
Biases
Model
Machine
learning
predictions in
protein biology
 Christian Dallago

Technische Universität München
TUM School of Computation, Information and Technology

Biases Model Machine Learning Predictions in Protein
Biology

Christian Dallago

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology der

Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Julien Gagneur

Prüfende der Dissertation:

1. Prof. Dr. Burkhard Rost

2. Prof. Dr. Mathias Wilhelm

3. Prof. Anne-Florence Bitbol, Ph.D.

Die Dissertation wurde am 29.06.2022 bei der Technischen Universität München eingereicht und durch

die TUM School of Computation, Information and Technology am 21.11.2023 angenommen.

Biases model machine learning predictions in protein biology I

ACKNOWLEDGEMENTS
Giving credit to the countless people that enabled me in producing the following pages is the entire

reason for this manuscript to see the light of day, by and large for me to dwell in these endeavors,

and probably amongst the hardest things to get right (rewrite n>100). Beyond the hardships,

throughout which I could always count on helping hands, I recognize once again to have had the

incredible privilege of being allowed to study what I wanted, where I wanted, in the time I needed;

to have been allowed to fail, in science and life, sometimes quite spectacularly, without leaving

indelible marks; to have been allowed to claim successes supported largely by others. As such, the

work presented in the following is beyond a summary of years invested in scientific and personal

trial and error. It serves as relatively miniscule token of appreciation compared to the immense

patience, understanding and help that family, friends, and colleagues I relied on over the past too-

afraid-to-count-them years have so kindly gifted me.

To Christoph Wüstner, Markus Schmidt, Elisabeth Neumann, Jan Kukačka, Christopher Göth,

Alex Sobieska, Hannes Stärk, Daniel Graziotin, Céline Marquet, Michael Heinzinger, Roc Reguant,

Stefano Trebeschi, Tim Karl, Maria Littmann, Yichun Lin, Maximilian Miller, Juan Miguel Cejuela,

Guy Yachdav, Marcel Rodgers, Silvia Coran, Victorie Monnier, Deimos Larcher, Wessel Van

Haarlem, Laura Venturato, Anna G. Green, John Ingraham, Jody Mou, Kadina E. Johnston, Andrea

Schafferhans, Bruce Wittmann, Gary Bader, Luisa F. Jiménez-Soto, Tobias Piffrader, Nick

Bhattacharya, Kevin K. Yang, Rostislav Nedelchev, Marco Munarini, Luca Rosalia, Verena Burger,

Klaus Niedermair, Lucas Thomée, Augustin Luna, Hesam Rabeti, Timothy Lennon, Robert Feeney,

Alexandra Franz, Moritz Moroder, Inga Weise, Konstantin Schütze, Sebastian Persson, Antonio

Luca Alfeo, Mathias Wilhelm, Raian Eduardo Contreras, Marco Lanca Fischnaller, Patroklos

Samaras, Jonas Reeb, Yassine El Alami, Jeffrey Wong, Chris Soon Heng Tan, Sami Afifi, Paolo Di

Stefano, Tim Schlachta, Caner Hazirbas, Matthias Schmidt, Stefano Vaona, Daniele Parisi, Kordian

Bruck, Nicolai K.H. Barth, Maximilian Denninger, Malte Butsch, Nima Dehmamy, Bernd Kohler,

Vera Von Leon, Dinko Milaković, Yannick Mahlich, Natalia Quinones Olvera, Nicolas Fafchamps,

Max Franz, Adam J. Riesselman, Nicolai Tornow, Peter Koo, Ananthan Nambiar, Ali Madani; to

science dad Burkhard Rost, grandad Chris Sander, big sis’ Yana Bromberg and Tatyana Goldberg;

to the friends in Italy, Spain, the U.S., Singapore, France, Germany, Sweden, and wherever else life

has brought you; to my former and current colleagues at Rostlab, Sanderlab and Markslab; to the

collaborators; to my students; especially to my mom Patrizia, siblings Sarah & Alex, and

grandparents Laura & Romano; to all who have contributed to my growth as a scientist and

person, during and leading up to the long walk that finds a fork here:

thank you!

ACKNOWLEDGEMENTS I

PREAMBLE 1

1 SUMMARY 3

2 INTRODUCTION 4

2.1 PROTEINS: FUNCTION, STRUCTURE, AND SEQUENCE 4

2.1.1 PROTEIN FUNCTION 6

2.1.2 PROTEIN STRUCTURE 9

2.1.3 PROTEIN SEQUENCE 11

2.2 MACHINE LEARNING PROTEINS 14

2.2.1 GENERATING COMPUTABLE REPRESENTATIONS OF PROTEIN SEQUENCES 15

2.2.2 ACCESSIBLE AND EXPLORATIVE PROTEIN MACHINE LEARNING 18

3 SCIENTIFIC CONTRIBUTIONS 20

3.1 CELLMAP VISUALIZES PROTEIN-PROTEIN INTERACTIONS AND SUBCELLULAR LOCALIZATION 20

3.2 LEARNED EMBEDDINGS FROM DEEP LEARNING TO VISUALIZE AND PREDICT PROTEIN SETS 21

3.3 PREDICTPROTEIN – PREDICTING PROTEIN STRUCTURE AND FUNCTION FOR 29 YEARS 23

3.4 FLIP: BENCHMARK TASKS IN FITNESS LANDSCAPE INFERENCE FOR PROTEINS 24

3.5 ADDITIONAL PEER-REVIEWED SCIENTIFIC CONTRIBUTIONS 25

4 CONCLUSION 28

REFERENCES 31

5 APPENDIX 37

5.1 CELLMAP VISUALIZES PROTEIN-PROTEIN INTERACTIONS AND SUBCELLULAR LOCALIZATION 37

5.2 LEARNED EMBEDDINGS FROM DEEP LEARNING TO VISUALIZE AND PREDICT PROTEIN SETS 54

5.3 PREDICTPROTEIN-PREDICTING PROTEIN STRUCTURE AND FUNCTION FOR 29 YEARS 87

5.4 FLIP: BENCHMARK TASKS IN FITNESS LANDSCAPE INFERENCE FOR PROTEINS 96

Christian Dallago 2

Biases model machine learning predictions in protein biology 1

PREAMBLE
Probably one of the most common observations I read and wrote over the years of my doctoral

studies was that “protein structure/function are experimentally known for much fewer proteins for

which sequence is known”. Before dwelling into what protein structure, function, or sequence are

in the following chapters, I want to highlight here that this observation encodes one more crucial

piece of information than may immediately be apparent. While we do know some experimentally

validated aspects of proteins (structure, function and even sequence through mass spectrometry),

and we can putatively produce more data for the protein language (sequences) based on

translation rules (from DNA to protein sequences), what we observe overall in protein sequence

databases, whether annotated or putative, is but a fraction of proteins that constitute the diversity

of life. Here the potential diversity of protein sequences is to be seen not only as the biodiversity

present at the current evolutionary timestamp, but throughout evolution, from millions of years

ago to today. For instance, we don’t have nearly as much sequencing data on viruses (making up

2% of protein sequence databases) as we do on bacteria (68%), and conversely, we often collect

representative sequences (of a spices), rather than individual ones (from individuals). On top, much

of what existed in the protein space will be lost in history, as time run its course and sequencing

is a modern invention. Yet, historic data is desirable to build an understanding of how we came to

be, or in biology terms, of evolutionary turns and twists, which are often needles (weak signals) in

the most proverbial of haystacks (big data). Nevertheless, as a practical result, we are subject to

biased data in biology, for instance by what protein sequences we store in databases, necessarily

constrained by when they appear in evolution (mostly now, except some ancestral sequences

found in fossils, permafrost, and soil). This becomes more tangible as we get into the annotated

protein space, a tiny fraction of the recent snapshot of proteins recorded, where biases

accumulate due to a mix of experimental limitations and feedback loops, ultimately imposing

limits on our ability to experimentally model what proteins do (their function) and how they look

in three dimensions (their structure).

In all of this, researchers operating at the interface of computers, statistics and biological data

are tasked with producing first fundamental and then better ways of analyzing and interpreting

available biological data to fill the knowledge gaps and smoothen selection biases from

experimental approaches, somewhat like inventing and repairing a compass while navigating on

the surface of the ocean with the goal of mapping the marine life below. Machine learning and

software come in handy, providing a vast array of techniques to learn from available data to infer

general patterns that could be leveraged minimally for coarse analyses, and often for predictive

purposes. As such, biases do model machine learning predictions in protein biology, as we build tools

on assumptions inferred by data available today, producing computational representations (e.g.,

the weights of machine learning models) of biology we can use to infer future aspects of proteins.

Christian Dallago 2

As towards the end of my doctoral studies I found the idea of biases in protein bioinformatics

to be exciting, the following discourse focused on contextualizing some of my scientific

contributions around how biases play a role in machine learning proteins, especially sequences,

and how to push the boundaries through the curation of new datasets, new machine learning

tools and software. A secondary personal goal was to perform a reflection on where we stand and

what we must look out for to create fair and valid machine learning tools in protein biology,

especially in the context of my own contributions. As a result, I found that contributions on

representation learning for protein sequence offer, amongst other things, an attempt to

smoothen selection biases of sequence databases by learning general sequence representations

from large protein databases. Unsupervised approaches for protein function predictions,

particularly the instances where function is not categorical (e.g., via ontologies) but rather left on

a continuous, could be viewed as smoothening annotation biases by focusing on similar protein

pockets (clusters) in a high dimensional space. Software solutions for the visualization, annotation

and prediction of protein attributes can be viewed as attempts to push scientific explorers out of

uninformative feedback loops, as well as to make science more accessible to all. Ultimately, while

biases play a role in machine learning biology and may sometimes sidetrack our understanding of

the biological world, the models of biology we can produce have many advantages. For instance,

we can use machine learning in biology to drive development of cancer therapeutics, but we

should remain vigilant that most of our sequencing data, including from cancer patients, comes

from specific pockets of the global population, which could limit the applicability of our discoveries

to certain individuals. However, it’s worth considering that in the absence of any solution,

especially when dealing with disease, every solution is a step forward.

In closing, let me highlight that in writing this dissertation my primary goal was to make it

engaging (fun is not quite scientific), based on science dad’s (see Acknowledgments) “science is

communication” mantra. (Self-perceived effective) communication in this instance proved a

monumental task requiring a year of nurturing and two weeks of labor to bundle the essence of

about 20 manuscripts (on sometimes entirely different topics) into a single, cohesive body of text.

Little did it help that this piece needed to fulfill all the (often quite tedious) constraints imposed by

regulatory bodies. As a result, unsurprisingly to those who know me from the trenches of early

drafts, I chose to a) politely rebel against the system, and b) fall short on nitty-gritty insider details

to give way to big picture ideas, which should hopefully facilitate even the least seasoned

bioinformatics research reader in engaging with the topics discussed, while also hopefully not

drawing on the ire of regulators to fault the attempt. If you come across terminology you don’t

know, my suggestion is to just move on – it’s not about the detail! While for those that fancy

numbers, graphs, and hardcore terminology, I highly suggest you skim over the manuscripts

mentioned in the “Scientific contributions”, all of which are open access and linked.

Biases model machine learning predictions in protein biology 3

1 SUMMARY
Annotations of protein function and structure are available for far fewer protein sequences than

those reported in protein sequence databases, which in turn are far fewer than all proteins that

have existed in nature thought history. Bioinformatics is tasked with leveraging the limited

information encoded in protein function, structure, and sequence annotations to find and extract

general knowledge about biology which practitioners can leverage to develop solutions improving

the state of living things. Evidently, using little data to extrapolate blanket interpretations of

biology is a delicate practice that could be tipped towards unfavorable outcomes by selecting

information, either consciously or unconsciously. This thesis is an attempt to review the state and

origin of biases in protein bioinformatics, as well as a perspective on how applications of machine

learning and software could be used to address them. In practice, I will frame several efforts I

contributed to in- and around machine learning to convey computational meaning to human

collected protein data, and to translate machine predictions to meaningful human features

through software. The outcome of this deep dive will highlight that representation learning

approaches on large protein sequence sets could smoothen biases induced by curated sequence

datasets and limited supervised function/structure sets. Furthermore, the continuous and space-

sharing nature of these representations allows them to be correlated to protein function on a

continuum, potentially overcoming limitation of sharp protein function categorizations. Finally,

software democratizing protein predictions, for instance through visualizations, provides means

to dissect machine models of biology potentially enabling new discoveries.

Christian Dallago 4

2 INTRODUCTION
In the following sections, I will introduce some aspects of protein bioinformatics and how biases

may determine experimental annotations. These are fundamental concepts such as what proteins

are, how they function, how machine learning comes into play to learn their properties, and how

humans and machines exchange models of biology.

2.1 PROTEINS: FUNCTION, STRUCTURE, AND SEQUENCE

Proteins are the building blocks of life. They carry out functions within and outside cells, tissues,

organs, organisms, and spices, as messengers and messages (Ramilowski et al., 2015). The

common process of protein generation is started when genetic information encoded in genes

(DNA) of an organism’s cells get transcribed into messenger RNA (mRNA), which is then translated

by cellular machinery into proteins. The three macromolecules involved in this process (DNA, RNA

& proteins) all deserve credit for the diversity and complexity of life, they each occupy physical

space in unique three-dimensional shapes, are composed by smaller parts (from bases or amino

acids down to atoms) and carry out a multitude of functions sensitive to their operating contexts.

Building a discourse around these biological entities requires picking a point of view and accepting

some assumptions, ultimately conveying a mental model to you (the reader), which conversely will

be the model used to interpret biology in most of the applications discussed in the following pages.

One possibility to model biomolecules is to look at them through high-resolution microscopy

pictures of cells in tissues (Schermelleh et al., 2019), which in the ideal case can be used to frame

DNA, RNA, and proteins as they appear in cells. The prerequisite here would be that we can get

high-resolution pictures of these macromolecules from tissues, and the following assumption is

that these pictures suffice for all kinds of predictions we are interested in. However, we

unfortunately are still away from pictures at the required resolution to operate on biomolecules

purely through imaging (Schermelleh et al., 2019). Thus, the preferred representation in

bioinformatics, and relevant for the discourse here, are proteins (and RNA, and DNA) as ordered

strings (like written sentences) of amino acids. Here the prerequisite is that each of these

biomolecules can be further divided into sub-parts (bases and residues), a condition we are able

to satisfy, and the assumption is that these strings, in a particular order, represent the entirety of

the meaning of that macromolecule. This assumption is also largely satisfied, although the reality

of biology is complex, and rarely is it the case, as we will see shortly, that a protein functions

without acting on some other entity. As such, while sequence does carry much of a protein’s

meaning, and as we’ll see, we can reconstruct a lot of information from it, quite some meaning is

Biases model machine learning predictions in protein biology 5

also dependent on contextual factors, such as by the cellular environment (in which tissue and at

what time of the cellular cycle is the protein expressed) (Dobson, 2003).

Fig. 1 – Models of protein sequences. Protein sequences contain multidimensional information that can be
encoded in an abstract form (e.g., computational protein models), which can be leveraged to reconstruct protein
properties (e.g., structure). Effectively, these protein representations are modelled by protein data available to
machine learning methods.

The three fundamental biological macromolecules DNA, RNA and proteins interpreted as text

could be put in an analogy to Old English, English, and Mandarin, respectively. DNA and RNA are

to some extent similar, both can be represented in written form, and each sentence or document

written in the DNA/RNA language carries some meaning. Proteins, on the other hand, while still

forming sentences and documents with structure and meaning, differ in some fundamental

respects from DNA/RNA, for instance by encoding more compact representations of meaning (in

the analogy, what ideograms are to Arabic characters). While the analogy to variations of English

and Mandarin is an oversimplification (for instance some of the DNA/RNA language can simply not

be translated to proteins), fascinatingly, all these biological languages share a communality to

natural language in that they can represent physical objects, like a chair, simply through the

chaining of characters in an orderly fashion. In fact, natural language and evolution gives you the

ability to picture a chair just from reading five tokens on some digital or physical medium (provided

you know the language and you can read, neither of which are trivial prerequisites). Thus, from an

information perspective, what we will operate on is the language of biomolecules with the intent

of constructing meaning from it, the same way we construct meaning from natural language. From

a practical perspective, this dissertation will focus on proteins, rather than DNA or RNA. The

Christian Dallago 6

following subchapter will expand on complex attributes of proteins (function), moving to more

tangible ones (structure), to finally end up with the most basic protein property, protein sequence.

2.1.1 PROTEIN FUNCTION

Protein function is probably the most elusive protein property to define. A protein can perform

function(s) self-sufficiently (see catalytic enzymes), or in combination with other molecules (see

protein complexes) (Ashburner et al., 2000). Proteins may perform different functions at different

timepoints of their existence in the cell (Henzler-Wildman and Kern, 2007), they may lose or gain

functions through evolution as could be seen today by sequence/structure similar proteins in

different organisms doing different things (Barua et al., 2021). Functions may be trivially

measurable (protein X functions in cytoplasm), they may be relative to a protein’s role in a biological

pathway (protein X activates transcription of Y) or be characterized through far-reaching complex

phenotypes like disease (mutations of protein X causes disease Z). On top, many aspects of protein

function are most likely on a continuum, rather than ON/OFF toggles, meaning that their activity

can be modulated to higher or lower output. This could be achieved through contextual means,

for instance, by having more or less of a protein in a cell (thus regulating protein expression)

(Woods and Vousden, 2001), or by intrinsic properties of proteins, such as changes in sequence

(Fowler and Fields, 2014; Yang et al., 2021).

To standardize discourse around what proteins do / how they do it, researchers introduced

categorization schemes and ontologies. At the fundamental biological level, i.e. describing the

protein rather than its role in complex phenotypes (disease) or high order interactions (pathways),

one of the better known and maintained bio ontologies is the Gene Ontology (GO)

(The Gene Ontology Consortium, 2019). GO comes with an associated database that maps

annotations to proteins in the protein sequence database UniProt (The UniProt Consortium, 2021),

namely the Genene Ontology Annotation (GOA) database. Through GO, proteins can be

categorized on three major axes: the molecular function (MFO) a protein is involved in (e.g.,

signaling), the bigger biological processes (BPO) it is involved in (e.g., DNA repair), and the cellular

compartments (CCO) it functions in (e.g., nucleus). Next to GOA stand resources that look at one

or the other aspect of function in greater detail, or under a different light. Case and point: Enzyme

Commission (EC) numbers and the ENZYME database (Bairoch, 2000). Enzymes are proteins

involved in catalyzing chemical reactions, which in turn regulate processes in- and outside cells.

Enzymes also play a fundamental role in signaling (Mildvan, 1997). While potentially serving similar

purposes (considering the MFO and BPO ontologies in GO), GOA (The Gene Ontology Consortium,

2019) and ENZYME (Bairoch, 2000) differ widely in the numbers of annotations, from the

944’228’169 reported by the former, to the 6’553 reported by the latter as of February 2021. This

disparity can be attributed to several reasons, the main one probably being that the GOA number

reported accounts for “annotations via sequence similarity” and even computational predictions,

Biases model machine learning predictions in protein biology 7

implying that instead of having some physical experiment in a lab on dishes or animals resulting

in an annotation with a degree of certainty and “reality”, we use expertise and machines to infer

annotations. This may be alright if the prediction error is within the experimental error,

unfortunately this is rarely ever the case in biology, especially when operating on coarse

annotations such as protein function, and the experimental error may not be fully captured in the

models machines compute on.

A further example of function annotated by many is protein subcellular location (i.e., where a

protein locates in the cell). Other than GOA’s CCO annotations (The Gene Ontology Consortium,

2019) there are SwissProt (The UniProt Consortium, 2021), the Human Cell Atlas (HCA) (Thul et al.,

2017), and PROLOCATE (Jadot et al., 2017), just to name a few. These resources, although

conceptually recording the same data (protein subcellular location), differ by many aspects. First,

they may use different ontologies if any ontology at all (case: PROLOCATE). This, in turn, can have

an impact on what they record and what they decide not to record, e.g., in PROLOCATE, only eight

subcellular localizations are considered, while we know many more exist in nature. Compare this

to the 2’702’774 possible GO terms in the CCO ontology (fair: some may be related as GO has a

“tree” structure), for which there exist 222’477 entries in GOA having both CCO annotations and

being at least experimentally validated. Secondly, different datasets may be selection biased by

the experimental assays used (case: immunofluorescence in HCA vs. isobaric labeling in

PROLOCATE), which come with tradeoffs and favor some conditions/cells/locations over others.

Third, these datasets may be further selection biased by recording “interesting” organisms (case:

human in HCA and mouse in PROLOCATE) limiting the space of “annotated” to only a few,

potentially similar organisms. On top, annotations in these sets may contradict each other (Marot-

Lassauzaie et al., 2019). Ultimately, all this uncertainty begs the question: if a researcher in

bioinformatics is interested in predicting subcellular location for proteins from sequence, what

will, at this point, the best dataset be? What will the true label be? Or, in fact: the biologically correct

label (if in set A protein X is in cytoplasm and in set B protein X is in nucleus: which one is it?) My

conclusion: it depends. If the researcher is interested in predicting where human proteins locate,

then HCA’s dataset may be the best for validation and testing. Yet, given scarcity of data,

PROLOCATE data may be used for training, as many proteins in human and mouse share a certain

level of sequence similarity (implying they will most likely do the same thing, more later). If the

researcher’s goal is absolute generalization, sequence similarity and “in-distribution” predictions

are in fact hurting, so the best way to go about this is to cluster protein sequences and train on a

certain cut out of the sequence space, and validate and test against other, non-overlapping cuts

of the sequence space. For this particular use case (but so many others) the complexity that arises

is what to do with sequences falling in a cluster having different, maybe even contradicting

annotations.

Deep mutational scanning (DMS) assays (Fowler and Fields, 2014) are an attempt to describe

function on a continuum. In these experiments, a particular function (e.g., binding to another

molecule) is quantitatively measured under sequence changes (most often by substituting

Christian Dallago 8

iteratively every residue in a known protein sequence to every other possible alternative). The

usual DMS set will minimally contain 19*sequence length samples each one Manhattan distance

away from the starting sequence. While giving a detailed picture of the functional impact for the

immediate sequence neighborhood to some reference protein sequence, these sets are still very

few and noisy (Wittmann et al., 2021; Reeb et al., 2020). For instance, they are biased to the

activity/function measured, and may thus not fully capture the protein’s ability to perform some

different activity it is involved in during its lifetime.

Fig. 2 – Proteins can have multiple functions. If functions are on a continuum, then wildtype (as found in nature)
proteins may be intersections of functional states at an optimum (e.g., f1 is binding to protein X, f2 is thermal
stability and f3 is ability to migrate to the nucleus). Tweaking the protein sequence could enable moving along one
function or multiple functional hyperplanes.

Another contributing factor to ambiguity, complexity and error in protein function annotation is

driven by cumbersome processes to move high-resolution/high-accuracy annotations between

humans and machines. On the one hand, from humans to machines, much of the data collected

by scientists through experiments is summarized in text in scientific manuscripts that are difficult

to use for computations. For example, in the case of pathway data, which represents how complex

biological processes happen, human curators extrapolate data from manuscripts and translate

them to computable artifacts (e.g., the BioPAX (Demir et al., 2010) format) in efforts like Reactome

(Jassal et al., 2020) and KEGG (Kanehisa et al., 2021). On the other hand, from machines to humans,

predictions are seldom accompanied by useful software to navigate machine learned models. This

becomes especially challenging when dealing with multimodal annotations of protein functions,

which may be better contextualized by complex visualizations layering different biological

dimensions.

Biases model machine learning predictions in protein biology 9

Computational tools offer, on the one side, solutions to model protein function (chiefly, here,

machine learning) by smoothing potential biases and contradictions from labeled sets, and on the

other side, software to communicate findings from and to machines (Littmann, Heinzinger,

Dallago, Olenyi, et al., 2021). Trivially, a biologist could predict subcellular localization given a

machine learning device with weights adjusted on a particular dataset using a particular machine

learning architecture. More fundamentally however, that same machine learning device with

those weights is a model of what subcellular localization is, it captures a meaning, conditioned by

several assumptions, and may account and adjust for inconsistencies and biases in annotations

(be that: sources of annotation, labels used, or experimental error). Software tools to explore

predictions beyond outputting text, but by providing engaging displays of information to users

may facilitate scientific discoveries and break feedback loops of predictions feeding experimental

annotations, in turn generating more diverse datasets for new predictive applications.

2.1.2 PROTEIN STRUCTURE

As opposed to function, protein structure can be derived by first principles, and thus describing

what structure is (at different levels) is simpler. However, also for protein structure, complexity of

measurements and limitations of experimental approaches curb the space of possibilities,

resulting in some degrees of experimentally induced selection biases.

The highest-fidelity representation of protein structure is through 3D coordinates of atoms

making up said protein. A relatively big collection of these is available at the Protein Data Bank

(PDB) (Berman et al., 2000). 3D protein structures get recorded mainly through one of three types

of experiments, whose setups determine what kind of proteins can be measured and at what

resolution. These are important factors: high-resolution structures are necessary to understand

dynamics of how proteins interact with other molecules (e.g., other proteins, DNA, RNA, or small

molecules), but so is being able to measure proteins in their native environment (e.g., the protein’s

“fold” in the cell membrane). However, as is unfortunately often the case in biology, “needs” often

clash with reality of our tools and techniques. X-ray crystallography offers high-resolution protein

structures (making up ~88% of PDB as of March 2021), but experimental preparation disrupts the

native environment of proteins, and per effect, may introduce unwanted artifacts and, even worse,

limit the types of proteins that can be measured. For instance, in this modality, membrane

proteins, which play fundamental roles in disease, cannot be characterized in their native

environment. A lower resolution technique, NMR (~8% of PDB), offers instead to capture proteins

closer to their natural context, at the cost of often prohibitively low resolution for most

applications (e.g., to study protein-small molecule interactions). Hybrid approaches merging these

techniques may lead to the best of both worlds for some proteins (Ottmann et al., 2007), but are

not widely adopted. Similarily, a promising in-between (high-resolution and native context)

technique exists (cryoEM), yet due to its relative novelty, and only recent limited breakthrough in

Christian Dallago 10

resolution (Yip et al., 2020), not many proteins have been characterized using cryoEM (~4% of PDB),

let alone: at high enough resolution.

To add insult to injury, while it may be tempting to believe that although there are

experimental limitations, we may just measure any protein that we are interested in, most

experimental techniques rely on template structures to seed reconstruction of measurements,

i.e.: one can measure things that bare some similarity to known structures or on structures we

can predict. This may constitute at best another selection bias, and at worse a confirmation bias.

Furthermore, all traditional, non-predictive experimental techniques are resource intensive (in

equipment and time), and their cost increases with higher starting uncertainty (and repeat

measurements). Naïvely picking a protein of interest and starting a campaign to determine its

structure from scratch is thus doomed to make life much harder, a reality that many PhD students

and doctoral advisors avoid for a variety of reasons, many times rightfully beyond the boundaries

of scientific interest or relevance. However, these limitations translate to sets containing many

redundant structures, often from similar protein families/folds. Going back to why, thus, the PDB

is relatively big: while many structure are deposited, usable are those with high resolution (or

minimally ≤3Å) which as of October 2020 are 225’161; however, many of these are redundant

(meaning: similar structures / similar proteins), and if we were to reduce to proteins with sequence

overlap below 20 percent sequence identity (PIDE), then we end up with 8’988 structures. While

this is a good number, an even better Å cutoff, especially when looking at contacts, is 1.2Å, which

will result in a usable set of 678 structures – a very low number in deep learning terms.

Depending on the goal of the analysis redundancy is not always unwanted. If the redundancy

is at the level of protein sequence (several structures exist for similar protein sequences in

different contexts), and the goal is to model structure dependent on e.g., binding to other

molecules, then two folds (structures) for the same protein sequence may come in handy. For

instance, the now infamous spike glycoprotein (S) of SARS-CoV-2 has two main conformations: one

when resting on the surface of the virus, and one when the virus is binding through the Spike

protein to the ACE2 receptor on the surface of, amongst others, human cells (O’Donoghue et al.,

2021; Song et al., 2018; McCallum et al., 2020; Henderson et al., 2020). Having various models of

proteins sharing sequence similarity to the Spike protein will help model the different

conformations it may assume. Other than “rigid” conformational changes (analogy: an open or

closed door), there are conformational changes of energy unstable parts of the protein (also,

disordered regions) that often have a functional meaning (analogy: shoelaces that when tightened

and knotted hold the shoe in place, and when left to their own devices just wobble around

seemingly without purpose). For disordered regions in proteins, as in the previous case, having

redundant structures might give a hint as to how those regions behave under different conditions

(e.g., in a complex), and more challenging attributes, such as how the protein functions. Overall,

conformational changes suggest a link between the mechanics of structure and the purposes of

proteins encoded by their function, and thus, at least to some extent, structure has an influence

on (and a predictive ability for) protein function.

Biases model machine learning predictions in protein biology 11

A lower resolution representation of structure is via residue-level annotations of secondary

structure. Best known through the Description of Secondary Structure of Proteins (DSSP) method

(Kabsch and Sander, 1983), protein sequences can be annotated at the residue level by observing

in what conformation each residue participates in the folded 3D structure of the protein. The three

most prominent secondary structure classes are alpha-helices, beta-bridges (that can form sheets

and strands), and whatever is neither alpha nor beta (commonly other, not to be confused with

irregular, which more closely resembles disorder). This different protein structure representation,

and its ability to more closely couple with protein sequence, provided a useful proxy in lowering

the complexity of structure reconstruction for predictive purposes, although lowering resolution

tremendously.

Machine learning approaches on protein structures have a lot of potential. Differently than

protein function predictions, the protein structure task allows to define some objectives with

undeniably clear solutions, based on geometry and physics. For instance, one could consider only

the “native” state of proteins (e.g., after assembly, not involved in any activity), and ask the

question: what is the secondary structure of native proteins? Complexity can be dialed up, and

one could attempt to predict the whole 3D protein structure. In fact, a solution touted as the

solution to this task exists, on paper since December 2020, and available to all since early summer

2021. AlphaFold2 (Jumper et al., 2021) made headlines by offering to predict protein 3D structure

at astonishing accuracy (sometimes better than experimental assays), validated by a competition

that was started to prepare test sets with a degree of “uniqueness” of the structures, to promote

generalization and tackle bias. The full range of tasks that can benefit from AlphaFold2’s

predictions remain to be fully uncovered, but recent preprints suggest beneficial use for disorder

prediction (Jumper et al., 2021), mutation effect prediction (Pak et al., 2021), and more (Akdel et al.,

2021; Modi and Dunbrack, Roland L, 2021).

2.1.3 PROTEIN SEQUENCE

The most straightforward representation, and conversely property, of a protein is its sequence.

Proteins can be broken down to ordered chains of residues, each representing one of 20 amino

acids. This ordered sequence of residues can be written in text form, and is the starting point of

most bioinformatics approaches, especially those trying to “de novo” predict aspects of proteins.

A protein sequence uniquely identifies a protein, and the same protein sequence will uniquely

fold into the same native 3D shape, i.e. protein structure. As protein sequence is thus uniquely

linked to protein structure, and protein structure is linked to protein function, there is a link

between protein sequence and function (Rost, 1999; Nair and Rost, 2002). Cutting a few corners,

we may assume that protein sequence encodes all the information necessary to characterize a

protein (structure and/or function) up to contextual factors (such as: which cell does the protein

express in? = different subcellular locations? Is it secreted? = subject to varying ph levels? Is it

Christian Dallago 12

binding? = conformational changes?). In fact: from a physical perspective, considering all the forces

atoms forming a protein/its residues are subject to, it is possible to accurately reconstruct protein

3D structure through simulation. However, while this is true in theory, in practice the complexity

of considering all the physical constraints of protein sequences growing in length quickly outpaces

the amount of compute available, rendering exact simulations of proteins infeasible (similarly as

our inability to precisely model the weather), even in the polypeptide (up to 30 residues) space.

Nevertheless, we can try to approximate/predict structure/function by using probabilistic

(Ingraham et al., 2019) or frequentist (Hecht et al., 2015) approaches, and even simple pattern

matching (Lange et al., 2007) just from an input sequence enhanced by evolutionary information

leveraged through clever lookups (how did the protein evolve in time/throughout species?) or

machine learned sequence representations.

Fig. 3 – Sequence neighborhoods contain similar functioning sequences. In a sequence-sequence plane, those
sequences within a circle of small radius share sequence identity and are thus more likely to fall into similar 3D
shapes and perform similar functions, while those in larger circles are likelier to be more dissimilar in structure
and function.

Starting point for these approaches are thus protein sequences. Quantitatively, proteins can be

assayed experimentally via proteomics (Samaras et al., 2019), answering the question “How much

of a known protein sequence is present in a sample?”. But for the question of “what’s the sequence

of a/any protein in a sample?”, limited options are available (Howorka and Siwy, 2020). One assay

recently showing promising results for the protein space is nanopore protein sequencing

(Howorka and Siwy, 2020), but as of today: it is limited to small exploratory studies. In the absence

of high-throughput solutions operating directly on proteins, the accepted solution is to exploit the

central dogma of molecular biology (Cobb, 2017): DNA (a blueprint of the machinery) transcribes

RNA (an interpreter) which translates proteins (the machinery). This dogma can be leveraged by

sequencing DNA/genes to translate them into protein sequences. As mentioned in an earlier

section: from an information content / text perspective, DNA and RNA are interchangeable, both

composed of a vocabulary of four characters (nDNA = {C, G, A, T}; nRNA = {C, G, A, U}; n meaning

“nucleotide”), of which three are identical and overlapping (C, G, A) and the fourth can be directly

Biases model machine learning predictions in protein biology 13

mapped between representations (T = U). Protein sequences have a richer vocabulary (resprotein =

{A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V}; res meaning residue). For many triplets of DNA,

which encode RNA nucleotides there are translation to protein representations (e.g., DNA({UGU,

UGC}) = protein(‘C’)), as well as nucleotide triplets that signal start (DNA(AUG)) and end (DNA({UAA,

UGA, UAG})) of a potential protein. At this point it’s worth noting that, as much as these translation

rules may be convenient, they introduce several levels of ambiguity (e.g., DNA(AUGUA) = protein?).

Furthermore, biological mechanisms may determine only parts of a protein to code, or genomic

segments to encode different proteins using the same genetic material (spicing). Truly here, the

hacks that biology uses to decode genomic material into several variations of proteins appear to

be endless (or, at least, not entirely characterized). For instance, viruses such as SARS-CoV-2 can

leverage several mechanisms to code one or the other protein at a given point in time, as well as

variations of proteins by mixing the same genetic material in different ways (O’Donoghue et al.,

2021). On top of this, while exact, expensive DNA sequencing techniques exist, the high

throughput “next generation” (NGS) techniques that allowed to go from $100mio to sequence a

human’s genome in the early 2000’s to merely $1k today come with some perplexity regarding the

correct reconstruction of the genome (DNA) sequence, and, per effect, translation to protein

sequences. TrEMBL is a part of the UniProt database (The UniProt Consortium, 2021) that contains

putative sequences (as of April 2021: 214’406’399 sequences), obtained by applying the translation

rules from nucleotides to proteins on reference genomes of organisms. “Reference genomes”

themselves are single artificial genome assemblies of an organism obtained from processing and

“averaging” individual genomes to minimize sequencing error and maximize reconstruction

accuracy, artificially disregarding some level of natural variation found in life, more cleverly

captured with pan-genomes (Tettelin et al., 2005). While useful, reference genomes may introduce

the same issue found when describing a group of people by their average height, i.e., there may

exist no individual of average height. Conversely, by smoothing the perceived “measurement”

error, we may instead smoothen natural variation.

