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Abstract

Bridges, as essential structures of infrastructure of any country, require timely and efficient
maintenance practices to ensure their longevity, structural durability, and safe functionality.
Current bridge monitoring and inspection procedures are found to be ineffective, labor-
intensive, and time-consuming in managing a large inventory of the bridges. Bridge owners
and local infrastructure authorities often rely on traditional Bridge Management System
(BMS) to maintain their bridges. However, traditional BMSs do not provide up-to-date
information on the structural condition of the bridges, often resulting in high costs for the
bridge owners as bridge maintenance practices are then characterized by reactive rather
than predictive procedures. Therefore, emphasizing on Building Information Modeling
(BIM) technology to effectively maintain and monitor bridges is often recommended. In
the domain of BIM, a Digital Twin (DT) of a bridge is defined as a virtual representation
of an existing bridge which continuously provides updated and useful information. While
utilizing DT in maintenance of bridges provides numerous advantages to bridge owners,
the DTs are not available for many of the existing bridges that were built several decades
ago. On the other hand, most of the bridge owners have bridge legacy data in the form of
2D technical drawings. Creating DTs of bridges is a manual and time-consuming process.
Therefore, 2D technical drawings of existing bridges could play a role in generating DTs of
the bridges. Therefore, in this thesis, the task of utilizing 2D technical drawings in extracting
useful information has been tackled with a particular focus on object detection of bridge
elements in technical drawings by deep learning and parametric modeling techniques.
You Only Look Once (YOLO), a deep learning model based on Convolutional Neural
Network (CNN), has been trained on technical drawings of bridges which contained 1142
instances for a total of 14 different classes. The model was trained several times to arrive
at optimum combination of hyperparameters. Once the well-performing hyperparameters
were selected, the model was trained for even a large number of iterations until the mean
Average Precision (mAP) and average loss values converge. It was concluded that YOLO
object detector has provided reasonable performance in predicting detections on validation
and test dataset with an mAP of 89.15%.
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Chapter 1

Introduction

This chapter begins with the importance of bridges to a society and economy as a whole,
and then continues to highlight some of the causes of their structural degradation in
section 1.2; therefore, requiring regular inspection and maintenance throughout its entire
functional life to ensure their safe operations. Moreover, the issue of aging bridges in
developed countries and excessive costs involved in their repair and restoration have
been emphasized in section 1.3. Section 1.4 elaborates on the standards and guidelines
used by different infrastructure authorities to measure, collect, record, and utilize bridge
inspection data. Section 1.5 illustrates how BMS serves as a decision-making tool for
the bridge owners and also highlights the shortcomings of traditional bridge management
practices. Furthermore, section 1.5 also outlines utilizing DT models in the domain of
BIM-based methodologies will yield substantial benefits to the bridge managers and
decision-makers. Section 1.6 summarizes the trends in transportation infrastructure
sector towards implementation of DT. To conclude this introductory chapter, section 1.7
introduces the problem statement of this thesis.

1.1 Bridges as Crucial Structures

Bridges, as major links between nation’s transportation network, play a key role in deciding
how people and goods move from one point to another; hence, ensuring their long-term
safety and performance is one of the most important tasks of infrastructure development
sector of any country. Being an integral part of large-scale infrastructure of a country,
bridges provide delivery of goods and services that are essential in supporting economic
growth and social development of a region (GIL & BECKMAN, 2009).

1.2 Causes of Structural Deterioration in Bridges

Over time, the structural condition of a bridge deteriorates due to physical, material, and
environmental factors. KHATAMI and SHAFEI (2021) investigated that several environmental
factors, such as relative humidity, extreme temperatures, and excessive precipitation
have detrimental effects on the strength and durability of a bridge, resulting in chloride
penetration process which leads to corrosion initiation and cracks formation. In addition to
weather conditions, Kim and YOON (2010) explored that other factors, such as the age of
a bridge, the volume of traffic flow, and the type of structural system are also responsible
for structural degradation of a bridge. Moreover, both group of authors have stressed
upon the efficiency of bridge maintenance and repair actions to lower the costs involved in

1



bridge monitoring and rehabilitation. Considering adverse environmental factors and long
duration of bridge inspection process to predict structural deficiency and longevity, there is
a pressing need to establish an effective and well-integrated BMS to ensure public safety.

1.3 A large Bridge Inventory: A boon or a bane?

Although bridges play an indispensable role in connecting communities, promoting eco-
nomic and social development, and delivering goods and services, countries now face a
challenge of accumulation of large inventory of old bridges. Bridges are critical structures
in the infrastructure system of any country, and they require regular and timely mainte-
nance procedures to ensure its safe functioning. A significant proportion of the bridges
that are currently present in the regions of developed countries were built several decades
ago; therefore, they require regular monitoring and inspection to maintain their structural
integrity and serviceability. Most of the developed countries have a large inventory of
bridges that is subjected to ageing and degradation; therefore a significant amount of time
and investment is needed to rehabilitate the existing bridges. This is also one of the most
concerning issues for public and private interests of the developed nations (MCCLURE &
DANIELL, 2010).

The average operational life of large-scale infrastructure facilities, such as airports and
bridges is more than 40-50 years (GIL & BECKMAN, 2009). This does not necessarily imply
that bridges with average age of more than 50 are functionally obsolete, but this does
suggest that developed countries face infrastructure restoration crisis since most of the
bridges were erected during the infrastructure boom between 1960s and 1980s (REITSEMA
et al., 2020). Figure 1.5 from REITSEMA et al. (2020) clearly shows a percentage increase
in bridge inventory, during the construction boom between 1960s and 1980s, in the
Netherlands, Germany, Japan, and the USA.This indicates that, as time passes, more
and more bridges would require repair activities causing enforcement of weight limitations
on the bridges and disruption in traffic flows (KiM & YOON, 2010), posing detrimental
effects on the economy of a region (REITSEMA et al., 2020). According to a report by
CEBR (2014), the direct and indirect costs related to traffic congestion is expected to
rise from $ 33.4 million in 2013 to $ 43.8 million in 2030; however, when combining the
figures with those of other three developed countries (France, UK, USA), the total costs
are expected to increase from $200.7billion in 2013 to a $293.1 billion by 2030. Therefore,
there is an increasing demand for optimization of bridge management practices by local
transportation sector to minimize traffic hindrance and congestion.

According to infrastructure report of American Society of Civil Engineers (ASCE), 42% of
America’s more than 617,000 bridges are at least 50 years old (ASCE, 2021). ASCE
(2021) report further highlights that among these bridges, currently, 7.5% are structurally
deficient, and it requires an increase in the spending by 58% from the current budget
allocation to $22.7 billion per year in order to improve the condition depicted by figure
1.1, so that the rate of repair becomes greater than the rate of deterioration. Whereas,



Bridge Conditions by Year

Good M Fair

sndid 191

Figure 1.1: The structural condition, "good" or "fair", for the bridges across the United
States between 2008 and 2019 (ASCE, 2021). For details on the description of structural
ratings, please refer to table 1.2

the bridge stock in Germany consists of 38,288 bridges with current maintenance needs
accumulating to €450 million annually (HAARDT, 2008).

In its report, ASCE (2021) highlighted the fact that in the US, owing to the low annual
rate of just 0.1% in reduction of structurally deficient bridges over the past two years, the
number of bridges with "fair" rating is now more than the ones with "good" rating. This
is due to inherent problems associated with traditional practices in the US construction
industry leading to inefficient rehabilitation and replacement actions, higher costs, and
lower productivity (SACKS et al., 2018). As a consequence of the slow progress of
bridge rehabilitation work in the US, the number of bridges with deteriorating conditions is
exceeding the number of the ones that are structurally sound.

1.4 Bridge Maintenance and Inspection practices: A look into
Standards and Guidelines

Different countries practice bridge monitoring and inspection procedures based on well
formulated guidelines and standards. In Germany, for instance, the inspection of bridges is
performed by certified civil engineers who serve as inspection program managers and team
leaders, whereas inspectors are usually well-trained technicians (HEARN, 2007). Moreover,
the inspection team perform inspections according to the German Standards DIN 1076
(DEUTSCHES INSTITUTFUR NORMUNG (DIN), 1999) which serve as guidelines and classify
inspections into different stages: main inspections, simple inspections, inspections on
special occasions, inspections according to special regulations, and regular observations.
The results of the inspections are collected and recorded according to the guidelines (RI-
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EBW-PRUF, 2003), and the data is then used to update German bridge data inventory,
SIB-Bauwerke (Road Information Database — Structures) (SIB-BAUWERKE, 2013). After a
thorough inspection, each of the deteriorated parts is then assigned a four-scale rating
which is mentioned in detail in the following paragraph. In addition, table 1.1 shows
detailed description of these ratings.

Federal or state authorities often assign evaluation criteria to the existing structural con-
dition of a bridge. After a thorough condition assessment analysis of the bridges, their
current structural conditions drive the necessity to assign different level of priorities in
their maintenance (SPENCER et al., 2019). In Germany, for instance, a four-stage rating is
assigned to a bridge after careful analysis by a certified bridge inspector. Visible damages,
cracks, and other structural deterioration of a bridge are assessed with regards to their
effects on traffic safety, stability, and durability (HAARDT, 2008). Considering these factors,
a condition index is derived in a range of 1.0 to 4.0 where 1.0 being "very good" condition
and 4.0 being "insufficient condition" (HAARDT, 2008). The results of condition analysis
of bridges across Germany are summarized in figure 1.2. According to figure 1.2, over
70.8% of the bridges have a satisfactory condition index of above 2.0, whereas 6.0 % are
those with critical or inadequate structural conditions (HAARDT, 2008). This suggests that
there is a significant proportion of bridges in Germany that require maintenance actions to
preserve their structural integrity, stability, and durability.

Table 1.1: Description of bridge condition rating in Germany, (HEARN, 2007)

Grade Description

1.0-1.4 Very good structural condition
Continue normal maintenance

1.5-1.9 Good structural condition, but may have less long-term durability
Continue normal maintenance

2.0-2.4 Satisfactory structural condition, but may have less long-term durability
Continue normal maintenance and consider a plan for repair

2.5-2.9 Unsatisfactory structural condition
Traffic safety may be affected
Structure is not sufficiently durable
Continue normal maintenance and plan for repair
Restrictions on traffic use or load may be needed

3.0-3.4 Ciritical structural condition
Traffic safety is affected
Structure is not durable
Immediate repair is needed
Restrictions on traffic use or load are needed

3.5-4.0 Inadequate structural condition
Traffic safety is not adequate
Structure is not durable
Immediate repair or rehabilitation is needed
Restrictions on traffic use or load are needed
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Figure 1.2: Distribution of condition index of bridges across Germany, (HAARDT, 2008)

In the US, The Manual for Bridge Evaluation (MBE) (AASHTO, 2018) provided by the
American Association of State Highway and Transportation Officials (AASHTO) serves
as a guideline for bridge owners to assess the condition of existing highway bridges
based on standard inspection procedures that are also compliant with National Bridge
Inspection Standards (NBIS) (FHWA, 2022b). Moreover, In the US, Federal Highway
Administration (FHWA\) is the responsible authority to conduct safety inspections of existing
bridges across the country, and upon judging the condition, regularly updates its database,
National Bridge Inventory (NBI) (FHWA, 2022a) which includes all the bridges and tunnels
across the US.
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Figure 1.3: Recommended bridge actions to be taken based on NBI ratings, adapted from
(FHWA, 2018). For details on the description of structural ratings, please refer to table 1.2

As mentioned earlier in section 1.3, there is an increasing backlog of existing bridges
requiring repair or replacement actions. Infrastructure development authorities often



face the problem of proper allocation of available funds; thus, they need careful asset
management practices to effectively deploy resources to the degraded structures. In
the United States, for instance, NBI General Condition Ratings (GCRs) are used to
compare and evaluate the structural condition of an existing bridge with respect to its
as-built condition (FHWA, 2018). Federal authorities use these NBI ratings to prioritize
investment for bridges (table 1.2), with regards to their structural condition, serviceability,
and importance to public (AASHTO, 2008).These NBI ratings are based on annual or
biennial visual inspection of bridges and ranges from 0 to 9 (FHWA, 2018). Detailed
description of bridge condition ratings is provided in table 1.2 which is extracted from
FHWA (FHWA, 1995).

Table 1.2: Description of NBI ratings for bridge condition, FHWA (FHWA, 1995)

Rating Condition Description

9 Excellent New condition, no noteworthy deficiencies

8 \Very No repair needed
good
7 Good Some minor problems, minor maintenance needed
6 Satisfactory Some minor deterioration, major maintenance needed
5 Fair Minor section loss, cracking, spalling, or scouring for
minor rehabilitation; minor rehabilitation needed
4  Poor Advanced section loss, deterioration, spalling or scour-

ing; major rehabilitation needed

3 Serious Section loss, deterioration, spalling or scouring that
have seriously affected the primary structural compo-
nents

2 Critical Advanced deterioration of primary structural elements
for urgent rehabilitation; bridge maybe closed until cor-
rective action is taken

1 Imminent Major deterioration or loss of section; bridge may be

failure closed to traffic, but corrective action can put it back to
light service
0 Failed Out of service and beyond corrective action

From table 1.2, an existing bridge is termed as "structurally deficient" if its condition rating
is equal to or less than 4 for its bridge deck, superstructure, and substructure (SRIKANTH
& AROCKIASAMY, 2020). Regular inspections are conducted to collect, maintain, and
update the NBI database and corresponding ratings of the bridges. These ratings are then
used to decide on recommended bridge management action (preservation/maintenance,
rehabilitation, or replacement) so that federal funds can be allocated. Please, refer to
figure 1.3 for an understanding on proper bridge actions according to NBI ratings. Taking
limited availability of financial resources into consideration, responsible authorities have
to ensure efficient allocation of resources so that maximum benefits could be achieved
(HAARDT, 2008).

While NBI GCRs ratings assist bridge owners and decision-makers to allocate investments
funds for management of their assets, these ratings are generally qualitative, and are
too broad in deciding on a particular bridge maintenance and restoration activity (FHWA,



2018). This also means that a conservative bridge maintenance approach would result in
excessive repairing costs due to unnecessary actions, whereas, negligence or delay in
maintenance would lead to unavoidable disastrous consequences in the long run (RASHIDI
et al., 2016). The location and type of the defects are not taken into account while
devising these ratings which can have detrimental effects on the overall performance
of a bridge in the long run. In such cases, the utilization of digital technology, such as
generation of DT, which is a detailed information rich virtual representation of an existing
physical structure, is often encouraged. Further details on DT are provided in section 2.2.
Deploying DT in bridge management will not only allow decision-makers to optimize their
bridge maintenance practices, but will also assist them in implementing correct reparation
or restoration actions, while saving limited resources.

Considering the huge amount of data in NBI database, bridge owners and local infrastruc-
ture authorities require BIM based BMS for an efficient asset management and resource
allocation practices. An efficient BMS does not only allow authorities to have a hierarchical
view on the condition of the bridges, but it also enables them to prioritize investments to
the bridges that need more attention with regards to their structural deficiency, importance,
and functionality.

1.5 Bridge Management System (BMS): Can we do better?

1.5.1 What is a Bridge Management System?

BMS was briefly mentioned at the end of section 1.2 as a mean to manage bridges.
Considering high costs involved in the maintenance of aging bridges, infrastructure devel-
opment and maintenance authorities utilize BMS to manage local bridges throughout their
entire life cycle. As limited funds are available, BMS assist bridge owners and local deci-
sion making authorities to maximize the safety, serviceability, and functionality of bridges
(OMAR & NEHDI, 2018). Besides ensuring the safety of public traveling on the existing
bridges, over the recent years, the scope of BMS has also been broadened to include the
aim of maximizing the effect of limited maintenance funds to secure future investment in
bridges (HURT & SCHROCK, 2016). Figure 1.4 depicts the general architecture of any BMS
with its respective modules. A brief description of the functions of each of the modules is
given below:

e Inventory Module: This is where the bridge inventory database is stored. This module
is of paramount importance to any BMS, and most BMS are just restricted to this
module (PREGNOLATO, 2019). All further actions and decisions of BMS depend on
this module (SABACK DE FREITAS BELLO et al., 2021a).

e Inspection Module: This component of BMS is related to the inspection of damages
and evaluates the existing structural condition of the bridges.
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Figure 1.4: Basic modules in a bridge management system BMS (OMAR & NEHDI, 2018)

e Maintenance Repair And Rehabilitation (MR&R): This module assists in short and
long term plans for intervention.

e Optimisation Module: This module combines all the previous modules to determine
the most cost effective maintenance strategies.

