the Unity engine. In particular, our contributions are
as follows:

• Design and implementation of a flexible AR platform
where new IoT devices can be easily plugged-in and
integrated into the virtual factory workflow.

• A user study to determine the effectiveness of AR-
based interaction versus classic SCADA-like systems.

• Insight from the performance evaluation that reveals
the limitations of existing HMD devices that deserve
future research from the community.

II. System Design and Implementation
Fig.2 presents the three-layer architecture of the system.

The IoT layer comprises the network of IoT devices,
such as smart sensors and actuators, used to interact
with the system. The end-user layer is the core of our
system; it provides the holographic abstraction of the
physical world. The edge layer is primarily responsible
for storage, administration, and organization of the local
network; main management operations are handled by
this layer. For the initial prototype design, we modelled
a complex machinery as an ensemble of embedded boards
equipped with sensors and actuators. This design choice
forces the users to change their position to interact with
different physical controllers; thus, this design choice was
particularly important in our user study.
A. IoT Layer

This layer handles the communication with sensors and
actuators connected to different embedded devices. The
available physical devices within range are a part of this
layer and share their capabilities with the end-user layer
via a simple web protocol. Hence, an initial setup phase
is required to reveal the available sensors and actuators
connected to the system and associate them with a ma-
chine. To do so, a semantic representation of the device
functionality is exchanged with the end-user layer and used
for automated build of holographic interface.

Implementation details. For this layer we used multiple
embedded devices. The backend software to communicate

Fig. 2. System Representation

with the other layers was developed by combining Python
and Raspberry Pi. The GPIO library was used to handle
sensors and actuators, and the flask framework was used
for server management and interaction over the network.

B. End-User Layer
The end-user layer is the core of our system and handles

the organization and spatial recognition of the holograms.
It is built as an event-driven application based on Unity
and is composed of four main modules. The UI Manager
is responsible for automated generation of holographic
interfaces based their semantic representation. The Event
Manager manages the information about IoT devices and
processes device detection and interaction events to up-
date the UI Manager. The Server Manager is the core
communication module and is responsible for all data
exchanges between system devices. In addition, the Server
Manager loads the recognition models and semantic data
from IoT devices. The Semantic Module is the data layer of
the application and stores information about IoT devices
and their virtual representation plus the specifics available
functionalities.

Implementation details. The end-user layer was imple-
mented in C# with Mixed Reality Toolkit libraries, and it
runs directly on HoloLens. Object detection and tracking
is implemented with the Vuforia AR SDK.

C. Edge Layer
The physical interaction between the headset and a

machine happens only when the user is in direct proximity
to the relevant IoT sensor; we decided to reflect this feature
in our system design. In particular, instead of storing all
the information regarding a group of smart devices on the
cloud, we collected configuration and capabilities of the
smart devices at the edge. Hence, to access the holographic
interface of a specific machine, it is necessary to be in
its proximity. This makes sense because the necessity of
visualizing a 3D model of a physical objects arises only
when we are close to it.



The deployed edge device is responsible for a cluster of
IoT nodes in proximity: it stores IP endpoints and object
recognition models of smart devices that are used by the
end-user layer.

Implementation details. The backend application run-
ning in this layer to store information about the devices
in the network was developed as a combination of Node.js
and MongoDB.

III. Evaluation

We conducted two types of evaluation: user study and
application benchmarking. For the experiments, multi-
ple embedded boards equipped with sensors and actua-
tors were installed in a room. Each actuator or sensors
controlled a specific component of the machine (e.g., a
spinning gear). Physical manipulation of these devices
changed the state of specific components inside the 3D
model of the machine. The system starts in an unstable
state and the goal was to bring the machine to a stable
state opportunely tuning different components (e.g. align
spinning gears, control their speed, avoid overheating).
Users were notified about the task completion through the
interface they were using: either HMD and holograms or
a SCADA-like web interface and a tablet. When using the
HMD, the hologram changed in real-time according to the
user inputs. In contrast, the web interface only provided
textual feedback.

A. User Study
The usability test was aimed at answering two distinct

questions: Q1. How do participants receive the usage of
the holographic technology? and Q2. How do holographic
interfaces fare compared with standard ones? The ex-
periment was completed in four days and involved 22
participants (19 males and 3 females). Each user interacted
with the system for 20 minutes. Most participants had a
background in computer science and previous experience
with AR or VR headsets. Only 18% of participants had
previous experience with HoloLens.

During our usability test, the participants were asked to
firstly get used to the HMD and the holograms technology
and then evaluate the holographic interface interaction
with our application. After the test, the users were asked
to fill out a questionnaire. The questionnaire about design-
oriented development was based on the study reported by
Wich et al. on usability-evaluation questionnaires [9].

We observed that users feel uncertain about the conve-
nience of holograms and were sceptical about the possi-
bility of integration in their daily life. However, there is
indeed a trend showing that holographic interfaces are in
general more attractive as participants had a positive ex-
perience with the holographic manipulation. These results
are summarized in Figure 3. New users grew accustomed to
the holographic interface quickly and felt more confident
after learning the basics.
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Fig. 3. The holograms technology is generally well received
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Fig. 4. Holographic interfaces proved to simplify manifold interac-
tions compared to traditional ones

For the second part of the study, users were asked
to compare their experiences of the two interfaces and
express their preference. Result are shown in Figure 4.
The majority of the participants preferred the holographic
application (despite the manifold issues experienced with
HoloLens) and stated that interacting with the SCADA-
like web interface required greater effort. Only a small
percentage of the participants expressed their scepticism
regarding the holographic interface asserting to not feel
confident during the interaction with holograms. The neg-
ative score of interaction effort and intuitiveness is related
to the following concerns expressed by the users: inac-
curate gesture recognition windows, narrow field of view,
abrupt gaze pointer and headset weight and placement.

B. Performance Analysis
Figure 5 shows preliminary performance results of our

application (average of 10 iterations) collected with Win-
dows Performance Recorder and successively analysed
with the Windows Performance Analyzer. The measure-
ment granularity is one data-point/s. System power con-
sumption represents the amount of power complexly used
by Hololens while SoC power consumption amounts only
for CPU, GPU and memory. All values (except FPS)
are represented as percentage. Power consumption was



definitely high during all our experiments, the application
posed a lot of stress particularly on the GPU leading to
high SoC power consumption values. Considering the de-
vice’s autonomy of 113 minutes and its charging time of 1
h, we conclude that either the battery should be optimized
or developers must find a good trade-off between applica-
tion functionalities and battery life. CPU utilization was
reasonable with peaks caused by the Vuforia image recog-
nition process, which includes the loading of recognition
data and IoT components discovery. Thus, based on values
of the processor load during the interaction, we conclude
that the HoloLens has sufficient CPU power for image
recognition tasks. GPU usage is heavily affected by the
UI panel rendering, which also influences placement of and
interaction with holograms. FPS were definitely acceptable
with an average of 48 and the usability testing showed
that even with just 20 FPS (during complex holographic
visualizations) the user experience was not compromised.

In our tests, we assessed that the Hololens can overheat.
We used a ThermalSeek IR camera to monitor the device
temperature over time. After an average of 30 minutes,
it reached a peak of 43.3◦ Celsius (our lab temperature
was 29◦ Celsius) and constantly switched to a cooldown
state effectively preventing any kind of interaction. Such
behaviour breaks the user experience and allegedly render
the device not designed for prolonged utilization.

Fig. 5. Holographic application performance

IV. Related Work
There have been multiple attempts to integrate AR

with smart devices. In fact, augmented reality was recently
announced as one of ideal interfaces in IoT; its layer offers
an abstraction that provides a simplified view on smart
things and hides all irrelevant technical details from users
[10]. Factory of the Future [11] describes factories as the
perfect use case for the IoT object manipulation through
augmented reality. It introduces a multi-modal and multi-
client system for a huge factory which supports workers on
their workplaces and provides a control interface through
augmented reality device.

Enhanced Real-Time Machine Inspection [12] is an in-
spection system for an industrial worker that improves the
worker’s productivity, safety and effectiveness exploiting

Hololens and AR. Similarly, [13] analysed the users’ re-
action and feedback on various AR interfaces in order to
come up with an unique design that is natural and fits to
a diverse category of users.

V. Conclusions
This study presented a hologram-based framework for

the manipulation and control of IoT devices in industrial
settings. We built an end-user centered architecture in
which multiple IoT device were managed by a single
edge board and controlled via holograms. We evaluated
our system via a user study comparing the hologram to
the conventional SCADA web application. The results
revealed that users favor interaction via hologram. Our
system benchmarks also revealed the limitations of exist-
ing HMD devices that deserve future investigation from
the community.
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Publication Summary

The presence of a smart roadside infrastructure in the cities of tomorrow offers oppor-
tunities for building new applications working with and providing fine-grained, localized
information. Consequently, more detailed and precise maps of metropolitan areas can be
generated to support applications in, for instance, the health and safety domains. City-
wide pollution fingerprinting can enable pedestrians and cyclists to select less polluted
routes, while infrastructure-supported black ice detection can allow drivers to predict
the presence of patches of black ice outside their field of view.

We focused on the detection of road condition hazards which is today a challenging
task given practical restrictions such as limited data availability and lack of infrastructure
support. We presented an edge-cloud chaining solution that bridges the cloud and road
infrastructures to enhance road safety. We exploited the roadside infrastructure (e.g.,
smart lampposts) to form a processing chain at the edge nodes and transmit the essential
context to approaching vehicles providing what we refer as road fingerprinting. We
approached the problem from two angles: (i) semantically defining how an execution
pipeline spanning edge and cloud is composed, and (ii) we designed, implemented and
evaluated a working prototype based on our assumptions. We presented our experimental
insights and outlined open challenges for next steps.
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Abstract
Detecting and reacting efficiently to road condition hazards are
challenging given practical restrictions such as limited data avail-
ability and lack of infrastructure support. In this paper, we present
an edge-cloud chaining solution that bridges the cloud and road
infrastructures to enhance road safety. We exploit the roadside in-
frastructure (e.g., smart lampposts) to form a processing chain at the
edge nodes and transmit the essential context to approaching vehi-
cles providingwhat we refer as road fingerprinting. We approach the
problem from two angles: first we focus on semantically defining
how an execution pipeline spanning edge and cloud is composed,
then we design, implement and evaluate a working prototype based
on our assumptions. In addition, we present experimental insights
and outline open challenges for next steps.

CCS Concepts • Computer systems organization → Distri-
buted architectures; Embedded and cyber-physical systems.
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1 Introduction
The presence of a smart roadside infrastructure in the cities of
tomorrow (e.g. smart lampposts [3]) offers opportunities for build-
ing new applications working with and providing fine-grained,
localised information. Consequently, more detailed and precise
maps of metropolitan areas can be generated to support applica-
tions in, for instance, the health and safety domains. City-wide
pollution fingerprinting can enable pedestrians and cyclists to se-
lect less polluted routes, while infrastructure-supported black ice
detection can allow drivers to predict the presence of patches of
black ice outside their field of view.