Once experimental evidence for some aspect of a putative protein becomes available, e.g., by

running a proteomics scan on a cell line for that organism, these no-longer entirely putative

sequences become part of SwissProt (as of April 2021: 564’638 sequences), another section of

UniProt (The UniProt Consortium, 2021). In proportion, for every protein sequence with some level

of experimental annotation in SwissProt, there are 380 sequences for which we know only

putatively (maybe!) that that sequence exists in that organism as deposited in TrEMBL, a striking

1:380 ratio, or 380 times sequences with unknown function, structure, and sequence for every

one sequence with some level of either sequence, function, or structure certainty. These putative

sequences highlight that beyond a hypothesis, the amount of “unknown” vastly overshadows the

universe of “known”. To complicate things, while apparently many sequences are deposited in

UniProt (the primary protein sequence resource), whether they be putative or labelled through

some experiment, they still come from a limited set of organisms for which we started to build

reference genomes, few of which are completed. Most of these genomes are those of human-

Christian Dallago 14

relevant species, like human-comparable organisms (in terms of genome and proteins, e.g.,

mouse, pig, etc.), or of human-harming organisms, such as bacteria, viruses, or of organisms with

potential industrial applications for human health, such as some plants. Efforts addressing the

human-centric bias in sequencing exist, e.g., by metagenomic sampling (Steinegger and Söding,

2018), but without further labelling and interpretation of their outputs, these approaches will only

scratching the surface, given the limit imposed by requiring reference genomes to reconstruct

fragmented genomic reads, as well as by missing detail on the hacks used by underrepresented

organisms (e.g., viruses) to code for proteins.

2.2 MACHINE LEARNING PROTEINS

Fundamentally, a desideratum in protein bioinformatics is to go from protein sequence (cheap to

obtain and wildly available) to properties of proteins, such as atomic coordinates of the folded

protein. This case may sound like a trivial problem to solve, considering that we know the physics

behind amino acids and could model their interactions in space through simulations. However,

this process is exponentially computationally expensive as proteins increase in sequence length

and is not a viable option for the average protein of 350 residues (=amino acids). Frequentist based

machine learning approaches, such as Deep Learning, offers an alternative to resource

demanding simulations by approximating results to an optimum solution learned by observing

known samples. Particularly interesting in this space are those methods that can model proteins

from their sequence “de-novo”, i.e., without any other knowledge but sequence. Predictions of

protein structure have driven translational innovation in machine learning, software engineering,

data science and biology for decades (Rost and Sander, 1992, 1993a, 1993b, 1994). Today,

AlphaFold2 (Jumper et al., 2021) promises to bridge the annotation gap from sequence to structure

for a significant space of otherwise experimentally uncharacterized proteins. While tempting to

believe that solutions like AlphaFold2 are an eureka moment, it’s useful to consider that these

tools were the culmination of decades of interdisciplinary research which drove four major

advances:

1. Impressive engineering, from hardware (GPUs and networking) to software, connecting

and speeding up every aspect of an end-to-end tool (so much so that it can be run from

the web through cloud solutions (Milot Mirdita et al., 2021))

2. Identification of structure-relevant input features, in particular “direct evolutionary

information”, first as background information (BLOSUM) (Henikoff and Henikoff, 1992),

then through alignment of similar protein sequences in multiple sequence alignments

(MSAs), to direct coupling analysis (DCA) (Morcos et al., 2011), and finally to self-supervised

learning through machine learning (Jumper et al., 2021)

3. Advancements in machine learning, in particular convolutional networks and deep

learning (AlQuraishi, 2021; Wu et al., 2021; Ching et al., 2018)

Biases model machine learning predictions in protein biology 15

4. Growth of sequence and structure databases, enabling more depth (deeper alignments)

and width (effect of sequence variation on structure) (The UniProt Consortium, 2021)

One cannot really disentangle the interleaving of machine learning research and biological

discoveries which led to the incredible number of solutions available today for an array of

applications. It’s also apparent that whenever one field unlocks a new advance, the others have a

unique chance to fill the void of opportunity. For instance, when DCA made its way in 2011 (Morcos

et al., 2011) revolutionizing the way we predicted protein structure from sequence (Hopf et al.,

2012), it took until 2017 for its application to be translated to mutation prediction (an aspect of

protein function), as more complete mutational landscapes were needed (Hopf et al., 2017) (a case

of biology catching up with machine learning). It took some more years for machine learning,

hardware and software design to catch up, in order to render this solution scalable (Frazer et al.,

2021) (an example of software engineering and hardware catching up with machine learning), and

until curated datasets for assessment would become available (Dallago, Mou, et al., 2021) (an

example in dataset engineering catching up with biology and machine learning).

Machine learning protein structure can have an influence on predicting protein function

as well, as may transpire from reading in-between the lines of previous paragraphs (Sander and

Schneider, 1991; Nair and Rost, 2002; Rost, 2002). In fact, if we accept that proteins fold into

definite 3D structures constrained by their sequence (and their cellular context), and if we accept

that proteins share function when they fold in similar shapes, then we can assume that the

structure of a protein largely influences its function. Predicting protein structure is thus a great

proxy to some aspects of function as showcased by techniques that work for structure prediction

(e.g., direct coupling analysis (Thomas A Hopf et al., 2019) predicting effect of mutations on protein

fitness (Hopf et al., 2017)). Conversely, basing function prediction purely on approaches that work

for protein structure may bias or constrain our approaches, and we could instead devise solutions

to directly predict protein function from sequence using machine learning (Littmann, Bordin, et

al., 2021; Littmann, Heinzinger, Dallago, Olenyi, et al., 2021), allowing these tools to highlight

different realities than those biased by structure might (Meier et al., 2021; Marquet et al., 2021).

2.2.1 GENERATING COMPUTABLE REPRESENTATIONS OF PROTEIN SEQUENCES

Machine learning protein sequences falls under the general category of “representation learning”

(Bengio et al., 2013), in particular answering the question “how to teach machines models of

protein sequences”, often irrespective of the downstream task these models might be used for

(Bepler and Berger, 2019; Heinzinger et al., 2019; Alley et al., 2019; Meier et al., 2021; Elnaggar et

al., 2021). Representation learned systematically (i.e., on all proteins, irrespective of organism or

tissue) were initially motivated by the observation that successful machine learning tools in

protein predictions where subject to two major limitations driven by the most import input feature

Christian Dallago 16

(evolutionary information). First, evolutionary information in the quality required by machine

learning applications is unavailable for most proteins. For instance, MSAs are informative when

they are deep (containing many sequences), as well as diverse (highlighting what shuffles of

residues still render viable proteins within the overall context of a protein sequence) yet meeting

both requirements is frequently not possible, especially for dark proteins, making up large chunks

of the recorded sequence space (Perdigão et al., 2015), let alone the not-recorded sequence space.

Second, searching for evolutionary information explicitly (or, as I dubbed it earlier “direct

evolutionary information”) is increasingly computationally expensive, as the growth of sequence

databases outpaces the increase of transistors in microchips (in other words: we can’t rely on

faster chips to search larger sequence databases). As such, models learning purely from sequence

without relying on transformations on top (e.g., MSAs) are a desideratum since several years in

bioinformatics. Thankfully, groundbreaking advancements in natural language processing (NLP)

(Devlin et al., 2019; Raffel et al., 2020) set the stage, allowing machines to learn semantics of

proteins just from observing the grammar encoded in protein sequences into protein language

models (pLMs). Without going into the details of the models (which are explained in detail in the

open access manuscript referenced in the “Scientific contributions” chapter), the common

approaches used to learn meaning from sequence can roughly be partitioned into two sets:

1. Models that learn to predict the next residue in a protein sequence given the information

from previous residues with some decay in length (i.e., the further in the past some residue,

the less influential for the next prediction). These approaches relied on recurrent networks

using Long-Short Term Memory (LSTM) modules (Heinzinger et al., 2019; Alley et al., 2019;

Bepler and Berger, 2019). For instance, a model like this would learn what follows an

ordered sequence of tokens such as “I have to run to catch the ____”, by placing more

attention (for the machine learning specialist: not in the machine learning “attention”

sense) to the last word before the gap. It learns representations iteratively, meaning it first

predicts the first word based on the fact that it’s the first; then the second based on that

the previous one was an “I”; then the third based on that the previous was “have” and some

residual information about “I”, and so on.

Biases model machine learning predictions in protein biology 17

Fig. 4 – Recurrent Neural Network learning task. In the bottom is the input sequence, on the top is the predicted
sequence. A gray arrow upwards represents the prediction from the model based on the input below. ⚈ represents
the beginning of a sequence, while ▲ represents the end. At each step (left to right) the machine learning device
is tasked with predicting the next character. Once a prediction is completed, the residual information from that step
is carried over to the prediction of the next character (horizontal gray lines).

2. Models that learn to reconstruct corrupted sequences based on the non-corrupted input

(based on transformers (Devlin et al., 2019; Raffel et al., 2020)). For instance, these models

would take a sentence and mask some words at random positions, such as “Today it’s

really _____ at the beach.”. Naturally, you would prioritize a few words (sunny, windy, warm,

etc.) over the many possible options in your head. The model is tasked with doing the

same, in particular it is tasked with predicting the single correct word for the sentence

from its uncorrupted form. In this case, there’s no iterative learning, as tokens are masked

at random, and the model is simply tasked with reconstructing them, sometimes several

times for the same sentence masked at different positions.

Fig. 5 – Masked Language Modelling learning task. A transformer model learning through Masked Language
Modelling (MLM) will learn how to reconstruct an input sequence (top in the black box) corrupted at random sites
(yellow highlights). During training, the sequence will be corrupted at different locations increasing the ability of the
model to learn the relationships between different tokens of the uncorrupted sequence. At each training step, the
model is tasked with producing the most likely token at the masked positions.

Christian Dallago 18

While initially pLM representations didn’t quite live up to more traditional feature retrieval

strategies (Alley et al., 2019; Heinzinger et al., 2019; Bepler and Berger, 2019), ultimately, the

second variety of models both gained in speed and accuracy, topping some charts (Rives et al.,

2019; Elnaggar et al., 2021). Nevertheless, the true advancement these models brought isn’t

necessarily in “beating SOTA”, but in providing a different encoding of protein sequences than

what either traditional methods or sequence alone could.

About two years into the development of the first pLMs (Bepler and Berger, 2019; Rao et al.,

2019; Alley et al., 2019; Heinzinger et al., 2019), two more factors influenced the scientific

community towards continuing to dissect these models. First, the realization that the learned

protein representations showed good performance on function tasks, and not quite on the same

proteins that MSAs would (Littmann, Heinzinger, Dallago, Olenyi, et al., 2021). This was a great

indication that a different representation than what was available through direct evolutionary

information was needed to answer some questions in bioinformatics, and maybe pLMs could

enable that. Additionally, by providing continuous representations of proteins, functional

predictions weren’t constrained by categories, but could be assigned on a continuum (more on

this in “Conclusion”). Second, once abstract computational representations of proteins from their

sequences were obtained, the machine could be poked to go the other way around and suggest

sequences to answer questions on function or structure (Madani et al., 2021). Clearly, this was not

a novel idea, with many applications of machine learning in protein design (Yang et al., 2019; Ogden

et al., 2019; Bryant et al., 2021; Frazer et al., 2021). The striking difference for pLMs over other

approaches is that these systematic approaches like SeqVec (Heinzinger et al., 2019) or ProtTrans

(Elnaggar et al., 2021), which learned on all protein sequences available in some database, may

contain a more fundamental signals, and thus encode a more overarching representation of

proteins. In other words, while EVE (Frazer et al., 2021) may cover well the depth of one protein,

ProtTrans models may cover the width of all proteins.

2.2.2 ACCESSIBLE AND EXPLORATIVE PROTEIN MACHINE LEARNING

Accessible machine learning is a multifaceted topic, spanning from how models are made

available to the community, to how predictions are consumed and interpreted by biologists. In the

case of protein predictions, tools like PredictProtein (Bernhofer et al., 2021), CellMap (Dallago et

al., 2018, 2020) or EVcouplings (Thomas A Hopf et al., 2019) primarily aim at making advances in

machine learning accessible and interpretable to the community by wrapping advanced research

outputs into easily usable UIs with digestible visualizations. These software solutions could be built

around live predictions models (e.g., PredictProtein (Bernhofer et al., 2021) and EVcouplings

(Thomas A. Hopf et al., 2019)), or repackage predictions from an array of models into custom

visualizations (e.g., CellMap (Dallago et al., 2018, 2020)).

Biases model machine learning predictions in protein biology 19

One of the major challenges in developing these solutions is to balance the ease of use and

interpretability with computational overhead stemming from computing predictions or

visualizations (Bernhofer et al., 2021). For instance, predictions from pLMs wrapped in a webserver

through bio-embeddings (Dallago, Schütze, et al., 2021) required a complex, distributed setup,

with pLMs running on GPU equipped machines, and feature models (like subcellular localization

prediction (Stärk et al., 2021)) running on CPU equipped machines. Through this setup, predictions

for single sequences could be computed almost instantaneously, allowing downstream analysis

on the fly. However, this setup cannot instantly predict at proteome scale, and thus different

approaches, such as pre-computing predictions for an organism, may be more sensible for

system-wide analyses.

Furthermore, developing sensible visualizations is another challenging task. On the one hand,

visualizations help consumers grasp a view of complex topics, but conversely, they could constrain

the space of exploration, or even unintentionally mislead (Kelleher and Wagener, 2011). In the

case of subcellular location prediction, instantaneous predictions using pLMs coupled with cell

maps (Dallago et al., 2018) can highlight where a single protein may be located in a cell, but

arguably it may be more beneficial to visualize this in the context of all proteins of that organism

to hypothesize which proteins may interact based on their spatial proximity. Further enhancing

this visualization by contextualizing proteins with their experimentally known interaction partners

(i.e., overlaying protein-protein interaction information) could render more powerful hypothesis

generation tools. However, as protein subcellular location prediction tools don’t have tissue-

specific resolution (e.g., a protein might locate in the cytoplasm in liver tissue, but in the nucleus

in brain tissue), a visualization suggesting that two proteins are in different cellular compartment

and interact based on experimental data might suggest a more complex mechanism than occurs.

Ultimately, how experimental and predicted biological data is presented has a direct impact

on the biological interpretations that can be extracted from said data, and potentially influence

discoveries (Chari et al., 2021). Nevertheless, making prediction tools available for the community

to use is essential to enable further discoveries, yet designing them to be effective is a big

challenge (Gardner et al., 2022).

Christian Dallago 20

3 SCIENTIFIC CONTRIBUTIONS
The following sections list four publications accompanied by a short summary and relevance to

this dissertation. A longer discussion about how these publications fit into the discourse outlined

in the introduction will follow in the Conclusion. First authors are highlighted by underline. Due to

regulatory constraints, many potentially interesting scientific contributions are added here in spirt

only, for instance in the last section of this chapter.

3.1 CELLMAP VISUALIZES PROTEIN-PROTEIN INTERACTIONS AND SUBCELLULAR

LOCALIZATION

Original publication. This chapter was originally published as a peer-reviewed journal article:

Dallago C, Goldberg T, Andrade-Navarro MA et al. CellMap visualizes protein-protein interactions

and subcellular localization [version 2; peer review: 2 approved]. F1000Research 2018, 6:1824

(https://doi.org/10.12688/f1000research.12707.2)

Summary. Several alternatives to visualizing protein-protein interactions (PPIs) exist. Most focus

on visualizing PPIs in arbitrary spaces (e.g., two or more nodes in a network). Similarly, several

tools visualizing where proteins locate in the cell exist, but these often focus on visualizing

individual proteins by highlighting the areas on some predefined cell image of where proteins may

appear. The novelty introduced by CellMap was to combine the two biological dimensions of

protein location and interaction into a single visualization. Through the tool, an instance of which

is available at cellmap.protein.properties, users can search for proteins using their UniProt (The

UniProt Consortium, 2021) identifier. Once a protein of interest is identified, a protein-centric page

displays information about interaction partners and localizations. From the protein-centric page a

“map” view displaying the protein and its interaction partners can be opened. In this view, the cell

is like a city map on google maps, while proteins are dots on the map localizing the protein in one

of its possible subcellular locations. In this view, interactions between all proteins on display can

be overlayed, as well as interactions of selected proteins with their partners. The tool was designed

with flexibility in mind, allowing users to upload their own datasets and their own cell images,

which could then be annotated with areas corresponding to localizations found in the data. By

default, the tool shipped with a cartoon of a cell annotated with 13 subcellular locations, as well

Biases model machine learning predictions in protein biology 21

as annotated data for human proteins both for their localization in multiple classes (either from

experimentally annotated or predicted sources), as well as protein-protein interactions from an

openly available dataset (which annotates both physical transient PPIs, as well as protein

interactions by association, e.g., when two proteins are part of the same complex, although they

may not physically interact).

Relevance. The seed that lead to this project was the desire to make predictions of protein

properties more accessible to non-experts in an exploratory way. By jointly visualizing two protein

attributes, qualitative analyses of protein interaction and hypothesis generation could be

performed visually. While potentially constraining users by encoding for several biological

dimensions at the same time, the biased visualization also encodes for richer context. However,

users are allowed to freely modify every aspect of the visualization. For instance, while the default

hosted site features location and interaction data from human, whose cells are organized into

different organelles than plants, users interested in plant data and cells could upload their own

data and images to be visualized.

Contribution. I am first and corresponding author of this paper. I was responsible for writing,

implementation, and experimental setup.

Copyright notice. The original publication is available in open access at the DOI

10.12688/f1000research.12707.2 and as appendix to this manuscript.

3.2 LEARNED EMBEDDINGS FROM DEEP LEARNING TO VISUALIZE AND PREDICT

PROTEIN SETS

Original publication. This chapter was originally published as a peer-reviewed journal article:

Dallago, C., Schütze, K., Heinzinger, M., Olenyi, T., Littmann, M., Lu, A. X., Yang, K. K., Min, S., Yoon,

S., Morton, J. T., & Rost, B. (2021). Learned embeddings from deep learning to visualize and predict

protein sets. Current Protocols, 1, e113. doi: 10.1002/cpz1.113

Summary. The ability of protein-based machine learning models to encode descriptive

computational representations of proteins is increasingly leveraged to guide experimental

decision making. Fast models that allow to classify custom sequence datasets are desired, for

instance to focus experiments on more promising biotherapeutic candidates. Recently, Language

Models (LMs) have been adapted from use in natural language processing (NLP) to work with

Christian Dallago 22

protein sequences instead. Protein LMs show enormous potential in generating descriptive

representations for proteins from just their sequences at a fraction of the time compared to

previous approaches. pLMs convert amino acid sequences into embeddings (vector

representations) that can be used for analytical purposes, and in unsupervised and supervised

pipelines for prediction of function and structure. Access to protein LMs is scattered throughout

the web, a limiting factor to their use. Differently from previous approaches, any one pLM may

uniquely shine light on a subset of the sequence space depending on its training objective and

datasets. The bio-embeddings suite offers a unified interface to pLMs to embed large protein sets

simply and quickly, to project the embeddings in lower dimensional spaces, to visualize proteins

on interactive scatter plots, and to extract annotations using either supervised models, or

unsupervised techniques. The array of tools offered through bio-embeddings enables quick

hypothesis generation and testing and refined model optimizations on promising prediction

candidates. Bio-embeddings features a pipeline which is accompanied by a web server that offers

to embed, project, visualize, and extract annotations for small protein datasets directly online,

without the need to install software.

Relevance. This software suite was developed as a segue to the training of protein language

models (pLMs), which could compute embeddings (representations) for residues in protein

sequences, which can later be used for predictions. pLM embeddings offer to shine light on

proteins using representations unbiased by supervised properties, as the losses are often self-

supervised (i.e.: reconstructing the syntax of proteins), although sometimes tuned on secondary

losses, like encoding explicitly for structure. A solid software solution around these tools enabled

quicker use of complex machine learning models for non-experts and introduced standardization.

In fact, the solution presented here (bio-embeddings) could be run freely on cloud infrastructure

(e.g., Google Colab), enabling researchers without cluster access of significant compute resources

to use pLMs for their research, democratizing the use of cutting-edge research. Additionally, some

of the pLMs and prediction methods were included in a modular web service, allowing to compute

embeddings and predictions programmatically or through web UIs (e.g.,

embed.protein.properties or predictprotein.org) instantaneously, without local compute

overhead. On top, bio-embeddings provided a one stop to find and discuss relevant research on

pLMs from an array of research groups. pLM embeddings

Contribution. I am one of three principal authors. I am also corresponding author. I contributed

at all stages as lead scientist.

Copyright notice. The original publication is available in open access at the DOI 10.1002/cpz1.113

and as appendix to this manuscript.

Biases model machine learning predictions in protein biology 23

3.3 PREDICTPROTEIN – PREDICTING PROTEIN STRUCTURE AND FUNCTION FOR 29

YEARS

Original publication. This chapter was originally published as a peer-reviewed journal article:

Michael Bernhofer, Christian Dallago, Tim Karl, Venkata Satagopam, Michael Heinzinger, Maria

Littmann, Tobias Olenyi, Jiajun Qiu, Konstantin Schütze, Guy Yachdav, Haim Ashkenazy, Nir Ben-

Tal, Yana Bromberg, Tatyana Goldberg, Laszlo Kajan, Sean O’Donoghue, Chris Sander, Andrea

Schafferhans, Avner Schlessinger, Gerrit Vriend, Milot Mirdita, Piotr Gawron, Wei Gu, Yohan Jarosz,

Christophe Trefois, Martin Steinegger, Reinhard Schneider, Burkhard Rost, PredictProtein -

Predicting Protein Structure and Function for 29 Years, Nucleic Acids Research, 2021;,

gkab354, https://doi.org/10.1093/nar/gkab354

Summary. Since its 1992 launch, PredictProtein (https://predictprotein.org/) has been a one-stop

online resource for protein analysis. In 2020, for an average of 3000 monthly users, PredictProtein

combined over 13 tools into a single resource. From just an input protein sequence, the server

provides online visualizations of multiple sequence alignments (MSAs), predictions of protein

structure (secondary structure, solvent accessibility, transmembrane segments, disordered

regions, protein flexibility, and disulfide bridges) and function (variant effect, GO terms, subcellular

localization, and protein-, RNA-, and DNA binding sites). By additionally providing computable

artifacts (via programmatic access), the server caters the needs of computational and

experimental biologists alike. Offline use of PredictProtein tools is enabled via an omni-docker

container: quickly installed on single machines and clusters. Since the previous major update in

2014, PredictProtein’s infrastructure was enhanced to offer more reliable execution, more storage

space and decreased runtime for predictions. Runtime was also cut four-fold by sourcing

alignment generation to MMseqs2 (M Mirdita et al., 2021). Usability was improved via new UI

elements (Watkins et al., 2017). Prediction methods for DNA-, RNA- and protein binding and GO

annotations have been replaced with revised methods (Qiu et al., 2020; Littmann, Heinzinger,

Dallago, Olenyi, et al., 2021). ProtT5-sec, an alternative secondary structure prediction method

based on cutting-edge Deep Learning techniques (Elnaggar et al., 2021), was integrated side-by-

side to evolution-based RePROF. The PredictProtein server offers access to a vast range of

accurate predictors, many topping the leaderboards even after a decade, with new recently

integrated methods to boost the breadth of available sequence features and improve accuracy on

dated methods.

Relevance. PredictProtein has served users with predictions of protein properties for almost 30

years. Its relevance to the field and to this thesis are manyfold: from providing landmark solutions

to characterize proteins, pushing the boundaries of “known” sequence space, to integrating

Christian Dallago 24

intuitive visualizations to simplify interpretation of complex machine learning predictions for non-

experts. The most significant scientific update in the 2021 edition of PredictProtein was the

integration of cutting edge pLM models, on the one hand cementing the foundation to their use

for the broader community, on the other hand, signaling a shift in how computational predictions

of proteins are used. While previous models focused mainly on predicting attributes of proteins,

e.g., subcellular localization, through embeddings computational biologists can access the

underlying representation of proteins, enabling custom analyses of proteins from a high

dimensional embedding without categorization into narrow, supervised ontologies.

Contribution. I am one of four principal authors of this paper. I am also the corresponding author.

I contributed conceptualization and writing.

Copyright notice. The original publication is available in open access at the DOI

10.1093/nar/gkab354 and as appendix to this manuscript.

3.4 FLIP: BENCHMARK TASKS IN FITNESS LANDSCAPE INFERENCE FOR PROTEINS

Original publication. This chapter was originally published as a peer-reviewed conference article:

Christian Dallago, Jody Mou, Kadina E. Johnston, Bruce Wittmann, Nick Bhattacharya, Ali Madani,

Kevin K. Yang, FLIP: Benchmark tasks in fitness landscape inference for proteins, Thirty-fifth

Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2),

2021; https://openreview.net/forum?id=p2dMLEwL8tF

Summary. While representation learning approaches like pLMs could unlock protein design

applications, no benchmark assessing their native ability to do so existed. Developing sets probing

the ability of machine learning to design proteins is challenging, as some proteins are multi-

purpose molecules, and current biological experiments often focus on single aspects of selected

proteins. While systematic approaches like CASP and CAFA, assessing structure and function

systematically respectively exist, they do not target metrics relevant for protein engineering.

Fitness Landscape Inference for Proteins (FLIP) is a curated set of several biological experiments

aimed at probing the ability of machine representations of proteins to support protein design

campaigns. To achieve this, several splits from three experimental datasets were devised, testing

the ability of protein representations to emulate typical experimental protein design settings, e.g.,

extrapolative (predicting the effect of multiple changes along the protein sequence by knowing

the effect of few changes) and low-resource (predicting landscapes from only a few labelled

Biases model machine learning predictions in protein biology 25

samples). The landscape splits come with data standardization, enabling quick adoption in

computational pipelines, and enabling easy probing for new representation models.

Relevance. While probing pLMs’ ability to characterize protein sequences by predicting on

traditionally accepted tasks such as structure and well-defined aspect of function (e.g., subcellular

localization (Stärk et al., 2021)) may support their validity, these annotations are sharp cutouts of

the “continuous” nature of protein function that may need to be captured to design proteins.

Embeddings from pLMs encode continuous representations that could potentially correlate with

the continuous nature of function. One attempt to correlate these realities is to predict mutational

landscapes using embeddings (Marquet et al., 2021). However, probing purely on deep mutational

scanning (DMS) sets limited to mutational effects of single residue substitutions one at the time

may not entirely characterize more complex mutational neighborhoods from a wildtype sequence.

Experiments introducing a random number of residue substitutions offer a complementary

approach to DMS sets. FLIP contributes by introducing four datasets for the assessment of protein

representations to stack up to the continuous nature of protein function. Two of the three datasets

focused on mutational landscapes from a wildtype sequence to mutated versions of it with up to

32 changes. The last dataset focused on protein thermal stability, characterizing the turning

degree at which proteins start to denature (i.e., become ineffective).

Contribution. I am one of two principal authors of this paper. I contributed conceptualization,

implementation, and writing.

Copyright notice. The original publication is available in open access at

openreview.net/forum?id=p2dMLEwL8tF and as appendix to this manuscript.

3.5 ADDITIONAL PEER-REVIEWED SCIENTIFIC CONTRIBUTIONS

Manuscripts marked with * indicate (co-)first authorship.

On learning representations of proteins:

Ø Modeling aspects of the language of life through transfer-learning protein sequences

(Heinzinger et al., 2019)

A protein language model (pLM) using LSTMs to represent protein sequences. The goal was to

go beyond MSAs and find a universal protein representation applicable also to proteins for

which MSAs fell short.

https://doi.org/10.1186/s12859-019-3220-8

Ø ProtTrans: Towards Cracking the Language of Life's Code Through Self-Supervised Deep

Learning and High Performance Computing (Elnaggar et al., 2021)

Christian Dallago 26

Several pLMs using transformers to represent protein sequences. The goal was to improve on

the previous approach using LSTMs by training on much larger scale.

https://doi.org/10.1109/TPAMI.2021.3095381

On applying learned protein representations to predict protein properties:

Ø * Light Attention Predicts Protein Location from the Language of Life (Stärk et al., 2021)

In this project, we characterized a novel machine learning method to predict the subcellular

location of proteins in eukaryotic cells using protein embeddings. Furthermore, we studied

the biases that standard datasets in protein predictions may have on reporting performance,

introducing a strategy to build novel test sets to validate the veracity of accuracy estimates.

https://doi.org/10.1093/bioadv/vbab035

Ø Embeddings from deep learning transfer GO annotations beyond homology (Littmann,

Heinzinger, Dallago, Olenyi, et al., 2021)

Combining pLMs with a simplistic, unsupervised approach to predict similarly functioning

proteins. The goal was to establish the potential of pLMs to predict protein function.

Additionally, by using an unsupervised approach (embedding distance), exploration into

similarly functioning proteins in high dimensions could be enabled.

https://doi.org/10.1038/s41598-020-80786-0

Ø Embeddings from protein language models predict conservation and variant effects

(Marquet et al., 2021)

Using pLMs to reconstruct deep mutational scanning (DMS) data and conservation of residues

in protein sequences. The intent was to study if pLM embeddings could natively capture

aspects of variation, for instance gain or loss of function. While the ability of pLMs to capture

variation may be limited by inner workings of the machine learning models and noise in

experimental DMS data, pLMs seem to well capture sequence conservation.

https://doi.org/10.21203/rs.3.rs-584804/v2

Ø Clustering FunFams using sequence embeddings improves EC purity (Littmann, Bordin, et

al., 2021)

Using pLMs to refine the annotations of functional families. This may be viewed as a segue to

the publication exploring the use of pLM embeddings to annotate GO function in an

unsupervised fashion.

https://doi.org/10.1093/bioinformatics/btab371

Ø Protein embeddings and deep learning predict binding residues for various ligand

classes (Littmann, Heinzinger, Dallago, Weissenow, et al., 2021)

Using pLMs to predict whether a protein binds other molecules.

Biases model machine learning predictions in protein biology 27

https://doi.org/10.1101/2021.09.03.458869

On using software to help scientific dissemination and exploration:

Ø * Visualizing Human Protein-Protein Interactions and Subcellular Localizations on Cell

Images Through CellMap (Dallago et al., 2020)

An update on the tool presented in a previous chapter with additional data on binary protein-

protein interactions (between proteins verified to be physically interacting).

https://doi.org/10.1002/cpbi.97

Ø Capturing scientific knowledge in computable form (Wong et al., 2021)

A software tool to annotate biological pathways aimed at scientific authors publishing

manuscripts in biology outlets. The goal was to provide an interface to transfer expert

knowledge from authors to machines, which then can then be leveraged to inform

bioinformatics tools.

https://doi.org/10.1101/2021.03.10.382333

Ø Pathway Commons 2019 Update: integration, analysis and exploration of pathway data

(Rodchenkov et al., 2020)

A meta-database collecting biological pathway annotations from several curated sources. The

goal was to facilitate finding biological information in an integrated resource.

https://doi.org/10.1093/nar/gkz946

Ø The EVcouplings Python framework for coevolutionary sequence analysis (Thomas A

Hopf et al., 2019)

A software tool to perform direct coupling analysis (DCA) in python. The goal was to provide

an easy-to-use programmatic interface to a tool that improved structure predictions many

folds.

https://doi.org/10.1093/bioinformatics/bty862

Christian Dallago 28

4 CONCLUSION
While the introduction gave an ample overview about fundamentals in bioinformatics and where

biases in data or experimental approaches arise, this section focuses on contextualizing the

outcome of scientific contributions listed in the previous chapter to tackle some of the biases

introduced prior.

Learning putative sequences may smoothen bias. bio-embeddings (Dallago, Schütze, et al.,

2021) is a tool that collects several pLMs (Heinzinger et al., 2019; Bepler and Berger, 2019; Rives et

al., 2019; Lu et al., 2020; Meier et al., 2021; Elnaggar et al., 2021) into a standardized software

solution. pLMs are a recent innovation built on applying advanced NLP tools (Devlin et al., 2019;

Raffel et al., 2020) most often to learn general representations of protein sequences from large

protein sequence databases (The UniProt Consortium, 2021; Steinegger and Söding, 2018). These

novel representations helped shine a different light on areas of the protein space which could not

be targeted using previous tools (Littmann, Heinzinger, Dallago, Weissenow, et al., 2021; Littmann,

Heinzinger, Dallago, Olenyi, et al., 2021; Littmann, Bordin, et al., 2021; Marquet et al., 2021; Meier

et al., 2021). By being trained, in some instances (Elnaggar et al., 2021), on datasets with large

amounts of putative sequences (Steinegger and Söding, 2018), the representations from pLMs

may be adjusted to some selection biases present in more curated sequence datasets (The

UniProt Consortium, 2021), or those using training objectives informed by domain-specific

research (Bepler and Berger, 2019; He et al., 2021; Min et al., 2021). In fact, pLMs offer a unique

opportunity to test this hypothesis, by training on the larges sets first, and fine-tuning on slightly

smaller sets in a second step. This approach was adopted to train the best performing ProtTrans

model (ProtT5) (Elnaggar et al., 2021). While the native performance of ProtT5 trained on BFD

(Steinegger and Söding, 2018) was good, it was only through fine-tuning on UniRef50 (Suzek et al.,

2015) that the model started showing improvements over competing solutions (Rives et al., 2019)

trained exclusively on the UniRef sets. The assessment of performance, in these instances, was

conducted on downstream prediction tasks for experimentally annotated protein sequences that

can be found directly or indirectly (via a family representative, i.e., a sequence which shares some

sequence similarity to an annotated protein sequence) in the UniRef sets. Thus, while on the one

hand improvement on predictions can be attributed to higher quality of the UniRef sequence

databases with respect to BFD, on the one hand another interpretation of same might indicate

that the fine-tuned representations are more biased towards the sequences for which annotations

are known, or that the space of sequences for which experimental evidence is available are even

tighter clustered cutouts of the larger sequence universe. Ultimately, assessing that models

trained on a larger number of putative sequences may better capture general sequence

Biases model machine learning predictions in protein biology 29

representations remains open to quantitative verification, but the practical availability of these

models, which could be easily switched in- and out during analysis (Unsal et al., 2020) lays the

foundation to address this new research question.

Protein function on a continuum beyond ontologies. Supervised predictions using pLM

representations could, in some cases, beat previous best performing methods for both structure

(Rao et al., 2021) and function tasks (Stärk et al., 2021). However, the true advantage of continuous

computational representations of protein sequences in a shared space obtained through

embeddings from pLMs is that sequence sets can be projected into high dimensional

representations where distances between proteins encode notions of similarity beyond naïve

sequence similarity (Littmann, Heinzinger, Dallago, Olenyi, et al., 2021). While non-space sharing

solutions like protein-specific variational autoencoders models (Frazer et al., 2021) promise to

encode greater fine-grained, sequence-specific detail, space-sharing embeddings of pLMs enable

characterizations of unsupervised functional protein clusters (Littmann, Bordin, et al., 2021).

Identifying clusters in these spaces could enable discoveries of proteins found in nature that can

address therapeutic or industrial needs, or help classify functions of designed sequences (Dallago,

Mou, et al., 2021). As such, considering pLM representations for functional characterization of

proteins enables to tackle the complexity of protein function annotations by circumventing the

need the categorize function altogether. In fact, one could view protein function as a continuum

and try to correlate it with the numerical representations from embeddings. Attempts to do so for

specific functions showed some promise (Marquet et al., 2021), but more importantly, low-

resource (few sequence) scenarios clearly showed the potential of pLMs to better model the effect

of variation (Dallago, Mou, et al., 2021).

Challenging standard sets in bioinformatics. Machine learning solutions in bioinformatics

sometimes operate on the assumption that an accepted dataset with labelled samples sets the

standard in the field against which new approaches need to measure up. Maximizing metrics for

standard dataset might grow better predictors for that problem, but since protein annotations are

sharp categorizations, and our understanding of biology (especially function) requires a more

flexibility especially as annotations change in time, what we may end up doing relying too much

on immortalized standards is learning the distributions of these datasets, rather than generalizing

the biological knowledge we wish to encode (Stärk et al., 2021). One effective way to assess

advance for protein predictions is to predict on many dimensions. This approach for instance

highlighted that while pLMs initially did not beat previous models on any supervised prediction

task (Heinzinger et al., 2019), they evidently captured a diverse enough representation to come

close for many, a reality which was difficult to achieve with previous methods (Unsal et al., 2020).

Another effective way to address potential overfitting of models to standard datasets is to develop

more challenging test sets to assess generalization of models post-training on the standards. For

instance, in subcellular localization prediction, the standard set introduced by DeepLoc (Almagro

Armenteros et al., 2017) and used by several groups to claim advances in localization prediction is

prone to give overestimates of performance due to similar class distributions in train and test sets.