1.5.2 Shortcomings in Current Bridge Management Systems and a Brief
Introduction to Building Information Modeling (BIM) and Digital Twin
(DT)

Data collection for a traditional BMS inventory is based on visual inspection by bridge
inspectors who then record visible damages and cracks on key components of a bridge,
such as girders, deck, slabs, and piers. This means that the data from visible inspection is
highly subjective and primarily qualitative since it depends on the judgement and expertise
of an individual inspector (OMAR & NEHDI, 2018; ZHU et al., 2010). Performing a condition
assessment of a bridge is a labour-intensive, cumbersome, expensive, and sometimes
a dangerous task (SPENCER et al., 2019; ZHuU et al., 2010); hence, bridge managers
should explore new and improved techniques for collection of high quality data, while
simultaneously considering cost limitations involved in bridge inspection (HEARN et al.,
2000). Given the challenges involved in visual inspection and the impossibility of early
detection of invisible weakness in structure, innovative Non-Destructive Testing (NDT)
technigues could be employed to detect the actual causes of damages (LEHMANN, 2020).
This also helps in implementation of preventive measures, rather than reactive measures,
which reduces the overall cost of maintaining bridges.

As visual inspection is a time intensive and a difficult task which results in increasing
backlog of maintenance activities and traffic disruption, CHAN et al. (2015) explored in their
research that Unmanned Aerial Vehicles (UAVs) could potentially be employed for bridge
inspection procedures which will not only help in lowering the overall inspection costs,
but also assist in reducing traffic disruption. However, the research has also highlighted
several critical obstacles that might hinder implementation of UAVs in bridge inspection.
They are: stability and control, accuracy of data collected, safety to public, and challenges
in wider deployment of UAVs. While there are potential benefits in integrating innovative
technological ideas, such as UAVs, in bridge condition assessment practices, several
challenges still remain.

So far, several bridge data collection techniques for BMS have been explored, and it can
be summarized that, while aforementioned techniques entail benefits in bridge inspection,
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Figure 1.5: Percentage of Total Stock of Bridges in four Developed Countries of the world:
Germany, Netherlands, USA, and Japan over the years 1925-2004, (REITSEMA et al.,
2020)

challenges still remain as such techniques are time-consuming and cumbersome to
implement. To exacerbate the problem, traditional methods of collecting and exchanging
information in BMS do not provide an integrated and single unit for decision making. Data
in BMS is usually stored in the form of loosely integrated print versions or text files (Hou
et al., 2018; SHiM et al., 2017). As most of the information is conveyed in 2D (on paper,
text files, or other electronic files), the bridge owners often find it challenging to interpret
and relay the information to facility managers, and thus, this task is , time-consuming and
prone to errors and omissions, resulting in delay in maintenance actions and an increase
in subsequent costs (MIGILINSKAS et al., 2013; SACKS et al., 2018).

Sometimes, lack of version control and duplication of information is a common occurrence;
thus, creating an information chaos. Moreover, the data do not meet the standard of
information needed for reliable decision-making; thus, challenging the data interpretation
abilities of decision makers to provide useful information. Therefore, efforts have been
made in Architecture Engineering and Construction (AEC) industry to implement digital
collaborative methods to reduce costs and increase efficiency in Operation and Main-
tenance (O&M) of the structures. In this domain, BIM, which is a digital description of
a structure, has been demonstrated to have an immense value in enriching the bridge
owners with useful information so that sound decisions are made for the maintenance of
their assets.

Since most of the existing BMSs surveyed by MIRZAEI (2014) do not include geometric
representation of bridges, ISAILOVIC et al. (2020) suggests that if BMSs are enriched with
BIM representation of bridges, significant value will be added to the quality of existing
BMSs. Furthermore, most of the existing BMSs do not fully integrate the data related
to the structural condition of a bridge at the time of its completion; hence, it does not
allow comparison between the condition upon completion and condition upon inspection.
Integrating condition assessment data of a bridge at the time of its completion and



recording data generated from its inspections will assist authorities in predicting future
structural degradation more accurately and planning maintenance activities efficiently.

In his research, HAARDT (2008) inspected that German BMS, includes bridge data with
regards to existing damages based on visual inspection; hence, bridge maintenance
activities involve a high cost as they are characterized by reactive procedures. Whereas,
he proposed that an optimized life cycle oriented BMS, which is active throughout the
entire functional life cycle of a structure, should be based on predictive and risk-based
inspection procedures. This necessitates the need for an integrated and systematic bridge
management system based on collaborative DT technology to improve the performance
of bridge management and maintenance operations; thus, reducing consequential costs.

Therefore, emphasizing on BIM, a technology for modeling the bridge DT, as a possible
solution to reduce the O&M related costs throughout the entire life cycle of a structure is
often suggested. In the domain of BIM, a geometric DT is defined as a virtual information-
rich 3D model of an existing bridge. The DT model could be generated and provided
with all the required information based on extracted data from 2D technical drawings (as-
designed DT), parametric modeling (as-designed DT, as-built DT, (SABACK DE FREITAS
BELLO et al., 2021b)), inspection and condition assessment of the bridge (as-is DT) and
bridge management systems (as-is DT). More details on BIM and DT are provided in the
2.1 and 2.2 respectively.

1.6 Implementation of Digital Twinning in AEC Industry: A look
into Facts and Figures

Realizing the substantial benefits of transformation to digital technology, countries around
the world are making efforts in DT generation of their infrastructure to have a better
understanding and control over the management of their assets.

From figure 1.6, it can been seen that, during the span of two years (from 2015 to 2017),
there has been an almost 50% increase in the usage of DT in more than 50% of the
projects related to transportation infrastructure in advanced countries, such as France,
Germany, the UK, and the US (JONES & LAQUIDARA-CARR, 2017). According to the
2017 report by Dodge Data and Analytics, among the heavy DT users surveyed, 83%
reported an positive impacts on their projects from the use of it, and 73% claimed that
they have not even realize half of the benefits that they believe could be received from
implementing DT across their projects (JONES & LAQUIDARA-CARR, 2017). Heavy users
of DT were defined as engineers and contractors who utilize BIM and DT on more than
50% of their infrastructure projects. This shows an increased confidence in innovative
digital technologies among engineers and contractors in the transportation infrastructure
sector.

Moreover, DT provides advantages to both category of users: the ones who create their
own models, and the ones who use the models created by others. Figure 1.7 shows the
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Figure 1.6: Percentage of usage of DT in 50% or more transport related infrastructure
projects by countries, (JONES & LAQUIDARA-CARR, 2017)
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Figure 1.7: Percentage of users who author create their own models compared with the
percentage of users who use models produced by others, (JONES & LAQUIDARA-CARR,
2017)

percentage of engineers and contractors who create their own DT compared with the
percentage of users who use models created by others. It can be seen that 75% of the
users do create their own models to realize full advantages of DT and gain competitive
edge in the market with higher return on their capital investments (JONES & LAQUIDARA-
CARR, 2017; SACKS et al., 2018). As DT users have a competitive edge in securing
infrastructure projects, the companies that utilize DT created by others also experienced
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an improvements in areas, such as interdisciplinary communication, timely release of
deliverables, and better design of visualizations (JONES & LAQUIDARA-CARR, 2017).

1.7 Problem Statement

While utilizing DT in operation, maintenance, and inspection of the the bridges yields
many benefits to the local authorities, the models are not readily available for most of
the existing aging bridges that were built several decades ago (GIMENEZ et al., 2015).
Despite its information rich features, DTs are not easy to generate and require extensive
and time-consuming manual process. Also since, 2D technical drawings are present
for existing bridges, in this thesis, the process of detecting bridge elements in technical
drawings of the bridges has been explored and demonstrated. Therefore the problem
statement can be defined as follows:

"Automatic Detection of Elements in the Technical Drawings of Bridges by Deep Learning
and Parametric Modeling”

This problem statement can now be divided into parts to provide more details.
"Automatic Detection of Elements...

Since the task of generating DTs is a time-consuming, error prone, and a manual process,
efforts have been put into this thesis to automate or at least semi-automate the task of
detecting bridge elements in technical drawings. This object detection task would then
serve as a basis in DT generation process since all the relevant information regarding a
particular bridge element would be extracted.

...in the Technical Drawings of Bridges...

In this thesis, the concept of utilizing 2D technical drawings of bridges to tackle DT
generation process for existing bridges, has been used because the physical features
of a bridge change gradually, and the updates in DT’s features of such structures are
not very frequent. Moreover, bridge owners possess bridge legacy data in the form of
2D technical drawings of the existing bridges; hence, such drawings could be utilized in
extracting useful bridge information.

...by Deep Learning...

Deep learning models have seen an increase in popularity in many computer vision
tasks, such as object detection, image segmentation, and so on. Particularly, deep
learning models based on CNN, such as YOLO object detector, have delivered reasonable
performances in several object detection related tasks. Hence, in this thesis, YOLO object
detector model will be trained to detect bridge elements in technical drawings.

...and Parametric Modeling"

And finally, in this thesis, parametric modeling techniques in Computer-aided Design (CAD)
have been utilized for data augmentation purposes to create synthetic technical drawings.
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Chapter 2

Theoretical Background

This chapter will assist the reader in reviewing the theoretical background and concepts
to have a clear understanding on the terminologies, techniques, and processes used in
thesis to automate the detection of elements in the 2D technical drawing of bridges by
deep-learning and parametric modeling techniques.

2.1 Building Information Modeling (BIM)

Conceptual design

Programming [

Building
Information
Modeling

Renovation _ SRg

Construction

Construction
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Demalition

Figure 2.1: BIM Life cycle, (FUGAS, 2019)

Within recent years, BIM has gained tremendous popularity in AEC industry due to its
digital description of a structure, its usefulness in simulation of infrastructure projects
in a virtual environment, and its effectiveness in management of different construction
projects. BIM, as an integrated and collaborative methodology, is centered on digital
3D-model, DT, which contains information needed to manage a structure and to optimize
cooperation between stakeholders at various stages of structure’s life cycle (ROCHA et al.,
2020). With the advancements in Information and Communication Technology (ICT),
there has been a major shift in the proliferation of BIM in industrial and academic sectors
to manage project design and data in a digital format throughout entire life cycle of a
structure (SUCCAR, 2009). Reaching beyond the scope of CAD and visualization, a BIM
model does not only contain geometrical and topological information of a structure but
also technical information as well as semantic data that can be queried and analysed,
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allowing for collaborative multidisciplinary communication and management between all
the stakeholders of a building (GIMENEZ et al., 2015).

As one of the most promising developments in AEC industry, BIM assists infrastructure
owners and managers to effectively manage their projects to formulate maintenance
activities within cost limitations. In their research, BRYDE et al. (2013) have underlined
potential benefits of utilizing BIM technology, and have also analysed the performance
of the construction projects that have used BIM throughout their entire project phases.
Among the benefits explored, the most frequent gain was the reduction in overall cost and
the ability to have a better management of an infrastructure project throughout its different
design and development phases.

Realizing the benefits of integrating BIM in its AEC industry with respect to increased
productivity, improved multidisciplinary communication, and reduced transaction costs,
the German Federal Ministry of Transport and Digital Infrastructure (Bundesministerium
fur Verkehr und digitale Infrastruktur) has devised a comprehensive plan to outline digital
transfer of its current infrastructure to BIM based technology (BORRMANN et al., 2020).
Furthermore, the ministry requires the implementation of BIM in all new public infrastructure
projects starting from 2020 (BORRMANN et al., 2020). According to a survey by BOTH
(2012), in Germany, the usage of BIM is primarily limited to the planning phase of a building.
From figure 2.2, it can be interpreted that a good proportion of surveyed engineers, building
owners, and construction companies utilize BIM technology in early design and planning
stages, whereas, only a few use it in inspection/management (facility management: 22.4%)
stages of project life cycle. The survey also found a strong correlation between efficient
management of infrastructure projects and the degree of application of BIM in different
phases of a project.

2.2 Digital Twin (DT)

Initially utilized by National Aeronautics and Space Administration (NASA), the concept of
DT was first born in the aerospace industry to replicate the development life cycle of aerial
vehicles (NEGRI et al., 2017). A DT is a virtual representation of a physical system or a
structure that spans throughout its entire life cycle (PARROTT & WARSHAW, 2017). Some
of the key capabilities of DT are mentioned below:

o it allows bidirectional exchange of data from its physical counterpart to itself and vice
versa.

¢ it updates from real-time data produced from sensors attached to its physical coun-
terpart

e it leverages computational techniques and multi-physics simulations to optimize the
performance, monitoring, and management of physical entities throughout their life
cycle
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Figure 2.2: Utilization of BIM based technology in different stages of a construction project,
(BOTH, 2012)

In the domain of BIM of a bridge, DT can be defined as a digital geometric-semantic
model that provides an accurate replication of an existing physical bridges in an integrated
common environment that serves a means of bringing all the stakeholders together for
effective decision-making purposes (SACKS et al., 2018). As bridge owners face enormous
challenges in collecting, structuring, and managing the data needed for bridge reparation or
restoration works, traditional BMSs have been less effective in reducing the consequential
costs associated with maintaining the inventory of bridges. Thus, DTs of existing bridges
could possibly allow an improvement in bridge inspection, monitoring, and management.
As DT can update itself using the real-time data from the physical environment via attached
sensors, bridge inspection teams are able to now receive an early understanding on the
structural degradation caused by adverse environmental affects, traffic loads, and aging
(KocH et al., 2014).

Although efforts have been made to devise a general definition of DT, there has been no
consensus over the scope or features of a DT (CIMINO et al., 2019; KRITZINGER et al.,
2018). Therefore, sometimes it is possible to confuse the DT with other simulation types.
Often the digital replica of existing structure is modeled manually and is not connected with
its physical counterpart for data exchange, on the other hand, there is a synchronized real
time data exchange between physical and digital representation. KRITZINGER et al. (2018)
proposed three broad categories of DT based on their data integration level between
physical entity and digital counterpart to make a clear comparison between them.

o Digital Model: A digital model is a virtual representation of an existing physical
structure or a system which does not use any form of automated data exchange
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between physical system and its digital counterpart. Hence, a change in the proper-
ties of a physical system will have no direct effect on the digital representation and
vice versa which means that the changes have to be updated manually between
the two. Figure 2.3 depicts only the manual data flow between physical object and
digital model.

—m———
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Dlgltal

--------- » Manual Data Flow
—p Automatic Data Flow

Figure 2.3: Data flow in a digital model, (KRITZINGER et al., 2018)

Digital Shadow: This category inherits all the features of the digital model described
above, in addition to the one-way automated data flow from physical object to its
digital representation. When this automated uni-directional data flow from physical
object to digital representation exists, it is called a digital shadow. Any change in the
physical object will lead to a change in virtual representation and not in the opposite
direction.

Physical
Object

Digital

4

------ -» Manual Data Flow
—p Automatic Data Flow

Figure 2.4: Data flow in a digital shadow, (KRITZINGER et al., 2018)

Digital Twin: If a digital representation of physical system further inherits all the
properties of a digital shadow, in addition to allowing bi-directional data exchange
between physical structure and its digital counterpart, then it is called digital twin. In
such a case, a change in the physical object will lead to a direct change in its digital
representation and vice versa.

Thereafter, in this thesis, the author will refer to digital twin (DT) only and further explores
on the types of DT in the domain of construction industry.

As bridge owners and decision-makers are facing an increasing burden of maintaining
existing bridges, both industry as well as academics are searching for digital technology
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Figure 2.5: Data flow in a digital twin, (KRITZINGER et al., 2018)

integrated inspection solutions According to KocH et al. (2014), DT can be defined at
three different phases of structure’s life cycle:

e As-Designed: This type of model contains detailed designed configuration of a
product (such as performance requirements and functional requirements) before the
start of construction, and is created by the design team based on the data generated
by suppliers and sub-contractors.

e As-Built: This DT is generated after the completion of a construction project, and it
reflects the actual state of the bridge with respect to its designed state. This model
is produced by the general contractors.

e As-is: This model is the produced by bridge management agencies upon regular
inspections and it could lead to improvements in O&M of the bridges. This virtual
model replicates architectural, mechanical, and structural features of a bridge with a
high degree of accuracy. If its capabilities are fully realised, then this model would
allow decision-makers to predict future structure deterioration more accurately and
take intervention measure timely.

Among the above categories, DT is utilized the highest during the design phase of any
construction project (as-designed DT), followed by less utilization upon completion of
the project (as-built DT), and almost no usage for maintenance stage in the construction
industries of France, Germany, the UK, and the US (KocCH et al., 2014).

2.3 Computer Vision

Computer vision is an interdisciplinary scientific field that deals with automation of ex-
tracting and interpreting useful information from digital images or videos to extract high-
dimensional data which can be beneficial in understanding the physical world to take
action or make decision based on it (SPENCER et al., 2019). From an engineering point
of view, computer vision aims to artificially imitate the tasks of human visual system in
terms of performance or sometimes even surpass it (HUANG, 1996). The field of computer
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vision is not new. Efforts have been made in 1960s to extract useful information from
the images. For instance, in 1963, Larry Roberts at MIT made considerable efforts to
extract object shape information from the 2D perspective view of blocks using edges
and other geometrical primitives (ROBERTS, 1963). In recent years, several applications
of computer vision have started to emerge including license plate number recognition,
facial recognition, pedestrian detection, and vehicle detection to name a few. Due to a
broad scope of applications, there has been a merge of computer vision with other closely
related fields, such as image processing, 3D pose estimation, computer graphics, and
photogrammetry (HUANG, 1996).