Numerous applications fully exploit crowdsourcing to generate
augmented maps which, however, have limited dimensionality in
terms of collected data. In fact, they rely on users’ hand-held de-
vices, which may not be equipped pollution or particulate sensors
or infra-red (IR) thermal cameras, which are fundamental for the
aforementioned functions.
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As smart cars become widespread, the availability of sensors
will expand the information domain of crowdsourcing applica-
tions; however, there are multiple limitations. First, data availability:
data collected by car manufacturers is often not publicly available,
thus, creating a disparity in the quality of service offered among
providers. Second, bad weather conditions, limited range of car
sensors and lack of enough reliable data to properly map the road
condition can reduce the effectiveness of crowdsourcing solutions
and eventually provide false predictions putting at serious risk the
drivers. This problem is exacerbated in areas with poor network
connectivity where vehicles are hardly reachable from the cloud
and left in the dark about the presence of road hazards. Section §2
will provide a more detailed discussion about such issues.

The problem we wish to solve concerns how to provide reliable
information regarding road hazards to vehicles in challenging condi-
tions with the support of a smart roadside infrastructure. Our primary
use case is black ice detection, which we tackle with an edge-cloud
pipelining concept to create on-demand execution pipelines span-
ning edge and cloud nodes. Involved edge nodes (ENs) form execu-
tion chains and follow a specific protocol in order to collaboratively
contribute to the task completion. Assessed road conditions are
then broadcast to approaching vehicles. In this paper, we build
upon our previous groundwork [7], develop a new edge chaining
framework, and contextualize it for the above-mentioned use-case.

The remainder of this paper is structured as follows: framing
the problem (§2), background (§3), edge-cloud pipeline (§4), system
design (§5), implementation (§6), evaluation (§7), conclusion and
future work (§8).

2 Framing the Problem
With the growth in deployed smart devices and the presence of
physical infrastructure in proximity to end-users, there arises the
challenge of constructing a platform that can provide accurate,
reliable road conditions information at scale.

Detecting road conditions and potential hazards is a problem
that has been explored and approached in the literature using dif-
ferent approaches. Both crowdsourcing solutions, where vehicles
exchange collected information to identify bumps [5], and infras-
tructure based solutions as in [13], where IR cameras mounted on
lampposts are used to detect ice formations on the road, have been
explored. Through different approaches and tools, various studies
examining the effectiveness of detecting road conditions have been
conducted [11, 12].

Eriksson et al. [8] proposed pothole patrol (P2), a mobile sensing
application used for detecting and reporting road surface conditions.
In a similar system used in traffic sensing and communication,
Mohan et al. [16] proposed the use of mobile devices connected to
exterior sensors. Mednis et al. [15] improved and extended the P2
system using a customised embedded gadget and with the aid of a
smartphone hardware platform for sensing road surface conditions
[21]. Edge-computing-based approaches have been also explored,

1

42



v

Edge-cloud pipeline

Road condition sent to 
approaching vehicles

EN connections

Cloud “loopback”

Approaching vehicle has limited 
vision cone, affecting both sensors 
and reaction time. This effect is 
amplified in bad weather condi-
tions or in presence of turns.

Blackice patch

Smart lamppost as EN 
equipped with sensors

Sensing cone

In this above examples, the presence of a turn combined 
with reduced field of view due to trees (e.g., mountain 
road) or buildings negates on-board sensors capability of 
detecting a black ice patch in time for the driver to react.

In this conditions, the presence of a fixed infrastructure 
can be crucial in providing road hazards information.

Vision cone

A

B

C

Edge Node
Cloud planner
End-user

Figure 1. Black ice road fingerprinting (A); critical scenarios (B, C)

as in [5]. However, their focus is on security implications, while
the focus of this study is to formalize the system requirements and
build a working distributed edge computing platform.

Existing solutions focus on using either crowdsourcing or edge
networks for transferring information. However, the quality of
crowdsourced spatial data is often unreliable [6]. Consequently,
the density of effective data points for estimating road conditions
can be insufficient in low-traffic areas. Moreover, solutions based
on on-board car sensors are also unsatisfactory in circumstances
where road characteristics (e.g. buildings, trees, turns, crossroads)
and adverse weather conditions effectively inhibit the ability to
detect hazards at a distance. To overcome this challenge, we take
advantage of road infrastructure by extending the sensory capacity
of cars beyond what can be captured by on-board sensors, and use
edge computing as a core technology.

In this paper, first, we tackle the problem of semantically rep-
resenting a distributed task that spans multiple ENs. Then, we
introduce the definition of an edge-cloud pipeline and describe the
process of splitting it into local sequences. Finally, we identify the
required software components and emerging technologies that can
fulfil the desired functions.

3 Background
Here, we introduce several concepts and definitions that are used
throughout the remainder of the paper.

Edge node (EN). The definition og this term is quite broad. We
agree with the definition provided in [20], in which edge computing
generally occurs in proximity to datasources. Hence, an EN is a de-
vice very close to the end user, such as a base station, mobile phone
or private PC. Other classifications of ENs extend the definition to
RAN microservers [14]. In this work, we focus on ENs in the range
of micro-servers such as Intel NUC and Dell Optiplex which were
used in our experiments.

Edge network. This is a network of ENs interconnected via a
wired or wireless connexion. The ENs are in physical proximity
to one another, such as lampposts on the side of a road. Detailed
characteristics of an edge network are not described here, as they
are discussed in other papers.

Task and edge function (EF). In this paper, we use the term tas
to refer to an operation to be carried out by the network. At a high
level, a task can be expressed as follows: ’find black ice patches at
road intersection 1A and 3B’. A task can be reduced to an ensemble
of EFs: self-contained, atomic applications in which a small fraction
of the task logic is embedded, but can be executed in a standalone
fashion. A task contains at least one edge function. Distributed
complex event processing [18, 19] is an example of a task composed
of multiple sub-functions. To improve performance and scalability,
these sub-functions are moved closer to the data sources.

Edge-cloud pipeline. This pipelines is a tasks issued by a cloud
provider to edge nodes, and contains information regarding in-
volved nodes, chaining order and data sources. Nodes involved in
the pipeline form execution chains and collaborate to solve the task;
they are selected based on multiple parameters and execute only a
subsection of the entire pipeline. Pipelines can be ephemeral or re-
current, based on the task requirements. More details are provided
in §4.

4 Edge-Cloud Pipeline
In this section, we describe in detail our representation of the edge-
cloud pipeline and its application to our prime use case: blackice
road fingerprinting. Three main elements are involved: the cloud
planner, the edge infrastructure and the vehicles. Due to page limit,
the vehicles are not discussed in details as their role is passive in
relation to our system — they receive the information from the
infrastructure via, for instance, long-range communication radios
such as LoRaWAN [2] or Vehicle Fog Computing [10].

4.1 Cloud planner
Cloud services define the pipeline structure and monitor its execu-
tion. We assume knowledge is available regarding th reachability of
edge devices, their available data and their current load (in terms of
active EFs and pipelines). Based on this assumption, it is possible to
plan a pipeline execution tree based on a set of parameters among
which data locality has a prime role. Once offloaded, the pipeline
can be configured to run independently from the cloud based on
specific policies.
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Figure 2. Meta-pipeline

Once the structure of the pipeline is defined, the cloud prepares
a meta-pipeline containing various information about the pipeline
itself, as illustrated in Figure 2. In our use case, the cloud provider
may be a car manufacturer that wishes to offer augmented maps
to its fleet [1] and, thus, exploits edge infrastructure to collect and
analyse road condition data.

4.2 Edge infrastructure
In relation to our use case, black ice detection requires each node
to locally process thermal images acquired from IR cameras or
similar sensors, identify patches of black ice and send the results
to the following node. As Figure 1 shows, we assume that ENs are
deployed inside smart lampposts that are equipped with an array
of sensors able to detect road conditions.

The edge infrastructure is composed of manifold ENs each ad-
dressable by an unique identifier such as their location (e.g. GPS
coordinates). When a meta-pipeline is offloaded, the involved ENs
parse it and identify which sections has to execute and in which
order relative to the other nodes. Each pipeline is split into sub-
pipelines, which in turn are transformed into sections that can
contain multiple stages, which are eventually, but not immediately,
executable. Pipelines can be sorted by multiple parameters: priority,
expected load and deadline which can alter the execution order.

Once the sub-pipeline execution order is assessed, each EN has
to verify the reachability of the neighbour ENs in the pipeline and
prepare to exchange and process data with them (here we assume
that there are no issues in terms of network reachability).

4.3 Pipelines: flexible chaining at the edge
One concept that requires further explanation is the relationship
between pipeline and sequence. As mentioned above, ENs scan
the meta-pipeline and select the list of EFs to be executed locally.
These EFs can have different roles, such as head, transit and tail.
This classification is necessary because it determines the order in
which the EFs should be chained and executed. The ordering is
based on the identifiers associated with each EF. Identifiers (IDs)
are assigned to pipelines, sequences, EFs and data acquisition rules,
as demonstrated in Figure 2. Head and tail roles always represent
the end of a sequence, while transits are EFs that serve as links
between the head and tail. In other words, a sequence always begins
with a head and ends with a tail; they are not necessarily deployed
on the same EN, and there can be an arbitrary number of transit
instances between the two. Sequence order parameters are used to
correctly unfold the execution. Figure 4 illustrates different pipeline
and sequence structures.

ORCHESTRATOR

EF MEMORY
MANAGER

EF1 EF2 EF3

PIPELINE
PROCESSOR

NETWORK
MODULEPIPELINE MONITOR

EF MONITORDATA ACQUISITION 
MODULE

HYPERVISOR
INTERFACE

TASK PARSER

OS

HYPERVISOR

EFN

EDGE NODE
Main modules of the frameworkOffloaded EFs

...
Data Distribution

Data Processing
Data Validation

Data Acquisition
EF Workflow

Figure 3. System modules overview

A key property of the pipeline is chaining. ENs create tempo-
rary, dynamic execution chains based on the pipeline topology in
order to form a collaborative network. As data flows from one link
of the chain to the other, computation unfolds and the pipeline
progresses towards the tail EN. In addition, pipelines are not nec-
essarily linear, they can branch and join creating execution trees.
For instance, branching may be required in situation where groups
of ENs provide different information to be subsequently merged at
the end of a pipeline.

Each EF has data acquisition rules that can be split into input
and output. The former determines where the data should be re-
trieved, while the latter specify whether the result of the com-
putation should be sent to a remote node to continue along the
pipeline or should be stored locally for future use. Additional details
concerning this process are provided in section §5.