Christian Dallago 30

By using a non-similarly distributed set of newly annotated protein sequences to test subcellular

prediction methods, while not necessarily tackling the relative ranking of prediction methods, the

overall accuracy of all methods dropped significantly (from around 80% to 60% in predicting one

of ten subcellular localization classes for the best performing methods) (Stärk et al., 2021).

Alternatively, incorporating domain knowledge and different levels of redundancy reduction

(Kandathil et al., 2021) to ensure different degrees of generalization of the machine learning

models may drive more reliable tools.

Accessible and explorative software tools for bioinformatics analysis. However far

machine learning models push the understanding of biology, open, interpretable, and exploratory

models are key to enable dissecting and disseminating advancements. For one, visualization tools

expand on predictions by enabling biologists to formulate new scientific hypotheses (Dallago et

al., 2018, 2020). Furthermore, interactive and exploratory tools enabling collection of biological

annotations directly at the source (i.e., by the authors that make scientific discoveries) ensure

higher fidelity annotations for machine learning applications (Wong et al., 2021). Finally, tools

bundling machine learning applications into visualizations suites (Bernhofer et al., 2021; Wong et

al., 2021; Thomas A Hopf et al., 2019) democratize research, allowing researchers everywhere to

characterize unknown proteins using cutting edge research.

Biases model machine learning predictions in protein biology. The presence of bias in

annotations for protein biology is inevitable due to limits of experimental approaches and time

constraints. However, even biased data can be leveraged via machine learning to discern

underlying signals in biological data, aiding researchers in creating models of proteins and their

functions. Predictive machine learning models often encode smoothened representations of a

particular task, allowing some level of error correction from selecting data. The more principled

the learning task, for instance learning sequence syntax from large sequence databases containing

putative samples, the more probable the machine model of biology is less biased by selective

constraints of experimental approaches.

Christian Dallago 31

REFERENCES
Akdel,M. et al. (2021) A structural biology community assessment of AlphaFold 2 applications.

BioRxiv Prepr. Serv. Biol.

Alley,E.C. et al. (2019) Unified rational protein engineering with sequence-based deep

representation learning. Nat. Methods, 16, 1315–1322.

Almagro Armenteros,J.J. et al. (2017) DeepLoc: prediction of protein subcellular localization using

deep learning. Bioinformatics, 33, 3387–3395.

AlQuraishi,M. (2021) Machine learning in protein structure prediction. Curr. Opin. Chem. Biol., 65,

1–8.

Ashburner,M. et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology

Consortium. Nat. Genet., 25, 25–29.

Bairoch,A. (2000) The ENZYME database in 2000. Nucleic Acids Res., 28, 304–305.

Barua,A. et al. (2021) Co-option of the same ancestral gene family gave rise to mammalian and

reptilian toxins. BMC Biol., 19, 268.

Bengio,Y. et al. (2013) Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern

Anal. Mach. Intell., 35, 1798–1828.

Bepler,T. and Berger,B. (2019) Learning protein sequence embeddings using information from

structure. ArXiv190208661 Cs Q-Bio Stat.

Berman,H.M. et al. (2000) The Protein Data Bank. Nucleic Acids Res., 28, 235–242.

Bernhofer,M. et al. (2021) PredictProtein - predicting protein structure and function for 29 years.

Nucleic Acids Res., 49, W535–W540.

Bryant,D.H. et al. (2021) Deep diversification of an AAV capsid protein by machine learning. Nat.

Biotechnol., 39, 691–696.

Chari,T. et al. (2021) The Specious Art of Single-Cell Genomics. 2021.08.25.457696.

Ching,T. et al. (2018) Opportunities and obstacles for deep learning in biology and medicine. J. R.

Soc. Interface, 15, 20170387.

Cobb,M. (2017) 60 years ago, Francis Crick changed the logic of biology. PLOS Biol., 15, e2003243.

Dallago,C. et al. (2018) CellMap visualizes protein-protein interactions and subcellular localization.

F1000Research, 6.

Dallago,C., Mou,J., et al. (2021) FLIP: Benchmark tasks in fitness landscape inference for proteins.

In, Thirty-fifth conference on neural information processing systems datasets and benchmarks

track (round 2).

Dallago,C., Schütze,K., et al. (2021) Learned embeddings from deep learning to visualize and

predict protein sets. Curr. Protoc., 1, e113.

Christian Dallago

 32

Dallago,C. et al. (2020) Visualizing human protein-protein interactions and subcellular localizations

on cell images through CellMap. Curr. Protoc. Bioinforma., 69, e97.

Demir,E. et al. (2010) The BioPAX community standard for pathway data sharing. Nat. Biotechnol.,

28, 935–942.

Devlin,J. et al. (2019) BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding. ArXiv181004805 Cs.

Dobson,C.M. (2003) Protein folding and misfolding. Nature, 426, 884–890.

Elnaggar,A. et al. (2021) ProtTrans: Towards cracking the language of lifes code through self-

supervised deep learning and high performance computing. IEEE Trans. Pattern Anal. Mach.

Intell., 1–1.

Fowler,D.M. and Fields,S. (2014) Deep mutational scanning: a new style of protein science. Nat.

Methods, 11, 801–807.

Frazer,J. et al. (2021) Disease variant prediction with deep generative models of evolutionary data.

Nature, 599, 91–95.

Gardner,P.P. et al. (2022) Sustained software development, not number of citations or journal

choice, is indicative of accurate bioinformatic software. Genome Biol., 23, 56.

The Gene Ontology Consortium (2019) The Gene Ontology Resource: 20 years and still GOing

strong. Nucleic Acids Res., 47, D330–D338.

He,L. et al. (2021) Pre-training co-evolutionary protein representation via a pairwise masked

language model.

Hecht,M. et al. (2015) Better prediction of functional effects for sequence variants. BMC Genomics,

16 Suppl 8, S1.

Heinzinger,M. et al. (2019) Modeling aspects of the language of life through transfer-learning

protein sequences. BMC Bioinformatics, 20, 1–17.

Henderson,R. et al. (2020) Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat. Struct.

Mol. Biol., 27, 925–933.

Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution matrices from protein blocks. Proc.

Natl. Acad. Sci., 89, 10915–10919.

Henzler-Wildman,K. and Kern,D. (2007) Dynamic personalities of proteins. Nature, 450, 964–972.

Hopf,T.A. et al. (2017) Mutation effects predicted from sequence co-variation. Nat. Biotechnol., 35,

128–135.

Hopf,Thomas A et al. (2019) The EVcouplings Python framework for coevolutionary sequence

analysis. Bioinformatics, 35, 1582–1584.

Hopf,Thomas A. et al. (2019) The EVcouplings Python framework for coevolutionary sequence

analysis. Bioinformatics, 35, 1582–1584.

Hopf,T.A. et al. (2012) Three-Dimensional Structures of Membrane Proteins from Genomic

Sequencing. Cell, 149, 1607–1621.

Howorka,S. and Siwy,Z.S. (2020) Reading amino acids in a nanopore. Nat. Biotechnol., 38, 159–160.

Biases model machine learning predictions in protein biology

 33

Ingraham,J. et al. (2019) Generative Models for Graph-Based Protein Design. In, Wallach,H. et al.

(eds), Advances in Neural Information Processing Systems 32. Curran Associates, Inc., pp.

15820–15831.

Jadot,M. et al. (2017) Accounting for Protein Subcellular Localization: A Compartmental Map of the

Rat Liver Proteome*. Mol. Cell. Proteomics, 16, 194–212.

Jassal,B. et al. (2020) The reactome pathway knowledgebase. Nucleic Acids Res., 48, D498–D503.

Jumper,J. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596,

583–589.

Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary structure: Pattern recognition of

hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637.

Kandathil,S.M. et al. (2021) Ultrafast end-to-end protein structure prediction enables high-

throughput exploration of uncharacterised proteins. BioRxiv Prepr. Serv. Biol.

Kanehisa,M. et al. (2021) KEGG: integrating viruses and cellular organisms. Nucleic Acids Res., 49,

D545–D551.

Kelleher,C. and Wagener,T. (2011) Ten guidelines for effective data visualization in scientific

publications. Environ. Model. Softw., 26, 822–827.

Lange,A. et al. (2007) Classical Nuclear Localization Signals: Definition, Function, and Interaction

with Importin alpha,. J. Biol. Chem., 282, 5101–5105.

Littmann,M., Bordin,N., et al. (2021) Clustering FunFams using sequence embeddings improves EC

purity. Bioinforma. Oxf. Engl., 37, 3449–3455.

Littmann,M., Heinzinger,M., Dallago,C., Olenyi,T., et al. (2021) Embeddings from deep learning

transfer GO annotations beyond homology. Sci. Rep., 11, 1–14.

Littmann,M., Heinzinger,M., Dallago,C., Weissenow,K., et al. (2021) Protein embeddings and deep

learning predict binding residues for various ligand classes. BioRxiv Prepr. Serv. Biol.

Lu,A.X. et al. (2020) Self-Supervised Contrastive Learning of Protein Representations By Mutual

Information Maximization. bioRxiv, 2020.09.04.283929.

Madani,A. et al. (2021) Deep neural language modeling enables functional protein generation

across families. BioRxiv Prepr. Serv. Biol.

Marot-Lassauzaie,V. et al. (2019) Spectrum of protein localization in proteomes captures

evolutionary relation between species. bioRxiv, 845362.

Marquet,C. et al. (2021) Embeddings from protein language models predict conservation and

variant effects. Hum. Genet.

McCallum,M. et al. (2020) Structure-guided covalent stabilization of coronavirus spike glycoprotein

trimers in the closed conformation. Nat. Struct. Mol. Biol., 27, 942–949.

Meier,J. et al. (2021) Language models enable zero-shot prediction of the effects of mutations on

protein function. BioRxiv Prepr. Serv. Biol.

Mildvan,A.S. (1997) Mechanisms of signaling and related enzymes. Proteins Struct. Funct.

Bioinforma., 29, 401–416.

Christian Dallago

 34

Min,S. et al. (2021) Pre-training of deep bidirectional protein sequence representations with

structural information. IEEE Access Pract. Innov. Open Solut., 9, 123912–123926.

Mirdita,Milot et al. (2021) ColabFold - Making protein folding accessible to all. BioRxiv Prepr. Serv.

Biol.

Mirdita,M et al. (2021) Fast and sensitive taxonomic assignment to metagenomic contigs.

Bioinforma. Oxf. Engl., 37, 3029–3031.

Modi,V. and Dunbrack, Roland L,J. (2021) Kincore: a web resource for structural classification of

protein kinases and their inhibitors. Nucleic Acids Res.

Morcos,F. et al. (2011) Direct-coupling analysis of residue coevolution captures native contacts

across many protein families. Proc. Natl. Acad. Sci. U. S. A., 108, E1293-301.

Nair,R. and Rost,B. (2002) Sequence conserved for subcellular localization. Protein Sci., 11, 2836–

2847.

O’Donoghue,S.I. et al. (2021) SARS-CoV-2 structural coverage map reveals viral protein assembly,

mimicry, and hijacking mechanisms. Mol. Syst. Biol., 17, e10079.

Ogden,P.J. et al. (2019) Comprehensive AAV capsid fitness landscape reveals a viral gene and

enables machine-guided design. Science, 366, 1139–1143.

Ottmann,C. et al. (2007) Structure of a 14-3-3 Coordinated Hexamer of the Plant Plasma Membrane

H+-ATPase by Combining X-Ray Crystallography and Electron Cryomicroscopy. Mol. Cell,

25, 427–440.

Pak,M.A. et al. (2021) Using AlphaFold to predict the impact of single mutations on protein stability

and function. BioRxiv Prepr. Serv. Biol.

Perdigão,N. et al. (2015) Unexpected features of the dark proteome. Proc. Natl. Acad. Sci., 112,

15898–15903.

Qiu,J. et al. (2020) ProNA2020 predicts protein–DNA, protein–RNA, and protein–protein binding

proteins and residues from sequence. J. Mol. Biol., 432, 2428–2443.

Raffel,C. et al. (2020) Exploring the Limits of Transfer Learning with a Unified Text-to-Text

Transformer. ArXiv191010683 Cs Stat.

Ramilowski,J.A. et al. (2015) A draft network of ligand–receptor-mediated multicellular signalling in

human. Nat. Commun., 6, 1–12.

Rao,R. et al. (2019) Evaluating Protein Transfer Learning with TAPE. In, Wallach,H. et al. (eds),

Advances in Neural Information Processing Systems 32. Curran Associates, Inc., pp. 9689–

9701.

Rao,R. et al. (2021) MSA transformer. BioRxiv Prepr. Serv. Biol.

Reeb,J. et al. (2020) Variant effect predictions capture some aspects of deep mutational scanning

experiments. BMC Bioinformatics, 21, 107.

Rives,A. et al. (2019) Biological structure and function emerge from scaling unsupervised learning

to 250 million protein sequences. bioRxiv, 622803.

Rodchenkov,I. et al. (2020) Pathway Commons 2019 Update: integration, analysis and exploration

of pathway data. Nucleic Acids Res., 48, D489–D497.

Biases model machine learning predictions in protein biology

 35

Rost,B. (2002) Enzyme Function Less Conserved than Anticipated. J. Mol. Biol., 318, 595–608.

Rost,B. (1999) Twilight zone of protein sequence alignments. Protein Eng. Des. Sel., 12, 85–94.

Rost,B. and Sander,C. (1994) Combining evolutionary information and neural networks to predict

protein secondary structure. Proteins, 19, 55–72.

Rost,B. and Sander,C. (1993a) Improved prediction of protein secondary structure by use of

sequence profiles and neural networks. Proc. Natl. Acad. Sci., 90, 7558–7562.

Rost,B. and Sander,C. (1992) Jury returns on structure prediction. Nature, 360, 540.

Rost,B. and Sander,C. (1993b) Prediction of protein secondary structure at better than 70%

accuracy. J. Mol. Biol., 232, 584–599.

Samaras,P. et al. (2019) ProteomicsDB: a multi-omics and multi-organism resource for life science

research. Nucleic Acids Res., 48, D1153–D1163.

Sander,C. and Schneider,R. (1991) Database of homology-derived protein structures and the

structural meaning of sequence alignment. Proteins Struct. Funct. Bioinforma., 9, 56–68.

Schermelleh,L. et al. (2019) Super-resolution microscopy demystified. Nat. Cell Biol., 21, 72–84.

Song,W. et al. (2018) Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with

its host cell receptor ACE2. PLOS Pathog., 14, e1007236.

Stärk,H. et al. (2021) Light Attention Predicts Protein Location from the Language of Life. bioRxiv,

2021.04.25.441334.

Steinegger,M. and Söding,J. (2018) Clustering huge protein sequence sets in linear time. Nat.

Commun., 9, 1–8.

Suzek,B.E. et al. (2015) UniRef clusters: a comprehensive and scalable alternative for improving

sequence similarity searches. Bioinformatics, 31, 926–932.

Tettelin,H. et al. (2005) Genome analysis of multiple pathogenic isolates of Streptococcus

agalactiae: Implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci., 102, 13950–

13955.

The UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic

Acids Res.

Thul,P.J. et al. (2017) A subcellular map of the human proteome. Science, 356.

Unsal,S. et al. (2020) Evaluation of methods for protein representation learning: A quantitative

analysis. BioRxiv Prepr. Serv. Biol.

Watkins,X. et al. (2017) ProtVista: visualization of protein sequence annotations. Bioinformatics, 33,

2040–2041.

Wittmann,B.J. et al. (2021) Informed training set design enables efficient machine learning-assisted

directed protein evolution. Cell Syst., 12, 1026-1045.e7.

Wong,J.V. et al. (2021) Capturing scientific knowledge in computable form. BioRxiv Prepr. Serv. Biol.

Woods,D.B. and Vousden,K.H. (2001) Regulation of p53 Function. Exp. Cell Res., 264, 56–66.

Wu,Z. et al. (2021) Protein sequence design with deep generative models. Curr. Opin. Chem. Biol.,

65, 18–27.

Christian Dallago

 36

Yang,K.K. et al. (2019) Machine-learning-guided directed evolution for protein engineering. Nat.

Methods, 16, 687–694.

Yang,X. et al. (2021) Define protein variant functions with high-complexity mutagenesis libraries

and enhanced mutation detection software ASMv1.0. BioRxiv Prepr. Serv. Biol.

Yip,K.M. et al. (2020) Atomic-resolution protein structure determination by cryo-EM. Nature, 587,

157–161.

Biases model machine learning predictions in protein biology

 37

5 APPENDIX

5.1 CELLMAP VISUALIZES PROTEIN-PROTEIN INTERACTIONS AND SUBCELLULAR

LOCALIZATION

Summary. Several alternatives to visualizing protein-protein interactions (PPIs) exist. Most focus

on visualizing PPIs in arbitrary spaces (e.g., two or more nodes in a network). Similarly, several

tools visualizing where proteins locate in the cell exist, but these often focus on visualizing

individual proteins by highlighting the areas on some predefined cell image of where proteins may

appear. The novelty introduced by CellMap was to combine the two biological dimensions of

protein location and interaction into a single visualization. Through the tool, an instance of which

is available at cellmap.protein.properties, users can search for proteins using their UniProt (The

UniProt Consortium, 2021) identifier. Once a protein of interest is identified, a protein-centric page

displays information about interaction partners and localizations. From the protein-centric page a

“map” view displaying the protein and its interaction partners can be opened. In this view, the cell

is like a city map on google maps, while proteins are dots on the map localizing the protein in one

of its possible subcellular locations. In this view, interactions between all proteins on display can

be overlayed, as well as interactions of selected proteins with their partners. The tool was designed

with flexibility in mind, allowing users to upload their own datasets and their own cell images,

which could then be annotated with areas corresponding to localizations found in the data. By

default, the tool shipped with a cartoon of a cell annotated with 13 subcellular locations, as well

as annotated data for human proteins both for their localization in multiple classes (either from

experimentally annotated or predicted sources), as well as protein-protein interactions from an

openly available dataset (which annotates both physical transient PPIs, as well as protein

interactions by association, e.g., when two proteins are part of the same complex, although they

may not physically interact).

Relevance. The seed that lead to this project was the desire to make predictions of protein

properties more accessible to non-experts in an exploratory way. By jointly visualizing two protein

attributes, qualitative analyses of protein interaction and hypothesis generation could be

performed visually. While potentially constraining users by encoding for several biological

dimensions at the same time, the biased visualization also encodes for richer context. However,

users are allowed to freely modify every aspect of the visualization. For instance, while the default

hosted site features location and interaction data from human, whose cells are organized into

Christian Dallago

 38

different organelles than plants, users interested in plant data and cells could upload their own

data and images to be visualized.

Contribution. I am first and corresponding author of this paper. I was responsible for writing,

implementation, and experimental setup.

Copyright notice. The original publication is available in open access at the DOI

10.12688/f1000research.12707.2 and in the following. The copyright notice is available on P2 of

the manuscript.

Biases model machine learning predictions in protein biology

 39

SOFTWARE TOOL ARTICLE

 CellMap visualizes protein-protein interactions and

subcellular localization [version 2; peer review: 2 approved]

Christian Dallago 1, Tatyana Goldberg1,2, Miguel Angel Andrade-Navarro3,
Gregorio Alanis-Lobato3, Burkhard Rost1,4-6

1Department of Informatics, Bioinformatics & Computational Biology , TUM (Technical University of Munich), Munich, Germany
2Center for Doctoral Studies in Informatics and its Applications (CeDoSIA), TUM (Technical University of Munich) Graduate School,
Munich, Germany
3Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
4Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY, USA
5Institute for Food and Plant Sciences WZW, Freising, Germany
6Institute for Advanced Study (TUM-IAS), Munich, Germany

First published: 11 Oct 2017, 6:1824
https://doi.org/10.12688/f1000research.12707.1
Latest published: 01 Feb 2018, 6:1824
https://doi.org/10.12688/f1000research.12707.2

v2

Abstract
Many tools visualize protein-protein interaction (PPI) networks. The
tool introduced here, CellMap, adds one crucial novelty by visualizing
PPI networks in the context of subcellular localization, i.e. the location
in the cell or cellular component in which a PPI happens. Users can
upload images of cells and define areas of interest against which PPIs
for selected proteins are displayed (by default on a cartoon of a cell).
Annotations of localization are provided by the user or through our in-
house database. The visualizer and server are written in JavaScript,
making CellMap easy to customize and to extend by researchers and
developers.

Keywords
subcellular location, biological visualization, protein-protein
interaction

This article is included in the Bioinformatics

gateway.

Open Peer Review

Approval Status

1 2

version 2

(revision)
01 Feb 2018

view

version 1
11 Oct 2017 view view

Sandra Orchard , European

Bioinformatics Institute (EMBL-EBI), European

Molecular Biology Laboratory, Cambridge, UK

1.

Augustin Luna , Harvard Medical School,

Boston, USA

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Christian Dallago

 40

Corresponding author: Christian Dallago (christian.dallago@tum.de)
Author roles: Dallago C: Resources, Software, Visualization, Writing – Original Draft Preparation; Goldberg T: Conceptualization, Data
Curation, Supervision, Validation, Visualization, Writing – Review & Editing; Andrade-Navarro MA: Data Curation, Writing – Review &
Editing; Alanis-Lobato G: Data Curation, Writing – Review & Editing; Rost B: Conceptualization, Data Curation, Funding Acquisition,
Supervision, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by the German Research Foundation (DFG) and the Technical University of Munich, within
the funding programme Open Access Publishing.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2018 Dallago C et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data
associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public
domain dedication).
How to cite this article: Dallago C, Goldberg T, Andrade-Navarro MA et al. CellMap visualizes protein-protein interactions and
subcellular localization [version 2; peer review: 2 approved] F1000Research 2018, 6:1824
https://doi.org/10.12688/f1000research.12707.2
First published: 11 Oct 2017, 6:1824 https://doi.org/10.12688/f1000research.12707.1

Page 2 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Biases model machine learning predictions in protein biology

 41

 Amendments from Version 1
In the new version of the manuscript, we have highlighted the
origin of the data sources for the example deployment of the portal
on http://cell.dallago.us and the behavior of the visualization
tool in case there are multiple protein localizations for a protein
displayed in the protein-protein interaction network visualization
page.

See referee reports

REVISED

Introduction
Many tools visualize different aspects of protein-protein interac-
tion (PPI) networks; the most prominent might be Cytoscape1.
Existing visualizations of large PPI networks continue to be
difficult to use. Some proteins interact with many hundreds or
thousands of others. Often referred to as ‘PPI hairballs’, such
hubs are in the way of understanding large data sets. Many ways
have been proposed to resolve such hairballs through the addition
of biologically meaningful dimensions such as pathways2 or time3.

Another dimension was first introduced a decade ago, namely the
overlay of PPIs with subcellular localization4. Combining PPI
networks with protein location provide an intuitive way of
laying out PPI networks on a graphical representation of the
cell, and might reduce the clutter from PPI hairballs. This
decade-old solution4 no longer copes with today’s data, in terms of
scalability nor of customizability and in terms of ease-of-use.

CellMap, the prototype introduced here, takes up on the idea of
PPI visualization constrained by protein location, and provides a
simple visual interface for users to explore protein location
inside a cell. It presents this information in a graphically pleasant
way and offers several customization features. The framework
has been optimized to simplify future developments, such as the
addition of further data dimensions (e.g. inclusion of protein
trafficking). An instance of the tool with localization data from
a previous publication that includes protein localizations of
the human proteome5 and PPI data from the Human Integrated
Protein-Protein Interaction rEference (HIPPIE) resource6 is
available at http://cell.dallago.us.

Methods
Implementation
The CellMap prototype is an integrated portal that exposes
API calls to retrieve images (representing cells) and protein
information, as well as a frontend to visualize protein location
and PPI data. The portal is fully written in JavaScript, namely
in the JavaScript interpreter node.js (https://nodejs.org) for the
backend and vanilla JavaScript for the frontend. The portal is
deployed to the public through a Docker container. Docker is a
technology that allows shipping of packaged services such as web
applications to customers and users without the need to install
dependencies other than the Docker engine (available through:
https://www.docker.com). For the representation of cell images
as maps, the Leaflet framework is used. Leaflet is a JavaScript-
based tool used to represent maps (http://leafletjs.com).

Data about proteins are stored as JSON documents in a Mongo
(http://mongodb.com) database. All information about the
interaction partners and the subcellular localization of a protein
is stored in a single JSON document, making the data structure
simple to understand for non-experts and enabling them to deploy
prototypes using their own data. Figure 1 schematically repre-
sents a protein data model (for a specific example for a protein
object: http://cell.dallago.us/api/proteins/search/Q99943).

Operation
In CellMap, users can choose to upload new maps (images of
cells). They can modify the location of regions of interest (ROIs)
for a selected map (Figure 2), and visualize the locations of selected
proteins on a map or render protein-protein interaction networks
from a set of selected proteins.

To maintain a consistent coloring scheme for different cellular
compartments throughout a set of different images, each com-
partment is assigned a unique color through the hash of the
compartment’s name (e.g. light blue = vacuole, Figure 3B). Using
this coloring approach, users might eventually learn to associate
color with compartment. When proteins are loaded into the map,
they are assigned pseudo-random coordinates representing a
point that lies within the boundaries of the ROI in which they are
localized (Figure 3D). A circle of a given radius is placed on the
randomly generated point (Figure 3E-F), and the circle will be filled
with the same color as the compartment in which the protein is
located in (Figure 3B and 3F).

Users can choose between two visualization options: the subcel-
lular location in the context of the protein-protein interaction

Figure 1. Diagram of the data representation in CellMap. In the
figure we present a diagram of the Protein class, which contains
several attributes of type String, two fields of type timestamp and
two arrays (in square brackets) that reference the Interactions and
Localizations classes. The arrows highlight the referenced models.
This simple representation of information about a protein, its protein-
protein interaction partners and its localizations enables the tool to
be reused with one’s own datasets.

Page 3 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Christian Dallago

 42

Figure 2. Section of a screenshot of the CellMap editing tool on a private instance of the portal. In the screenshot, an authorized user
with editing capabilities draws a polygon (dark green) representing a new cellular compartment or region of interest (ROI). The user has
a set of tools on the left side that can be used to draw polygons, lines, squares or circles. Once the new region has been drawn, the user
can associate a cellular compartment through the dropdown input on the top-right and submit the new information to the server. The image
used for this screenshot was taken from Wikimedia’s user Royroydeb, under CC BY-SA 4.0 (http://bit.ly/2fuYRiE) and is used in this figure for
demonstrative purposes only, as using it on the online version of CellMap would infringe copyright.

Figure 3. Definition of an area and drawing of protein circle. (A) Section of a cartoon image of a cell; (B) user-drawn polygon representing
the area occupied by a vacuole; (C) how the section of the cartoon image is displayed on the PPI/map viewer; (D) random point calculation
inside vacuole-polygon-defined area; (E) drawing of a protein circle located inside the vacuole, (F) result of loading a protein localized in the
vacuole as shown by PPI/map viewer.

Page 4 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Biases model machine learning predictions in protein biology

 43

Figure 4. Comparison between PPI viewer and map viewer. The left view (A) shows the PPI viewer, which depicts the result of loading
protein Q9NR71 and displays a circle for the first localization found in the array of locations (http://cell.dallago.us/ppi?p=Q9NR71); The right
panel (B) shows the Map viewer, which depicts the result of loading the same protein Q9NR71 and displays a circle for the protein in each
of its reported location (http://cell.dallago.us/map?p=Q9NR71). The red arrows are overlaid on top of the screenshots to highlight where the
protein circles have been drawn in the viewers, since fitting the screenshot on the page reduces the overall size of the images.

Figure 5. Protein information box. Top: information about the selected protein. Bottom: new localization selection box rendered in the PPI
viewer when clicking on the protein circle (http://cell.dallago.us/ppi?p=Q9NR71).

viewer (PPI viewer, Figure 4A, http://cell.dallago.us/ppi), and the
protein subcellular location viewer (Map viewer, Figure 4B, http://
cell.dallago.us/map). The two viewers can load the same images
of cells (maps) and collect localization data from the same source,
in the publicly available instance by 5. The PPI viewer offers the
possibility to overlay networks between proteins being visual-
ized. The map viewer displays all locations reported for a given
protein simultaneously, while the PPI viewer only displays only
one location at a time (by default: the first localization in the
array of localizations as described in the protein data model,
Figure 1); users can manually change the location by clicking on
the protein circle and selecting a new location from the informa-
tion box (Figure 5). Both the PPI and the map viewer are enriched
by several controls (Figure 6): The top-left controls enable actions
including: the navigation to the home of CellMap (Figure 6,
panels 1 and 2, A), switching from the map viewer to the PPI
viewer and vice versa, keeping the proteins currently loaded in

the view (Figure 6, panels 1 and 2, B), reducing the opacity of the
cell map, highlighting the protein circles (Figure 6, panels 1 and
2, C), zooming in- and out of the map and PPI viewers (Figure 6,
panels 1 and 2, D), and visualization of the global network among
all proteins loaded in the visualizer (Figure 6, panel 1, E). The
top-right control allows to temporarily hide loaded proteins or acti-
vate an overlay of the user-drawn localizations (Figure 6, panel 4).
The top-center search panel allows users to load new proteins by
searching for their UniProt identifier, primary gene or primary pro-
tein name7 into the viewer (Figure 6, panel 3).

To facilitate the retrieval of proteins and their interacting part-
ners, CellMap provides basic search functionalities. Users can
search for proteins based on their UniProt identifiers, by their gene
identifiers or by their protein names. When performing the search,
the page renders a grid containing boxes, each representing a dif-
ferent protein (Figure 7). Inside the boxes, the UniProt identifier

Page 5 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Christian Dallago

 44

for the protein that matched the search criterion is displayed. Start-
ing on the top-right of every box a smaller colored square for each
compartment is displayed in which that protein is localized. For
proteins annotated to be in a single compartment, the border of
the outer box (representing one protein as indicated by the
UniProt ID in the center of the box) will get the color of that com-
partment (2nd box in Figure 7). Clicking on one of the colored
squares will filter results based on the compartment represented
by that color. In the bottom-right of each box, the total number of
PPI partners are annotated.

Discussion
Some CellMap functionality is exemplified by a heat shock
protein (HSPA4; Heat shock 70 kDa protein 4, UniProt identifier
P34932) with many interaction partners (338, according
to HIPPIE, http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
query.php?s=HSPA4) in different compartments. The objective
was to showcase how CellMap can simplify PPI hairballs. We
visualize the same PPI network using CellMap (Figure 8A)
and Cytoscape1 in the form of the Cytoscape.js version used by
HIPPIE (Figure 8B) and the Cytoscape desktop version
(Figure 8C).

None of the three viewers solves the PPI hairball problem
completely. Without zooming in, the information density for

338 protein pairs is too high to be helpful. HIPPIE’s layout for
Cytoscape.js (Figure 8B) clearly improves over the standard
Cytoscape desktop version (Figure 8C) by centering the view
around HSPA4, the protein of interest. In CellMap (Figure 8A) the
biologically relevant differences between pairs from the same and
from different compartments remain visible.

By using a biologically relevant dimension (protein localiza-
tion), instead of drawing nodes in positions based on edge
weight (force layout of Cytoscape), some aspects of the protein
and its partners become obvious at first glance, e.g. that HSPA4
interacts with many nuclear and cytoplasmic proteins, as well
as with proteins that are secreted (extra-cellular) and located in
the Endoplasmic Reticulum (ER, Figure 8). This may suggest the
hypothesis HSPA4 to be an important hub involved in process
spanning across compartments. Such a hypothesis is presented in
our supplementary material (Figure SOM_1), where we analyze
the visualization of the FOXO3 protein through CellMap.

One disadvantage of CellMap over the Cytoscape.js view is that
the protein identifiers are not visible at all on the static image
(protein identifiers become visible through mouse-over events
in CellMap). However, in the image shown (Figure 8) the
Cytoscape.js names also remain unreadable. Another problem
with CellMap are the numbers displayed on edges (experimental

Figure 7. Results of searching for protein “foxo”. The screenshot of this section of the home page shows four proteins that match the
search criterion “foxo” either by their UniProt identifier, primary gene name or primary protein name. The protein boxes contain the UniProt
identifiers of the matched proteins (center) and display the number of interaction partners (bottom-right) and several color-filled boxes
graphically representing the localizations reported for the matched proteins (top-left).

Figure 6. Controls used in the different viewers. (1) Top-left controls of PPI viewer; (2) top-left controls of map viewer; (3) top-center
search panel of PPI/map viewer; (4) top-right layer control on PPI/map viewer.

Page 6 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Biases model machine learning predictions in protein biology

 45

Page 7 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Christian Dallago

 46

Figure 8. PPI hub in CellMap (A), Cytoscape.js (B) and Cytoscape desktop (C). For HSPA4 (Heat shock 70 kDa protein 4, UniProt identifier
P34932), we show some of the PPIs known (according to HIPPIE HSPA4 has 338 interaction partners). We chose this as one example of a
protein with many more PPIs than the average protein (“PPI hub”). The figure compares how three different PPI viewers cope with the HSPA4
network: (A) CellMap (http://cell.dallago.us/protein/P34932), (B) HIPPIE’s Cytoscape.js visualizer and (C) the desktop version of Cytoscape.
Proteins in CellMap are represented as colored dots on the map (image) of the cell, and upon selecting the protein of interest an overlay of
edges is drawn. In Cytoscape and Cytoscape.js, proteins are represented as nodes containing a label (protein name as UniProt identifier),
and edges are directly inferred from the data. The Cytoscape.js visualization was taken directly from HIPPIE. The Cytoscape network was
automatically drawn upon loading the HIPPIE dataset and selecting the protein of interest and it’s direct neighbors.

reliability of the PPI as given by HIPPIE). In our view, this infor-
mation is extremely important to look at interactions, but we are
still lacking a more sophisticated mechanism to visualize these
numbers.

CellNetVis8 is a recent tool that also connects localization with
PPI networks. It emphasizes the way PPI networks are laid out
through the adaptation of a so-called force-directed layout (using
the tool While). Although CellMap and CellNetVis are founded
on a similar idea, user experience and focus differ importantly.
For instance, CellMap can be driven by data from users that define
the number of compartments on a map, and provide localizations.
In contrast, CellNetVis uses a fixed subset of compartments and
an ad hoc diagram for the cell. Additionally, CellMap comes with
out of the box data for the human proteome and allows the
community to grow the tool by enriching datasets (images and
localizations), whereas CellNetVis has a per-use approach,

allowing to visualize networks stored in specialized XGMML
files. Another unique aspect of CellMap is the openness to intro-
duce further biologically meaningful dimensions (beyond loca-
tion such as time or pathways) that increase the usefulness of PPI
visualization tools to create new testable hypotheses.

Conclusions
CellMap is a prototype providing a portal exploring the idea of
using protein subcellular location as the basis to construct more
complete visualizations of biological data, such as protein-protein
interactions (PPIs). Using this paradigm, we claim that addi-
tional information, such as pathways, can be layered on top of the
current visualization of subcellular location to potentially generate
meaningful biological insights. The source code for the portal is
publicly available and an instance of the portal with location data
from a previous publication about the subcellular localization of
the human proteome5 and protein-protein interaction data from

Page 8 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Biases model machine learning predictions in protein biology

 47

References

1. Shannon P, Markiel A, Ozier O, et al.: Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Res. 2003;
13(11): 2498–2504.
PubMed Abstract | Publisher Full Text | Free Full Text

2. Chaurasia G, Malhotra S, Russ J, et al.: UniHI 4: new tools for query, analysis
and visualization of the human protein-protein interactome. Nucleic Acids Res.
2009; 37(Database issue): D657–D660.
PubMed Abstract | Publisher Full Text | Free Full Text

3. Ma DK, Stolte C, Krycer JR, et al.: SnapShot: Insulin/IGF1 Signaling. Cell. 2015;
161(4): 948–948.e1.
PubMed Abstract | Publisher Full Text

4. Ofran Y, Yachdav G, Mozes E, et al.: Create and assess protein networks
through molecular characteristics of individual proteins. Bioinformatics. 2006;
22(14): e402–e407.
PubMed Abstract | Publisher Full Text

5. Ramilowski JA, Goldberg T, Harshbarger J, et al.: A draft network of

ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;
6: 7866.
PubMed Abstract | Publisher Full Text | Free Full Text

6. Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH: HIPPIE v2.0: enhancing
meaningfulness and reliability of protein-protein interaction networks. Nucleic
Acids Res. 2017; 45(D1): D408–D414.
PubMed Abstract | Publisher Full Text | Free Full Text

7. The UniProt Consortium: UniProt: the universal protein knowledgebase. Nucleic
Acids Res. 2017; 45(D1): D158–D169.
PubMed Abstract | Publisher Full Text | Free Full Text

8. Heberle H, Carazzolle MF, Telles GP, et al.: CellNetVis: a web tool for
visualization of biological networks using force-directed layout constrained by
cellular components. bioRxiv. 2017.
Publisher Full Text

9. Dallago C: CellMap: open software for PPI and protein localization visualization
in JavaScript. Zenodo. 2017.
Data Source

HIPPIE6 (http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie)
is running at http://cell.dallago.us. The visualization tool is
written in JavaScript, thereby tapping into a very large user base
for customized extensions and modifications. With the release
of the prototype, we aim at creating a user base and awareness
of the tool, ultimately collecting precious feedback from experi-
mentalists and technical users alike.