Figure 2.6: An example of object detection with YOLO algorithm, (MiHAJLOVIC, 2019)

Computer vision technology utilizes machine learning and deep learning to train computers
for object detection, facial recognition, or vehicle and pedestrian detection in autonomous
vehicles. Figure 2.6 shows a classic example of object detection in an image. Most
of the computer vision tasks involve image classification, object detection, and image
segmentation.

o Image classification: For image classification problem, the algorithm tries to classify
the entire image as one of the classes. For instance, is this the image of a cat or
not?

o Image classification with localization: Another category of image classification is
the one that also involves localization. For this task, the algorithm not only tries to
classify the entire image as one of the classes, but also it tries to find the location of
that object with respect to the image.

e Object detection: This involves detecting multiple images in an image, for example,
a dog, a cat, and a duck. Besides detecting what object is present in an image, it
also involves finding the location of those objects and draw a resulting bounding box
around the object of interest. The bounding boxes coordinates (in YOLO format)
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contains information on the normalized coordinates x center, y center, bounding box
width, and bounding box height.

e Image segmentation: This task of computer vision consists of two categories:
(a) instance segmentation, and (b) semantic segmentation. This task involves
classifying each of the pixels of the image as one of the classes, in other words,
image is segmented into different segments and represented by a unique color
based on the identified class.

e Semantic segmentation: Semantic segmentation involves creating unique
segments for every type of the object (for instance, this involves assigning
unique color to every pixel of a particular object of interest). As shown in
figure 2.7, as an example of instance segmentation, all the pedestrians are
represented by red color, all the cars are represented by blue, all the traffic lights
are represented by yellow, pavements by pink, and so on. Moreover, semantic
segmentation does not only depend on the data, but it also depends on the type
of problem. For instance, for pedestrian detection problem, a person’s whole
body would belong to one segment, whereas for action recognition system it
would be necessary to assign different parts of the body to different classes
(GHOSH et al., 2019).

Figure 2.7: An example of semantic segmentation for an image showing street view and all
the objects of interest segmented and assigned different colors according to their classes,
(DWIVEDI, 2020)

¢ Instance segmentation: It can be defined as a refined version of semantic
segmentation. In instance segmentation, unlike semantic segmentation, differ-
ent objects of the same class could belong to differently colored segments. This
is a useful technique, particularly in autonomous driving, where a self-driving
car should keep track of every instance of a class. For example, car 1 and car
2 might be moving in opposite directions or with different speeds. Figure 2.8
displays an example of instance segmentation.
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Figure 2.8: An example of instance segmentation for an image showing street view and
all the instances of a particular class (for instance, pedestrian or car) assigned unique
segments or colors. This is when two people or cars moving at different speeds or in
different directions, particularly applicable in autonomous driving problem, (PULKIT, 2019)

All of above described tasks of computer vision can be summarized into figure 2.9 for
better understanding and their comparison. From figure 2.9, (a) is an example of semantic
segmentation where different objects are segmented, (b) shows image classification with
localization, (c) displays an example of object detection with respective bounding boxes
detected, and finally (d) is an example of instance segmentation where different objects of
the same class are marked with different segments, in this case dogs.

(a) (d)

GRASS, ’ CAT DOG, DOG, CAT DOG, DOG, CAT

k TREE, SKY I\ Ry /
Y Y Y
No objects, just pixels Single Object Multiple Object

Figure 2.9: A summary of computer vision tasks (a) semantic segmentation, (b) image
classification with localization, (c) object detection, and (d) instance segmentation, (LI
et al., 2017)
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2.4 Al, Machine Learning, and Deep Learning

2.4.1 Artificial Intelligence

Artificial intelligence is defined as a field of study of intelligent agents which refers to
any system that "operate autonomously, perceive their environment, persist over a pro-
longed time period, adapt to change, and create and pursue goals" (RUSSELL, 2010).
In other words, an intelligent agent is a system which take actions based on its envi-
ronmental perceptions to maximize the outcome or in case of uncertainty maximize the
expected outcome without or with minimal human intervention, often outperforming human
capabilities.

Artificial Intelligence

Machine Learning

Figure 2.10: Venn diagram displaying fields of Artificial Intelligence (Al), machine learning,
and deep learning with respect to each other. Deep learning is a subset of machine
learning which is in turn the subset of Al

2.4.2 Machine Learning

Machine learning, as part of artificial intelligence, is found at the intersection of the fields
of computer science and statistics. It is a field that deals with understanding and building
models that predict outcomes based on a given data and improves the performance
of the model with experience without being explicitly programmed to do so. Modern
definition of machine learning was provided by Tom Mitchell as "A computer program is
said to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with experience
E" (MITCHELL, 2006). Machine learning algorithms can be classified into three broad
categories: supervised learning, unsupervised learning, and reinforcement learning.
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e Supervised Learning: In supervised learning a labeled dataset (ground truth) is
provided to the machine learning model which then learns and trains on this dataset
to predict the outcomes or classify data accurately. The dataset includes pairs of
inputs and their labeled outputs or target values which is then used to train a machine
learning algorithm. Once the training is successfully completed, the model could
then be used to predict the output values for the unseen input dataset (JANIESCH
et al., 2021). Supervised learning further includes two categories: regression and
classification. Regression includes predicting results with continuous output, for
instance, predicting housing prices based on features such as house area, house
location, year built, and so on. Whereas, classification problems include predicting
results with discrete output, for instance, predicting if the tumor is malignant or
benign.

e Unsupervised Learning: In unsupervised learning, a dataset is not labeled with
targeted output; hence, machine learning models extract patterns or cluster the data
based on shared similar features within the dataset (JANIESCH et al., 2021). An ex-
ample of unsupervised learning would be cluster customers based on similar buying
patterns to enhance targeted customer service. Unlike supervise learning where
dataset contains both input and their labeled outputs, the dataset for unsupervised
learning problems only includes the input data.

e Reinforcement Learning: Unlike supervised learning and unsupervised learning,
input and output data is not provided. Reinforcement learning deals with specifying
a goal and current state of the system, and a list of permissible actions and environ-
mental constraints for an agent which then based on trial-and-error tries to maximize
the reward for itself (JANIESCH et al., 2021). Various applications of reinforcement
learning is found in robotics, autonomous driving, and gaming industry.

2.4.3 Deep Learning

Deep learning is a subset of machine learning which is further a subset of artificial
intelligence. Deep learning is inspired by the structure of human brain. In the domain
of deep learning, this structure is called Artificial Neural Network (ANN), and it involves
feeding in a vast amount of data to multilayered deep neural networks to adapt and learn
to perform tasks, such as speech recognition, object detection, image segmentation and
SO on.

As deep learning algorithms require a lot of computational power, with advancements
in such technology, data availability, and new programming frameworks, deep learning
models are becoming increasingly popular in discovering patterns in high-dimensional data.
Therefore, deep learning is a promising development for computer vision tasks mentioned
earlier (LECUN et al., 2015). Often times for such tasks, deep learning models have
shown superior performances than those shown by traditional data analysis techniques
and machine learning models (JANIESCH et al., 2021). Moreover, in several controlled
applications, deep learning algorithms based on CNN have even outperformed humans
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in terms of accuracy and speed. For instance, in a study performed by Madani and his
colleagues, a trained deep learning model classified different views in echo-cardiograms
much faster and more accurately than a human expert (MADANI et al., 2018). Figure 2.10
shows a Venn diagram and relative position of the fields of Al, machine learning, and deep
learning.

2.5 Neural Networks

2.5.1 Artificial Neural Networks (ANN)

Artificial Neural networks (ANN) are inspired by functioning of human brain and imitate
biological neurons in sending signals to one another. Neural networks have the capability
to extract intricate properties and information from the high-dimensional data provided that
enough data and sufficient number of hidden layers are available (VAN DAELE et al., 2019).
With recent advances in the availability of computational power, computer vision tasks
have seen an increase in the usage of ANN and CNN. Figure 2.11 illustrates the general
architecture of a simple neural network showing the input layer, the hidden layers, and the
output layer. The output of each of the nodes in the hidden layers and subsequently the
output layer is calculated based on the following equation:

Yn = an(w;‘fxn + by) (2.1)

where x,, is an input vector to the node n, wy, is the weight vector, by, is the bias vector,
¥n is the scalar output from the node n, and o, is nonlinear activation function, such
as sigmoid, Rectified Linear Unit (ReLU), Leaky ReLU, or tanh. NWANKPA et al. (2018),
in their paper, compiled a list and provided description of the most common activation
functions and their trends and popularity within deep learning community. Activation
function, as the name suggests, decides which neuron would be activated based on
the input; hence, the choice of activation function also determines the efficiency and
performance of a neural network (NWANKPA et al., 2018). Various architectures for ANN
exist, such as deep feed-forward neural networks, recurrent neural networks, generative
adversarial networks, CNN and so on (LECUN et al., 2015).

The number of input nodes, output nodes, and hidden layers depends on the problem
at hand. The number of input neurons in the input layer serves as a hyperparameter
whose optimum value is chosen based on trial and error process. The number of hidden
layers, as a design parameter, determines the capability of a neural network to solve
complex problems. Neural networks with a higher number of internal hidden layers are
more reliable and more accurate in discovering patterns in a complex problem. On the
other hand, fewer hidden layers result in model having higher errors and being able to
learn accurately. However, too many hidden layers result in an overfitting problem where
the network seems to have a high accuracy on the training dataset yielding low training
error, but providing poor generalization performance under circumstances of a new or
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Figure 2.11: A general architecture of a simple neural network displaying the input layer,
the hidden layers, as well as the output layer, (SHUKLA, 2019)

unseen data. Therefore, the decision for an optimum number of hidden layers and the
number of neurons in each hidden layer is quite a challenging task.

KARSOLIYA (2012) investigated methods to approximate the number of hidden layers
and number of neurons in each of the hidden layers in a neural network, and concluded
that the numbers do not only depend on the number of inputs and outputs, but also on
the amount of training data and the complexity of a classification problem. Although
increasing the number of hidden layers and hidden neurons per layer results in increase
in accuracy, it also leads to overfitting issue. Thus, it is challenging to arrive at a number
which will produce reliable and accurate results in any general setting, and thus, it is
usually determined based on trial and error (KARSOLIYA, 2012).

While ANN are capable of extracting useful information from a given data and learn from
it, there are some limitations of such networks in computer vision tasks, such as object
detection. For instance, a simple ANN with an input layer, one hidden layer, and an output
layer works well for an image with a hand-written digit. However, for object detection task,
a more complex detailed deep neural network is required. Hence, there are limitations
of using ANN for a high-dimensional dataset such as those involved in computer vision
tasks. Firstly, a high computational power would be needed for image classification and
object detection tasks since regular neural networks with fully-connected hidden layers do
not scale well to larger images. This involves, depending on the size of the input image,
computation of a large number of weights sometimes in the order of 10° (L1 et al., 2021).
Secondly, it is sensitive to location of an object in an image, in other words, the image
classification task is centered around locality.

2.5.2 Convolutional Neural Networks (CNN)

Although there are several categories of neural networks, in this thesis, particular emphasis
is on the Convolutional Neural Networks (CNN) as they have seen an increasing popularity
in image classification and object detection tasks. One of the first architectures of CNN
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was proposed in 1990s by Yan LeCun known as LeNet (LECUN et al., 1998). As mentioned
earlier that fully-connected neural networks involves massive computations as the network
grows with the size of the image, and thus, requires a huge dataset to avoid overfitting
issues.

One of the key features that distinguishes CNN from other neural networks is its convolution
layers through which the input image is passed. Considering equation 2.2, the difference
with regards to a simple ANN architecture is that in a CNN every node applies a convolution
operator denoted by x on parts of its input, and then a nonlinear activation function. As a
result, the learned features become increasing complex as the input is passed through
the series of such convolutional layers until the captured features combine to predict an
object of interest in the input image. For instance, when an image is provided as an input
to CNN, the network detects the raw pixel values from the image in the first layer, then it
detects the edges from raw pixels in the next layer. It then detects simple features based
on the combination of the edges in the previous layer, and finally, based on the features
detected in previous layers, it detects higher level features to predict or classify an object
of interest. Equation 2.1 modified for CNN architecture will become:

Yn = on(Wpy * Xy + by) (2.2)

where x denotes convolution and W, is the convolutional kernel(or a filter).

Within the scope of CNN, concepts such as, local receptive fields, shared weights and
biases, and activation and pooling are important in understanding the architecture of such
neural networks.

e Local Receptive Fields: As opposed to a typical neural network where each of the
neurons in the input layer is fully connected to the neurons in the hidden layer, in
CNN only a small region of input layer (or an input image) is connected to subsequent
hidden layer. This region is called local receptive field. This patch or region of the
input image is translated across the image and undergoes convolution operation
with a filter matrix to create a feature map from input layer to the subsequent hidden
layer. Figure 2.12 shows this convolution operation between local receptive field in
of input image and filter matrix to create a feature map.

e Shared weights and biases (Parameter Sharing): Unlike a typical neural network,
in CNN each of the hidden neurons in a given layer has same weights and biases
attached to it. This deals with the locality problem in a typical neural network. Having
same weights and biases for all hidden neurons in a given layer, allows the model
to detect edges or blobs to create a feature map no matter where the edges are
present in the image. Figure 2.13 shows a convolution operation between a patch of
input image and vertical edge detector filter to detect vertical edges. These vertical
edges are then combined to form geometrical primitives in subsequent layers to
create complex feature maps.
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e Activation and Pooling: The output of each neuron is then passed through an
activation function (in this case Rel.U) as shown in figure 2.14. This step is further
processed with pooling operation, in this case max pooling, to reduce the dimension-
ality of the feature map by extracting more prominent features. Hence, max pooling
with convolution assists in reduced dimensions and computation, position invariant
feature detection, and reduced overfitting as there are less parameters.
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=

ofl1f1]of1]1 of1|1|*|4|5|6|—m
1{o]l1]o|1]0 101 7/8|9
1lof1f[1]1]0 Image patch Kernel
stalalolals (Local receptive field) (filter) Output
1lo]1]lo|1]o0

1*1+40*241*3+0*4+1*5+1*6+1%7+

Input 0*8+1*9 = Output[0,0]

Figure 2.12: A convolution operation between a local receptive field of an image and the
filter matrix (stride=2) to create a feature map (output), adapted from (REYNOLDS, 2019)
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Figure 2.13: A convolution operation between a local receptive field of an image and the
vertical edge detector filter matrix (stride=2),(REYNOLDS, 2019)

Figure 2.15 shows a typical network architecture of a CNN including a convolutional
and ReLU activation hidden layer followed by pooling layer and so on. There are many
such layers inside a CNN. Towards the end of CNN, there is a fully-connected dense
neural network connecting all the neurons of the last hidden layer to the output layer
for classification task. The first part of the CNN deals with feature extraction using
convolution operations, activation function, and pooling operations. A CNN will learn
the filters or kernels during training process and update it iteratively through backward
propagation based on an error function to determine the optimum values inside these
filters (GHOSH et al., 2019). However, the number and the size of each these filters are
used as hyperparameters, but the exact values of these filters are learned during the
training process.
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Figure 2.14: An example of ReLU activation function being applied to each of the output of
neurons and then a max pooling of fxf where f=2 and stride =2 , adapted from (REYNOLDS,

2019)
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Figure 2.15: A typical CNN architecture showing convolution and ReLU hidden layers
followed by pooling and so on. The network architecture can be divided into two categories:
feature extraction (hidden layers) and classification, adapted from (MATHWORKS, n.d.)
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Chapter 3

Related Research

As mentioned earlier in section 1.6, the transportation infrastructure sector, around the
world, is experiencing a rising trend towards implementation of BIM-based collaborative
technologies to create digital representation of their assets. Infrastructure undergoes aging
process and is subjected to an increasing demand as well as natural hazards. These
adverse factors, combined with a boom in digital innovation and technology, are motivating
infrastructure owners and decision-makers to commence digital transformation of their
assets. This has encouraged the development of techniques to generate DT of the existing
infrastructure, such as bridges. While 2D technical drawings can be used to generate 3D
DT models, this process is manual, labor-intensive, and prone-to-error, and thus, it could
benefit significantly from automation. This chapter explores the related work performed
by other researchers. Particularly, the concept of automated generation of DT from 2D
technical drawings of bridges or other infrastructure will be investigated.

3.1 Image processing

Even before the recent advancements in computational power, computer vision technol-
ogy and deep learning techniques, digitization of paper-based or scanned engineering
drawings has always been an active research area that has amassed substantial interest.
Considerable efforts have been made in the past to convert paper-based engineering
drawings to intelligent form, such as generating 3D models.