5 System Design
In this section, we provide an overview of the system (as presented
in Figure 3) in relation to the discussed use case followed by a
description of the core components necessary for pipelining. To
conclude, we briefly describe the system workflow.

5.1 Overview
In the scenario in which roadside infrastructure is used exclusively
as an adjunct of the cloud, a slow connexion or the lack thereof can
invalidate the purpose of the entire system as follows: information
about the road conditions is slowly retrieved or not retrieved at
all, and vehicles are left without information about potential haz-
ards, which can potentially cost lives. Hence, edge computing has
the critical role of being a reliable, resilient and autonomous
infrastructure that delivers services even when the cloud is un-
reachable.

As vehicle density on side-roads might not be sufficient to map
reliably the road conditions, crowdsourcing in unable tackle this
problem. Available spatial data is very sparse and limited, leading
to incomplete or misleading information distributed to vehicles
driving in low-traffic areas. In terms of on-board car sensors (when
available), there are two key situations in which their effectiveness
is hampered: harsh weather conditions where visibility is heavily
reduced (e.g. blizzard, hailstorm, fog), or the scenarios illustrated in
Figure 1 (B,C). In both cases, the vehicle and driver fields of view
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are reduced, limiting the sensor detection capabilities and reaction
time, respectively.

Our framework is designed to solve the aforementioned chal-
lenges, as it provides a framework where multiple cloud services
can share existing infrastructure, which in turn facilitates sched-
uling and handling multiple offloaded tasks. It offers computation
at the ENs, enabling both independence from the cloud in case
connectivity loss and efficient processing and aggregation of infor-
mation based on EFs chaining. In addition, local broadcasting of
road hazards to approaching vehicles affects end-users, who can
benefit from a standalone infrastructure without requiring a mobile
connexion.

5.2 Core components
Our system pivots around the concept of edge offloading [17]: an
emerging paradigm by which computation can be moved from the
cloud towards edge nodes in order to provide multiple benefits.
To differentiate from similar solutions, we design our system as a
collaborative framework where multiple ENs can be chained to ex-
ecute different tasks. In order to support and manage the offloaded
EFs, we developed a set of modules residing and constantly running
directly on each EN.

Orchestrator. It’s the core and entry point of our system, and
it functions as both a coordinator and interface with the outside
world. A REST interface is employed to interact with it. When one
or more EFs are offloaded as part of a pipeline, the orchestrator
handles the calling of the required modules to philtre, order and
execute the EFs. Both single execution and recurrent pipelines are
supported. For resiliency purposes, checkpoints of the pipeline
status plus EFs intermediate results are stored in a local database.

Edge function. The EFs are virtual instances moved from the
cloud to edge devices as part of the pipeline. They are composed of
four parts: data acquisition, validation, processing and distribution.
During the first phase, an EF awaits the necessary data from the
orchestrator (intra-node communication). Next, it proceeds to the
validation phase, in which received data is checked for errors in
case of faulty transmission, eventually requesting a re-transmission.
The data processing phase contains the developer code and is the
core of the EF. By customising this part of the EF, it is possible
to execute any computation inside the EF, granted that eventual
external dependencies and libraries have been handled. Finally, the
distribution phase contains rules that specify whether outputted
data should be dumped to the host or sent to the next EF in the
local sequence.

Intra-node and inter-node communication. Based on the
pipeline structure, data can be exchanged in two ways. Intra-node
communication occurs when the transfer involves two co-located
EFs or an EF and the orchestrator. In contrast, inter-node communi-
cation occurs when the transfer takes place between two EFs that
are not co-located. For the former, a set of parameters is provided
for identifying the source and destination addresses of shared mem-
ory pages blocks used to transfer the data. When two co-located EFs
are involved, the transfer is performed automatically and requires
no involvement from the host modules. In other cases, the host
memory manager module has the task of allocating, deallocating
and cleaning up the memory pages that are continuously used to
communicate with each EF. EFs are unable to fetch data from a
local or remote source; they exist in a completely sealed environ-
ment. Hence, the host framework must also handle the collection

of the required data from the data source specified in the respective
meta-pipeline section.

Network module. This module enables the communication be-
tween non-co-located ENs. It has two groups of queues containing
data structures called bundles, which contain a set of parameters
used to unequivocally identify a pair of producer and consumer
ENs. A combination of IDs extracted from the meta-pipeline is used
for this purpose. The bundles in the inbound queue are stored until
consumed by one or more local EFs which remain in a waiting state
until the specific data is available. The outbound queue contains
the bundles that are ready to be forwarded to the next EN in the
pipeline. The outbound queue is also necessary in case of failures
in some stages of the pipeline; data bundles are in fact stored until
the malfunctioning nodes are prepared to continue. For additional
resiliency, the bundles are also stored inside a database to allow hot
restarts of the system in case of local failure.

5.3 Workflow
The cloud service sends the generated pipeline to each selected EN.
The orchestrator extrapolates relevant information from the meta-
pipeline file with the task parser module. Next, the pipeline processor
generates the local sequences and boot-up the required EFs while
the pipeline and the EF monitor supervise the status of the respective
components. Depending on the data provenance, either the data
acquisition module or the network module prepare a data bundle
subsequently passed to the EF memory manager. As the data starts
flowing, the computation takes place with EFs being allocated and
deallocated following the prescribed order. Once the local sequence
is complete, collected data is either sent to the approaching vehicles,
in case we reached the end of the pipeline, or sent to the next EN.

6 Implementation
Our platform was developed as a unikernel-based system running
on top of the Xen hypervisor (stock version). We exploited vir-
tualisation for multiple reasons to hide hardware discrepancies
between off-the-shelf devices, achieve fine-grained control over
running VMs, obtain stronger isolation and maintain compatibility
with existing cloud computing platforms. We considered Xen [4]
to be the most suitable hypervisor for our implementation as it
directly supports MirageOS [9] — the unikernel of choice for our
implementation. We opted for this specific technology, since one
of our goals was to offload compact, ready to launch, small virtual
instances, embedding only the required code; unikernels are the
perfect fit for this scenario.

Three languages were used to implement the entire system: C for
the EF memory module (kernel module), Python for the majority of
the core modules and OCaml for the EF code (MirageOS). Existing
MiniOS and MirageOS libraries were modified and extended for
compatibility with our system.

7 Evaluation
We profiled our system under different loads, devices and pipeline
topologies, as shown in Figure 4. The basic case A represent black
ice detection done by a pipeline involving only two lampposts, the
results reflect the processing load of the edge computing nodes.
Other cases grow in complexity and allow to profile our system
under different configurations. Each pipeline begins and ends with
a red and green block, respectively. Yellow blocks represent transit
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EFs, which can be found in the middle of the chain. A pipeline
block is delimited by curly braces and contains sequence blocks
delimited by angular braces. A block is an EF processing images
or other sensor data locally collected by the lamppost. Case D has
two pipelines delimited by curly brace blocks. Each node executes
only the blocks assigned to it, which are expected to be executed in
a specific order (represented here with a character in each block).

Different devices were used to understand the performance gap
between the edge and cloud. In our tests, the edge devices were
comparable to micro-servers rather than base stations. The nodes
used in our tests were an Intel NUC (NUC), Dell Optiplex (OPX)
and two high-end Dell PowerEdge 730 servers (SRV1, SRV2), all
connected to the same LAN network.

Table 1. Boot-up time for the EF unikernel on each device

NUC OPX SRV1 SRV2
46±15 ms 30±13.2 ms 25±7.4 ms 29±11.5 ms

We focussed on measuring the following parameters: intra-node
data transfer overhead, pure computation time and pipeline com-
pletion time, as shown in Figure 5, 6 and 7 respectively. To this end,
we baked a MirageOS unikernel supporting basic image processing
operations such as colour normalization and continuously passed to
it the same image with a size of approximately 250KB. Additionally,
in our pipeline the nodes exchanged a complete post-processed
image instead of a single value, as we expect in the case of black
ice fingerprinting where a true/false is sufficient to at least com-
municate the presence of hazards. The average inter-node network
transmission time is also specified for completeness: 20±0.039 ms.
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Figure 5. Intra-node transfer time (3000 data points evenly split
between read/write per node)
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Figure 6. EF processing time (500 data points per node)
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Figure 7. Pipeline execution time ECDF (100 iterations per topol-
ogy)

In Figure 6, a minimal difference in performance can be seen
between cloud (server) and edge devices. Thus, we can assert that
there is an effective profit margin in offloading computation as the
potential loss in computational speed is countered by a reduced
upload time. In the case of black ice detection, it would be necessary
to upload images from each lamppost to the cloud, process them and
then send results to cars on a specific road. This would eventually
increase the round-trip time and become unfeasible under in poor
network connectivity situations.

Figure 5 illustrates the overhead created by transferring data be-
tween the host machine and guest unikernels before the processing
phase. Both read and write operations are very fast, on the order
of hundreds of microseconds. Read operations, in which memory
pages populated with processed data are mapped back to the host,
are much slower. This results from different code used for the two
operations; writing is more efficient as we can allocate blocks of
free memory pages directly, whereas the read operation requires
proceeding page by page. However, even in the average worst case,
reading data is in the range of 1ms. Thus, the memory module
design has very low overhead on the overall system performance.
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Figure 7 displays the ECDF of the edge-cloud pipeline execu-
tion time for the cases presented in Figure 4. Cases A to C repre-
sent single-pipeline, non-branching scenarios with an increasing
number of ENs and EFs. Case D represents the performance for
a branched multi-pipeline scenario. The pipeline execution time
includes the computational and memory overhead time in addition
to the network inter-node transfer time and the unikernel boot-up
time, as depicted in Table 1.

Our first insight into the results is the pipeline execution time
grows linearly with the number of EFs. Even though they are not
directly comparable, the first three topologies differ only in number
of EFs and nodes, while the pipeline workflow remains roughly
unchanged. We note that hardware differences do not play a major
role, as performances is comparable. In each case, we double the
number of EFs and add only one EN. By adding more nodes we
amortise the overall completion time, thus, reducing the slope of
the linear growth. This is critical in long pipelines, where finding
the proper ratio of EF to EN has a large effect. Using our framework,
to properly scale-up in terms of edge functions and nodes, different
topologies can be tested to find the one with superior performance.
In our scenario, EFs are expected to be quasi-uniformly distributed
across the roadside equipment involved in the computation.

Case D is the sole case involving multiple pipelines. Rather than
evaluation performance, the test serves as an example of the po-
tential of our framework to run branching pipelines. The examples
are situations where the set of information collectible by different
EN is not uniform (e.g. smart lampposts equipped with different
sensors). Hence, it is necessary to merge data collected from dif-
ferent branches of the pipeline to terminate the computation. In
comparison to case B, whose computational load is the closest in
terms number of EFs, we notice that there is a cost to running
multiple parallel pipelines; with one additional EN, the results are
only approximately 10% better than for the single pipeline case.

