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PREAMBLE 
Probably one of the most common observations I read and wrote over the years of my doctoral 

studies was that “protein structure/function are experimentally known for much fewer proteins for 

which sequence is known”. Before dwelling into what protein structure, function, or sequence are 

in the following chapters, I want to highlight here that this observation encodes one more crucial 

piece of information than may immediately be apparent. While we do know some experimentally 

validated aspects of proteins (structure, function and even sequence through mass spectrometry), 

and we can putatively produce more data for the protein language (sequences) based on 

translation rules (from DNA to protein sequences), what we observe overall in protein sequence 

databases, whether annotated or putative, is but a fraction of proteins that constitute the diversity 

of life. Here the potential diversity of protein sequences is to be seen not only as the biodiversity 

present at the current evolutionary timestamp, but throughout evolution, from millions of years 

ago to today. For instance, we don’t have nearly as much sequencing data on viruses (making up 

2% of protein sequence databases) as we do on bacteria (68%), and conversely, we often collect 

representative sequences (of a spices), rather than individual ones (from individuals). On top, much 

of what existed in the protein space will be lost in history, as time run its course and sequencing 

is a modern invention. Yet, historic data is desirable to build an understanding of how we came to 

be, or in biology terms, of evolutionary turns and twists, which are often needles (weak signals) in 

the most proverbial of haystacks (big data). Nevertheless, as a practical result, we are subject to 

biased data in biology, for instance by what protein sequences we store in databases, necessarily 

constrained by when they appear in evolution (mostly now, except some ancestral sequences 

found in fossils, permafrost, and soil). This becomes more tangible as we get into the annotated 

protein space, a tiny fraction of the recent snapshot of proteins recorded, where biases 

accumulate due to a mix of experimental limitations and feedback loops, ultimately imposing 

limits on our ability to experimentally model what proteins do (their function) and how they look 

in three dimensions (their structure). 

In all of this, researchers operating at the interface of computers, statistics and biological data 

are tasked with producing first fundamental and then better ways of analyzing and interpreting 

available biological data to fill the knowledge gaps and smoothen selection biases from 

experimental approaches, somewhat like inventing and repairing a compass while navigating on 

the surface of the ocean with the goal of mapping the marine life below. Machine learning and 

software come in handy, providing a vast array of techniques to learn from available data to infer 

general patterns that could be leveraged minimally for coarse analyses, and often for predictive 

purposes. As such, biases do model machine learning predictions in protein biology, as we build tools 

on assumptions inferred by data available today, producing computational representations (e.g., 

the weights of machine learning models) of biology we can use to infer future aspects of proteins. 
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As towards the end of my doctoral studies I found the idea of biases in protein bioinformatics 

to be exciting, the following discourse focused on contextualizing some of my scientific 

contributions around how biases play a role in machine learning proteins, especially sequences, 

and how to push the boundaries through the curation of new datasets, new machine learning 

tools and software. A secondary personal goal was to perform a reflection on where we stand and 

what we must look out for to create fair and valid machine learning tools in protein biology, 

especially in the context of my own contributions. As a result, I found that contributions on 

representation learning for protein sequence offer, amongst other things, an attempt to 

smoothen selection biases of sequence databases by learning general sequence representations 

from large protein databases. Unsupervised approaches for protein function predictions, 

particularly the instances where function is not categorical (e.g., via ontologies) but rather left on 

a continuous, could be viewed as smoothening annotation biases by focusing on similar protein 

pockets (clusters) in a high dimensional space. Software solutions for the visualization, annotation 

and prediction of protein attributes can be viewed as attempts to push scientific explorers out of 

uninformative feedback loops, as well as to make science more accessible to all. Ultimately, while 

biases play a role in machine learning biology and may sometimes sidetrack our understanding of 

the biological world, the models of biology we can produce have many advantages. For instance, 

we can use machine learning in biology to drive development of cancer therapeutics, but we 

should remain vigilant that most of our sequencing data, including from cancer patients, comes 

from specific pockets of the global population, which could limit the applicability of our discoveries 

to certain individuals. However, it’s worth considering that in the absence of any solution, 

especially when dealing with disease, every solution is a step forward.  

In closing, let me highlight that in writing this dissertation my primary goal was to make it 

engaging (fun is not quite scientific), based on science dad’s (see Acknowledgments) “science is 

communication” mantra. (Self-perceived effective) communication in this instance proved a 

monumental task requiring a year of nurturing and two weeks of labor to bundle the essence of 

about 20 manuscripts (on sometimes entirely different topics) into a single, cohesive body of text. 

Little did it help that this piece needed to fulfill all the (often quite tedious) constraints imposed by 

regulatory bodies. As a result, unsurprisingly to those who know me from the trenches of early 

drafts, I chose to a) politely rebel against the system, and b) fall short on nitty-gritty insider details 

to give way to big picture ideas, which should hopefully facilitate even the least seasoned 

bioinformatics research reader in engaging with the topics discussed, while also hopefully not 

drawing on the ire of regulators to fault the attempt. If you come across terminology you don’t 

know, my suggestion is to just move on – it’s not about the detail! While for those that fancy 

numbers, graphs, and hardcore terminology, I highly suggest you skim over the manuscripts 

mentioned in the “Scientific contributions”, all of which are open access and linked. 
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1 SUMMARY 
Annotations of protein function and structure are available for far fewer protein sequences than 

those reported in protein sequence databases, which in turn are far fewer than all proteins that 

have existed in nature thought history. Bioinformatics is tasked with leveraging the limited 

information encoded in protein function, structure, and sequence annotations to find and extract 

general knowledge about biology which practitioners can leverage to develop solutions improving 

the state of living things. Evidently, using little data to extrapolate blanket interpretations of 

biology is a delicate practice that could be tipped towards unfavorable outcomes by selecting 

information, either consciously or unconsciously. This thesis is an attempt to review the state and 

origin of biases in protein bioinformatics, as well as a perspective on how applications of machine 

learning and software could be used to address them. In practice, I will frame several efforts I 

contributed to in- and around machine learning to convey computational meaning to human 

collected protein data, and to translate machine predictions to meaningful human features 

through software. The outcome of this deep dive will highlight that representation learning 

approaches on large protein sequence sets could smoothen biases induced by curated sequence 

datasets and limited supervised function/structure sets. Furthermore, the continuous and space-

sharing nature of these representations allows them to be correlated to protein function on a 

continuum, potentially overcoming limitation of sharp protein function categorizations. Finally, 

software democratizing protein predictions, for instance through visualizations, provides means 

to dissect machine models of biology potentially enabling new discoveries. 
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2 INTRODUCTION 
In the following sections, I will introduce some aspects of protein bioinformatics and how biases 

may determine experimental annotations. These are fundamental concepts such as what proteins 

are, how they function, how machine learning comes into play to learn their properties, and how 

humans and machines exchange models of biology. 

2.1 PROTEINS: FUNCTION, STRUCTURE, AND SEQUENCE 

Proteins are the building blocks of life. They carry out functions within and outside cells, tissues, 

organs, organisms, and spices, as messengers and messages (Ramilowski et al., 2015). The 

common process of protein generation is started when genetic information encoded in genes 

(DNA) of an organism’s cells get transcribed into messenger RNA (mRNA), which is then translated 

by cellular machinery into proteins. The three macromolecules involved in this process (DNA, RNA 

& proteins) all deserve credit for the diversity and complexity of life, they each occupy physical 

space in unique three-dimensional shapes, are composed by smaller parts (from bases or amino 

acids down to atoms) and carry out a multitude of functions sensitive to their operating contexts. 

Building a discourse around these biological entities requires picking a point of view and accepting 

some assumptions, ultimately conveying a mental model to you (the reader), which conversely will 

be the model used to interpret biology in most of the applications discussed in the following pages. 

One possibility to model biomolecules is to look at them through high-resolution microscopy 

pictures of cells in tissues (Schermelleh et al., 2019), which in the ideal case can be used to frame 

DNA, RNA, and proteins as they appear in cells. The prerequisite here would be that we can get 

high-resolution pictures of these macromolecules from tissues, and the following assumption is 

that these pictures suffice for all kinds of predictions we are interested in. However, we 

unfortunately are still away from pictures at the required resolution to operate on biomolecules 

purely through imaging (Schermelleh et al., 2019). Thus, the preferred representation in 

bioinformatics, and relevant for the discourse here, are proteins (and RNA, and DNA) as ordered 

strings (like written sentences) of amino acids. Here the prerequisite is that each of these 

biomolecules can be further divided into sub-parts (bases and residues), a condition we are able 

to satisfy, and the assumption is that these strings, in a particular order, represent the entirety of 

the meaning of that macromolecule. This assumption is also largely satisfied, although the reality 

of biology is complex, and rarely is it the case, as we will see shortly, that a protein functions 

without acting on some other entity. As such, while sequence does carry much of a protein’s 

meaning, and as we’ll see, we can reconstruct a lot of information from it, quite some meaning is 



Biases model machine learning predictions in protein biology 5 

also dependent on contextual factors, such as by the cellular environment (in which tissue and at 

what time of the cellular cycle is the protein expressed) (Dobson, 2003). 

 

Fig. 1 – Models of protein sequences. Protein sequences contain multidimensional information that can be 
encoded in an abstract form (e.g., computational protein models), which can be leveraged to reconstruct protein 
properties (e.g., structure). Effectively, these protein representations are modelled by protein data available to 
machine learning methods. 

The three fundamental biological macromolecules DNA, RNA and proteins interpreted as text 

could be put in an analogy to Old English, English, and Mandarin, respectively. DNA and RNA are 

to some extent similar, both can be represented in written form, and each sentence or document 

written in the DNA/RNA language carries some meaning. Proteins, on the other hand, while still 

forming sentences and documents with structure and meaning, differ in some fundamental 

respects from DNA/RNA, for instance by encoding more compact representations of meaning (in 

the analogy, what ideograms are to Arabic characters). While the analogy to variations of English 

and Mandarin is an oversimplification (for instance some of the DNA/RNA language can simply not 

be translated to proteins), fascinatingly, all these biological languages share a communality to 

natural language in that they can represent physical objects, like a chair, simply through the 

chaining of characters in an orderly fashion. In fact, natural language and evolution gives you the 

ability to picture a chair just from reading five tokens on some digital or physical medium (provided 

you know the language and you can read, neither of which are trivial prerequisites). Thus, from an 

information perspective, what we will operate on is the language of biomolecules with the intent 

of constructing meaning from it, the same way we construct meaning from natural language. From 

a practical perspective, this dissertation will focus on proteins, rather than DNA or RNA. The 
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following subchapter will expand on complex attributes of proteins (function), moving to more 

tangible ones (structure), to finally end up with the most basic protein property, protein sequence. 

2.1.1 PROTEIN FUNCTION 

Protein function is probably the most elusive protein property to define. A protein can perform 

function(s) self-sufficiently (see catalytic enzymes), or in combination with other molecules (see 

protein complexes) (Ashburner et al., 2000). Proteins may perform different functions at different 

timepoints of their existence in the cell (Henzler-Wildman and Kern, 2007), they may lose or gain 

functions through evolution as could be seen today by sequence/structure similar proteins in 

different organisms doing different things (Barua et al., 2021). Functions may be trivially 

measurable (protein X functions in cytoplasm), they may be relative to a protein’s role in a biological 

pathway (protein X activates transcription of Y) or be characterized through far-reaching complex 

phenotypes like disease (mutations of protein X causes disease Z). On top, many aspects of protein 

function are most likely on a continuum, rather than ON/OFF toggles, meaning that their activity 

can be modulated to higher or lower output. This could be achieved through contextual means, 

for instance, by having more or less of a protein in a cell (thus regulating protein expression) 

(Woods and Vousden, 2001), or by intrinsic properties of proteins, such as changes in sequence 

(Fowler and Fields, 2014; Yang et al., 2021). 

To standardize discourse around what proteins do / how they do it, researchers introduced 

categorization schemes and ontologies. At the fundamental biological level, i.e. describing the 

protein rather than its role in complex phenotypes (disease) or high order interactions (pathways), 

one of the better known and maintained bio ontologies is the Gene Ontology (GO) 

(The Gene Ontology Consortium, 2019). GO comes with an associated database that maps 

annotations to proteins in the protein sequence database UniProt (The UniProt Consortium, 2021), 

namely the Genene Ontology Annotation (GOA) database. Through GO, proteins can be 

categorized on three major axes: the molecular function (MFO) a protein is involved in (e.g., 

signaling), the bigger biological processes (BPO) it is involved in (e.g., DNA repair), and the cellular 

compartments (CCO) it functions in (e.g., nucleus). Next to GOA stand resources that look at one 

or the other aspect of function in greater detail, or under a different light. Case and point: Enzyme 

Commission (EC) numbers and the ENZYME database (Bairoch, 2000). Enzymes are proteins 

involved in catalyzing chemical reactions, which in turn regulate processes in- and outside cells. 

Enzymes also play a fundamental role in signaling (Mildvan, 1997). While potentially serving similar 

purposes (considering the MFO and BPO ontologies in GO), GOA (The Gene Ontology Consortium, 

2019) and ENZYME (Bairoch, 2000) differ widely in the numbers of annotations, from the 

944’228’169 reported by the former, to the 6’553 reported by the latter as of February 2021. This 

disparity can be attributed to several reasons, the main one probably being that the GOA number 

reported accounts for “annotations via sequence similarity” and even computational predictions, 
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implying that instead of having some physical experiment in a lab on dishes or animals resulting 

in an annotation with a degree of certainty and “reality”, we use expertise and machines to infer 

annotations. This may be alright if the prediction error is within the experimental error, 

unfortunately this is rarely ever the case in biology, especially when operating on coarse 

annotations such as protein function, and the experimental error may not be fully captured in the 

models machines compute on. 

A further example of function annotated by many is protein subcellular location (i.e., where a 

protein locates in the cell). Other than GOA’s CCO annotations (The Gene Ontology Consortium, 

2019) there are SwissProt (The UniProt Consortium, 2021), the Human Cell Atlas (HCA) (Thul et al., 

2017), and PROLOCATE (Jadot et al., 2017), just to name a few. These resources, although 

conceptually recording the same data (protein subcellular location), differ by many aspects. First, 

they may use different ontologies if any ontology at all (case: PROLOCATE). This, in turn, can have 

an impact on what they record and what they decide not to record, e.g., in PROLOCATE, only eight 

subcellular localizations are considered, while we know many more exist in nature. Compare this 

to the 2’702’774 possible GO terms in the CCO ontology (fair: some may be related as GO has a 

“tree” structure), for which there exist 222’477 entries in GOA having both CCO annotations and 

being at least experimentally validated. Secondly, different datasets may be selection biased by 

the experimental assays used (case: immunofluorescence in HCA vs. isobaric labeling in 

PROLOCATE), which come with tradeoffs and favor some conditions/cells/locations over others. 

Third, these datasets may be further selection biased by recording “interesting” organisms (case: 

human in HCA and mouse in PROLOCATE) limiting the space of “annotated” to only a few, 

potentially similar organisms. On top, annotations in these sets may contradict each other (Marot-

Lassauzaie et al., 2019). Ultimately, all this uncertainty begs the question: if a researcher in 

bioinformatics is interested in predicting subcellular location for proteins from sequence, what 

will, at this point, the best dataset be? What will the true label be? Or, in fact: the biologically correct 

label (if in set A protein X is in cytoplasm and in set B protein X is in nucleus: which one is it?) My 

conclusion: it depends. If the researcher is interested in predicting where human proteins locate, 

then HCA’s dataset may be the best for validation and testing. Yet, given scarcity of data, 

PROLOCATE data may be used for training, as many proteins in human and mouse share a certain 

level of sequence similarity (implying they will most likely do the same thing, more later). If the 

researcher’s goal is absolute generalization, sequence similarity and “in-distribution” predictions 

are in fact hurting, so the best way to go about this is to cluster protein sequences and train on a 

certain cut out of the sequence space, and validate and test against other, non-overlapping cuts 

of the sequence space. For this particular use case (but so many others) the complexity that arises 

is what to do with sequences falling in a cluster having different, maybe even contradicting 

annotations. 

Deep mutational scanning (DMS) assays (Fowler and Fields, 2014) are an attempt to describe 

function on a continuum. In these experiments, a particular function (e.g., binding to another 

molecule) is quantitatively measured under sequence changes (most often by substituting 
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iteratively every residue in a known protein sequence to every other possible alternative). The 

usual DMS set will minimally contain 19*sequence length samples each one Manhattan distance 

away from the starting sequence. While giving a detailed picture of the functional impact for the 

immediate sequence neighborhood to some reference protein sequence, these sets are still very 

few and noisy (Wittmann et al., 2021; Reeb et al., 2020). For instance, they are biased to the 

activity/function measured, and may thus not fully capture the protein’s ability to perform some 

different activity it is involved in during its lifetime. 

 

Fig. 2 – Proteins can have multiple functions. If functions are on a continuum, then wildtype (as found in nature) 
proteins may be intersections of functional states at an optimum (e.g., f1 is binding to protein X, f2 is thermal 
stability and f3 is ability to migrate to the nucleus). Tweaking the protein sequence could enable moving along one 
function or multiple functional hyperplanes. 

Another contributing factor to ambiguity, complexity and error in protein function annotation is 

driven by cumbersome processes to move high-resolution/high-accuracy annotations between 

humans and machines. On the one hand, from humans to machines, much of the data collected 

by scientists through experiments is summarized in text in scientific manuscripts that are difficult 

to use for computations. For example, in the case of pathway data, which represents how complex 

biological processes happen, human curators extrapolate data from manuscripts and translate 

them to computable artifacts (e.g., the BioPAX (Demir et al., 2010) format) in efforts like Reactome 

(Jassal et al., 2020) and KEGG (Kanehisa et al., 2021). On the other hand, from machines to humans, 

predictions are seldom accompanied by useful software to navigate machine learned models. This 

becomes especially challenging when dealing with multimodal annotations of protein functions, 

which may be better contextualized by complex visualizations layering different biological 

dimensions. 
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Computational tools offer, on the one side, solutions to model protein function (chiefly, here, 

machine learning) by smoothing potential biases and contradictions from labeled sets, and on the 

other side, software to communicate findings from and to machines (Littmann, Heinzinger, 

Dallago, Olenyi, et al., 2021). Trivially, a biologist could predict subcellular localization given a 

machine learning device with weights adjusted on a particular dataset using a particular machine 

learning architecture. More fundamentally however, that same machine learning device with 

those weights is a model of what subcellular localization is, it captures a meaning, conditioned by 

several assumptions, and may account and adjust for inconsistencies and biases in annotations 

(be that: sources of annotation, labels used, or experimental error). Software tools to explore 

predictions beyond outputting text, but by providing engaging displays of information to users 

may facilitate scientific discoveries and break feedback loops of predictions feeding experimental 

annotations, in turn generating more diverse datasets for new predictive applications. 

2.1.2 PROTEIN STRUCTURE 

As opposed to function, protein structure can be derived by first principles, and thus describing 

what structure is (at different levels) is simpler. However, also for protein structure, complexity of 

measurements and limitations of experimental approaches curb the space of possibilities, 

resulting in some degrees of experimentally induced selection biases. 

The highest-fidelity representation of protein structure is through 3D coordinates of atoms 

making up said protein. A relatively big collection of these is available at the Protein Data Bank 

(PDB) (Berman et al., 2000). 3D protein structures get recorded mainly through one of three types 

of experiments, whose setups determine what kind of proteins can be measured and at what 

resolution. These are important factors: high-resolution structures are necessary to understand 

dynamics of how proteins interact with other molecules (e.g., other proteins, DNA, RNA, or small 

molecules), but so is being able to measure proteins in their native environment (e.g., the protein’s 

“fold” in the cell membrane). However, as is unfortunately often the case in biology, “needs” often 

clash with reality of our tools and techniques. X-ray crystallography offers high-resolution protein 

structures (making up ~88% of PDB as of March 2021), but experimental preparation disrupts the 

native environment of proteins, and per effect, may introduce unwanted artifacts and, even worse, 

limit the types of proteins that can be measured. For instance, in this modality, membrane 

proteins, which play fundamental roles in disease, cannot be characterized in their native 

environment. A lower resolution technique, NMR (~8% of PDB), offers instead to capture proteins 

closer to their natural context, at the cost of often prohibitively low resolution for most 

applications (e.g., to study protein-small molecule interactions). Hybrid approaches merging these 

techniques may lead to the best of both worlds for some proteins (Ottmann et al., 2007), but are 

not widely adopted. Similarily, a promising in-between (high-resolution and native context) 

technique exists (cryoEM), yet due to its relative novelty, and only recent limited breakthrough in 
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resolution (Yip et al., 2020), not many proteins have been characterized using cryoEM (~4% of PDB), 

let alone: at high enough resolution. 

To add insult to injury, while it may be tempting to believe that although there are 

experimental limitations, we may just measure any protein that we are interested in, most 

experimental techniques rely on template structures to seed reconstruction of measurements, 

i.e.: one can measure things that bare some similarity to known structures or on structures we 

can predict. This may constitute at best another selection bias, and at worse a confirmation bias. 

Furthermore, all traditional, non-predictive experimental techniques are resource intensive (in 

equipment and time), and their cost increases with higher starting uncertainty (and repeat 

measurements). Naïvely picking a protein of interest and starting a campaign to determine its 

structure from scratch is thus doomed to make life much harder, a reality that many PhD students 

and doctoral advisors avoid for a variety of reasons, many times rightfully beyond the boundaries 

of scientific interest or relevance. However, these limitations translate to sets containing many 

redundant structures, often from similar protein families/folds. Going back to why, thus, the PDB 

is relatively big: while many structure are deposited, usable are those with high resolution (or 

minimally ≤3Å) which as of October 2020 are 225’161; however, many of these are redundant 

(meaning: similar structures / similar proteins), and if we were to reduce to proteins with sequence 

overlap below 20 percent sequence identity (PIDE), then we end up with 8’988 structures. While 

this is a good number, an even better Å cutoff, especially when looking at contacts, is 1.2Å, which 

will result in a usable set of 678 structures – a very low number in deep learning terms. 

Depending on the goal of the analysis redundancy is not always unwanted. If the redundancy 

is at the level of protein sequence (several structures exist for similar protein sequences in 

different contexts), and the goal is to model structure dependent on e.g., binding to other 

molecules, then two folds (structures) for the same protein sequence may come in handy. For 

instance, the now infamous spike glycoprotein (S) of SARS-CoV-2 has two main conformations: one 

when resting on the surface of the virus, and one when the virus is binding through the Spike 

protein to the ACE2 receptor on the surface of, amongst others, human cells (O’Donoghue et al., 

2021; Song et al., 2018; McCallum et al., 2020; Henderson et al., 2020). Having various models of 

proteins sharing sequence similarity to the Spike protein will help model the different 

conformations it may assume. Other than “rigid” conformational changes (analogy: an open or 

closed door), there are conformational changes of energy unstable parts of the protein (also, 

disordered regions) that often have a functional meaning (analogy: shoelaces that when tightened 

and knotted hold the shoe in place, and when left to their own devices just wobble around 

seemingly without purpose). For disordered regions in proteins, as in the previous case, having 

redundant structures might give a hint as to how those regions behave under different conditions 

(e.g., in a complex), and more challenging attributes, such as how the protein functions. Overall, 

conformational changes suggest a link between the mechanics of structure and the purposes of 

proteins encoded by their function, and thus, at least to some extent, structure has an influence 

on (and a predictive ability for) protein function. 
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A lower resolution representation of structure is via residue-level annotations of secondary 

structure. Best known through the Description of Secondary Structure of Proteins (DSSP) method 

(Kabsch and Sander, 1983), protein sequences can be annotated at the residue level by observing 

in what conformation each residue participates in the folded 3D structure of the protein. The three 

most prominent secondary structure classes are alpha-helices, beta-bridges (that can form sheets 

and strands), and whatever is neither alpha nor beta (commonly other, not to be confused with 

irregular, which more closely resembles disorder). This different protein structure representation, 

and its ability to more closely couple with protein sequence, provided a useful proxy in lowering 

the complexity of structure reconstruction for predictive purposes, although lowering resolution 

tremendously. 

Machine learning approaches on protein structures have a lot of potential. Differently than 

protein function predictions, the protein structure task allows to define some objectives with 

undeniably clear solutions, based on geometry and physics. For instance, one could consider only 

the “native” state of proteins (e.g., after assembly, not involved in any activity), and ask the 

question: what is the secondary structure of native proteins? Complexity can be dialed up, and 

one could attempt to predict the whole 3D protein structure. In fact, a solution touted as the 

solution to this task exists, on paper since December 2020, and available to all since early summer 

2021. AlphaFold2 (Jumper et al., 2021) made headlines by offering to predict protein 3D structure 

at astonishing accuracy (sometimes better than experimental assays), validated by a competition 

that was started to prepare test sets with a degree of “uniqueness” of the structures, to promote 

generalization and tackle bias. The full range of tasks that can benefit from AlphaFold2’s 

predictions remain to be fully uncovered, but recent preprints suggest beneficial use for disorder 

prediction (Jumper et al., 2021), mutation effect prediction (Pak et al., 2021), and more (Akdel et al., 

2021; Modi and Dunbrack, Roland L, 2021). 