:—l__ — Geometric 2D shapes Validation &
L = —3 | &textextraction & | 3 | automatic/manual | —3»= ( Model export ) =
iy S | recognition correction

Figure 3.1: Creation of 3D models from 2D floor plans, (GIMENEZ et al., 2015)

In their research, GIMENEZ et al. (2015), have described image processing pipeline to
generate 3D DT models from 2D architectural drawings. Although the main focus of their
research was generation of 3D DT models based on scanned 2D plans, they have also
provided a critical assessment of several non-contact and on-site data acquisition 3D
model generation techniques, such as laser scanning, videogrammetry, and photogram-
metry (GIMENEZ et al., 2015). The extent of granularity of extracted data from such
techniques differ from aerial images to 3D Point Cloud Data (PCD). Furthermore, the
research highlighted that in order to save computational time and memory, the elements
of interest on technical drawings could also be sliced (image-slicing) to process each
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smaller area separately and then combining the results. Figure 3.1 demonstrates the
generation of 3D model from 2D floor plans according to the research by (GIMENEZ et al.,
2015). The required steps for extracting features from 2D drawings to create a 3D digital
model included: image binarization and text extraction, geometric primitives recognition,
buidling elements recognition, 3D model validation. Since architectural plans contain a
large amount of heterogeneous information, image binarization helps with minimizing the
quality of information and reducing the noise, while simultaneously preserving the useful
information, such as text, which is used to enrich the generated 3D model with semantic
information (for example, surface area and room function and other useful dimensions). In
addition, the study investigated that sparse-pixel vectorization (SPV) was the most suitable
approach to detect geometrical primitives due to its linear time complexity and shape
information preservation. The research also proposed that building elements, such as
walls and rooms, can be detected by utilizing the edges resulting from earlier vectorization
procedure or patch-based, pixel-level segmentation approach. Likewise, graph-based
recognition could also be used to recognise building elements where nodes represent
elements, such as doors and walls, and the edges represent the relationship between
these elements (parallel, orthogonal, equal height). Hence, graph-based methods include
all the geographic information needed to generate a building model : geometry (node
coordinates), topology (edges), and semantics (node attributes). According to GIMENEZ
et al. (2015), while there are several approaches and techniques for each of the steps
of creation of 3D model as shown in figure 3.1, very less efforts have been made to
address the full-fledged creation of a 3D model in an integrated way, meaning the current
techniques are fragmented focusing only on the limited steps of 3D digital model creation.

In addition, YIN et al. (2008) also investigated the creation of 3D building models from
CAD drawings and scanned 2D technical drawings with a particular focus on the latter
category of input (scanned 2D drawings). They argue that preserving information from
a CAD files and documentations (Data Exchange Format (DXF) and AutoCAD Drawing
Files (DWG)) makes recognition of elements trivial due to the layered structure of CAD
files. On the contrary, for raster images of a floor plan as an input, image-processing and
pattern-recognition techniques must be utilized to decipher useful information since there
is no obvious distinction between the graphical symbols, line types, dimension styles, and
text for a 2D scanned technical drawing when provided as an input. The methodology
proposed by YIN et al. (2008) for 3D model creation from 2D technical drawings or 2d floor
plans is also inline with the approach suggested by GIMENEZ et al. (2015), which is that all
approaches follow the same steps which are noise removal, text-extraction, vectorization,
and finally recognition, and then model evaluation. Moreover, YIN et al. (2008) also
compares different image vectorization techniques, such as parametric model fitting using
Houghs transform, contour tracking, and skeletonization. The authors highlighted that
parametric model fitting using Houghs transform is a memory intensive process and
lacks generality, while contour tracking is suitable for simple floor plans and does not
perform well when floors plans get complicated. While some algorithms that they studied
used skeletonization techniques in vectorization and image-recognition, YIN et al. (2008)
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(d)

Figure 3.2: Fundamental steps in creation of 3D models from 2D scanned floor plans: (a)
an original 2D scanned floor plan, (b) after denoising and text extraction, (c) graphical
symbol recognition (such as doors, windows) and 2D geometry creation, and finally, (d)
3D model extrusion, (YIN et al., 2008)

identified shortcomings in those methods, such as poor performance at line intersections
and inefficient algorithm as each pixel of the image is visited multiple times.

When dealing with high quality scans of technical drawings, the size of the images can
become very large leading to memory-related issues. Dosch and his colleagues suggested
an image-tiling algorithm that splits the images in several tiles with each tile overlapping
with another to a certain degree, and the width of the overlapping region is chosen such as
to allow for good subsequent matching after vectorization process (DOSCH et al., 2000).

3.2 Deep Learning

Most of the related work that was mentioned so far was prior to the advancements and
popularisation of deep learning techniques in computer vision technology. While the older
traditional methods achieved reasonable performances in a specific domain, they had
generality issues when utilizing the same methods for other types of 2D scanned drawings;
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hence, NURMINEN et al. (2019) and MANI et al. (2020) have proposed frameworks that
can be extendable to any type of technical drawings, such as architectural floor plans,
electrical drawings, or construction drawing.

In their research, NURMINEN et al. (2019) and his colleagues have utilized a deep learning
algorithm, such as YOLO which is a real-time object detection algorithm based on CNN to
detect objects (such as, pumps and valves) in process and instrumentation (P&l) diagrams
scanned from paper and stored in a vector form.
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Figure 3.4: An example of high-level element detection in scanned P&l diagrams, (NURMI-
NEN et al., 2019)

In a similar research to NURMINEN et al. (2019), MANI et al. (2020) and his colleagues
have also proposed a digitization pipeline that aims to automate the detection of symbols,
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text related to symbols, and connections between symbols in the P&l diagrams. The
symbols to be detected on the P&l diagram included: (a) locally mounted instrument (LMI)
sensors, (b) electrical signal between instruments, (c) sensor (or a tag) in a database,
(d) process line, and finally (e) equipment, such as a vessel or pump. MANI et al. (2020)
have trained a CNN to detect symbols on P&I diagrams and graph search approach to
detect connections between symbols by traversing the diagram along its solid and dashed
lines to discover interconnected symbols. In addition, MANI et al. (2020) have claimed that
their pipeline will bring value to any company by converting its legacy data such as 2D
technical P&l diagrams to a structured and well-defined asset hierarchy. When combined
with other operational and enterprise data, the automated pipeline will not only serve as a
foundation for a facility-wide digital twinning, but it will also improve and assist companies
or production plants in facility management and predictive maintenance. To train their CNN,
the research group cropped out tag or LMI sensors from 18 different P&l diagrams and
manually labeled them, resulting in 308 tag crops and 687 LMI sensor crops. Moreover,
they have extracted 100 crops from each of the 18 different P&l diagrams, resulting in 1800
'symbols-of-not-interest’ crops. Inspired by LeNet architecture (LECUN et al., 1989) for digit
recognition, MANI et al. (2020) have trained a CNN (figure 3.5) with three convolutional
layers (with ReLU activations and max pooling) and two fully-connected dense layers. The
results of symbol detection is shown in figure 3.6. For text detection, MANI et al. (2020)
have used a neural network called Efficient and Accurate Scene Text Detector (EAST)
(ZHou et al., 2017) to create bounding boxes around any text found on the P&I diagrams
shown in figure 3.7. Finally, to interpret the detected text, Tesseract Optical Character
Recognition (OCR) was used. Several evaluation metrics, such as precision value, recall
value, precision-recall curve, and Intersection over Union (loU) were used to evaluate the
performance of CNN in symbol detection, and it was seen that their CNN architecture
displayed reasonable performance.

64@10x10

Input image
Convolution, Convolution, Convolution, Dense
RelU, RelU, Rel .U, layers
Max pooling Max pooling Max pooling

Figure 3.5: A CNN architecture for symbol detection on P&l diagrams, (MANI et al., 2020)

In another study, KANG et al. (2019) have also proposed similar pipelines that perform
symbol detection and text recognition on the scanned images of P&l diagrams. They
have further stressed upon the conversion of image-based technical drawings into digitize
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Figure 3.6: An example of source symbol detected (red), connected symbols detected
(green), and connection detected between symbols (blue) through lines traversed by
depth-first search (graph-based approach), (MANI et al., 2020)
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Figure 3.7: An example of symbol and text detection, (MANI et al., 2020)

structured data as Al technology and big data science fields are revolutionizing the digital
technology industry. For symbol recognition, they have used template matching, a digital
image processing processing technique, to extract elements from the P&I diagrams to
automatically registered the extracted data in a database. For line and text detection,
sliding window method and aspect ratio calculations have been used respectively. Finally,
the extracted symbols are then associated with the attributes of closest text to be then
stored in a database for digitization of technical drawings. Template matching is a technique
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to extract features of the image, such as shape, texture, color, to 'match’ it with the target
image using neural networks and deep learning classifiers. While template matching
approaches are easier to implement, they usually lack generality and need a vast symbol
library (templates) to perform well.

Furthermore, VAN DAELE et al. (2019) utilized a CNN-based architecture to detect machine
elements in the 2D technical drawings to extract relevant knowledge from the drawings
and assist engineers during the design process. The research group also proposed
that such object detectors should also be able to recognize objects in historical analog
drawings since such legacy drawings also contain a vast amount of information. To
extract the relevant information from the technical drawings, VAN DAELE et al. (2019) have
utilized: (a) the tables in the drawings to extract information, such as author, date, parts,
material, and (b) the 2d views of the machine parts that contain information on shape,
view, and dimensions. Figure 3.8 shows the general framework of extracting elements
from 2d technical drawings as proposed by VAN DAELE et al. (2019). Data annotation was
performed on 318 technical drawings and the objects in the drawings were classified into
three classes: (1) table, (2) two-dimensional CAD drawings, and (3) irrelevant segments.
It was noted that a simple CNN, implemented with PyTorch library (PASzKE et al., 2017),
performed well with a high accuracy since all three classes were visually distinctive.
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Figure 3.8: Object detection and similarity assessment framework as proposed by (VAN
DAELE et al., 2019)

After the class 'two-dimensional CAD drawings’ was accurately identified, the problem was
turned into a binary classification problem where given a pair of 2d drawing, the classifier
should predict whether the pair represents the same design or not. This would enable
engineers to quickly find similar designs or relevant designs (in case of partial designs) in
a large database of legacy 2d drawings. VAN DAELE et al. (2019) have used ResNet-50
(HE et al., 2016) which is one of the architectures of CNN for this binary classification
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task to classify the input into one of the two possible classes: ‘'same’ or ‘different’. It was
concluded that this classifier performed well with an accuracy of 96.8%.

FC Layer FC Layer FC Layer

g ResNet-50
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Figure 3.9: CNN architecture ResNet-50 used for binary classification of 2d drawings. If
a pair of drawings is similar then assign it to a class 'same’, other 'different’ (VAN DAELE
et al., 2019)

Based on the related research, it can be concluded that most of the techniques outlined
above can be categorized into two sections: image processing and deep learning. The
next chapter highlights the gaps in the knowledge based on the related research in this
section, and then it outlines the objectives of this research.
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Chapter 4

Research Gaps & Objectives

4.1 Research Gaps

Based on the literature review in chapter 3, it can be recognized that not much research has
been performed to automate the detection of bridge elements in 2D technical drawings.
On the other hand, considerable efforts have been put into detecting elements in 2D
architectural floor plans (DOSCH et al., 2000; GIMENEZ et al., 2015; YIN et al., 2008) to
generate 3D models of the buildings. It seems that less research has been devoted towards
object detection in 2D technical drawings of the bridges. Although many researchers
have proposed the methods to create 3D models of existing buildings based on their
2D architectural floor plans, there are significant visible differences between the 2D
architectural floor plans and 2D technical drawings of bridges. Moreover, the bridge
elements, such as abutment, wing wall, deck, and so on are not similar to the elements of
a building. Figure 4.1 shows a side by side comparison between 2D floor plans and 2D
technical drawings of bridges.

Lo

Figure 4.1: An example of a 2D architectural floor plan (left), (YIN et al., 2008) and a 2D
technical drawing of a bridge (right)

Several researchers have also utilized deep learning techniques to detect elements in P&l
diagrams (KANG et al., 2019; MANI et al., 2020; NURMINEN et al., 2019) and mechanical
drawings (VAN DAELE et al., 2019) to extract useful information from company’s archived
documentations. With the exception of NURMINEN et al. (2019), others have implemented
their own CNN based deep learning models. However, NURMINEN et al. (2019) and his
colleagues have utilized YOLO for object detection of elements, such as pumps, sensors
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and valves in P&l diagrams. But, elements in P&| diagrams are not similar to the bridge
elements. Moreover, in the technical drawings of bridges, there are multiple views and
sections, such as top, front, and side view.

Therefore, in this thesis, a particular attention is provided to the 2D technical drawings
of bridges to extract the useful geometrical and dimensional information. And thus, this
would pave a way and serve as a basis in generating DTs of existing bridges.

4.2 Research Objectives

As the title of this thesis suggests, the main objective of this research is to automate or
at least semi-automate the task of object detection of bridge elements in 2D technical
drawings of bridges with deep learning and parametric modeling. Particularly, the author
tries to find the answers to the following questions:

e What useful information can be extracted from the 2D technical drawings of the
bridges?

e To what degree the process of object detection of bridge elements in technical
drawings of bridges can be automated?

e How is the performance of deep learning object detector model which has been
selected in this thesis?

e How can the performance of the object detection model be improved?

e |s it possible to augment the existing dataset? If so, what are effects of performing
such data augmentation on the overall accuracy?
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Chapter 5

Object Detection in 2D Technical Drawings

5.1 Object detection

The concept of object detection was mentioned earlier in section 2.3 as one of the most
frequently performed tasks in the field of computer vision. In the context of this thesis,
object detection technique is used to detect the elements of bridges (such as, abutment,
retaining wall, wing wall, deck, foundation, frame, and so on) in 2D scanned technical
drawings. The results of object detection would then serve as a foundation for generation
of DT models of the corresponding bridges. YOLO, a deep learning CNN based object
detection algorithm has been utilized to detect bridge elements in technical drawings. The
input to YOLO algorithm is pre-processed and annotated technical drawings of bridges and
the outputs are trained weights and predicted bounding box coordinates of the detected
objects on the test dataset. The post-processing steps include: (1) scaling up of bounding
boxes to map them on original sized test images of technical drawings, (2) cropping out
the region enclosed by predicted scaled-up bounding boxes on the original sized test
images, (3) performing scene text detection to detect text and numbers on the cropped
out sections from step (2). Figure 5.1 shows one of the many technical drawings used in
this thesis for object detection of bridge elements.
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Figure 5.1: An example of a technical drawing showing different views of abutment
including wing wall and retaining wall
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5.2 YOLO

Modern object detectors can be classified into two categories: (a) one-stage object
detector, ansd (b) two-stage object detection model. Two-stage object detection model
refers to the ones which breakdown object detection tasks in two stages: (a) detecting
possible object regions, and (b) classifying the objects detected in regions in step (a)
into object classes. Two-stage object detector, such as Fast-RCNN (GIRSHICK, 2015)
and Faster-RCNN (REN et al., 2015), uses Region Proposal Network (RPN), which is
fully-convolutional network, that proposes a region which predicts object bounds and
objectness scores at each position. This is step (a) as mentioned earlier, and for step (b),
the output from RPN is inputted into a classifier to classify the object bounds or regions
into classes. As opposed to single-stage detectors, two-stage detectors are relatively
slower in detecting objects as detector is run for many iterations in the same image, and
thus, preventing the real-time object detection. Although two-stage detectors are slower in
object detection tasks, they usually result in higher accuracy as determined by high mAP.

YOLO (REDMON et al., 2016) is a state-of-the-art real-time single-stage object detector
based on CNN. YOLO is an abbreviation of "You Only Look Once’, and as the full form
suggests is a one stage object detection model. YOLO applies a single neural network
to the entire image, and then divides the image into regions to predict bounding boxes
and probabilities for each region. YOLO considers some important evaluation parameters,
such as Intersection Over Union (IOU) and mAP to assess the performance of its object
detector.

Intersection Over Union:

For each bounding box, an overlap between the predicted bounding box and the labeled
bounding box (ground truth) to calculate localization accuracy. Figure 5.2 and equation 5.1
shows how IOU is calculated as the ratio of area of overlap and area of union of predicted
bounding boxes and ground truth bounding box. This value also provides us with an
estimate of how the close the predicted bounding box is to the ground truth bounding box.

areaofoverlap

I0U = (5.1)

areaofunion

Mean Average Precision (mAP) : The average precision is calculated as the area under
the precision vs recall curve for a set of predictions. Recall measures how well a model
finds all the positives.In equation 5.2, True Positive (TP) is the correctly identified positive,
whereas, False negative (FN) is when the test results indicates the absence of a condition
when it actually exists. Precision (equation 5.3) measures how accurate the predictions are,
that is, how much proportion of the predictions are correctly identified. False positive(FP)
indicates that a given condition exists when it does not.