8 Conclusion and Future Work
In this paper, we proposed a distributed edge computing framework
to improve current solutions to road hazard detection. Our attention
was focused on black ice detection under adverse road conditions.
The logic, design and implementation of our system were described
in relation to with the analysed use case scenario. We discussed
the advantages of our approach in comparison to solutions based
on crowdsourcing, cloud computing and on-board car sensors. Our
current evaluation has not yet demonstrated the full potential of our
system, as the thermal image processing necessary for detecting
patches of black ice was not embedded in the tested EFs. Hence,
in future work we intend to address this issue by integrating a
state-of-the-art machine-learning black ice detection model into
our system.

To strengthen and expand the capability of our framework, we
plan on offloading non-virtualised EF. Unikernels do not actually re-
quire a virtual hardware abstraction; they can achieve similar levels
of isolation when running as processes by taking advantage of exist-
ing kernel system call whitelisting mechanisms as demonstrated in
[22]. This has the potential to make our system compatible with a
larger range of devices and enable a much simpler integration of ex-
isting tools into our platform. An alternative option is to modify our
system to be compatible with a Tier-2 hypervisor such as KVM. In

fact, this would allow us to compare our system with other similar
frameworks for serverless computing, such as Amazon Firecracker.
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Publication Summary

With the rising popularity of Internet of Things (IoT), an increasing number of devices
are being connected to the Internet. Most of these devices are resource-constrained and
security is often regarded as an afterthought. In fact, vulnerabilities have been found in
all types of related devices, ranging from cars to light bulbs. Moreover, such devices are
oftentimes connected to the network by people having little knowledge about security
or privacy concerns. We found that IoT devices are too resource-constrained to employ
traditional security tools (virus scanner, etc.), which renders both edge computing and
enterprise networks far more exposed to attacks.

In this work, we aimed at laying the foundation of the concept of composable secu-
rity through unikernels with the latter embedding self-contained security functionality
quickly deployed on-demand. This work represents a first step in such direction with a
signature-based, low-footprint Unikernel Intrusion Detection System (UIDS). Our pro-
totype is based on the IncludeOS unikernel, ensuring low resource utilization, high mod-
ularity, and a minimalist code surface. We evaluated the performance of our solution on
x86 and ARM devices and compare it against Snort, a widely known network intrusion
detection system. The experimental results show that our prototype effectively detects
all attack patterns while using up to 2-3x less CPU and 8x less RAM than our baseline.
To summarize, in this work we made two contributions: (i) a signature-based IDS, capa-
ble of detecting common Denial of Service (DoS), and port scan attacks, which can be
deployed on resource-constrained devices with minimal overhead and memory footprint,
and (ii) a comprehensive evaluation of our solution with different hardware and datasets
against a well-known IDS tool.
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Abstract—The advent of the Internet of Things promises to
interconnect all type of devices, including the most common
electrical appliances such as ovens and light bulbs. One of
the greatest risks of the uncontrolled proliferation of resource
constrained devices are the security and privacy implications.
Most manufacturers’ top priority is getting their product into
the market quickly, rather than taking the necessary steps
to build security from the start, due to high competitiveness
of the field. Moreover, standard security tools are tailored to
server-class machines and not directly applicable in the IoT
domain. To address these problems, we propose a lightweight,
signature-based intrusion detection system for IoT to be able
to run on resource-constrained devices. Our prototype is based
on the IncludeOS unikernel, ensuring low resource utilization,
high modularity, and a minimalist code surface. In particular,
we evaluate the performance of our solution on x86 and ARM
devices and compare it against Snort, a widely known network
intrusion detection system. The experimental results show that
our prototype effectively detects all attack patterns while using
up to 2-3x less CPU and 8x less RAM than our baseline.

I. INTRODUCTION

With the rising popularity of Internet of Things (IoT),
an increasing number of devices are being connected to the
Internet. Most of these devices are resource-constrained and
security is often regarded as an afterthought. Mirai [3], Qbot
[6], and Torii [20] are examples of large-scale network attacks
enabled by the proliferation of vulnerable, badly configured
smart devices. The distributed and hardly controlled nature
of the IoT transformed it into what is today a powerful
cyberattack platform. In fact, vulnerabilities have been found
in all types of related devices, ranging from cars [24] to light
bulbs [10]. Moreover, such devices are oftentimes connected
to the network by people having little knowledge about
security or privacy concerns. In 2010, a study [8] found
that 13% (≥580.000) of the discovered embedded devices
still used factory default login credentials. In 2017, Positive
Technologies found around 15% of devices with factory-
default credentials, which proved to be an exacerbation of the
problem [1].
IoT devices are too resource-constrained to employ traditional
security tools (virus scanner, etc.), which renders both edge
computing and enterprise networks far more exposed to

attacks [11]. Additionally, botched or corrupted updates can
leave the device in an unstable state, which may be hard to
recover from due to the lack of user interfaces. What we need
are security tools that are lightweight, modular, and easily
deployable. Hence, we aim at laying the foundation of the
concept of composable security through unikernels with the
latter embedding self-contained security functionality quickly
deployed on-demand. This work represents a first step in
such direction with a signature-based, minimalistic Unikernel
Intrusion Detection System (UIDS), which can to deliver the
same detection capabilities of well-known IDSs (e.g., Snort)
while using 2-3x less CPU and 8x less RAM. We make two
contributions:

• A signature-based IDS, capable of detecting common
Denial of Service (DoS), and port scan attacks, which
can be deployed on resource-constrained devices with
minimal overhead and memory footprint.

• A comprehensive evaluation of our solution with dif-
ferent hardware and datasets against a well-known IDS
tool.

II. RELATED WORK

Intrusion detection is a very mature field of research
going back to Anderson’s “Computer security threat moni-
toring and surveillance” [2]. The first prototype of a real-
time IDS was developed between 1984 and 1988, called the
intrusion detection expert system (IDES) [9]. Currently, the
rising number of deployed embedded devices and sensors has
motivated researchers to explore IDSs that can run on resource-
constrained devices. As there are few specific solutions target-
ing IoT networks, part of the research is focused on adapting
and profiling desktop-class tools, such as Snort1, to be less
resource-intensive. One interesting study is [15], where the
authors investigated the performance of Snort and Bro2 on
wireless mesh networks (WMNs). It was found that these IDSs
are unsuitable as a security solution for WMNs as they are too
demanding. To address this problem, they posited a lightweight
IDS for WMNs that decreases memory consumption and
packet drop rates in such resource-constrained nodes. However,
it could only detect a few types of attacks. Similarly, in [14],
the authors also argued about the infeasibility of deploying
Snort in WMNs and proposed a distributed solution called
PRactical Intrusion DEtection in resource constrained wireless

1https://www.snort.org/
2Today known as Zeek — https://en.wikipedia.org/wiki/Zeek
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mesh network (PRIDE). Kyaw et al. [17] compared Snort
and Bro IDS running on a Raspberry Pi 2, and showed that
a Raspberry Pi 2 has enough resources to run open-source
IDSs such as Snort or Bro sufficiently fast to detect DoS
attacks and port scans. In addition the authors concluded that
Snort performed better than Bro on the Raspberry Pi. For
the IoT edge network, researchers have also used Docker
containers [12] to deploy cloud-assisted security functional-
ities, especially for D2D communication [13]. Finally, [21]
focused on the present and in-deep analysis of the feasibility of
deploying an IDS infrastructure based on Snort and Raspberry
PIs. Based on their results, this is possible in small networks;
however, and more experiments are needed to better grasp the
true limits of the Raspberry Pi. Another example of IDSs for
constrained devices is CEPIDS [5], which is a complex event
processing (CEP)-based IDS for detecting DoS attacks and port
scans. CEPIDS follows a similar architecture to Snort. It uses
three components to collect, evaluate and potentially block
malicious network traffic. The authors showed that their IDS
performs better than Bro and is on-par with Snort. However,
the methodology used to evaluate their solution is unclear, as
they compare their results with those obtained from [17] by
using a different dataset and device.

III. BACKGROUND

In this section, we briefly introduce two main types of
IDSs: signature-based and anomaly-based.
Signature-based IDSs use parameters of known attacks to
detect them. Hence, one downside is that new attacks cannot
be detected as long as their signatures are not yet known. As
such, signature-based IDSs need to receive constant updates
to be competitive. In addition, attacks that cannot be easily
described with signatures are difficult to detect. On the other
hand, a big advantage of signature-based IDSs is that known
attacks can be detected fast, accurately, and with fewer false
positives. This approach, however, depends on the accuracy
and quality of the signatures. If the signatures are known, an
attacker can craft traffic that is benign but triggers signature-
based rules, classifying the traffic as malicious, and as such
generates many false positives.
Anomaly-based IDSs require a normal operation model
against for comparison to the current network traffic. The flow-
ing traffic characteristics are then compared to this baseline,
and if an anomaly is found, the IDS will generate an alert.
In the case of network-based IDSs, machine learning is
oftentimes used to build a model trained on non-malicious
traffic. Incoming packets not fitting the model are classified
as abnormal and an alert is generated. An obvious problem
with this approach is that no malicious traffic must be present
during the model learning phase; otherwise, malicious traffic
will be classified as normal and no alerts will be generated.
Anomaly-based approaches can detect attacks that are un-
known at the time of deployment. However, they depend
heavily on the accuracy of the baseline model and require a
potentially long and tedious training process. Hence, one of
the main challenges in highly heterogeneous network traffic is
building such accurate models.

IV. UIDS

We design UIDS as a signature-based IDS capable of
detecting common DoS attacks, such as TCP SYN flood,
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Fig. 1. UIDS packet reception path.

TCP ACK flood, and UDP flood. Moreover, our signature
based approach can detect the most common port scans in
three different variations: one-to-one, distributed and decoy
scans. We base our prototype on the IncludeOS [4] unikernel
which follows the zero-overhead principle and is written in
C++. UIDS expands on the rudimentary connection tracking
capabilities of IncludeOS to classify traffic as suspicious
or benign and keeps additional state information regarding
possible malicious packets.
IncludeOS contains a few features that we found handy during
the UIDS development. It offers state-keeping for network
connections, UDP and ICMP, and a more sophisticated one
for TCP. In addition, the IncludeOS modular network stack
allows us to easily capture packets on the wire and redirect
them to custom modules for additional processing. The
network stack of IncludeOS comprises C++ classes for each
module of the stack, such as IPv4, IPv6, and TCP which
are connected together using delegates and can be rewired at
runtime.