2.1.3 PROTEIN SEQUENCE 

The most straightforward representation, and conversely property, of a protein is its sequence. 

Proteins can be broken down to ordered chains of residues, each representing one of 20 amino 

acids. This ordered sequence of residues can be written in text form, and is the starting point of 

most bioinformatics approaches, especially those trying to “de novo” predict aspects of proteins. 

A protein sequence uniquely identifies a protein, and the same protein sequence will uniquely 

fold into the same native 3D shape, i.e. protein structure. As protein sequence is thus uniquely 

linked to protein structure, and protein structure is linked to protein function, there is a link 

between protein sequence and function (Rost, 1999; Nair and Rost, 2002). Cutting a few corners, 

we may assume that protein sequence encodes all the information necessary to characterize a 

protein (structure and/or function) up to contextual factors (such as: which cell does the protein 

express in? = different subcellular locations? Is it secreted? = subject to varying ph levels? Is it 
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binding? = conformational changes?). In fact: from a physical perspective, considering all the forces 

atoms forming a protein/its residues are subject to, it is possible to accurately reconstruct protein 

3D structure through simulation. However, while this is true in theory, in practice the complexity 

of considering all the physical constraints of protein sequences growing in length quickly outpaces 

the amount of compute available, rendering exact simulations of proteins infeasible (similarly as 

our inability to precisely model the weather), even in the polypeptide (up to 30 residues) space. 

Nevertheless, we can try to approximate/predict structure/function by using probabilistic 

(Ingraham et al., 2019) or frequentist (Hecht et al., 2015) approaches, and even simple pattern 

matching (Lange et al., 2007) just from an input sequence enhanced by evolutionary information 

leveraged through clever lookups (how did the protein evolve in time/throughout species?) or 

machine learned sequence representations. 

 

Fig. 3 – Sequence neighborhoods contain similar functioning sequences. In a sequence-sequence plane, those 
sequences within a circle of small radius share sequence identity and are thus more likely to fall into similar 3D 
shapes and perform similar functions, while those in larger circles are likelier to be more dissimilar in structure 
and function. 

Starting point for these approaches are thus protein sequences. Quantitatively, proteins can be 

assayed experimentally via proteomics (Samaras et al., 2019), answering the question “How much 

of a known protein sequence is present in a sample?”. But for the question of “what’s the sequence 

of a/any protein in a sample?”, limited options are available (Howorka and Siwy, 2020). One assay 

recently showing promising results for the protein space is nanopore protein sequencing 

(Howorka and Siwy, 2020), but as of today: it is limited to small exploratory studies. In the absence 

of high-throughput solutions operating directly on proteins, the accepted solution is to exploit the 

central dogma of molecular biology (Cobb, 2017): DNA (a blueprint of the machinery) transcribes 

RNA (an interpreter) which translates proteins (the machinery). This dogma can be leveraged by 

sequencing DNA/genes to translate them into protein sequences. As mentioned in an earlier 

section: from an information content / text perspective, DNA and RNA are interchangeable, both 

composed of a vocabulary of four characters (nDNA = {C, G, A, T}; nRNA = {C, G, A, U}; n meaning 

“nucleotide”), of which three are identical and overlapping (C, G, A) and the fourth can be directly 
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mapped between representations (T = U). Protein sequences have a richer vocabulary (resprotein = 

{A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V}; res meaning residue). For many triplets of DNA, 

which encode RNA nucleotides there are translation to protein representations (e.g., DNA({UGU, 

UGC}) = protein(‘C’)), as well as nucleotide triplets that signal start (DNA(AUG)) and end (DNA({UAA, 

UGA, UAG})) of a potential protein. At this point it’s worth noting that, as much as these translation 

rules may be convenient, they introduce several levels of ambiguity (e.g., DNA(AUGUA) = protein?). 

Furthermore, biological mechanisms may determine only parts of a protein to code, or genomic 

segments to encode different proteins using the same genetic material (spicing). Truly here, the 

hacks that biology uses to decode genomic material into several variations of proteins appear to 

be endless (or, at least, not entirely characterized). For instance, viruses such as SARS-CoV-2 can 

leverage several mechanisms to code one or the other protein at a given point in time, as well as 

variations of proteins by mixing the same genetic material in different ways (O’Donoghue et al., 

2021). On top of this, while exact, expensive DNA sequencing techniques exist, the high 

throughput “next generation” (NGS) techniques that allowed to go from $100mio to sequence a 

human’s genome in the early 2000’s to merely $1k today come with some perplexity regarding the 

correct reconstruction of the genome (DNA) sequence, and, per effect, translation to protein 

sequences. TrEMBL is a part of the UniProt database (The UniProt Consortium, 2021) that contains 

putative sequences (as of April 2021: 214’406’399 sequences), obtained by applying the translation 

rules from nucleotides to proteins on reference genomes of organisms. “Reference genomes” 

themselves are single artificial genome assemblies of an organism obtained from processing and 

“averaging” individual genomes to minimize sequencing error and maximize reconstruction 

accuracy, artificially disregarding some level of natural variation found in life, more cleverly 

captured with pan-genomes (Tettelin et al., 2005). While useful, reference genomes may introduce 

the same issue found when describing a group of people by their average height, i.e., there may 

exist no individual of average height. Conversely, by smoothing the perceived “measurement” 

error, we may instead smoothen natural variation. 

Once experimental evidence for some aspect of a putative protein becomes available, e.g., by 

running a proteomics scan on a cell line for that organism, these no-longer entirely putative 

sequences become part of SwissProt (as of April 2021: 564’638 sequences), another section of 

UniProt (The UniProt Consortium, 2021). In proportion, for every protein sequence with some level 

of experimental annotation in SwissProt, there are 380 sequences for which we know only 

putatively (maybe!) that that sequence exists in that organism as deposited in TrEMBL, a striking 

1:380 ratio, or 380 times sequences with unknown function, structure, and sequence for every 

one sequence with some level of either sequence, function, or structure certainty. These putative 

sequences highlight that beyond a hypothesis, the amount of “unknown” vastly overshadows the 

universe of “known”. To complicate things, while apparently many sequences are deposited in 

UniProt (the primary protein sequence resource), whether they be putative or labelled through 

some experiment, they still come from a limited set of organisms for which we started to build 

reference genomes, few of which are completed. Most of these genomes are those of human-



Christian Dallago 14 

relevant species, like human-comparable organisms (in terms of genome and proteins, e.g., 

mouse, pig, etc.), or of human-harming organisms, such as bacteria, viruses, or of organisms with 

potential industrial applications for human health, such as some plants. Efforts addressing the 

human-centric bias in sequencing exist, e.g., by metagenomic sampling (Steinegger and Söding, 

2018), but without further labelling and interpretation of their outputs, these approaches will only 

scratching the surface, given the limit imposed by requiring reference genomes to reconstruct 

fragmented genomic reads, as well as by missing detail on the hacks used by underrepresented 

organisms (e.g., viruses) to code for proteins. 

 

2.2 MACHINE LEARNING PROTEINS 

Fundamentally, a desideratum in protein bioinformatics is to go from protein sequence (cheap to 

obtain and wildly available) to properties of proteins, such as atomic coordinates of the folded 

protein. This case may sound like a trivial problem to solve, considering that we know the physics 

behind amino acids and could model their interactions in space through simulations. However, 

this process is exponentially computationally expensive as proteins increase in sequence length 

and is not a viable option for the average protein of 350 residues (=amino acids). Frequentist based 

machine learning approaches, such as Deep Learning, offers an alternative to resource 

demanding simulations by approximating results to an optimum solution learned by observing 

known samples. Particularly interesting in this space are those methods that can model proteins 

from their sequence “de-novo”, i.e., without any other knowledge but sequence. Predictions of 

protein structure have driven translational innovation in machine learning, software engineering, 

data science and biology for decades (Rost and Sander, 1992, 1993a, 1993b, 1994). Today, 

AlphaFold2 (Jumper et al., 2021) promises to bridge the annotation gap from sequence to structure 

for a significant space of otherwise experimentally uncharacterized proteins. While tempting to 

believe that solutions like AlphaFold2 are an eureka moment, it’s useful to consider that these 

tools were the culmination of decades of interdisciplinary research which drove four major 

advances: 

1. Impressive engineering, from hardware (GPUs and networking) to software, connecting 

and speeding up every aspect of an end-to-end tool (so much so that it can be run from 

the web through cloud solutions (Milot Mirdita et al., 2021)) 

2. Identification of structure-relevant input features, in particular “direct evolutionary 

information”, first as background information (BLOSUM) (Henikoff and Henikoff, 1992), 

then through alignment of similar protein sequences in multiple sequence alignments 

(MSAs), to direct coupling analysis (DCA) (Morcos et al., 2011), and finally to self-supervised 

learning through machine learning (Jumper et al., 2021) 

3. Advancements in machine learning, in particular convolutional networks and deep 

learning (AlQuraishi, 2021; Wu et al., 2021; Ching et al., 2018) 
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4. Growth of sequence and structure databases, enabling more depth (deeper alignments) 

and width (effect of sequence variation on structure) (The UniProt Consortium, 2021) 

 

One cannot really disentangle the interleaving of machine learning research and biological 

discoveries which led to the incredible number of solutions available today for an array of 

applications. It’s also apparent that whenever one field unlocks a new advance, the others have a 

unique chance to fill the void of opportunity. For instance, when DCA made its way in 2011 (Morcos 

et al., 2011) revolutionizing the way we predicted protein structure from sequence (Hopf et al., 

2012), it took until 2017 for its application to be translated to mutation prediction (an aspect of 

protein function), as more complete mutational landscapes were needed (Hopf et al., 2017) (a case 

of biology catching up with machine learning). It took some more years for machine learning, 

hardware and software design to catch up, in order to render this solution scalable (Frazer et al., 

2021) (an example of software engineering and hardware catching up with machine learning), and 

until curated datasets for assessment would become available (Dallago, Mou, et al., 2021) (an 

example in dataset engineering catching up with biology and machine learning). 

Machine learning protein structure can have an influence on predicting protein function 

as well, as may transpire from reading in-between the lines of previous paragraphs (Sander and 

Schneider, 1991; Nair and Rost, 2002; Rost, 2002). In fact, if we accept that proteins fold into 

definite 3D structures constrained by their sequence (and their cellular context), and if we accept 

that proteins share function when they fold in similar shapes, then we can assume that the 

structure of a protein largely influences its function. Predicting protein structure is thus a great 

proxy to some aspects of function as showcased by techniques that work for structure prediction 

(e.g., direct coupling analysis (Thomas A Hopf et al., 2019) predicting effect of mutations on protein 

fitness (Hopf et al., 2017)). Conversely, basing function prediction purely on approaches that work 

for protein structure may bias or constrain our approaches, and we could instead devise solutions 

to directly predict protein function from sequence using machine learning (Littmann, Bordin, et 

al., 2021; Littmann, Heinzinger, Dallago, Olenyi, et al., 2021), allowing these tools to highlight 

different realities than those biased by structure might (Meier et al., 2021; Marquet et al., 2021). 

2.2.1 GENERATING COMPUTABLE REPRESENTATIONS OF PROTEIN SEQUENCES 

Machine learning protein sequences falls under the general category of “representation learning” 

(Bengio et al., 2013), in particular answering the question “how to teach machines models of 

protein sequences”, often irrespective of the downstream task these models might be used for 

(Bepler and Berger, 2019; Heinzinger et al., 2019; Alley et al., 2019; Meier et al., 2021; Elnaggar et 

al., 2021). Representation learned systematically (i.e., on all proteins, irrespective of organism or 

tissue) were initially motivated by the observation that successful machine learning tools in 

protein predictions where subject to two major limitations driven by the most import input feature 
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(evolutionary information). First, evolutionary information in the quality required by machine 

learning applications is unavailable for most proteins. For instance, MSAs are informative when 

they are deep (containing many sequences), as well as diverse (highlighting what shuffles of 

residues still render viable proteins within the overall context of a protein sequence) yet meeting 

both requirements is frequently not possible, especially for dark proteins, making up large chunks 

of the recorded sequence space (Perdigão et al., 2015), let alone the not-recorded sequence space. 

Second, searching for evolutionary information explicitly (or, as I dubbed it earlier “direct 

evolutionary information”) is increasingly computationally expensive, as the growth of sequence 

databases outpaces the increase of transistors in microchips (in other words: we can’t rely on 

faster chips to search larger sequence databases). As such, models learning purely from sequence 

without relying on transformations on top (e.g., MSAs) are a desideratum since several years in 

bioinformatics. Thankfully, groundbreaking advancements in natural language processing (NLP) 

(Devlin et al., 2019; Raffel et al., 2020) set the stage, allowing machines to learn semantics of 

proteins just from observing the grammar encoded in protein sequences into protein language 

models (pLMs). Without going into the details of the models (which are explained in detail in the 

open access manuscript referenced in the “Scientific contributions” chapter), the common 

approaches used to learn meaning from sequence can roughly be partitioned into two sets: 

 

1. Models that learn to predict the next residue in a protein sequence given the information 

from previous residues with some decay in length (i.e., the further in the past some residue, 

the less influential for the next prediction). These approaches relied on recurrent networks 

using Long-Short Term Memory (LSTM) modules (Heinzinger et al., 2019; Alley et al., 2019; 

Bepler and Berger, 2019). For instance, a model like this would learn what follows an 

ordered sequence of tokens such as “I have to run to catch the ____”, by placing more 

attention (for the machine learning specialist: not in the machine learning “attention” 

sense) to the last word before the gap. It learns representations iteratively, meaning it first 

predicts the first word based on the fact that it’s the first; then the second based on that 

the previous one was an “I”; then the third based on that the previous was “have” and some 

residual information about “I”, and so on. 
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Fig. 4 – Recurrent Neural Network learning task. In the bottom is the input sequence, on the top is the predicted 
sequence. A gray arrow upwards represents the prediction from the model based on the input below. ⚈ represents 
the beginning of a sequence, while ▲ represents the end. At each step (left to right) the machine learning device 
is tasked with predicting the next character. Once a prediction is completed, the residual information from that step 
is carried over to the prediction of the next character (horizontal gray lines). 

2. Models that learn to reconstruct corrupted sequences based on the non-corrupted input 

(based on transformers (Devlin et al., 2019; Raffel et al., 2020)). For instance, these models 

would take a sentence and mask some words at random positions, such as “Today it’s 

really _____ at the beach.”. Naturally, you would prioritize a few words (sunny, windy, warm, 

etc.) over the many possible options in your head. The model is tasked with doing the 

same, in particular it is tasked with predicting the single correct word for the sentence 

from its uncorrupted form. In this case, there’s no iterative learning, as tokens are masked 

at random, and the model is simply tasked with reconstructing them, sometimes several 

times for the same sentence masked at different positions. 

 

Fig. 5 – Masked Language Modelling learning task. A transformer model learning through Masked Language 
Modelling (MLM) will learn how to reconstruct an input sequence (top in the black box) corrupted at random sites 
(yellow highlights). During training, the sequence will be corrupted at different locations increasing the ability of the 
model to learn the relationships between different tokens of the uncorrupted sequence. At each training step, the 
model is tasked with producing the most likely token at the masked positions. 
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While initially pLM representations didn’t quite live up to more traditional feature retrieval 

strategies (Alley et al., 2019; Heinzinger et al., 2019; Bepler and Berger, 2019), ultimately, the 

second variety of models both gained in speed and accuracy, topping some charts (Rives et al., 

2019; Elnaggar et al., 2021). Nevertheless, the true advancement these models brought isn’t 

necessarily in “beating SOTA”, but in providing a different encoding of protein sequences than 

what either traditional methods or sequence alone could. 

About two years into the development of the first pLMs (Bepler and Berger, 2019; Rao et al., 

2019; Alley et al., 2019; Heinzinger et al., 2019), two more factors influenced the scientific 

community towards continuing to dissect these models. First, the realization that the learned 

protein representations showed good performance on function tasks, and not quite on the same 

proteins that MSAs would (Littmann, Heinzinger, Dallago, Olenyi, et al., 2021). This was a great 

indication that a different representation than what was available through direct evolutionary 

information was needed to answer some questions in bioinformatics, and maybe pLMs could 

enable that. Additionally, by providing continuous representations of proteins, functional 

predictions weren’t constrained by categories, but could be assigned on a continuum (more on 

this in “Conclusion”). Second, once abstract computational representations of proteins from their 

sequences were obtained, the machine could be poked to go the other way around and suggest 

sequences to answer questions on function or structure (Madani et al., 2021). Clearly, this was not 

a novel idea, with many applications of machine learning in protein design (Yang et al., 2019; Ogden 

et al., 2019; Bryant et al., 2021; Frazer et al., 2021). The striking difference for pLMs over other 

approaches is that these systematic approaches like SeqVec (Heinzinger et al., 2019) or ProtTrans 

(Elnaggar et al., 2021), which learned on all protein sequences available in some database, may 

contain a more fundamental signals, and thus encode a more overarching representation of 

proteins. In other words, while EVE (Frazer et al., 2021) may cover well the depth of one protein, 

ProtTrans models may cover the width of all proteins. 

2.2.2 ACCESSIBLE AND EXPLORATIVE PROTEIN MACHINE LEARNING 

Accessible machine learning is a multifaceted topic, spanning from how models are made 

available to the community, to how predictions are consumed and interpreted by biologists. In the 

case of protein predictions, tools like PredictProtein (Bernhofer et al., 2021), CellMap (Dallago et 

al., 2018, 2020) or EVcouplings (Thomas A Hopf et al., 2019) primarily aim at making advances in 

machine learning accessible and interpretable to the community by wrapping advanced research 

outputs into easily usable UIs with digestible visualizations. These software solutions could be built 

around live predictions models (e.g., PredictProtein (Bernhofer et al., 2021) and EVcouplings 

(Thomas A. Hopf et al., 2019)), or repackage predictions from an array of models into custom 

visualizations (e.g., CellMap (Dallago et al., 2018, 2020)). 
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One of the major challenges in developing these solutions is to balance the ease of use and 

interpretability with computational overhead stemming from computing predictions or 

visualizations (Bernhofer et al., 2021). For instance, predictions from pLMs wrapped in a webserver 

through bio-embeddings (Dallago, Schütze, et al., 2021) required a complex, distributed setup, 

with pLMs running on GPU equipped machines, and feature models (like subcellular localization 

prediction (Stärk et al., 2021)) running on CPU equipped machines. Through this setup, predictions 

for single sequences could be computed almost instantaneously, allowing downstream analysis 

on the fly. However, this setup cannot instantly predict at proteome scale, and thus different 

approaches, such as pre-computing predictions for an organism, may be more sensible for 

system-wide analyses. 

Furthermore, developing sensible visualizations is another challenging task. On the one hand, 

visualizations help consumers grasp a view of complex topics, but conversely, they could constrain 

the space of exploration, or even unintentionally mislead (Kelleher and Wagener, 2011). In the 

case of subcellular location prediction, instantaneous predictions using pLMs coupled with cell 

maps (Dallago et al., 2018) can highlight where a single protein may be located in a cell, but 

arguably it may be more beneficial to visualize this in the context of all proteins of that organism 

to hypothesize which proteins may interact based on their spatial proximity. Further enhancing 

this visualization by contextualizing proteins with their experimentally known interaction partners 

(i.e., overlaying protein-protein interaction information) could render more powerful hypothesis 

generation tools. However, as protein subcellular location prediction tools don’t have tissue-

specific resolution (e.g., a protein might locate in the cytoplasm in liver tissue, but in the nucleus 

in brain tissue), a visualization suggesting that two proteins are in different cellular compartment 

and interact based on experimental data might suggest a more complex mechanism than occurs. 

Ultimately, how experimental and predicted biological data is presented has a direct impact 

on the biological interpretations that can be extracted from said data, and potentially influence 

discoveries (Chari et al., 2021). Nevertheless, making prediction tools available for the community 

to use is essential to enable further discoveries, yet designing them to be effective is a big 

challenge (Gardner et al., 2022). 
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3 SCIENTIFIC CONTRIBUTIONS 
The following sections list four publications accompanied by a short summary and relevance to 

this dissertation. A longer discussion about how these publications fit into the discourse outlined 

in the introduction will follow in the Conclusion. First authors are highlighted by underline. Due to 

regulatory constraints, many potentially interesting scientific contributions are added here in spirt 

only, for instance in the last section of this chapter. 

 

 

3.1 CELLMAP VISUALIZES PROTEIN-PROTEIN INTERACTIONS AND SUBCELLULAR 

LOCALIZATION 

Original publication. This chapter was originally published as a peer-reviewed journal article: 

 

Dallago C, Goldberg T, Andrade-Navarro MA et al. CellMap visualizes protein-protein interactions 

and subcellular localization [version 2; peer review: 2 approved]. F1000Research 2018, 6:1824 

(https://doi.org/10.12688/f1000research.12707.2) 

 

Summary. Several alternatives to visualizing protein-protein interactions (PPIs) exist. Most focus 

on visualizing PPIs in arbitrary spaces (e.g., two or more nodes in a network). Similarly, several 

tools visualizing where proteins locate in the cell exist, but these often focus on visualizing 

individual proteins by highlighting the areas on some predefined cell image of where proteins may 

appear. The novelty introduced by CellMap was to combine the two biological dimensions of 

protein location and interaction into a single visualization. Through the tool, an instance of which 

is available at cellmap.protein.properties, users can search for proteins using their UniProt (The 

UniProt Consortium, 2021) identifier. Once a protein of interest is identified, a protein-centric page 

displays information about interaction partners and localizations. From the protein-centric page a 

“map” view displaying the protein and its interaction partners can be opened. In this view, the cell 

is like a city map on google maps, while proteins are dots on the map localizing the protein in one 

of its possible subcellular locations. In this view, interactions between all proteins on display can 

be overlayed, as well as interactions of selected proteins with their partners. The tool was designed 

with flexibility in mind, allowing users to upload their own datasets and their own cell images, 

which could then be annotated with areas corresponding to localizations found in the data. By 

default, the tool shipped with a cartoon of a cell annotated with 13 subcellular locations, as well 
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as annotated data for human proteins both for their localization in multiple classes (either from 

experimentally annotated or predicted sources), as well as protein-protein interactions from an 

openly available dataset (which annotates both physical transient PPIs, as well as protein 

interactions by association, e.g., when two proteins are part of the same complex, although they 

may not physically interact).  

 

Relevance. The seed that lead to this project was the desire to make predictions of protein 

properties more accessible to non-experts in an exploratory way. By jointly visualizing two protein 

attributes, qualitative analyses of protein interaction and hypothesis generation could be 

performed visually. While potentially constraining users by encoding for several biological 

dimensions at the same time, the biased visualization also encodes for richer context. However, 

users are allowed to freely modify every aspect of the visualization. For instance, while the default 

hosted site features location and interaction data from human, whose cells are organized into 

different organelles than plants, users interested in plant data and cells could upload their own 

data and images to be visualized. 

 

Contribution. I am first and corresponding author of this paper. I was responsible for writing, 

implementation, and experimental setup. 

 

Copyright notice. The original publication is available in open access at the DOI 

10.12688/f1000research.12707.2 and as appendix to this manuscript. 

 

 

3.2 LEARNED EMBEDDINGS FROM DEEP LEARNING TO VISUALIZE AND PREDICT 

PROTEIN SETS 

Original publication. This chapter was originally published as a peer-reviewed journal article: 

 

Dallago, C., Schütze, K., Heinzinger, M., Olenyi, T., Littmann, M., Lu, A. X., Yang, K. K., Min, S., Yoon, 

S., Morton, J. T., & Rost, B. (2021). Learned embeddings from deep learning to visualize and predict 

protein sets. Current Protocols, 1, e113. doi: 10.1002/cpz1.113 

 

Summary. The ability of protein-based machine learning models to encode descriptive 

computational representations of proteins is increasingly leveraged to guide experimental 

decision making. Fast models that allow to classify custom sequence datasets are desired, for 

instance to focus experiments on more promising biotherapeutic candidates. Recently, Language 

Models (LMs) have been adapted from use in natural language processing (NLP) to work with 
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protein sequences instead. Protein LMs show enormous potential in generating descriptive 

representations for proteins from just their sequences at a fraction of the time compared to 

previous approaches. pLMs convert amino acid sequences into embeddings (vector 

representations) that can be used for analytical purposes, and in unsupervised and supervised 

pipelines for prediction of function and structure. Access to protein LMs is scattered throughout 

the web, a limiting factor to their use. Differently from previous approaches, any one pLM may 

uniquely shine light on a subset of the sequence space depending on its training objective and 

datasets. The bio-embeddings suite offers a unified interface to pLMs to embed large protein sets 

simply and quickly, to project the embeddings in lower dimensional spaces, to visualize proteins 

on interactive scatter plots, and to extract annotations using either supervised models, or 

unsupervised techniques. The array of tools offered through bio-embeddings enables quick 

hypothesis generation and testing and refined model optimizations on promising prediction 

candidates. Bio-embeddings features a pipeline which is accompanied by a web server that offers 

to embed, project, visualize, and extract annotations for small protein datasets directly online, 

without the need to install software. 