Abbreviations
2D: two dimensions, API: Application Program Interface, ID:
identifier, JSON: JavaScript Object Notation, PPI: protein-protein
interaction, ROI: region of interest.

Software availability
The CellMap prototype is released as open source software under
the GNU General Public License v3.0. Documentation, source
code and viewer are available at https://github.com/sacdallago/
cellmap. Archived source code as at the time of publication is
available at https://doi.org/10.5281/zenodo.9043249. An example
of use with protein localization data from a recent publication5
and from the HIPPIE database of protein-protein interactions6
is available at http://cell.dallago.us.

Competing interests
No competing interests were disclosed.

Grant information
This work was supported by the German Research Foundation
(DFG) and the Technical University of Munich, within the funding
programme Open Access Publishing.

The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Acknowledgements
Thanks primarily to Tim Karl, but also to Guy Yachdav (all TUM)
for invaluable help with hardware and software; to Inga Weise
(TUM) for support with many other aspects of this work; to
Dr. Luisa Jiménez-Soto (Max von Pettenkofer-Institut) for
helpful comments on the manuscript; the LRZ Compute Cloud
team for hosting the webserver; to Rolf Apweiler (UniProt, EBI,
Hinxton), Amos Bairoch (CALIPHO, SIB, Geneva), Ioannis
Xenarios (Swiss-Prot, SIB, Geneva), and their crews for maintain-
ing excellent databases and to all experimentalists who enabled
this analysis by making their data publicly available.

Page 9 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Christian Dallago

 48

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 12 February 2018

https://doi.org/10.5256/f1000research.15085.r30439

© 2018 Orchard S. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Sandra Orchard
European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory,
Cambridge, UK

The authors have addressed my concerns and I have no further comments to add.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 18 January 2018

https://doi.org/10.5256/f1000research.13762.r29754

© 2018 Luna A. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Augustin Luna
Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

The tool provides an interesting feature to help declutter visualizations of biological networks
using localization information. Some comments:

It would be good if the names of the used databases was stated in the last paragraph of the
introduction.

○

Page 10 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Biases model machine learning predictions in protein biology

 49

The tool would be more intuitive for new users, if it provided descriptions the various colors
used on the site with the same explanation as in the paper. For example, the colored boxes
that represent localizations in the search results and the dot colors used for the protein
visualization on the cell map.

○

It is unclear from the paper all the types of interactions might be shown in the represented
networks.

○

Also, it is unclear from the paper, what happens to the network visualization in the cases
where the identified proteins are present in multiple locations.

○

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 29 Jan 2018
Christian Dallago, TUM (Technical University of Munich), Munich, Germany

Dear Dr. Luna,

Thank you very much for your input on our work.

We have submitted a new version of the manuscript, which should address points one and
four of your comment.

As to the second point: we have created a new feature item for our next release that
displays a button on the map viewer to display a modal with the legend. As of now: a legend

Page 11 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Christian Dallago

 50

is available by scrolling down to the second half of the page in the map or ppi viewers (e.g.
http://cell.dallago.us/map/573c87c182a9e1ae1e37d08e?p=P04637) and expanding the
"Legend" tab. We understand that this can be overseen and improved, therefore we thank
you for the input.

As to the third point: in this manuscript, we focus on discussing the software
implementation and visualization abilities of CellMap, rather than the data sources used in
the example deployment hosted on http://cell.dallago.us. More information about the types
of interactions reported by the HIPPIE data source can be found in the latest paper
describing HIPPIE (http://nar.oxfordjournals.org/content/early/2016/10/28/nar.gkw985) and
directly on the HIPPIE information page (http://cbdm-01.zdv.uni-
mainz.de/~mschaefer/hippie/information.php#sources).

Please, feel free to suggest any other changes to both our manuscript and tool.

Best regards,
Christian Dallago.

Competing Interests: No competing interests were disclosed.

Reviewer Report 13 November 2017

https://doi.org/10.5256/f1000research.13762.r27544

© 2017 Orchard S. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Sandra Orchard
European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory,
Cambridge, UK

The authors describe a tool for visualising PPI networks in the context of the subcellular
localisation of the searched protein.

I have twice tried to review this paper and both times the http://cell.dallago.us link gave me
a MongoDB error. I have therefore had to review the paper without being able to view the
tool. This is not satisfactory. I was unable to test the conclusions about the tool and its
findings.

1.

The tool uses a static interaction compilation database (HIPPIE) as the source of PPIs. Did
the authors not consider using the PSICQUIC web service, which gives the users
considerably more options as to where to source their PPI data from, and also allows the
visualisation of protein-small molecule interactions and also potentially the site of action of
protein-drug interactions, also available via PSICQUIC. It would also allow the data to be as
up to date as the latest release of each database, which will be more frequent than releases

2.

Page 12 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Biases model machine learning predictions in protein biology

 51

of HIPPIE.

I am not clear where the subcellular location data comes from. This may be obvious to
regular users of CellMap but not to me, an should be stated in the paper for other user who
do not know this.

3.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 25 Nov 2017
Christian Dallago, TUM (Technical University of Munich), Munich, Germany

Dear Dr. Orchard,

Thank you for your valuable input on the tool!

With regard to point 1: we apologize for the broken database connection, unfortunately, the
deployment system missed that flag and thus didn’t restart the service. We have fixed the
issue and the website is now running. Up until now, I have not identified any other issues
that could prevent the web server to run properly.

With regard to point 2: the software presented in this paper has a dual-purpose. On the one
hand, we want to give the ability to discover protein localization and protein-protein

Page 13 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Christian Dallago

 52

interaction from two known sources (HIPPIE for PPI, and subcellular localization from a
publication, which describes localization for the human proteome based on a consensus of
experimental data and state-of-the-art prediction models (
http://doi.org/10.1038/ncomms8866)). On the other hand, we want to propose a system
that can be reused on user-defined data (as long as it complies with the format the
visualization tool digest, as from Figure 1) and be integrated as JavaScript visualization tool
in different portals. For now, we would like to avoid having a direct integration of the portal
with external tools via, for example, API calls. In an upcoming version of the portal, we will
offer scripts to populate the database from different sources for the two data entities
(protein localization and interaction).

PSICQUIC generates interaction data on-demand, which can later be downloaded.
Obtaining the data requires some time: a user input one specific protein identifier, selects
the databases to use to collect interaction data, submits a cluster job and finally gets access
to the data. Searching for protein P45381 identified 80 interactions in all online databases.
After several hours, the job was not finished, so we decided to lower the number of
databases to fetch information from. Reducing the number of databases produced results
quickly. The results page of PSICQUIC presents a table of interactions and visualizes a
graph, which we could not load due to lack of compatibility with the Chrome browser. We
believe it would be interesting to present CellMap at the level of this resource and will
contact the authors of the tool to discuss what the best idea in this regard would be.
Fetching the data from PSICQUIC as it is now and putting it into the portal requires to also
normalize the PSICQUIC data and map it to protein localization data. Writing a parser for
the PSI-MITAB tables is straightforward, the normalization and mapping of identifiers
should occur externally to CellMap. We will create a guide on how this can be done in the
next days and put it on the landing page of CellMap.
Integrating protein-molecule data and displaying these entities meaningfully is an
interesting idea for the future development of the CellMap tool.

With regard to point 3: the data about protein localization stems from a publication of our
group (http://doi.org/10.1038/ncomms8866). The data on protein subcellular localization for
humans published through this paper was the starting point for the development of
CellMap. In the current manuscript, we focused more on describing the visualization tool,
rather than going into detail about how the localization data was retrieved (which in this
case is by building a consensus over experimental (where available) and predicted
localisations for 6 subcellular compartments). This is again because we didn’t want to
develop a tool around this specific data source, but rather offer the possibility to change the
origin for the localization data in the future.

We appreciate the suggestions for further data sources and data entities that can be used
and integrated into CellMap. In upcoming releases, we will make sure to offer a bigger
variety of data sources and scripts to populate and update the information on protein
subcellular localization, and protein-protein interaction data used by the visualization tool.
Additionally, we will contact the authors of PSICQUIC to discuss if it would be possible to
integrate CellMap in the results page of a cluster job.

Page 14 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Biases model machine learning predictions in protein biology

 53

Best regards,
Christian Dallago, Tatyana Goldberg & Burkhard Rost.

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 15 of 15

F1000Research 2018, 6:1824 Last updated: 21 APR 2022

Christian Dallago

 54

5.2 LEARNED EMBEDDINGS FROM DEEP LEARNING TO VISUALIZE AND PREDICT

PROTEIN SETS

Summary. The ability of protein-based machine learning models to encode descriptive

computational representations of proteins is increasingly leveraged to guide experimental

decision making. Fast models that allow to classify custom sequence datasets are desired, for

instance to focus experiments on more promising biotherapeutic candidates. Recently, Language

Models (LMs) have been adapted from use in natural language processing (NLP) to work with

protein sequences instead. Protein LMs show enormous potential in generating descriptive

representations for proteins from just their sequences at a fraction of the time compared to

previous approaches. pLMs convert amino acid sequences into embeddings (vector

representations) that can be used for analytical purposes, and in unsupervised and supervised

pipelines for prediction of function and structure. Access to protein LMs is scattered throughout

the web, a limiting factor to their use. Differently from previous approaches, any one pLM may

uniquely shine light on a subset of the sequence space depending on its training objective and

datasets. The bio-embeddings suite offers a unified interface to pLMs to embed large protein sets

simply and quickly, to project the embeddings in lower dimensional spaces, to visualize proteins

on interactive scatter plots, and to extract annotations using either supervised models, or

unsupervised techniques. The array of tools offered through bio-embeddings enables quick

hypothesis generation and testing and refined model optimizations on promising prediction

candidates. Bio-embeddings features a pipeline which is accompanied by a web server that offers

to embed, project, visualize, and extract annotations for small protein datasets directly online,

without the need to install software.

Relevance. This software suite was developed as a segue to the training of protein language

models (pLMs), which could compute embeddings (representations) for residues in protein

sequences, which can later be used for predictions. pLM embeddings offer to shine light on

proteins using representations unbiased by supervised properties, as the losses are often self-

supervised (i.e.: reconstructing the syntax of proteins), although sometimes tuned on secondary

losses, like encoding explicitly for structure. A solid software solution around these tools enabled

quicker use of complex machine learning models for non-experts and introduced standardization.

In fact, the solution presented here (bio-embeddings) could be run freely on cloud infrastructure

(e.g., Google Colab), enabling researchers without cluster access of significant compute resources

to use pLMs for their research, democratizing the use of cutting-edge research. Additionally, some

of the pLMs and prediction methods were included in a modular web service, allowing to compute

embeddings and predictions programmatically or through web UIs (e.g.,

embed.protein.properties or predictprotein.org) instantaneously, without local compute

Biases model machine learning predictions in protein biology

 55

overhead. On top, bio-embeddings provided a one stop to find and discuss relevant research on

pLMs from an array of research groups. pLM embeddings

Contribution. I am one of three principal authors. I am also corresponding author. I contributed

at all stages as lead scientist.

Copyright notice. The original publication is available in open access at the DOI 10.1002/cpz1.113

and in the following. The copyright notice is enclosed after the manuscript in this appendix.

Christian Dallago

 56

Learned Embeddings from Deep
Learning to Visualize and Predict Protein
Sets
Christian Dallago,1,2,12,13 Konstantin Schütze,1,12 Michael Heinzinger,1,2,12

Tobias Olenyi,1 Maria Littmann,1,2 Amy X. Lu,3 Kevin K. Yang,4

Seonwoo Min,5 Sungroh Yoon,5,6 James T. Morton,7

and Burkhard Rost1,8,9,10,11

1TUM (Technical University of Munich) Department of Informatics, Bioinformatics &
Computational Biology, Garching/Munich, Germany

2TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications
(CeDoSIA), Garching/Munich, Germany

3Department of Computer Science, University of Toronto, Toronto, Canada & Vector
Institute

4Microsoft Research New England, Cambridge, Massachusetts
5Department of Electrical and Computer Engineering, Seoul National University, Seoul,
South Korea

6Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South
Korea

7Center for Computational Biology, Flatiron Institute, New York, New York
8Institute for Advanced Study (TUM-IAS), Garching/Munich, Germany
9TUM School of Life Sciences Weihenstephan (WZW), Freising, Germany
10Columbia UniversityDepartment of Biochemistry and Molecular Biophysics, New York,

New York
11New York Consortium on Membrane Protein Structure (NYCOMPS), New York, New

York
12These authors contributed equally to this work.
13Corresponding author: christian.dallago@tum.de

Models from machine learning (ML) or artificial intelligence (AI) increasingly
assist in guiding experimental design and decision making in molecular biol-
ogy and medicine. Recently, Language Models (LMs) have been adapted from
Natural Language Processing (NLP) to encode the implicit language written
in protein sequences. Protein LMs show enormous potential in generating de-
scriptive representations (embeddings) for proteins from just their sequences,
in a fraction of the time with respect to previous approaches, yet with compara-
ble or improved predictive ability. Researchers have trained a variety of protein
LMs that are likely to illuminate different angles of the protein language. By
leveraging the bio_embeddings pipeline and modules, simple and reproducible
workflows can be laid out to generate protein embeddings and rich visualiza-
tions. Embeddings can then be leveraged as input features through machine
learning libraries to develop methods predicting particular aspects of protein
function and structure. Beyond the workflows included here, embeddings have
been leveraged as proxies to traditional homology-based inference and even to
align similar protein sequences. A wealth of possibilities remain for researchers
to harness through the tools provided in the following protocols. © 2021 The
Authors. Current Protocols published by Wiley Periodicals LLC.

Current Protocols e113, Volume 1
Published in Wiley Online Library (wileyonlinelibrary.com).
doi: 10.1002/cpz1.113
© 2021 The Authors. Current Protocols published by Wiley
Periodicals LLC. This is an open access article under the terms
of the Creative Commons Attribution-NonCommercial-NoDerivs
License, which permits use and distribution in any medium, provided
the original work is properly cited, the use is non-commercial and
no modifications or adaptations are made.

Dallago et al.

1 of 26

Biases model machine learning predictions in protein biology

 57

The following protocols are included in this manuscript:

Basic Protocol 1: Generic use of the bio_embeddings pipeline to plot protein
sequences and annotations
Basic Protocol 2: Generate embeddings from protein sequences using the
bio_embeddings pipeline
Basic Protocol 3: Overlay sequence annotations onto a protein space visual-
ization
Basic Protocol 4: Train a machine learning classifier on protein embeddings
Alternate Protocol 1: Generate 3D instead of 2D visualizations
Alternate Protocol 2: Visualize protein solubility instead of protein subcellular
localization
Support Protocol: Join embedding generation and sequence space visualiza-
tion in a pipeline

Keywords: deep learning embeddings ! machine learning ! protein annotation
pipeline ! protein representations ! protein visualization

How to cite this article:
Dallago, C., Schütze, K., Heinzinger, M., Olenyi, T., Littmann, M.,
Lu, A. X., Yang, K. K., Min, S., Yoon, S., Morton, J. T., & Rost, B.
(2021). Learned embeddings from deep learning to visualize and

predict protein sets. Current Protocols, 1, e113.
doi: 10.1002/cpz1.113

INTRODUCTION

Protein sequences correspond to strings of characters, each representing an amino acid
(referred to as residues when joined in a protein). While protein savants extrapolate
a wealth of information from this representation, for machines this is as meaningless
as any other text document. Finding meaningful, computable representations from
protein sequences by converting text into vectors of numbers representing relevant
features or descriptors of proteins is an important first step to find out properties of the
protein with that sequence, e.g., what other proteins it resembles (sequence comparisons
through alignments), what it looks like (membrane or water-soluble, regular globular
or disordered), or what it does (enzyme or not, process involved in, molecular function,
interaction partners).

Many approaches to generate knowledge and meaning from protein sequences have
been proposed. Intuitive representations relied on what experts considered informative,
e.g., converting sequences into numerical vectors representing polarity or hydropho-
bicity. More advanced ideas included substitution matrices (Henikoff & Henikoff,
1992), profiles of protein families (Stormo, Schneider, Gold, & Ehrenfeucht, 1982), and
“evolutionary couplings” from events correlating the mutability at two or more residues
(Morcos et al., 2011). Combining “evolutionary information” (Rost & Sander, 1993),
along with global (entire protein) and local (only sequence fragment) features through
machine learning (ML; Rost & Sander, 1993, 1994), led to the first breakthrough in
protein structure prediction over two decades ago (Moult, Pedersen, Judson, & Fidelis,
1995; Rost & Sander, 1995). Combining more sophisticated tools from Artificial Intel-
ligence (AI) to include even more protein evolutionary information have led to the most
recent breakthrough by AlphaFold2 from DeepMind (Callaway, 2020).

Dallago et al.

2 of 26

Current Protocols

Christian Dallago

 58

Representations based on evolutionary information have improved remote homology de-
tection (Steinegger et al., 2019) as well as the prediction of aspects of protein struc-
ture (Hopf et al., 2012; Rost, 1996) and protein function (Goldberg et al., 2014; Hopf
et al., 2017). The amount of evolutionary information contained in these representations
is proportional to the size and diversity of a protein family (Ovchinnikov et al., 2017;
Rost, 2001); the generation of families relies on parameter-sensitive multiple sequence
alignments (MSAs) that, due to growing databases, become increasingly computation-
ally expensive, despite immense advances in method development (Steinegger & Söding,
2018; Steinegger, Mirdita, & Söding, 2019).

Deep learning−based Language Models (LMs) are a new class of machine learning de-
vices learning the rules for semantics and syntax directly and autonomously from the
statistics of text corpora. Modern LMs learn to represent language by being conditioned
on either predicting the next word in a sentence given previous context, or by recon-
structing corrupted text. In protein bioinformatics, these devices are trained on large se-
quence datasets, such as UniProt (The UniProt Consortium, 2019), through a process
called “self-supervision”. LM representations (embeddings) have been used as input to
other methods (a process referred to as transfer learning) to predict aspects of protein
structure and function. Although embedding-based predictions tend to be less accurate
than those using evolutionary information, they require less time (Heinzinger et al., 2019;
Rao et al., 2019; Rives et al., 2019). By learning to represent sequence and background
information, embeddings open the door to a completely new way of using protein se-
quences, successful enough to even compete with traditional remote homology detection
and structural alignments (Biasini et al., 2014; Littmann, Heinzinger, Dallago, Olenyi, &
Rost, 2021; Morton et al., 2020; Villegas-Morcillo et al., 2020).

Although embeddings derived from sequences contain substantially more information
than raw sequences, one challenge for this new representation is to simplify its avail-
ability. This is one crucial objective of the bio_embeddings software resource, which
collects tools to create and use protein embeddings. Basic Protocol 1 serves as a high-
level overview of functionalities of the bio_embeddings pipeline. Basic Protocol 2 adds
in-depth context for embeddings and details steps on how to extract embeddings from se-
quences. Through Basic Protocol 3 (and variations thereof in Alternate Protocols 1 and
2), embeddings are leveraged to plot sequence sets in combination with aspects of pro-
tein function, namely subcellular location and membrane-boundness. Finally, in Basic
Protocol 4, the rich protein representations from a protein LM are used as input features
to train a machine learning device to predict protein subcellular localization.

BASIC
PROTOCOL 1

GENERIC USE OF THE bio_embeddings PIPELINE TO PLOT PROTEIN
SEQUENCES AND ANNOTATIONS

This protocol serves as non-technical overview of what is available out-of-the-box
through the bio_embeddings pipeline. The premise is simple: you will use software to
plot protein sequences and color them by a property. For this purpose, we prepared three
files for download: one containing about 100 protein sequences in FASTA format, a CSV
file containing DisProt (Hatos et al., 2020) classifications for these sequences (whether
their 3D structure presents mostly disorder or little disorder), and a configuration file
that specifies parameters for the computation. Apart from downloading these files and
the steps necessary to install the bio_embeddings software, executing the computation
is a single step. The following basic protocols present greater detail about the technical
aspects surrounding inputs, outputs and parameters of the pipeline.

The output obtained by us when executing this protocol is available for compari-
son at http://data.bioembeddings.com/disprot/disprot_sampled; the plot file resulting

Dallago et al.

3 of 26

Current Protocols

Biases model machine learning predictions in protein biology

 59

from executing the steps is available at http://data.bioembeddings.com/disprot/disprot_
sampled/plotly_visualization/plot_file.html.

NOTE: This visualization is produced for a small sample of DisProt sequences; as such it
is by no means representative of the power of the embeddings in distinguishing DisProt
classes.

Materials
Hardware

A modern computer (newer than 2012), with about 8 GB of available RAM, 2
GB of available disk space, and an Internet connection.

Software

Windows users may need to install Windows Subsystem for Linux
(https://docs.microsoft.com/en-us/windows/wsl). All users should have
Python 3.7 or 3.8 installed (https://www.python.org/downloads).

Data

You will need a FASTA sequence for some proteins in DisProt, which can be
downloaded from http://data.bioembeddings.com/disprot/ sequences.fasta;
you will need annotations of disorder content, which can be downloaded from
http://data.bioembeddings.com/disprot/disprot_annotations.csv; finally, you
need a configuration file for the bio_embeddings pipeline, which can be
downloaded from http://data.bioembeddings.com/disprot/config.yml.

1. Ensure that all software and hardware requirements are met (see Materials, above).
Install Python 3.7 or 3.8 on your system using https://www.python.org/downloads.

If you already have a Python installation with a different version (e.g., 2.7) that you must
keep, consider installing Python 3.8 through Anaconda (“Anaconda Software Distribu-
tion,” 2020): https://docs.anaconda.com/anaconda/ install.

2. Download required files.
Through your browser, navigate to http://data.bioembeddings.com/disprot
and download the files: sequences.fasta, config.yml, and dis-
prot_annotations.csv.

Note that you might need to right click and select “Save Link As” to download the files.

If you prefer to use the terminal, run the following three commands:

wget http://data.bioembeddings.com/disprot/sequences.fasta
wget http://data.bioembeddings.com/disprot/config.yml
wget http://data.bioembeddings.com/disprot/disprot_annotations.csv

3. Create a project directory and move files into it.
Create a new directory called disprot on your computer and move the files down-
loaded in step 2 into this directory.

We suggest creating the directory in an easy-to-find location, for example the Downloads
folder.

4. Open a new terminal window.
To open a terminal on MaxOS or Linux, search for the application “Terminal” and
open it. On Windows, after having installed the Windows Subsystem for Linux (https:
//docs.microsoft.com/en-us/windows/wsl), search for and open the application called
“bash” through the start menu.

5. Install bio_embeddings.
Dallago et al.

4 of 26

Current Protocols

Christian Dallago

 60

To install the pipeline and all of its dependencies, open a terminal window and type
in the command:

pip install ---user "bio-embeddings[all]"

This command may take up to 10 min to execute, depending on the speed of the connection.
If you experience warnings regarding incompatible packages (e.g., “bio-embeddings
requires Y>X, but you have Y Z which is incompatible”), please
try using a new conda environment (see Troubleshooting).

6. Navigate to the project directory from the terminal window.
If you called your project directory disprot inside the Downloads folder, the
command to navigate to the directory through the MacOS and Linux Terminal is:

cd ∼/Downloads/disprot

7. Run the bio_embeddings pipeline.
To start running the bio_embeddings pipeline, type the following in your terminal
window:

bio_embeddings config.yml

Then, press Enter.

This will start a job using parameters defined in the text configuration file (con-
fig.yml; detail about the parameters in the next protocols). Opening the file with a
text editor will display the following content:

global:
sequences_file: sequences.fasta
prefix: disprot_sampled

protbert_embeddings:
type: embed
protocol: prottrans_bert_bfd
reduce: true
discard_per_amino_acid_embeddings: true

umap_projections:
type: project
protocol: umap
depends_on: protbert_embeddings
n_components: 2

plotly_visualization:
type: visualize
protocol: plotly
annotation_file: disprot_annotations.csv
display_unknown: false
depends_on: umap_projections

There are four major text blocks, each defining a job stage. The parameters in the first
block (starting with general) define where protein sequences live and where to store
results. The second block (protbert_embeddings) defines parameters to generate
computational representations using a language model (more in the following). The third
(uma_projections) contains options to transform the representations, while the forth
(plotly_visualizations) defines options to plot the proteins.

You should see output that resembles:

2020-11-09 20:37:13,753 INFO Created the prefix directory disprot_sampled
2020-11-09 20:37:13,756 INFO Created the file
disprot_sampled/input_parameters_file.yml
2020-11-09 20:37:13,970 INFO Created the file disprot_sampled/sequences_file.fasta
2020-11-09 20:37:14,118 INFO Created the file disprot_sampled/mapping_file.csv
…

Dallago et al.

5 of 26

Current Protocols

Biases model machine learning predictions in protein biology

 61

Figure 1 2D visualization of protein sequences with disorder annotation. The points are projec-
tions of embeddings of a subset of protein sequences contained in DisProt (Hatos et al., 2020).
Proteins annotated with high disorder content (red) tend to cluster to the bottom-right, while pro-
teins annotated with little disorder content (blue) tend to cluster to the top-left. The figure is available
interactively at http://data.bioembeddings.com/figures/figure_1.html.

Please note that sometimes warnings may appear as dependencies used by the
bio_embeddings pipeline get updated and introduce slight changes in how bio_embeddings
is expected to interface with them. Warnings are usually harmless and get addressed by the
bio_embeddings team within a few weeks. The command will take up to 15 min to execute
and will download a 1.5-GB file in your home directory.

8. Open the plot file.

After the execution of the bio_embedding pipeline has finished, your system should
automatically have opened up a browser window displaying a 2D graph of the pro-
teins contained in the FASTA file colored by their disorder content according to Dis-
Prot (Hatos et al., 2020; Fig. 1). If not, you can navigate to the disprot directory,
which will contain a new directory (disprot_sampled), with yet another directory
(plotly_visualization), which contains the plot file as plot_file.html . You
can open this file in any modern browser.

BASIC
PROTOCOL 2

GENERATE EMBEDDINGS FROM PROTEIN SEQUENCES USING THE
bio_embeddings PIPELINE

Through this protocol, you may generate machine-readable representations (embed-
dings) from a set of protein sequences using the “embed” stage of the bio_embeddings
pipeline. The sequence file utilized for the example was written by the prediction pro-
gram DeepLoc (Almagro Armenteros, Sønderby, Sønderby, Nielsen, & Winther, 2017),
but you can also provide your own FASTA file. Embeddings constitute an abstract
encoding of the information contained in protein sequences, and are the building block
of the pipeline and its analytical tools. In this protocol, we use BERT (Devlin, Chang,
Lee, & Toutanova, 2019) trained on BFD (Steinegger & Söding, 2018; Steinegger et al.,
2019) to extract embeddings from protein sequences. This model is part of the Prot-
Trans protein LMs (Elnaggar et al., 2020), referred to as ProtBERT in text or prot-
trans_bert_bfd in the following code. You can find out how to choose a protein
LM based on your requirements on our website (http://bioembeddings.com). The salient
output of the embed stage are the embedding files. These come in two flavors: per-residue
(embeddings_file.h5) and per-protein (reduced_embeddings.h5). While the
per-residue embeddings are taken directly out of the LMs, per-protein embeddings are
generated post-processing the information extracted by the LM through global averageDallago et al.

6 of 26

Current Protocols

Christian Dallago

 62

pooling (Shen et al., 2018) on all combined per-residue embeddings of a sequence. Per-
residue embeddings are useful to analyze properties of residues in a protein (e.g., which
residues bind ligands), while per-protein representations capture annotations describing
entire proteins (e.g., native localization).

Materials
Hardware

Computer (newer than 2012), >8 GB of available RAM, ∼2 GB of available
disk space

Optional: Graphical Processing Unit (GPU) with >4 GB of vRAM and
supporting CUDA® 11.0

This will speed up the embedding process manyfold
Internet connection

Software (MacOS and Linux)

Python 3.7 or 3.8 (https://www.python.org/downloads)
Windows users: Windows Subsystem for Linux

(https://docs.microsoft.com/en-us/
windows/wsl)

Optional: CUDA® (https://developer.nvidia.com/cuda-downloads; at time of
writing: version 11.1)

Data

DeepLoc (Almagro Armenteros et al., 2017): http://data.bioembeddings.com/
deeploc/deeploc_data.fasta

DeepLoc (reduced sample) FASTA-formatted sequences:
http://data.bioembeddings.com/
deeploc/sampled_deeploc_data.fasta

NOTE: as input, we begin with two files containing protein sequences in a
simplified FASTA format (first line begins with “>” followed by protein
name, all subsequent lines contain the sequence in single-letter amino acid
code).

1. Install bio_embeddings from pip.
To install the pipeline and all of its dependencies, open a terminal window and type
in the command:

pip install --user "bio-embeddings[all]"

2. Create a project directory.
We suggest you create a new project directory on your disk. You can generate it
through the terminal:

mkdir deeploc

Then, open the directory through the terminal:

cd deeploc

3. Download the DeepLoc FASTA file inside the project directory.
From the terminal (within the project directory):

wget http://data.bioembeddings.com/deeploc/deeploc_data.fasta

Alternatively, download the file using your browser, and move it to the project direc-
tory. Dallago et al.

7 of 26

Current Protocols

Biases model machine learning predictions in protein biology

 63

CAUTION: If you are using a system not equipped with a GPU, we suggest picking
a smaller FASTA set for the next steps. This will facilitate executing subsequent steps.
A smaller FASTA file is available at: http://data.bioembeddings.com/deeploc/sampled_
deeploc_data.fasta. If you pick this file, make sure to note the name change for the follow-
ing steps.

4. Create a configuration file.
A configuration file defines what the pipeline should do (files and parameters it should
use and stages it should run). Many examples of configuration files are provided at
http://examples.bioembeddings.com, including the one you will create here (called
deeploc). To create the configuration file from the terminal:

nano config.yml

Then, type in the following and save the file (to save: press Ctrl+x, then “y”, then the
Return key):

global:
sequences_file: deeploc_data.fasta
prefix: deeploc_embeddings
simple_remapping: True

prottrans_bert_embeddings:
type: embed
protocol: prottrans_bert_bfd
reduce: True

The global section defines a global parameter; mandatory are the input sequence file
(calleddeeploc_data.fasta in the config) and the prefix where outputs will be stored
(in this case, a new directory deeploc_embeddings, which will be created inside the
deeploc project directory).

The sections followingglobal define stages of the pipeline and can have arbitrary names.
In this case, you have one stage called prottrans_bert_embeddings, which will
execute an “embed” stage (type: embed), using the BERT language model trained on
BFD (Elnaggar et al., 2020) (protocol: prottrans_bert_bfd). The “embed”
stage produces per-residue embeddings by default. To get per-protein embeddings you
must specify the reduce parameter (reduce: True).

5. Run the bio_embeddings pipeline.
All that is left to do is to supply the configuration file to bio_embeddings and let the
pipeline execute the job. To do so, type on the terminal:

bio_embeddings config.yml

You should see output that resembles:

2020-11-09 20:37:13,753 INFO Created the prefix directory deeploc_embeddings
2020-11-09 20:37:13,756 INFO Created the file deeploc_embeddings/input_parameters_file.yml
2020-11-09 20:37:13,970 INFO Created the file deeploc_embeddings/sequences_file.fasta
2020-11-09 20:37:14,118 INFO Created the file deeploc_embeddings/mapping_file.csv
…

6. Locate the embedding files.

After the job has finished, you should have a new directory called
deeploc_embeddings (prefix) in your deeploc project directory. This directory
will contain several files, and another directory, prottrans_bert_embeddings
(config.yml after section global), with the outputs of the “embed” stage. The most
salient files are embeddings_file.h5 and reduced_embeddings_file.h5
(only produced if “reduce: True”) inside the prottrans_bert_embeddings
directory. These files are what you will use for your analyses and to train prediction tools
(following protocols).Dallago et al.

8 of 26

Current Protocols

Christian Dallago

 64

BASIC
PROTOCOL 3

OVERLAY SEQUENCE ANNOTATIONS ON A PROTEIN SPACE
VISUALIZATION

The previous protocol generated embeddings from protein sequences in your dataset
(here DeepLoc dataset). In Basic Protocol 3 you use functions from the bio_embeddings
package to visualize “protein spaces” spanned by the embeddings extracted. These vi-
sualizations reveal whether or not the LM chosen for the “embed” stage (Basic Proto-
col 2) can roughly separate your data based on a desired property/phenotype. The prop-
erty/phenotype in our example is subcellular location in 10 states. Alternate Protocol 2
uses the same data and similar steps to visualize protein solubility. While visualizations
are useful, the discriminative power of embeddings can be boosted many times by train-
ing machine learning models on the embeddings to predict the desired property (Basic
Protocol 4).

Between embedding generation and protein space visualization, another step has to be
inserted. In the pipeline, we refer to this step as a “project” stage. Its purpose is to reduce
the dimensionality of the embeddings (e.g., 1024 for ProtBERT) such that it can be vi-
sualized in either 2D or 3D. Here, we project embeddings onto 2D; Alternate Protocol 1
uses the same data and slight variations in parameters to 3D plots instead.

The final notebook constructed here is available at http://notebooks.bioembeddings.com
as deeploc_visualizations.ipynb to be downloaded and executed locally, or
executed directly online. The file also includes steps presented in Alternate Protocols 1
and 2.

The Support Protocol 1 explains how to integrate the final visualization options in a
configuration file as instruction for the pipeline to manage the entire process—from se-
quences to visualizations. This is useful to enable colleagues to reproduce all your results
from a few files.

Materials
Software

Jupyter Notebook (Kluyver et al., 2016)
Notebooks can be run locally, provided that the necessary dependencies are

installed (python 3.7 and the Jupyter suite). Installation steps are described
here: https:// jupyter.org/ install.

Notebooks can be run on Google Colaboratory (Bisong, 2019), without having
to install software locally, given an internet connection and a Google account.

Data

DeepLoc embeddings input files, which you either calculated through Basic
Protocol 2 or you can be download from
http://data.bioembeddings.com/deeploc/reduced_embeddings_file.h5

Annotations of properties/phenotypes of the proteins; for DeepLoc, subcellular
location annotations can be downloaded from
http://data.bioembeddings.com/deeploc/annotations.csv

1. Create new Jupyter Notebook on Google Colaboratory (a) or locally (b).

a. We suggest running the following through Google Colaboratory. To open a new
Google Colaboratory, navigate to: https://colab.research.google.com/#create=
true.

Dallago et al.

9 of 26

Current Protocols

Biases model machine learning predictions in protein biology

 65

b. If you prefer to execute the steps on your local computer, through the terminal,
navigate to the deeploc folder created previously, or to a new folder. Then, start
a Jupyter notebook through the terminal:

jupyter-notebook

This should open a browser window. From the top-right drop-down menu called
“new”, select “Python 3”.