We extend IncludeOS as shown in Figure 1 to parse the
captured packets and detect attacks. Packets received by the
virtio device are passed up in the network’s stack hierarchy
of IncludeOS. After the Ethernet layer, we redirect packets
to a custom capture module bypassing the standard one as
shown in the figure with a red cross. Subsequently, we forward
them to the core of our system: the UIDSConnTrack module.
ICMP packets of type destination unreachable are parsed by
ICMPHandler to extract the UDP packet that generated the
ICMP error message. Afterwards, they are forwarded to the
connection tracking module with the augmented data.
Port scans are classified as probes hitting different ports on the
same host (vertical scans) or the same port on different hosts
(horizontal scans). For this reason, we track suspicious packets
on a per-host and per-port basis. UIDS classified packets as
probes (suspicious) if at least one of the following criteria was
met: (i) SYN packet to a closed, filtered or inactive port/host,
(ii) ACK or FIN packet not belonging to an active connection,
(iii) invalid packets (NULL/XMAS scan), (iv) partial three-way
handshake, (v) UDP packets generating ICMP unreachable
replies, and (vi) unanswered UDP packets.
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Fig. 2. Setup for traffic replay.

The UIDSConnTrack module stores information about packets
that satisfied the above rules on a per-host, per-port basis using
trackers. The latter are implemented as unordered maps, saving
the address of the sending host, in addition to the scan type
and time.
DoS detection is implemented similarly to port scan but with
a different ruleset. In this case, trackers are simple packet
counters, as common practice for such attacks, and store less
information about the sender to save on resources.
The data structures tracking suspicious packets are analyzed
periodically, and if an attack is recognized during a scan, the
system generates an alert in the form of a JSON message.
Subsequently, alerts are forwarded to an alert module, which
either sends the data using UDP over a second network
interface or flushes it to stdout.

V. EVALUATION SETUP

We benchmark UIDS attack detection capabilities against
different datasets normally used to evaluate the effectiveness
of IDSs. These are often developed to train and test anomaly-
based IDSs using machine-learning but could also be used
to evaluate signature-based IDS as well. In our evaluation,
we use three publicly available datasets containing DoS
attacks and port scans in a packet-based format. One of
the most widely used dataset is the 1998 DARPA Intrusion
Detection Evaluation Dataset3; however it is very old, and
therefore did not contain traffic one would likely see today. In
addition, several researchers have shown different flaws in this
dataset [18], [19]. Hence, we instead used TRAbID [16] and
CICIDS 2017 [22]. In addition to existing datasets, we use
a small-scale testbed of our design to stress-test UIDS. Both
port scans and DoS flooding attacks are used to stress-test
our implementation and evaluate the accuracy of alerts raised
by UIDS and Snort.

Traffic replay. UIDS and Snort run on KVM with QEMU
using bridge networking to expose an interface to replay
traffic to. IncludeOS comes with a deployment tool for
KVM and QEMU, which allowed to configure this bridge
networking. We replay the dataset network traffic through
an Ethernet interface on the traffic-generator node and send
it to the device hosting UIDS and Snort via the incoming
network interface. On the receiving host, traffic is forwarded
to the bridge interface using the tool tcpbridge included in the
tcpreplay tool suit. Finally, the bridge interface (bridge43) is
connected to the virtual machines (VMs). Figure 2 illustrates
the complete network flow.
CICIDS2017 traffic is split into port scan and DoS to
dramatically reduce the evaluation period from more than

3https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-
evaluation-dataset

Fig. 3. Setup for live traffic.

9h to 1.5. However, such a procedure might introduce
false-positives in the first few minutes of the new traffic
since some connections might have been established directly
before the split. Nevertheless, these false-positives were easily
filtered out from the analysis (if they occurred).
The TRAbID dataset provides two traffic captures for port
scan and DoS. We use the probe known attacks capture for
the evaluation of the port scan detection accuracy. It contains
seven port scans originating from different machines, but all
directed to the same host. However, the amount of attack
traffic is very small compared to the background traffic
(≤0.15%). Unfortunately, for this dataset, the DoS traffic
capture is not currently publicly available, so we could not
use it in our evaluation.

Live traffic. Besides testing our solution against existing
datasets, we also generate our own network traffic traces. For
this purpose, we connect two hosts with a switch supporting
port-mirroring. A host running UIDS and/or Snort is connected
to the mirrored port, to receive all traffic generated between
the hosts. Figure 3 illustrates the described setup.
To generate the traces, we uses the tool sourcesonoff 4, which
outputs realistic Internet-like traffic using statistical models,
detailed in [23]. Moreover, we develop a simple script using
netcat to simulate an arbitrary number of concurrent TCP
connections. Finally, the attack traffic is injected in the testbed
using nmap for the port scan and hping for DoS traffic.

VI. RESULTS

In this section, we present the results obtained by testing
UIDS against the datasets described before while using Snort
as the baseline. We focus primarily on CPU and RAM uti-
lization to evaluate the compatibility of UIDS with resource-
constrained devices. In terms of the memory footprint, UIDS
weights only ≈2.3MB and boots in ≈200 ms on a non-
optimized version of KVM (we did not use Solo55). We run our
tests on two different hardware platforms: a laptop equipped
with an Intel i7-4710@2.5GHz (LAP) and a Raspberry Pi
3B+ with an A53 ARMv8@1.4GHz (RPI). On the former,
both IDSs run virtualized on top of KVM. On the latter,
due to the lack of support for ARM, IncludeOS can not be
directly virtualized using KVM. Instead, we emulate the x86

4http://www.recherche.enac.fr/∼avaret/sourcesonoff
5https://github.com/Solo5/solo5
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Fig. 4. UIDS vs. Snort — Port scan (TRAbID, LAP).
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Fig. 5. UIDS vs. Snort — Port scans (CICIDS2017, LAP).

architecture on top of ARM using QEMU. Therefore, UIDS
suffers a considerable performance penalty due to the addi-
tional emulation overhead which affected the results as well.
Conversely, Snort runs baremetal, which gave it a considerable
advantage in terms of performance. Hence, on the RPI we test
UIDS in what could be seen as the worst case scenario.

A. TRAbID

Traffic from the TRAbID dataset is replayed over ≈33
min with an average speed of 33.68Mbps. Figure 4 shows the
resource consumption on our laptop, which are correlated to
the number of packets sent. Two dips in the graph at ≈600 and
≈1350 s are caused by a sharp drop in the number of packets
generated by the dataset, moving from an average of ≥14000
to ≤1500 packets per second (pps).
The port scan traffic is not visible in the graph as it only
represented a very small part of the overall traffic. Both UIDS
and Snort equivalently detect 85% of all port scans contained
in the dataset covering UDP, SYN, NULL, TCP connect, FIN,
and XMAS scans. The ACK scan is not detected because it
is not supported in UIDS and no rules to detect it are added
to Snort. On the laptop, memory consumption for UIDS is
just under 100 MB while it hovers around 400-600 MB for
Snort. Additionally, UIDS CPU utilization is ≈40% while it
is up to ≈80% for Snort. On the Raspberry Pi, both UIDS and
Snort use, on average, the same amount of CPU. Regarding
the memory allocation, UIDS is less demanding than Snort,
requiring ≈50MB of RAM. Figure 7 shows the results in
detail. Our solution is definitely penalized with this setup, as
it is running on a twice virtualized stack, which clearly affects
the performance.
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Fig. 6. UIDS vs. Snort — DoS (CICIDS2017, LAP).

TABLE I. CICIDS2017 — PORT SCANS AND RELATIVE DETECTION.

Scan From (min) Until (min) UIDS Snort
TCP SYN scan 11 13 yes yes
TCP Connect scan 14 16 yes yes
TCP FIN scan 17 19 no no
TCP XMAS scan 20 22 no no
TCP NULL scan 23 25 no no
ICMP Ping scan 26 27 no yes
TCP version scan 28 30 yes yes
UDP scan 31 32 yes yes
IP-protocol scan 33 35 no no
TCP ACK scan 36 38 no no
TCP window scan 39 41 yes yes

B. CICIDS2017

The results for this dataset are divided for port scan and
DoS attacks, and are described as follows.

Port scan. Port scans are executed during specific time
windows, as specified in Table I. We notice that both UIDS
and Snort detect most TCP/UDP-based scans contained in
the dataset. As a side note, the CICIDS dataset supposedly
contained FIN-, NULL-, and XMAS-scans, but could not find
any evidence of such scans in the downloaded dataset. In fact,
no packet without TCP flags set (NULL scan) or with URG,
PSH and FIN flags set (XMAS scan) could be found using
various tools. Therefore, neither UIDS nor Snort raise any
alert regarding such attacks. The only difference in port scan
detection between Snort and UIDS is the ICMP ping scan,
which is not currently implemented, and therefore, is not
detected by UIDS. The TCP version and window scans have
similar characteristics as TCP SYN or connect scans, and are
detected by both IDSs but classified as TCP SYN scans.
Snort and UIDS generated false positive alerts for FIN scans
in the first 120 seconds of the dataset. As mentioned in
Section V, this is due to the splitting of the dataset which
led both systems to see finalization packets that belonged to
connections lost during the splitting.
Figure 5 shows the resource utilization. Overall, the CPU
usage is low for both IDSs because the packet rates in the
CICIDS dataset are smaller than those in TRAbID, averaging
around ≈330 pps and approximately 1 Mbps. Memory
consumption is definitely higher for Snort, with 400-600MB,
against UIDS, with less than 100MB (4-6x lower). A spike
in memory usage can be observed after the first port scan is
executed at the 11-12 min mark. Interestingly, this spike is
modest for UIDS with a variation of ≤10MB but substantial
for Snort with ≥130MB.
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Fig. 7. UIDS vs. Snort — Port scan (TRAbID, RPI).
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Fig. 8. UIDS vs. Snort — Port scan (CICIDS2017, RPI).

Flood-based DoS. Traffic from the CICIDS2017 dataset
contains a DoS attack generated with the open-source tool
Low Orbit Ion Cannon (LOIT)6. This attack is active from
15:56 until 16:16 and is contained in the second traffic slice
generated by splitting the dataset. Both Snort and UIDS emit
alerts correctly during the active phase of the attack. Figure
6 clearly shows the beginning and end of the DoS attack in
relation to the number of CPU resources used. As foreseen,
memory consumption remain stable and marginal during the
attack since the very little state information needed storing
to detect flood-based DoS attacks. Also, for this benchmark,
UIDS proves to be extremely lightweight compared to Snort.
In fact, it allocates ≈4x less memory than Snort during the
attack peak and on average 3x less CPU.

Figures 8 and 9 show CPU and RAM usage for the
Raspberry Pi for CICIDS2017 port scan and DoS traffic,
respectively. While UIDS CPU usage is 5-6x higher com-
pared with Snort, memory allocation is surprisingly reduced.
Hence, considering that we are running in an emulated x86
environment, UIDS can handle moderately fast traffic (up to
≈34Mbps) for the CICIDS2017 dataset and reliably detect the
same attacks as that in the case of running on more powerful
hardware.