 

Relevance. This software suite was developed as a segue to the training of protein language 

models (pLMs), which could compute embeddings (representations) for residues in protein 

sequences, which can later be used for predictions. pLM embeddings offer to shine light on 

proteins using representations unbiased by supervised properties, as the losses are often self-

supervised (i.e.: reconstructing the syntax of proteins), although sometimes tuned on secondary 

losses, like encoding explicitly for structure. A solid software solution around these tools enabled 

quicker use of complex machine learning models for non-experts and introduced standardization. 

In fact, the solution presented here (bio-embeddings) could be run freely on cloud infrastructure 

(e.g., Google Colab), enabling researchers without cluster access of significant compute resources 

to use pLMs for their research, democratizing the use of cutting-edge research. Additionally, some 

of the pLMs and prediction methods were included in a modular web service, allowing to compute 

embeddings and predictions programmatically or through web UIs (e.g., 

embed.protein.properties or predictprotein.org) instantaneously, without local compute 

overhead. On top, bio-embeddings provided a one stop to find and discuss relevant research on 

pLMs from an array of research groups. pLM embeddings 

 

Contribution. I am one of three principal authors. I am also corresponding author. I contributed 

at all stages as lead scientist. 

 

Copyright notice. The original publication is available in open access at the DOI 10.1002/cpz1.113 

and as appendix to this manuscript. 
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3.3 PREDICTPROTEIN – PREDICTING PROTEIN STRUCTURE AND FUNCTION FOR 29 

YEARS 

Original publication. This chapter was originally published as a peer-reviewed journal article: 

 

Michael Bernhofer, Christian Dallago, Tim Karl, Venkata Satagopam, Michael Heinzinger, Maria 

Littmann, Tobias Olenyi, Jiajun Qiu, Konstantin Schütze, Guy Yachdav, Haim Ashkenazy, Nir Ben-

Tal, Yana Bromberg, Tatyana Goldberg, Laszlo Kajan, Sean O’Donoghue, Chris Sander, Andrea 

Schafferhans, Avner Schlessinger, Gerrit Vriend, Milot Mirdita, Piotr Gawron, Wei Gu, Yohan Jarosz, 

Christophe Trefois, Martin Steinegger, Reinhard Schneider, Burkhard Rost, PredictProtein - 

Predicting Protein Structure and Function for 29 Years, Nucleic Acids Research, 2021;, 

gkab354, https://doi.org/10.1093/nar/gkab354 

 

Summary. Since its 1992 launch, PredictProtein (https://predictprotein.org/) has been a one-stop 

online resource for protein analysis. In 2020, for an average of 3000 monthly users, PredictProtein 

combined over 13 tools into a single resource. From just an input protein sequence, the server 

provides online visualizations of multiple sequence alignments (MSAs), predictions of protein 

structure (secondary structure, solvent accessibility, transmembrane segments, disordered 

regions, protein flexibility, and disulfide bridges) and function (variant effect, GO terms, subcellular 

localization, and protein-, RNA-, and DNA binding sites). By additionally providing computable 

artifacts (via programmatic access), the server caters the needs of computational and 

experimental biologists alike. Offline use of PredictProtein tools is enabled via an omni-docker 

container: quickly installed on single machines and clusters. Since the previous major update in 

2014, PredictProtein’s infrastructure was enhanced to offer more reliable execution, more storage 

space and decreased runtime for predictions. Runtime was also cut four-fold by sourcing 

alignment generation to MMseqs2 (M Mirdita et al., 2021). Usability was improved via new UI 

elements (Watkins et al., 2017). Prediction methods for DNA-, RNA- and protein binding and GO 

annotations have been replaced with revised methods (Qiu et al., 2020; Littmann, Heinzinger, 

Dallago, Olenyi, et al., 2021). ProtT5-sec, an alternative secondary structure prediction method 

based on cutting-edge Deep Learning techniques (Elnaggar et al., 2021), was integrated side-by-

side to evolution-based RePROF. The PredictProtein server offers access to a vast range of 

accurate predictors, many topping the leaderboards even after a decade, with new recently 

integrated methods to boost the breadth of available sequence features and improve accuracy on 

dated methods. 

 

Relevance. PredictProtein has served users with predictions of protein properties for almost 30 

years. Its relevance to the field and to this thesis are manyfold: from providing landmark solutions 

to characterize proteins, pushing the boundaries of “known” sequence space, to integrating 
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intuitive visualizations to simplify interpretation of complex machine learning predictions for non-

experts. The most significant scientific update in the 2021 edition of PredictProtein was the 

integration of cutting edge pLM models, on the one hand cementing the foundation to their use 

for the broader community, on the other hand, signaling a shift in how computational predictions 

of proteins are used. While previous models focused mainly on predicting attributes of proteins, 

e.g., subcellular localization, through embeddings computational biologists can access the 

underlying representation of proteins, enabling custom analyses of proteins from a high 

dimensional embedding without categorization into narrow, supervised ontologies. 

 

Contribution. I am one of four principal authors of this paper. I am also the corresponding author. 

I contributed conceptualization and writing. 

 

Copyright notice. The original publication is available in open access at the DOI 

10.1093/nar/gkab354 and as appendix to this manuscript. 

 

 

3.4 FLIP: BENCHMARK TASKS IN FITNESS LANDSCAPE INFERENCE FOR PROTEINS 

Original publication. This chapter was originally published as a peer-reviewed conference article: 

 

Christian Dallago, Jody Mou, Kadina E. Johnston, Bruce Wittmann, Nick Bhattacharya, Ali Madani, 

Kevin K. Yang, FLIP: Benchmark tasks in fitness landscape inference for proteins, Thirty-fifth 

Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 

2021; https://openreview.net/forum?id=p2dMLEwL8tF 

 

Summary. While representation learning approaches like pLMs could unlock protein design 

applications, no benchmark assessing their native ability to do so existed. Developing sets probing 

the ability of machine learning to design proteins is challenging, as some proteins are multi-

purpose molecules, and current biological experiments often focus on single aspects of selected 

proteins. While systematic approaches like CASP and CAFA, assessing structure and function 

systematically respectively exist, they do not target metrics relevant for protein engineering. 

Fitness Landscape Inference for Proteins (FLIP) is a curated set of several biological experiments 

aimed at probing the ability of machine representations of proteins to support protein design 

campaigns. To achieve this, several splits from three experimental datasets were devised, testing 

the ability of protein representations to emulate typical experimental protein design settings, e.g., 

extrapolative (predicting the effect of multiple changes along the protein sequence by knowing 

the effect of few changes) and low-resource (predicting landscapes from only a few labelled 
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samples). The landscape splits come with data standardization, enabling quick adoption in 

computational pipelines, and enabling easy probing for new representation models. 

 

Relevance. While probing pLMs’ ability to characterize protein sequences by predicting on 

traditionally accepted tasks such as structure and well-defined aspect of function (e.g., subcellular 

localization (Stärk et al., 2021)) may support their validity, these annotations are sharp cutouts of 

the “continuous” nature of protein function that may need to be captured to design proteins. 

Embeddings from pLMs encode continuous representations that could potentially correlate with 

the continuous nature of function. One attempt to correlate these realities is to predict mutational 

landscapes using embeddings (Marquet et al., 2021). However, probing purely on deep mutational 

scanning (DMS) sets limited to mutational effects of single residue substitutions one at the time 

may not entirely characterize more complex mutational neighborhoods from a wildtype sequence. 

Experiments introducing a random number of residue substitutions offer a complementary 

approach to DMS sets. FLIP contributes by introducing four datasets for the assessment of protein 

representations to stack up to the continuous nature of protein function. Two of the three datasets 

focused on mutational landscapes from a wildtype sequence to mutated versions of it with up to 

32 changes. The last dataset focused on protein thermal stability, characterizing the turning 

degree at which proteins start to denature (i.e., become ineffective). 

 

Contribution. I am one of two principal authors of this paper. I contributed conceptualization, 

implementation, and writing. 

 

Copyright notice. The original publication is available in open access at 

openreview.net/forum?id=p2dMLEwL8tF and as appendix to this manuscript. 

3.5 ADDITIONAL PEER-REVIEWED SCIENTIFIC CONTRIBUTIONS 

Manuscripts marked with * indicate (co-)first authorship. 

 

On learning representations of proteins: 

Ø Modeling aspects of the language of life through transfer-learning protein sequences 

(Heinzinger et al., 2019) 

A protein language model (pLM) using LSTMs to represent protein sequences. The goal was to 

go beyond MSAs and find a universal protein representation applicable also to proteins for 

which MSAs fell short. 

https://doi.org/10.1186/s12859-019-3220-8  

 

Ø ProtTrans: Towards Cracking the Language of Life's Code Through Self-Supervised Deep 

Learning and High Performance Computing (Elnaggar et al., 2021) 
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Several pLMs using transformers to represent protein sequences. The goal was to improve on 

the previous approach using LSTMs by training on much larger scale. 

https://doi.org/10.1109/TPAMI.2021.3095381 

 

On applying learned protein representations to predict protein properties: 

Ø * Light Attention Predicts Protein Location from the Language of Life (Stärk et al., 2021) 

In this project, we characterized a novel machine learning method to predict the subcellular 

location of proteins in eukaryotic cells using protein embeddings. Furthermore, we studied 

the biases that standard datasets in protein predictions may have on reporting performance, 

introducing a strategy to build novel test sets to validate the veracity of accuracy estimates. 

https://doi.org/10.1093/bioadv/vbab035 

 

Ø Embeddings from deep learning transfer GO annotations beyond homology (Littmann, 

Heinzinger, Dallago, Olenyi, et al., 2021) 

Combining pLMs with a simplistic, unsupervised approach to predict similarly functioning 

proteins. The goal was to establish the potential of pLMs to predict protein function. 

Additionally, by using an unsupervised approach (embedding distance), exploration into 

similarly functioning proteins in high dimensions could be enabled. 

https://doi.org/10.1038/s41598-020-80786-0 

 

Ø Embeddings from protein language models predict conservation and variant effects 

(Marquet et al., 2021) 

Using pLMs to reconstruct deep mutational scanning (DMS) data and conservation of residues 

in protein sequences. The intent was to study if pLM embeddings could natively capture 

aspects of variation, for instance gain or loss of function. While the ability of pLMs to capture 

variation may be limited by inner workings of the machine learning models and noise in 

experimental DMS data, pLMs seem to well capture sequence conservation. 

https://doi.org/10.21203/rs.3.rs-584804/v2 

 

Ø Clustering FunFams using sequence embeddings improves EC purity (Littmann, Bordin, et 

al., 2021) 

Using pLMs to refine the annotations of functional families. This may be viewed as a segue to 

the publication exploring the use of pLM embeddings to annotate GO function in an 

unsupervised fashion. 

https://doi.org/10.1093/bioinformatics/btab371 

 

Ø Protein embeddings and deep learning predict binding residues for various ligand 

classes (Littmann, Heinzinger, Dallago, Weissenow, et al., 2021) 

Using pLMs to predict whether a protein binds other molecules. 
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https://doi.org/10.1101/2021.09.03.458869 

 

On using software to help scientific dissemination and exploration: 

Ø * Visualizing Human Protein-Protein Interactions and Subcellular Localizations on Cell 

Images Through CellMap (Dallago et al., 2020) 

An update on the tool presented in a previous chapter with additional data on binary protein-

protein interactions (between proteins verified to be physically interacting). 

https://doi.org/10.1002/cpbi.97 

 

Ø Capturing scientific knowledge in computable form (Wong et al., 2021) 

A software tool to annotate biological pathways aimed at scientific authors publishing 

manuscripts in biology outlets. The goal was to provide an interface to transfer expert 

knowledge from authors to machines, which then can then be leveraged to inform 

bioinformatics tools. 

https://doi.org/10.1101/2021.03.10.382333  

 

Ø Pathway Commons 2019 Update: integration, analysis and exploration of pathway data 

(Rodchenkov et al., 2020) 

A meta-database collecting biological pathway annotations from several curated sources. The 

goal was to facilitate finding biological information in an integrated resource. 

https://doi.org/10.1093/nar/gkz946 

 

Ø The EVcouplings Python framework for coevolutionary sequence analysis (Thomas A 

Hopf et al., 2019) 

A software tool to perform direct coupling analysis (DCA) in python. The goal was to provide 

an easy-to-use programmatic interface to a tool that improved structure predictions many 

folds. 

https://doi.org/10.1093/bioinformatics/bty862 
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4 CONCLUSION 
While the introduction gave an ample overview about fundamentals in bioinformatics and where 

biases in data or experimental approaches arise, this section focuses on contextualizing the 

outcome of scientific contributions listed in the previous chapter to tackle some of the biases 

introduced prior. 

 

Learning putative sequences may smoothen bias. bio-embeddings (Dallago, Schütze, et al., 

2021) is a tool that collects several pLMs (Heinzinger et al., 2019; Bepler and Berger, 2019; Rives et 

al., 2019; Lu et al., 2020; Meier et al., 2021; Elnaggar et al., 2021) into a standardized software 

solution. pLMs are a recent innovation built on applying advanced NLP tools (Devlin et al., 2019; 

Raffel et al., 2020) most often to learn general representations of protein sequences from large 

protein sequence databases (The UniProt Consortium, 2021; Steinegger and Söding, 2018). These 

novel representations helped shine a different light on areas of the protein space which could not 

be targeted using previous tools (Littmann, Heinzinger, Dallago, Weissenow, et al., 2021; Littmann, 

Heinzinger, Dallago, Olenyi, et al., 2021; Littmann, Bordin, et al., 2021; Marquet et al., 2021; Meier 

et al., 2021). By being trained, in some instances (Elnaggar et al., 2021), on datasets with large 

amounts of putative sequences (Steinegger and Söding, 2018), the representations from pLMs 

may be adjusted to some selection biases present in more curated sequence datasets (The 

UniProt Consortium, 2021), or those using training objectives informed by domain-specific 

research (Bepler and Berger, 2019; He et al., 2021; Min et al., 2021). In fact, pLMs offer a unique 

opportunity to test this hypothesis, by training on the larges sets first, and fine-tuning on slightly 

smaller sets in a second step. This approach was adopted to train the best performing ProtTrans 

model (ProtT5) (Elnaggar et al., 2021). While the native performance of ProtT5 trained on BFD 

(Steinegger and Söding, 2018) was good, it was only through fine-tuning on UniRef50 (Suzek et al., 

2015) that the model started showing improvements over competing solutions (Rives et al., 2019) 

trained exclusively on the UniRef sets. The assessment of performance, in these instances, was 

conducted on downstream prediction tasks for experimentally annotated protein sequences that 

can be found directly or indirectly (via a family representative, i.e., a sequence which shares some 

sequence similarity to an annotated protein sequence) in the UniRef sets. Thus, while on the one 

hand improvement on predictions can be attributed to higher quality of the UniRef sequence 

databases with respect to BFD, on the one hand another interpretation of same might indicate 

that the fine-tuned representations are more biased towards the sequences for which annotations 

are known, or that the space of sequences for which experimental evidence is available are even 

tighter clustered cutouts of the larger sequence universe. Ultimately, assessing that models 

trained on a larger number of putative sequences may better capture general sequence 
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representations remains open to quantitative verification, but the practical availability of these 

models, which could be easily switched in- and out during analysis (Unsal et al., 2020) lays the 

foundation to address this new research question. 

Protein function on a continuum beyond ontologies. Supervised predictions using pLM 

representations could, in some cases, beat previous best performing methods for both structure 

(Rao et al., 2021) and function tasks (Stärk et al., 2021). However, the true advantage of continuous 

computational representations of protein sequences in a shared space obtained through 

embeddings from pLMs is that sequence sets can be projected into high dimensional 

representations where distances between proteins encode notions of similarity beyond naïve 

sequence similarity (Littmann, Heinzinger, Dallago, Olenyi, et al., 2021). While non-space sharing 

solutions like protein-specific variational autoencoders models (Frazer et al., 2021) promise to 

encode greater fine-grained, sequence-specific detail, space-sharing embeddings of pLMs enable 

characterizations of unsupervised functional protein clusters (Littmann, Bordin, et al., 2021). 

Identifying clusters in these spaces could enable discoveries of proteins found in nature that can 

address therapeutic or industrial needs, or help classify functions of designed sequences (Dallago, 

Mou, et al., 2021). As such, considering pLM representations for functional characterization of 

proteins enables to tackle the complexity of protein function annotations by circumventing the 

need the categorize function altogether. In fact, one could view protein function as a continuum 

and try to correlate it with the numerical representations from embeddings. Attempts to do so for 

specific functions showed some promise (Marquet et al., 2021), but more importantly, low-

resource (few sequence) scenarios clearly showed the potential of pLMs to better model the effect 

of variation (Dallago, Mou, et al., 2021). 

Challenging standard sets in bioinformatics. Machine learning solutions in bioinformatics 

sometimes operate on the assumption that an accepted dataset with labelled samples sets the 

standard in the field against which new approaches need to measure up. Maximizing metrics for 

standard dataset might grow better predictors for that problem, but since protein annotations are 

sharp categorizations, and our understanding of biology (especially function) requires a more 

flexibility especially as annotations change in time, what we may end up doing relying too much 

on immortalized standards is learning the distributions of these datasets, rather than generalizing 

the biological knowledge we wish to encode (Stärk et al., 2021). One effective way to assess 

advance for protein predictions is to predict on many dimensions. This approach for instance 

highlighted that while pLMs initially did not beat previous models on any supervised prediction 

task (Heinzinger et al., 2019), they evidently captured a diverse enough representation to come 

close for many, a reality which was difficult to achieve with previous methods (Unsal et al., 2020). 

Another effective way to address potential overfitting of models to standard datasets is to develop 

more challenging test sets to assess generalization of models post-training on the standards. For 

instance, in subcellular localization prediction, the standard set introduced by DeepLoc (Almagro 

Armenteros et al., 2017) and used by several groups to claim advances in localization prediction is 

prone to give overestimates of performance due to similar class distributions in train and test sets. 
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By using a non-similarly distributed set of newly annotated protein sequences to test subcellular 

prediction methods, while not necessarily tackling the relative ranking of prediction methods, the 

overall accuracy of all methods dropped significantly (from around 80% to 60% in predicting one 

of ten subcellular localization classes for the best performing methods) (Stärk et al., 2021). 

Alternatively, incorporating domain knowledge and different levels of redundancy reduction 

(Kandathil et al., 2021) to ensure different degrees of generalization of the machine learning 

models may drive more reliable tools. 

Accessible and explorative software tools for bioinformatics analysis. However far 

machine learning models push the understanding of biology, open, interpretable, and exploratory 

models are key to enable dissecting and disseminating advancements. For one, visualization tools 

expand on predictions by enabling biologists to formulate new scientific hypotheses (Dallago et 

al., 2018, 2020). Furthermore, interactive and exploratory tools enabling collection of biological 

annotations directly at the source (i.e., by the authors that make scientific discoveries) ensure 

higher fidelity annotations for machine learning applications (Wong et al., 2021). Finally, tools 

bundling machine learning applications into visualizations suites (Bernhofer et al., 2021; Wong et 

al., 2021; Thomas A Hopf et al., 2019) democratize research, allowing researchers everywhere to 

characterize unknown proteins using cutting edge research. 

Biases model machine learning predictions in protein biology. The presence of bias in 

annotations for protein biology is inevitable due to limits of experimental approaches and time 

constraints. However, even biased data can be leveraged via machine learning to discern 

underlying signals in biological data, aiding researchers in creating models of proteins and their 

functions. Predictive machine learning models often encode smoothened representations of a 

particular task, allowing some level of error correction from selecting data. The more principled 

the learning task, for instance learning sequence syntax from large sequence databases containing 

putative samples, the more probable the machine model of biology is less biased by selective 

constraints of experimental approaches. 
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5 APPENDIX 

5.1 CELLMAP VISUALIZES PROTEIN-PROTEIN INTERACTIONS AND SUBCELLULAR 

LOCALIZATION 

Summary. Several alternatives to visualizing protein-protein interactions (PPIs) exist. Most focus 

on visualizing PPIs in arbitrary spaces (e.g., two or more nodes in a network). Similarly, several 

tools visualizing where proteins locate in the cell exist, but these often focus on visualizing 

individual proteins by highlighting the areas on some predefined cell image of where proteins may 

appear. The novelty introduced by CellMap was to combine the two biological dimensions of 

protein location and interaction into a single visualization. Through the tool, an instance of which 

is available at cellmap.protein.properties, users can search for proteins using their UniProt (The 

UniProt Consortium, 2021) identifier. Once a protein of interest is identified, a protein-centric page 

displays information about interaction partners and localizations. From the protein-centric page a 

“map” view displaying the protein and its interaction partners can be opened. In this view, the cell 

is like a city map on google maps, while proteins are dots on the map localizing the protein in one 

of its possible subcellular locations. In this view, interactions between all proteins on display can 

be overlayed, as well as interactions of selected proteins with their partners. The tool was designed 

with flexibility in mind, allowing users to upload their own datasets and their own cell images, 

which could then be annotated with areas corresponding to localizations found in the data. By 

default, the tool shipped with a cartoon of a cell annotated with 13 subcellular locations, as well 

as annotated data for human proteins both for their localization in multiple classes (either from 

experimentally annotated or predicted sources), as well as protein-protein interactions from an 

openly available dataset (which annotates both physical transient PPIs, as well as protein 

interactions by association, e.g., when two proteins are part of the same complex, although they 

may not physically interact).  

 

Relevance. The seed that lead to this project was the desire to make predictions of protein 

properties more accessible to non-experts in an exploratory way. By jointly visualizing two protein 

attributes, qualitative analyses of protein interaction and hypothesis generation could be 

performed visually. While potentially constraining users by encoding for several biological 

dimensions at the same time, the biased visualization also encodes for richer context. However, 

users are allowed to freely modify every aspect of the visualization. For instance, while the default 

hosted site features location and interaction data from human, whose cells are organized into 
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different organelles than plants, users interested in plant data and cells could upload their own 

data and images to be visualized. 

 

Contribution. I am first and corresponding author of this paper. I was responsible for writing, 

implementation, and experimental setup. 

 

Copyright notice. The original publication is available in open access at the DOI 

10.12688/f1000research.12707.2 and in the following. The copyright notice is available on P2 of 

the manuscript. 
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      Amendments from Version 1
In the new version of the manuscript, we have highlighted the 
origin of the data sources for the example deployment of the portal 
on http://cell.dallago.us and the behavior of the visualization 
tool in case there are multiple protein localizations for a protein 
displayed in the protein-protein interaction network visualization 
page. 

See referee reports

REVISED

Introduction
Many tools visualize different aspects of protein-protein interac-
tion (PPI) networks; the most prominent might be Cytoscape1.  
Existing visualizations of large PPI networks continue to be  
difficult to use. Some proteins interact with many hundreds or  
thousands of others. Often referred to as ‘PPI hairballs’, such  
hubs are in the way of understanding large data sets. Many ways 
have been proposed to resolve such hairballs through the addition 
of biologically meaningful dimensions such as pathways2 or time3.

Another dimension was first introduced a decade ago, namely the 
overlay of PPIs with subcellular localization4. Combining PPI  
networks with protein location provide an intuitive way of  
laying out PPI networks on a graphical representation of the  
cell, and might reduce the clutter from PPI hairballs. This  
decade-old solution4 no longer copes with today’s data, in terms of 
scalability nor of customizability and in terms of ease-of-use.

CellMap, the prototype introduced here, takes up on the idea of 
PPI visualization constrained by protein location, and provides a  
simple visual interface for users to explore protein location  
inside a cell. It presents this information in a graphically pleasant  
way and offers several customization features. The framework 
has been optimized to simplify future developments, such as the  
addition of further data dimensions (e.g. inclusion of protein  
trafficking). An instance of the tool with localization data from 
a previous publication that includes protein localizations of 
the human proteome5 and PPI data from the Human Integrated  
Protein-Protein Interaction rEference (HIPPIE) resource6 is  
available at http://cell.dallago.us.

Methods
Implementation
The CellMap prototype is an integrated portal that exposes 
API calls to retrieve images (representing cells) and protein  
information, as well as a frontend to visualize protein location 
and PPI data. The portal is fully written in JavaScript, namely 
in the JavaScript interpreter node.js (https://nodejs.org) for the 
backend and vanilla JavaScript for the frontend. The portal is 
deployed to the public through a Docker container. Docker is a 
technology that allows shipping of packaged services such as web 
applications to customers and users without the need to install  
dependencies other than the Docker engine (available through: 
https://www.docker.com). For the representation of cell images 
as maps, the Leaflet framework is used. Leaflet is a JavaScript- 
based tool used to represent maps (http://leafletjs.com).

Data about proteins are stored as JSON documents in a Mongo 
(http://mongodb.com) database. All information about the  
interaction partners and the subcellular localization of a protein 
is stored in a single JSON document, making the data structure 
simple to understand for non-experts and enabling them to deploy 
prototypes using their own data. Figure 1 schematically repre-
sents a protein data model (for a specific example for a protein  
object: http://cell.dallago.us/api/proteins/search/Q99943).