TP
Recall = TP—F—W (52)
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area of overlap
area of union

IoU =

Figure 5.2: Intersection over Union (IOU)

TP
Recall = 'I‘:P——|—F‘:P (53)

To process an image for object detection, YOLO segments the images into N grids each
having an equal dimensional region of SxS. Each of these N grids predict bounding boxes
relative to their cell coordinates; however, this results in the prediction of multiple bounding
boxes due to multiple grids predicting the same object (figure 5.3). To circumvent this
problem, YOLO uses a non-maximal suppression to discard the bounding boxes with lower
probabilities and selecting the one that has maximum IOU value. Figure

Bounding boxes + confiden
M

Class probability map

Figure 5.3: Several overlapping bounding boxes, (REDMON et al., 2016)
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5.3 Dataset

5.3.1 Identifying Relevant Classes

The components of a bridge can be grouped into two broad categories: superstructure
and substructure. The elements which are included in superstructure category are: deck,
and girders. Whereas, the elements included in a substructure category are: abutments,
wing walls, foundation, and piers. The superstructure of the bridge not only bears the load
passing over it, but it also transmits the load and pressure to the substructure below it.
Bearings in a bridge assist in even distribution of loads from superstructure to substructure
components. The substructure of a bridge supports the superstructure and transmits the
loads to bridge foundations.

The technical drawings of a bridge contain different views (top, side, front) of superstructure
and substructure components. As can be observed in figure, 5.1 that it is quite difficult
to identify components of the bridge at a first glance. Moreover, in the context of this
thesis, the number of the classes of interest for YOLOv4 custom object detection was not
obvious in the beginning. Hence, all of the available technical drawings of bridges were
thoroughly examined to identify the relevant classes. While exploring the dataset, elements
on the technical drawings were classified into relevant classes based on their geometrical
similarities. Each of the groups of distinctively shaped elements were identified, marked,
and classified into different classes. As a result of this step, 14 classes were identified from
technical drawings of 15 existing bridges across Munich region. The identified classes are
shown in the table 5.1 below with their class Id and class name.

Table 5.1: Identified classes for object detection in technical drawing of bridges

Class ID Class Name

deck_t_shaped_cross_section
deck_beam_shaped_cross_section
deck_plain_cross_section
deck_top_view
abutment_wing_wall
abutment_retaining_wall
abutment_retaining_wall_cross_section
abutment_top_view
bridge_top_view
bridge_side_view

10 foundation_top_view

11 foundation_side view

12 frame

13 table

©Co~NOCOaP~hwWND-—=O

All of the 14 identified classes are shown in the following figures from figure 5.4 to 5.17along
with their class IDs.

41



Figure 5.4: An example of class deck_t_shaped_cross_section (class ID = 0)

Figure 5.5: An example of class deck_beam_shaped_cross_section (class ID = 1)

Figure 5.6: An example of class deck_plain_cross_section (class ID = 2)
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Figure 5.8: An example of class deck_t_shaped_cross_section (class ID = 4)
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Figure 5.9: Examples of class abutment_retaining_wall (class ID = 5). This class also
includes the cross-section of the wing-wall since it is actually a part of the retaining wall,

and looks very similar
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Figure 5.12: An example of class bridge_top_view (class ID = 8)
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Figure 5.15: An example of class foundation_side_view (class ID = 11)
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Figure 5.16: An example of class frame (class ID = 12)
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Figure 5.17: An example of class table (class ID = 13)



5.3.2 Preprocessing Data

e Naming: The technical drawings of 15 bridges were included in the dataset for
object detection. For clear identification of technical drawings of each bridges,
meaningful names were assigned to the bridges. The bridges were assigned the
following names: bw003,bw012, bw016, bw018, bw040, bw043, bw046, bw051, bw052,
bw056, bw057, bw058, bw067, bw074. The typical files names were then: bw003_xx
where xx represents the image number sequentially.

e Resizing: This is a necessary step since the scanned images of the technical
drawings were very large. Typically, the width of the images was in the range of
12000-17000 pixels and height in the range of 7000-10000 pixels. These are a
huge number of pixels to be processed, and if the original images were provided as
input to YOLOv4 object detector, there were frequent memory related issues and
the training would just stop abruptly. Hence, it was important to resize the images to
a reasonable size without loosing much information on the geometrical shapes of
the elements in technical drawings.

To resize the images of technical drawings in bulk, while simultaneously maintaining
the aspect ratio, Pillow Library (Pythons Image Library) was utilized. The algorithm
5.1 for resizing images is shown below where resample = 3. This means that
Image.BICUBIC filter was chosen for resizing which compresses and also optimizes
the images. Every filter follows different methodology for resizing or down-scaling the
images. GUBUR (2020) has compared each of the filters based on their up-scaling
quality, down-scaling quality, and performance. The height of the images was fixed
at 720 pixels, so that width could be determined which gives the same aspect ratio
as the original image. As it will be discussed later, this was a crucial step since it
will enable scaling-up of predicted bounding boxes and map them to original sized
images accurately. When predicted bounding boxes were scaled-up correctly, the
detected regions bounded by the predicted bounding boxes were then cropped
out and were assigned meaningful names to identify the predicted classes easily.
The cropped regions were then used to detect text and dimensional information
associated with the elements in the technical drawings.

Algorithm 5.1: The script below resizes images in the dataset while maintaining the aspect
ratios

from PIL import Image
import warnings
import os

import PIL

import glob

Image . MAX_IMAGE_PIXELS =
warnings.simplefilter ( , Image.DecompressionBombWarning)
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)

20

21

22

23

24

sourcePath
targetPath

print(os. listdir (sourcePath))

unopt_images = [file for file in os.listdir (sourcePath) if file.
endswith (( )) 1]
print(f )

for image in unopt_images
fixed_height = 720
img = Image.open(image)
height_percent = (fixed_height / float(img.size[1]))
width_size = int((float(img.size[0]) + float(height_percent)))
print(width_size)
img = img.resize ((width_size, fixed_height), resample=4)
img .save (targetPath+image)

5.3.3 Data Annotation

Data annotation is the process of labeling data so that a deep learning or a machine
learning model can be trained on it (supervised learning). Data annotation is an indispens-
able task in any computer vision field related to object detection, image classification and
localization, and image segmentation. Data annotation allows computers to gain a high-
level understanding from the images or videos to interpret or extract useful information.
Therefore, without a labeled dataset it would be impossible to train a deep learning model
for object detection for custom dataset as in the context of thesis where technical drawings
would be used as input images. Labeled images allow an object detector to recognize and
learn the important features from a given image, so that after training, it can predict those
features or classes on unseen images. Although data annotation is an important step in
object detection on custom dataset, it is an extremely time-consuming process. It might
take several hours (sometimes days) to label the dataset completely depending on the
size of the dataset and the number of relevant objects on any image.

e Data Annotator: In this thesis, Labellmg (TzUTALIN, 2015) was used as an image
annotator tool. It is a free, open-source software written in Python to label images
in its graphical user interface. As it was oberserved during the data annotation
process, Labellmg is a basic and easy-to-use tool that also allows the user to
conveniently store the annotated bounding box information in YOLO formatin a . txt
file. This .txt file is automatically named similar to the image on which annotation
has been performed. Figure 5.18 shows the graphical user interface of labellmg with
a technical drawing of a bridge opened inside the tool. Before moving on to a next
image, a complete annotation process on a single image will generate a .txt file
corresponding to that . JPG image. The folder where the dataset is stored would then
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look similar to the one in figure 5.19 having all the .txt files along with their . JPG

=
Box Labet
1 3
o0 f0 . qem
L Annoctated bounding boxes
Gpenir | U dofetabal  deck_t shapod_eross_sectn
=
Change Sove O . ’
» Ansicht Querschnitt B-8
Hext Tmage i & b e
= = B bricige.top view
-« = o 8 trame.
prev Inage B deck.t shaped_cross seciion
- : ) s Banie
vty gy Annotation format can z 2 i s o \
Grundrifl
be changed from here " _ Aussehrebungsplan Name of the classes as

mentioned in classes.txt file

Schnitt A-A

T3 T - il L
Zoom Out
a Colors of the bounding box
Fit Windaw correspond to the class names Path of the images 5

Figure 5.18: Graphical user interface of Labellmg tool with one of the technical drawings
of a bridge bw003_03. JPG opened, and also showing some of the relevant features in the
tool
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Figure 5.19: A screenshot of a dataset folder showing data labels in .txt files along with
their images in .JPG format

e Bounding Boxes in YOLO format: Since object detection of the elements in
technical drawings of the bridges will be performed with YOLOv4 object detection
model, it is necessary that bounding boxes information from the data annotation tool
be stored in YOLO format. For one of the technical drawings named as bw003_03. JPG
(also shown in figure 5.18), the content of the bw003_03.txt file is shown in figure
5.20. Each line of .txt file is a bounding box (BB) within an image with the
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following column-wise entries: (1) class ID, (2) normalized center_x coordinate of
BB, (3) normalized center_y coordinate of BB, (4) normalized width of BB, and finally
(5) normalized height of BB.

E bw003.03.0x - Notepad

File Edit View Normalized
width of BB

9 ©8.306250 9.241667 0.520312 @.211111
8 ©.293750 9.614583 @.487500 @.478833

12 6.682422 0.668758 ©.222656 0.273611 Normalized
0 ©.500000 0.252083 0.273438 @.245833 height of BB

13 9.988984 0.6568000 8.155469 B.422227
Nermalized y_center
m coordinate of BB
MNormalized x_center
coordinate of BB

Figure 5.20: The bounding box information stored in a . txt file for a particular technical
drawing

A sample calculation to convert the bounding box coordinates into YOLO format is provided
below. Please, refer to 5.21 for bounding box coordinates and image size information.
Bounding box coordinates in YOLO format are normalized with respect to a given image.
A bounding box coordinates are calculated with respect to the top-left corner of the image
and is in the following form. The top-left corner of a bounding box is (x_min,y_min)
or (64,273), the top-right corner is (x_max,y_min) or (688,273), the bottom-left corner
is (x_min,y_max) or (64,612), and finally the bottom-right corner is (x_max,y_max) or
(688,612). The top-left corner of the image has the coordinates (x,y) or (0,0). Consider-
ing the sample bounding box in figure 5.21, its width and height is 624 and 339 respectively.
All of the information to convert the bounding box coordinates into YOLO format is now
known. Please, refer to the line 2 in the text file in figure 5.20 to understand the sample
calculation below. From equation 5.4, it can be seen that normalized x_center coordinate
would be equal to 0.29375. This can be confirmed from line 2 in figure 5.20 which is
indeed 0.29375. Similarly, the normalization of y_center, width of BB, and height of
BB will be performed.

(x_max + x_min)/2

Xe = T image_width

(688 + 64)/2 (5.4)
1280
= 0.29375
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Figure 5.21: A sample image of bridge bw003 from the technical drawings dataset to show
bounding box coordinates and image size in pixels

(y_max +y_min)/2

_ 5.5
e image height (5.5)
normalized width of BB — —bo="idth (5.6)
image width
BB_height
normalized height of BB = 1018 (5.7)

image height

5.3.4 Counting Instances

After the data annotation part has been completed, the total number of instances for each
of the classes was computed with the help of algorithm 5.2. This also ensures if the dataset
is balanced or not such that every class has almost equal number of instances. However,
it was observed that some of the classes had a lot of instances while the others had fewer
instances only. This resulted in an imbalance dataset problem which necessitated the need
to create synthetic images of the classes with fewer instances. To create synthetic images,
parametric modeling techniques were utilized to draw base models of the insufficient
classes in AutoCAD. The concept of parametric modeling will be discussed later in section
5.5.

Algorithm 5.2: The script below counts the number of instances for each of the classes
after data annotation process

import glob

from collections import defaultdict
import csv

from pathlib import Path
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import os

READ_PATH_TO_ANNOTATIONS =
READ_PATH_TO_CLASSES = Path( )

def insensitive_glob (pattern):
def either(c):
return % (c.lower (), c.upper()) if c.isalpha() else c
return glob.glob(’ ' .join(map(either, pattern)))

def print_statistics (counter_dict, classes):
for class_id in sorted(counter_dict, key=lambda x: int(x)):
count = counter_dict[class_id]
class_name = classes[int(class_id)] if int(class_id) < len(
classes) else None
print(f )

print(f )

if _name_ ==
classes

[]

with open(READ_PATH TO CLASSES) as class_file:
classes = class_file.read().split( )

txt_files = insensitive_glob (f )
overall_counter = defaultdict(int)
per_class_counter = defaultdict (lambda: defaultdict(int))

for txt_file_path in txt_files:
# Get the name of the image class
img_base_name = os.path.splitext(os.path.split(txt_file_path)
[-1])[0]. rsplit( , 1)[0]

with open(txt_file_path) as csv_file:
csv_reader = csv.reader(csv_file, delimiter= )

for row in csv_reader:
overall_counter[row[0]] += 1
per_class_counter[img_base_name][row[0]] += 1
# Print overall statistics
print ( )

print_statistics (overall_counter, classes)

# Print per structure class statistics
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for img_base_name, cls_counter in per_class_counter.items():

print(f

)

print_statistics (cls_counter, classes)

The script 5.2 was run in the root directory where classes. txt file is present. For the path
to annotations (line 8) in the script, the relative path to the dataset folder (named obj) was
provided. After running the script 5.2, the outputs were: (1) the "overall statistics" of all the
bridges (figure 5.22) and the "statistics" of each of the bridges (figure 5.23, 5.24 ). Similarly,
the number of instances of each of the classes were computed for all of the bridges. From
figure 5.22, it can be observed that 1142 elements for a total of 14 classes were present
after data annotation. The results of counting instances have been summarized in figure

5.25.

(base) C:\Users\daniyal\Desktop\Thesis>python count instances 2.py
Overall statistics:
(@, deck t shaped cross
(1, deck beam shapec s _section) --» Count: 21
(2, deck plain cros ion) --> Count: 28
deck_top_view) --> Count: 19
abutment_wing wall) --> Count: 135
abutment_retaining wall) --> Count: 242
abutment_retaining wall cross_section) --» Count: 87
abutment_top_view) --»> Count: 152
bridge_top_view) --> Count:

ge_side vie --»> Count: 46
(10, foundation_top Y --» Count: 119

(11, foundation side ) --> Count: 81

(12, frame)
s (13, table)

= CDUHE:
--» Count: 15

Total --> Count: 1142

Figure 5.22: A snippet of the output console where the overall statistics of all of the 15
bridges have been computed

statistics

(0, deck t
(3, deck top_wiew) --»> Count: 7

abutment_wing wall) --» Count: 9

abutment retaining wall) --> Count: 24

abutment retaining wall cross section) --»> Count:
abutment_top_view) --»> Count: 19

—

[0

P T i B e i o T i R i
2 =

--> Count:

bridge
, bridge :
@, foundation top view) --»> Count: 20
(11, foundation_side wview) --> Count: 8
(12, frame) --> Count: 5
(13, table) --» Count: 9

shaped cross section) --» Count: 7

top view) --> Count: 1
side view) > Count: 6

123

3

Figure 5.23: A snippet of the output console where the statistics of bw056 bridge have

been computed
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statistics
(@, deck t shaped cro
(3, deck top view) -->
(4, abutment wing wall) --> Count: 8
(5, abutment retaining wall) --»> Count: 16
(6, abutment retaining wall cross section) --> Count: 4
! abutment top view) --> Count: 8
bridge top view) --»> Count: 2

, bridge side wview) --» Count: 2
(18, foundation top view) --> Count: 3
(11, foundation side view) --» Count: 3
(12, frame) --> Count: 1
(13, table) --> Count: 18
-->» Count: &4
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Figure 5.24: A snippet of the output console where the statistics of bw003 bridge have
been computed

No of Instances per class

table 155
frame 23
foundation_side_view m———— 31
foundation_top_view 119
bridge_side_view 46
bridge_top_view mmm 22
abutment_top_view 152
abutment_retaining_wall_cross_section me——— 37
abutment_retaining_wall  ————————— ) /)

abutment_wing_wall 135
deck_top_view 19
deck_plain_cross_section 20
deck_beam_shaped_cross_section 21
deck_t_shaped_cross_section 20
0 50 100 150 200 250 300

Figure 5.25: A bar chart displaying the total number of instances for each of the classes
for a total of 15 bridges

5.4 Object Detection with YOLO: A Step-by-Step Guide

5.4.1 Training YOLOV4 on a Technical Drawings Dataset

In this section, a complete methodology to build and train a custom YOLOv4 object detector
using Google Colab has been outlined. This would be a step-by-step methodology to guide
the reader on how to train YOLO on custom dataset. In the scope of this thesis, the custom
dataset is images of 2D technical drawings of existing bridges across Munich region.
Later on, YOLOv4 was trained for different hyperparameters to find the best combination
of hyperparameters (configuration parameters) for better accuracy and time efficiency.
Please, refer to section 5.6 for more details on running several unique cases for different
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set of hyperparameters. While different sets of hyperparameters resulted in different
average loss, mAP values and execution time, YOLOv4 was trained once again for the
final time with custom dataset as well as synthetic dataset from parametric modeling. For
more details on parametric modeling, please refer to section 5.5. The last training was
performed with the best combination of hyperparameters that were selected with regards
to their degree of accuracy and time to reach convergence.