C. Results with custom testbed

We use our own testbed to evaluate the performance of
UIDS under heavy loads, as described in section V. To simu-
late a fully utilized link, we open multiple TCP sessions with
netcat and transmit random traffic as fast as possible through
all concurrent connections. As the TCP protocol performs load

6https://sourceforge.net/projects/loic/

40
50
60
70
80
90
100
110
120
130

RA
M

 [M
B]

Snort RAM
UIDS RAM

0 500 1000 1500
Time [s]

0

5

10

15

20

25

30

CP
U 

[%
]

Snort CPU
UIDS CPU
Snort mean CPU
UIDS mean CPU

Fig. 9. UIDS vs. Snort — DoS (CICIDS2017, RPI).

0 100 200 300 400 500020406080
CP

U 
[%

]

0 50 100 150 200 250
Time [s]

0
20
40
60
80

82

84

86

UIDS RAM

20
40
60
80

RA
M

 [M
B]

82

84

86

0 20 40 60 80 100 120 140 1600
20
40
60
80

UIDS CPU
UIDS mean CPU

Fig. 10. UIDS stress-test (LAP) — Saturated 1Gbps link (top). Background
traffic plus attacks (middle). 1Gbps, 5000 concurrent TCP connections (bot-
tom).

balancing for us, we do not need any additional configuration
steps. Figure 10(top) shows the resource consumption of UIDS
dealing with a saturated 1Gbps link with an increasing number
of concurrent connections, specifically, 1000 connections until
60 s, 5000 until 90 s and 10000 until 165 s. A step-up in
memory consumption can be observed when the number of
concurrent connections increased. This is expected, as UIDS
needs to keep track of these extra connections.
Because the link capacity is fully utilized, some traffic is
lost, and therefore, not available for our connection tracking
algorithm. This is problematic because the port scan detector
relied on accurate connection tracking. Moreover, we observe
several false positives for TCP no-reply (i.e., lost answers to
SYN packets) as well those for FIN scans.

In a second experiment, we evaluate whether UIDS could
detect attacks in a realistic background traffic and if UIDS can
cope with a large-scale DoS attack using 1Gbps traffic. Figure
10(mid) shows resource consumption during the background
traffic, port scans, and a large DoS attack using the ICMP
flood. The CPU usage is very small when handling traffic
generated by the tool sourcesonoff, while memory usage is
comparable to the results obtained for the other datasets.
Four different port scans are executed during the first 300 s of
the second experiment: TCP SYN, TCP XMAS, TCP NULL
and a UDP scan. All four scans are detected and no false alerts
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are generated.
UIDS behaves as expected during the ICMP flood between
310 and 420 s, as shown in Figure 10(mid). However, the
ICMP flood with ≈120,000 pps and close to 1Gbps rate is
strong enough to effectively disable our traffic-generating host.
Consequently, we see a reduction in the allocated memory as
many connections timed out and no new ones are generated;
thus, fewer connections need tracking.

Finally, we conduct a third experiment to evaluate the
port scan detection capability under high load, as shown in
Figure 10(bottom). We use the same four scans as in the
previous experiment and a saturated 1Gbps link with 5000
concurrent TCP connections. In this case, all types of scans
are detected including TCP SYN which got linked to false-
positive alerts, and as such, are not accurate.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents UIDS: our first prototype of signature-
based unikernel IDS for the IoT. UIDS is implemented from
scratch in C++ and is based on IncludeOS. We evaluated our
solution on both a mid-range laptop and a Raspberry PI and
compared the results against Snort on two datasets. From our
experiments, UIDS required 2-3x fewer CPU resource and up
to 8x times less memory than Snort without penalizing any
detection capability. We consider these results very promising
as our main goal was to build a lightweight modular solution,
with reduced hardware resource demand.
Despite this being our first prototype, UIDS showed great
potential by delivering better resource efficiency, isolation, and
a small memory footprint without sacrificing on the security
aspects. Its modularity enabled easier code updates and opened
the door to composable, on-demand security with unikernels.
In our future work, we plan on exploring the tradeoffs of
extending UIDS to anomaly-based detectors and simplifying
its setup by using the IncludeOS configuration language NaCl
and integrating UIDS with our edge-cloud deployment and
chaining framework [7] to orchestrate a network of UIDS and
fully exploit its modularity for service composition.
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Publication Summary

The development of ubiquitous road-side infrastructure through deployment of station-
ary and mobile roadside units (RSU) and street furniture seeks out ways to ease conges-
tion and improve road safety. In spite of its great value, smart infrastructure development
is still in its infancy with and it is tied to ad-hoc, vertically integrated solutions rather
than open platforms offering shared data and compute resources. To support such ap-
plications, we proposed a roadside infrastructure which encompasses smart vehicles and
devices, RSUs as intermediate computational units, and cloud servers. The challenge
then becomes how to enable developers to write and efficiently deploy applications on
such a heterogeneous infrastructure. As computing shifts to the edge and particularly
the roadside infrastructure, one of the fundamental changes is that it will not be tied to
a single vendor.

Hence, we noticed how, from a system perspective, we lack a computational model
capable of providing to vehicles reliable and real-time assessment of the road context.
To tackle this, we designed ECCO: an orchestration framework that enables edge-cloud
collaborative computing for road context assessment. ECCO can create on-demand task
execution pipelines spanning multiple, potentially resource-constrained edge-nodes with
the smart IoT infrastructure support. Our prototype aimed at creating the groundwork
to support new services, which can use more efficiently the road infrastructure and deliver
safety-critical applications for road users.

ECCO was developed as an orchestration platform for unikernels: specialised, single
address space machine image constructed by using library operating systems. Specifi-
cally, our unikernel of choice was MirageOS which we ran on top of the Xen hypervisor.

Author’s Contribution

I came up with the idea for the paper as a foundation for an orchestration framework en-
abling edge-cloud collaborative computing for road context assessment. I have designed,
implemented, and evaluated the entire system.
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Abstract—For road safety, detecting and reacting efficiently
to road hazards is crucial and yet challenging due to practical
restrictions such as limited data availability, which relies on
network support. Moreover, from a system perspective we lack a
computational model capable of providing to vehicles reliable and
real-time assessment of the road context. As autonomous vehicles
become widespread, the safety issues are further aggravated
by the gap between cloud, roadside infrastructure and road
users in terms of communication latency, software-hardware
compatibility and data interoperability. To tackle this, we present
ECCO: an orchestration framework that enables edge-cloud
collaborative computing for road context assessment. ECCO can
create on-demand task execution pipelines spanning multiple,
potentially resource-constrained edge-nodes with the smart IoT
infrastructure support. Our prototype lays the groundwork to
support new services, which can use more efficiently the road
infrastructure and deliver safety-critical applications for road
users.

Index Terms—Edge computing, Distributed computing,
Unikernel

I. INTRODUCTION

The development of ubiquitous road-side infrastructure
through deployment of stationary and mobile roadside units
(RSU)1 [2] and street furniture such as lampposts [3] seeks out
ways to ease congestion and improve road safety. For example,
detailed metropolitan maps coupled with citywide pollution
fingerprinting can improve citizen health, helping pedestrians
and cyclists select less polluted routes. In spite of its great
value, smart infrastructure development is still in its infancy
with and it’s tied to ad-hoc, vertically integrated solutions
rather than open platforms offering shared data and compute
resources. In fact, an open platform supporting multi-tenant
access to a citywide compute edge-network infrastructure
would facilitate development and deployment of a broad range
of applications at a reduced cost.

To support such applications, we propose a roadside infras-
tructure comparable to [4], which encompasses smart vehicles
and devices, RSUs as intermediate computational units, and
cloud servers. The challenge then becomes how to enable
developers to write and efficiently deploy applications on such
a heterogeneous infrastructure. As computing shifts to the
edge and particularly the roadside infrastructure, one of the
fundamental changes is that it will not be tied to a single

1A Roadside Unit is a V2X direct link transceiver that is mounted along a
road or pedestrian passageway [1].

vendor, regardless of how comprehensive their offerings may
be [5]. Hence, solving the problem of balancing and control-
ling applications deployed by multiple providers is of crucial
importance. Moreover, it is not about only edge or cloud — the
key for innovation lies in their interplay. In our work, we build
on top of these requirements a platform designed to deploy
applications instantiated as edge-cloud pipelines. Therefore,
we design and implement an orchestration framework enabling
road context assessment by providing precise information
about the road condition. Expanding on our previous work
on computation offloading with unikernels [6], we propose a
distributed, edge-cloud computational model to deploy multi-
node execution pipelines on-demand. Comparing with existing
frameworks such as KubeEdge [7] with generic computational
model and cloud-only control plane, with ECCO we propose
an edge-cloud chaining model dedicated to dynamic IoT sce-
narios (i.e., road context assessment) and with responsibility
repartition between cloud and edge.

II. MODEL OF COMPUTATION

Deployment of the roadside infrastructure poses the non-
trivial challenge of assessing the road context as the ensemble
of precise and trustworthy road events information, at scale.
This problem assumes even greater relevance in combination
with fully autonomous vehicles, which rely on content de-
livery through mobile or edge communication to precisely
understand the real-time driving environments [8]. With the
support of edge computing, we can build an infrastructure able
to deliver fresh information to nearby vehicles, enhancing their
context awareness. Such approach can enable new services or
enhance existing ones such as incident warning broadcasting,
traffic signal violation warning, pre-crash sensing, cooperative
forward collision warning, lane change warning, black-ice
detection.

We can identify static and dynamic entities at work in the
roadside scenario which need to communicate and exchange
information. Based on these, we devise a model of com-
putation pivoting on three elements: the inputs received by
the roadside infrastructure, the functions (edge functions, EF)
processing them, and the outputs enabling different services.
To provide a thorough description, we select three use-cases:
(a) car crash detection, (b) road hazards detection, and (c)
smart parking as shown in Figure 1. The latter illustrates an
example of a linear pipeline where: (i) the inputs are the



(c) Detectors nodes (D) scan detect the presence 
of free parking spots directly below them. The de-
tection can be done with cameras, IR proximity 
sensors or ultrasonic sensors. The acquired infor-
mation is then disseminated to nearby vehicles by 
the broadcasting nodes (B).

(b) Multiple broadcasters notify vehicles entering the highway of the presence of possible 
hazards ahead of their path. For instance, a car driving against traffic and the presence 
of black-ice on the road. The former requires a normal camera while the latter is more 
complex. Photodetectors and thermopiles, infrared cameras (thermography) or Peltier 
elements installed directly below the asphalt are possible options. In this situations, allo-
cationg different tasks to each detector node is required by their different sensors.