Operation
In CellMap, users can choose to upload new maps (images of 
cells). They can modify the location of regions of interest (ROIs) 
for a selected map (Figure 2), and visualize the locations of selected  
proteins on a map or render protein-protein interaction networks 
from a set of selected proteins.

To maintain a consistent coloring scheme for different cellular  
compartments throughout a set of different images, each com-
partment is assigned a unique color through the hash of the  
compartment’s name (e.g. light blue = vacuole, Figure 3B). Using 
this coloring approach, users might eventually learn to associate 
color with compartment. When proteins are loaded into the map, 
they are assigned pseudo-random coordinates representing a 
point that lies within the boundaries of the ROI in which they are  
localized (Figure 3D). A circle of a given radius is placed on the 
randomly generated point (Figure 3E-F), and the circle will be filled 
with the same color as the compartment in which the protein is 
located in (Figure 3B and 3F).

Users can choose between two visualization options: the subcel-
lular location in the context of the protein-protein interaction 

Figure 1. Diagram of the data representation in CellMap. In the 
figure we present a diagram of the Protein class, which contains 
several attributes of type String, two fields of type timestamp and 
two arrays (in square brackets) that reference the Interactions and 
Localizations classes. The arrows highlight the referenced models. 
This simple representation of information about a protein, its protein-
protein interaction partners and its localizations enables the tool to 
be reused with one’s own datasets.
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Figure 2. Section of a screenshot of the CellMap editing tool on a private instance of the portal. In the screenshot, an authorized user 
with editing capabilities draws a polygon (dark green) representing a new cellular compartment or region of interest (ROI). The user has 
a set of tools on the left side that can be used to draw polygons, lines, squares or circles. Once the new region has been drawn, the user 
can associate a cellular compartment through the dropdown input on the top-right and submit the new information to the server. The image 
used for this screenshot was taken from Wikimedia’s user Royroydeb, under CC BY-SA 4.0 (http://bit.ly/2fuYRiE) and is used in this figure for 
demonstrative purposes only, as using it on the online version of CellMap would infringe copyright.

Figure 3. Definition of an area and drawing of protein circle. (A) Section of a cartoon image of a cell; (B) user-drawn polygon representing 
the area occupied by a vacuole; (C) how the section of the cartoon image is displayed on the PPI/map viewer; (D) random point calculation 
inside vacuole-polygon-defined area; (E) drawing of a protein circle located inside the vacuole, (F) result of loading a protein localized in the 
vacuole as shown by PPI/map viewer.
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Figure 4. Comparison between PPI viewer and map viewer. The left view (A) shows the PPI viewer, which depicts the result of loading 
protein Q9NR71 and displays a circle for the first localization found in the array of locations (http://cell.dallago.us/ppi?p=Q9NR71); The right 
panel (B) shows the Map viewer, which depicts the result of loading the same protein Q9NR71 and displays a circle for the protein in each 
of its reported location (http://cell.dallago.us/map?p=Q9NR71). The red arrows are overlaid on top of the screenshots to highlight where the 
protein circles have been drawn in the viewers, since fitting the screenshot on the page reduces the overall size of the images.

Figure 5. Protein information box. Top: information about the selected protein. Bottom: new localization selection box rendered in the PPI 
viewer when clicking on the protein circle (http://cell.dallago.us/ppi?p=Q9NR71).

viewer (PPI viewer, Figure 4A, http://cell.dallago.us/ppi), and the  
protein subcellular location viewer (Map viewer, Figure 4B, http://
cell.dallago.us/map). The two viewers can load the same images 
of cells (maps) and collect localization data from the same source, 
in the publicly available instance by 5. The PPI viewer offers the 
possibility to overlay networks between proteins being visual-
ized. The map viewer displays all locations reported for a given 
protein simultaneously, while the PPI viewer only displays  only 
one location at a time (by default: the first localization in the 
array of localizations as described in the protein data model,  
Figure 1); users can manually change the location by clicking on 
the protein circle and selecting a new location from the informa-
tion box (Figure 5). Both the PPI and the map viewer are enriched 
by several controls (Figure 6): The top-left controls enable actions 
including: the navigation to the home of CellMap (Figure 6,  
panels 1 and 2, A), switching from the map viewer to the PPI  
viewer and vice versa, keeping the proteins currently loaded in 

the view (Figure 6, panels 1 and 2, B), reducing the opacity of the 
cell map, highlighting the protein circles (Figure 6, panels 1 and 
2, C), zooming in- and out of the map and PPI viewers (Figure 6,  
panels 1 and 2, D), and visualization of the global network among 
all proteins loaded in the visualizer (Figure 6, panel 1, E). The  
top-right control allows to temporarily hide loaded proteins or acti-
vate an overlay of the user-drawn localizations (Figure 6, panel 4). 
The top-center search panel allows users to load new proteins by 
searching for their UniProt identifier, primary gene or primary pro-
tein name7 into the viewer (Figure 6, panel 3).

To facilitate the retrieval of proteins and their interacting part-
ners, CellMap provides basic search functionalities. Users can 
search for proteins based on their UniProt identifiers, by their gene  
identifiers or by their protein names. When performing the search, 
the page renders a grid containing boxes, each representing a dif-
ferent protein (Figure 7). Inside the boxes, the UniProt identifier 
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for the protein that matched the search criterion is displayed. Start-
ing on the top-right of every box a smaller colored square for each  
compartment is displayed in which that protein is localized. For 
proteins annotated to be in a single compartment, the border of  
the outer box (representing one protein as indicated by the  
UniProt ID in the center of the box) will get the color of that com-
partment (2nd box in Figure 7). Clicking on one of the colored 
squares will filter results based on the compartment represented 
by that color. In the bottom-right of each box, the total number of  
PPI partners are annotated.

Discussion
Some CellMap functionality is exemplified by a heat shock  
protein (HSPA4; Heat shock 70 kDa protein 4, UniProt identifier  
P34932) with many interaction partners (338, according  
to HIPPIE, http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
query.php?s=HSPA4) in different compartments. The objective  
was to showcase how CellMap can simplify PPI hairballs. We  
visualize the same PPI network using CellMap (Figure 8A) 
and Cytoscape1 in the form of the Cytoscape.js version used by  
HIPPIE (Figure 8B) and the Cytoscape desktop version  
(Figure 8C).

None of the three viewers solves the PPI hairball problem  
completely. Without zooming in, the information density for 

338 protein pairs is too high to be helpful. HIPPIE’s layout for  
Cytoscape.js (Figure 8B) clearly improves over the standard  
Cytoscape desktop version (Figure 8C) by centering the view 
around HSPA4, the protein of interest. In CellMap (Figure 8A) the 
biologically relevant differences between pairs from the same and 
from different compartments remain visible.

By using a biologically relevant dimension (protein localiza-
tion), instead of drawing nodes in positions based on edge  
weight (force layout of Cytoscape), some aspects of the protein 
and its partners become obvious at first glance, e.g. that HSPA4 
interacts with many nuclear and cytoplasmic proteins, as well  
as with proteins that are secreted (extra-cellular) and located in 
the Endoplasmic Reticulum (ER, Figure 8). This may suggest the 
hypothesis HSPA4 to be an important hub involved in process  
spanning across compartments. Such a hypothesis is presented in 
our supplementary material (Figure SOM_1), where we analyze  
the visualization of the FOXO3 protein through CellMap.

One disadvantage of CellMap over the Cytoscape.js view is that  
the protein identifiers are not visible at all on the static image  
(protein identifiers become visible through mouse-over events 
in CellMap). However, in the image shown (Figure 8) the  
Cytoscape.js names also remain unreadable. Another problem  
with CellMap are the numbers displayed on edges (experimental 

Figure 7. Results of searching for protein “foxo”. The screenshot of this section of the home page shows four proteins that match the 
search criterion “foxo” either by their UniProt identifier, primary gene name or primary protein name. The protein boxes contain the UniProt 
identifiers of the matched proteins (center) and display the number of interaction partners (bottom-right) and several color-filled boxes 
graphically representing the localizations reported for the matched proteins (top-left).

Figure 6. Controls used in the different viewers. (1) Top-left controls of PPI viewer; (2) top-left controls of map viewer; (3) top-center  
search panel of PPI/map viewer; (4) top-right layer control on PPI/map viewer.
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Figure 8. PPI hub in CellMap (A), Cytoscape.js (B) and Cytoscape desktop (C). For HSPA4 (Heat shock 70 kDa protein 4, UniProt identifier 
P34932), we show some of the PPIs known (according to HIPPIE HSPA4 has 338 interaction partners). We chose this as one example of a 
protein with many more PPIs than the average protein (“PPI hub”). The figure compares how three different PPI viewers cope with the HSPA4 
network: (A) CellMap (http://cell.dallago.us/protein/P34932), (B) HIPPIE’s Cytoscape.js visualizer and (C) the desktop version of Cytoscape. 
Proteins in CellMap are represented as colored dots on the map (image) of the cell, and upon selecting the protein of interest an overlay of 
edges is drawn. In Cytoscape and Cytoscape.js, proteins are represented as nodes containing a label (protein name as UniProt identifier), 
and edges are directly inferred from the data. The Cytoscape.js visualization was taken directly from HIPPIE. The Cytoscape network was 
automatically drawn upon loading the HIPPIE dataset and selecting the protein of interest and it’s direct neighbors.

reliability of the PPI as given by HIPPIE). In our view, this infor-
mation is extremely important to look at interactions, but we are  
still lacking a more sophisticated mechanism to visualize these 
numbers.

CellNetVis8 is a recent tool that also connects localization with 
PPI networks. It emphasizes the way PPI networks are laid out 
through the adaptation of a so-called force-directed layout (using 
the tool While). Although CellMap and CellNetVis are founded 
on a similar idea, user experience and focus differ importantly. 
For instance, CellMap can be driven by data from users that define 
the number of compartments on a map, and provide localizations. 
In contrast, CellNetVis uses a fixed subset of compartments and 
an ad hoc diagram for the cell. Additionally, CellMap comes with  
out of the box data for the human proteome and allows the  
community to grow the tool by enriching datasets (images and 
localizations), whereas CellNetVis has a per-use approach, 

allowing to visualize networks stored in specialized XGMML  
files. Another unique aspect of CellMap is the openness to intro-
duce further biologically meaningful dimensions (beyond loca-
tion such as time or pathways) that increase the usefulness of PPI  
visualization tools to create new testable hypotheses.

Conclusions
CellMap is a prototype providing a portal exploring the idea of  
using protein subcellular location as the basis to construct more 
complete visualizations of biological data, such as protein-protein  
interactions (PPIs). Using this paradigm, we claim that addi-
tional information, such as pathways, can be layered on top of the  
current visualization of subcellular location to potentially generate 
meaningful biological insights. The source code for the portal is 
publicly available and an instance of the portal with location data 
from a previous publication about the subcellular localization of 
the human proteome5 and protein-protein interaction data from 
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HIPPIE6 (http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie)  
is running at http://cell.dallago.us. The visualization tool is  
written in JavaScript, thereby tapping into a very large user base 
for customized extensions and modifications. With the release 
of the prototype, we aim at creating a user base and awareness  
of the tool, ultimately collecting precious feedback from experi-
mentalists and technical users alike.
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The tool provides an interesting feature to help declutter visualizations of biological networks 
using localization information. Some comments:

It would be good if the names of the used databases was stated in the last paragraph of the 
introduction. 
 

○
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The tool would be more intuitive for new users, if it provided descriptions the various colors 
used on the site with the same explanation as in the paper. For example, the colored boxes 
that represent localizations in the search results and the dot colors used for the protein 
visualization on the cell map. 
 

○

It is unclear from the paper all the types of interactions might be shown in the represented 
networks. 
 

○

Also, it is unclear from the paper, what happens to the network visualization in the cases 
where the identified proteins are present in multiple locations.

○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 29 Jan 2018
Christian Dallago, TUM (Technical University of Munich), Munich, Germany 

Dear Dr. Luna, 
 
Thank you very much for your input on our work. 
 
We have submitted a new version of the manuscript, which should address points one and 
four of your comment. 
 
As to the second point: we have created a new feature item for our next release that 
displays a button on the map viewer to display a modal with the legend. As of now: a legend 
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is available by scrolling down to the second half of the page in the map or ppi viewers (e.g. 
http://cell.dallago.us/map/573c87c182a9e1ae1e37d08e?p=P04637 ) and expanding the 
"Legend" tab. We understand that this can be overseen and improved, therefore we thank 
you for the input. 
 
As to the third point: in this manuscript, we focus on discussing the software 
implementation and visualization abilities of CellMap, rather than the data sources used in 
the example deployment hosted on http://cell.dallago.us. More information about the types 
of interactions reported by the HIPPIE data source can be found in the latest paper 
describing HIPPIE (http://nar.oxfordjournals.org/content/early/2016/10/28/nar.gkw985) and 
directly on the HIPPIE information page (http://cbdm-01.zdv.uni-
mainz.de/~mschaefer/hippie/information.php#sources). 
 
Please, feel free to suggest any other changes to both our manuscript and tool. 
 
Best regards, 
Christian Dallago.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 13 November 2017

https://doi.org/10.5256/f1000research.13762.r27544

© 2017 Orchard S. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Sandra Orchard   
European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, 
Cambridge, UK 

The authors describe a tool for visualising PPI networks in the context of the subcellular 
localisation of the searched protein.

I have twice tried to review this paper and both times the http://cell.dallago.us link gave me 
a MongoDB error. I have therefore had to review the paper without being able to view the 
tool. This is not satisfactory. I was unable to test the conclusions about the tool and its 
findings. 
 

1. 

The tool uses a static interaction compilation database (HIPPIE) as the source of PPIs. Did 
the authors not consider using the PSICQUIC web service, which gives the users 
considerably more options as to where to source their PPI data from, and also allows the 
visualisation of protein-small molecule interactions and also potentially the site of action of 
protein-drug interactions, also available via PSICQUIC. It would also allow the data to be as 
up to date as the latest release of each database, which will be more frequent than releases 

2. 
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of HIPPIE. 
 
I am not clear where the subcellular location data comes from. This may be obvious to 
regular users of CellMap but not to me, an should be stated in the paper for other user who 
do not know this.

3. 

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 25 Nov 2017
Christian Dallago, TUM (Technical University of Munich), Munich, Germany 

Dear Dr. Orchard, 
 
Thank you for your valuable input on the tool! 
 
 
With regard to point 1: we apologize for the broken database connection, unfortunately, the 
deployment system missed that flag and thus didn’t restart the service. We have fixed the 
issue and the website is now running. Up until now, I have not identified any other issues 
that could prevent the web server to run properly. 
 
 
With regard to point 2: the software presented in this paper has a dual-purpose. On the one 
hand, we want to give the ability to discover protein localization and protein-protein 
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interaction from two known sources (HIPPIE for PPI, and subcellular localization from a 
publication, which describes localization for the human proteome based on a consensus of 
experimental data and state-of-the-art prediction models (
http://doi.org/10.1038/ncomms8866)). On the other hand, we want to propose a system 
that can be reused on user-defined data (as long as it complies with the format the 
visualization tool digest, as from Figure 1) and be integrated as JavaScript visualization tool 
in different portals. For now, we would like to avoid having a direct integration of the portal 
with external tools via, for example, API calls. In an upcoming version of the portal, we will 
offer scripts to populate the database from different sources for the two data entities 
(protein localization and interaction). 
 
PSICQUIC generates interaction data on-demand, which can later be downloaded. 
Obtaining the data requires some time: a user input one specific protein identifier, selects 
the databases to use to collect interaction data, submits a cluster job and finally gets access 
to the data. Searching for protein P45381 identified 80 interactions in all online databases. 
After several hours, the job was not finished, so we decided to lower the number of 
databases to fetch information from. Reducing the number of databases produced results 
quickly. The results page of PSICQUIC presents a table of interactions and visualizes a 
graph, which we could not load due to lack of compatibility with the Chrome browser. We 
believe it would be interesting to present CellMap at the level of this resource and will 
contact the authors of the tool to discuss what the best idea in this regard would be. 
Fetching the data from PSICQUIC as it is now and putting it into the portal requires to also 
normalize the PSICQUIC data and map it to protein localization data. Writing a parser for 
the PSI-MITAB tables is straightforward, the normalization and mapping of identifiers 
should occur externally to CellMap. We will create a guide on how this can be done in the 
next days and put it on the landing page of CellMap. 
Integrating protein-molecule data and displaying these entities meaningfully is an 
interesting idea for the future development of the CellMap tool. 
 
 
With regard to point 3: the data about protein localization stems from a publication of our 
group (http://doi.org/10.1038/ncomms8866). The data on protein subcellular localization for 
humans published through this paper was the starting point for the development of 
CellMap. In the current manuscript, we focused more on describing the visualization tool, 
rather than going into detail about how the localization data was retrieved (which in this 
case is by building a consensus over experimental (where available) and predicted 
localisations for 6 subcellular compartments). This is again because we didn’t want to 
develop a tool around this specific data source, but rather offer the possibility to change the 
origin for the localization data in the future. 
 
We appreciate the suggestions for further data sources and data entities that can be used 
and integrated into CellMap. In upcoming releases, we will make sure to offer a bigger 
variety of data sources and scripts to populate and update the information on protein 
subcellular localization, and protein-protein interaction data used by the visualization tool. 
Additionally, we will contact the authors of PSICQUIC to discuss if it would be possible to 
integrate CellMap in the results page of a cluster job. 
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5.2 LEARNED EMBEDDINGS FROM DEEP LEARNING TO VISUALIZE AND PREDICT 

PROTEIN SETS 

Summary. The ability of protein-based machine learning models to encode descriptive 

computational representations of proteins is increasingly leveraged to guide experimental 

decision making. Fast models that allow to classify custom sequence datasets are desired, for 

instance to focus experiments on more promising biotherapeutic candidates. Recently, Language 

Models (LMs) have been adapted from use in natural language processing (NLP) to work with 

protein sequences instead. Protein LMs show enormous potential in generating descriptive 

representations for proteins from just their sequences at a fraction of the time compared to 

previous approaches. pLMs convert amino acid sequences into embeddings (vector 

representations) that can be used for analytical purposes, and in unsupervised and supervised 

pipelines for prediction of function and structure. Access to protein LMs is scattered throughout 

the web, a limiting factor to their use. Differently from previous approaches, any one pLM may 

uniquely shine light on a subset of the sequence space depending on its training objective and 

datasets. The bio-embeddings suite offers a unified interface to pLMs to embed large protein sets 

simply and quickly, to project the embeddings in lower dimensional spaces, to visualize proteins 

on interactive scatter plots, and to extract annotations using either supervised models, or 

unsupervised techniques. The array of tools offered through bio-embeddings enables quick 

hypothesis generation and testing and refined model optimizations on promising prediction 

candidates. Bio-embeddings features a pipeline which is accompanied by a web server that offers 

to embed, project, visualize, and extract annotations for small protein datasets directly online, 

without the need to install software. 

 

Relevance. This software suite was developed as a segue to the training of protein language 

models (pLMs), which could compute embeddings (representations) for residues in protein 

sequences, which can later be used for predictions. pLM embeddings offer to shine light on 

proteins using representations unbiased by supervised properties, as the losses are often self-

supervised (i.e.: reconstructing the syntax of proteins), although sometimes tuned on secondary 

losses, like encoding explicitly for structure. A solid software solution around these tools enabled 

quicker use of complex machine learning models for non-experts and introduced standardization. 

In fact, the solution presented here (bio-embeddings) could be run freely on cloud infrastructure 

(e.g., Google Colab), enabling researchers without cluster access of significant compute resources 

to use pLMs for their research, democratizing the use of cutting-edge research. Additionally, some 

of the pLMs and prediction methods were included in a modular web service, allowing to compute 

embeddings and predictions programmatically or through web UIs (e.g., 

embed.protein.properties or predictprotein.org) instantaneously, without local compute 
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overhead. On top, bio-embeddings provided a one stop to find and discuss relevant research on 

pLMs from an array of research groups. pLM embeddings 

 

Contribution. I am one of three principal authors. I am also corresponding author. I contributed 

at all stages as lead scientist. 

 

Copyright notice. The original publication is available in open access at the DOI 10.1002/cpz1.113 

and in the following. The copyright notice is enclosed after the manuscript in this appendix. 
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Models from machine learning (ML) or artificial intelligence (AI) increasingly
assist in guiding experimental design and decision making in molecular biol-
ogy and medicine. Recently, Language Models (LMs) have been adapted from
Natural Language Processing (NLP) to encode the implicit language written
in protein sequences. Protein LMs show enormous potential in generating de-
scriptive representations (embeddings) for proteins from just their sequences,
in a fraction of the time with respect to previous approaches, yet with compara-
ble or improved predictive ability. Researchers have trained a variety of protein
LMs that are likely to illuminate different angles of the protein language. By
leveraging the bio_embeddings pipeline and modules, simple and reproducible
workflows can be laid out to generate protein embeddings and rich visualiza-
tions. Embeddings can then be leveraged as input features through machine
learning libraries to develop methods predicting particular aspects of protein
function and structure. Beyond the workflows included here, embeddings have
been leveraged as proxies to traditional homology-based inference and even to
align similar protein sequences. A wealth of possibilities remain for researchers
to harness through the tools provided in the following protocols. © 2021 The
Authors. Current Protocols published by Wiley Periodicals LLC.

Current Protocols e113, Volume 1
Published in Wiley Online Library (wileyonlinelibrary.com).
doi: 10.1002/cpz1.113
© 2021 The Authors. Current Protocols published by Wiley
Periodicals LLC. This is an open access article under the terms
of the Creative Commons Attribution-NonCommercial-NoDerivs
License, which permits use and distribution in any medium, provided
the original work is properly cited, the use is non-commercial and
no modifications or adaptations are made.
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The following protocols are included in this manuscript:

Basic Protocol 1: Generic use of the bio_embeddings pipeline to plot protein
sequences and annotations
Basic Protocol 2: Generate embeddings from protein sequences using the
bio_embeddings pipeline
Basic Protocol 3: Overlay sequence annotations onto a protein space visual-
ization
Basic Protocol 4: Train a machine learning classifier on protein embeddings
Alternate Protocol 1: Generate 3D instead of 2D visualizations
Alternate Protocol 2: Visualize protein solubility instead of protein subcellular
localization
Support Protocol: Join embedding generation and sequence space visualiza-
tion in a pipeline

Keywords: deep learning embeddings ! machine learning ! protein annotation
pipeline ! protein representations ! protein visualization

How to cite this article:
Dallago, C., Schütze, K., Heinzinger, M., Olenyi, T., Littmann, M.,
Lu, A. X., Yang, K. K., Min, S., Yoon, S., Morton, J. T., & Rost, B.
(2021). Learned embeddings from deep learning to visualize and

predict protein sets. Current Protocols, 1, e113.
doi: 10.1002/cpz1.113

INTRODUCTION

Protein sequences correspond to strings of characters, each representing an amino acid
(referred to as residues when joined in a protein). While protein savants extrapolate
a wealth of information from this representation, for machines this is as meaningless
as any other text document. Finding meaningful, computable representations from
protein sequences by converting text into vectors of numbers representing relevant
features or descriptors of proteins is an important first step to find out properties of the
protein with that sequence, e.g., what other proteins it resembles (sequence comparisons
through alignments), what it looks like (membrane or water-soluble, regular globular
or disordered), or what it does (enzyme or not, process involved in, molecular function,
interaction partners).

Many approaches to generate knowledge and meaning from protein sequences have
been proposed. Intuitive representations relied on what experts considered informative,
e.g., converting sequences into numerical vectors representing polarity or hydropho-
bicity. More advanced ideas included substitution matrices (Henikoff & Henikoff,
1992), profiles of protein families (Stormo, Schneider, Gold, & Ehrenfeucht, 1982), and
“evolutionary couplings” from events correlating the mutability at two or more residues
(Morcos et al., 2011). Combining “evolutionary information” (Rost & Sander, 1993),
along with global (entire protein) and local (only sequence fragment) features through
machine learning (ML; Rost & Sander, 1993, 1994), led to the first breakthrough in
protein structure prediction over two decades ago (Moult, Pedersen, Judson, & Fidelis,
1995; Rost & Sander, 1995). Combining more sophisticated tools from Artificial Intel-
ligence (AI) to include even more protein evolutionary information have led to the most
recent breakthrough by AlphaFold2 from DeepMind (Callaway, 2020).

Dallago et al.
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Representations based on evolutionary information have improved remote homology de-
tection (Steinegger et al., 2019) as well as the prediction of aspects of protein struc-
ture (Hopf et al., 2012; Rost, 1996) and protein function (Goldberg et al., 2014; Hopf
et al., 2017). The amount of evolutionary information contained in these representations
is proportional to the size and diversity of a protein family (Ovchinnikov et al., 2017;
Rost, 2001); the generation of families relies on parameter-sensitive multiple sequence
alignments (MSAs) that, due to growing databases, become increasingly computation-
ally expensive, despite immense advances in method development (Steinegger & Söding,
2018; Steinegger, Mirdita, & Söding, 2019).