2. Install bio_embeddings

a. On Google Colaboratory paste in the following code in the first code block:

!pip3 install -U pip
!pip3 install -U "bio-embeddings[all]"

Then, press the play button on the left of the code cell. Given some version dif-
ferences in Google Colaboratory, warnings may arise. These, however, can be ig-
nored.

b. If you already executed Protocol 1, you are set. Otherwise, open a new terminal
window and type:

pip install --user "bio-embeddings[all]"

3. Download files.

a. On Google Colaboratory, create a new code block (by pressing the “+ code” but-
ton). Then, paste in the following code:

!wget http://data.bioembeddings.com/deeploc/reduced_embeddings_file.h5
!wget http://data.bioembeddings.com/deeploc/annotations.csv

b. On your local computer, simply download the files listed in the Materials list for
this protocol and move them into the folder in which the notebook was started (see
step 1).

4. Import dependencies.
From here on, the execution steps are identical on Google Colaboratory and your
local Jupyter notebook. You will now import the functions that allow you to open
embedding files, reduce the dimensionality, and visualize scatter plots. To do so, in a
new code block, type and execute the following:

import h5py
import numpy as np
from pandas import read_csv, DataFrame
from bio_embeddings.utilities import QueryEmbeddingsFile
from bio_embeddings.project import umap_reduce
from bio_embeddings.visualize import render_scatter_plotly

5. Read annotations file.
Assume that the original FASTA file, for which you generated embeddings, was the
following:

>Q9H400-2
SEQVENCE
>P12962
SEQVVNCE
>P12686
MNQVENCE

Dallago et al.

10 of 26

Current Protocols

Christian Dallago

 66

You can define a set of annotations for the sequences in this set as a CSV file, con-
taining minimally two columns called “identifier” and “label” such as:

identifier,label
Q9H400-2,Cell membrane
P12962,Cytoplasm
P12686,Mitochondrion

The identifiers have to match to the identifiers in the FASTA header of the protein se-
quences for which embeddings have been computed. They can, however, only contain
a subset of identifiers with respect to the embeddings.
You can now load the annotations.csv file which we have created based on
the DeepLoc data. These annotations contain experimentally validated subcellular
location in 10 classes. To load them into the notebook, execute the following in a new
code block:

annotations = read_csv('annotations.csv')

6. Read the embeddings file.
In a new code block, type and execute the following:

identifiers = annotations.identifier.values
embeddings = list()

with h5py.File('reduced_embeddings_file.h5', 'r') as embeddings_file:
embedding_querier = QueryEmbeddingsFile(embeddings_file)

for identifier in identifiers:
embeddings.append(embedding_querier.query_original_id(identifier))

This will store the embeddings in the “embeddings” list in the same order as the identifiers.
To access the embeddings, you can use a helper class called “QueryEmbeddingsFile”.
This class allows you to retrieve embeddings either using the identifier extracted from the
FASTA header (as done here, via the query_original_id function), or by using the
pipeline’s internal identifier for protein sequences. You can find more information about
these functions at https://docs.bioembeddings.com.

7. Project embeddings to 2D using UMAP (McInnes, Healy, & Melville, 2018).
In a new code block, type and execute the following:

options = {
'min_dist': .1,
'spread': 8,
'n_neighbors': 160,
'metric': 'euclidean',
'n_components': 2,
'random_state': 10

}
projected_embeddings = umap_reduce(embeddings, **options)

This code block will take some minutes to execute (4 min on Google Colaboratory), as
projecting the embeddings is a compute-intensive operation. Projecting embeddings onto
fewer dimensions is necessary because data in dimensions d>3 is very tricky to plot (and
even d = 3, i.e., 3D plots of scientific data, are often difficult to grasp quickly). RAW embed-
dings have much higher dimensions, e.g., d = 1024 dimensions for ProtBERT (Elnaggar
et al., 2020). In “options”, you can define UMAP parameters. These parameters can be
tuned to generate different visualizations, e.g., you could change the “metric” to “manhat-
tan”. To graphically see the effect of changing options, you may execute the steps from here
onward again. The “projected_embeddings” variable contains a Numpy (Harris Dallago et al.

11 of 26

Current Protocols

Biases model machine learning predictions in protein biology

 67

Table 1 Example of Merged Annotations and Projected Embeddings

Identifier Label Component_0 Component_1

Q9H400 Cell.membrane 2.474637 –8.919042

Q5I0E9 Cell.membrane 32.507015 10.355012

P63033 Cell.membrane 18.500378 –0.299981

Q9NR71 Cell.membrane 2.420154 18.161064

Q86XT9 Cell.membrane –4.937888 –1.767011

et al., 2020) matrix of size N×2, where N is the number of proteins for which there are
embeddings in the embedding file, while 2 is dictated by the “n_components” in “op-
tions” (number of output dimensions of the projection).

8. Merge projected embeddings and annotations.
In a new code block, type and execute the following:

projected_embeddings_dataframe = DataFrame(
projected_embeddings,
columns=["component_0", "component_1"],
index=identifiers

)
merged_annotations_and_projected_embeddings = annotations.join(

projected_embeddings_dataframe, on="identifier", how="left"
)

Here, you create a DataFrame (similar to a table) from the projected embeddings.
Rows are indexed by the “identifiers”, while the two columns contain the two
components of te projected embeddings. In other words: you are constructing a table
of coordinates for your protein sequences. Lastly, you merge these coordinates with
the annotations. You can inspect the first five rows of the dataframe by typing the
following into a new code block and executing it:

merged_annotations_and_projected_embeddings[:5]

This should resemble the content reported in Table 1.

9. Plot the protein space spanned by the projected embeddings
In a new code block, type and execute the following:

figure = render_scatter_plotly(merged_annotations_and_projected_embeddings)
figure.show()

This will display an interactive plot (of which a static screenshot is provided in Fig. 2).
Interactive plots make it possible to disentangle complex annotations/datasets, e.g., by
toggling the display of some annotations (click on the legend). Even more useful: zoom in
and out plots, especially when visualizing 3D plots.

BASIC
PROTOCOL 4

TRAIN A MACHINE LEARNING CLASSIFIER ON PROTEIN EMBEDDINGS

Basic Protocol 2 generated embeddings for proteins in DeepLoc (Almagro Armenteros
et al., 2017). Basic Protocol 3 visualized the projected embeddings in a 2D plot and anno-
tated the proteins in this 2D plot by colors signifying subcellular location. In the followingDallago et al.

12 of 26

Current Protocols

Christian Dallago

 68

Figure 2 2D protein space drawn by projected DeepLoc embeddings. Points are projections of
embeddings of protein sequences in the DeepLoc set (Almagro Armenteros et al., 2017). Coloring
is provided according to their subcellular location. Of note: “Extracellular” proteins seem to be
particularly keen on forming a cluster, while proteins in other localizations barely separate into
groups inside a bigger cluster. The figure is available interactively at: http://data.bioembeddings.
com/figures/figure_2.html.

steps, you will use the embeddings generated through the pipeline and the location anno-
tations from DeepLoc to machine-learn the prediction of location from protein sequence
embeddings. Once trained, you can apply this prediction method to annotate/predict
location for any protein sequence. The simplest recipe to build a generic machine learning
model is as follows:

1. Divide data into train and test sets (these should be sequence-non-redundant with re-
spect to each other, i.e., no protein sequence in one should be more sequence-similar
than some threshold to any protein in the other; what this threshold is depends on your
task)

2. Split a subset from the train set to construct a validation set (non-redundant to split-off)
3. Evaluate some machine learning hyper-parameters using the validation set (e.g.,

which type of machine learning model—such as ANN, CNN, or SVM, what par-
ticular choice of parameters—such as number of hidden units/layers for ANN/CNN).
Construct a leaderboard (i.e., a table keeping track of the relative performance of all
the models/hyper-parameters).

4. Select the best model from the leaderboard, and evaluate on the test set (by NO
MEANS apply all models to the test set and pick the best; instead, it is essential to
choose the best using the validation set and to stick to that choice to avoid over-fitting).

5. Report performance for a diversity of relevant evaluation metrics for the final model
using the test set (include estimates for standard errors)

The following steps explore this recipe using sci-kit learn (Pedregosa et al., 2011). You
will produce a classifier which roughly separates the ten location classes from DeepLoc
(Almagro Armenteros et al., 2017). The objective of this protocol is not to produce
the best prediction method for subcellular location classification, which would require
more parameter testing and tuning! Instead, the objective is to showcase the ease of go-
ing from data to prediction method when using embeddings. The final notebook con-
structed here is available at http://notebooks.bioembeddings.com as downloadable file
called deeploc_machine_learning.ipynb.

Dallago et al.

13 of 26

Current Protocols

Biases model machine learning predictions in protein biology

 69

Materials

See Basic Protocol 3

1. Complete steps 1-5 of Basic Protocol 3.

2. Import additional dependencies.
Via a new code block, you will import a set of dependencies from the popular machine
learning library scikit-learn (Pedregosa et al., 2011) in order to train and evaluate the
machine learning model:

from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score

3. Split annotations into train and test sets

The first task for any supervised machine learning is the split of the data into training
and testing sets. The testing set (also referred to as “hold out set”) is used exclusively to
evaluate the performance of the final machine learning model. The training set serves the
optimization of the model and hyper-parameters.

In computational biology/bioinformatics, informed decisions on how to split data are piv-
otal, for example, by ascertaining that no protein in the training set has more than 20%
pairwise sequence identity (PIDE) to any protein in the test set (Reeb, Goldberg, Ofran,
& Rost, 2020). While packages such as scikit-learn (Pedregosa et al., 2011) include func-
tions to easily split data into train and test sets, they completely fail to account for do-
main knowledge such as the concept of homology or evolutionary connections relevant
to reduce redundancy between bio-sequences. Therefore, users of such packages have to
address these issues manually when starting a new project, or they will join the many who
produce overconfident methods.

DeepLoc annotations come with a column “set” which is either “train” or “test”. The
split into these two categories has been made such that any pair of sequences in train and
test share at most 30% PIDE. To split the data, execute the following block of code:

train_set = annotations[annotations.set == "train"]
test_set = annotations[annotations.set == "test"]

4. Load embeddings into train and test sets.
Once you have split the annotations into train and test sets, you need to create in-
put and output for the machine learning model. The input will be the sequence em-
beddings (in the following, “training_embeddings”), while the output will
be the subcellular location associated to those proteins (in the following, “train-
ing_labels”). In a new code block, type the following:

training_embeddings = list()
training_identifiers = train_set.identifier.values
training_labels = train_set.label.values

testing_embeddings = list()
testing_identifiers = test_set.identifier.values
testing_labels = test_set.label.values

with h5py.File('reduced_embeddings_file.h5', 'r') as embeddings_file:
embedding_querier = QueryEmbeddingsFile(embeddings_file)

for identifier in training_identifiers:
training_embeddings.append(embedding_querier.query_original_id(identifier))

for identifier in testing_identifiers:
testing_embeddings.append(embedding_querier.query_original_id(identifier))

Dallago et al.

14 of 26

Current Protocols

Christian Dallago

 70

5. Define basic machine learning architecture and parameters to optimize
In a new code block, type and execute the following:

multilayerperceptron = MLPClassifier(
solver='lbfgs',
random_state=10,
max_iter=1000

)
parameters = {

'hidden_layer_sizes': [(30,), (20,15)]
}

This will create a basic neural network architecture (“multilayerperceptron”)
and a set of parameters that you want to test during parameter optimization. The ba-
sic architecture uses the "Limited-memory Broyden–Fletcher–Goldfarb–Shanno Algo-
rithm" solver (Saputro & Widyaningsih, 2017) and a maximum of 1000 training itera-
tions (max_iter). Using the “lbfgs” solver, maximum training iterations correspond to
how many embeddings the algorithm will maximally see before training is stopped. Train-
ing may automatically be stopped before the maximum number of iterations if the model
converges (in other words: if its validation error stays within a certain threshold). In the
DeepLoc set, there are more than ten thousand samples, so max_iter could be set to a
higher value, but for the purpose of this protocol, to have reasonable execution time, we
propose limiting the number of iterations to 1000.

The parameter that you will optimize is the number of hidden layers and the amount of
neurons in each layer. In one case, you will try a network with one hidden layer containing
30 neurons, while in the second case you will test a network with two hidden layers with
20 and 15 neurons, respectively.

6. Train classifiers and pick the best performing model.

Usually, this step is performed in various sub-steps, for example: first you define the num-
ber of training splits (e.g., Nsplit=3), which would give you data for training (optimization
of free parameters) and for cross-training/validation (optimization of hyper-parameters
and model choice). Then, you train Nsplit-1 (i.e., 2 for Nsplit=3) network variants de-
scribing each split, evaluate on the respective validation data, and finally select the net-
work performing best (on the cross-training/validation split). Luckily, all of these steps
can be summarized into three lines of code using sci-kit learn. For this example, we have
ignored homology/redundancy when splitting the data set for brevity, but in real-life ap-
plications, accounting for homology/redundancy when splitting is essential to obtain valid
models!

In a new block of code, write and execute the following:

classifiers = GridSearchCV(
multilayerperceptron,
parameters, cv=3,
scoring="accuracy"

)
classifiers.fit(training_embeddings, training_labels)
classifier = classifiers.best_estimator_

Note this code takes about 15 min to execute on Google Colab. No output is produced
during this time. Visual clues from the notebook assist you in understanding when the
computation is over. Another important note on scope: while you will obtain a classifier
that is roughly able to classify sequences in ten subcellular location compartments, your
method will not beat the state-of-the-art for this problem due to extensive development in
the field! The goal of this protocol is to give you the tools to build a classifier, as well as to
require little time to execute. If you want to obtain the best classifier, you will need to test
and tune more parameters, and especially consider more training iterations (as defined by
max_iter in the previous step). Dallago et al.

15 of 26

Current Protocols

Biases model machine learning predictions in protein biology

 71

7. Predict subcellular location for test set and calculate performance,
Lastly, to evaluate the performance of you final model, you predict the location for
all proteins in the test set and calculate accuracy as follows:

predicted_testing_labels = classifier.predict(testing_embeddings)
accuracy = accuracy_score(

testing_labels,
predicted_testing_labels

)

print(f"Our model has an accuracy of {accuracy:.2}")

The reported accuracy should be 0.72.

8. Optional: Embed a novel sequence and predict its subcellular location.
In this optional step, you generate the sequence embedding for an arbitrary sequence
and use the classifier developed in the previous steps to predict its subcellular location.
To do so, type and execute the following:

from bio_embeddings.embed import ProtTransBertBFDEmbedder

embedder = ProtTransBertBFDEmbedder()

sequence = "DDCGKLFSGCDTNADCCEGYVCRLWCKLDW"
per_residue_embedding = embedder.embed(sequence)
per_protein_embedding = embedder.reduce_per_protein(per_residue_embedding)
sequence_subcellular_prediction = classifier.predict([per_protein_embedding])[0]

print("The arbitrary sequence is predicted to be located in: "
f"{sequence_subcellular_prediction}")

Above, you import the “ProtTransBertBFDEmbedder” and initialize it. You
then define an amino acid sequence using the standard IUPAC alphabet. The se-
quence is then embedded per-residue (per_residue_embedding), and the per-
residue embedding is transformed to a per-protein embedding via a helper function
(per_protein_embedding). Finally, the per-protein embedding is used to predict
subcellular location through the classifier you developed, and the prediction (Extracellu-
lar) is printed to screen.

You may see a warning about “padding” appear in the output; you can ignore this as it
will not affect execution.

For scikit-learn the function “predict” expects a list of protein embeddings. This (usu-
ally helpful) feature implies that additional steps are required to predict for a single se-
quence, namely that first you have to put the embedding into a list. You can then grab the
prediction of the first (and only) item in the list, which will be the prediction of the arbitrary
sequence.

ALTERNATE
PROTOCOL 1

GENERATE 3D INSTEAD OF 2D VISUALIZATIONS

The following steps introduce minimal code changes with respect to the steps and code
outlined in Basic Protocol 3 to visualize in 3D instead of 2D. We assume that the code
from Basic Protocol 3 has been written in a Jupyter/Colab Notebook and highlight code
changes in orange. Visit the docs at https://docs.bioembeddings.com to find out more
about the functions of the bio_embeddings package.

The code from Basic Protocol 3 is available at http://notebooks.bioembeddings.com as
downloadable file called deeploc_visualizations.ipynb. It includes the steps
presented here in an alternate form.

Materials

See Basic Protocol 3Dallago et al.

16 of 26

Current Protocols

Christian Dallago

 72

Figure 3 3D protein space drawn by projected DeepLoc embeddings. Points are projections of
embeddings of protein sequences in the DeepLoc set (Almagro Armenteros et al., 2017). Coloring
is provided according to their subcellular localizations. The 3D figure is best explored interactively:
http://data.bioembeddings.com/figures/figure_3.html.

1. Project embeddings onto 3D instead of onto 2D.

The first change to the previous steps requires only augmenting the number of components
UMAP will project embeddings to.

Take the code block written in Basic Protocol 3, step 7, and locate and change the
line:

'n_components': 2

to:

'n_components': 3

Then, re-run the code cell.

2. Import 3D scatter plot renderer instead of 2D.
Change the import of the visualization function from Basic Protocol 3, step 4, from:

from bio_embeddings.visualize import render_scatter_plotly

to:

from bio_embeddings.visualize import render_3D_scatter_plotly

and execute the code block.

3. Add a third component to the projected embeddings DataFrame.
Change the number of components in the projected DataFrame defined in B.asic Pro-
tocol 3, step 8 from:

columns=["component_0", "component_1"],
Dallago et al.

17 of 26

Current Protocols

Biases model machine learning predictions in protein biology

 73

to:

columns=["component_0", "component_1", "component_2"],

and execute the code block.

4. Swap the plotting function with the 3D variant:
Lastly, swap out the plotting function name in the code block created in Basic Protocol
3, step 9, from:

figure = render_scatter_plotly(

merged_annotations_and_projected_embeddings

)

to:

figure = render_3D_scatter_plotly(

merged_annotations_and_projected_embeddings

)

and execute the code block.

At this point, a 3D interactive plot (Fig. 3) will be displayed on your notebook.

ALTERNATE
PROTOCOL 2

VISUALIZE CLASSIFICATION INTO MEMBRANE/SOLUBLE INSTEAD OF
PROTEIN SUBCELLULAR LOCATION

The following steps introduce minimal code changes with respect to the steps and code
outlined in Basic Protocol 3 in order to visualize the classification into membrane/soluble
proteins as annotated in DeepLoc (Almagro Armenteros et al., 2017) instead of location.
We assume that the code from Basic Protocol 3 has been written up and highlights code
changes in orange.

The code from Basic Protocol 3 is available at http://notebooks.bioembeddings.com as
downloadable file called deeploc_visualizations.ipynb. It includes the steps
presented here in an alternate form.

Materials
Software and Hardware

See Basic Protocol 3

Data

DeepLoc solubility annotations: http://data.bioembeddings.com/deeploc/
solubility_annotations.csv

1. Download additional file solubility_annotations.csv.

a. On Google Colaboratory create a new code block (by pressing the “+ code” but-
ton). Then, paste in the following code:

!wget http://data.bioembeddings.com/deeploc/solubility_annotations.csv

Dallago et al.

18 of 26

Current Protocols

Christian Dallago

 74

b. On your local computer, simply download the file listed in the Materials list for
this protocol and move into the folder in which the notebook was started (see Basic
Protocol 3, step 1).

2. Change the annotations file.
In the code block created in Basic Protocol 3, step 5, change the input file from:

annotations = read_csv('annotations.csv')

to:

annotations = read_csv('solubility_annotations.csv')

3. Re-run the subsequent code blocks.

Re-run every code block following the code block just changed. This will display a graph,
this time colored according to protein solubility, i.e., whether a protein is annotated as
membrane-bound, soluble or lacks an annotation).

SUPPORT
PROTOCOL

PUT EMBEDDING GENERATION AND SEQUENCE SPACE
VISUALIZATIONS TOGETHER IN ONE PIPELINE

Basic Protocol 3 presents an explorative approach towards producing protein-space visu-
alizations. In this Support Protocol, you will use the parameters chosen in Basic Protocol
3 to define a pipeline configuration file. These files allow reproducible workflows. You
will do so by extending the bio_embeddings configuration presented in Basic Protocol 2,
step 4, to also generate protein space visualizations. Noteworthy differences with previ-
ous files will be highlighted in orange.

Materials
Software and Hardware

See Basic Protocol 2

Data

DeepLoc FASTA file: http://data.bioembeddings.com/deeploc/
deeploc_data.fasta

DeepLoc subcellular location annotations: http://data.bioembeddings.com/
deeploc/annotations.csv

1. Execute steps 1 through 3 of Basic Protocol 2.

2. Download the annotations file into the project directory.
From the terminal (within the project folder):

wget http://data.bioembeddings.com/deeploc/annotations.csv

Alternatively, download the file using your browser (link in the Materials of this protocol),
and move it to the project directory.

3. Define a configuration file to embed, project and visualize protein sequences.
Similarly to Basic Protocol 2, step 4, we define a text file (config.yml) that contains
the following text:

Dallago et al.

19 of 26

Current Protocols

Biases model machine learning predictions in protein biology

 75

global:
sequences_file: deeploc_data.fasta
prefix: deeploc_embeddings
simple_remapping: True

prottrans_bert_embeddings:
type: embed
protocol: prottrans_bert_bfd
reduce: True
discard_per_amino_acid_embeddings: True

umap_projections:
type: project
protocol: umap
depends_on: prottrans_bert_embeddings
min_dist: 0.1
spread: 8
n_neighbors: 160
metric: euclidean
n_components: 2
random_state: 10

plotly_visualization:
type: visualize
protocol: plotly
depends_on: umap_projections
annotation_file: annotations.csv
display_unknown: False

The first part of this config (“global” and “prottrans_bert_embeddings”) are
almost identical to the config presented in Basic Protocol 2. The addition of the “dis-
card_per_amino_acid_embeddings” parameter tells the pipeline that we are
only interested in the per-protein embeddings (reduced_embeddings_file.h5), and
that the per-residue embeddings (embedding_file.h5) should not be stored on disk.
This will save significant storage space.

A stage (umap_projections) of type “project” that uses the protocol umap was
added. The “depends_on” directive tells the pipeline that the embeddings generated by
“prottrans_bert_embeddings” should be used for the project stage. We add the
same UMAP parameters as in Basic Protocol 3, step 7. This stage will output a DataFrame
of the projected embeddings (projected_embeddings.csv).

Finally, we use this data for a “visualize” type stage (by depending on the
umap_projections). We annotate the visualization using the annotation file called “an-
notations.csv”. Sequences without annotations (but that might be present in
the input FASTA file) will not be plotted (“display_unknown: False”). The
“plotly_visualization” stage will produce a file containing the 2D interactive
figure (figure.html).

4. Run the bio_embeddings pipeline.
What remains is to supply the configuration file to bio_embeddings and let the
pipeline execute the job. For that type into the terminal:

bio_embeddings -o config.yml

The “-o” option instructs the pipeline to overwrite a previous pipeline run at the same
prefix, which might have remained in the current project directory (deeploc) from the
previously executed Basic Protocol 2.

5. Locate the interactive figure file.

After the job has finished, you should see a “deeploc_embeddings” di-
rectory in your project directory. This directory will contain three subdirecto-
ries called: prottrans_bert_embeddings, umap_projections, and
plotly_visualization. Each directory contains the output of the cor-
responding stage. The newly created interactive figure will be stored in theDallago et al.

20 of 26

Current Protocols

Christian Dallago

 76

“plotly_visualization” directory as “figure.html”. You can use a browser,
such as Safari, to open this figure. It should resemble Figure 2.

COMMENTARY

Background Information
Language Models (LMs) such as ELMo

(Peters et al., 2018), BERT (Devlin et al.,
2019), GPT-3 (Brown et al., 2020), and T5
(Raffel et al., 2020) improve over previous
methods for learning to embed text (Bo-
janowski, Grave, Joulin, & Mikolov, 2017;
Mikolov, Chen, Corrado, & Dean, 2013; Pen-
nington, Socher, & Manning, 2014) by clev-
erly modeling context (“apple” company vs.
fruit) and training on increasingly larger nat-
ural language corpora. They begin to suggest
large models from artificial intelligence (AI)
or machine learning (ML) to compete with
human experts, at least for some tasks (Man-
ning, 2011). They also help rising questions
about current benchmarks (Heinzerling, 2020;
McCoy, Pavlick, & Linzen, 2019) and the ex-
tent to which LMs truly understand language
(Bender & Koller, 2020). Despite potential
performance overestimates, LMs succeed to
effectively translate natural language best-
ing expert-based models, i.e., they captured
the meaning in text automatically (Pires,
Schlinger, & Garrette, 2019; Zhu et al., 2020).

Training LMs requires very large amounts
of intrinsically structured, sequential data,
making these approaches especially promis-
ing for ambitious attempts that try to automat-
ically understand the language of life proxied
by protein sequences (Heinzinger et al.,
2019). In fact, the amount of data available for
protein sequences is 500 times larger than the
largest NLP data sets such as Google’s Billion
Word data (Chelba et al., 2014; Steinegger &
Söding, 2018; Steinegger et al., 2019). With
the increasing degree to which the speed of
adding new protein sequences outpaces the
improvement in computer hardware, experi-
mental annotations—although also increasing
exponentially—cannot keep track with this
explosion. Therefore, the sequence-annotation
gap, i.e., the gap between the number of pro-
teins with known sequence and those with
known annotation, continues to rise.

In analogy to natural languages, protein
sequences are formed by tokens (proteins:
amino acids, text: words) that have in-
dividual and context-dependent meaning
through long- and short-range dependen-
cies (proteins: inter-residue bonds, text:
sentences). Thus, similarly to natural lan-
guage, LMs trained on protein sequences

(Alley, Khimulya, Biswas, AlQuraishi, &
Church, 2019; AlQuraishi, 2019; Armenteros,
Johansen, Winther, & Nielsen, 2020;
Elnaggar et al., 2020; Heinzinger et al.,
2019; Lu, Zhang, Ghassemi, & Moses, 2020;
Madani et al., 2020; Min, Park, Kim, Choi,
& Yoon, 2020; Rao et al., 2019; Rives et al.,
2019) capture important meaning of the
protein sequence language, as demonstrated
by their ability to predict aspects of protein
structure and function. For instance, SeqVec
(Heinzinger et al., 2019) trained ELMo (Pe-
ters et al., 2018) on UniRef50 (The UniProt
Consortium, 2019) and showed that the LM’s
representations clustered protein sequences
by function (Heinzinger et al., 2019). In
another analogy to NLP, protein LMs may
be fine-tuned on specialized sequence sets
(analogy to natural language: legal text vs.
wikipedia articles) to encode for different
protein properties (Armenteros et al., 2020).

Previously, machine-learning methods in
computational biology leveraged data-driven
protein representations such as substitution
matrices, capturing biophysical features
(Henikoff & Henikoff, 1992), family-specific
profiles (Stormo et al., 1982), or evolutionary
couplings (Morcos et al., 2011) that capture
evolutionary features. Now, embeddings pro-
vide competitive results for many prediction
tasks (Littmann et al., 2021; Rao et al., 2019,
2020). Protein LMs may even be combined
with other representations to gain even better
performance (Rives et al., 2019; Villegas-
Morcillo et al., 2020). Protein sequence
embeddings are generated in a fraction of the
time it takes to generate MSAs (Heinzinger
et al., 2019), and can thus be used on entire
proteomes, where MSA-based approaches
might be computationally prohibitive or even
unavailable (e.g., small protein families).

The bio_embeddings pipeline, which is
used throughout the manuscript to gener-
ate and leverage protein embeddings, is
targeted to computational biologists and
aims to abstract, via a uniform and stan-
dardized interface, the use of protein LMs.
Embeddings can be used to train machine
learning algorithms using “transfer learning”
(Basic Protocol 4; Raina, Battle, Lee, Packer,
& Ng, 2007), or for analytical purposes. The
pipeline enables visual analysis of sequence
sets by drawing protein spaces spawned by Dallago et al.

21 of 26

Current Protocols

Biases model machine learning predictions in protein biology

 77

their embeddings (Basic Protocol 3). Users
can create representations from a growing
diversity of protein LMs, which at the time
of writing include: SeqVec (Heinzinger et al.,
2019), UniRep (Alley et al., 2019), ESM
(Rives et al., 2019), ProtBERT, ProtALBERT,
ProtXLNet, ProtT5 (Elnaggar et al., 2020),
CPCProt (Lu et al., 2020), PLUS-RNN (Min
et al., 2020). Via the “extract” stage, the
pipeline incorporates supervised and unsu-
pervised approaches for protein embeddings
to further enhance analytical potential out-of-
the-box. For instance, users can extract sec-
ondary structure in 3- and 8-states for embed-
dings from SeqVec (Heinzinger et al., 2019)
and ProtBert (Elnaggar et al., 2020), or trans-
fer GO annotations using embeddings of any
available LM (Littmann et al., 2021). Pipeline
runs are reproducible, as configurations are
defined through files, and the output is stored
in easily exchangeable formats, e.g., CSVs,
FASTA, and HDF5 (The HDF Group, 2000).

For researchers contributing new protein
LMs, bio_embeddings can provide a uni-
fied interface to distribute their work to the
community, requiring minimal changes for
pipeline consumers to make use of new pro-
tein LMs. For researchers contributing down-
stream uses of protein LMs [e.g., for the
visualization of attention maps (Vig et al.,
2020), which are most closely related to pro-
tein contact maps, or for the alignment of
protein sequences (Morton et al., 2020)], the
bio_embeddings pipeline provides a flexible
approach to incorporate their work and di-
rectly extends it to all the LMs supported
by bio_embeddings. In the future, as we ex-
pect more protein LMs to be developed, the
bio_embeddings pipeline could be combined
with the TAPE (Rao et al., 2019) evaluation
system to provide an intuition for protein LM
researchers about the best use of their new rep-
resentations.

Critical Parameters
We strongly encourage users interested in

generating their own sequence embeddings to
do so on GPU-equipped machines, where the
GPUs have at least 4 GB of vRAM and sup-
port CUDA® 11.0. While it is possible to
generate embeddings via CPU computing, the
slowdown with respect to GPU computing is
significant and prohibitive for large sequence
sets.

Differences in LM choice, sequence sets or
parameters (e.g., UMAP) may lead to signif-
icantly different results than discussed in the
protocols. While trying out the above steps on

your own datasets is the ultimate goal, we en-
courage users to first try to execute the steps
as laid out above to get a sense of the baseline
behavior.

Troubleshooting
If you experience issues when installing

the bio_embedding package, or when
executing the steps laid out above, you
may want to try to restart the Google Colab,
or, if you are running the code locally, create a
new python environment [e.g., by using Ana-
conda (“Anaconda Software Distribution,”
2020)]. In our experience, the most common
issues are caused by installation problems, or
limited computational resources. To address
the former, you might want to consider using
docker instead of python (this is available at
the source code, see “Internet Resources”). To
address the latter, you might want to discuss
solutions with your local research computing
facilities or try an online service (see “Internet
Resources”).

Understanding Results

Basic Protocol 1
Through the steps outlined in this protocol,

you generated an interactive plot of about 100
protein sequences with annotations of disorder
content (either presenting high or low disorder
content).

Basic Protocol 2
Through the steps outlined in this

protocol, you generated embeddings
for amino acids in sequences (embed-
dings_file.h5) and for sequences (re-
duced_embeddings_file.h5) from the
DeepLoc sequence set. These files can be used
on per-residue tasks (e.g., predict secondary
structure) or per-protein tasks (e.g., predict
subcellular location).

Basic Protocol 3
Through the steps outlined in this protocol,

you generated interactive plots of sequence
embeddings. You used color in plots to high-
light annotated subcellular localization (from
DeepLoc), and could test out different param-
eter choices (via Alternate Protocol 1) and
annotations (via Alternate Protocol 2). You
learned how to incorporate these steps in a
bio_embeddings pipeline file to enable other
researchers to reproduce your results (via the
Support Protocol).Dallago et al.

22 of 26

Current Protocols

Christian Dallago

 78

Basic Protocol 4
Through the steps outlined in this protocol,

you trained a neural network on embeddings
to predict subcellular localization of sequence
embeddings.

Time Considerations

Basic Protocol 1
On a 2016 MacBook Pro with 16 GB of

RAM, executing the pipeline took approxi-
mately 3 min. Considering installation of re-
quired software and download of necessary
files, the overall execution time of the proto-
col should not exceed 20 min.

Basic Protocol 2
On an Nvidia 1080 GPU equipped with 8

GB of vRAM, embedding the whole DeepLoc
dataset took ∼30 min. On a CPU (Intel i7-
6700, 64 GB system RAM), embedding the
sampled DeepLoc set took ∼2 min, while em-
bedding the whole set took approximately 8 hr
and 40 min. Executing the steps, not consider-
ing computation time, may take up to 30 min.

Basic Protocol 3
On Google Colab, the UMAP projec-

tion step (the most computationally expensive
step) takes about 10 min. Writing the code and
executing the steps, considering computation
time, may take up to 1 hr.

Basic Protocol 4
On Google Colab, training various classi-

fiers via grid search (the most computationally
expensive step) takes about 15 min. Writing
the code and executing the steps, considering
computation time, may take up to 1 hr.

Acknowledgments
The authors thank Tim Karl (TUM) for help

with hardware and software and Inga Weise
(TUM) for support with many other aspects
of this work. The authors thank Tom Sercu,
Ali Madani, Daniel Berenberg, Alex Rives,
Vladimir Gligorijevic, and Josh Meier for
constructive discussions around protein lan-
guage models and their use. The authors thank
Roshan Rao, Neil Thomas, and Nicholas Bhat-
tacharya for creating and maintaining TAPE.
The authors also thank all those who deposited
their experimental data in public databases,
and those who maintain these databases. In
particular, the authors thank Ioanis Xenar-
ios (SIB, Univ. Lausanne), Matthias Uhlen
(Univ. Upssala), and their teams at Swiss-
Prot and HPA. This work was supported by
the Deutsche Forschungsgemeinschaft (DFG),

project number RO1320/4-1, by the Bun-
desministerium für Bildung und Forschung
(BMBF), project number 031L0168, and by
the BMBF through the program “Software
Campus 2.0 (TU München)”, project number
01IS17049.

Open access funding enabled and orga-
nized by Projekt DEAL.

Author Contributions
Christian Dallago: Conceptualization, Data

curation, Funding acquisition, Methodology,
Project administration, Resources, Soft-
ware, Supervision, Visualization, Writing-
original draft, Writing-review & editing,
Konstantin Schütze: Methodology, Soft-
ware, Writing-review & editing, Michael
Heinzinger: Conceptualization, Investiga-
tion, Software, Writing-review & editing,
Tobias Olenyi: Software, Writing-review &
editing, Maria Littmann: Writing-original
draft, Writing-review & editing, Amy X.
Lu: Writing-original draft, Writing-review
& editing, Kevin K. Yang, Seonwoo Min:
Writing-original draft, Writing-review &
editing, Sungroh Yoon: Writing-original
draft, James T. Morton: Writing-original
draft, Writing-review & editing, Burkhard
Rost: Conceptualization, Funding acquisi-
tion, Supervision, Writing-original draft,
Writing-review & editing

Conflicts of Interest
A.L. is employed at Insitro, South San

Francisco, CA, 94080. Insitro had no involve-
ment in the design or implementation of the
work presented here.

Data Availability Statement
The data that support the presented

protocols are available at: https://github.
com/sacdallago/bio_embeddings. These
data were derived from the following re-
sources available in the public domain:
DisProt (https://www.disprot.org), DeepLoc
(http://www.cbs.dtu.dk/services/DeepLoc).

Literature Cited
Alley, E. C., Khimulya, G., Biswas, S.,

AlQuraishi, M., & Church, G. M. (2019).
Unified rational protein engineering with
sequence-based deep representation learning.
Nature Methods, 16(12), 1315–1322. doi:
10.1038/s41592-019-0598-1.

Almagro Armenteros, J. J., Sønderby, C. K.,
Sønderby, S. K., Nielsen, H., & Winther, O.
(2017). DeepLoc: Prediction of protein subcel-
lular localization using deep learning. Bioin-
formatics, 33(21), 3387–3395. doi: 10.1093/
bioinformatics/btx431.

Dallago et al.