(a) Car crashes on the road can be detected with the 
support of cameras. The detector node will pass the 
information to all nearby broadcasters to send a noti-
fication to as many vehicles as possible. In this case, a 
redundant detector node is deployed to counter possi-
ble node failures.
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Fig. 1: Smart roadside infrastructure use-cases. (a) Car crash detection, (b) road hazards detection, (c) smart parking.
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Fig. 2: Visual representation of an ECCO pipeline.

sensors readings detecting free parking spots, (ii) the roadside
equipment is the compute infrastructure at the edge of network
on which the EFs are deployed and executed, and (iii) the
output is a list of available parking spots which is sent to
nearby vehicles. Figure 2 illustrates how these elements are
connected to form an ECCO pipeline.

We next describe the pipeline components (network, func-
tions, nodes) in more detail, as well as their deployment and
execution strategy.

A. Pipeline Components

In our scenario, the vehicles are the recipients of the
pipelines output. They receive information from the infras-
tructure via long-range communication radios such as Lo-
RaWAN [9] or LTE-V2X for Vehicle Fog Computing [10],
[11]. As we focus on the computational model and system
design, we do not delve deeper into the specifics of V2I
transmission mechanisms, a topic explored in other research
efforts [12].

Edge Nodes. Following the definition of Shi et al. [13]
that edge computing occurs in proximity to datasources, we
define an Edge Node (EN) to be a device close to the end-user,
such as a mobile phone, PC, or wireless access point. In other
contexts, the definition could be extended to include Radio
Access Network (RAN) micro-servers [14]. In our case, we
focus on the already mentioned RSUs, which are deployed on
the road to monitor it and collect data. As they are stationary,
we assume good connectivity to the cloud and to other ENs
forming what we call an Edge Network.

Edge Functions. An Edge Function (EF) is a self-contained,
atomic function which embeds a small piece of the application
logic that can be executed standalone. When chained together,
EFs form an execution pipeline2. Each instance of EF plays a
specific role and is hosted on a EN. They need to be placed
strategically based on the available datasources, the current
load status and the geographic position.

Edge-Cloud Pipelines. An ECCO pipeline is a distributed
task involving a set of ENs. ENs, listed in the pipeline, take
part in execution chains and collaborate to run it. In the
next section, more details are provided regarding how such
pipelines are deployed.

B. Pipeline Deployment

We envision two levels of control in the pipeline deployment
and management process: (i) the cloud, which defines the high-
level, application driven pipeline deployment plan and (ii) the
edge which locally makes scheduling decisions based on the
parameters described in the rest of this section. The detail of a
pipeline structure is defined by the cloud provider, which also
monitors its execution.

We assume ENs are reachable from the cloud and can report
their available data and current load in terms of active EFs and
pipelines. On this basis, the service can plan a pipeline based
on a set of parameters to exploit data locality. Once offloaded,
the pipeline can be configured to run independently from the
cloud, based on specific policies. The need for a constant
connection with the cloud stems from the specific scenario.
Safety is a major concern in our use-cases as human lives are
involved and the constant presence of the cloud as an overseer
is deemed necessary to properly manage resources and system
failures. For example, dissemination of wrong information or
neglecting a car accident may put lives at risk.

As ENs have limited resources and are shared by multiple
services, we use the priority and execution fields in the

2The composition of sources (inputs), edge nodes, and sinks (outputs) is
similar to a directed acyclic graph (DAG). However, from a user perspective it
can be abstracted to a linear flow so that we use the term pipeline to emphasize
this relationship.



pipeline configuration to decide when to execute a pipeline.
The priority field assumes different values based on the use-
case and it is static, meaning that a specific use-case will
always have the same priority. It is defined by the cloud
provider orchestrating the service. For instance, car crash
detection will always have higher priority than smart parking.
This information allows the system to dynamically shut-down
low priority services when additional resources are required
by the high priority ones.

Another parameter is execution, which can assume only
two values: on-demand and automatic. On-demand pipelines
are only deployed when requested explicitly by the service
provider. Black-ice detection is deployed on-demand as it
only manifests in specific conditions (e.g., low temperature
at night). Likewise, smart parking is not required in the early
hours of the day or when there is very low traffic density
detected. Conversely, car crash detection will be flagged as
automatic as it is a safety critical application running with the
highest priority.

Pipelines are flexible and adapt to the use-case and ENs
at our disposal. The execution flow can be represented as a
directed acyclic graph (DAG) or directed cyclic graphs with
topological ordering [15]. We focus on the system aspects as
theoretical challenges in service composition techniques have
been explored in other studies [16]. For instance, in Figure 1a
the pipelines branch to disseminate the alert regarding a car
crash as quickly as possible to as many repeater nodes in close
proximity. The same behaviour is expected in case of node
malfunction, where branching might be necessary to bypass an
unresponsive EN. When an EN is not reachable, a substitute
is found to replace it or the pipeline is adjusted to skip the
node and remove it from the execution tree. For Figure 1a, this
means that we will not be able to reach some vehicles directly
from our broadcasting ENs if the failure affects a broadcaster
node. Conversely, if a detector node goes down, there will
be another node ready to replace it and able to detect the
car crash. Intersections require redundant ENs deployment as
they are often involved in accidents: in 2007, approximately
2.4 million intersection-related crashes occurred, representing
40% of all reported crashes and 21.5% of traffic fatalities [17].

Another reason for branching is that each EN has different
resource. One EN might only have cameras, another one
only a proximity sensor and a broadcasting interface. This
information is collected by the cloud and used to opportunely
plan the pipelines structure. ENs without a broadcasting inter-
face can only have a detector role which in turn is defined
by its sensors’ capabilities. By analogy, there can be ENs
playing both the detector and broadcaster role. In the smart
parking use-case, the data flow generated by the detectors is
progressively enriched along the pipeline. In this case, a small
delta of processing is carried out by each detector leaving
the broadcasting node only with a task of actually sending
the results as shown in Figure 3a. Finally, broadcasting nodes
might not support all the radio access technologies required
for vehicular communication which is a problem currently
discussed by the research community [18].
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Fig. 3: Pipelines’ execution graphs based on ENs capabilities
and EFs roles.

In other cases, we might need an additional worker node
to perform a computationally intensive task. For example,
integration of multiple sensors feeds to detect road hazards as
shown in Figure 1b. Another example is an intersection where
all the data generated is sent to the worker node, processed,
and sent back to manage more efficiently the traffic lights
based on the current traffic conditions. The processing node
might be a micro-server in close proximity which sends the
refined information to selected broadcasting nodes (Figure 3b).
The need for multiple broadcasting nodes is twofold: greater
communication range and available network interfaces. In fact,
radio access technologies required by vehicular communica-
tion are changing rapidly and it is expected that not all will
be supported by a single RSU [19].

C. Pipeline Execution

The cloud provider generates the pipeline configuration
which contains details about the execution plan. When the
configuration is offloaded, the ENs involved parse it and each
identifies sections it can execute in relation to other nodes.
Each pipeline is thus split into sub-pipelines, and transformed
into multiple stages which eventually become executable.
Execution order of EFs within an EN can be based on various
parameters, e.g., priority, expected load, and deadline.

ENs scan the received pipeline configuration and iden-
tify the group of EFs it should execute. The classification
determines the order to execute and chain EFs, plus the
respective roles. An EF has one of three roles: (i) Start,
starting a sequence; followed by (ii) zero or more Midsections;
culminating in (iii) a Finale which closes the sequence.
Sequence ordering parameters are used to correctly unfold
execution onto the ENs. The nomenclature adopted in Figure 1
(detectors, broadcasters and workers) applies to the EN while
the one just introduced only to the EFs and it is used internally
by the system to properly order the pipeline graph. What
matters for the pipeline processor is the relative execution
order of the EFs and not their actual task in relation to the
EN capabilities. The relationship between these two concepts
is shown in Figure 3 with two simple topologies.

ECCO creates temporary, dynamic execution chains based
on the pipeline topology to form ad-hoc collaborative networks
of ENs. As data flows from one EF to the next, computa-
tion unfolds and progresses toward the Finale. As already



MAESTRO

EF MEMORY
MANAGER + SAC

EF1 EF2 EF3

PIPELINE
PROCESSOR

NETWORK
MODULEPIPELINE MONITOR

EF MONITORDATA ACQUISITION 
MODULE

HYPERVISOR
INTERFACE

PIPELINE
INTERPETER

OS

HYPERVISOR

EFN

EDGE NODE

Main modules

Offloaded EFs

...
Data acquisition

EF Workflow

E
C
C
O

H
O
S
T

Data validation
Data processing
Data distribution

Fig. 4: Overview of ECCO modules.

discussed, pipelines need not be linear but can branch and
join to create execution DAGs.

III. ECCO: DESIGN

In this section, we provide an overview of the system
depicted in Figure 4 and its components, relate them to
our use case, and describe the system workflow. ECCO was
designed to achieve two goals: (i) provide a landing platform
to offload lightweight and fine-grained services orchestrated
by the cloud and running on constrained devices at the edge;
and (ii) support seamless cooperation and interconnection of
ENs to support pipelines offloaded from the cloud.

If roadside infrastructure was only usable as an extension
of the cloud, reliant on the cloud to work, then a slow or
intermittent network connection could render the whole infras-
tructure useless. Information about road conditions would be
retrieved slowly or not at all, and vehicles would be left with-
out information about imminent hazards, potentially costing
lives. Treating roadside infrastructure as an edge computing
infrastructure, able to use but not reliant upon the cloud, offers
a reliable, resilient, and independent infrastructure delivering
services even when the cloud is unreachable from end-users.

Crowdsourcing cannot provide this because vehicle density
on less heavily used roads will often be insufficient to reliably
map road conditions. Available spatial data are sparse and in-
adequate, leading to incomplete or misleading information dis-
tributed to vehicles driving in low-traffic areas. Effectiveness
of onboard car sensors is also reduced in common situations
as adverse weather conditions which reduce visibility.

ECCO addresses these challenges by providing a platform
where multiple cloud services can share existing edge in-
frastructure for scheduling and handling multiple offloaded
pipelines. It offers computational power at the ENs, enabling
both independence from the cloud in case of intermittent
connectivity, and dynamic processing of information based on
chaining EFs.

A. Components

Our system relies on edge offloading: a paradigm that
moves computation from the cloud to edge nodes [20]. To
differentiate from similar solutions, we design our system as

a collaborative framework where multiple ENs are chained to
execute different pipelines. To orchestrate the offloaded EFs at
the edge, we developed a set of modules running on each EN.
The components listed below are associated with the blocks
in Figure 4.

Maestro. This is the core of and entry point to our system,
functioning as both a coordinator and an interface with the
outside world. When one or more EFs are offloaded as part
of a pipeline, maestro handles the calling of the required
modules to filter, order and execute the EFs. During pipeline
execution, each EF is tracked and monitored to assess its state
in conjunction with the pipeline’s. Since multiple parties can
access the same ENs, the execution of parallel pipeline is also
supported as the allocated resources are completely indepen-
dent. For resiliency purposes, checkpoints of the pipeline status
together with EFs intermediate results are stored in a local
database. This modules takes care of bootstrapping ECCO by
notifying the presence of an EN to the cloud by advertising
its capabilities in terms of hardware resources (e.g., RAM,
CPU), sensors, cameras, and communication interfaces. These
parameters allow a correct placement of the EFs to minimize
distance from the datasource without overloading the EN. In
fact, EFs are mapped to ENs based on the required data and
type of processing.