Deep learning−based Language Models (LMs) are a new class of machine learning de-
vices learning the rules for semantics and syntax directly and autonomously from the
statistics of text corpora. Modern LMs learn to represent language by being conditioned
on either predicting the next word in a sentence given previous context, or by recon-
structing corrupted text. In protein bioinformatics, these devices are trained on large se-
quence datasets, such as UniProt (The UniProt Consortium, 2019), through a process
called “self-supervision”. LM representations (embeddings) have been used as input to
other methods (a process referred to as transfer learning) to predict aspects of protein
structure and function. Although embedding-based predictions tend to be less accurate
than those using evolutionary information, they require less time (Heinzinger et al., 2019;
Rao et al., 2019; Rives et al., 2019). By learning to represent sequence and background
information, embeddings open the door to a completely new way of using protein se-
quences, successful enough to even compete with traditional remote homology detection
and structural alignments (Biasini et al., 2014; Littmann, Heinzinger, Dallago, Olenyi, &
Rost, 2021; Morton et al., 2020; Villegas-Morcillo et al., 2020).

Although embeddings derived from sequences contain substantially more information
than raw sequences, one challenge for this new representation is to simplify its avail-
ability. This is one crucial objective of the bio_embeddings software resource, which
collects tools to create and use protein embeddings. Basic Protocol 1 serves as a high-
level overview of functionalities of the bio_embeddings pipeline. Basic Protocol 2 adds
in-depth context for embeddings and details steps on how to extract embeddings from se-
quences. Through Basic Protocol 3 (and variations thereof in Alternate Protocols 1 and
2), embeddings are leveraged to plot sequence sets in combination with aspects of pro-
tein function, namely subcellular location and membrane-boundness. Finally, in Basic
Protocol 4, the rich protein representations from a protein LM are used as input features
to train a machine learning device to predict protein subcellular localization.

BASIC
PROTOCOL 1

GENERIC USE OF THE bio_embeddings PIPELINE TO PLOT PROTEIN
SEQUENCES AND ANNOTATIONS

This protocol serves as non-technical overview of what is available out-of-the-box
through the bio_embeddings pipeline. The premise is simple: you will use software to
plot protein sequences and color them by a property. For this purpose, we prepared three
files for download: one containing about 100 protein sequences in FASTA format, a CSV
file containing DisProt (Hatos et al., 2020) classifications for these sequences (whether
their 3D structure presents mostly disorder or little disorder), and a configuration file
that specifies parameters for the computation. Apart from downloading these files and
the steps necessary to install the bio_embeddings software, executing the computation
is a single step. The following basic protocols present greater detail about the technical
aspects surrounding inputs, outputs and parameters of the pipeline.

The output obtained by us when executing this protocol is available for compari-
son at http://data.bioembeddings.com/disprot/disprot_sampled; the plot file resulting
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from executing the steps is available at http://data.bioembeddings.com/disprot/disprot_
sampled/plotly_visualization/plot_file.html.

NOTE: This visualization is produced for a small sample of DisProt sequences; as such it
is by no means representative of the power of the embeddings in distinguishing DisProt
classes.

Materials
Hardware

A modern computer (newer than 2012), with about 8 GB of available RAM, 2
GB of available disk space, and an Internet connection.

Software

Windows users may need to install Windows Subsystem for Linux
(https://docs.microsoft.com/en-us/windows/wsl). All users should have
Python 3.7 or 3.8 installed (https://www.python.org/downloads).

Data

You will need a FASTA sequence for some proteins in DisProt, which can be
downloaded from http://data.bioembeddings.com/disprot/ sequences.fasta;
you will need annotations of disorder content, which can be downloaded from
http://data.bioembeddings.com/disprot/disprot_annotations.csv; finally, you
need a configuration file for the bio_embeddings pipeline, which can be
downloaded from http://data.bioembeddings.com/disprot/config.yml.

1. Ensure that all software and hardware requirements are met (see Materials, above).
Install Python 3.7 or 3.8 on your system using https://www.python.org/downloads.

If you already have a Python installation with a different version (e.g., 2.7) that you must
keep, consider installing Python 3.8 through Anaconda (“Anaconda Software Distribu-
tion,” 2020): https://docs.anaconda.com/anaconda/ install.

2. Download required files.
Through your browser, navigate to http://data.bioembeddings.com/disprot
and download the files: sequences.fasta, config.yml, and dis-
prot_annotations.csv.

Note that you might need to right click and select “Save Link As” to download the files.

If you prefer to use the terminal, run the following three commands:

wget http://data.bioembeddings.com/disprot/sequences.fasta
wget http://data.bioembeddings.com/disprot/config.yml
wget http://data.bioembeddings.com/disprot/disprot_annotations.csv

3. Create a project directory and move files into it.
Create a new directory called disprot on your computer and move the files down-
loaded in step 2 into this directory.

We suggest creating the directory in an easy-to-find location, for example the Downloads
folder.

4. Open a new terminal window.
To open a terminal on MaxOS or Linux, search for the application “Terminal” and
open it. On Windows, after having installed the Windows Subsystem for Linux (https:
//docs.microsoft.com/en-us/windows/wsl), search for and open the application called
“bash” through the start menu.

5. Install bio_embeddings.
Dallago et al.
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To install the pipeline and all of its dependencies, open a terminal window and type
in the command:

pip install ---user "bio-embeddings[all]"

This command may take up to 10 min to execute, depending on the speed of the connection.
If you experience warnings regarding incompatible packages (e.g., “bio-embeddings
requires Y>X, but you have Y Z which is incompatible”), please
try using a new conda environment (see Troubleshooting).

6. Navigate to the project directory from the terminal window.
If you called your project directory disprot inside the Downloads folder, the
command to navigate to the directory through the MacOS and Linux Terminal is:

cd ∼/Downloads/disprot

7. Run the bio_embeddings pipeline.
To start running the bio_embeddings pipeline, type the following in your terminal
window:

bio_embeddings config.yml

Then, press Enter.

This will start a job using parameters defined in the text configuration file (con-
fig.yml; detail about the parameters in the next protocols). Opening the file with a
text editor will display the following content:

global:
sequences_file: sequences.fasta
prefix: disprot_sampled

protbert_embeddings:
type: embed
protocol: prottrans_bert_bfd
reduce: true
discard_per_amino_acid_embeddings: true

umap_projections:
type: project
protocol: umap
depends_on: protbert_embeddings
n_components: 2

plotly_visualization:
type: visualize
protocol: plotly
annotation_file: disprot_annotations.csv
display_unknown: false
depends_on: umap_projections

There are four major text blocks, each defining a job stage. The parameters in the first
block (starting with general) define where protein sequences live and where to store
results. The second block (protbert_embeddings) defines parameters to generate
computational representations using a language model (more in the following). The third
(uma_projections) contains options to transform the representations, while the forth
(plotly_visualizations) defines options to plot the proteins.

You should see output that resembles:

2020-11-09 20:37:13,753 INFO Created the prefix directory disprot_sampled
2020-11-09 20:37:13,756 INFO Created the file
disprot_sampled/input_parameters_file.yml
2020-11-09 20:37:13,970 INFO Created the file disprot_sampled/sequences_file.fasta
2020-11-09 20:37:14,118 INFO Created the file disprot_sampled/mapping_file.csv
…

Dallago et al.
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Figure 1 2D visualization of protein sequences with disorder annotation. The points are projec-
tions of embeddings of a subset of protein sequences contained in DisProt (Hatos et al., 2020).
Proteins annotated with high disorder content (red) tend to cluster to the bottom-right, while pro-
teins annotated with little disorder content (blue) tend to cluster to the top-left. The figure is available
interactively at http://data.bioembeddings.com/figures/figure_1.html.

Please note that sometimes warnings may appear as dependencies used by the
bio_embeddings pipeline get updated and introduce slight changes in how bio_embeddings
is expected to interface with them. Warnings are usually harmless and get addressed by the
bio_embeddings team within a few weeks. The command will take up to 15 min to execute
and will download a 1.5-GB file in your home directory.

8. Open the plot file.

After the execution of the bio_embedding pipeline has finished, your system should
automatically have opened up a browser window displaying a 2D graph of the pro-
teins contained in the FASTA file colored by their disorder content according to Dis-
Prot (Hatos et al., 2020; Fig. 1). If not, you can navigate to the disprot directory,
which will contain a new directory (disprot_sampled), with yet another directory
(plotly_visualization), which contains the plot file as plot_file.html . You
can open this file in any modern browser.

BASIC
PROTOCOL 2

GENERATE EMBEDDINGS FROM PROTEIN SEQUENCES USING THE
bio_embeddings PIPELINE

Through this protocol, you may generate machine-readable representations (embed-
dings) from a set of protein sequences using the “embed” stage of the bio_embeddings
pipeline. The sequence file utilized for the example was written by the prediction pro-
gram DeepLoc (Almagro Armenteros, Sønderby, Sønderby, Nielsen, & Winther, 2017),
but you can also provide your own FASTA file. Embeddings constitute an abstract
encoding of the information contained in protein sequences, and are the building block
of the pipeline and its analytical tools. In this protocol, we use BERT (Devlin, Chang,
Lee, & Toutanova, 2019) trained on BFD (Steinegger & Söding, 2018; Steinegger et al.,
2019) to extract embeddings from protein sequences. This model is part of the Prot-
Trans protein LMs (Elnaggar et al., 2020), referred to as ProtBERT in text or prot-
trans_bert_bfd in the following code. You can find out how to choose a protein
LM based on your requirements on our website (http://bioembeddings.com). The salient
output of the embed stage are the embedding files. These come in two flavors: per-residue
(embeddings_file.h5) and per-protein (reduced_embeddings.h5). While the
per-residue embeddings are taken directly out of the LMs, per-protein embeddings are
generated post-processing the information extracted by the LM through global averageDallago et al.
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pooling (Shen et al., 2018) on all combined per-residue embeddings of a sequence. Per-
residue embeddings are useful to analyze properties of residues in a protein (e.g., which
residues bind ligands), while per-protein representations capture annotations describing
entire proteins (e.g., native localization).

Materials
Hardware

Computer (newer than 2012), >8 GB of available RAM, ∼2 GB of available
disk space

Optional: Graphical Processing Unit (GPU) with >4 GB of vRAM and
supporting CUDA® 11.0

This will speed up the embedding process manyfold
Internet connection

Software (MacOS and Linux)

Python 3.7 or 3.8 (https://www.python.org/downloads)
Windows users: Windows Subsystem for Linux

(https://docs.microsoft.com/en-us/
windows/wsl)

Optional: CUDA® (https://developer.nvidia.com/cuda-downloads; at time of
writing: version 11.1)

Data

DeepLoc (Almagro Armenteros et al., 2017): http://data.bioembeddings.com/
deeploc/deeploc_data.fasta

DeepLoc (reduced sample) FASTA-formatted sequences:
http://data.bioembeddings.com/
deeploc/sampled_deeploc_data.fasta

NOTE: as input, we begin with two files containing protein sequences in a
simplified FASTA format (first line begins with “>” followed by protein
name, all subsequent lines contain the sequence in single-letter amino acid
code).

1. Install bio_embeddings from pip.
To install the pipeline and all of its dependencies, open a terminal window and type
in the command:

pip install --user "bio-embeddings[all]"

2. Create a project directory.
We suggest you create a new project directory on your disk. You can generate it
through the terminal:

mkdir deeploc

Then, open the directory through the terminal:

cd deeploc

3. Download the DeepLoc FASTA file inside the project directory.
From the terminal (within the project directory):

wget http://data.bioembeddings.com/deeploc/deeploc_data.fasta

Alternatively, download the file using your browser, and move it to the project direc-
tory. Dallago et al.
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CAUTION: If you are using a system not equipped with a GPU, we suggest picking
a smaller FASTA set for the next steps. This will facilitate executing subsequent steps.
A smaller FASTA file is available at: http://data.bioembeddings.com/deeploc/sampled_
deeploc_data.fasta. If you pick this file, make sure to note the name change for the follow-
ing steps.

4. Create a configuration file.
A configuration file defines what the pipeline should do (files and parameters it should
use and stages it should run). Many examples of configuration files are provided at
http://examples.bioembeddings.com, including the one you will create here (called
deeploc). To create the configuration file from the terminal:

nano config.yml

Then, type in the following and save the file (to save: press Ctrl+x, then “y”, then the
Return key):

global:
sequences_file: deeploc_data.fasta
prefix: deeploc_embeddings
simple_remapping: True

prottrans_bert_embeddings:
type: embed
protocol: prottrans_bert_bfd
reduce: True

The global section defines a global parameter; mandatory are the input sequence file
(calleddeeploc_data.fasta in the config) and the prefix where outputs will be stored
(in this case, a new directory deeploc_embeddings, which will be created inside the
deeploc project directory).

The sections followingglobal define stages of the pipeline and can have arbitrary names.
In this case, you have one stage called prottrans_bert_embeddings, which will
execute an “embed” stage (type: embed), using the BERT language model trained on
BFD (Elnaggar et al., 2020) (protocol: prottrans_bert_bfd). The “embed”
stage produces per-residue embeddings by default. To get per-protein embeddings you
must specify the reduce parameter (reduce: True).

5. Run the bio_embeddings pipeline.
All that is left to do is to supply the configuration file to bio_embeddings and let the
pipeline execute the job. To do so, type on the terminal:

bio_embeddings config.yml

You should see output that resembles:

2020-11-09 20:37:13,753 INFO Created the prefix directory deeploc_embeddings
2020-11-09 20:37:13,756 INFO Created the file deeploc_embeddings/input_parameters_file.yml
2020-11-09 20:37:13,970 INFO Created the file deeploc_embeddings/sequences_file.fasta
2020-11-09 20:37:14,118 INFO Created the file deeploc_embeddings/mapping_file.csv
…

6. Locate the embedding files.

After the job has finished, you should have a new directory called
deeploc_embeddings (prefix) in your deeploc project directory. This directory
will contain several files, and another directory, prottrans_bert_embeddings
(config.yml after section global), with the outputs of the “embed” stage. The most
salient files are embeddings_file.h5 and reduced_embeddings_file.h5
(only produced if “reduce: True”) inside the prottrans_bert_embeddings
directory. These files are what you will use for your analyses and to train prediction tools
(following protocols).Dallago et al.
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BASIC
PROTOCOL 3

OVERLAY SEQUENCE ANNOTATIONS ON A PROTEIN SPACE
VISUALIZATION

The previous protocol generated embeddings from protein sequences in your dataset
(here DeepLoc dataset). In Basic Protocol 3 you use functions from the bio_embeddings
package to visualize “protein spaces” spanned by the embeddings extracted. These vi-
sualizations reveal whether or not the LM chosen for the “embed” stage (Basic Proto-
col 2) can roughly separate your data based on a desired property/phenotype. The prop-
erty/phenotype in our example is subcellular location in 10 states. Alternate Protocol 2
uses the same data and similar steps to visualize protein solubility. While visualizations
are useful, the discriminative power of embeddings can be boosted many times by train-
ing machine learning models on the embeddings to predict the desired property (Basic
Protocol 4).

Between embedding generation and protein space visualization, another step has to be
inserted. In the pipeline, we refer to this step as a “project” stage. Its purpose is to reduce
the dimensionality of the embeddings (e.g., 1024 for ProtBERT) such that it can be vi-
sualized in either 2D or 3D. Here, we project embeddings onto 2D; Alternate Protocol 1
uses the same data and slight variations in parameters to 3D plots instead.

The final notebook constructed here is available at http://notebooks.bioembeddings.com
as deeploc_visualizations.ipynb to be downloaded and executed locally, or
executed directly online. The file also includes steps presented in Alternate Protocols 1
and 2.

The Support Protocol 1 explains how to integrate the final visualization options in a
configuration file as instruction for the pipeline to manage the entire process—from se-
quences to visualizations. This is useful to enable colleagues to reproduce all your results
from a few files.

Materials
Software

Jupyter Notebook (Kluyver et al., 2016)
Notebooks can be run locally, provided that the necessary dependencies are

installed (python 3.7 and the Jupyter suite). Installation steps are described
here: https:// jupyter.org/ install.

Notebooks can be run on Google Colaboratory (Bisong, 2019), without having
to install software locally, given an internet connection and a Google account.

Data

DeepLoc embeddings input files, which you either calculated through Basic
Protocol 2 or you can be download from
http://data.bioembeddings.com/deeploc/reduced_embeddings_file.h5

Annotations of properties/phenotypes of the proteins; for DeepLoc, subcellular
location annotations can be downloaded from
http://data.bioembeddings.com/deeploc/annotations.csv

1. Create new Jupyter Notebook on Google Colaboratory (a) or locally (b).

a. We suggest running the following through Google Colaboratory. To open a new
Google Colaboratory, navigate to: https://colab.research.google.com/#create=
true.

Dallago et al.
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b. If you prefer to execute the steps on your local computer, through the terminal,
navigate to the deeploc folder created previously, or to a new folder. Then, start
a Jupyter notebook through the terminal:

jupyter-notebook

This should open a browser window. From the top-right drop-down menu called
“new”, select “Python 3”.

2. Install bio_embeddings

a. On Google Colaboratory paste in the following code in the first code block:

!pip3 install -U pip
!pip3 install -U "bio-embeddings[all]"

Then, press the play button on the left of the code cell. Given some version dif-
ferences in Google Colaboratory, warnings may arise. These, however, can be ig-
nored.

b. If you already executed Protocol 1, you are set. Otherwise, open a new terminal
window and type:

pip install --user "bio-embeddings[all]"

3. Download files.

a. On Google Colaboratory, create a new code block (by pressing the “+ code” but-
ton). Then, paste in the following code:

!wget http://data.bioembeddings.com/deeploc/reduced_embeddings_file.h5
!wget http://data.bioembeddings.com/deeploc/annotations.csv

b. On your local computer, simply download the files listed in the Materials list for
this protocol and move them into the folder in which the notebook was started (see
step 1).

4. Import dependencies.
From here on, the execution steps are identical on Google Colaboratory and your
local Jupyter notebook. You will now import the functions that allow you to open
embedding files, reduce the dimensionality, and visualize scatter plots. To do so, in a
new code block, type and execute the following:

import h5py
import numpy as np
from pandas import read_csv, DataFrame
from bio_embeddings.utilities import QueryEmbeddingsFile
from bio_embeddings.project import umap_reduce
from bio_embeddings.visualize import render_scatter_plotly

5. Read annotations file.
Assume that the original FASTA file, for which you generated embeddings, was the
following:

>Q9H400-2
SEQVENCE
>P12962
SEQVVNCE
>P12686
MNQVENCE

Dallago et al.
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You can define a set of annotations for the sequences in this set as a CSV file, con-
taining minimally two columns called “identifier” and “label” such as:

identifier,label
Q9H400-2,Cell membrane
P12962,Cytoplasm
P12686,Mitochondrion

The identifiers have to match to the identifiers in the FASTA header of the protein se-
quences for which embeddings have been computed. They can, however, only contain
a subset of identifiers with respect to the embeddings.
You can now load the annotations.csv file which we have created based on
the DeepLoc data. These annotations contain experimentally validated subcellular
location in 10 classes. To load them into the notebook, execute the following in a new
code block:

annotations = read_csv('annotations.csv')

6. Read the embeddings file.
In a new code block, type and execute the following:

identifiers = annotations.identifier.values
embeddings = list()

with h5py.File('reduced_embeddings_file.h5', 'r') as embeddings_file:
embedding_querier = QueryEmbeddingsFile(embeddings_file)

for identifier in identifiers:
embeddings.append(embedding_querier.query_original_id(identifier))

This will store the embeddings in the “embeddings” list in the same order as the identifiers.
To access the embeddings, you can use a helper class called “QueryEmbeddingsFile”.
This class allows you to retrieve embeddings either using the identifier extracted from the
FASTA header (as done here, via the query_original_id function), or by using the
pipeline’s internal identifier for protein sequences. You can find more information about
these functions at https://docs.bioembeddings.com.

7. Project embeddings to 2D using UMAP (McInnes, Healy, & Melville, 2018).
In a new code block, type and execute the following:

options = {
'min_dist': .1,
'spread': 8,
'n_neighbors': 160,
'metric': 'euclidean',
'n_components': 2,
'random_state': 10

}
projected_embeddings = umap_reduce(embeddings, **options)

This code block will take some minutes to execute (4 min on Google Colaboratory), as
projecting the embeddings is a compute-intensive operation. Projecting embeddings onto
fewer dimensions is necessary because data in dimensions d>3 is very tricky to plot (and
even d = 3, i.e., 3D plots of scientific data, are often difficult to grasp quickly). RAW embed-
dings have much higher dimensions, e.g., d = 1024 dimensions for ProtBERT (Elnaggar
et al., 2020). In “options”, you can define UMAP parameters. These parameters can be
tuned to generate different visualizations, e.g., you could change the “metric” to “manhat-
tan”. To graphically see the effect of changing options, you may execute the steps from here
onward again. The “projected_embeddings” variable contains a Numpy (Harris Dallago et al.
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Table 1 Example of Merged Annotations and Projected Embeddings

Identifier Label Component_0 Component_1

Q9H400 Cell.membrane 2.474637 –8.919042

Q5I0E9 Cell.membrane 32.507015 10.355012

P63033 Cell.membrane 18.500378 –0.299981

Q9NR71 Cell.membrane 2.420154 18.161064

Q86XT9 Cell.membrane –4.937888 –1.767011

et al., 2020) matrix of size N×2, where N is the number of proteins for which there are
embeddings in the embedding file, while 2 is dictated by the “n_components” in “op-
tions” (number of output dimensions of the projection).

8. Merge projected embeddings and annotations.
In a new code block, type and execute the following:

projected_embeddings_dataframe = DataFrame(
projected_embeddings,
columns=["component_0", "component_1"],
index=identifiers

)
merged_annotations_and_projected_embeddings = annotations.join(

projected_embeddings_dataframe, on="identifier", how="left"
)

Here, you create a DataFrame (similar to a table) from the projected embeddings.
Rows are indexed by the “identifiers”, while the two columns contain the two
components of te projected embeddings. In other words: you are constructing a table
of coordinates for your protein sequences. Lastly, you merge these coordinates with
the annotations. You can inspect the first five rows of the dataframe by typing the
following into a new code block and executing it:

merged_annotations_and_projected_embeddings[:5]

This should resemble the content reported in Table 1.

9. Plot the protein space spanned by the projected embeddings
In a new code block, type and execute the following:

figure = render_scatter_plotly(merged_annotations_and_projected_embeddings)
figure.show()

This will display an interactive plot (of which a static screenshot is provided in Fig. 2).
Interactive plots make it possible to disentangle complex annotations/datasets, e.g., by
toggling the display of some annotations (click on the legend). Even more useful: zoom in
and out plots, especially when visualizing 3D plots.

BASIC
PROTOCOL 4

TRAIN A MACHINE LEARNING CLASSIFIER ON PROTEIN EMBEDDINGS

Basic Protocol 2 generated embeddings for proteins in DeepLoc (Almagro Armenteros
et al., 2017). Basic Protocol 3 visualized the projected embeddings in a 2D plot and anno-
tated the proteins in this 2D plot by colors signifying subcellular location. In the followingDallago et al.
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Figure 2 2D protein space drawn by projected DeepLoc embeddings. Points are projections of
embeddings of protein sequences in the DeepLoc set (Almagro Armenteros et al., 2017). Coloring
is provided according to their subcellular location. Of note: “Extracellular” proteins seem to be
particularly keen on forming a cluster, while proteins in other localizations barely separate into
groups inside a bigger cluster. The figure is available interactively at: http://data.bioembeddings.
com/figures/figure_2.html.

steps, you will use the embeddings generated through the pipeline and the location anno-
tations from DeepLoc to machine-learn the prediction of location from protein sequence
embeddings. Once trained, you can apply this prediction method to annotate/predict
location for any protein sequence. The simplest recipe to build a generic machine learning
model is as follows:

1. Divide data into train and test sets (these should be sequence-non-redundant with re-
spect to each other, i.e., no protein sequence in one should be more sequence-similar
than some threshold to any protein in the other; what this threshold is depends on your
task)

2. Split a subset from the train set to construct a validation set (non-redundant to split-off)
3. Evaluate some machine learning hyper-parameters using the validation set (e.g.,

which type of machine learning model—such as ANN, CNN, or SVM, what par-
ticular choice of parameters—such as number of hidden units/layers for ANN/CNN).
Construct a leaderboard (i.e., a table keeping track of the relative performance of all
the models/hyper-parameters).

4. Select the best model from the leaderboard, and evaluate on the test set (by NO
MEANS apply all models to the test set and pick the best; instead, it is essential to
choose the best using the validation set and to stick to that choice to avoid over-fitting).