23 of 26

Current Protocols

Biases model machine learning predictions in protein biology

 79

AlQuraishi, M. (2019). End-to-end differentiable
learning of protein structure. Cell Systems, 8(4),
292–301.e3. doi: 10.1016/j.cels.2019.03.006.

Anaconda Software Distribution. (2020). In Ana-
conda Documentation (Vers. 2-2.4.0) [Com-
puter software]. Anaconda Inc. Available at
https://docs.anaconda.com/.

Armenteros, J. J. A., Johansen, A. R., Winther,
O., & Nielsen, H. (2020). Language modelling
for biological sequences—curated datasets and
baselines. BioRxiv, 2020.03.09.983585. doi: 10.
1101/2020.03.09.983585.

Bender, E. M., & Koller, A. (2020). Climbing to-
wards NLU: On meaning, form, and understand-
ing in the age of data. Proceedings of the 58th
Annual Meeting of the Association for Compu-
tational Linguistics, 5185–5198. doi: 10.18653/
v1/2020.acl-main.463.

Biasini, M., Bienert, S., Waterhouse, A., Arnold,
K., Studer, G., Schmidt, T., … Schwede,
T. (2014). SWISS-MODEL: Modelling pro-
tein tertiary and quaternary structure using
evolutionary information. Nucleic Acids Re-
search, 42, W252–W288. doi: 10.1093/nar/
gku340.

Bisong, E. (2019). Google colaboratory. In Building
machine learning and deep learning models on
google cloud platform (pp. 59–64). New York:
Springer.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov,
T. (2017). Enriching word vectors with subword
information. ArXiv, 1607.04606 [Cs]. Available
at http://arxiv.org/abs/1607.04606.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M.,
Kaplan, J., Dhariwal, P., … Amodei, D. (2020).
Language models are few-shot learners. ArXiv,
2005.14165 [Cs]. Available at http://arxiv.org/
abs/2005.14165.

Callaway, E. (2020). ‘It will change everything’:
DeepMind’s AI makes gigantic leap in solving
protein structures. Nature, 588(7837), 203–204.
doi: 10.1038/d41586-020-03348-4.

Chelba, C., Mikolov, T., Schuster, M., Ge, Q.,
Brants, T., Koehn, P., & Robinson, T. (2014).
One billion word benchmark for measuring
progress in statistical language modeling. ArXiv,
1312.3005 [Cs]. Available at http://arxiv.org/
abs/1312.3005.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova,
K. (2019). BERT: Pre-training of deep bidi-
rectional transformers for language understand-
ing. ArXiv, 1810.04805 [Cs]. Available at http:
//arxiv.org/abs/1810.04805.

Elnaggar, A., Heinzinger, M., Dallago, C., Re-
hawi, G., Wang, Y., Jones, L., … Rost, B.
(2020). ProtTrans: Towards cracking the lan-
guage of life’s code through self-supervised
deep learning and high performance computing.
In BioRxiv, 2020.07.12.199554. doi: 10.1101/
2020.07.12.199554.

Goldberg, T., Hecht, M., Hamp, T., Karl, T., Yach-
dav, G., Ahmed, N., … others (2014). Loc-
Tree3 prediction of localization. Nucleic Acids
Research, 42(W1), W350–W355.

Harris, C. R., Millman, K. J., van der Walt, S. J.,
Gommers, R., Virtanen, P., Cournapeau, D., …
Oliphant, T. E. (2020). Array programming with
NumPy. Nature, 585(7825), 357–362. doi: 10.
1038/s41586-020-2649-2.

Hatos, A., Hajdu-Soltész, B., Monzon, A. M.,
Palopoli, N., Álvarez, L., Aykac-Fas, B., … Pi-
ovesan, D. (2020). DisProt: Intrinsic protein dis-
order annotation in 2020. Nucleic Acids Re-
search, 48(D1), D269–D276. doi: 10.1093/nar/
gkz975.

The HDF Group. (2000, 2010). Hierarchical data
format version 5. Available at http://www.
hdfgroup.org/HDF5.

Heinzerling, B. (2020). NLP’s clever Hans moment
has arrived. Journal of Cognitive Science, 21(1),
159–167.

Heinzinger, M., Elnaggar, A., Wang, Y., Dal-
lago, C., Nechaev, D., Matthes, F., & Rost, B.
(2019). Modeling aspects of the language of
life through transfer-learning protein sequences.
In BMC Bioinformatics, 20, 723. doi: 10.1186/
s12859-019-3220-8.

Henikoff, S., & Henikoff, J. G. (1992). Amino acid
substitution matrices from protein blocks. Pro-
ceedings of the National Academy of Sciences,
89(22), 10915–10919. doi: 10.1073/pnas.89.22.
10915.

Hopf, T. A., Colwell, L. J., Sheridan, R., Rost,
B., Sander, C., & Marks, D. S. (2012). Three-
dimensional structures of membrane proteins
from genomic sequencing. Cell, 149(7),
1607–1621. doi: 10.1016/j.cell.2012.04.
012.

Hopf, T. A., Ingraham, J. B., Poelwijk, F. J.,
Schärfe, C. P., Springer, M., Sander, C., &
Marks, D. S. (2017). Mutation effects predicted
from sequence co-variation. Nature Biotechnol-
ogy, 35(2), 128–135.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger,
B. E., Bussonnier, M., Frederic, J., … oth-
ers (2016). Jupyter Notebooks-a publishing for-
mat for reproducible computational workflows.
ELPUB, 87–90.

Littmann, M., Heinzinger, M., Dallago, C., Olenyi,
T., & Rost, B. (2021). Embeddings from deep
learning transfer GO annotations beyond ho-
mology. Scientific Reports, 11(1), 1160. doi: 10.
1038/s41598-020-80786-0.

Lu, A. X., Zhang, H., Ghassemi, M., & Moses, A.
(2020). Self-supervised contrastive learning of
protein representations by mutual information
maximization. BioRxiv, 2020.09.04.283929.
doi: 10.1101/2020.09.04.283929.

Madani, A., McCann, B., Naik, N., Keskar, N. S.,
Anand, N., Eguchi, R. R., … Socher, R. (2020).
ProGen: Language modeling for protein genera-
tion. BioRxiv, 2020.03.07.982272. doi: 10.1101/
2020.03.07.982272.

Manning, C. D. (2011). Part-of-speech tagging
from 97% to 100%: Is it time for some lin-
guistics? In A. F. Gelbukh (Ed.), Computational
Linguistics and Intelligent Text Processing (pp.
171–189). New York: Springer. doi: 10.1007/
978-3-642-19400-9_14.Dallago et al.

24 of 26

Current Protocols

Christian Dallago

 80

McCoy, T., Pavlick, E., & Linzen, T. (2019). Right
for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. Pro-
ceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, 3428–
3448. doi: 10.18653/v1/P19-1334.

McInnes, L., Healy, J., & Melville, J. (2018).
UMAP: Uniform manifold approximation and
projection for dimension reduction. ArXiv,
1802.03426 [Cs, Stat]. Available at http://arxiv.
org/abs/1802.03426.

Mikolov, T., Chen, K., Corrado, G., & Dean, J.
(2013). Efficient estimation of word represen-
tations in vector space. ArXiv, 1301.3781 [Cs].
Available at http://arxiv.org/abs/1301.3781.

Min, S., Park, S., Kim, S., Choi, H.-S., & Yoon,
S. (2020). Pre-training of deep bidirectional
protein sequence representations with structural
information. ArXiv, 1912.05625 [Cs, q-Bio,
Stat]. Available at http://arxiv.org/abs/1912.
05625.

Morcos, F., Pagnani, A., Lunt, B., Bertolino, A.,
Marks, D. S., Sander, C., … Weigt, M. (2011).
Direct-coupling analysis of residue coevolution
captures native contacts across many protein
families. Proceedings of the National Academy
of Sciences, 108(49), E1293–E1301. doi: 10.
1073/pnas.1111471108.

Morton, J. T., Strauss, C. E. M., Blackwell, R.,
Berenberg, D., Gligorijevic, V., & Bonneau, R.
(2020). Protein structural alignments from se-
quence. BioRxiv, 2020.11.03.365932. doi: 10.
1101/2020.11.03.365932.

Moult, J., Pedersen, J. T., Judson, R., & Fidelis, K.
(1995). A large-scale experiment to assess pro-
tein structure prediction methods. Proteins, 23,
ii–iv.

Ovchinnikov, S., Park, H., Varghese, N., Huang,
P.-S., Pavlopoulos, G. A., Kim, D. E., …
Baker, D. (2017). Protein structure deter-
mination using metagenome sequence data.
Science, 355(6322), 294–298. doi: 10.1126/
science.aah4043.

Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., … Duches-
nay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning
Research, 12, 2825–2830.

Pennington, J., Socher, R., & Manning, C. D.
(2014). Glove: Global vectors for word rep-
resentation. Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 1532–1543. Octo-
ber 25-29, 2014, Doha, Qatar.

Peters, M., Neumann, M., Iyyer, M., Gardner, M.,
Clark, C., Lee, K., & Zettlemoyer, L. (2018).
Deep contextualized word representations.
Proceedings of the 2018 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers),
2227–2237. June 1-June 6, 2018, New Orleans,
Louisiana. doi: 10.18653/v1/N18-1202.

Pires, T., Schlinger, E., & Garrette, D. (2019).
How multilingual is multilingual BERT? ArXiv,

1906.01502 [Cs]. Available at http://arxiv.org/
abs/1906.01502.

Raffel, C., Shazeer, N., Roberts, A., Lee, K.,
Narang, S., Matena, M., … Liu, P. J. (2020). Ex-
ploring the limits of transfer learning with a uni-
fied text-to-text transformer. ArXiv, 1910.10683
[Cs, Stat]. Available at http://arxiv.org/abs/
1910.10683.

Raina, R., Battle, A., Lee, H., Packer, B., & Ng, A.
Y. (2007). Self-taught learning: Transfer learn-
ing from unlabeled data. Proceedings of the 24th
International Conference on Machine Learning,
759–766. Bellevue, Washington. doi: 10.1145/
1273496.1273592.

Rao, R., Bhattacharya, N., Thomas, N., Duan,
Y., Chen, P., Canny, J., … Song, Y. (2019).
Evaluating Protein Transfer Learning with
TAPE. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. Alché-Buc, E. Fox, & R.
Garnett (Eds.), Advances in neural infor-
mation processing systems 32 (pp. 9689–
9701). Curran Associates, Inc. Available at
http://papers.nips.cc/paper/9163-evaluating-
protein-transfer-learning-with-tape.pdf.

Rao, R., Ovchinnikov, S., Meier, J., Rives, A.,
& Sercu, T. (2020). Transformer protein lan-
guage models are unsupervised structure learn-
ers. BioRxiv, 2020.12.15.422761. doi: 10.1101/
2020.12.15.422761.

Reeb, J., Goldberg, T., Ofran, Y., & Rost, B. (2020).
Predictive methods using protein sequences. In
A. D. Baxevanis, G. D. Bader, & D. S. Wishart
(Eds.) Bioinformatics (4th ed., p. 185).

Rives, A., Goyal, S., Meier, J., Guo, D., Ott, M.,
Zitnick, C. L., … Fergus, R. (2019). Biolog-
ical structure and function emerge from scal-
ing unsupervised learning to 250 million pro-
tein sequences. BioRxiv, 622803. doi: 10.1101/
622803.

Rost, B. (1996). PHD: Predicting one-dimensional
protein structure by profile based neural net-
works. Methods in Enzymology, 266, 525–539.

Rost, B. (2001). Protein secondary structure predic-
tion continues to rise. Journal of Structural Bi-
ology, 134, 204–218.

Rost, B., & Sander, C. (1993). Prediction of protein
secondary structure at better than 70% accuracy.
Journal of Molecular Biology, 232, 584–599.

Rost, B., & Sander, C. (1994). Combining evolu-
tionary information and neural networks to pre-
dict protein secondary structure. Proteins, 19,
55–72.

Rost, B., & Sander, C. (1995). Progress of 1D pro-
tein structure prediction at last. Proteins, 23,
295–300.

Saputro, D. R. S., & Widyaningsih, P. (2017).
Limited memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) method for the parameter es-
timation on geographically weighted ordinal lo-
gistic regression model (GWOLR). AIP Con-
ference Proceedings, 1868(1), 040009. doi: 10.
1063/1.4995124.

Shen, D., Wang, G., Wang, W., Min, M. R., Su,
Q., Zhang, Y., … Carin, L. (2018). Baseline Dallago et al.

25 of 26

Current Protocols

Biases model machine learning predictions in protein biology

 81

needs more love: On simple word-embedding-
based models and associated pooling mecha-
nisms. Proceedings of the 56th Annual Meeting
of the Association for Computational Linguis-
tics (Volume 1: Long Papers), 440–450. July 15
- 20, 2018, Melbourne, Australia. doi: 10.18653/
v1/P18-1041.

Steinegger, M., Meier, M., Mirdita, M., Vöhringer,
H., Haunsberger, S. J., & Söding, J. (2019). HH-
suite3 for fast remote homology detection and
deep protein annotation. BMC Bioinformatics,
20(1), 473. doi: 10.1186/s12859-019-3019-7.

Steinegger, M., Mirdita, M., & Söding, J. (2019).
Protein-level assembly increases protein se-
quence recovery from metagenomic samples
manyfold. Nature Methods, 16(7), 603–606.
doi: 10.1038/s41592-019-0437-4.

Steinegger, M., & Söding, J. (2018). Clustering
huge protein sequence sets in linear time. Na-
ture Communications, 9(1), 2542. doi: 10.1038/
s41467-018-04964-5.

Stormo, G. D., Schneider, T. D., Gold, L., & Ehren-
feucht, A. (1982). Use of the ‘Perceptron’ algo-
rithm to distinguish translational initiation sites
in E. coli. Nucleic Acids Research, 10(9), 2997–
3011. doi: 10.1093/nar/10.9.2997.

The UniProt Consortium. (2019). UniProt: A
worldwide hub of protein knowledge. Nucleic
Acids Research, 47(D1), D506–D515. doi: 10.
1093/nar/gky1049.

Vig, J., Madani, A., Varshney, L. R., Xiong, C.,
Socher, R., & Rajani, N. F. (2020). BERTol-
ogy meets biology: Interpreting attention in pro-
tein language models. ArXiv, 2006.15222 [Cs,

q-Bio]. Available at http://arxiv.org/abs/2006.
15222.

Villegas-Morcillo, A., Makrodimitris, S., van Ham,
R. C. H. J., Gomez, A. M., Sanchez, V., &
Reinders, M. J. T. (2020). Unsupervised protein
embeddings outperform hand-crafted sequence
and structure features at predicting molecular
function. Bioinformatics, 2020, btaa701. doi:
10.1093/bioinformatics/btaa701.

Zhu, J., Xia, Y., Wu, L., He, D., Qin, T.,
Zhou, W., … Liu, T.-Y. (2020). Incorporating
BERT into neural machine translation. ArXiv,
2002.06823 [Cs]. Available at http://arxiv.org/
abs/2002.06823.

Internet Resources
https://github.com/sacdallago/bio_embeddings.
bio_embeddings source code.

https://docs.bioembeddings.com.
bio_embeddings Python documentation

http://examples.bioembeddings.com.
Example bio_embeddings pipeline runs.

http://notebooks.bioembeddings.com.
Notebooks for interactive bio-embeddings work-

flows.
For small FASTA files (<20000 residues in total)

it is also possible to use the bio_embeddings
web pipeline: https://api.bioembeddings.com.
The web pipeline also allows execution of
single sequences (<2000 residues) instanta-
neously, as utilized by PredictProtein (https:
//predictprotein.org) and https://embed.protein.
properties.

Dallago et al.

26 of 26

Current Protocols

Christian Dallago

 82

23/05/2022, 11:59 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 1/5

JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

May 23, 2022

This Agreement between Mr. Christian Dallago ("You") and John Wiley and Sons ("John
Wiley and Sons") consists of your license details and the terms and conditions provided by
John Wiley and Sons and Copyright Clearance Center.

License Number 5314710554640

License date May 23, 2022

Licensed Content
Publisher John Wiley and Sons

Licensed Content
Publication Current Protocols

Licensed Content Title Learned Embeddings from Deep Learning to Visualize and Predict
Protein Sets

Licensed Content
Author Burkhard Rost, James T. Morton, Sungroh Yoon, et al

Licensed Content Date May 7, 2021

Licensed Content Pages 1

Type of use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Print and electronic

Portion Full article

Will you be translating? No

Biases model machine learning predictions in protein biology

 83

23/05/2022, 11:59 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 2/5

Title Biases Model Machine Learning Predictions in Protein Biology

Institution name Technical University of Munich

Expected presentation
date Oct 2022

Order reference number cpz1.113

Requestor Location

Mr. Christian Dallago
bolzmanstrasse 3

Garching bei muenchen, bayern 85748
Germany
Attn: Mr. Christian Dallago

Publisher Tax ID EU826007151

Total 0.00 USD

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or
one of its group companies (each a"Wiley Company") or handled on behalf of a society with
which a Wiley Company has exclusive publishing rights in relation to a particular work
(collectively "WILEY"). By clicking "accept" in connection with completing this licensing
transaction, you agree that the following terms and conditions apply to this transaction
(along with the billing and payment terms and conditions established by the Copyright
Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that
you opened your RightsLink account (these are available at any time at
http://myaccount.copyright.com).

Terms and Conditions

The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright.

You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-
alone basis), non-transferable, worldwide, limited license to reproduce the Wiley
Materials for the purpose specified in the licensing process. This license, and any
CONTENT (PDF or image file) purchased as part of your order, is for a one-time
use only and limited to any maximum distribution number specified in the license. The
first instance of republication or reuse granted by this license must be completed
within two years of the date of the grant of this license (although copies prepared
before the end date may be distributed thereafter). The Wiley Materials shall not be
used in any other manner or for any other purpose, beyond what is granted in the

Christian Dallago

 84

23/05/2022, 11:59 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 3/5

license. Permission is granted subject to an appropriate acknowledgement given to the
author, title of the material/book/journal and the publisher. You shall also duplicate the
copyright notice that appears in the Wiley publication in your use of the Wiley
Material. Permission is also granted on the understanding that nowhere in the text is a
previously published source acknowledged for all or part of this Wiley Material. Any
third party content is expressly excluded from this permission.

With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner.For STM Signatory Publishers
clearing permission under the terms of the STM Permissions Guidelines only, the
terms of the license are extended to include subsequent editions and for editions
in other languages, provided such editions are for the work as a whole in situ and
does not involve the separate exploitation of the permitted figures or extracts,
You may not alter, remove or suppress in any manner any copyright, trademark or
other notices displayed by the Wiley Materials. You may not license, rent, sell, loan,
lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone
basis, or any of the rights granted to you hereunder to any other person.

The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have
no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
BY YOU.

WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you.

You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,

Biases model machine learning predictions in protein biology

 85

23/05/2022, 11:59 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 4/5

WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN.

Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby.

The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party.

This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

These terms and conditions together with CCC's Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns.

In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall prevail.

WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms
and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state's conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

Christian Dallago

 86

23/05/2022, 11:59 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 5/5

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)

Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.

Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.

Biases model machine learning predictions in protein biology

 87

5.3 PREDICTPROTEIN-PREDICTING PROTEIN STRUCTURE AND FUNCTION FOR 29

YEARS

Summary. Since its 1992 launch, PredictProtein (https://predictprotein.org/) has been a one-stop

online resource for protein analysis. In 2020, for an average of 3000 monthly users, PredictProtein

combined over 13 tools into a single resource. From just an input protein sequence, the server

provides online visualizations of multiple sequence alignments (MSAs), predictions of protein

structure (secondary structure, solvent accessibility, transmembrane segments, disordered

regions, protein flexibility, and disulfide bridges) and function (variant effect, GO terms, subcellular

localization, and protein-, RNA-, and DNA binding sites). By additionally providing computable

artifacts (via programmatic access), the server caters the needs of computational and

experimental biologists alike. Offline use of PredictProtein tools is enabled via an omni-docker

container: quickly installed on single machines and clusters. Since the previous major update in

2014, PredictProtein’s infrastructure was enhanced to offer more reliable execution, more storage

space and decreased runtime for predictions. Runtime was also cut four-fold by sourcing

alignment generation to MMseqs2 (M Mirdita et al., 2021). Usability was improved via new UI

elements (Watkins et al., 2017). Prediction methods for DNA-, RNA- and protein binding and GO

annotations have been replaced with revised methods (Qiu et al., 2020; Littmann, Heinzinger,

Dallago, Olenyi, et al., 2021). ProtT5-sec, an alternative secondary structure prediction method

based on cutting-edge Deep Learning techniques (Elnaggar et al., 2021), was integrated side-by-

side to evolution-based RePROF. The PredictProtein server offers access to a vast range of

accurate predictors, many topping the leaderboards even after a decade, with new recently

integrated methods to boost the breadth of available sequence features and improve accuracy on

dated methods.

Relevance. PredictProtein has served users with predictions of protein properties for almost 30

years. Its relevance to the field and to this thesis are manyfold: from providing landmark solutions

to characterize proteins, pushing the boundaries of “known” sequence space, to integrating

intuitive visualizations to simplify interpretation of complex machine learning predictions for non-

experts. The most significant scientific update in the 2021 edition of PredictProtein was the

integration of cutting edge pLM models, on the one hand cementing the foundation to their use

for the broader community, on the other hand, signaling a shift in how computational predictions

of proteins are used. While previous models focused mainly on predicting attributes of proteins,

e.g., subcellular localization, through embeddings computational biologists can access the

underlying representation of proteins, enabling custom analyses of proteins from a high

dimensional embedding without categorization into narrow, supervised ontologies.

Christian Dallago

 88

Contribution. I am one of four principal authors of this paper. I am also the corresponding author.

I contributed conceptualization and writing.

Copyright notice. The original publication is available in open access at the DOI

10.1093/nar/gkab354 and in the following. The copyright notice is attached in this appendix

following the manuscript.

Biases model machine learning predictions in protein biology

 89

Published online 17 May 2021 Nucleic Acids Research, 2021, Vol. 49, Web Server issue W535–W540
https://doi.org/10.1093/nar/gkab354

PredictProtein - Predicting Protein Structure and
Function for 29 Years
Michael Bernhofer 1,2,†, Christian Dallago 1,2,*,†, Tim Karl1,†, Venkata Satagopam 3,4,†,
Michael Heinzinger1,2, Maria Littmann1,2, Tobias Olenyi1, Jiajun Qiu 1,5,
Konstantin Schütze1, Guy Yachdav1, Haim Ashkenazy6,7, Nir Ben-Tal8, Yana Bromberg 9,
Tatyana Goldberg1, Laszlo Kajan10, Sean O’Donoghue11, Chris Sander12,13,14,
Andrea Schafferhans1,15, Avner Schlessinger16, Gerrit Vriend17, Milot Mirdita 18,
Piotr Gawron3, Wei Gu3,4, Yohan Jarosz3,4, Christophe Trefois 3,4, Martin Steinegger19,20,
Reinhard Schneider 3,4 and Burkhard Rost1,21,22,*

1TUM (Technical University of Munich) Department of Informatics, Bioinformatics & Computational Biology - i12,
Boltzmannstr 3, 85748 Garching/Munich, Germany, 2TUM Graduate School CeDoSIA, Boltzmannstr 11, 85748
Garching, Germany, 3Luxembourg Centre For Systems Biomedicine (LCSB), University of Luxembourg, Campus
Belval, House of Biomedicine II, 6 avenue du Swing, L-4367 Belvaux, Luxembourg, 4ELIXIR Luxembourg (ELIXIR-LU)
Node, University of Luxembourg, Campus Belval, House of Biomedicine II, 6 avenue du Swing, L-4367 Belvaux,
Luxembourg, 5Department of Otolaryngology Head & Neck Surgery, The Ninth People’s Hospital & Ear Institute,
School of Medicine & Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai Jiao
Tong University, Shanghai, China, 6Department of Molecular Biology, Max Planck Institute for Developmental Biology,
Tübingen, Germany, 7The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life
Sciences, Tel Aviv University, 69978 Tel Aviv, Israel, 8Department of Biochemistry & Molecular Biology, George S.
Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel, 9Department of Biochemistry and
Microbiology, Rutgers University, New Brunswick, NJ 08901, USA, 10Roche Polska Sp. z o.o., Domaniewska 39B,
02–672 Warsaw, Poland, 11Garvan Institute of Medical Research, Sydney, Australia, 12Department of Data Sciences,
Dana-Farber Cancer Institute, Boston, MA 02215, USA, 13Department of Cell Biology, Harvard Medical School,
Boston, MA 02215, USA, 14Broad Institute of MIT and Harvard, Boston, MA 02142, USA, 15HSWT (Hochschule
Weihenstephan Triesdorf | University of Applied Sciences), Department of Bioengineering Sciences, Am Hofgarten
10, 85354 Freising, Germany, 16Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai,
New York, NY 10029, USA, 17BIPS, Poblacion Baco, Mindoro, Philippines, 18Quantitative and Computational Biology,
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, 19School of Biological Sciences, Seoul National
University, Seoul, South Korea, 20Artificial Intelligence Institute, Seoul National University, Seoul, South Korea,
21Institute for Advanced Study (TUM-IAS), Lichtenbergstr. 2a, 85748 Garching/Munich, Germany and 22TUM School
of Life Sciences Weihenstephan (WZW), Alte Akademie 8, Freising, Germany

Received February 23, 2021; Revised April 06, 2021; Editorial Decision April 21, 2021; Accepted May 10, 2021

ABSTRACT

Since 1992 PredictProtein (https://predictprotein.
org) is a one-stop online resource for protein se-
quence analysis with its main site hosted at the Lux-
embourg Centre for Systems Biomedicine (LCSB)
and queried monthly by over 3,000 users in 2020.
PredictProtein was the first Internet server for pro-
tein predictions. It pioneered combining evolution-

ary information and machine learning. Given a pro-
tein sequence as input, the server outputs multiple
sequence alignments, predictions of protein struc-
ture in 1D and 2D (secondary structure, solvent
accessibility, transmembrane segments, disordered
regions, protein flexibility, and disulfide bridges)
and predictions of protein function (functional ef-
fects of sequence variation or point mutations, Gene
Ontology (GO) terms, subcellular localization, and

*To whom correspondence should be addressed. Tel: +49 289 17 811; Email: christian.dallago@tum.de
Correspondence may also be addressed to Burkhard Rost. Email: assistant@rostlab.org
†The authors wish it to be known that, in their opinion, the first four authors should be regarded as joint First Authors.

C⃝ The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/W

1/W
535/6276913 by guest on 23 M

ay 2022

Christian Dallago

 90

W536 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

protein-, RNA-, and DNA binding). PredictProtein’s
infrastructure has moved to the LCSB increasing
throughput; the use of MMseqs2 sequence search
reduced runtime five-fold (apparently without lower-
ing performance of prediction methods); user inter-
face elements improved usability, and new predic-
tion methods were added. PredictProtein recently in-
cluded predictions from deep learning embeddings
(GO and secondary structure) and a method for the
prediction of proteins and residues binding DNA,
RNA, or other proteins. PredictProtein.org aspires
to provide reliable predictions to computational and
experimental biologists alike. All scripts and meth-
ods are freely available for offline execution in high-
throughput settings.

GRAPHICAL ABSTRACT

INTRODUCTION

The sequence is known for far more proteins (1) than ex-
perimental annotations of function or structure (2,3). This
sequence-annotation gap existed when PredictProtein (4,5)
started in 1992, and has kept expanding ever since (6).
Unannotated sequences contribute crucial evolutionary in-
formation to neural networks predicting secondary struc-
ture (7,8) that seeded PredictProtein (PP) at the European
Molecular Biology Laboratory (EMBL) in 1992 (9), the
first fully automated, query-driven Internet server provid-
ing evolutionary information and structure prediction for
any protein. Many other methods predicting aspects of pro-
tein function and structure have since joined under the PP
roof (4,5,10) now hosted by the Luxembourg Centre of Sys-
tems Biomedicine (LCSB).

PP offers an array of structure and function predictions
most of which combine machine learning with evolutionary
information; now enhanced by a faster alignment algorithm
(11,12). A few prediction methods now also use embeddings
(13,14) from protein Language Models (LMs) (13–18). Em-
beddings are much faster to obtain than evolutionary infor-
mation, yet for many tasks, perform almost as well, or even
better (19,20). All PP methods join at PredictProtein.org
with interactive visualizations; for some methods, more ad-
vanced visualizations are linked (21–23). The reliability of
PredictProtein, its speed, the continuous integration of well-
validated, top methods, and its intuitive interface have at-
tracted thousands of researchers over 29 years of steady op-
eration.

MATERIALS AND METHODS

PredictProtein (PP) provides

multiple sequence alignments (MSAs) and position-specific
scoring matrices (PSSMs) computed by a combination
of pairwise BLAST (24), PSI-BLAST (25), and MM-
seqs2 (11,12) on query vs. PDB (26) and query versus
UniProt (1). For each residue in the query, the following
per-residue predictions are assembled: secondary structure
(RePROF/PROFsec (5,27) and ProtBertSec (14)); solvent
accessibility (RePROF/PROFacc); transmembrane helices
and strands (TMSEG (28) and PROFtmb (29)); protein dis-
order (Meta-Disorder (30)); backbone flexibility (relative
B-values; PROFbval (31)); disulfide bridges (DISULFIND
(32)); sequence conservation (ConSurf/ConSeq (33–36));
protein-protein, protein-DNA, and protein-RNA binding
residues (ProNA2020 (3)); PROSITE motifs (37); effects
of sequence variation (single amino acid variants, SAVs;
SNAP2 (38)). For each query per-protein predictions in-
clude: transmembrane topology (TMSEG (28)); binary
protein-(DNA|RNA|protein) binding (protein binds X or
not; ProNA2020 (3)); Gene Ontology (GO) term predic-
tions (goPredSim (19)); subcellular localization (LocTree3
(39)); Pfam (40) domain scans, and some biophysical fea-
tures. Under the hood, PP computes more results (SOM:
PredictProtein Methods; Supplementary Table S1), either
as input for frontend methods, or for legacy support.

New: goPredSim embedding-based transfer of Gene Ontol-
ogy (GO)

goPredSim (19) predicts GO terms by transferring anno-
tations from the most embedding-similar protein. Embed-
dings are obtained from SeqVec (13); similarity is estab-
lished through the Euclidean distance between the embed-
ding of a query and a protein with experimental GO annota-
tions. Replicating the conditions of CAFA3 (41) in 2017, go-
PredSim achieved Fmax values of 37 ± 2%, 52 ± 2% and 58
± 2% for BPO (biological process), MFO (molecular func-
tion), and CCO (cellular component), respectively (41,42).
Using Gene Ontology Annotation (GOA) (43,44) to test
296 proteins annotated after February 2020, goPredSim ap-
peared to reach even slightly higher values that were con-
firmed by CAFA4 (45).

New: ProtBertSec secondary structure prediction

ProtBertSec predicts secondary structure in three states (he-
lix, strand, other) using ProtBert (14) embeddings derived
from training on BFD with almost 3 × 109 proteins (6,46).
On a hold-out set from CASP12, ProtBertSec reached a
three-state per-residue accuracy of Q3 = 76 ± 1.5% (47).
Although below the state-of-the-art (NetSurfP-2.0 (48) at
82%), this method performed on-par with other MSA-
based methods, despite itself not using MSAs.

New: ProNA2020 protein–protein, protein–RNA and
protein–DNA

ProNA2020 (3) predicts whether or not a protein interacts
with other proteins, RNA or DNA (binary), and if so, where

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/W

1/W
535/6276913 by guest on 23 M

ay 2022

Biases model machine learning predictions in protein biology

 91

Nucleic Acids Research, 2021, Vol. 49, Web Server issue W537

Figure 1. Predictions for SARS-CoV-2 Nucleoprotein (NCAP SARS2). Underneath the interactive slider at the top: RePROF and ProtBertSec secondary
structure (blue: helix; purple: strand; orange: other); Meta-Disorder intrinsically disordered regions (purple); ProNA2020 RNA-binding residues (low
confidence: blue; medium confidence: purple). goPredSim transfers of GeneOntology (GO) terms based on embedding similarity (lower left: CCO; lower
right: BPO & MFO). SNAP2 predicts the effect of point-mutations on function for the RNA-binding region from I84 to D98 (bottom-center; black: native
residue). Link: predictprotein.org/visual results?req id=1nAmulUQY$FRPFaP8NTqLW9DzdlTG3B/.

it binds (which residues). The binary per-protein predictions
rely on homology and machine learning models employ-
ing profile-kernel SVMs (49) and on embeddings from an
in-house implementation of ProtVec (50). Per-residue pre-
dictions (where) use simple neural networks due to data
shortage (51–53). ProNA2020 correctly predicted 77 ± 1%
of the proteins binding DNA, RNA or protein. In proteins
known to bind other proteins, RNA or DNA, ProNA2020
correctly predicted 69 ± 1%, 81 ± 1% and 80 ± 1% of bind-
ing residues, respectively.

New: MMseqs2 speedy evolutionary information

Most time-consuming for PP was the search for related pro-
teins in ever growing databases. MMseqs2 (11) finds related
sequences blazingly fast and seeds a PSI-BLAST search
(25). The query sequence is sent to a dedicated MMseqs2
server that searches for hits against cluster representatives
within the UniClust30 (54) and PDB (26) reduced to 70%
pairwise percentage sequence identity (PIDE). All hits and
their respective cluster members are turned into a MSA and
filtered to the 3000 most diverse sequences.

WEB SERVER

Frontend and user interface (UI)

Users query PredictProtein.org by submitting a protein se-
quence. Results are available in seconds for sequences that
had been submitted recently (cf. PPcache next section), or
within up to 30 min if predictions are recomputed. Per-
residue predictions are displayed online via ProtVista (55),

which allows to zoom into any sequential protein region
(Supplementary Figure S1), and are grouped by category
(e.g. secondary structure), which can be expanded to display
more detail (e.g. helix, strand, other). On the results page,
links to visualize MSAs through AlignmentViewer (56) are
available. More predictions can be accessed through a menu
on the left, e.g. Gene Ontology Terms, Effect of Point Muta-
tions and Subcellular Localization. Prediction views include
references and details of outputs, as well as rich visualiza-
tions, e.g. GO trees for GO predictions and cell images with
highlighted predicted locations for subcellular localization
predictions (57).

PPcache, backend and programmatic access

The PP backend lives at LCSB, allowing for up to 48 par-
allel queries. Results are stored on disc in the PPcache (5).
Users submitting sequences for which results were over the
last two years obtain results immediately. Using the bio-
embeddings pipeline (58), the PPcache is enriched by em-
beddings and embedding-based predictions on the fly. For
all methods displayed on the frontend, JSON files compli-
ant with ProtVista (55) are available via REST APIs (SOM:
Programmatic access), and are in use by external services
such as the protein 3D structure visualization suite Aquaria
(21,23) and by MolArt (22).

PredictProtein is available for local use

All results displayed on and downloadable from PP are
available through Docker (59) and as source code for local
and cloud execution (available at github.com/rostlab).

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/W

1/W
535/6276913 by guest on 23 M

ay 2022

Christian Dallago

 92

W538 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

Figure 2. Experimental and predicted RNA-binding residues for
NCAP2 SARS2. Predicted (via ProNA2020, in cyan, panels A and C) and
observed (within 5Å, in magenta, panels B and D) RNA-binding residues
for the SARS-CoV-2 nucleoprotein (gray) complexed with a 10-mer
ssRNA (orange), PDB structure 7ACT (61). Two-third of the predictions
are correct (precision = 0.73, recall = 0.20), which is around the expected
average performance reported by ProNA2020. The important sequence
consecutive central strand and loop are predicted well, while several
short sequence segments that are far away in sequence space but close
in structure space are missed, which is expected as ProNA2020 has no
notion of 3D structure, i.e., cannot identify ‘binding sites’. Panels A and
B show a different orientation than panels C and D.