EF workflow. Each EF is composed of four phases: data
acquisition, validation, processing, and distribution as shown
in Figure 4.

In the data acquisition phase, an EF awaits the necessary
data from the maestro which identifies the correct datasource
and retrieves the data on the EF behalf. In fact, maestro
exposes to EFs different end-point to access sensors or local
databases identified during the bootstrapping phase. Moreover,
the specific steps of the data retrieval phase change depending
on the type of end-point. For instance, in the case of hardware
sensors, the code to pilot them is embedded directly into the
EFs, while for external sources (e.g., databases) maestro would
use libraries from the host to read the data and then pass it
to the EF. Contextualizing, in the example use-case of black
ice detection such data are images produced by an infrared
camera or readings from a Peltier element. The data validation
phase checks the received data for errors, eventually requesting
a re-transmission. The data processing phase is the core of
the EF as it contains the developer code. By customizing
this part of the EF, it is possible to execute arbitrary code
in the EF, granted that eventual external dependencies and
libraries have been opportunely handled. In relation to our
use-cases, it can contain algorithms to manipulate and process
images from cameras or do sensors fusion. Finally, the data
distribution phase determines whether the outputted result
should be passed to the host module which takes care of
sending it to nearby road users or sent to the next EF in the
local sequence. For instance, a midsection EF (detector) in the
pipeline can output a post-processed image to be sent along
the pipeline for further analysis while a finale EF (broadcaster)
will signal to nearby vehicles the presence of potential hazards.

Data communication primitives. Dependent on pipeline



structure, data can be exchanged in two ways: (i) Intra-node
communication occurs when the transfer involves two co-
located EFs or an EF and the maestro; and (ii) Inter-node
communication occurs when the transfer takes place between
two EFs on different ENs. To do so, we adopted a shared
memory approach to transfer data between EFs using a custom
module called EF memory manager (EF-MM).

Network module. It enables communication between dis-
tinct ENs. It has two groups of queues that contain data
structures called bundles, a set of parameters to unequivocally
identify a pair of producer and consumer ENs. A combination
of IDs extracted from the pipeline configuration serves this
purpose. The bundles in the inbound queue are stored until
consumed by one or more local EFs, which remain on standby
until data is available. The outbound queue contains the
bundles that are ready to be forwarded to the next EN in
the pipeline. The outbound queue is also used as a fail-safe
measure in case of a misstep in a pipeline stage whereas data
bundles are stored until the malfunctioning nodes are ready to
proceed. For added resiliency, the bundles are preserved inside
a database to allow hot restart of the system in case of local
failure.

Other components. Of the remaining components, the data
acquisition module is a library wrapper, loaded on-demand
based on the requirement specified in the pipeline configu-
ration to interact with different datasources. The hypervisor
interface exposes an API to control and monitor the VMs
running on Xen. The pipeline processor contain the core al-
gorithm to unfold the pipeline into ordered sequences. It filters
the EFs, identify their roles, bundled them in order sequences
(longest sequence). Finally, there is a pipeline monitor for
each running pipeline as their execution is independent. It
spawns multiple EF monitors to track each running EF. It uses
the hypervisor interface to track the status of each running
instance and report back in case of failure.

IV. IMPLEMENTATION AND EVALUATION

ECCO was developed as an orchestration platform for
unikernels: specialised, single address space machine image
constructed by using library operating systems [21]. Specifi-
cally, our unikernel of choice was MirageOS [22] which we
ran on top of the Xen hypervisor [23]. We used virtualization
to abstract over hardware discrepancies between ENs, and
to obtain fine-grained control over running VMs, stronger
isolation, and compatibility with existing cloud computing
platforms. Our implementation uses C for the EF memory
module (a kernel module), Python for the core modules, and
OCaml for the EF code (mandated by use of MirageOS).

ECCO computational model is platform-independent,
meaning that it can be potentially implemented using other sets
of technologies as Docker containers on top of Kubernetes. We
decided to develop our system based on unikernels due to the
multiple advantages in terms of isolation, memory footprint
and fine-grained function encapsulation. These are crucial
properties in a multi-tenant, resource-constrained scenario.
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Xen was the most suitable hypervisor for our implementa-
tion as it directly supports MirageOS, our chosen unikernel
framework due to it producing compact, bootable images that
embed only the required OS functionality. Other unikernel
technologies were available but MirageOS is one of the most
mature and has already been applied to similar IoT use-
cases [24]. However, our framework is in principle compatible
with any unikernel framework that supports Xen adding flex-
ibility in terms of usable programming languages (e.g., C++,
Java, Haskell).

A. Evaluation

Our preliminary evaluation of ECCO focuses on: (i) the
overhead introduced by the technology choices made in ECCO
(Xen, MirageOS) and (ii) what is the impact of these overheads
on a specific application, driven by our use-cases. The default
EF used for in our experiments is a MirageOS unikernel
supporting basic image processing operations fed with an
image size of approximately 280 kB. This EF is used for all
our subsequent benchmarks.

Device CPU RAM Ocaml Xen OS
Dell PowerEdge
R530 (SRV1, SRV2)

Intel Xeon E5-2640
2.60GHz — 32 Cores 128 GB 4.04.2 4.6.0 Ubuntu 14.04

Kernel 3.19.0

Intel NUC (NUC) Intel i5-6260U
1.80GHz — 4 Cores 16 GB 4.04.2 4.6.6 Ubuntu 14.04

Kernel 4.4.0
Dell Optiplex 7050
(OPX)

Intel i5-7500T
2.70GHz — 4 Cores 8 GB 4.04.2 4.6.6 Ubuntu 14.04

Kernel 4.4.0

TABLE I: Devices specifications.

Different devices were used to understand the performance
gap between the edge and cloud (all connected to the same
LAN network). As revealed in Table I, SRV1 and SRV2 have
identical configuration, hence their results are bundle together
in all the plots due to negligible differences. We performed
each experiment 100 times, except when clearly stated.

To evaluate baseline overheads we compare against Amazon
Firecracker [25], a recently introduced lightweight serverless
computing framework that delivers end-to-end orchestration
for tiny VMs. To do so, we built a custom microVM based on
an Alpine Linux v3.9 kernel, loaded it with OpenCV v3.4.6
and allocated it was 128 MB RAM and 1 vCPU. The size of
its rootfs was roughly 4.5 GB.

Figure 5 shows boot times for unikernels compared to
the Firecracker microVM. On all devices where we can
compare to the Amazon Firecracker microVM, the unikernel
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boot time was substantially lower, below 50 ms. There is
also a considerable difference in size between the images,
which probably accounts for much of the difference in boot
times. The ECCO EF unikernel is around 5 MB EF while the
microVM is around 22 MB plus another 4500 MB of attached
rootfs. Similarly, the RAM required for an EF is around 15 MB
(x86) or 12 MB (ARM) while the microVM required at least
33 MB. We believe that this shows the ECCO approach is well
suited to low-latency applications running on ENs with limited
memory, as well as for situations where EFs may be updated
and distributed frequently.

We compare EF performance against two baselines in
Figure 6: (i) we developed multiple C++ applications with
OpenCV v3.4.6 replicating the operations executed inside
the EF; and (ii) we loaded the applications in the custom
Firecracker microVM previously described. In this way we
compared our system to both solutions. For this purpose,
we developed a simple application for colour normalization.
For space reasons, we present only the result for SRV1, but
a similar behavior was shown for the other devices. While
ECCO cannot outperform OpenCV running on bare-metal, it
has a substantial advantage compared to Firecracker. Pairing
this result with the substantial difference in boot time, ECCO
outperforms the alternatives and is competitive with bare metal
solutions for small image sizes. ECCO performance assumes
even greater importance when executing distributed compu-
tation spanning multiple ENs, where both quick instantiation
and execution time are crucial.

We identify a different execution time growth factors be-
tween ECCO and Firecracker, steeper for the former. This
shows that our solution is suitable for processing a small
amount of information, while the serverless Amazon approach
shines with higher data loads.

V. RELATED WORK

Our work draws on multiple strands of existing research
which we split into two major branches: detection of road
hazards and events, and distributed edge computing systems.

Detecting road conditions and possible hazards is a problem
that has been solved in multiple ways: through crowdsourcing,
where vehicles exchange collected data to spot bumps [4],
or through new infrastructure, where infrared cameras on
lampposts are used to identify ice formations on the road [26].
Various studies have examined the efficacy of different meth-
ods for detecting road conditions [27], [28].

Current solutions focus on using either crowdsourcing or
edge networks for transferring road conditions information.
However, the quality of crowdsourced spatial data is often
unreliable [29], resulting in insufficient density of data to
estimate road conditions in low-traffic areas. Solutions based
on on-board car sensors can prove to be mediocre depending
on the road characteristics and weather conditions. Edge com-
puting can play a pivotal role in addressing these challenges
by exploiting road infrastructure to augment vehicle sensory
capacity beyond their on-board sensors. Using edge computing
to support offload of computation to deliver particular appli-
cations is not new [13]. With ECCO we are concerned with
providing a distributed framework to dynamically interconnect
nodes based on the applications requirements.

Numerous authors have explored offloading computation
and data, for different purposes and under different decision
policies [30]–[34]. Cloudlets [35] were a particular pioneer
in the field of computation offloading. Earlier work from
Madhavapeddy et al. [36] proposed on-demand specialized
VM instantiation within connection setup time. Airbox [37]
presents a software platform based on onloading and backend-
driven cyberforaging. It shares the general direction presented
in our paper in terms of offloading the EF. Compared with Air-
box, ECCO achieves fine-grained offloading by using uniker-
nels instead of Docker technology. Databox [38] proposes a
hybrid physical and cloud-hosted system for personal data
management. Koller et al., [39] also proposed an unikernel-
based serverless framework architecture while a more recent
research effort proposes a WebAssembly solution [40].

VI. CONCLUSIONS

ECCO is a distributed edge computing framework devel-
oped to deliver road context assessment. We discuss the
advantages of our approach in comparison to crowdsourcing,
cloud computing, and onboard car sensors solutions. Given
the fast adoption of autonomous vehicles, our work propose
a computational model to bridge the gap between cloud, road
infrastructure and road users to deliver rapidly instantiated,
on-demand services. The logic, design and implementation of
our system were described in relation to the analyzed scenario
and encompass two crucial problems of edge computing:
fine-grained orchestration and collaborative, multi-device task
execution at the edge. At the core of our framework, the
function chaining allows different nodes to cooperate in the
execution of ECCO pipelines.
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