5. Report performance for a diversity of relevant evaluation metrics for the final model
using the test set (include estimates for standard errors)

The following steps explore this recipe using sci-kit learn (Pedregosa et al., 2011). You
will produce a classifier which roughly separates the ten location classes from DeepLoc
(Almagro Armenteros et al., 2017). The objective of this protocol is not to produce
the best prediction method for subcellular location classification, which would require
more parameter testing and tuning! Instead, the objective is to showcase the ease of go-
ing from data to prediction method when using embeddings. The final notebook con-
structed here is available at http://notebooks.bioembeddings.com as downloadable file
called deeploc_machine_learning.ipynb.

Dallago et al.
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Materials

See Basic Protocol 3

1. Complete steps 1-5 of Basic Protocol 3.

2. Import additional dependencies.
Via a new code block, you will import a set of dependencies from the popular machine
learning library scikit-learn (Pedregosa et al., 2011) in order to train and evaluate the
machine learning model:

from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score

3. Split annotations into train and test sets

The first task for any supervised machine learning is the split of the data into training
and testing sets. The testing set (also referred to as “hold out set”) is used exclusively to
evaluate the performance of the final machine learning model. The training set serves the
optimization of the model and hyper-parameters.

In computational biology/bioinformatics, informed decisions on how to split data are piv-
otal, for example, by ascertaining that no protein in the training set has more than 20%
pairwise sequence identity (PIDE) to any protein in the test set (Reeb, Goldberg, Ofran,
& Rost, 2020). While packages such as scikit-learn (Pedregosa et al., 2011) include func-
tions to easily split data into train and test sets, they completely fail to account for do-
main knowledge such as the concept of homology or evolutionary connections relevant
to reduce redundancy between bio-sequences. Therefore, users of such packages have to
address these issues manually when starting a new project, or they will join the many who
produce overconfident methods.

DeepLoc annotations come with a column “set” which is either “train” or “test”. The
split into these two categories has been made such that any pair of sequences in train and
test share at most 30% PIDE. To split the data, execute the following block of code:

train_set = annotations[annotations.set == "train"]
test_set = annotations[annotations.set == "test"]

4. Load embeddings into train and test sets.
Once you have split the annotations into train and test sets, you need to create in-
put and output for the machine learning model. The input will be the sequence em-
beddings (in the following, “training_embeddings”), while the output will
be the subcellular location associated to those proteins (in the following, “train-
ing_labels”). In a new code block, type the following:

training_embeddings = list()
training_identifiers = train_set.identifier.values
training_labels = train_set.label.values

testing_embeddings = list()
testing_identifiers = test_set.identifier.values
testing_labels = test_set.label.values

with h5py.File('reduced_embeddings_file.h5', 'r') as embeddings_file:
embedding_querier = QueryEmbeddingsFile(embeddings_file)

for identifier in training_identifiers:
training_embeddings.append(embedding_querier.query_original_id(identifier))

for identifier in testing_identifiers:
testing_embeddings.append(embedding_querier.query_original_id(identifier))

Dallago et al.
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5. Define basic machine learning architecture and parameters to optimize
In a new code block, type and execute the following:

multilayerperceptron = MLPClassifier(
solver='lbfgs',
random_state=10,
max_iter=1000

)
parameters = {

'hidden_layer_sizes': [(30,), (20,15)]
}

This will create a basic neural network architecture (“multilayerperceptron”)
and a set of parameters that you want to test during parameter optimization. The ba-
sic architecture uses the "Limited-memory Broyden–Fletcher–Goldfarb–Shanno Algo-
rithm" solver (Saputro & Widyaningsih, 2017) and a maximum of 1000 training itera-
tions (max_iter). Using the “lbfgs” solver, maximum training iterations correspond to
how many embeddings the algorithm will maximally see before training is stopped. Train-
ing may automatically be stopped before the maximum number of iterations if the model
converges (in other words: if its validation error stays within a certain threshold). In the
DeepLoc set, there are more than ten thousand samples, so max_iter could be set to a
higher value, but for the purpose of this protocol, to have reasonable execution time, we
propose limiting the number of iterations to 1000.

The parameter that you will optimize is the number of hidden layers and the amount of
neurons in each layer. In one case, you will try a network with one hidden layer containing
30 neurons, while in the second case you will test a network with two hidden layers with
20 and 15 neurons, respectively.

6. Train classifiers and pick the best performing model.

Usually, this step is performed in various sub-steps, for example: first you define the num-
ber of training splits (e.g., Nsplit=3), which would give you data for training (optimization
of free parameters) and for cross-training/validation (optimization of hyper-parameters
and model choice). Then, you train Nsplit-1 (i.e., 2 for Nsplit=3) network variants de-
scribing each split, evaluate on the respective validation data, and finally select the net-
work performing best (on the cross-training/validation split). Luckily, all of these steps
can be summarized into three lines of code using sci-kit learn. For this example, we have
ignored homology/redundancy when splitting the data set for brevity, but in real-life ap-
plications, accounting for homology/redundancy when splitting is essential to obtain valid
models!

In a new block of code, write and execute the following:

classifiers = GridSearchCV(
multilayerperceptron,
parameters, cv=3,
scoring="accuracy"

)
classifiers.fit(training_embeddings, training_labels)
classifier = classifiers.best_estimator_

Note this code takes about 15 min to execute on Google Colab. No output is produced
during this time. Visual clues from the notebook assist you in understanding when the
computation is over. Another important note on scope: while you will obtain a classifier
that is roughly able to classify sequences in ten subcellular location compartments, your
method will not beat the state-of-the-art for this problem due to extensive development in
the field! The goal of this protocol is to give you the tools to build a classifier, as well as to
require little time to execute. If you want to obtain the best classifier, you will need to test
and tune more parameters, and especially consider more training iterations (as defined by
max_iter in the previous step). Dallago et al.
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7. Predict subcellular location for test set and calculate performance,
Lastly, to evaluate the performance of you final model, you predict the location for
all proteins in the test set and calculate accuracy as follows:

predicted_testing_labels = classifier.predict(testing_embeddings)
accuracy = accuracy_score(

testing_labels,
predicted_testing_labels

)

print(f"Our model has an accuracy of {accuracy:.2}")

The reported accuracy should be 0.72.

8. Optional: Embed a novel sequence and predict its subcellular location.
In this optional step, you generate the sequence embedding for an arbitrary sequence
and use the classifier developed in the previous steps to predict its subcellular location.
To do so, type and execute the following:

from bio_embeddings.embed import ProtTransBertBFDEmbedder

embedder = ProtTransBertBFDEmbedder()

sequence = "DDCGKLFSGCDTNADCCEGYVCRLWCKLDW"
per_residue_embedding = embedder.embed(sequence)
per_protein_embedding = embedder.reduce_per_protein(per_residue_embedding)
sequence_subcellular_prediction = classifier.predict([per_protein_embedding])[0]

print("The arbitrary sequence is predicted to be located in: "
f"{sequence_subcellular_prediction}")

Above, you import the “ProtTransBertBFDEmbedder” and initialize it. You
then define an amino acid sequence using the standard IUPAC alphabet. The se-
quence is then embedded per-residue (per_residue_embedding), and the per-
residue embedding is transformed to a per-protein embedding via a helper function
(per_protein_embedding). Finally, the per-protein embedding is used to predict
subcellular location through the classifier you developed, and the prediction (Extracellu-
lar) is printed to screen.

You may see a warning about “padding” appear in the output; you can ignore this as it
will not affect execution.

For scikit-learn the function “predict” expects a list of protein embeddings. This (usu-
ally helpful) feature implies that additional steps are required to predict for a single se-
quence, namely that first you have to put the embedding into a list. You can then grab the
prediction of the first (and only) item in the list, which will be the prediction of the arbitrary
sequence.

ALTERNATE
PROTOCOL 1

GENERATE 3D INSTEAD OF 2D VISUALIZATIONS

The following steps introduce minimal code changes with respect to the steps and code
outlined in Basic Protocol 3 to visualize in 3D instead of 2D. We assume that the code
from Basic Protocol 3 has been written in a Jupyter/Colab Notebook and highlight code
changes in orange. Visit the docs at https://docs.bioembeddings.com to find out more
about the functions of the bio_embeddings package.

The code from Basic Protocol 3 is available at http://notebooks.bioembeddings.com as
downloadable file called deeploc_visualizations.ipynb. It includes the steps
presented here in an alternate form.

Materials

See Basic Protocol 3Dallago et al.
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Figure 3 3D protein space drawn by projected DeepLoc embeddings. Points are projections of
embeddings of protein sequences in the DeepLoc set (Almagro Armenteros et al., 2017). Coloring
is provided according to their subcellular localizations. The 3D figure is best explored interactively:
http://data.bioembeddings.com/figures/figure_3.html.

1. Project embeddings onto 3D instead of onto 2D.

The first change to the previous steps requires only augmenting the number of components
UMAP will project embeddings to.

Take the code block written in Basic Protocol 3, step 7, and locate and change the
line:

'n_components': 2

to:

'n_components': 3

Then, re-run the code cell.

2. Import 3D scatter plot renderer instead of 2D.
Change the import of the visualization function from Basic Protocol 3, step 4, from:

from bio_embeddings.visualize import render_scatter_plotly

to:

from bio_embeddings.visualize import render_3D_scatter_plotly

and execute the code block.

3. Add a third component to the projected embeddings DataFrame.
Change the number of components in the projected DataFrame defined in B.asic Pro-
tocol 3, step 8 from:

columns=["component_0", "component_1"],
Dallago et al.
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to:

columns=["component_0", "component_1", "component_2"],

and execute the code block.

4. Swap the plotting function with the 3D variant:
Lastly, swap out the plotting function name in the code block created in Basic Protocol
3, step 9, from:

figure = render_scatter_plotly(

merged_annotations_and_projected_embeddings

)

to:

figure = render_3D_scatter_plotly(

merged_annotations_and_projected_embeddings

)

and execute the code block.

At this point, a 3D interactive plot (Fig. 3) will be displayed on your notebook.

ALTERNATE
PROTOCOL 2

VISUALIZE CLASSIFICATION INTO MEMBRANE/SOLUBLE INSTEAD OF
PROTEIN SUBCELLULAR LOCATION

The following steps introduce minimal code changes with respect to the steps and code
outlined in Basic Protocol 3 in order to visualize the classification into membrane/soluble
proteins as annotated in DeepLoc (Almagro Armenteros et al., 2017) instead of location.
We assume that the code from Basic Protocol 3 has been written up and highlights code
changes in orange.

The code from Basic Protocol 3 is available at http://notebooks.bioembeddings.com as
downloadable file called deeploc_visualizations.ipynb. It includes the steps
presented here in an alternate form.

Materials
Software and Hardware

See Basic Protocol 3

Data

DeepLoc solubility annotations: http://data.bioembeddings.com/deeploc/
solubility_annotations.csv

1. Download additional file solubility_annotations.csv.

a. On Google Colaboratory create a new code block (by pressing the “+ code” but-
ton). Then, paste in the following code:

!wget http://data.bioembeddings.com/deeploc/solubility_annotations.csv

Dallago et al.
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b. On your local computer, simply download the file listed in the Materials list for
this protocol and move into the folder in which the notebook was started (see Basic
Protocol 3, step 1).

2. Change the annotations file.
In the code block created in Basic Protocol 3, step 5, change the input file from:

annotations = read_csv('annotations.csv')

to:

annotations = read_csv('solubility_annotations.csv')

3. Re-run the subsequent code blocks.

Re-run every code block following the code block just changed. This will display a graph,
this time colored according to protein solubility, i.e., whether a protein is annotated as
membrane-bound, soluble or lacks an annotation).

SUPPORT
PROTOCOL

PUT EMBEDDING GENERATION AND SEQUENCE SPACE
VISUALIZATIONS TOGETHER IN ONE PIPELINE

Basic Protocol 3 presents an explorative approach towards producing protein-space visu-
alizations. In this Support Protocol, you will use the parameters chosen in Basic Protocol
3 to define a pipeline configuration file. These files allow reproducible workflows. You
will do so by extending the bio_embeddings configuration presented in Basic Protocol 2,
step 4, to also generate protein space visualizations. Noteworthy differences with previ-
ous files will be highlighted in orange.

Materials
Software and Hardware

See Basic Protocol 2

Data

DeepLoc FASTA file: http://data.bioembeddings.com/deeploc/
deeploc_data.fasta

DeepLoc subcellular location annotations: http://data.bioembeddings.com/
deeploc/annotations.csv

1. Execute steps 1 through 3 of Basic Protocol 2.

2. Download the annotations file into the project directory.
From the terminal (within the project folder):

wget http://data.bioembeddings.com/deeploc/annotations.csv

Alternatively, download the file using your browser (link in the Materials of this protocol),
and move it to the project directory.

3. Define a configuration file to embed, project and visualize protein sequences.
Similarly to Basic Protocol 2, step 4, we define a text file (config.yml) that contains
the following text:

Dallago et al.
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global:
sequences_file: deeploc_data.fasta
prefix: deeploc_embeddings
simple_remapping: True

prottrans_bert_embeddings:
type: embed
protocol: prottrans_bert_bfd
reduce: True
discard_per_amino_acid_embeddings: True

umap_projections:
type: project
protocol: umap
depends_on: prottrans_bert_embeddings
min_dist: 0.1
spread: 8
n_neighbors: 160
metric: euclidean
n_components: 2
random_state: 10

plotly_visualization:
type: visualize
protocol: plotly
depends_on: umap_projections
annotation_file: annotations.csv
display_unknown: False

The first part of this config (“global” and “prottrans_bert_embeddings”) are
almost identical to the config presented in Basic Protocol 2. The addition of the “dis-
card_per_amino_acid_embeddings” parameter tells the pipeline that we are
only interested in the per-protein embeddings (reduced_embeddings_file.h5), and
that the per-residue embeddings (embedding_file.h5) should not be stored on disk.
This will save significant storage space.

A stage (umap_projections) of type “project” that uses the protocol umap was
added. The “depends_on” directive tells the pipeline that the embeddings generated by
“prottrans_bert_embeddings” should be used for the project stage. We add the
same UMAP parameters as in Basic Protocol 3, step 7. This stage will output a DataFrame
of the projected embeddings (projected_embeddings.csv).

Finally, we use this data for a “visualize” type stage (by depending on the
umap_projections). We annotate the visualization using the annotation file called “an-
notations.csv”. Sequences without annotations (but that might be present in
the input FASTA file) will not be plotted (“display_unknown: False”). The
“plotly_visualization” stage will produce a file containing the 2D interactive
figure (figure.html).

4. Run the bio_embeddings pipeline.
What remains is to supply the configuration file to bio_embeddings and let the
pipeline execute the job. For that type into the terminal:

bio_embeddings -o config.yml

The “-o” option instructs the pipeline to overwrite a previous pipeline run at the same
prefix, which might have remained in the current project directory (deeploc) from the
previously executed Basic Protocol 2.

5. Locate the interactive figure file.

After the job has finished, you should see a “deeploc_embeddings” di-
rectory in your project directory. This directory will contain three subdirecto-
ries called: prottrans_bert_embeddings, umap_projections, and
plotly_visualization. Each directory contains the output of the cor-
responding stage. The newly created interactive figure will be stored in theDallago et al.
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“plotly_visualization” directory as “figure.html”. You can use a browser,
such as Safari, to open this figure. It should resemble Figure 2.

COMMENTARY

Background Information
Language Models (LMs) such as ELMo

(Peters et al., 2018), BERT (Devlin et al.,
2019), GPT-3 (Brown et al., 2020), and T5
(Raffel et al., 2020) improve over previous
methods for learning to embed text (Bo-
janowski, Grave, Joulin, & Mikolov, 2017;
Mikolov, Chen, Corrado, & Dean, 2013; Pen-
nington, Socher, & Manning, 2014) by clev-
erly modeling context (“apple” company vs.
fruit) and training on increasingly larger nat-
ural language corpora. They begin to suggest
large models from artificial intelligence (AI)
or machine learning (ML) to compete with
human experts, at least for some tasks (Man-
ning, 2011). They also help rising questions
about current benchmarks (Heinzerling, 2020;
McCoy, Pavlick, & Linzen, 2019) and the ex-
tent to which LMs truly understand language
(Bender & Koller, 2020). Despite potential
performance overestimates, LMs succeed to
effectively translate natural language best-
ing expert-based models, i.e., they captured
the meaning in text automatically (Pires,
Schlinger, & Garrette, 2019; Zhu et al., 2020).

Training LMs requires very large amounts
of intrinsically structured, sequential data,
making these approaches especially promis-
ing for ambitious attempts that try to automat-
ically understand the language of life proxied
by protein sequences (Heinzinger et al.,
2019). In fact, the amount of data available for
protein sequences is 500 times larger than the
largest NLP data sets such as Google’s Billion
Word data (Chelba et al., 2014; Steinegger &
Söding, 2018; Steinegger et al., 2019). With
the increasing degree to which the speed of
adding new protein sequences outpaces the
improvement in computer hardware, experi-
mental annotations—although also increasing
exponentially—cannot keep track with this
explosion. Therefore, the sequence-annotation
gap, i.e., the gap between the number of pro-
teins with known sequence and those with
known annotation, continues to rise.

In analogy to natural languages, protein
sequences are formed by tokens (proteins:
amino acids, text: words) that have in-
dividual and context-dependent meaning
through long- and short-range dependen-
cies (proteins: inter-residue bonds, text:
sentences). Thus, similarly to natural lan-
guage, LMs trained on protein sequences

(Alley, Khimulya, Biswas, AlQuraishi, &
Church, 2019; AlQuraishi, 2019; Armenteros,
Johansen, Winther, & Nielsen, 2020;
Elnaggar et al., 2020; Heinzinger et al.,
2019; Lu, Zhang, Ghassemi, & Moses, 2020;
Madani et al., 2020; Min, Park, Kim, Choi,
& Yoon, 2020; Rao et al., 2019; Rives et al.,
2019) capture important meaning of the
protein sequence language, as demonstrated
by their ability to predict aspects of protein
structure and function. For instance, SeqVec
(Heinzinger et al., 2019) trained ELMo (Pe-
ters et al., 2018) on UniRef50 (The UniProt
Consortium, 2019) and showed that the LM’s
representations clustered protein sequences
by function (Heinzinger et al., 2019). In
another analogy to NLP, protein LMs may
be fine-tuned on specialized sequence sets
(analogy to natural language: legal text vs.
wikipedia articles) to encode for different
protein properties (Armenteros et al., 2020).

Previously, machine-learning methods in
computational biology leveraged data-driven
protein representations such as substitution
matrices, capturing biophysical features
(Henikoff & Henikoff, 1992), family-specific
profiles (Stormo et al., 1982), or evolutionary
couplings (Morcos et al., 2011) that capture
evolutionary features. Now, embeddings pro-
vide competitive results for many prediction
tasks (Littmann et al., 2021; Rao et al., 2019,
2020). Protein LMs may even be combined
with other representations to gain even better
performance (Rives et al., 2019; Villegas-
Morcillo et al., 2020). Protein sequence
embeddings are generated in a fraction of the
time it takes to generate MSAs (Heinzinger
et al., 2019), and can thus be used on entire
proteomes, where MSA-based approaches
might be computationally prohibitive or even
unavailable (e.g., small protein families).

The bio_embeddings pipeline, which is
used throughout the manuscript to gener-
ate and leverage protein embeddings, is
targeted to computational biologists and
aims to abstract, via a uniform and stan-
dardized interface, the use of protein LMs.
Embeddings can be used to train machine
learning algorithms using “transfer learning”
(Basic Protocol 4; Raina, Battle, Lee, Packer,
& Ng, 2007), or for analytical purposes. The
pipeline enables visual analysis of sequence
sets by drawing protein spaces spawned by Dallago et al.
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their embeddings (Basic Protocol 3). Users
can create representations from a growing
diversity of protein LMs, which at the time
of writing include: SeqVec (Heinzinger et al.,
2019), UniRep (Alley et al., 2019), ESM
(Rives et al., 2019), ProtBERT, ProtALBERT,
ProtXLNet, ProtT5 (Elnaggar et al., 2020),
CPCProt (Lu et al., 2020), PLUS-RNN (Min
et al., 2020). Via the “extract” stage, the
pipeline incorporates supervised and unsu-
pervised approaches for protein embeddings
to further enhance analytical potential out-of-
the-box. For instance, users can extract sec-
ondary structure in 3- and 8-states for embed-
dings from SeqVec (Heinzinger et al., 2019)
and ProtBert (Elnaggar et al., 2020), or trans-
fer GO annotations using embeddings of any
available LM (Littmann et al., 2021). Pipeline
runs are reproducible, as configurations are
defined through files, and the output is stored
in easily exchangeable formats, e.g., CSVs,
FASTA, and HDF5 (The HDF Group, 2000).

For researchers contributing new protein
LMs, bio_embeddings can provide a uni-
fied interface to distribute their work to the
community, requiring minimal changes for
pipeline consumers to make use of new pro-
tein LMs. For researchers contributing down-
stream uses of protein LMs [e.g., for the
visualization of attention maps (Vig et al.,
2020), which are most closely related to pro-
tein contact maps, or for the alignment of
protein sequences (Morton et al., 2020)], the
bio_embeddings pipeline provides a flexible
approach to incorporate their work and di-
rectly extends it to all the LMs supported
by bio_embeddings. In the future, as we ex-
pect more protein LMs to be developed, the
bio_embeddings pipeline could be combined
with the TAPE (Rao et al., 2019) evaluation
system to provide an intuition for protein LM
researchers about the best use of their new rep-
resentations.

Critical Parameters
We strongly encourage users interested in

generating their own sequence embeddings to
do so on GPU-equipped machines, where the
GPUs have at least 4 GB of vRAM and sup-
port CUDA® 11.0. While it is possible to
generate embeddings via CPU computing, the
slowdown with respect to GPU computing is
significant and prohibitive for large sequence
sets.

Differences in LM choice, sequence sets or
parameters (e.g., UMAP) may lead to signif-
icantly different results than discussed in the
protocols. While trying out the above steps on

your own datasets is the ultimate goal, we en-
courage users to first try to execute the steps
as laid out above to get a sense of the baseline
behavior.

Troubleshooting
If you experience issues when installing

the bio_embedding package, or when
executing the steps laid out above, you
may want to try to restart the Google Colab,
or, if you are running the code locally, create a
new python environment [e.g., by using Ana-
conda (“Anaconda Software Distribution,”
2020)]. In our experience, the most common
issues are caused by installation problems, or
limited computational resources. To address
the former, you might want to consider using
docker instead of python (this is available at
the source code, see “Internet Resources”). To
address the latter, you might want to discuss
solutions with your local research computing
facilities or try an online service (see “Internet
Resources”).

Understanding Results

Basic Protocol 1
Through the steps outlined in this protocol,

you generated an interactive plot of about 100
protein sequences with annotations of disorder
content (either presenting high or low disorder
content).

Basic Protocol 2
Through the steps outlined in this

protocol, you generated embeddings
for amino acids in sequences (embed-
dings_file.h5) and for sequences (re-
duced_embeddings_file.h5) from the
DeepLoc sequence set. These files can be used
on per-residue tasks (e.g., predict secondary
structure) or per-protein tasks (e.g., predict
subcellular location).

Basic Protocol 3
Through the steps outlined in this protocol,

you generated interactive plots of sequence
embeddings. You used color in plots to high-
light annotated subcellular localization (from
DeepLoc), and could test out different param-
eter choices (via Alternate Protocol 1) and
annotations (via Alternate Protocol 2). You
learned how to incorporate these steps in a
bio_embeddings pipeline file to enable other
researchers to reproduce your results (via the
Support Protocol).Dallago et al.
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Basic Protocol 4
Through the steps outlined in this protocol,

you trained a neural network on embeddings
to predict subcellular localization of sequence
embeddings.

Time Considerations

Basic Protocol 1
On a 2016 MacBook Pro with 16 GB of

RAM, executing the pipeline took approxi-
mately 3 min. Considering installation of re-
quired software and download of necessary
files, the overall execution time of the proto-
col should not exceed 20 min.

Basic Protocol 2
On an Nvidia 1080 GPU equipped with 8

GB of vRAM, embedding the whole DeepLoc
dataset took ∼30 min. On a CPU (Intel i7-
6700, 64 GB system RAM), embedding the
sampled DeepLoc set took ∼2 min, while em-
bedding the whole set took approximately 8 hr
and 40 min. Executing the steps, not consider-
ing computation time, may take up to 30 min.

Basic Protocol 3
On Google Colab, the UMAP projec-

tion step (the most computationally expensive
step) takes about 10 min. Writing the code and
executing the steps, considering computation
time, may take up to 1 hr.