USE CASE

We demonstrate PredictProtein.org tools through
predictions of the novel coronavirus SARS-CoV-2
(NCBI:txid2697049) nucleoprotein (UniProt identifier
P0DTC9/NCAP SARS2; Figure 1; SOM: Use Case; Sup-
plementary Figure S2). NCAP SARS2 has 419 residues
and interacts with itself (experimentally verified). Sequence
similarity and automatic assignment via UniRule (60)
suggest NCAP is RNA-binding (binding with the viral
genome), binding with the membrane protein M (UniProt
identifier P0DTC5/VME1 SARS2), and is fundamental
for virion assembly. goPredSim (19) transferred GO terms
from other proteins for MFO (RNA-binding; GO:0003723;
ECO:0000213) and CCO (compartments in the host
cell and viral nucleocapsid; GO:0019013; GO:0044172;
GO:0044177; GO:0044220; GO:0030430; ECO:0000255)
matching annotations found in UniProt (1). While it missed
the experimentally verified MFO term identical protein
binding (GO:0042802), goPredSim predicted protein folding
(GO:0006457) and protein ubiquitination (GO:0016567)
suggesting the nucleoprotein to be involved in biolog-
ical processes requiring protein binding. ProNA2020
(3) predicts RNA-binding regions, the one with highest
confidence between I84 (Isoleucine at position 84) and
D98 (Aspartic Acid at 98) (protein sequence in SOM: Use
Case). While high resolution experimental data on binding
is not available, an NMR structure of the SARS-CoV-2 nu-
cleocapsid phosphoprotein N-terminal domain in complex

with 10mer ssRNA (PDB identifier 7ACT (61)) supports
the predicted RNA-binding site (Figure 2). Additionally,
SNAP2 (38) predicts single amino acid variants (SAVs)
in that region to likely affect function, reinforcing the
hypothesis that this is a functionally relevant site. Although
using different input information (evolutionary vs. embed-
dings), RePROF (5) and ProtBertSec (14) both predict an
unusual content exceeding 70% non-regular (neither helix
nor strand) secondary structure, suggesting that most of
the nucleoprotein might not form regular structure. This is
supported by Meta-Disorder (30) predicting 53% overall
disorder. Secondary structure predictions match well high-
resolution experimental structures of the nucleoprotein
not in complex (e.g., PDB 6VYO (62); 6WJI (63)). Both
secondary structure prediction methods managed to zoom
into the ordered regions of the protein and predicted e.g.,
the five beta-strands that are formed within the sequence
range I84 (Isoleucine) to A134 (Alanine), and the two
helices formed within the sequence range spanned from
F346 (Phenylalanine) to T362 (Tyrosine).

CONCLUSION

For almost three decades (preceding Google) PredictPro-
tein (PP) has been offering predictions for proteins. PP is
the oldest prediction Internet server, online for 6-times as
long as most other servers (64–66). It pioneered combining
machine learning with evolutionary information and mak-
ing predictions freely accessible online. While the sequence-
annotation gap continues to grow, the sequence-structure
gap might be bridged in the near future (67). For the time
being, servers such as PP, providing a one-stop solution to
predictions from many sustained, novel tools are needed.
Now, PP is the first server to offer fast embedding-based
predictions of structure (ProtBertSec) and function (go-
PredSim). By slashing runtime for PSSMs from 72 to 4 min
through MMseqs2 and better LCSB hardware, PP also de-
livers evolutionary information-based predictions fast! In-
stantaneously if the query is in the precomputed PPcache.
For heavy use, the offline Docker containers provide pre-
dictors out-of-the-box. At no cost to users, PredictProtein
offers to quickly shine light on proteins for which little is
known using well validated prediction methods.

DATA AVAILABILITY

Freely accessible webserver PredictProtein.org; Source and
docker images: github.com/rostlab.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

Maintaining PredictProtein over three decades has been
tough; many colleagues have helped with hands and brains,
developers, and users alike. Thanks to all of you! Please
find most contributors in Supplementary Table S2 or at
predictprotein.org/credits. In particular, thanks to Noua
Toukourou and Maharshi Vyas (both LCSB) for invaluable

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/W

1/W
535/6276913 by guest on 23 M

ay 2022

Biases model machine learning predictions in protein biology

 93

Nucleic Acids Research, 2021, Vol. 49, Web Server issue W539

help with hardware and software; to David Hoksza (Charles
U, Prague) for his work on MolArt; to Marco Punta (IR-
CCS Milano) for his long-term support; to Inga Weise
(TUM) for support with many aspects; to Roy Omond
(Blue Bubble, Cambridge), Antoine de Daruvar (Univ. Bor-
deaux), Yanay Ofran (Bar-Ilan Univ.), Jinfeng Liu (Genen-
tech), Tobias Hamp, Maximilian Hecht, Edda Kloppmann
(all previously TUM) for contributing methods and code
in the past; Johannes Söding for providing resources to de-
velop and maintain MMseqs2.

FUNDING

Michael Bernhofer was supported by the Competence
Network for Scientific High Performance Computing in
Bavaria [KONWIHR-III BG.DAF]; Christian Dallago
is supported by the Deutsche Forschungsgemeinschaft
(DFG) [RO 1320/4-1]; Bundesministerium für Bildung
und Forschung (BMBF) [031L0168]; Software Campus
2.0 (TU München), BMBF [01IS17049]; Milot Mirdita
acknowledges support from the ERC’s Horizon 2020
Framework Programme [`Virus-X’, project no. 685778];
BMBF CompLifeSci project horizontal4meta. Martin
Steinegger acknowledges support from the National Re-
search Foundation of Korea grant funded by the Korean
government (MEST) [2019R1A6A1A10073437, NRF-
2020M3A9G7103933]; Creative-Pioneering Researchers
Program through Seoul National University; Nir Ben-Tal
acknowledges the support of Israeli Science Foundation
(ISF) [450/16]; Abraham E. Kazan Chair in Structural
Biology, Tel Aviv University; Haim Ashkenazy was sup-
ported by Humboldt Research Fellowship for Postdoctoral
Researchers of the Alexander von Humboldt Foundation;
The PredictProtein web server is hosted by ELIXIR-LU,
the Luxembourgish node of the European life-science
infrastructure. Funding for open access charge: Library of
the Technical University of Munich.
Conflict of interest statement. None declared.

REFERENCES
1. The UniProt Consortium (2021) UniProt: the universal protein

knowledgebase in 2021. Nucleic. Acids Res., 49, D480–D489.
2. Rost,B., Liu,J., Nair,R., Wrzeszczynski,K.O. and Ofran,Y. (2003)

Automatic prediction of protein function. Cell. Mol. Life Sci., 60,
2637–2650.

3. Qiu,J., Bernhofer,M., Heinzinger,M., Kemper,S., Norambuena,T.,
Melo,F. and Rost,B. (2020) ProNA2020 predicts protein–DNA,
protein–RNA, and protein–protein binding proteins and residues
from sequence. J. Mol. Biol., 432, 2428–2443.

4. Rost,B. (1996) PHD: predicting one-dimensional protein structure by
profile-based neural networks. Methods Enzymol., 266, 525–539.

5. Yachdav,G., Kloppmann,E., Kajan,L., Hecht,M., Goldberg,T.,
Hamp,T., Hönigschmid,P., Schafferhans,A., Roos,M., Bernhofer,M.
et al. (2014) PredictProtein––an open resource for online prediction
of protein structural and functional features. Nucleic Acids Res., 42,
W337–W343.

6. Steinegger,M. and Söding,J. (2018) Clustering huge protein sequence
sets in linear time. Nat. Commun., 9, 2542.

7. Rost,B. and Sander,C. (1993) Improved prediction of protein
secondary structure by use of sequence profiles and neural networks.
Proc. Natl. Acad. Sci. U.S.A., 90, 7558–7562.

8. Rost,B. and Sander,C. (1993) Prediction of protein secondary
structure at better than 70% accuracy. J. Mol. Biol., 232, 584–599.

9. Rost,B. and Sander,C. (1992) Jury returns on structure prediction.
Nature, 360, 540.

10. Kajan,L., Yachdav,G., Vicedo,E., Steinegger,M., Mirdita,M.,
Angermuller,C., Bohm,A., Domke,S., Ertl,J., Mertes,C. et al. (2013)
Cloud prediction of protein structure and function with
PredictProtein for Debian. Biomed. Res. Int., 2013, 398968.

11. Steinegger,M. and Söding,J. (2017) MMseqs2 enables sensitive
protein sequence searching for the analysis of massive data sets. Nat.
Biotechnol., 35, 1026–1028.

12. Mirdita,M., Steinegger,M. and Söding,J. (2019) MMseqs2 desktop
and local web server app for fast, interactive sequence searches.
Bioinformatics, 35, 2856–2858.

13. Heinzinger,M., Elnaggar,A., Wang,Y., Dallago,C., Nechaev,D.,
Matthes,F. and Rost,B. (2019) Modeling aspects of the language of
life through transfer-learning protein sequences. BMC
Bioinformatics, 20, 723.

14. Elnaggar,A., Heinzinger,M., Dallago,C., Rihawi,G., Wang,Y.,
Jones,L., Gibbs,T., Feher,T., Angerer,C., Bhowmik,D. et al. (2020)
ProtTrans: Towards cracking the language of life’s code through
self-supervised deep learning and high performance computing.
arXiv doi: https://arxiv.org/abs/2007.06225, 04 May 2021, preprint:
not peer reviewed.

15. Alley,E.C., Khimulya,G., Biswas,S., AlQuraishi,M. and
Church,G.M. (2019) Unified rational protein engineering with
sequence-based deep representation learning. Nat. Methods, 16,
1315–1322.

16. AlQuraishi,M. (2019) End-to-end differentiable learning of protein
structure. Cell Syst., 8, 292–301.

17. Rao,R., Bhattacharya,N., Thomas,N., Duan,Y., Chen,P., Canny,J.,
Abbeel,P. and Song,Y. (2019) Evaluating Protein Transfer Learning
with TAPE. In: Wallach,H., Larochelle,H., Beygelzimer,A.,
d’Alché-Buc,F., Fox,E. and Garnett,R. (eds). Advances in Neural
Information Processing Systems. Vol. 32. Curran Associates, Inc., pp.
9689–9701.

18. Rives,A., Meier,J., Sercu,T., Goyal,S., Guo,D., Lin,Z., Liu,J.,
Guo,D., Ott,M., Zitnick,C.L., Ma,J. and Fergus,R. (2021) Biological
structure and function emerge from scaling unsupervised learning to
250 million protein sequences. Proc. Natl. Acad. Sci. USA, 118,
e2016239118.

19. Littmann,M., Heinzinger,M., Dallago,C., Olenyi,T. and Rost,B.
(2021) Embeddings from deep learning transfer GO annotations
beyond homology. Sci. Rep., 11, 1160.

20. Rao,R., Ovchinnikov,S., Meier,J., Rives,A. and Sercu,T. (2020)
Transformer protein language models are unsupervised structure
learners. bioRxiv doi: https://doi.org/10.1101/2020.12.15.422761, 15
December 2020, preprint: not peer reviewed.

21. O’Donoghue,S.I., Sabir,K.S., Kalemanov,M., Stolte,C.,
Wellmann,B., Ho,V., Roos,M., Perdigão,N., Buske,F.A., Heinrich,J.
et al. (2015) Aquaria: simplifying discovery and insight from protein
structures. Nat. Methods, 12, 98–99.

22. Hoksza,D., Gawron,P., Ostaszewski,M. and Schneider,R. (2018)
MolArt: a molecular structure annotation and visualization tool.
Bioinformatics, 34, 4127–4128.

23. O’Donoghue,S.I., Schafferhans,A., Sikta,N., Stolte,C., Kaur,S.,
Ho,B.K., Anderson,S., Procter,J., Dallago,C., Bordin,N. et al. (2020)
SARS-CoV-2 structural coverage map reveals state changes that
disrupt host immunity bioinformatics. bioRxiv
doi: https://doi.org/10.1101/2020.07.16.207308, 28 September 2020,
preprint: not peer reviewed.

24. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.
(1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.

25. Altschul,S.F., Madden,T.L., Schäffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs. Nucleic Acids
Res., 25, 3389–3402.

26. Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N.,
Weissig,H., Shindyalov,I.N. and Bourne,P.E. (2000) The Protein
Data Bank. Nucleic Acids Res., 28, 235–242.

27. Rost,B. (2001) Protein secondary structure prediction continues to
rise. J. Struct. Biol., 134, 204–218.

28. Bernhofer,M., Kloppmann,E., Reeb,J. and Rost,B. (2016) TMSEG:
novel prediction of transmembrane helices. Proteins, 84, 1706–1716.

29. Bigelow,H. and Rost,B. (2006) PROFtmb: a web server for
predicting bacterial transmembrane beta barrel proteins. Nucleic
Acids. Res., 34, W186–W188.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/W

1/W
535/6276913 by guest on 23 M

ay 2022

Christian Dallago

 94

W540 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

30. Schlessinger,A., Punta,M., Yachdav,G., Kajan,L. and Rost,B. (2009)
Improved disorder prediction by combination of orthogonal
approaches. PLoS One, 4, e4433.

31. Schlessinger,A., Yachdav,G. and Rost,B. (2006) PROFbval: predict
flexible and rigid residues in proteins. Bioinforma. Oxf. Engl., 22,
891–893.

32. Ceroni,A., Passerini,A., Vullo,A. and Frasconi,P. (2006)
DISULFIND: a disulfide bonding state and cysteine connectivity
prediction server. Nucleic Acids Res., 34, W177–W181.

33. Berezin,C., Glaser,F., Rosenberg,J., Paz,I., Pupko,T., Fariselli,P.,
Casadio,R. and Ben-Tal,N. (2004) ConSeq: the identification of
functionally and structurally important residues in protein
sequences. Bioinforma. Oxf. Engl., 20, 1322–1324.

34. Ashkenazy,H., Erez,E., Martz,E., Pupko,T. and Ben-Tal,N. (2010)
ConSurf 2010: calculating evolutionary conservation in sequence
and structure of proteins and nucleic acids. Nucleic Acids Res., 38,
W529–W533.

35. Celniker,G., Nimrod,G., Ashkenazy,H., Glaser,F., Martz,E.,
Mayrose,I., Pupko,T. and Ben-Tal,N. (2013) ConSurf: using
evolutionary data to raise testable hypotheses about protein function.
Isr. J. Chem., 53, 199–206.

36. Ashkenazy,H., Abadi,S., Martz,E., Chay,O., Mayrose,I., Pupko,T.
and Ben-Tal,N. (2016) ConSurf 2016: an improved methodology to
estimate and visualize evolutionary conservation in macromolecules.
Nucleic Acids Res., 44, W344–W350.

37. Sigrist,C.J.A., de Castro,E., Cerutti,L., Cuche,B.A., Hulo,N.,
Bridge,A., Bougueleret,L. and Xenarios,I. (2013) New and
continuing developments at PROSITE. Nucleic Acids Res., 41,
D344–347.

38. Hecht,M., Bromberg,Y. and Rost,B. (2015) Better prediction of
functional effects for sequence variants. BMC Genomics, 16 (Suppl
8), S1.

39. Goldberg,T., Hecht,M., Hamp,T., Karl,T., Yachdav,G., Ahmed,N.,
Altermann,U., Angerer,P., Ansorge,S., Balasz,K. et al. (2014)
LocTree3 prediction of localization. Nucleic Acids Res., 42,
W350–W355.

40. El-Gebali,S., Mistry,J., Bateman,A., Eddy,S.R., Luciani,A.,
Potter,S.C., Qureshi,M., Richardson,L.J., Salazar,G.A., Smart,A.
et al. (2019) The Pfam protein families database in 2019. Nucleic
Acids Res., 47, D427–D432.

41. Zhou,N., Jiang,Y., Bergquist,T.R., Lee,A.J., Kacsoh,B.Z.,
Crocker,A.W., Lewis,K.A., Georghiou,G., Nguyen,H.N.,
Hamid,M.N. et al. (2019) The CAFA challenge reports improved
protein function prediction and new functional annotations for
hundreds of genes through experimental screens. Genome Biol., 20,
244.

42. Jiang,Y., Oron,T.R., Clark,W.T., Bankapur,A.R., D’Andrea,D.,
Lepore,R., Funk,C.S., Kahanda,I., Verspoor,K.M., Ben-Hur,A.
et al. (2016) An expanded evaluation of protein function prediction
methods shows an improvement in accuracy. Genome Biol., 17, 184.

43. Camon,E., Magrane,M., Barrell,D., Lee,V., Dimmer,E., Maslen,J.,
Binns,D., Harte,N., Lopez,R. and Apweiler,R. (2004) The Gene
Ontology Annotation (GOA) Database: sharing knowledge in
Uniprot with Gene Ontology. Nucleic Acids Res., 32, D262–D266.

44. Huntley,R.P., Sawford,T., Mutowo-Meullenet,P., Shypitsyna,A.,
Bonilla,C., Martin,M.J. and O’Donovan,C. (2015) The GOA
database: gene ontology annotation updates for 2015. Nucleic Acids
Res., 43, D1057–D1063.

45. El-Mabrouk,N. and Slonim,D.K. (2020) ISMB 2020 proceedings.
Bioinformatics, 36, i1–i2.

46. Steinegger,M., Mirdita,M. and Söding,J. (2019) Protein-level
assembly increases protein sequence recovery from metagenomic
samples manyfold. Nat. Methods, 16, 603–606.

47. Abriata,L.A., Tamò,G.E., Monastyrskyy,B., Kryshtafovych,A. and
Peraro,M.D. (2018) Assessment of hard target modeling in CASP12
reveals an emerging role of alignment-based contact prediction
methods. Proteins Struct. Funct. Bioinforma., 86, 97–112.

48. Klausen,M.S., Jespersen,M.C., Nielsen,H., Jensen,K.K., Jurtz,V.I.,
Sønderby,C.K., Sommer,M.O.A., Winther,O., Nielsen,M.,
Petersen,B. et al. (2019) NetSurfP-2.0: improved prediction of
protein structural features by integrated deep learning. Proteins
Struct. Funct. Bioinforma., 87, 520–527.

49. Hamp,T., Goldberg,T. and Rost,B. (2013) Accelerating the original
profile kernel. PLoS One, 8, e68459.

50. Asgari,E., McHardy,A.C. and Mofrad,M.R.K. (2019) Probabilistic
variable-length segmentation of protein sequences for discriminative
motif discovery (DiMotif) and sequence embedding (ProtVecX). Sci.
Rep., 9, 3577.

51. Norambuena,T. and Melo,F. (2010) The protein-DNA interface
database. BMC Bioinformatics, 11, 262.

52. Lewis,B.A., Walia,R.R., Terribilini,M., Ferguson,J., Zheng,C.,
Honavar,V. and Dobbs,D. (2011) PRIDB: a protein-RNA interface
database. Nucleic. Acids. Res., 39, D277–D282.

53. Hamp,T. and Rost,B. (2015) Evolutionary profiles improve
protein-protein interaction prediction from sequence. Bioinforma.
Oxf. Engl., 31, 1945–1950.

54. Mirdita,M., von den Driesch,L., Galiez,C., Martin,M.J., Söding,J.
and Steinegger,M. (2017) Uniclust databases of clustered and deeply
annotated protein sequences and alignments. Nucleic. Acids. Res., 45,
D170–D176.

55. Watkins,X., Garcia,L.J., Pundir,S., Martin,M.J. and Consortium,U.
(2017) ProtVista: visualization of protein sequence annotations.
Bioinformatics, 33, 2040–2041.

56. Reguant,R., Antipin,Y., Sheridan,R., Dallago,C., Diamantoukos,D.,
Luna,A., Sander,C. and Gauthier,N.P. (2020) AlignmentViewer:
sequence analysis of large protein families. F1000Research, 9, 213.

57. Dallago,C., Goldberg,T., Andrade-Navarro,M.A., Alanis-Lobato,G.
and Rost,B. (2020) Visualizing human protein-protein interactions
and subcellular localizations on cell images through CellMap. Curr.
Protoc. Bioinforma., 69, e97.

58. Dallago,C., Schütze,K., Heinzinger,M., Olenyi,T., Littmann,M.,
Lu,A.X., Yang,K.K., Min,S., Yoon,S., Morton,J.T. et al. (2021)
Learned embeddings from deep learning to visualize and predict
protein sets. Curr. Protoc. Bioinforma., 1, e113.

59. Merkel,D. (2014) Docker: lightweight linux containers for consistent
development and deployment. Linux J., 2014, 2.

60. MacDougall,A., Volynkin,V., Saidi,R., Poggioli,D., Zellner,H.,
Hatton-Ellis,E., Joshi,V., O’Donovan,C., Orchard,S.,
Auchincloss,A.H. et al. (2020) UniRule: a unified rule resource for
automatic annotation in the UniProt Knowledgebase.
Bioinformatics, 36, 4643–4648.

61. Dinesh,D.C., Chalupska,D., Silhan,J., Koutna,E., Nencka,R.,
Veverka,V. and Boura,E. (2020) Structural basis of RNA recognition
by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog.,
16, e1009100.

62. Chang,C., Michalska,K., Jedrzejczak,R., Maltseva,N., Endres,M.,
Godzik,A., Kim,Y. and Joachimiak,A. (2020) Crystal structure of
RNA binding domain of nucleocapsid phosphoprotein from SARS
coronavirus 2. doi:10.2210/pdb6vyo/pdb.

63. Minasov,G., Shuvalova,L., Wiersum,G. and Satchell,K. (2020) 2.05
angstrom resolution crystal structure of C-terminal dimerization
domain of nucleocapsid phosphoprotein from SARS-CoV-2.
doi:10.2210/pdb6wji/pdb.

64. Schultheiss,S.J., Münch,M.-C., Andreeva,G.D. and Rätsch,G. (2011)
Persistence and availability of Web services in computational
biology. PLoS One, 6, e24914.

65. Wren,J.D., Georgescu,C., Giles,C.B. and Hennessey,J. (2017) Use it
or lose it: citations predict the continued online availability of
published bioinformatics resources. Nucleic Acids. Res., 45,
3627–3633.

66. Kern,F., Fehlmann,T. and Keller,A. (2020) On the lifetime of
bioinformatics web services. Nucleic Acids Res., 48, 12523–12533.

67. Callaway,E. (2020) ‘It will change everything’: DeepMind’s AI makes
gigantic leap in solving protein structures. Nature, 588, 203–204.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/W

1/W
535/6276913 by guest on 23 M

ay 2022

Biases model machine learning predictions in protein biology

 95

Christian Dallago

 96

5.4 FLIP: BENCHMARK TASKS IN FITNESS LANDSCAPE INFERENCE FOR PROTEINS

Summary. While representation learning approaches like pLMs could unlock protein design

applications, no benchmark assessing their native ability to do so existed. Developing sets probing

the ability of machine learning to design proteins is challenging, as some proteins are multi-

purpose molecules, and current biological experiments often focus on single aspects of selected

proteins. While systematic approaches like CASP and CAFA, assessing structure and function

systematically respectively exist, they do not target metrics relevant for protein engineering.

Fitness Landscape Inference for Proteins (FLIP) is a curated set of several biological experiments

aimed at probing the ability of machine representations of proteins to support protein design

campaigns. To achieve this, several splits from three experimental datasets were devised, testing

the ability of protein representations to emulate typical experimental protein design settings, e.g.,

extrapolative (predicting the effect of multiple changes along the protein sequence by knowing

the effect of few changes) and low-resource (predicting landscapes from only a few labelled

samples). The landscape splits come with data standardization, enabling quick adoption in

computational pipelines, and enabling easy probing for new representation models.

Relevance. While probing pLMs’ ability to characterize protein sequences by predicting on

traditionally accepted tasks such as structure and well-defined aspect of function (e.g., subcellular

localization (Stärk et al., 2021)) may support their validity, these annotations are sharp cutouts of

the “continuous” nature of protein function that may need to be captured to design proteins.

Embeddings from pLMs encode continuous representations that could potentially correlate with

the continuous nature of function. One attempt to correlate these realities is to predict mutational

landscapes using embeddings (Marquet et al., 2021). However, probing purely on deep mutational

scanning (DMS) sets limited to mutational effects of single residue substitutions one at the time

may not entirely characterize more complex mutational neighborhoods from a wildtype sequence.

Experiments introducing a random number of residue substitutions offer a complementary

approach to DMS sets. FLIP contributes by introducing four datasets for the assessment of protein

representations to stack up to the continuous nature of protein function. Two of the three datasets

focused on mutational landscapes from a wildtype sequence to mutated versions of it with up to

32 changes. The last dataset focused on protein thermal stability, characterizing the turning

degree at which proteins start to denature (i.e., become ineffective).

Contribution. I am one of two principal authors of this paper. I contributed conceptualization,

implementation, and writing.

Copyright notice. The original publication is available in open access at

openreview.net/forum?id=p2dMLEwL8tF and in the following. The copyright notice is attached in

this appendix after the manuscript.

Biases model machine learning predictions in protein biology

 97

Christian Dallago

 98

FLIP: Benchmark tasks in fitness landscape inference

for proteins

Christian Dallago
*

Technical University of Munich
christian.dallago@tum.de

Jody Mou
*

Microsoft Research New England
jodymou@mit.edu

Kadina E. Johnston

BBE, Caltech
kjohnston@caltech.edu

Bruce J. Wittmann

BBE, Caltech
bwittman@caltech.edu

Nicholas Bhattacharya

UC Berkeley
nick_bhat@berkeley.edu

Samuel Goldman

CSB, MIT
samlg@mit.edu

Ali Madani

Saleforce Research
amadani@salesforce.com

Kevin K. Yang

Microsoft Research New England
yang.kevin@microsoft.com

Abstract

Machine learning could enable an unprecedented level of control in protein engi-
neering for therapeutic and industrial applications. Critical to its use in designing
proteins with desired properties, machine learning models must capture the protein
sequence-function relationship, often termed fitness landscape. Existing bench-
marks like CASP or CAFA assess structure and function predictions of proteins,
respectively, yet they do not target metrics relevant for protein engineering. In this
work, we introduce Fitness Landscape Inference for Proteins (FLIP), a benchmark
for function prediction to encourage rapid scoring of representation learning for
protein engineering. Our curated tasks, baselines, and metrics probe model gener-
alization in settings relevant for protein engineering, e.g. low-resource and extrap-
olative. Currently, FLIP encompasses experimental data across adeno-associated
virus stability for gene therapy, protein domain B1 stability and immunoglobulin
binding, and thermostability from multiple protein families. In order to enable ease
of use and future expansion to new tasks, all data are presented in a standard format.
FLIP scripts and data are freely accessible at https://benchmark.protein.properties.

1 Introduction

Proteins are life’s workhorses, efficiently and precisely performing complex tasks under a wide variety
of conditions. This combination of versatility and selectivity makes them not only critical to life, but
also to a myriad of human-designed applications. Engineered proteins play increasingly essential
roles in industries and applications spanning pharmaceuticals, agriculture, specialty chemicals,
and fuel [1–5]. The ability of a protein to perform a desired function is determined by its amino
acid sequence, often mediated through folding to a three-dimensional structure [6]. Unfortunately,
current biophysical and structural prediction methods cannot reliably map a sequence to its ability to
perform a desired function, termed protein fitness, with sufficient precision to distinguish between
closely-related protein sequences performing complex functions such as catalysis. Therefore, protein
engineering has relied heavily on directed evolution (DE) methods, which stochastically modify
(“mutate") a starting sequence to create a library of sequence variants, measure all variants to find
those with improved fitness, and then iterate until the protein is sufficiently optimized [7]. Directed
evolution is energy-, time-, and material-intensive, in part because it discards information from

* Equal contribution

Biases model machine learning predictions in protein biology

 99

unimproved sequences. Machine-learning methods that predict fitness from sequence can leverage
both positive and negative data to intelligently select variants for screening, reaching higher fitness
levels with fewer measurements than traditional directed evolution, and without necessarily requiring
detailed understanding of structure or mechanism [8, 7, 9–11].

Directed evolution campaigns are often limited by the cost of collecting sequence-fitness data.
Therefore, machine learning approaches for sequence-fitness prediction are most useful in protein
engineering when they can learn from low-N (few sample) labeled datasets or when they can
generalize to types of variation that are unobserved in the training set. Rapid advances in genomic
sequencing technology have led to an explosion of putative protein sequences [12, 13] deposited
in databases like UniProt [14]. Recent efforts in sequence-function prediction [15, 16] have sought
to leverage the information in these unlabeled sequences through pretraining and fine-tuning, and
have successfully engineered proteins with brighter fluorescence and high catalytic efficiency [17].
Unsupervised models were also applied to- or built on evolutionary sequence inputs to model the
effects of mutations [18–21].

In this work, we present a suite of benchmarking tasks for protein sequence-fitness prediction with
the dual aims of enabling protein engineers to compare and choose machine learning methods
representing protein sequences and accelerating research on machine learning for protein fitness
prediction. Our tasks are curated to be diverse in the functions measured and in the types of
underlying sequence variation. For each landscape, we provide one or more train/test splits that
evaluate biologically-relevant generalization and mimic challenges often seen in protein engineering.
Figure 1 and Table 2 summarize the landscape tasks and splits. We also compute the performance of
baseline models against which future models can be compared, and which highlight that our tasks
can distinguish between “better" and “worse" pretraining regimes. Landscapes and baselines are
available at https://benchmark.protein.properties, while a glossary technical terms is provided in the
supplement.

2 Related Work

Well-designed and easily accessible benchmarks have encouraged and measured progress in machine
learning on proteins, especially protein structure prediction. The Critical Assessment of Protein
Structure Prediction (CASP) [22], and retrospective protein training datasets from previous CASP
competitions [23] have lowered the barrier to entry for new research teams and provided a clear
account of progress over the last three decades [24]. DeepMind’s recent landmark results with their
AlphaFold2 predictor in CASP 14 [25] built on these community-driven efforts.

Table 1: Performance (Spearman’s correlation) on TAPE engineering tasks. Performances reported in
referenced literature. CNNs were replicated from [26] without test set clipping.

Pretraining Fluorescence Stability

ESM [27] masked language model 0.68 0.71

TAPE transformer [28] masked language model 0.68 0.73
TAPE LSTM [28] bidirectional language model 0.67 0.69
TAPE ResNet [28] masked language model 0.21 0.73
UniRep [29] language model + structure 0.67 0.73

CPCProt [30] contrastive 0.68 0.65
CPCProt-LSTM [30] contrastive 0.68 0.68

Linear regression [26] none 0.68 0.48
CNN [26] none 0.67 0.51
Mutation count [31] none 0.45 NA
BLOSUM62 score [31] none 0.50 NA

Inspired by the effectiveness of CASP, there have been attempts at benchmarks for function prediction
and protein pretraining. The Critical Assessment of Function Annotation (CAFA) [32, 33] focuses on
assigning Gene Ontology (GO) classes (categorical definitions of protein functions) to proteins. While
an important benchmark, CAFA does not directly require models to build on sequence inputs, instead

2

Christian Dallago

 100

they could leverage graph inputs from protein-protein interaction networks, and the prediction targets
do not account for fitness variations between very similar sequences that are important for protein
engineering. Tasks Assessing Protein Embeddings (TAPE) [28] aims to evaluate the effectiveness of
different pretraining regimes and models to predict protein properties. Of the five tasks in TAPE, three
(remote homology, secondary structure, and contacts) focus on structure prediction, while only two
(fluorescence and stability) target fitness prediction. These two tasks show little discriminative power
between different models [26], as shown in Table 1. In addition, the use of structure as an evaluation
limits the creation of jointly trained structure- and sequence- based embeddings that may be most
useful in protein engineering tasks [34]. Envision [35] collates several dozen single amino-acid
variation (SAV) datasets, but does not include other types of sequence variation of interest to protein
engineers. DeepSequence [19] collects 42 deep mutational scan (DMS) datasets for evaluation
purposes. These capture single and multiple co-occurring residue substitutions, but do not capture
variation at the proteome scale, or mutational paths from large insertions and deletions. Furthermore,
while DMS landscapes may characterize the effect of co-occurring substitutions, not every sample
with co-occurring residue substitutions may express these at sites relevant for a measured function,
and in turn, evaluations on all possible co-occurring substitutions may not always be expressive
(e.g., if the measured function is binding and a sample has two substitutions, one at a residue at
the interface and one elsewhere, the effect may still be high simply because an interface residue
is involved). Finally, the data from these studies does not come with standard column headers or
train/test splits, hindering use in automated evaluation pipelines.

The limitations of the existing benchmarks have led pretraining methods to be primarily evaluated
by their ability to predict structural information [36, 37]. While the ability to impart structural
knowledge through sequence-only pretraining is impressive, it is not the most important criterion
for protein engineers. Efforts to systematically compare new methods on fitness prediction have
required researchers to both gather their own collection of datasets and compute their own baseline
comparisons [16, 38–40].

3 Landscapes and Splits

We design FLIP to answer two fundamental questions about machine learning model learning protein
sequences:

1. Can a model capture complex fitness landscapes beyond mutations to a parent sequence?

2. Can a model perform well across a range of proteins where fitness is measured for very
different functions?

Existing work such as DeepSequence [19] and Envision [35] succeed at the second criterion but
not the first. TAPE [28], on the other hand, evaluates the first criterion with its fluorescence task
but not the second. We prioritized complex landscapes (with insertions and deletions) rather than
single amino acid variants (e.g. deep mutational scans), to practically cover a larger sequence space,
as well as potentially more functional diversity finalized to ensure model generalization for broad
applicability.

To test the aforementioned questions, we collect three published landscapes and create 15 correspond-
ing dataset splits as desribed in the following and summarized in Table 2. We choose landscapes
and splits that cover a broad range of protein families, sequence variation, and fitness landscapes
with rigorous measurements. Each landscape is transformed into one or more splits to test different
model generalization abilities, as shown in Figure 1; many of the splits were also made to reflect
standard laboratory data-collection practices, thus testing the appropriateness of models to real-world
applications.

Simple random splits are notoriously misleading in classical protein sequence-to-function prediction
as protein sequences are not sampled I.I.D., but with correlations induced by evolutionary history.
This means that random splits reflect a notion of generalization not of interest to most biologists [46].
While there are standard heuristics for approximating the correlation structure due to evolution (such
as sequence-identity deduplication\redundancy reduction), in the protein engineering setting there
are not similarly standardized approaches. As such, we resorted to landscape-specific approaches
informed by the conditions of each experiment, as detailed in Figure 1.

3

Biases model machine learning predictions in protein biology

 101

Christian Dallago

 102

The vast majority of representation learning on protein sequences models entire sequences [27, 37,
15, 34]. As such, we use entire protein sequences as inputs, even for landscapes derived from studies
examining mutations at a small subset of positions. While we include a naïve validation set for
each split for comparison purposes, we encourage users to engineer their own validation splits from
the training data. All tasks and splits are provided in a consistent, easy-to-use CSV format and
are available at https://benchmark.protein.properties. Original datasets were either supplemented to
published research (Wu et al.) under CC BY 4.0, or were obtained with written permission from the
authors (Jarzab et al., Bryant et al.). Data derivatives proposed as tasks are licensed under AFL-3.

3.1 GB1

Motivation. One challenge confronting protein engineering is the ability to predict the effects of
interactions between mutations, termed epistasis. These interactions result in non-additive effects on
protein fitness and have been shown to constrain the paths available to evolution, especially evolution
via a greedy walk. Furthermore, as more mutations are made simultaneously, these interactions
become more complex and more difficult to predict. Therefore, we wish to assess model predictions
on an exhaustive, combinatorial, and highly epistatic mutational landscape, focusing on learning from
variants with fewer mutations to predict the activity of variants with more mutations.

Landscape. We use the GB1 landscape [41], which has become a gold standard for investigating
epistatic interactions [10]. GB1 is the binding domain of protein G, an immunoglobulin binding
protein found in Streptococcal bacteria [47, 48]. In their original study, Wu et al. measured the fitness
of 149, 361 of 160, 000 possible combinations of mutations at 4 positions.

Splits. Over 96% of the amino acid mutations in this set yield non- or poorly-binding sequences
– 143, 539 out of 149, 361 sequences have fitness value below 0.5, where wild-type fitness is 1 and
a fitness of 0 is non-binding. Thus, models trained on the full experimental data can achieve high
performance by predicting low fitness regardless of inputs. To ensure that models learn nontrivial
signal, we downsample non-functional sequences prior to creating the training sets. Specifically,
we include all 5822 sequences with fitness above 0.5 and 2911 randomly-sampled sequences with
fitness less than or equal to 0.5. From this set, we curate five dataset splits to test generalization
from few-mutation sequences to many-mutation sequences, from low fitness to high, and one extra
randomly sampled split for discussion purposes:

• Train on single mutants (1-vs-rest): Wild type and single mutants are assigned to train,
while the rest are assigned to test. This split is one of the most commonly observed in an
applications setting, where a researcher has gathered data for many single mutations of
interest and wishes to predict the best combinations of mutations.