Step 1: Enabling GPU accelerator in a Google Colab Notebook

For object detection with YOLOv4, Google Colab Pro’s GPU cloud computing environment
was utilized. GPU acceleration was enabled for Colab notebook as shown in figure 5.26 to
train and process detections much faster than a CPU.

Notebook settings

Hardware accelerator
GPU v

Runtime shape
High-RAM +

Want your notebook to keep running even after you

close your browser?

|:| Omit code cell output when saving this notebook

Cancel

Figure 5.26: Enabling GPU acceleration in Google Colab Pro

Step 2: Cloning and Building Darknet

The following snippet of code will clone AlexeyAB’s github repository (ALEXEYAB, 2021)
and modify the Makefile to enable OPENCV and GPU for darknet. CUDA version will also
be verified, and the darknet would be built so that darknet executable file could be run to
train and test the object detector.

Some changes have to be made in the file detector.c in src folder so that the trained
weights are saved in backup folder after every 500 iterations. Normally, if this change is
not made, the weights will only be saved after every 10000 iterations. The figure 5.27
shows the line 395 after modification.

Step 4: Downloading pre-trained weights YOLOv4 has already been trained on Mi-
crosoft Common Objects in Context (COCO) dataset (LIN et al., 2014) which includes 80
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if ((iteration >= (iter_save + 10000) || iteration % 10008 — 0) ||

(iteration »= (iter save + 508) || iteration % 568 == @) && net.max_batches < 50000)

{

iter_save = iteration;

Figure 5.27: Modifications in detector.c file for iterations to be saved at every 500th
iteration

classes of common everyday objects. These pre-trained weights which have been trained
up to 137 convolutional layer would be utilized, so that transfer learning technique could
be applied such that geometrical primitives such as edges and blobs could be quickly
detected to form a feature map based on the combination of these edges and blobs with
the scope of object detection in technical drawings.

Algorithm 5.3: clone, build, make darknet from AlexeyAB github repository

# clone darknet repository from AlexeyAB
Igit clone https:// github.com/AlexeyAB/darknet

# change makefile to have GPU and OPENCV enabled
%cd darknet

Ised —i Makefile

Ised —i Makefile

Ised —i Makefile

Ised —i Makefile

# verify CUDA
I/usr/local/cuda/bin/nvcc ——version

# make darknet
I'make

# download pre-trained weights
lwget https :// github.com/AlexeyAB/darknet/releases/download/
darknet_yolo_v3_optimal/yolov4.weights

Step 5: Defining helper functions These functions would help in viewing the images
directly in Colab notebook after running the detections. The validation images would
then have predicted bounding boxes around the detected objects along with the class
probability. The resulting could then be downloaded. Images could also be uploaded from
Google Drive once it is mounted to the cloud VM.

Algorithm 5.4: Helper functions to display object detection results on images within Colab
notebook

# define helper functions to view detection results in Colab notebook
def imShow (path) :

import cv2

import matplotlib.pyplot as plt

Y%matplotlib inline
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image = cv2.imread (path)

height, width = image.shape[:2]

resized_image = cv2.resize (image,(3~width, 3~height), interpolation =
cv2.INTER_CUBIC)

fig = plt.gcf()

fig.set_size_inches (18, 10)

plt.axis( )

plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR BGR2RGB) )
plt.show ()

# To upload a file

def upload() :
from google.colab import files
uploaded = files .upload()
for name, data in uploaded.items():

with open(name, ) as f:
f.write (data)
print ( , hame)

# To download a file after detection results
def download (path):

from google.colab import files

files .download (path)

Step 6: Mounting Google Drive

To gain access to the Google Drive content to run object detection, the lines of code
below mount the Google drive into the cloud VM and creates a symbolic link between
> /content/gdrive/My Drive/’ and ’/mydrive’ to create a shortcut > /mydrive’ to map
to the contents with in ’/content/gdrive/My Drive/’. Sometimes, this step is also
necessary because the space in My Drive’ folder can create issues when running
certain commands.

Algorithm 5.5: Mounting Google Drive into Cloud VM

from google.colab import drive
drive .mount( )

# this creates a symbolic link so that now the path /content/gdrive/My\
Drive/ is equal to /mydrive
I'In —s /content/gdrive/My\ Drive/ /mydrive

Step 7: Creating a Yolov4 folder

After mounting Google Drive, now is the time to create Yolov4 folder where all the configu-
ration files will be uploaded to be then copied to the darknet folder to run the detections.
This Yolov4 folder will also contain a backup file where trained weights will be stored
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after every 500 iterations. The best weights and the last weights (weights after every 100
iterations) will also be stored in the backup folder. The last weight file gets rewritten after
every 100 iterations. An example of how the backup folder will look like after training is
shown in the figure 5.28.

My Drive > yolovd » backup =

[ ] 4 E b ] 4-ohj_70H 7] b [ 7] ] 4 5
| "I i [ ] i | "I 1 [ 7] I a [ ] E
L] o L o ] &

Figure 5.28: The contents of a backup folder after training

Step 8: Creating and modifying configuration files for custom object detection

Before the training process, the contents of Yolov4 folder are shown in the figure 5.29.
Now, the content of each of the files will be discussed in detail.

My Drive: > yolovd -

Folders Name b

| T

Files

A
T
W
4l

B yolova-objclg B processpy ¥ objzip B objnames B objdats

Figure 5.29: The contents of a Yolov4 folder before training

obj.zip: This .zip file consists of labeled dataset of 2D technical drawings of bridges.
This will be copied to darknet folder where it will be extracted and divided into train.txt
and test.txt files

obj.names: This file contains the name of all the classes. Figure 5.30 shows the content
of the obj .names file where each line is a class.
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/ obj.names
r

[l

S 3 e TH

deck_t_shaped_cross_section
deck_beam_shaped_cross_section
deck_plain_cross_section
deck_top_view
abutment_wing_wall
abutment_retaining_wall
abutment_retaining_wall_cross_section
abutment_top_view
bridge_top_view
bridge_side_view
foundation_top_view
foundation_side_view

frame

table

Figure 5.30: The names of classes in obj .names file

obj.data: This file contains the number of classes, path to the train.txt file, test.txt
file, obj .names file, and backup folder where the training weights will be stored. Figure
5.30 shows the content of this file.

i/r obj.data

Ca e T

classes= 14

train = data/train.txt

valid = data/test.txt

names = data/obj.names

backup = /mydrive/yolovd/backup

Figure 5.31: Content of a obj .data file

process.py: This is a python file which is run to split the technical drawings dataset into
training data and validation data. The content of this file is shown as script 5.6. The
dataset was divided as 90% training data and 10% validation data.

Algorithm 5.6: Splitting dataset into training and validation data

import glob

import os

import numpy as np

import sys

current_dir = "data/obj’

split_pct = 10;

file_train = open("train.txt", "w")
file_val = open("test.txt", "w")
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counter = 1

index_test = round (100 / split_pct)

for pathAndFilename in glob.iglob (os.path.join(current_dir, ))
title , ext = os.path.splitext(os.path.basename(pathAndFilename)

)

if counter == index_test:
counter = 1
file_val.write(current_dir + + title + +
)
else:
file_train.write(current_dir + + title + +

)

counter = counter + 1
file_train.close ()
file_val.close ()

yolov4-obj.cfg: This is the most important file to run the object detection as it contains
hyperparameters that can be modified based on trial-and-error to determine the most opti-
mum hyperparameters (shown in the red circle in figure 5.32). Moreover, the parameters
(shown in the green circle in figure 5.32) that have to be modified for custom dataset object
detection depending on the number of classes are: max_batches, steps, and classes and
filters in all three yolo layers.

Sample calculations are shown below with regards to technical drawings dataset:

For max_batches, it should be noted that the value cannot be lower than 6000 if even you
have 1 or 2 classes. The minimum value should be 6000.

max_batches = classes x 2000
= 14 % 2000 (5.8)
= 28000

For steps, the value is 90% and 80% of the max_batches. Hence, the values are steps =
22400, 25200.

For classes in each of the 3 yolo layers, search for keyword yolo and three instances
will be found in yolov4-obj.cfg. Modify the classes from 80 to 14 for technical drawings
case. Moreover, filters values before each of the 3 yolo layers have to changed for
custom dataset according to the following relation:

filters = (classes + 5) * 3
= (14+5)*3 =57

Step 9: Moving custom dataset into Cloud VM for object detection

All of the files from the yolov4 will be copied into darknet directory to run object detection.
The lines of code below executes this process. Moreover, after running process.py script
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j: yolovd-obj.cfg

- [net]
# Testing
#batch=1
#subdivisions=1
S
batch=32
7 subdivisions=16
8 width=688
b eight=688
18 channels=3
11 momentum=@.949
12 decay=8.8085
13 angle=8
14 saturation = 1.
15 exposure = 1.5
16 hue=.1

1
2
3
4
5

5

18 learning_rate=08.881
19 burn_ins1068

20~ max_batches = 28888~
L21 policy=steps :
22~.s1eps=22460, 25200~

23 seales=.1,.1

Figure 5.32: Content of a yolov4-obj.cfg file

in darknet folder, train.txt and test.txt files are generated, and the content of these
files are shown in the figure 5.33. The train.txt and test.txt files must then be moved
to data sub-folder in darknet folder to maintain path consistencies such as those shown
in the figure 5.31.

Algorithm 5.7: Moving custom dataset and files from Google Drive to darknet folder

# cd back into the darknet directory to run detections
%cd darknet

#to deal with permission denied issues
Isudo chmod +x darknet
./ darknet

#Copy the obj.zip file to current directory (darknet)
lcp /mydrive/yolov4/obj.zip ../

# unzip the dataset (obj.zip) into /darknet/data/ subdirectory
lunzip ../obj.zip -d data/

# upload the custom .cfg to darknet cfg folder
lcp /mydrive/yolov4/yolov4-obj.cfg ./cfg

# copy the obj.names and obj.data files to darknet data folder
lcp /mydrive/yolov4/obj.names ./data
lcp /mydrive/yolov4/obj.data ./data

#copy and run process.py script to darknet
lcp /mydrive/yolov4/process.py ./
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4

I'python process.py

traintxt X Resources

test txt

Figure 5.33: Content of a train.txt (left) and test.txt (right) files. Please, note only few
lines are shown here

Step 10: Running YOLOv4 on technical drawings

Finally, YOLOv4 object detector can now be run on the custom dataset of technical
drawings of bridges. Following line of code has to be executed for training to begin. It has a
train command, path to obj.data and yolov4-obj.cfg, pretrained weights, -dont_show
to supress the output, and -map flag to also calculate mAP values. This step completes
the procedures to train custom object detector using Google Colab in cloud VM. The
training process should continue as long as average loss value decreases to a small value
in the range of 0.5-2, and mAP value increases to a higher value. If no changes are seen
in the values of average loss and mAP, then the training process could be stopped even
before the training is completed by itself. However, it is recommended to train the custom
object detector for 20000 iterations after determining the best set of hyperparameters.
(ALEXEYAB, 2021).

Algorithm 5.8: This command starts the training for custom object detection

./ darknet detector train data/obj.data cfg/yolov4-obj.cfg yolov4.conv
.137 -dont_show -map

#if for some reasons the training stops, use the following command to
start the training with last saved weights

I./darknet detector train data/obj.data cfg/yolov4-obj.cfg /mydrive/
yolov4 /backup/yolov4-obj_last.weights —dont_show -map
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5.4.2 Testing the trained YOLOv4 on Technical Drawings Dataset

Step 1: Testing trained YOLOv4 on a single technical drawing

After the training has been completed, the trained model will be tested on validation dataset
as well as some test images which were not included in validation dataset. To test the
detector, yolov4-obj.cfg file has to be modified as follows (code 5.9). The line 8 in the
algorithm 5.9 includes test command, path to obj.data, yolovd-obj.cfg, best.weights
and the validation or testing image (in this case image bw057_15).

Algorithm 5.9: Modifications in yolov4-obj.cfg file for testing the detector

# need to set yolov4-obj.cfg to test mode
%cd cfg
Ised —i yolov4 -obj. cfg
Ised —i yolov4 -obj. cfg
%cd

#to test the detector run the following command

I./darknet detector test data/obj.data cfg/yolov4-obj.cfg /mydrive/
yolov4 /backup/yolov4 —obj_best.weights /mydrive/images/bw057_15.jpg

imShow ( )

lcp predictions.jpg /mydrive/images/bw057_15_1_1.jpg

Step 2: Testing trained YOLOv4 on multiple technical drawings

YOLOv4 detections can also be run on multiple images at once provided that a . txt file,
in this case images.txt, contains the absolute paths to the test or validation images. the
figure 5.34 shows the paths to the multiple images to run detections at once. After running
the code in 5.10, the result.txt contains coordinates of predicted bounding boxes as
well as predicted class names.

Algorithm 5.10: Execute the following code to run detections on multiple images and save
the results of predicted bounding boxes in a . txt file

I./darknet detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights —
dont_show -ext_output < /mydrive/images.txt > result. txt
download ( )

f/_: images.xt

e B = =5 =
/mydrive/images/bw@@3_08.JPG |
/mydrive/images/bw@46_83.JPG

/mydrive/images/bw851_18.JPG
/mydrive/images/bw856_84.JPG

Figure 5.34: Content of a image . txt file for running detections on multiple test images at
once.
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More details related to the testing phase of object detector will be provided in chapter 6,
where the detector will be tested on multiple test images to show the predicted bounding
boxes on the resized images to avoid memory related issues. The coordinates of predicted
bounding boxes will be present in .result.txt file. The coordinates in this file are not in
YOLO format; hence, the predicted bounding boxes coordinates will first be converted to
YOLO format. The bounding boxes in YOLO format would then be scaled-up to map them
to the original sized images, so that the regions bounded by the bounding boxes can be
extracted and cropped out to be saved as separate images for scene-text detection. All of
the mentioned tasks will now be provided in the chapter 6.

5.5 Parametric Modeling and Data Augmentation

Parametric Modeling is a technique in CAD that assists designer in saving time by eliminat-
ing the need to redraw a design model every time if one of the design parameters changes.
Parametric modeling involves specifying design constraints and parameter constraints
to control the size and shape of the model. In this thesis, the parametric models for
the classes with insufficient instances were created in AutoCAD. The tab which allows
parametric modeling in AutoCAD is shown in figure 5.35.

A:n‘ﬁHHEﬂE - = % <f Share
Home Insert Parametric -ins

% Show/Hi y ) Show/Hide = :

[ L' how/Hide "ﬂ ﬁ- m howy - ﬁ“‘)
| [44 showall e 7] [% Showall 3 ‘

Auto __ . Linear Aligne Delete  Parameters
Comstrain (% =t [f1 =  [<§ Hide Al % [ Hide All Constraints Manager

m
s

Geometric ¥ Dimensional + ¥ Manage

Start  Drawing2 X -

Figure 5.35: Parametric Modeling tab in AutoCAD

As can be observed from figure 5.49 that several classes, such as frame, bridge_side_view,
bridge_top_view, deck_top_view, deck_plain_cross_section, deck_beam_shaped cross
section, and deck_t_shaped_cross_section have insufficient number of instances. Thus,
the original dataset is imbalanced. This is why parametric modeling techniques have been
implemented in AutoCAD to at least try to create model elements of classes with fewer
instances to augment the dataset. This is also one of the techniques of data augmentation
where new data is generated or added to a current imbalanced dataset so as to balance
the dataset and improve the overall accuracy.

Some of the parametric models for insufficient classes will now be described. It will be
difficult to cover all the insufficient classes in detail within the scope of this section. Only
parametric models of classes frame, deck_t_shaped_cross_section, and bridge_side_view
will be described in detail. Rest of the parametric models are summarized in the figure
5.44 with all geometrical and dimensional constraints hidden so that the reader can have
a clearer view of the drawings.
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For class "frame", the parametric model has been shown in figure 5.36 with geometrical
and dimensional constraints. In addition, the figure 5.37 also shows how easily the
parametric models could be modified to create a completely new and unique instance of
a class. The modifications are shown in the circles. Figure 5.38 displays that dynamic
dimensions can also be converted to annotated dimensions so that upon exporting the
.pdf file of a synthetic technical drawing, the dimensions are also visible on the drawing.

Figure 5.36: An example of parametric model of class "frame" with geometric and dimen-
sional constraints

Figure 5.37: An example of parametric model of class "frame". It can be noticed that the
dimensions have been changed easily to create another unique instance of the same
class. Some of the changes are shown in the circles

For class "deck_t_shaped_cross_section", the parametric model has been shown in figure
5.39 with geometrical and dimensional constraints. In addition, the figure 5.40 also shows
how easily the parametric models could be modified to create a completely new and
unique instance of that class. The modifications are shown in the circles.