Basic Protocol 4
On Google Colab, training various classi-

fiers via grid search (the most computationally
expensive step) takes about 15 min. Writing
the code and executing the steps, considering
computation time, may take up to 1 hr.
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5.3 PREDICTPROTEIN-PREDICTING PROTEIN STRUCTURE AND FUNCTION FOR 29 

YEARS 

Summary. Since its 1992 launch, PredictProtein (https://predictprotein.org/) has been a one-stop 

online resource for protein analysis. In 2020, for an average of 3000 monthly users, PredictProtein 

combined over 13 tools into a single resource. From just an input protein sequence, the server 

provides online visualizations of multiple sequence alignments (MSAs), predictions of protein 

structure (secondary structure, solvent accessibility, transmembrane segments, disordered 

regions, protein flexibility, and disulfide bridges) and function (variant effect, GO terms, subcellular 

localization, and protein-, RNA-, and DNA binding sites). By additionally providing computable 

artifacts (via programmatic access), the server caters the needs of computational and 

experimental biologists alike. Offline use of PredictProtein tools is enabled via an omni-docker 

container: quickly installed on single machines and clusters. Since the previous major update in 

2014, PredictProtein’s infrastructure was enhanced to offer more reliable execution, more storage 

space and decreased runtime for predictions. Runtime was also cut four-fold by sourcing 

alignment generation to MMseqs2 (M Mirdita et al., 2021). Usability was improved via new UI 

elements (Watkins et al., 2017). Prediction methods for DNA-, RNA- and protein binding and GO 

annotations have been replaced with revised methods (Qiu et al., 2020; Littmann, Heinzinger, 

Dallago, Olenyi, et al., 2021). ProtT5-sec, an alternative secondary structure prediction method 

based on cutting-edge Deep Learning techniques (Elnaggar et al., 2021), was integrated side-by-

side to evolution-based RePROF. The PredictProtein server offers access to a vast range of 

accurate predictors, many topping the leaderboards even after a decade, with new recently 

integrated methods to boost the breadth of available sequence features and improve accuracy on 

dated methods. 

 

Relevance. PredictProtein has served users with predictions of protein properties for almost 30 

years. Its relevance to the field and to this thesis are manyfold: from providing landmark solutions 

to characterize proteins, pushing the boundaries of “known” sequence space, to integrating 

intuitive visualizations to simplify interpretation of complex machine learning predictions for non-

experts. The most significant scientific update in the 2021 edition of PredictProtein was the 

integration of cutting edge pLM models, on the one hand cementing the foundation to their use 

for the broader community, on the other hand, signaling a shift in how computational predictions 

of proteins are used. While previous models focused mainly on predicting attributes of proteins, 

e.g., subcellular localization, through embeddings computational biologists can access the 

underlying representation of proteins, enabling custom analyses of proteins from a high 

dimensional embedding without categorization into narrow, supervised ontologies. 
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ABSTRACT

Since 1992 PredictProtein (https://predictprotein.
org) is a one-stop online resource for protein se-
quence analysis with its main site hosted at the Lux-
embourg Centre for Systems Biomedicine (LCSB)
and queried monthly by over 3,000 users in 2020.
PredictProtein was the first Internet server for pro-
tein predictions. It pioneered combining evolution-

ary information and machine learning. Given a pro-
tein sequence as input, the server outputs multiple
sequence alignments, predictions of protein struc-
ture in 1D and 2D (secondary structure, solvent
accessibility, transmembrane segments, disordered
regions, protein flexibility, and disulfide bridges)
and predictions of protein function (functional ef-
fects of sequence variation or point mutations, Gene
Ontology (GO) terms, subcellular localization, and

*To whom correspondence should be addressed. Tel: +49 289 17 811; Email: christian.dallago@tum.de
Correspondence may also be addressed to Burkhard Rost. Email: assistant@rostlab.org
†The authors wish it to be known that, in their opinion, the first four authors should be regarded as joint First Authors.

C⃝ The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/W

1/W
535/6276913 by guest on 23 M

ay 2022



Christian Dallago 

 90 

W536 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

protein-, RNA-, and DNA binding). PredictProtein’s
infrastructure has moved to the LCSB increasing
throughput; the use of MMseqs2 sequence search
reduced runtime five-fold (apparently without lower-
ing performance of prediction methods); user inter-
face elements improved usability, and new predic-
tion methods were added. PredictProtein recently in-
cluded predictions from deep learning embeddings
(GO and secondary structure) and a method for the
prediction of proteins and residues binding DNA,
RNA, or other proteins. PredictProtein.org aspires
to provide reliable predictions to computational and
experimental biologists alike. All scripts and meth-
ods are freely available for offline execution in high-
throughput settings.

GRAPHICAL ABSTRACT

INTRODUCTION

The sequence is known for far more proteins (1) than ex-
perimental annotations of function or structure (2,3). This
sequence-annotation gap existed when PredictProtein (4,5)
started in 1992, and has kept expanding ever since (6).
Unannotated sequences contribute crucial evolutionary in-
formation to neural networks predicting secondary struc-
ture (7,8) that seeded PredictProtein (PP) at the European
Molecular Biology Laboratory (EMBL) in 1992 (9), the
first fully automated, query-driven Internet server provid-
ing evolutionary information and structure prediction for
any protein. Many other methods predicting aspects of pro-
tein function and structure have since joined under the PP
roof (4,5,10) now hosted by the Luxembourg Centre of Sys-
tems Biomedicine (LCSB).

PP offers an array of structure and function predictions
most of which combine machine learning with evolutionary
information; now enhanced by a faster alignment algorithm
(11,12). A few prediction methods now also use embeddings
(13,14) from protein Language Models (LMs) (13–18). Em-
beddings are much faster to obtain than evolutionary infor-
mation, yet for many tasks, perform almost as well, or even
better (19,20). All PP methods join at PredictProtein.org
with interactive visualizations; for some methods, more ad-
vanced visualizations are linked (21–23). The reliability of
PredictProtein, its speed, the continuous integration of well-
validated, top methods, and its intuitive interface have at-
tracted thousands of researchers over 29 years of steady op-
eration.

MATERIALS AND METHODS

PredictProtein (PP) provides

multiple sequence alignments (MSAs) and position-specific
scoring matrices (PSSMs) computed by a combination
of pairwise BLAST (24), PSI-BLAST (25), and MM-
seqs2 (11,12) on query vs. PDB (26) and query versus
UniProt (1). For each residue in the query, the following
per-residue predictions are assembled: secondary structure
(RePROF/PROFsec (5,27) and ProtBertSec (14)); solvent
accessibility (RePROF/PROFacc); transmembrane helices
and strands (TMSEG (28) and PROFtmb (29)); protein dis-
order (Meta-Disorder (30)); backbone flexibility (relative
B-values; PROFbval (31)); disulfide bridges (DISULFIND
(32)); sequence conservation (ConSurf/ConSeq (33–36));
protein-protein, protein-DNA, and protein-RNA binding
residues (ProNA2020 (3)); PROSITE motifs (37); effects
of sequence variation (single amino acid variants, SAVs;
SNAP2 (38)). For each query per-protein predictions in-
clude: transmembrane topology (TMSEG (28)); binary
protein-(DNA|RNA|protein) binding (protein binds X or
not; ProNA2020 (3)); Gene Ontology (GO) term predic-
tions (goPredSim (19)); subcellular localization (LocTree3
(39)); Pfam (40) domain scans, and some biophysical fea-
tures. Under the hood, PP computes more results (SOM:
PredictProtein Methods; Supplementary Table S1), either
as input for frontend methods, or for legacy support.

New: goPredSim embedding-based transfer of Gene Ontol-
ogy (GO)

goPredSim (19) predicts GO terms by transferring anno-
tations from the most embedding-similar protein. Embed-
dings are obtained from SeqVec (13); similarity is estab-
lished through the Euclidean distance between the embed-
ding of a query and a protein with experimental GO annota-
tions. Replicating the conditions of CAFA3 (41) in 2017, go-
PredSim achieved Fmax values of 37 ± 2%, 52 ± 2% and 58
± 2% for BPO (biological process), MFO (molecular func-
tion), and CCO (cellular component), respectively (41,42).
Using Gene Ontology Annotation (GOA) (43,44) to test
296 proteins annotated after February 2020, goPredSim ap-
peared to reach even slightly higher values that were con-
firmed by CAFA4 (45).

New: ProtBertSec secondary structure prediction

ProtBertSec predicts secondary structure in three states (he-
lix, strand, other) using ProtBert (14) embeddings derived
from training on BFD with almost 3 × 109 proteins (6,46).
On a hold-out set from CASP12, ProtBertSec reached a
three-state per-residue accuracy of Q3 = 76 ± 1.5% (47).
Although below the state-of-the-art (NetSurfP-2.0 (48) at
82%), this method performed on-par with other MSA-
based methods, despite itself not using MSAs.

New: ProNA2020 protein–protein, protein–RNA and
protein–DNA

ProNA2020 (3) predicts whether or not a protein interacts
with other proteins, RNA or DNA (binary), and if so, where
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Figure 1. Predictions for SARS-CoV-2 Nucleoprotein (NCAP SARS2). Underneath the interactive slider at the top: RePROF and ProtBertSec secondary
structure (blue: helix; purple: strand; orange: other); Meta-Disorder intrinsically disordered regions (purple); ProNA2020 RNA-binding residues (low
confidence: blue; medium confidence: purple). goPredSim transfers of GeneOntology (GO) terms based on embedding similarity (lower left: CCO; lower
right: BPO & MFO). SNAP2 predicts the effect of point-mutations on function for the RNA-binding region from I84 to D98 (bottom-center; black: native
residue). Link: predictprotein.org/visual results?req id=$1$nAmulUQY$FRPFaP8NTqLW9DzdlTG3B/.

it binds (which residues). The binary per-protein predictions
rely on homology and machine learning models employ-
ing profile-kernel SVMs (49) and on embeddings from an
in-house implementation of ProtVec (50). Per-residue pre-
dictions (where) use simple neural networks due to data
shortage (51–53). ProNA2020 correctly predicted 77 ± 1%
of the proteins binding DNA, RNA or protein. In proteins
known to bind other proteins, RNA or DNA, ProNA2020
correctly predicted 69 ± 1%, 81 ± 1% and 80 ± 1% of bind-
ing residues, respectively.

New: MMseqs2 speedy evolutionary information

Most time-consuming for PP was the search for related pro-
teins in ever growing databases. MMseqs2 (11) finds related
sequences blazingly fast and seeds a PSI-BLAST search
(25). The query sequence is sent to a dedicated MMseqs2
server that searches for hits against cluster representatives
within the UniClust30 (54) and PDB (26) reduced to 70%
pairwise percentage sequence identity (PIDE). All hits and
their respective cluster members are turned into a MSA and
filtered to the 3000 most diverse sequences.

WEB SERVER

Frontend and user interface (UI)

Users query PredictProtein.org by submitting a protein se-
quence. Results are available in seconds for sequences that
had been submitted recently (cf. PPcache next section), or
within up to 30 min if predictions are recomputed. Per-
residue predictions are displayed online via ProtVista (55),

which allows to zoom into any sequential protein region
(Supplementary Figure S1), and are grouped by category
(e.g. secondary structure), which can be expanded to display
more detail (e.g. helix, strand, other). On the results page,
links to visualize MSAs through AlignmentViewer (56) are
available. More predictions can be accessed through a menu
on the left, e.g. Gene Ontology Terms, Effect of Point Muta-
tions and Subcellular Localization. Prediction views include
references and details of outputs, as well as rich visualiza-
tions, e.g. GO trees for GO predictions and cell images with
highlighted predicted locations for subcellular localization
predictions (57).

PPcache, backend and programmatic access

The PP backend lives at LCSB, allowing for up to 48 par-
allel queries. Results are stored on disc in the PPcache (5).
Users submitting sequences for which results were over the
last two years obtain results immediately. Using the bio-
embeddings pipeline (58), the PPcache is enriched by em-
beddings and embedding-based predictions on the fly. For
all methods displayed on the frontend, JSON files compli-
ant with ProtVista (55) are available via REST APIs (SOM:
Programmatic access), and are in use by external services
such as the protein 3D structure visualization suite Aquaria
(21,23) and by MolArt (22).

PredictProtein is available for local use

All results displayed on and downloadable from PP are
available through Docker (59) and as source code for local
and cloud execution (available at github.com/rostlab).
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Figure 2. Experimental and predicted RNA-binding residues for
NCAP2 SARS2. Predicted (via ProNA2020, in cyan, panels A and C) and
observed (within 5Å, in magenta, panels B and D) RNA-binding residues
for the SARS-CoV-2 nucleoprotein (gray) complexed with a 10-mer
ssRNA (orange), PDB structure 7ACT (61). Two-third of the predictions
are correct (precision = 0.73, recall = 0.20), which is around the expected
average performance reported by ProNA2020. The important sequence
consecutive central strand and loop are predicted well, while several
short sequence segments that are far away in sequence space but close
in structure space are missed, which is expected as ProNA2020 has no
notion of 3D structure, i.e., cannot identify ‘binding sites’. Panels A and
B show a different orientation than panels C and D.

USE CASE

We demonstrate PredictProtein.org tools through
predictions of the novel coronavirus SARS-CoV-2
(NCBI:txid2697049) nucleoprotein (UniProt identifier
P0DTC9/NCAP SARS2; Figure 1; SOM: Use Case; Sup-
plementary Figure S2). NCAP SARS2 has 419 residues
and interacts with itself (experimentally verified). Sequence
similarity and automatic assignment via UniRule (60)
suggest NCAP is RNA-binding (binding with the viral
genome), binding with the membrane protein M (UniProt
identifier P0DTC5/VME1 SARS2), and is fundamental
for virion assembly. goPredSim (19) transferred GO terms
from other proteins for MFO (RNA-binding; GO:0003723;
ECO:0000213) and CCO (compartments in the host
cell and viral nucleocapsid; GO:0019013; GO:0044172;
GO:0044177; GO:0044220; GO:0030430; ECO:0000255)
matching annotations found in UniProt (1). While it missed
the experimentally verified MFO term identical protein
binding (GO:0042802), goPredSim predicted protein folding
(GO:0006457) and protein ubiquitination (GO:0016567)
suggesting the nucleoprotein to be involved in biolog-
ical processes requiring protein binding. ProNA2020
(3) predicts RNA-binding regions, the one with highest
confidence between I84 (Isoleucine at position 84) and
D98 (Aspartic Acid at 98) (protein sequence in SOM: Use
Case). While high resolution experimental data on binding
is not available, an NMR structure of the SARS-CoV-2 nu-
cleocapsid phosphoprotein N-terminal domain in complex

with 10mer ssRNA (PDB identifier 7ACT (61)) supports
the predicted RNA-binding site (Figure 2). Additionally,
SNAP2 (38) predicts single amino acid variants (SAVs)
in that region to likely affect function, reinforcing the
hypothesis that this is a functionally relevant site. Although
using different input information (evolutionary vs. embed-
dings), RePROF (5) and ProtBertSec (14) both predict an
unusual content exceeding 70% non-regular (neither helix
nor strand) secondary structure, suggesting that most of
the nucleoprotein might not form regular structure. This is
supported by Meta-Disorder (30) predicting 53% overall
disorder. Secondary structure predictions match well high-
resolution experimental structures of the nucleoprotein
not in complex (e.g., PDB 6VYO (62); 6WJI (63)). Both
secondary structure prediction methods managed to zoom
into the ordered regions of the protein and predicted e.g.,
the five beta-strands that are formed within the sequence
range I84 (Isoleucine) to A134 (Alanine), and the two
helices formed within the sequence range spanned from
F346 (Phenylalanine) to T362 (Tyrosine).

CONCLUSION

For almost three decades (preceding Google) PredictPro-
tein (PP) has been offering predictions for proteins. PP is
the oldest prediction Internet server, online for 6-times as
long as most other servers (64–66). It pioneered combining
machine learning with evolutionary information and mak-
ing predictions freely accessible online. While the sequence-
annotation gap continues to grow, the sequence-structure
gap might be bridged in the near future (67). For the time
being, servers such as PP, providing a one-stop solution to
predictions from many sustained, novel tools are needed.
Now, PP is the first server to offer fast embedding-based
predictions of structure (ProtBertSec) and function (go-
PredSim). By slashing runtime for PSSMs from 72 to 4 min
through MMseqs2 and better LCSB hardware, PP also de-
livers evolutionary information-based predictions fast! In-
stantaneously if the query is in the precomputed PPcache.
For heavy use, the offline Docker containers provide pre-
dictors out-of-the-box. At no cost to users, PredictProtein
offers to quickly shine light on proteins for which little is
known using well validated prediction methods.

DATA AVAILABILITY

Freely accessible webserver PredictProtein.org; Source and
docker images: github.com/rostlab.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs. Nucleic Acids
Res., 25, 3389–3402.

26. Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N.,
Weissig,H., Shindyalov,I.N. and Bourne,P.E. (2000) The Protein
Data Bank. Nucleic Acids Res., 28, 235–242.

27. Rost,B. (2001) Protein secondary structure prediction continues to
rise. J. Struct. Biol., 134, 204–218.

28. Bernhofer,M., Kloppmann,E., Reeb,J. and Rost,B. (2016) TMSEG:
novel prediction of transmembrane helices. Proteins, 84, 1706–1716.

29. Bigelow,H. and Rost,B. (2006) PROFtmb: a web server for
predicting bacterial transmembrane beta barrel proteins. Nucleic
Acids. Res., 34, W186–W188.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/W

1/W
535/6276913 by guest on 23 M

ay 2022



Christian Dallago 

 94 

 

W540 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

30. Schlessinger,A., Punta,M., Yachdav,G., Kajan,L. and Rost,B. (2009)
Improved disorder prediction by combination of orthogonal
approaches. PLoS One, 4, e4433.

31. Schlessinger,A., Yachdav,G. and Rost,B. (2006) PROFbval: predict
flexible and rigid residues in proteins. Bioinforma. Oxf. Engl., 22,
891–893.

32. Ceroni,A., Passerini,A., Vullo,A. and Frasconi,P. (2006)
DISULFIND: a disulfide bonding state and cysteine connectivity
prediction server. Nucleic Acids Res., 34, W177–W181.

33. Berezin,C., Glaser,F., Rosenberg,J., Paz,I., Pupko,T., Fariselli,P.,
Casadio,R. and Ben-Tal,N. (2004) ConSeq: the identification of
functionally and structurally important residues in protein
sequences. Bioinforma. Oxf. Engl., 20, 1322–1324.

34. Ashkenazy,H., Erez,E., Martz,E., Pupko,T. and Ben-Tal,N. (2010)
ConSurf 2010: calculating evolutionary conservation in sequence
and structure of proteins and nucleic acids. Nucleic Acids Res., 38,
W529–W533.

35. Celniker,G., Nimrod,G., Ashkenazy,H., Glaser,F., Martz,E.,
Mayrose,I., Pupko,T. and Ben-Tal,N. (2013) ConSurf: using
evolutionary data to raise testable hypotheses about protein function.
Isr. J. Chem., 53, 199–206.

36. Ashkenazy,H., Abadi,S., Martz,E., Chay,O., Mayrose,I., Pupko,T.
and Ben-Tal,N. (2016) ConSurf 2016: an improved methodology to
estimate and visualize evolutionary conservation in macromolecules.
Nucleic Acids Res., 44, W344–W350.

37. Sigrist,C.J.A., de Castro,E., Cerutti,L., Cuche,B.A., Hulo,N.,
Bridge,A., Bougueleret,L. and Xenarios,I. (2013) New and
continuing developments at PROSITE. Nucleic Acids Res., 41,
D344–347.

38. Hecht,M., Bromberg,Y. and Rost,B. (2015) Better prediction of
functional effects for sequence variants. BMC Genomics, 16 (Suppl
8), S1.

39. Goldberg,T., Hecht,M., Hamp,T., Karl,T., Yachdav,G., Ahmed,N.,
Altermann,U., Angerer,P., Ansorge,S., Balasz,K. et al. (2014)
LocTree3 prediction of localization. Nucleic Acids Res., 42,
W350–W355.

40. El-Gebali,S., Mistry,J., Bateman,A., Eddy,S.R., Luciani,A.,
Potter,S.C., Qureshi,M., Richardson,L.J., Salazar,G.A., Smart,A.
et al. (2019) The Pfam protein families database in 2019. Nucleic
Acids Res., 47, D427–D432.

41. Zhou,N., Jiang,Y., Bergquist,T.R., Lee,A.J., Kacsoh,B.Z.,
Crocker,A.W., Lewis,K.A., Georghiou,G., Nguyen,H.N.,
Hamid,M.N. et al. (2019) The CAFA challenge reports improved
protein function prediction and new functional annotations for
hundreds of genes through experimental screens. Genome Biol., 20,
244.

42. Jiang,Y., Oron,T.R., Clark,W.T., Bankapur,A.R., D’Andrea,D.,
Lepore,R., Funk,C.S., Kahanda,I., Verspoor,K.M., Ben-Hur,A.
et al. (2016) An expanded evaluation of protein function prediction
methods shows an improvement in accuracy. Genome Biol., 17, 184.

43. Camon,E., Magrane,M., Barrell,D., Lee,V., Dimmer,E., Maslen,J.,
Binns,D., Harte,N., Lopez,R. and Apweiler,R. (2004) The Gene
Ontology Annotation (GOA) Database: sharing knowledge in
Uniprot with Gene Ontology. Nucleic Acids Res., 32, D262–D266.

44. Huntley,R.P., Sawford,T., Mutowo-Meullenet,P., Shypitsyna,A.,
Bonilla,C., Martin,M.J. and O’Donovan,C. (2015) The GOA
database: gene ontology annotation updates for 2015. Nucleic Acids
Res., 43, D1057–D1063.

45. El-Mabrouk,N. and Slonim,D.K. (2020) ISMB 2020 proceedings.
Bioinformatics, 36, i1–i2.

46. Steinegger,M., Mirdita,M. and Söding,J. (2019) Protein-level
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5.4 FLIP: BENCHMARK TASKS IN FITNESS LANDSCAPE INFERENCE FOR PROTEINS 

Summary. While representation learning approaches like pLMs could unlock protein design 

applications, no benchmark assessing their native ability to do so existed. Developing sets probing 

the ability of machine learning to design proteins is challenging, as some proteins are multi-

purpose molecules, and current biological experiments often focus on single aspects of selected 

proteins. While systematic approaches like CASP and CAFA, assessing structure and function 

systematically respectively exist, they do not target metrics relevant for protein engineering. 

Fitness Landscape Inference for Proteins (FLIP) is a curated set of several biological experiments 

aimed at probing the ability of machine representations of proteins to support protein design 

campaigns. To achieve this, several splits from three experimental datasets were devised, testing 

the ability of protein representations to emulate typical experimental protein design settings, e.g., 

extrapolative (predicting the effect of multiple changes along the protein sequence by knowing 

the effect of few changes) and low-resource (predicting landscapes from only a few labelled 

samples). The landscape splits come with data standardization, enabling quick adoption in 

computational pipelines, and enabling easy probing for new representation models. 

 

Relevance. While probing pLMs’ ability to characterize protein sequences by predicting on 

traditionally accepted tasks such as structure and well-defined aspect of function (e.g., subcellular 

localization (Stärk et al., 2021)) may support their validity, these annotations are sharp cutouts of 

the “continuous” nature of protein function that may need to be captured to design proteins. 

Embeddings from pLMs encode continuous representations that could potentially correlate with 

the continuous nature of function. One attempt to correlate these realities is to predict mutational 

landscapes using embeddings (Marquet et al., 2021). However, probing purely on deep mutational 

scanning (DMS) sets limited to mutational effects of single residue substitutions one at the time 

may not entirely characterize more complex mutational neighborhoods from a wildtype sequence. 

Experiments introducing a random number of residue substitutions offer a complementary 

approach to DMS sets. FLIP contributes by introducing four datasets for the assessment of protein 

representations to stack up to the continuous nature of protein function. Two of the three datasets 

focused on mutational landscapes from a wildtype sequence to mutated versions of it with up to 

32 changes. The last dataset focused on protein thermal stability, characterizing the turning 

degree at which proteins start to denature (i.e., become ineffective). 

 

Contribution. I am one of two principal authors of this paper. I contributed conceptualization, 

implementation, and writing. 

 

Copyright notice. The original publication is available in open access at 

openreview.net/forum?id=p2dMLEwL8tF and in the following. The copyright notice is attached in 

this appendix after the manuscript. 
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Abstract

Machine learning could enable an unprecedented level of control in protein engi-
neering for therapeutic and industrial applications. Critical to its use in designing
proteins with desired properties, machine learning models must capture the protein
sequence-function relationship, often termed fitness landscape. Existing bench-
marks like CASP or CAFA assess structure and function predictions of proteins,
respectively, yet they do not target metrics relevant for protein engineering. In this
work, we introduce Fitness Landscape Inference for Proteins (FLIP), a benchmark
for function prediction to encourage rapid scoring of representation learning for
protein engineering. Our curated tasks, baselines, and metrics probe model gener-
alization in settings relevant for protein engineering, e.g. low-resource and extrap-
olative. Currently, FLIP encompasses experimental data across adeno-associated
virus stability for gene therapy, protein domain B1 stability and immunoglobulin
binding, and thermostability from multiple protein families. In order to enable ease
of use and future expansion to new tasks, all data are presented in a standard format.
FLIP scripts and data are freely accessible at https://benchmark.protein.properties.