• Train on single and double mutants (2-vs-rest): Wild type, single and double mutants
are assigned to train, while the rest are assigned to test. This is also a commonly observed
split in an applications setting, albeit, at a lesser frequency than 1-vs-rest.

• Train on single, double and triple mutants (3-vs-rest): Wild type, single, double and
triple mutants are assigned to train, while the rest are assigned to test.

• Train on low fitness, test on high (low-vs-high): Sequences with fitness value equal or
below wild type are used to train, while sequences with fitness value above wild type are
used to test.

• Sampled: Sequences are randomly partitioned in 80% train and 20% test. This split serves
mostly for discussion purposes in this manuscript.

3.2 AAV

Motivation. Mutations for engineering are often focused in a specific region of a protein. For
example, this is done if a protein-protein interface is known to be at a subset of positions. Successfully
predicting fitness for a long sequence being mutated at a subset of positions is a task of wide
applicability.

5

Biases model machine learning predictions in protein biology

 103

Landscape. Adeno-associated virus (AAV) capsid proteins are responsible for helping the virus
integrate a DNA payload into a target cell [49], and there is great interest in engineering versions
of these proteins for gene therapy [43, 50, 51]. Bryant et al. prepared a rich mutational screening
landscape of different VP-1 AAV proteins (UniProt [14] Accession: P03135), and this data has been
successfully used as a basis for machine learning-guided design [52, 53]. In their study, Bryant
et al. mutagenize a 28-amino acid window from position 561 to 588 of VP-1 and measure the fitness
of resulting variants with between 1 and 39 mutations, which we refer to as the sampled pool. In
addition they measured the fitness of sequences chosen or designed using various machine-learning
models. We refer to these as the designed pool.

Splits. We derive seven splits from this landscape that probe model generalization:

• Sampled-designed (Mut-Des): All sampled sequences are assigned to train; all designed

sequences are assigned to test.
• Designed-sampled (Des-Mut): All designed sequences are assigned to train; all sampled

sequences are assigned to test.
• Train on single mutants (1-vs-rest): Wild type and single mutants in the sampled pool are

assigned to train, while the rest are assigned to test. As with the GB1 1-vs-rest split, this
reflects a common dataset split observed in protein engineering applications.

• Train on single and double mutants (2-vs-rest): Wild type, single and double mutants in
the sampled pool are assigned to train, while the rest are assigned to test. Again, as with
the GB1 2-vs-rest split, this reflects a common dataset split observed in protein engineering
applications.

• Train on mutants with up to seven changes (7-vs-rest): Mutants with up to and including
seven changes in the sampled pool are assigned to train, while the rest are assigned to test.

• Train on low fitness, test on high (low-vs-high): For sequences in the in the sampled pool,
sequences with fitness value equal or below wild type are used to train, while sequences
with fitness value above wild type are used to test.

• Sampled: Sequences in the sampled pool are randomly partitioned in 80% train and 20%
test. This split serves mostly for discussion purposes in this manuscript.

3.3 Thermostability

Motivation. Thermostability is very often a desirable trait that complements more application-
specific functions. For example, thermostable enzymes not only allow operation at higher reaction
temperatures with faster reaction rates, but are also better starting points for directed evolution
campaigns [54, 55]. This explains why thermostability has been a consistent target for multi-objective
optimization in protein engineering [56–58]. Thermostability can be challenging to predict, because
it is not necessarily a smooth function landscape; in certain protein families, a single amino acid
substitution can confer or destroy thermostability [59].

Landscape. We curate an extensive screening landscape from the Meltome Atlas [45], which used
a mass spectrometry-based assay to measure protein melting curves across 13 species and 48,000
proteins. Unlike the other landscapes, which measure the effects of sequence variation from a single
starting point on a function specific to that protein, this landscape includes both global and local
variation.

Splits. We derive three splits from this landscape, considering biological realities and common
dataset regularizations for cross-spices and sequence-diverse sets:

• Mixed: We cluster all available sequences and select cluster representatives using MM-
seqs2 [12] at a threshold of 20% sequence identity to create one split. In this split, all
sequences in 80% of clusters are assigned to train, while only cluster representatives from
the remaining 20% of clusters are assigned to test.

• Human: We cluster sequences in human and select cluster representatives using MM-
seqs2 [12] at a threshold of 20% sequence identity to create one split. In this split, all

6

Christian Dallago

 104

sequences in 80% of clusters are assigned to train, while only cluster representatives from
the remaining 20% of clusters are assigned to test.

• Human-cell: We cluster sequences of one cell line for human and select cluster representa-
tives using MMseqs2 [12] at a threshold of 20% sequence identity to create one split. In this
split, all sequences in 80% of clusters are assigned to train, while only cluster representatives
from the remaining 20% of clusters are assigned to test.

4 Baseline algorithms

We evaluate three major groups of baselines (Table 3) – parameter-free, supervised, and pretrained.
These three classes correspond to common approaches from different communities. In particular,
we seek to clarify the value of transfer learning for protein engineering by benchmarking pretrained
models against purely supervised methods systematically. We also hope to simplify algorithm
selection for practitioners by providing a single place to compare many commonly used methods.
Note that we do not use Potts models [60], popular in protein structure prediction [61], because of
the need to build high-quality multiple sequence alignments, which would be impractical for the
thermostability dataset. Furthermore, Potts models use artificial constructs when dealing with datasets
with large insertions and deletions (e.g., modeling sequence deletions through special characters), as
is the case for the AAV landscape. However, in the presence of well curated MSAs, these approaches
can be successful in modeling the effect of residue substitutions [62].

Table 3: Baseline methods

Method Description

Levenshtein Levenshtein distance to wild-type.
BLOSUM62 BLOSUM62-score relative to wild-type.
Ridge regression Ridge regression model on one-hot encoding.
Convolutional network Simple convolutional network on one-hot encoding.
ESM-untrained 750M parameter transformer with randomly-initialized weights
ESM-1b [27] 750M parameter transformer pretrained on UniRef50.
ESM-1v [16] 750M parameter transformer pretrained on UniRef90. Only one

element of ensemble used due to compute constraints.

For baselines using protein language models, which compute an embedding for every amino acid, we
pool embeddings in three ways:

• Per amino acid (per AA): A supervised model is tasked to learn how to pool over the
sequence using a 1D attention layer to return a regression prediction.

• Mean: Sequence embeddings are mean pooled per amino acid over the length of the protein
sequence to obtain a fixed-size input for each sequence.

• Mean over subset (mut mean): Sequence embeddings are mean pooled per amino acid
for the residues in the mutated region of interest to obtain a fixed-size, region specific input
from the sequence.

To train the models, 10% of each training set is sampled at random as a validation set. For Ridge, we
use the scikit-learn implementation of ridge regression with default parameters. The CNN consists of
a convolution with kernel width 5 and 1024 channels, a ReLU non-linearity, a linear mapping to 2048
dimensions, max pool over the sequence, and a linear mapping to 1 dimension. CNNs are optimized
using Adam [63] with a batch size of 256 (GB1, AAV) or 32 (thermostability) and a learning rate of
0.001 for the convolution weights, 0.00005 for the first linear mapping, and 0.000005 for the second
linear mapping. Both linear mappings have a weight decay of 0.05. For ESM models, by far the most
computationally expensive baselines, we train with a batch size of 256, a learning rate of 0.001, and
the Adam optimizer. CNNs and the ESM models are trained with early stopping with a patience of
20 epochs. Models are trained on a NVidia Quadro RTXA6000 GPU. Code, data, and instructions
needed to reproduce results can be found at https://benchmark.protein.properties.

7

Biases model machine learning predictions in protein biology

 105

5 Results

Overall, we observe that for landscapes around a wild type (Tables 4 & 5), pretraining offered by
ESM-1b [27] or ESM-1v [16] does not help much when sufficient training data is available (see Table
2 for statistics), at least in the setting explored here: using these protein language models to collect
frozen embeddings as inputs to subsequent prediction models. Conversely, for the split involving
diverse sequences (Table 6), pretraining yields a large boost over pure supervision. The best method
of pooling residue-embeddings for whole sequences varies depending on task (Table 4, 5 & 6). Most
remarkably, training simple models (CNN, ridge regression) is competitive over a wide range of
regimes. We exclude results for per-AA ESM models for the AAV Des-Mut task (Table 5), as we
estimated that it would require a month of compute using for Nvidia A6000 GPUs, which appeared
unjustified for a baseline metric computation. Hyperparameter search results are reported in the
supplement, as are evaluations using different metrics.

Table 4: GB1 baselines (metric: Spearman correlation)

Model 1-vs-rest 2-vs-rest 3-vs-rest low-vs-high

ESM-1b (per AA) 0.28 0.55 0.79 0.59
ESM-1b (mean) 0.32 0.36 0.54 0.13
ESM-1b (mut mean) -0.08 0.19 0.49 0.45
ESM-1v (per AA) 0.28 0.28 0.82 0.51
ESM-1v (mean) 0.32 0.32 0.77 0.10
ESM-1v (mut mean) 0.19 0.19 0.80 0.49

ESM-untrained (per AA) 0.06 0.06 0.48 0.23
ESM-untrained (mean) 0.05 0.05 0.46 0.10
ESM-untrained (mut mean) 0.21 0.21 0.57 0.13
Ridge 0.28 0.59 0.76 0.34
CNN 0.17 0.32 0.83 0.51

Levenshtein 0.17 0.16 -0.04 -0.10
BLOSUM62 0.15 0.14 0.01 -0.13

GB1. Table 4 summarizes baseline results for the biologically motivated GB1 splits. When models
are trained only on single mutants, all variations on ESM-1b [27] and ESM-1v [16] outperform
supervised models. This regime has little training data (29 samples, Table 2), giving the most
opportunity for pretraining to compensate. The difference between pretrained and supervised models
largely disappears once models are trained on both single and double mutants (2-vs-rest, Table 4).
The various pooling choices for embeddings perform inconsistently across datasets and splits; for
example, mut-mean does best on 1-vs-rest but worst on 3-vs-rest. The low-vs-high split suggests.
The sampled split reported separately in Table 7 confirms: random sampling sequences in biology is
bound to overestimate results.

AAV. Table 5 summarizes baseline results for the biologically motivated AAV splits. Across all
splits, purely supervised models are competitive with pretrained models. This suggests that the large
sizes of training sets are past the threshold where pretraining improves performance. The particular
choice of pooling that performs best is inconsistent across splits. The BLOSUM62 baseline could not
be applied as the mutations in this set include insertions and deletions. In this case too, the sampled
split reported separately in Table 7 strongly suggest that random sampling sequences in biology may
lead to overestimated results.

Thermostability. Table 6 summarizes baseline results for thermostability. Pretrained models
consistently outperform supervised models on this task, suggesting that this landscape is not yet past
the threshhold where pretraining improves performance. Interestingly, the supervised baselines based
on untrained ESM embeddings do better than either ridge or CNN. Mean over subset (mut mean) and
BLOSUM62 are not applicable for the Meltome landscape as the sequences are not evolutionarily
related.

8

Christian Dallago

 106

Table 5: AAV baselines (metric: Spearman correlation)

Model Mut-Des Des-Mut 1-vs-rest 2-vs-rest 7-vs-rest low-vs-high

ESM-1b (per AA) 0.76 — 0.03 0.65 0.65 0.39
ESM-1b (mean) 0.63 0.59 0.04 0.26 0.46 0.18
ESM-1b (mut mean) 0.70 0.70 0.31 0.65 0.61 0.33
ESM-1v (per AA) 0.79 — 0.10 0.70 0.70 0.34
ESM-1v (mean) 0.55 0.44 0.18 0.16 0.45 0.20
ESM-1v (mut mean) 0.70 0.71 0.44 0.64 0.64 0.31

ESM-untrained (per AA) 0.56 — 0.18 0.22 0.42 0.08
ESM-untrained (mean) 0.27 0.34 0.01 0.14 0.22 0.22
ESM-untrained (mut mean) 0.62 0.64 0.26 0.16 0.56 0.24
Ridge 0.64 0.53 0.22 0.03 0.65 0.12
CNN 0.71 0.75 0.48 0.74 0.74 0.34

Levenshtein 0.60 -0.07 -0.11 0.57 0.53 0.25
BLOSUM62 NA NA NA NA NA NA

Table 6: Thermostability baselines (metric: Spearman correlation)

Model Mixed Human Human-Cell

ESM-1b (per AA) 0.68 0.71 0.76
ESM-1b (mean) 0.68 0.70 0.75
ESM-1b (mut mean) NA NA NA
ESM-1v (per AA) 0.65 0.77 0.78
ESM-1v (mean) 0.67 0.75 0.74
ESM-1v (mut mean) NA NA NA

ESM-untrained (per AA) 0.44 0.44 0.46
ESM-untrained (mean) 0.36 0.48 0.49
ESM-untrained (mut mean) NA NA NA
Ridge 0.17 0.15 0.24
CNN 0.34 0.50 0.49

Levenshtein NA NA NA
BLOSUM62 NA NA NA

6 Discussion

The prediction tasks in FLIP probe complex fitness landscapes across different protein functions. We
curate three landscapes published in existing literature and formulate 15 corresponding splits of the
data to mimic protein engineering tasks. The main criteria to include a landscape was whether it
could be used to assess interesting types of generalization, and if it was amenable to interpretable
assessment metrics. As no standard approach exists to partition landscapes arising from mutagenesis
of a parent sequence, we propose ideas that may be applied to future landscapes. In particular, we
explore the concept of training on sequences only a few mutations from a parent while predicting on
data many mutations from a parent in a step-by-step fashion.

The need for more challenging splits is illustrated in Table 7, which shows results for the sampled

splits, based on simple random sampling. Almost all models do drastically better for the sampled
splits, and differences between models are exaggerated. This indicates the importance of biologically-
motivated generalization in task design.

In general, results on baselines highlight that while pretraining approaches perform well on tasks with
diverse sequences (Thermostability, Table 6), they do not outperform simpler models on mutational
landscapes (GB1, Table 4 &, AAV, Table 5). In addition, large pretrained models require amounts
of compute (up to 50 days on an NVidia A6000 GPU) to train on some tasks, which is out of
the reach of most academic research groups. It is important to note that while we performed a
modest hyperparameter search, more extensive sweeps combined with training data regularization

9

Biases model machine learning predictions in protein biology

 107

Table 7: Optimistic results for random splits (Sampled) on the AAV and GB1 sets (metric: Spearman
correlation)

Landscape AAV GB1

ESM-1b (per AA) 0.90 0.92
ESM-1v (per AA) 0.92 0.92

ESM-untrained (per AA) 0.78 0.79
Ridge 0.83 0.82
CNN 0.92 0.91

like different validation splits, may yield better absolute and relative performance. The landscapes
and derived prediction splits offered in FLIP highlight directions for future work, such as better
pretraining or embedding methods for protein mutational landscapes.

7 Conclusion

The proliferation of protein sequence data, along with advanced experimental techniques for func-
tional measurement of proteins, presents a ripe environment for machine learning-enabled solutions
in protein engineering. With the introduction of FLIP, we focus on sequence-fitness prediction
and aim to encourage rigorous evaluation of model generalization in multiple tasks and settings
relevant to protein engineering. We hope to seed advances in this emerging interdisciplinary field
with downstream applications for solutions in human health and the environment. FLIP data and
scripts are available under free licenses at https://benchmark.protein.properties.

Acknowledgments and Disclosure of Funding

The authors thank Jeffrey Spencer, Sam Sinai, Sam Bowman, Roshan Rao and Debora Marks for
ideas and discussions that helped us improve our work. The authors would also like to thank Helix
and Murphy for careful attention to the manuscript. C.D. acknowledges support from the Bun-
desministerium für Bildung und Forschung (BMBF) – Project numbers: 01IS17049 and 031L0168.
K.E.J. and B.J.W. acknowledge the NSF Division of Chemical, Bioengineering, Environmental and
Transport Systems (1937902). N.B. was supported in part by NIH grant R35-GM134922 and by the
Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration. S.G. thanks the MIT Machine
Learning for Pharmaceutical Discovery and Synthesis Consortium for supporting this work. K.K.Y.
was previously employed by Generate Biomedicines.

References

[1] Stephan Luetz, Lori Giver, and James Lalonde. Engineered enzymes for chemical production.
Biotechnology and Bioengineering, 101(4):647–653, August 2008. doi: 10.1002/bit.22077.
URL https://doi.org/10.1002/bit.22077. 1

[2] Fei Wen, Nikhil U Nair, and Huimin Zhao. Protein engineering in designing tailored enzymes
and microorganisms for biofuels production. Current Opinion in Biotechnology, 20(4):412–
419, August 2009. doi: 10.1016/j.copbio.2009.07.001. URL https://doi.org/10.1016/j.
copbio.2009.07.001.

[3] Swati Kapoor, Aasima Rafiq, and Savita Sharma. Protein engineering and its applications in
food industry. Critical Reviews in Food Science and Nutrition, 57(11):2321–2329, June 2015.
doi: 10.1080/10408398.2014.1000481. URL https://doi.org/10.1080/10408398.2014.
1000481.

[4] Mark A. Huffman, Anna Fryszkowska, Oscar Alvizo, Margie Borra-Garske, Kevin R. Campos,
Keith A. Canada, Paul N. Devine, Da Duan, Jacob H. Forstater, Shane T. Grosser, Holst M.
Halsey, Gregory J. Hughes, Junyong Jo, Leo A. Joyce, Joshua N. Kolev, Jack Liang, Kevin M.
Maloney, Benjamin F. Mann, Nicholas M. Marshall, Mark McLaughlin, Jeffrey C. Moore,

10

Christian Dallago

 108

Grant S. Murphy, Christopher C. Nawrat, Jovana Nazor, Scott Novick, Niki R. Patel, Agustina
Rodriguez-Granillo, Sandra A. Robaire, Edward C. Sherer, Matthew D. Truppo, Aaron M.
Whittaker, Deeptak Verma, Li Xiao, Yingju Xu, and Hao Yang. Design of an in vitro biocatalytic
cascade for the manufacture of islatravir. Science, 366(6470):1255–1259, 2019. ISSN 0036-
8075. doi: 10.1126/science.aay8484. URL https://science.sciencemag.org/content/
366/6470/1255.

[5] Carlos Eduardo Sequeiros-Borja, Bartłomiej Surpeta, and Jan Brezovsky. Recent advances in
user-friendly computational tools to engineer protein function. Briefings in Bioinformatics, 22
(3), July 2020. doi: 10.1093/bib/bbaa150. URL https://doi.org/10.1093/bib/bbaa150.
1

[6] Predrag Radivojac, Wyatt T Clark, Tal Ronnen Oron, Alexandra M Schnoes, Tobias Wittkop,
Artem Sokolov, Kiley Graim, Christopher Funk, Karin Verspoor, Asa Ben-Hur, Gaurav Pandey,
Jeffrey M Yunes, Ameet S Talwalkar, Susanna Repo, Michael L Souza, Damiano Piovesan, Rita
Casadio, Zheng Wang, Jianlin Cheng, Hai Fang, Julian Gough, Patrik Koskinen, Petri Törönen,
Jussi Nokso-Koivisto, Liisa Holm, Domenico Cozzetto, Daniel W A Buchan, Kevin Bryson,
David T Jones, Bhakti Limaye, Harshal Inamdar, Avik Datta, Sunitha K Manjari, Rajendra
Joshi, Meghana Chitale, Daisuke Kihara, Andreas M Lisewski, Serkan Erdin, Eric Venner,
Olivier Lichtarge, Robert Rentzsch, Haixuan Yang, Alfonso E Romero, Prajwal Bhat, Alberto
Paccanaro, Tobias Hamp, Rebecca Kaßner, Stefan Seemayer, Esmeralda Vicedo, Christian
Schaefer, Dominik Achten, Florian Auer, Ariane Boehm, Tatjana Braun, Maximilian Hecht,
Mark Heron, Peter Hönigschmid, Thomas A Hopf, Stefanie Kaufmann, Michael Kiening, Denis
Krompass, Cedric Landerer, Yannick Mahlich, Manfred Roos, Jari Björne, Tapio Salakoski,
Andrew Wong, Hagit Shatkay, Fanny Gatzmann, Ingolf Sommer, Mark N Wass, Michael J E
Sternberg, Nives Škunca, Fran Supek, Matko Bošnjak, Panče Panov, Sašo Džeroski, Tomislav
Šmuc, Yiannis A I Kourmpetis, Aalt D J van Dijk, Cajo J F ter Braak, Yuanpeng Zhou, Qingtian
Gong, Xinran Dong, Weidong Tian, Marco Falda, Paolo Fontana, Enrico Lavezzo, Barbara Di
Camillo, Stefano Toppo, Liang Lan, Nemanja Djuric, Yuhong Guo, Slobodan Vucetic, Amos
Bairoch, Michal Linial, Patricia C Babbitt, Steven E Brenner, Christine Orengo, Burkhard Rost,
Sean D Mooney, and Iddo Friedberg. A large-scale evaluation of computational protein function
prediction. Nature Methods, 10(3):221–227, January 2013. doi: 10.1038/nmeth.2340. URL
https://doi.org/10.1038/nmeth.2340. 1

[7] Philip A Romero and Frances H Arnold. Exploring protein fitness landscapes by directed
evolution. Nature reviews Molecular cell biology, 10(12):866–876, 2009. 1

[8] R. Fox, A. Roy, S. Govindarajan, J. Minshull, C. Gustafsson, J. T. Jones, and R. Emig. Optimiz-
ing the search algorithm for protein engineering by directed evolution. Protein Engineering

Design and Selection, 16(8):589–597, August 2003. doi: 10.1093/protein/gzg077. URL
https://doi.org/10.1093/protein/gzg077. 1

[9] Kevin K Yang, Zachary Wu, and Frances H Arnold. Machine-learning-guided directed evolution
for protein engineering. Nature methods, 16(8):687–694, 2019. 1

[10] Zachary Wu, SB Jennifer Kan, Russell D Lewis, Bruce J Wittmann, and Frances H Arnold.
Machine learning-assisted directed protein evolution with combinatorial libraries. Proceedings

of the National Academy of Sciences, 116(18):8852–8858, 2019. 3.1

[11] Bruce J. Wittmann, Yisong Yue, and Frances H. Arnold. Machine learning-assisted directed
evolution navigates a combinatorial epistatic fitness landscape with minimal screening bur-
den. bioRxiv, 2020. doi: 10.1101/2020.12.04.408955. URL https://www.biorxiv.org/
content/early/2020/12/04/2020.12.04.408955. 1

[12] Martin Steinegger and Johannes Söding. MMseqs2 enables sensitive protein sequence searching
for the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017. 1, 3.3

[13] Martin Steinegger and Johannes Söding. Clustering huge protein sequence sets in linear time.
Nature communications, 9(1):1–8, 2018. 1

[14] UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1):
D480–D489, 2021. 1, 3.2

11

Biases model machine learning predictions in protein biology

 109

[15] Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Wang Yu, Llion
Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik,
and Burkhard Rost. ProtTrans: Towards cracking the language of lifes code through self-
supervised deep learning and high performance computing. IEEE Transactions on Pattern

Analysis and Machine Intelligence, pages 1–1, 2021. doi: 10.1109/tpami.2021.3095381. URL
https://doi.org/10.1109/tpami.2021.3095381. 1, 3

[16] Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alexander Rives.
Language models enable zero-shot prediction of the effects of mutations on protein function.
bioRxiv, 2021. 1, 2, 3, 5, 5

[17] Surojit Biswas, Grigory Khimulya, Ethan C Alley, Kevin M Esvelt, and George M Church.
Low-N protein engineering with data-efficient deep learning. Nature Methods, 18(4):389–396,
2021. 1

[18] Thomas A Hopf, John B Ingraham, Frank J Poelwijk, Charlotta PI Schärfe, Michael Springer,
Chris Sander, and Debora S Marks. Mutation effects predicted from sequence co-variation.
Nature biotechnology, 35(2):128–135, 2017. 1

[19] Adam J Riesselman, John B Ingraham, and Debora S Marks. Deep generative models of genetic
variation capture the effects of mutations. Nature methods, 15(10):816–822, 2018. 2, 3

[20] Jonathan Frazer, Pascal Notin, Mafalda Dias, Aidan Gomez, Kelly Brock, Yarin Gal, and
Debora Marks. Large-scale clinical interpretation of genetic variants using evolutionary data
and deep learning. bioRxiv, 2020.

[21] Jung-Eun Shin, Adam J Riesselman, Aaron W Kollasch, Conor McMahon, Elana Simon, Chris
Sander, Aashish Manglik, Andrew C Kruse, and Debora S Marks. Protein design and variant
prediction using autoregressive generative models. Nature communications, 12(1):1–11, 2021.
1

[22] Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult.
Critical assessment of methods of protein structure prediction (CASP)–Round XIII. Proteins:

Structure, Function, and Bioinformatics, 87(12):1011–1020, 2019. 2

[23] Mohammed AlQuraishi. ProteinNet: a standardized data set for machine learning of protein
structure. BMC bioinformatics, 20(1):1–10, 2019. 2

[24] Masthead. Proteins: Structure, Function, and Bioinformatics, 23(3):fmi–fmi, 1995. doi:
https://doi.org/10.1002/prot.340230301. URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/prot.340230301. 2

[25] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with AlphaFold. Nature, pages 1–11, 2021. 2

[26] Amir Shanehsazzadeh, David Belanger, and David Dohan. Is transfer learning necessary for
protein landscape prediction? arXiv preprint arXiv:2011.03443, 2020. 1, 2

[27] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National

Academy of Sciences, 118(15), 2021. 1, 3, 3, 5, 5

[28] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter
Abbeel, and Yun S Song. Evaluating protein transfer learning with TAPE. Advances in neural

information processing systems, 32:9689, 2019. 1, 2, 3

[29] Tristan Bepler and Bonnie Berger. Learning protein sequence embeddings using information
from structure. In International Conference on Learning Representations, 2018. 1

[30] Amy X Lu, Haoran Zhang, Marzyeh Ghassemi, and Alan M Moses. Self-supervised contrastive
learning of protein representations by mutual information maximization. BioRxiv, 2020. 1

12

Christian Dallago

 110

[31] Chloe Hsu, Hunter Nisonoff, Clara Fannjiang, and Jennifer Listgarten. Combining evolutionary
and assay-labelled data for protein fitness prediction. bioRxiv, 2021. 1

[32] Naihui Zhou, Yuxiang Jiang, Timothy R Bergquist, Alexandra J Lee, Balint Z Kacsoh, Alex W
Crocker, Kimberley A Lewis, George Georghiou, Huy N Nguyen, Md Nafiz Hamid, et al. The
CAFA challenge reports improved protein function prediction and new functional annotations
for hundreds of genes through experimental screens. Genome biology, 20(1):1–23, 2019. 2

[33] Christophe Dessimoz, Nives Škunca, and Paul D Thomas. CAFA and the open world of protein
function predictions. Trends in Genetics, 29(11):609–610, 2013. 2

[34] Tristan Bepler and Bonnie Berger. Learning the protein language: Evolution, structure, and
function. Cell Systems, 12(6):654–669.e3, June 2021. doi: 10.1016/j.cels.2021.05.017. URL
https://doi.org/10.1016/j.cels.2021.05.017. 2, 3

[35] Vanessa E Gray, Ronald J Hause, Jens Luebeck, Jay Shendure, and Douglas M Fowler. Quanti-
tative missense variant effect prediction using large-scale mutagenesis data. Cell systems, 6(1):
116–124, 2018. 2, 3

[36] Roshan Rao, Joshua Meier, Tom Sercu, Sergey Ovchinnikov, and Alexander Rives. Transformer
protein language models are unsupervised structure learners. In International Conference on

Learning Representations, 2020. 2

[37] Michael Heinzinger, Ahmed Elnaggar, Yu Wang, Christian Dallago, Dmitrii Nechaev, Florian
Matthes, and Burkhard Rost. Modeling aspects of the language of life through transfer-
learning protein sequences. BMC Bioinformatics, 20(1), December 2019. doi: 10.1186/
s12859-019-3220-8. URL https://doi.org/10.1186/s12859-019-3220-8. 2, 3

[38] Céline Marquet, Michael Heinzinger, Tobias Olenyi, Christian Dallago, Michael Bernhofer,
Kyra Erckert, and Burkhard Rost. Embeddings from protein language models predict conserva-
tion and variant effects. 2021. 2

[39] Maria Littmann, Michael Heinzinger, Christian Dallago, Tobias Olenyi, and Burkhard Rost.
Embeddings from deep learning transfer GO annotations beyond homology. Scientific reports,
11(1):1–14, 2021.

[40] Hannes Stärk, Christian Dallago, Michael Heinzinger, and Burkhard Rost. Light attention
predicts protein location from the language of life. bioRxiv, 2021. 2

[41] Nicholas C Wu, Lei Dai, C Anders Olson, James O Lloyd-Smith, and Ren Sun. Adaptation in
protein fitness landscapes is facilitated by indirect paths. Elife, 5:e16965, 2016. 1, 3, 3.1

[42] W. Trent Franks, Benjamin J. Wylie, Sara A. Stellfox, and Chad M. Rienstra. Backbone
conformational constraints in a microcrystalline u-15n-labeled protein by 3d dipolar-shift solid-
state nmr spectroscopy. Journal of the American Chemical Society, 128(10):3154–3155, 2006.
doi: 10.1021/ja058292x. URL https://doi.org/10.1021/ja058292x. PMID: 16522090.
1

[43] Drew H Bryant, Ali Bashir, Sam Sinai, Nina K Jain, Pierce J Ogden, Patrick F Riley, George M
Church, Lucy J Colwell, and Eric D Kelsic. Deep diversification of an AAV capsid protein by
machine learning. Nature Biotechnology, 39(6):691–696, 2021. 1, 3, 3.2

[44] Ran Zhang, Lin Cao, Mengtian Cui, Zixian Sun, Mingxu Hu, Rouxuan Zhang, William Stuart,
Xiaochu Zhao, Zirui Yang, Xueming Li, Yuna Sun, Shentao Li, Wei Ding, Zhiyong Lou, and
Zihe Rao. Adeno-associated virus 2 bound to its cellular receptor AAVR. Nature Microbiology,
4(4):675–682, February 2019. doi: 10.1038/s41564-018-0356-7. URL https://doi.org/
10.1038/s41564-018-0356-7. 1

[45] Anna Jarzab, Nils Kurzawa, Thomas Hopf, Matthias Moerch, Jana Zecha, Niels Leijten,
Yangyang Bian, Eva Musiol, Melanie Maschberger, Gabriele Stoehr, et al. Meltome atlas–
thermal proteome stability across the tree of life. Nature methods, 17(5):495–503, 2020. 1, 3,
3.3

13

Biases model machine learning predictions in protein biology

 111

[46] Peer Bork and Eugene V Koonin. Predicting functions from protein sequences—where are the
bottlenecks? Nature genetics, 18(4):313–318, 1998. 3

[47] A Elisabeth Sauer-Eriksson, Gerard J Kleywegt, Mathias Uhlén, and T Alwyn Jones. Crystal
structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human
IgG. Structure, 3(3):265–278, 1995. 3.1

[48] U Sjöbring, L Björck, and W Kastern. Streptococcal protein G. Gene structure and protein
binding properties. Journal of Biological Chemistry, 266(1):399–405, 1991. 3.1

[49] LH Vandenberghe, JM Wilson, and G Gao. Tailoring the AAV vector capsid for gene therapy.
Gene therapy, 16(3):311–319, 2009. 3.2

[50] Hildegard Büning, Anke Huber, Liang Zhang, Nadja Meumann, and Ulrich Hacker. Engineering
the AAV capsid to optimize vector–host-interactions. Current opinion in pharmacology, 24:
94–104, 2015. 3.2

[51] Christopher Barnes, Olivia Scheideler, and David Schaffer. Engineering the AAV capsid to
evade immune responses. Current opinion in biotechnology, 60:99–103, 2019. 3.2

[52] Georgios Mikos, Weitong Chen, and Junghae Suh. Machine learning identification of capsid
mutations to improve AAV production fitness. bioRxiv, 2021. 3.2

[53] Sam Sinai, Nina Jain, George M Church, and Eric D Kelsic. Generative AAV capsid diversifica-
tion by latent interpolation. bioRxiv, 2021. 3.2

[54] Ryan Lauchli, Kersten S Rabe, Karolina Z Kalbarczyk, Amulya Tata, Thomas Heel, Rebekah Z
Kitto, and Frances H Arnold. High-throughput screening for terpene-synthase-cyclization
activity and directed evolution of a terpene synthase. Angewandte Chemie International Edition,
52(21):5571–5574, 2013. 3.3

[55] J. D. Bloom, S. T. Labthavikul, C. R. Otey, and F. H. Arnold. Protein stability promotes evolv-
ability. Proceedings of the National Academy of Sciences, 103(15):5869–5874, March 2006.
doi: 10.1073/pnas.0510098103. URL https://doi.org/10.1073/pnas.0510098103. 3.3

[56] Yoshiaki Nosoh and Takeshi Sekiguchi. Protein engineering for thermostability. Trends in

biotechnology, 8(1):16–20, 1990. 3.3

[57] Yougen Li, D Allan Drummond, Andrew M Sawayama, Christopher D Snow, Jesse D Bloom,
and Frances H Arnold. A diverse family of thermostable cytochrome P450s created by recombi-
nation of stabilizing fragments. Nature biotechnology, 25(9):1051–1056, 2007.

[58] Pete Heinzelman, Christopher D Snow, Indira Wu, Catherine Nguyen, Alan Villalobos, Sridhar
Govindarajan, Jeremy Minshull, and Frances H Arnold. A family of thermostable fungal
cellulases created by structure-guided recombination. Proceedings of the National Academy of

Sciences, 106(14):5610–5615, 2009. 3.3

[59] Margaux M Pinney, Daniel A Mokhtari, Eyal Akiva, Filip Yabukarski, David M Sanchez, Ruibin
Liang, Tzanko Doukov, Todd J Martinez, Patricia C Babbitt, and Daniel Herschlag. Parallel
molecular mechanisms for enzyme temperature adaptation. Science, 371(6533), 2021. 3.3

[60] F. Y. Wu. The potts model. Rev. Mod. Phys., 54:235–268, Jan 1982. doi: 10.1103/RevModPhys.
54.235. URL https://link.aps.org/doi/10.1103/RevModPhys.54.235. 4

[61] Faruck Morcos, Andrea Pagnani, Bryan Lunt, Arianna Bertolino, Debora S. Marks, Chris Sander,
Riccardo Zecchina, José N. Onuchic, Terence Hwa, and Martin Weigt. Direct-coupling analysis
of residue coevolution captures native contacts across many protein families. Proceedings

of the National Academy of Sciences, 108(49):E1293–E1301, 2011. ISSN 0027-8424. doi:
10.1073/pnas.1111471108. URL https://www.pnas.org/content/108/49/E1293. 4

[62] William P Russ, Matteo Figliuzzi, Christian Stocker, Pierre Barrat-Charlaix, Michael Socolich,
Peter Kast, Donald Hilvert, Remi Monasson, Simona Cocco, Martin Weigt, et al. An evolution-
based model for designing chorismate mutase enzymes. Science, 369(6502):440–445, 2020.
4

[63] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014. 4

14

Christian Dallago

 112

23.05.22, 12:09Papers

Page 1 of 1https://neurips.cc/FAQ/Copyright

`

Who holds the Copyright on a NeurIPS paper
According to U.S. Copyright Office's page What is a Copyright. When you create an original work you are the author and the owner
and hold the copyright, unless you have an agreement to transfered the copyright to a third party such as the company or school you
work for.

Authors do not tranfer the copyright of their paper to NeurIPS, instead they grant NeurIPS a non-exclusive, perpetual, royalty-free, fully-
paid, fully-assignable license to copy, distribute and publicly display all or part of the paper