For class "bridge_side_view", the parametric model has been shown in figure 5.41 and
5.42 with geometrical and dimensional constraints. Moreover, 5.43 shows two instances of
class "bridge_side_view" with geometrical and dimensional constraints hidden for reader
to have a clear view of the diagram.
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reference

Figure 5.38: To convert dynamic dimensions into annotated dimensions for showing
dimensions on the synthetic technical drawings

reference 1 outer geometry

reference 2'éiiter geometry

Figure 5.39: An example of parametric model of class "deck_t_shaped_cross_section"
with geometric and dimensional constraints

The parametric models were first exported as . pdf files from AutoCAD, and then they were
converted to . JPG files. The converted . JPG files are referred to as syndata_original
in this thesis. After resizing the syndata_original dataset, it is referred to as
syndata_resized which is then provided to Labellmg for data annotation process. Figure
5.45 shows an example of a synthetic technical drawing with annotated bounding boxes in
Labellmg tool. Figure 5.46 shows another example of synthetic technical drawing display-
ing the augmented classes. The synthetic data is resized according to the procedure and
algorithm 5.1 mentioned earlier in section 5.3.2. Similar to the bridge dataset, synthetic
dataset was also assigned meaningful names, such as syn_xx.JPG where syn denotes
that a technical drawing belongs to synthetic dataset and _xx denotes the image number
sequentially. Assigning such meaningful names also makes the next step easier which is
counting the number of instances. To count the number of instances of each of the classes
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reference 3 outer geometry

The angle of the prapet has
been changed

reference 3 outer geometry

Figure 5.40: An example of parametric model of class "deck_t_shaped_cross_section"
showing modifications performed to create another instance easily of the same class

Figure 5.41: An example of parametric model of class "bridge_side_view" with geometric
and dimensional constraints

Figure 5.42: An example of parametric model of class "bridge_side_view" with geometric
constraints
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Figure 5.43: An example of parametric model of class "bridge_side_view" with geometric
constraints

Figure 5.44: Parametric models of all of the insufficient classes are shown in this diagram
with geometrical and dimensional constraints hidden

in synthetic dataset, algorithm 5.2 is executed again in the base directory and the location
of annotated synthetic resized dataset (syndata_resized) is provided.

The total number of newly created instances of each of the insufficient classes is displayed
in figure 5.47. After adding the synthetic data to the original dataset, the total number of
instances for all of the 14 classes equals to 1213 instances as can be seen in figure 5.48.
This is also summarized in form of a bar chart in figure 5.50. It should be noticed that the
number of instances of each of the insufficient classes was increased by 30% to 40% only
(with exception of frame class).
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(@, deck t shaped cross
1, deck beam shaped cross_
2, deck plain cross section) --> Count: 8
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Figure 5.47: Total number of synthetic instances for each of the classes as well as overall
total

(base) C:\Users\daniyal\Desktop\Thesis> python count instances 2.py
Dverall statistics:
deck t shaped cro ion) > Count: 35
deck beam shaped ion) --» Count: 29
deck plain cross section) > Count: 28
deck top view) --» C«
abutment_wing_wall) --> Count: 135
abutment_retaining wall) --> Count: 245
abutment_retaining wall_cross_section) --»> Count: 88
abutment top view) --»> Count: 153
bridge_top view) --> Count: 29
) o )} -=> Count: 55
(1@, foundation top w) --> Count: 119
(11, foundation side vi -->» Count: 81
(12, frame) --> Count:
(13, table) --» Count: 155
--> Count: 1213
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Figure 5.48: After adding the synthetic data to the original dataset, the total number of
instances for all of the 14 classes equals to 1213 instances
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No of Instances per class

table 155
frame 23
foundation_side_view m——— 3]
foundation_top_view 119
bridge_side_view 46
bridge_top view mmm 22
abutment_top_view 152
abutment_retaining_wall_cross_section m——— 37
abutment_retaining_wall S ——————————————— ) /)

abutment_wing_wall 135
deck_top_view 19
deck_plain_cross_section 20
deck_beam_shaped_cross_section 21

deck_t_shaped_cross_section msm 20

0 50 100 150 200 250 300

Figure 5.49: Revisiting the bar chart (also included earlier as figure 5.25 in section 5.3.4)
displaying the total number of instances for each of the classes for a total of 15 bridges

No of Instances per class

table ITEEEEEEEE——— 155

frame 35
foundation_side_view Em—m—m—_ 81
foundation_top_view 119

bridge_side_view 55
bridge_top_view mmm 29
abutment_top_view 153

abutment_retaining_wall_cross_section EE—————_ 88
abutment_retaining_wall I 245

abutment_wing_wall I ! ] 135
deck_top_view 26
deck_plain_cross_section 28
deck_beam_shaped_cross_section 29

deck_t_shaped_cross_section mmmm 35

0 50 100 150 200 250 300

Figure 5.50: A bar chart showing the number of instances of each of the classes after
labeling synthetic data from parametric modeling
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5.6 Hyperparameters

The accuracy and performance of object detectors such as YOLOv4 which is based on
deep learning model are dependent on hyperparameters. The hyperparameters, in this
research, were obtained through a trial and error process. The table 5.2 includes the hy-
perparameters that were modified for each training. Hyperparameters are usually modified
to arrive at an optimum set of hyperparameters in terms of accuracy and performance.

Table 5.2: Different combinations of hyperparameters tested in this thesis

Case Description input layer width input layer height batch size  subdivisions

First run 416 416 32 16
Second run 608 608 32 16
Third run 416 416 32 8
Synthetic run 608 608 32 16

The results of the cases mentioned above are summarized in chapter 6. Upon increasing
the network resolution (input_layer_width and input_layer_height), changes in the
values of evaluation parameters such as average loss, average 10U, and mAP will be
monitored, and an optimum combination of hyperparameters will then be selected to
train the model over a larger number of iterations. All the cases (except the first run)
were trained for 8000-9500 iterations, and the execution was stopped when no further
improvements in the evaluation parameters were observed. The first_run case was run
for only 3500 iterations.

Batch size was kept constant at 32 and not any larger value such as 64, which is often
a norm, because the original bridge dataset consisted of only 175 technical drawings
which had a total of 1142 instances. Batch size is the number of images that will be
processed in one batch during one iteration, and trained weights get updated after each
iteration. Whereas, subdivisions is the number of mini-batches a batch is split into. For
instance, if the batch size is 32, and subdivision is 16, it means 32/16 = 2 images are
sent for preprocessing. This process will then be performed 16 times until the batch is
completed, and a new iteration will start with 32 new images. If memory-related issues
are encountered during the training process, then a higher value of subdivisions must be
set (16,32,64). If a higher subdivisions value is chosen, it takes a longer time to train since
the number of images being loaded is reduced.
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Chapter 6

Results

This section includes the results of a trained model, evaluation parameters, and evaluation
diagrams. The results of predicted bounding boxes on resized images will be shown in
this section. The predicted bounding boxes coordinates are then exported and stored
in a . tzt file. This text file is then be used to convert the bounding box coordinates into
YOLO format. This conversion makes it easier to scale-up the bounding boxes to map
them on the original sized images since the bounding box coordinates are normalized
with respect to the image. The scaled-up bounding boxes would then be shown, and the
script to scale-up the bounding boxes is also included in this section. After the bounding
boxes have been mapped on to the original sized images, the regions enclosed by the
predicted bounding boxes or regions where objects are detected are cropped out of the
original sized images. These cropped out regions are then stored as separate images
with meaningful names to perform scene-text detection. Detection results on technical
drawings would be shown on images from validation dataset and test dataset.

6.1 Case 1: 416_416_32_16

For case 1, where network resolution (input layer) width and height = 416, batchsize
= 32, and subdivisions = 16, the object detection results based on the yolov4-
obj_best.weights is shown in the figure. This was the initial case with the above mentioned
hyperparameters, and it was run for just 3500 iterations.

Table 6.1: Hyperparameters for the first case have been highlighted in the table below

Case Description input layer width input layer height batch size  subdivisions

First run 416 416 32 16
Second run 416 416 32 8
Third run 608 608 32 16
Synthetic run 608 608 32 16

6.2 Case 3: 608_608_32_16

For case 3, the network resolution (input layer) width and height = 416, batchsize = 32,
and subdivisions = 16. The diagram showing average loss and mAP curve with respect
to number of iterations is shown in figure 6.2. This case was initially run for above 8000
iterations, and the convergence in average loss can be observed in figure 6.2 . At the same
time, the values of mAP is seen to be converging. Later, after running the first three cases
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Figure 6.1: A loss and convergence diagram with respect to number of iterations

Table 6.2: Hyperparameters for the second case have been highlighted in the table below

Case Description input layer width input layer height batch size  subdivisions

First run 416 416 32 16
Second run 416 416 32 8
Third run 608 608 32 16
Synthetic run 608 608 32 16

as shown in table 5.2, it was observed that the third case (this case) outperformed all other
cases, and thus, this case was run for more iterations until 20000th iteration. This has
resulted in an increase in the quality of trained weights and overall object detection results.
The details on the other two cases (second run and synthetic run) will not be provided here,
but they will only be discussed briefly in chapter 7. Technical drawings showing predicted
bounding boxes are also shown in this section, and from the results, it seems that YOLOv4
has performed well in detection of elements in bridge technical drawings. To run and show
multiple technical drawings within the console output with predicted bounding boxes, the
following lines of code (algorithm 6.1) have to be executed. This display the technical
drawings with predicted bounding boxes as well as download and save the detections in
a specified folder on Google Drive. Figure 6.5 shows the "resized_valid_results" folder
where all the detection results on validation technical drawings are stored.

Algorithm 6.1: Execute the following code to run detections on multiple images and display
the predicted bounding boxes on technical drawings in the console output

from PIL import Image
import warnings
import os

import PIL

import glob

Image . MAX_IMAGE_PIXELS =
warnings.simplefilter ( , Image.DecompressionBombWarning)
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sourcePath
targetPath
print(os. listdir (sourcePath))

test_images = [file for file in os.listdir (sourcePath) if file.endswith

(( ; ; )]
print(f )

for image in test_images
os.system( f

imShow ( )
os.system (f

2800 5600 8400 11200 14000 16800 10600 22400 25200 28
ent avg loss = 1.4661  iteration = 8300  approx. time left = 24.39 hours
ppppp ‘s to save : chart.png Iteration number in cfg max_batches=28000

Figure 6.2: A loss and convergence diagram with respect to number of iterations

After receiving the technical drawings with predicted bounding boxes, the coordinates
of those boxes were generated and stored in a .txt file. To receive the coordinates of
predicted bounding boxes for multiple validation technical drawings, following lines of code
have to be executed (algorithm 6.2).

Algorithm 6.2: Execute the following code to run detections on multiple images and display
the coordinates of predicted bounding boxes in the console as well as export them to a
.txt file

os.system( f

download ( )
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Total Detection Time: 1 Seconds

Figure 6.3: A console output showing the average precision values for each of the
classes as well as the mean average precision (mAP) for the best weights received for the
highlighted hyperparameters in table 6.2

6.2.1 Converting Predicted Bounding Boxes Coordinates into YOLO format

The content of the text file named "bbcoordinates.txt" is shown in figure 6.4. Only a
few lines have been shown. The file shows coordinates of predicted bounding boxes
(in yellow) in figure 6.4. However, the coordinates are not in the YOLO format. The
coordinates are in the form of left_x, top_y width, and height. Moreover, only one .txt
(bbcoordinates.txt) file is received which contains coordinates of all of the predicted
bounding boxes in all of the validation image. In other words, for all the validation images,
only one file is received from YOLO object detector. This file (figure 6.4) contains predicted
bounding box coordinates for all of the validation images together. However, separate .txt
files are required for each of the validation image. To parse the bbcoordinates.txt file
and convert the coordinates of predicted bounding boxes in YOLO format, the equations
5.4 10 5.7 and the python script (algorithm 6.3) is used.

Algorithm 6.3: Execute the following code to convert predicted bounding boxes coordinates
into YOLO format

from pathlib import Path

import re

from collections import defaultdict

import cv2

READ_PATH_TO_CLASSES = Path( )
READ_PATH_TO_RESULT = Path( )
WRITE_PATH_FOR_YOLO_PRED = Path( )
READ_DOWNSCALED_IMGS = Path ( )
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Figure 6.4: The content of bbcoordinates.txt file with predicted bounding box coordi-
nates (yellow rectangles) and name of validation image shown in blue circle

Q, search in Drive

My Drive > resized_valid_results ~

M detect results BW0121.3. M detect results BWO12-1.0.

M detect results BW_54.2.0.. M detect results BW_52_28.

o A e —
ey
e
M detect_results_BWO74-6_9 M detectresults BWOS7-1_1

T
Erman
e e . M AT
P detectresulis_BWO18-1_6 P detectresults_BWO12-13
" s ]
i o
(-
-
P detect results_ BW003-2.5,., M detect results BW_58.8.5.

B detect results BW_52 1.0 M detect results BW_51_23.

“p

P detect_results_BWO12-1.3

M detect results_ BW_56_30...

P detect results_8W_51_5..

Figure 6.5: The content of "resized_valid_results" folder after running the test detector on

validation images

READ_EXTENSION =

def class_to_ids(classes):

idx =0
class_ids =

defaultdict (lambda:

__1)

for class_name in classes:

if class_name:
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class_ids[class_name] = idx
idx += 1

return class_ids

if _name__ == " main_ ":
# Read the classes
class_ids = None
with open(READ_PATH_TO CLASSES) as class_file:
class_data = class_file.read().split('\n")
class_ids = class_to_ids(class_data)

# Read the result file and dump them to separate files
with open(READ_PATH TO RESULT) as result_file:
result_data = result_file.read().split("Enter_Image_Path")

# Discard the header as it is not required
result_data = result_data[1:]

for detect _block in result_data:
# Discard the first 3 lines as they are not necessary:
detect_block = detect_block.split( \n’")[3:]

if detect block:
# Get the name of the file from the first line of the
block
file_name = re.split (READ_EXTENSION, detect_block[O0],
flags=re .IGNORECASE) [0]. split("/")[-1]

# Get the prediction image dimensions

img = cv2.imread(str (READ_DOWNSCALED IMGS. joinpath (
file_name + READ_EXTENSION)))

height, width, _ = img.shape

file_data = []
# For each file prediction, create a new yolo
compatible file
for row in detect_block[1:]:
# Strip round brackets from the string and split it
at colon
row_clean = re.sub("[()]","", row).split(":")

if row_clean and row_clean[0]:
yolo_pred = []
# Prepare yolo format string
yolo_pred.append(int(class_ids[row_clean[0]]))
# Class id
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# yolo_pred.append(class_ids[pred _clean[1].
split()[0]]) # Class probabilty

yolo_pred.append(int(row_clean[2].split()[0]))
# X

yolo_pred.append(int(row_clean[3].split()[0]))
#y

yolo_pred.append(int(row_clean[4].split()[0]))
# width

yolo_pred.append(int(row_clean[5].split()[0]))
# height

yolo_str = []

yolo_str.append(str(yolo_pred[0]))

yolo_str.append(str ((yolo_pred[1] + yolo_pred
[3]/2) /(width)))

yolo_str.append(str ((yolo_pred[2] + yolo_pred
[4]/2) /(height)))

yolo_str.append(str(yolo_pred[3] / width))

yolo_str.append(stir(yolo_pred[4] / height))

file_data .append( .join(yolo_str))

# Finally , save the prediction for each image into
separate file
with open(WRITE_PATH_FOR_YOLO PRED. joinpath (file_name +
), mode= ) as pred_file:
for pred in file_data:
pred_file.write (f )

6.2.2 Scaling-up Predicted Bounding Boxes

In this section, the predicted bounding boxes would now be scaled-up to map the predicted
bounding boxes to the original sized images. Initially, the original sized images were
resized to smaller images since running YOLO on original sized images caused memory-
related issues. Moreover, to use the original sized images even during the testing phase
also caused a long time to process and predict detections. That is why it was necessary
to resize the images. The testing and validation was performed on the resized images,
and the predicted bounding boxes were displayed on the resized validation images initially.
Some of the results of predicted bounding boxes on resized validation images from folder
"resized_valid_results" (shown in figure 6.5) will now be shown. The figures from figure
6.6 to 6.11 shows the results of object detection with predicted bounding boxes around the
classes of interest as well as their class probability. In addition, the scaling-up of predicted
bounding boxes, displaying them on original sized images, and cropping out the bounded
region were necessary steps because the dimensions and other useful text in resized
images were difficult to read as they were got blurred during the resize process. With
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predicted bounding boxes being displayed on original sized images, the text could be
easily read during scene-text detection process.