1 Introduction

Proteins are life’s workhorses, efficiently and precisely performing complex tasks under a wide variety
of conditions. This combination of versatility and selectivity makes them not only critical to life, but
also to a myriad of human-designed applications. Engineered proteins play increasingly essential
roles in industries and applications spanning pharmaceuticals, agriculture, specialty chemicals,
and fuel [1–5]. The ability of a protein to perform a desired function is determined by its amino
acid sequence, often mediated through folding to a three-dimensional structure [6]. Unfortunately,
current biophysical and structural prediction methods cannot reliably map a sequence to its ability to
perform a desired function, termed protein fitness, with sufficient precision to distinguish between
closely-related protein sequences performing complex functions such as catalysis. Therefore, protein
engineering has relied heavily on directed evolution (DE) methods, which stochastically modify
(“mutate") a starting sequence to create a library of sequence variants, measure all variants to find
those with improved fitness, and then iterate until the protein is sufficiently optimized [7]. Directed
evolution is energy-, time-, and material-intensive, in part because it discards information from
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unimproved sequences. Machine-learning methods that predict fitness from sequence can leverage
both positive and negative data to intelligently select variants for screening, reaching higher fitness
levels with fewer measurements than traditional directed evolution, and without necessarily requiring
detailed understanding of structure or mechanism [8, 7, 9–11].

Directed evolution campaigns are often limited by the cost of collecting sequence-fitness data.
Therefore, machine learning approaches for sequence-fitness prediction are most useful in protein
engineering when they can learn from low-N (few sample) labeled datasets or when they can
generalize to types of variation that are unobserved in the training set. Rapid advances in genomic
sequencing technology have led to an explosion of putative protein sequences [12, 13] deposited
in databases like UniProt [14]. Recent efforts in sequence-function prediction [15, 16] have sought
to leverage the information in these unlabeled sequences through pretraining and fine-tuning, and
have successfully engineered proteins with brighter fluorescence and high catalytic efficiency [17].
Unsupervised models were also applied to- or built on evolutionary sequence inputs to model the
effects of mutations [18–21].

In this work, we present a suite of benchmarking tasks for protein sequence-fitness prediction with
the dual aims of enabling protein engineers to compare and choose machine learning methods
representing protein sequences and accelerating research on machine learning for protein fitness
prediction. Our tasks are curated to be diverse in the functions measured and in the types of
underlying sequence variation. For each landscape, we provide one or more train/test splits that
evaluate biologically-relevant generalization and mimic challenges often seen in protein engineering.
Figure 1 and Table 2 summarize the landscape tasks and splits. We also compute the performance of
baseline models against which future models can be compared, and which highlight that our tasks
can distinguish between “better" and “worse" pretraining regimes. Landscapes and baselines are
available at https://benchmark.protein.properties, while a glossary technical terms is provided in the
supplement.

2 Related Work

Well-designed and easily accessible benchmarks have encouraged and measured progress in machine
learning on proteins, especially protein structure prediction. The Critical Assessment of Protein
Structure Prediction (CASP) [22], and retrospective protein training datasets from previous CASP
competitions [23] have lowered the barrier to entry for new research teams and provided a clear
account of progress over the last three decades [24]. DeepMind’s recent landmark results with their
AlphaFold2 predictor in CASP 14 [25] built on these community-driven efforts.

Table 1: Performance (Spearman’s correlation) on TAPE engineering tasks. Performances reported in
referenced literature. CNNs were replicated from [26] without test set clipping.

Pretraining Fluorescence Stability

ESM [27] masked language model 0.68 0.71

TAPE transformer [28] masked language model 0.68 0.73
TAPE LSTM [28] bidirectional language model 0.67 0.69
TAPE ResNet [28] masked language model 0.21 0.73
UniRep [29] language model + structure 0.67 0.73

CPCProt [30] contrastive 0.68 0.65
CPCProt-LSTM [30] contrastive 0.68 0.68

Linear regression [26] none 0.68 0.48
CNN [26] none 0.67 0.51
Mutation count [31] none 0.45 NA
BLOSUM62 score [31] none 0.50 NA

Inspired by the effectiveness of CASP, there have been attempts at benchmarks for function prediction
and protein pretraining. The Critical Assessment of Function Annotation (CAFA) [32, 33] focuses on
assigning Gene Ontology (GO) classes (categorical definitions of protein functions) to proteins. While
an important benchmark, CAFA does not directly require models to build on sequence inputs, instead
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they could leverage graph inputs from protein-protein interaction networks, and the prediction targets
do not account for fitness variations between very similar sequences that are important for protein
engineering. Tasks Assessing Protein Embeddings (TAPE) [28] aims to evaluate the effectiveness of
different pretraining regimes and models to predict protein properties. Of the five tasks in TAPE, three
(remote homology, secondary structure, and contacts) focus on structure prediction, while only two
(fluorescence and stability) target fitness prediction. These two tasks show little discriminative power
between different models [26], as shown in Table 1. In addition, the use of structure as an evaluation
limits the creation of jointly trained structure- and sequence- based embeddings that may be most
useful in protein engineering tasks [34]. Envision [35] collates several dozen single amino-acid
variation (SAV) datasets, but does not include other types of sequence variation of interest to protein
engineers. DeepSequence [19] collects 42 deep mutational scan (DMS) datasets for evaluation
purposes. These capture single and multiple co-occurring residue substitutions, but do not capture
variation at the proteome scale, or mutational paths from large insertions and deletions. Furthermore,
while DMS landscapes may characterize the effect of co-occurring substitutions, not every sample
with co-occurring residue substitutions may express these at sites relevant for a measured function,
and in turn, evaluations on all possible co-occurring substitutions may not always be expressive
(e.g., if the measured function is binding and a sample has two substitutions, one at a residue at
the interface and one elsewhere, the effect may still be high simply because an interface residue
is involved). Finally, the data from these studies does not come with standard column headers or
train/test splits, hindering use in automated evaluation pipelines.

The limitations of the existing benchmarks have led pretraining methods to be primarily evaluated
by their ability to predict structural information [36, 37]. While the ability to impart structural
knowledge through sequence-only pretraining is impressive, it is not the most important criterion
for protein engineers. Efforts to systematically compare new methods on fitness prediction have
required researchers to both gather their own collection of datasets and compute their own baseline
comparisons [16, 38–40].

3 Landscapes and Splits

We design FLIP to answer two fundamental questions about machine learning model learning protein
sequences:

1. Can a model capture complex fitness landscapes beyond mutations to a parent sequence?

2. Can a model perform well across a range of proteins where fitness is measured for very
different functions?

Existing work such as DeepSequence [19] and Envision [35] succeed at the second criterion but
not the first. TAPE [28], on the other hand, evaluates the first criterion with its fluorescence task
but not the second. We prioritized complex landscapes (with insertions and deletions) rather than
single amino acid variants (e.g. deep mutational scans), to practically cover a larger sequence space,
as well as potentially more functional diversity finalized to ensure model generalization for broad
applicability.

To test the aforementioned questions, we collect three published landscapes and create 15 correspond-
ing dataset splits as desribed in the following and summarized in Table 2. We choose landscapes
and splits that cover a broad range of protein families, sequence variation, and fitness landscapes
with rigorous measurements. Each landscape is transformed into one or more splits to test different
model generalization abilities, as shown in Figure 1; many of the splits were also made to reflect
standard laboratory data-collection practices, thus testing the appropriateness of models to real-world
applications.

Simple random splits are notoriously misleading in classical protein sequence-to-function prediction
as protein sequences are not sampled I.I.D., but with correlations induced by evolutionary history.
This means that random splits reflect a notion of generalization not of interest to most biologists [46].
While there are standard heuristics for approximating the correlation structure due to evolution (such
as sequence-identity deduplication\redundancy reduction), in the protein engineering setting there
are not similarly standardized approaches. As such, we resorted to landscape-specific approaches
informed by the conditions of each experiment, as detailed in Figure 1.
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The vast majority of representation learning on protein sequences models entire sequences [27, 37,
15, 34]. As such, we use entire protein sequences as inputs, even for landscapes derived from studies
examining mutations at a small subset of positions. While we include a naïve validation set for
each split for comparison purposes, we encourage users to engineer their own validation splits from
the training data. All tasks and splits are provided in a consistent, easy-to-use CSV format and
are available at https://benchmark.protein.properties. Original datasets were either supplemented to
published research (Wu et al.) under CC BY 4.0, or were obtained with written permission from the
authors (Jarzab et al., Bryant et al.). Data derivatives proposed as tasks are licensed under AFL-3.

3.1 GB1

Motivation. One challenge confronting protein engineering is the ability to predict the effects of
interactions between mutations, termed epistasis. These interactions result in non-additive effects on
protein fitness and have been shown to constrain the paths available to evolution, especially evolution
via a greedy walk. Furthermore, as more mutations are made simultaneously, these interactions
become more complex and more difficult to predict. Therefore, we wish to assess model predictions
on an exhaustive, combinatorial, and highly epistatic mutational landscape, focusing on learning from
variants with fewer mutations to predict the activity of variants with more mutations.

Landscape. We use the GB1 landscape [41], which has become a gold standard for investigating
epistatic interactions [10]. GB1 is the binding domain of protein G, an immunoglobulin binding
protein found in Streptococcal bacteria [47, 48]. In their original study, Wu et al. measured the fitness
of 149, 361 of 160, 000 possible combinations of mutations at 4 positions.

Splits. Over 96% of the amino acid mutations in this set yield non- or poorly-binding sequences
– 143, 539 out of 149, 361 sequences have fitness value below 0.5, where wild-type fitness is 1 and
a fitness of 0 is non-binding. Thus, models trained on the full experimental data can achieve high
performance by predicting low fitness regardless of inputs. To ensure that models learn nontrivial
signal, we downsample non-functional sequences prior to creating the training sets. Specifically,
we include all 5822 sequences with fitness above 0.5 and 2911 randomly-sampled sequences with
fitness less than or equal to 0.5. From this set, we curate five dataset splits to test generalization
from few-mutation sequences to many-mutation sequences, from low fitness to high, and one extra
randomly sampled split for discussion purposes:

• Train on single mutants (1-vs-rest): Wild type and single mutants are assigned to train,
while the rest are assigned to test. This split is one of the most commonly observed in an
applications setting, where a researcher has gathered data for many single mutations of
interest and wishes to predict the best combinations of mutations.

• Train on single and double mutants (2-vs-rest): Wild type, single and double mutants
are assigned to train, while the rest are assigned to test. This is also a commonly observed
split in an applications setting, albeit, at a lesser frequency than 1-vs-rest.

• Train on single, double and triple mutants (3-vs-rest): Wild type, single, double and
triple mutants are assigned to train, while the rest are assigned to test.

• Train on low fitness, test on high (low-vs-high): Sequences with fitness value equal or
below wild type are used to train, while sequences with fitness value above wild type are
used to test.

• Sampled: Sequences are randomly partitioned in 80% train and 20% test. This split serves
mostly for discussion purposes in this manuscript.

3.2 AAV

Motivation. Mutations for engineering are often focused in a specific region of a protein. For
example, this is done if a protein-protein interface is known to be at a subset of positions. Successfully
predicting fitness for a long sequence being mutated at a subset of positions is a task of wide
applicability.
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Landscape. Adeno-associated virus (AAV) capsid proteins are responsible for helping the virus
integrate a DNA payload into a target cell [49], and there is great interest in engineering versions
of these proteins for gene therapy [43, 50, 51]. Bryant et al. prepared a rich mutational screening
landscape of different VP-1 AAV proteins (UniProt [14] Accession: P03135), and this data has been
successfully used as a basis for machine learning-guided design [52, 53]. In their study, Bryant
et al. mutagenize a 28-amino acid window from position 561 to 588 of VP-1 and measure the fitness
of resulting variants with between 1 and 39 mutations, which we refer to as the sampled pool. In
addition they measured the fitness of sequences chosen or designed using various machine-learning
models. We refer to these as the designed pool.

Splits. We derive seven splits from this landscape that probe model generalization:

• Sampled-designed (Mut-Des): All sampled sequences are assigned to train; all designed

sequences are assigned to test.
• Designed-sampled (Des-Mut): All designed sequences are assigned to train; all sampled

sequences are assigned to test.
• Train on single mutants (1-vs-rest): Wild type and single mutants in the sampled pool are

assigned to train, while the rest are assigned to test. As with the GB1 1-vs-rest split, this
reflects a common dataset split observed in protein engineering applications.

• Train on single and double mutants (2-vs-rest): Wild type, single and double mutants in
the sampled pool are assigned to train, while the rest are assigned to test. Again, as with
the GB1 2-vs-rest split, this reflects a common dataset split observed in protein engineering
applications.

• Train on mutants with up to seven changes (7-vs-rest): Mutants with up to and including
seven changes in the sampled pool are assigned to train, while the rest are assigned to test.

• Train on low fitness, test on high (low-vs-high): For sequences in the in the sampled pool,
sequences with fitness value equal or below wild type are used to train, while sequences
with fitness value above wild type are used to test.

• Sampled: Sequences in the sampled pool are randomly partitioned in 80% train and 20%
test. This split serves mostly for discussion purposes in this manuscript.

3.3 Thermostability

Motivation. Thermostability is very often a desirable trait that complements more application-
specific functions. For example, thermostable enzymes not only allow operation at higher reaction
temperatures with faster reaction rates, but are also better starting points for directed evolution
campaigns [54, 55]. This explains why thermostability has been a consistent target for multi-objective
optimization in protein engineering [56–58]. Thermostability can be challenging to predict, because
it is not necessarily a smooth function landscape; in certain protein families, a single amino acid
substitution can confer or destroy thermostability [59].

Landscape. We curate an extensive screening landscape from the Meltome Atlas [45], which used
a mass spectrometry-based assay to measure protein melting curves across 13 species and 48,000
proteins. Unlike the other landscapes, which measure the effects of sequence variation from a single
starting point on a function specific to that protein, this landscape includes both global and local
variation.

Splits. We derive three splits from this landscape, considering biological realities and common
dataset regularizations for cross-spices and sequence-diverse sets:

• Mixed: We cluster all available sequences and select cluster representatives using MM-
seqs2 [12] at a threshold of 20% sequence identity to create one split. In this split, all
sequences in 80% of clusters are assigned to train, while only cluster representatives from
the remaining 20% of clusters are assigned to test.

• Human: We cluster sequences in human and select cluster representatives using MM-
seqs2 [12] at a threshold of 20% sequence identity to create one split. In this split, all

6



Christian Dallago 

 104 

sequences in 80% of clusters are assigned to train, while only cluster representatives from
the remaining 20% of clusters are assigned to test.

• Human-cell: We cluster sequences of one cell line for human and select cluster representa-
tives using MMseqs2 [12] at a threshold of 20% sequence identity to create one split. In this
split, all sequences in 80% of clusters are assigned to train, while only cluster representatives
from the remaining 20% of clusters are assigned to test.

4 Baseline algorithms

We evaluate three major groups of baselines (Table 3) – parameter-free, supervised, and pretrained.
These three classes correspond to common approaches from different communities. In particular,
we seek to clarify the value of transfer learning for protein engineering by benchmarking pretrained
models against purely supervised methods systematically. We also hope to simplify algorithm
selection for practitioners by providing a single place to compare many commonly used methods.
Note that we do not use Potts models [60], popular in protein structure prediction [61], because of
the need to build high-quality multiple sequence alignments, which would be impractical for the
thermostability dataset. Furthermore, Potts models use artificial constructs when dealing with datasets
with large insertions and deletions (e.g., modeling sequence deletions through special characters), as
is the case for the AAV landscape. However, in the presence of well curated MSAs, these approaches
can be successful in modeling the effect of residue substitutions [62].

Table 3: Baseline methods

Method Description

Levenshtein Levenshtein distance to wild-type.
BLOSUM62 BLOSUM62-score relative to wild-type.
Ridge regression Ridge regression model on one-hot encoding.
Convolutional network Simple convolutional network on one-hot encoding.
ESM-untrained 750M parameter transformer with randomly-initialized weights
ESM-1b [27] 750M parameter transformer pretrained on UniRef50.
ESM-1v [16] 750M parameter transformer pretrained on UniRef90. Only one

element of ensemble used due to compute constraints.

For baselines using protein language models, which compute an embedding for every amino acid, we
pool embeddings in three ways:

• Per amino acid (per AA): A supervised model is tasked to learn how to pool over the
sequence using a 1D attention layer to return a regression prediction.

• Mean: Sequence embeddings are mean pooled per amino acid over the length of the protein
sequence to obtain a fixed-size input for each sequence.

• Mean over subset (mut mean): Sequence embeddings are mean pooled per amino acid
for the residues in the mutated region of interest to obtain a fixed-size, region specific input
from the sequence.

To train the models, 10% of each training set is sampled at random as a validation set. For Ridge, we
use the scikit-learn implementation of ridge regression with default parameters. The CNN consists of
a convolution with kernel width 5 and 1024 channels, a ReLU non-linearity, a linear mapping to 2048
dimensions, max pool over the sequence, and a linear mapping to 1 dimension. CNNs are optimized
using Adam [63] with a batch size of 256 (GB1, AAV) or 32 (thermostability) and a learning rate of
0.001 for the convolution weights, 0.00005 for the first linear mapping, and 0.000005 for the second
linear mapping. Both linear mappings have a weight decay of 0.05. For ESM models, by far the most
computationally expensive baselines, we train with a batch size of 256, a learning rate of 0.001, and
the Adam optimizer. CNNs and the ESM models are trained with early stopping with a patience of
20 epochs. Models are trained on a NVidia Quadro RTXA6000 GPU. Code, data, and instructions
needed to reproduce results can be found at https://benchmark.protein.properties.
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5 Results

Overall, we observe that for landscapes around a wild type (Tables 4 & 5), pretraining offered by
ESM-1b [27] or ESM-1v [16] does not help much when sufficient training data is available (see Table
2 for statistics), at least in the setting explored here: using these protein language models to collect
frozen embeddings as inputs to subsequent prediction models. Conversely, for the split involving
diverse sequences (Table 6), pretraining yields a large boost over pure supervision. The best method
of pooling residue-embeddings for whole sequences varies depending on task (Table 4, 5 & 6). Most
remarkably, training simple models (CNN, ridge regression) is competitive over a wide range of
regimes. We exclude results for per-AA ESM models for the AAV Des-Mut task (Table 5), as we
estimated that it would require a month of compute using for Nvidia A6000 GPUs, which appeared
unjustified for a baseline metric computation. Hyperparameter search results are reported in the
supplement, as are evaluations using different metrics.

Table 4: GB1 baselines (metric: Spearman correlation)

Model 1-vs-rest 2-vs-rest 3-vs-rest low-vs-high

ESM-1b (per AA) 0.28 0.55 0.79 0.59
ESM-1b (mean) 0.32 0.36 0.54 0.13
ESM-1b (mut mean) -0.08 0.19 0.49 0.45
ESM-1v (per AA) 0.28 0.28 0.82 0.51
ESM-1v (mean) 0.32 0.32 0.77 0.10
ESM-1v (mut mean) 0.19 0.19 0.80 0.49

ESM-untrained (per AA) 0.06 0.06 0.48 0.23
ESM-untrained (mean) 0.05 0.05 0.46 0.10
ESM-untrained (mut mean) 0.21 0.21 0.57 0.13
Ridge 0.28 0.59 0.76 0.34
CNN 0.17 0.32 0.83 0.51

Levenshtein 0.17 0.16 -0.04 -0.10
BLOSUM62 0.15 0.14 0.01 -0.13

GB1. Table 4 summarizes baseline results for the biologically motivated GB1 splits. When models
are trained only on single mutants, all variations on ESM-1b [27] and ESM-1v [16] outperform
supervised models. This regime has little training data (29 samples, Table 2), giving the most
opportunity for pretraining to compensate. The difference between pretrained and supervised models
largely disappears once models are trained on both single and double mutants (2-vs-rest, Table 4).
The various pooling choices for embeddings perform inconsistently across datasets and splits; for
example, mut-mean does best on 1-vs-rest but worst on 3-vs-rest. The low-vs-high split suggests.
The sampled split reported separately in Table 7 confirms: random sampling sequences in biology is
bound to overestimate results.

AAV. Table 5 summarizes baseline results for the biologically motivated AAV splits. Across all
splits, purely supervised models are competitive with pretrained models. This suggests that the large
sizes of training sets are past the threshold where pretraining improves performance. The particular
choice of pooling that performs best is inconsistent across splits. The BLOSUM62 baseline could not
be applied as the mutations in this set include insertions and deletions. In this case too, the sampled
split reported separately in Table 7 strongly suggest that random sampling sequences in biology may
lead to overestimated results.

Thermostability. Table 6 summarizes baseline results for thermostability. Pretrained models
consistently outperform supervised models on this task, suggesting that this landscape is not yet past
the threshhold where pretraining improves performance. Interestingly, the supervised baselines based
on untrained ESM embeddings do better than either ridge or CNN. Mean over subset (mut mean) and
BLOSUM62 are not applicable for the Meltome landscape as the sequences are not evolutionarily
related.
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Table 5: AAV baselines (metric: Spearman correlation)

Model Mut-Des Des-Mut 1-vs-rest 2-vs-rest 7-vs-rest low-vs-high

ESM-1b (per AA) 0.76 — 0.03 0.65 0.65 0.39
ESM-1b (mean) 0.63 0.59 0.04 0.26 0.46 0.18
ESM-1b (mut mean) 0.70 0.70 0.31 0.65 0.61 0.33
ESM-1v (per AA) 0.79 — 0.10 0.70 0.70 0.34
ESM-1v (mean) 0.55 0.44 0.18 0.16 0.45 0.20
ESM-1v (mut mean) 0.70 0.71 0.44 0.64 0.64 0.31

ESM-untrained (per AA) 0.56 — 0.18 0.22 0.42 0.08
ESM-untrained (mean) 0.27 0.34 0.01 0.14 0.22 0.22
ESM-untrained (mut mean) 0.62 0.64 0.26 0.16 0.56 0.24
Ridge 0.64 0.53 0.22 0.03 0.65 0.12
CNN 0.71 0.75 0.48 0.74 0.74 0.34

Levenshtein 0.60 -0.07 -0.11 0.57 0.53 0.25
BLOSUM62 NA NA NA NA NA NA

Table 6: Thermostability baselines (metric: Spearman correlation)

Model Mixed Human Human-Cell

ESM-1b (per AA) 0.68 0.71 0.76
ESM-1b (mean) 0.68 0.70 0.75
ESM-1b (mut mean) NA NA NA
ESM-1v (per AA) 0.65 0.77 0.78
ESM-1v (mean) 0.67 0.75 0.74
ESM-1v (mut mean) NA NA NA

ESM-untrained (per AA) 0.44 0.44 0.46
ESM-untrained (mean) 0.36 0.48 0.49
ESM-untrained (mut mean) NA NA NA
Ridge 0.17 0.15 0.24
CNN 0.34 0.50 0.49

Levenshtein NA NA NA
BLOSUM62 NA NA NA

6 Discussion

The prediction tasks in FLIP probe complex fitness landscapes across different protein functions. We
curate three landscapes published in existing literature and formulate 15 corresponding splits of the
data to mimic protein engineering tasks. The main criteria to include a landscape was whether it
could be used to assess interesting types of generalization, and if it was amenable to interpretable
assessment metrics. As no standard approach exists to partition landscapes arising from mutagenesis
of a parent sequence, we propose ideas that may be applied to future landscapes. In particular, we
explore the concept of training on sequences only a few mutations from a parent while predicting on
data many mutations from a parent in a step-by-step fashion.

The need for more challenging splits is illustrated in Table 7, which shows results for the sampled

splits, based on simple random sampling. Almost all models do drastically better for the sampled
splits, and differences between models are exaggerated. This indicates the importance of biologically-
motivated generalization in task design.

In general, results on baselines highlight that while pretraining approaches perform well on tasks with
diverse sequences (Thermostability, Table 6), they do not outperform simpler models on mutational
landscapes (GB1, Table 4 &, AAV, Table 5). In addition, large pretrained models require amounts
of compute (up to 50 days on an NVidia A6000 GPU) to train on some tasks, which is out of
the reach of most academic research groups. It is important to note that while we performed a
modest hyperparameter search, more extensive sweeps combined with training data regularization
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Table 7: Optimistic results for random splits (Sampled) on the AAV and GB1 sets (metric: Spearman
correlation)

Landscape AAV GB1

ESM-1b (per AA) 0.90 0.92
ESM-1v (per AA) 0.92 0.92

ESM-untrained (per AA) 0.78 0.79
Ridge 0.83 0.82
CNN 0.92 0.91

like different validation splits, may yield better absolute and relative performance. The landscapes
and derived prediction splits offered in FLIP highlight directions for future work, such as better
pretraining or embedding methods for protein mutational landscapes.

7 Conclusion

The proliferation of protein sequence data, along with advanced experimental techniques for func-
tional measurement of proteins, presents a ripe environment for machine learning-enabled solutions
in protein engineering. With the introduction of FLIP, we focus on sequence-fitness prediction
and aim to encourage rigorous evaluation of model generalization in multiple tasks and settings
relevant to protein engineering. We hope to seed advances in this emerging interdisciplinary field
with downstream applications for solutions in human health and the environment. FLIP data and
scripts are available under free licenses at https://benchmark.protein.properties.
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