==
‘\J',,‘ 7
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Figure 6.6: Object Detection results on a bridge technical drawing named as BW_43_21
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Figure 6.7: Object Detection results on a bridge technical drawing named as BW_51_23,
showing the classes "foundation_top_view" and "foundation_side_view" identified
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Figure 6.8: Object Detection results on a bridge technical drawing named as BW012-
1_3, showing the classes "abutment_top_view", "abutment_retaining_wall_cross_section”,
"abutment_wing_wall", "abutment_retaining_wall", and "table" identified
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Figure 6.9: Object Detection results on a bridge technical drawing named as BW067-1_17,
showing the classes "abutment_top_view", "abutment_retaining_wall_cross_section",
"abutment_wing_wall", "abutment_retaining_wall", "deck_top_view", and "table" identified
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Figure 6.10: Object Detection results on a bridge technical drawing named as BW_56_30,
showing the classes "deck_top_view", "abutment_retaining_wall", and "frame" identified

i
I i

Figure 6.11: Object Detection results on a bridge technical drawing named as BW_56_30,
showing the classes "deck_top_view", "deck_tshaped_cross_section", and "table" identi-
fied
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After receiving predictions on the resized validation technical drawings, the process of
scaling-up of bounding boxes will now be performed. Please note that correct paths of
the folders have to be provided, and for the subsequent postprocessing steps, the folder
structure is shown in figure 6.12. Now all the folders and their contents will be explained
here:

BB C\Users\daniyal\Desktop\Final_test
Name Date modified Type

I classes { 26 File folder
M crops 0 40 File folder
W |abels 0 40 File folder
I original_valid

=S| output

M resized valid

M results 0 33 File folder

B drawia bels.py 0 39 PY File

s to_yolo_format.py 0 :35 PY File

Figure 6.12: The folders structure for subsequent postprocessing steps

classes folder:

This folder contains classes.txt file to identify classes and write labels for scaled-up
bounding boxes.

results folder:

This folder contains the bbcoordinates. txt file which is the text file in which predicted
bounding box coordinates are present. The path of this file was then provided as an input
parameter in algorithm 6.3 to convert the predicted bounding boxes coordinates into YOLO
format.

output folder:

This folder contains separate .txt files for each of the validation technical drawings
after running the algorithm 6.3 which converts the detected bounding boxes coordi-
nates in bbcoordinates.txt file to YOLO format. The algorithm 6.3 also parses the
bbcoordinates.txt file so that each of the validation technical drawings has a separate
.txt file containing detected bounding box coordinates in YOLO format. The content of
the output folder is shown in figure 6.13. The predicted bounding boxes . txt files in this
folder are then used along with the original sized images to scale-up the bounding boxes
using the algorithm 6.4 and display the bounding boxes on the original sized validation
images to crop out the regions bounded by the detected bounding boxes. The cropped
out regions are then provided to CRAFT algorithm (BAEK et al., 2019), which is a scene
text detection model based on neural networks.
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B > Final test » output

Figure 6.13: The content of output folder

original valid:

This folder contains the original sized images to be used in scaling-up the bounding boxes.
Since the images were resized to smaller images while keeping the aspect ratio constant,
the scaled-up detected bounding boxes map at the exact desired location.

resized valid:

This folder contains the resized images to be used in scaling-up the bounding boxes. Since
the images were resized to smaller images while keeping the aspect ratio constant, the
scaled-up detected bounding boxes map at the exact desired location.

labels:

The files in this folder are generated after running the algorithm 6.4. It contains the original
sized images with predicted bounding boxes generated on them with their class labels.
Figure 6.14 shows predicted scaled-up bounding boxes as well as their labels on the
original image. Moreover, the content of the labels folder is shown in figure 6.16. Please,
notice the large size of the original images on which the predicted scaled-up bounding
boxes are displayed.

crops:

This folder contains all the cropped regions extracted out from the original sized images
after displaying the scale-up bounding boxes on them to further process for scene-text
detection. The contents of the crop folder is shown in figure 6.17. Here also mean-
ingful names are provided to each of the cropped image. The name is defined as

bridgename_classname_instancenumber.
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Figure 6.14: The original sized images corresponding to the resized image in figure 6.6
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Figure 6.15: The original sized images corresponding to the resized image in figure 6.7

Algorithm 6.4: Execute the following code to scale-up the bounding boxes to be displayed
on the original sized images and then crop out the regions enclosed by the predicted
bounding boxes

from pathlib import Path
import glob
import os
import cv2
import csv
from matplotlib import cm
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W > Final test » labels
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Figure 6.17: The content of crops folder

READ_PATH_TO_CLASSES = Path ( )
READ PATH FOR YOLO PRED = Path ( )
READ_IMGS_DIR = Path ( )
WRITE_LABELLED_IMGS_DIR = Path ( )
WRITE_CROPPED_IMGS = Path ( )

EXTENSION =
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def insensitive_glob (pattern):
def either(c):
return % (c.lower (), c.upper()) if c.isalpha() else ¢
return glob.glob(’ ' .join(map(either, pattern)))
def draw_bb(img, x0, y0, x1, y1, label, color, line_thickness = 30):
img = cv2.rectangle(img, (x0, y0), (x1, y1), color, line_thickness)
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6,
1)
img = cv2.rectangle (img, (x0, y0O - 20), (x0 + w, y0), color, -1)
img = cv2.putText(img, label, (x0, yO — 5), cv2.
FONT_HERSHEY_SIMPLEX, 5, (0,0,255), 20)
def clamp(n, smallest, largest):
return max(smallest, min(n, largest))
def get_bgr(rgba_normalized):
return (
int (rgba_normalized[2] * 255),
int(rgba_normalized[1] =+ 255),
int (rgba_normalized[0] =+ 255),
)
if __name_ ==

# Get the classes names
classes = []

with open(READ_PATH_TO CLASSES) as class_file:
classes = class_file.read().split( )

# Create the colormapper, see more options here. Required for
distint colors

# https :// matplotlib.org/3.5.0/tutorials/colors/colormaps.
html

cmap = cm.get_cmap( )

# Get all the yolo prediction text files names
pred_files = insensitive_glob (f )

# Get just the base file names without extensions

pred_base_names = list (map(lambda x: os.path.basename(x).split( )
[0], pred_files))
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# For each image, we draw the bounding box
for idx, file_path in enumerate(pred_files):
# Open the corresponding image
img_name = pred_base_names[idx] + EXTENSION
img = cv2.imread(str (READ_IMGS _DIR. joinpath (img_name)))
org_img = img.copy ()
height, width, _ = img.shape

# Read the predictions text file

with open(file_path) as csv_file:
csv_reader = csv.reader(csv_file, delimiter= )
counter = 0

for row in csv_reader:

if row:
cls_id = int(row[0])
label = classes[cls_id]
cx = int(float(row[1]) = width)
cy =

int(float(row[2]) =« height)
bb_width_half = int(float(row[3]) = width / 2)
bb_height_half = int(float(row[4]) = height / 2)

x0 = clamp(cx - bb_width_half, 0, width - 1)
y0 = clamp(cy - bb_height_half, 0, height - 1)
x1 = clamp(cx + bb_width_half, 0, width - 1)

(

y1 = clamp(cy + bb_height_half, 0, height - 1)

draw_bb(img, x0, y0, x1, y1, label, get_bgr(cmap(
cls_id / (len(classes) - 1))))

# Save the ROl to file
cv2.imwrite ( str (WRITE_CROPPED _IMGS. joinpath (f

)), org_img[y0:yl, x0:x1])
counter += 1

# Save the image after drawing bounding boxes
cv2.imwrite (str (WRITE_LABELLED_IMGS_DIR. joinpath (img_name)),

img)

6.2.3 Scene Text Detection
In this section, scene text detection is performed on the cropped regions extracted from the

original sized images. This task is performed by utilizing a deep learning based CRAFT
scene text detection algorithm to extract useful information related to the bridge elements
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in technical drawings (see algorithm 6.5. The information could be textual or dimensional.
The algorithm is a PyTorch implementation of CRAFT.

The result of CRAFT are stored in a folder called scenedetect, and the contents of the
folder is shown in figure 6.18. Furthermore, the bounding boxes around the text are
cropped out to extract the useful textual and dimensional information as shown in figure
6.19.

Q  Searct rive 3=
My Drive > scenedetect -
Folders

M Bw074-6_9_sbutment_win I Bw074-6_9_shutment_top

B owo74-6_9_abutment_win.., M Bwo74-6_9_sbutment_win B owo074-6_9_abutment_top. M ewo74-6_9_abutment_top...

Figure 6.18: The content of scenetext folder after running CRAFT

Q,  searchin Drive =

My Drive » scenedetect > BWO74-6_9 abutment wing wall 4 _crops -~

7.40 2.00 2.8 Abstai14/20

c1op_20.pag

14/201614/2814/2814/2 £

g N o'

Figure 6.19: The content of the subfolder of a cropped region after running CRAFT
displaying further the cropped regions extracted from bounding boxes around the textual
information

Algorithm 6.5: Execute the following code to performed scene text detection using CRAFT
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Figure 6.20: Scene text detection performed on cropped image showing the class "abut-
ment_wing_wall"

pip install craft-text-detector

from google.colab import drive
drive .mount( ' /content/gdrive ")

I'In —s /content/gdrive/My\ Drive/ /mydrive
I'ls /mydrive

'pwd
%cd /mydrive

# import Craft class
from craft_text_detector import Craft

# set image path and export folder directory

image = 'crops/BW074-6_9_ abutment_top_view_0.JPG’ # can be filepath ,
PIL image or numpy array
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Figure 6.21: Scene text detection performed on cropped image showing the class "abut-
ment_top_view"

output_dir = 'scenedetect/’

# create a craft instance
craft = Craft(output_dir=output_dir, crop_type="poly", cuda=False)

# apply craft text detection and export detected regions to output
directory
prediction_result = craft.detect_text(image)

# unload models from ram/gpu
craft.unload_craftnet_model()
craft.unload_refinenet_model ()
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Chapter 7

Conclusion & Future Works

labled dataset as contributiom oftechjniacl drawigsg

This section concludes the thesis with discussions on finding and provisions for future
works. The questions asked in the research objectives section 4.2 will now be discussed
under the section 7.1

7.1 Findings and Conclusions

This thesis particularly focused on object detection of bridge elements in technical drawings
of bridges using deep learning and parametric modeling techniques. YOLO was trained on
the training dataset of 2D technical drawings to detect the classes of interest. Moreover,
parametric modeling was performed to augment the dataset. Lastly, scene text detection
with the help of CRAFT algorithm was implemented to extract dimensional and textual
information from the cropped regions of the technical drawings.

o What useful information can be extracted from the 2D technical drawings of the
bridges?

In this thesis, object detection in technical drawings of bridges was performed
to detect the bridge elements and assign them to their classes of interest. The
YOLO object detector was trained on resized technical drawings of bridges and the
detected bounding boxes were then scaled-up to map them to the original sized
images. These were necessary steps since firstly, if the model is trained on original
sized images then several memory-related issues were encountered. Secondly, the
scaling-up of bounding boxes was performed because the textual and dimensional
information on the resized images was not easily readable as it got blurred during the
resize process. Scene text detection using CRAFT was performed to mark bounding
boxes on the text and then crop out those bounding box regions.

e To what degree the process of object detection of bridge elements in technical
drawings of bridges can be automated? In other words, what are the contributions of
this research?

In this thesis, object detection and scene text detection was performed to automate
or at least automate the object and text detection process in technical drawings
of bridges. Since generating DT of the existing bridges is a time-consuming, error
prone, and a manual process, in this thesis, efforts were put into automating some
of the aspects of detecting objects and text in technical drawings. Several scripts
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are mentioned in the earlier chapters to automatically generate train and test text
files, to run the detection results on multiple images, to save the output of bounding
box coordinates to a text file, to convert the predicted bounding box coordinates to
YOLO format, to count the total number of instances of each of the classes, to resize
the original sized images, to scale-up the predicted bounding boxes and display
them on the original sized images, to crop out the predicted bounded regions on
original sized images, and finally to perform scene text detection to extract useful
information out of the cropped regions. Also, the trained weights that were achieved
in this model training can now be used to detect any other bridge technical drawing.
This has contributed in a way that the annotated bridge technical drawing dataset is
also available for further reuse in future works.

How is the performance of deep learning object detector model which has been
selected in this thesis?

It was observed that YOLO has performed seemingly well in object detection of
bridge elements in 2D technical drawings, as can be interpretted from mAP which
was 89.15% for the best set of combination of hyperparameters within the scope
of this thesis. Also, it can be observed from figures 6.6 to 6.11 that the class
probabilities of the classes of interest are also reasonable. However, it was observed
that YOLO struggles with detecting smaller objects. Objects that were smaller that
15% of the image size were poorly detected. However, increasing the network
resolution to higher numbers such as 832x832 can resolve this issue. On the other
hand, the trained YOLO model was able to detect larger objects with a reasonable
accuracy. Moreover, it was also able to detect the overlapping classes as can be
seen in figure 6.6.

How can the performance of the object detection model be improved?

In the scope of this thesis, the best combination of hyperparameters were arrived by
trial and error process. It was observed that as the network resolution increases from
416 to 608, the mAP values improved. However, it took longer to train the model.
Moreover, evaluation parameters for the third_case is summarized in table 7.1 for
the only iterations until 8000.

Is it possible to augment the existing dataset? If so, what are effects of performing
such data augmentation on the overall accuracy?

The technical drawing dataset used for training was imbalanced as the number of
instances for some of the classes were way more than the other classes. The classes
with fewer number of instances could not be augmented with a lot of synthetic data
as this can also result in lower mAP values. As the classes were already insufficient,
a greater amount of synthetic data could not be generated or added to the existing
dataset. Figure 5.47 shows the total number of newly added instances for each of
the classes. Although adding synthetic data to an existing dataset increases the
amount of training data available, it is not always true that adding a huge amount
of synthetic data to existing dataset would result in an increase in accuracy values.
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Table 7.1: Evaluation parameters for third_run case

iteration precision recall fiscore avgiou map

500 0,35 0,14 0,2 22,6 18,99
1000 0,34 0,66 0,45 22,47 46,21
1500 0,8 0,86 0,83 63,85 83,87
2000 0,9 0,85 0,88 72,87 76,92
2500 0,94 0,89 0,92 7598 84,1
3000 0,94 0,89 0,92 76,61 86,96
3500 0,92 0,91 0,91 75,12 83,05
4000 0,93 0,93 0,93 76,03 88,89
4500 0,9 0,88 0,89 74,27 86,93
5000 0,94 0,88 0,91 79,65 87
5500 0,94 0,89 0,92 79,91 84,71
6000 0,94 0,87 0,91 79,81 87,21
6500 0,92 0,87 09 77,13 86,67
7000 0,93 0,89 0,91 79,13 88,16
7500 0,97 0,87 0,92 79,67 83,76
8000 0,9 087 0,89 7556 88,42

best 0,95 0,91 092 79,13 89,15
last 0,92 0,87 09 7732 88,45

Also, it can be noticed that the dataset still remains unbalanced. This is due to the
fact that several classes, such as abutment_retaining_wall, abutment_wing_wall,
abutment_top_view, tabel, foundation_side_view, foundation_top_view, and abut-
ment_retaining_wall_cross_section are more frequently present in any of the tech-
nical drawings of a bridge since there are 2 abutments, 4 wing walls, 2 retaining
walls, 2 foundations, and so on. Moreover, these classes also have a higher number
of instances in the dataset because many of the technical drawings for each of
the bridges also included reinforcement details drawn within each of these classes.
This has automatically increased the number of instances for each of these classes.
Figure 7.1 shows reinforcement details included within the shapes of frequently
occurring classes which has increased the number of instances. It was observed
that training with synthetic augmented data did not improve the accuracy. This could
be possible because of the still imbalanced dataset. The accuracy might not have
also improved since the dataset even after data augmentation is still smaller; hence,
a larger dataset is required to increase the accuracy further. From figure 7.2, it can
be observed that the best mAP value was 88.14% for "syn_run" case as compared
to the best case (third_run 89.15%).

7.2 Future works

In this research, object detection was performed to detect bridge elements in 2D technical
drawings. This has also resulted in trained weights for as many as 20000 iterations for the
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Figure 7.2: A console output showing the best mAP value and iteration number

best set of combinations of hyperparameters. These weight could now be re utilized in
future works to perform detections on any other set of technical drawings. Furthermore, a
complete set of annotated technical drawing dataset is now available for further reuse in
any future works.

In this thesis, scene text detection was also performed on the cropped out regions of
bounded by the predicted bounding boxes on the original sized images. The results of this
process are bounding boxes surrounding the textual information on the technical drawings
as well as cropped out textual information. These results can be re-utilize in future works
in a way that now OCR can be carried out on to make the information machine-readable.
This would then assist in connecting the dimensional information (numbers) to the edges
of the bridge elements. This creates another step forward in generation of DTs of existing
bridges.
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However, it should also be noticed that even more data is needed to increase the per-
formance of the model. It can be concluded that the results of thesis, such as shape
information from object detection and textual information from scene text detection would
seemingly assist or lay foundations for future researchers in generating DTs of the existing
bridges.
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