
AntiPatterns Regarding the Application of Cryptographic
Primitives by the Example of Ransomware

Michael P. Heinl
Fraunhofer AISEC

Alexander Giehl
Fraunhofer AISEC

Lukas Graif
Technical University of Munich

Fraunhofer AISEC

ABSTRACT
Cryptographic primitives are the basic building blocks for many
cryptographic schemes and protocols. Implementing them incor-
rectly can lead to flaws, making a system or a product vulnerable to
various attacks. As shown in the present paper, this statement also
applies to ransomware. The paper surveys common errors occur-
ring during the implementation of cryptographic primitives. Based
on already existing research, it establishes a categorization frame-
work to match selected ransomware samples by their respective
vulnerabilities and assign them to the corresponding error cate-
gories. Subsequently, AntiPatterns are derived from the extracted
error categories. These AntiPatterns are meant to support the field
of software development by helping to detect and correct errors
early during the implementation phase of cryptography.

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
AntiPatterns, Cryptography, Ransomware
ACM Reference Format:
Michael P. Heinl, Alexander Giehl, and Lukas Graif. 2020. AntiPatterns
Regarding the Application of Cryptographic Primitives by the Example of
Ransomware. In The 15th International Conference on Availability, Reliability
and Security (ARES 2020), August 25–28, 2020, Virtual Event, Ireland. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3407023.3409182

1 INTRODUCTION
Awide variety of cryptographic schemes and protocols are based on
more granular cryptographic primitives [57]. These cryptographic
building blocks are used with the intention to ensure security objec-
tives such as authenticity, integrity, and confidentiality. However,
their realization is not trivial: various aspects have to be taken into
account for the creation and management of cryptographic keys as
well as for the implementation of the actual algorithms. Both a too
short time to market and insufficient knowledge of developers in
regard to cryptography can lead to implementation flaws resulting
in vulnerabilities which can potentially be exploited by attackers.

Some ransomware samples are good examples of insufficiently
implemented cryptographic primitives. This type of malware usu-
ally employs cryptography in order to encrypt data stored on the
computers of its victims, virtually ’holding them hostage’. Against

ARES 2020, August 25–28, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in The 15th International
Conference on Availability, Reliability and Security (ARES 2020), August 25–28, 2020,
Virtual Event, Ireland, https://doi.org/10.1145/3407023.3409182.

payment of a ransom, those affected are then offered the crypto-
graphic key to decrypt their data. Therefore, this type of malware
is referred to as ransomware. Flawed implementations of the en-
cryption mechanisms used by some ransomware samples, however,
allow the decryption of data without paying the ransom. There-
fore, this specific ransomware can be considered ’broken’. While
there are also other types of ransomware which do not employ any
cryptographic methods but rather modify the underlying operating
system or master boot record (MBR) in order to block access to
the computer (so-called Lockers [8]), this paper solely focuses on
so-called crypto ransomware [59].

Using the example of broken ransomware samples and a self-
developed categorization framework, this paper analyzes common
errors during the implementation of cryptographic primitives by
assigning them different categories. These error categories are de-
rived from other publications, although none of the analyzed papers
provides such an overall scheme.

Eventually, AntiPatterns are formulated based on the identified
errors. In general, an AntiPattern describes an allegedly good and
common approach which in fact is counterproductive and leads
to negative consequences [63]. The reason for this can be insuf-
ficient knowledge and experience or a wrongly applied design
pattern. Whilst describing bad practices during the implementation
of cryptographic primitives, AntiPatterns also describe resulting
consequences and recommendations to prevent such errors - simi-
lar to design patterns. In fact, the concept of AntiPatterns is mostly
based on the idea of design patterns and the insight that it is also
important to document unsuccessful solutions and their negative
consequences in order to avoid making the same errors again [9].

This paper is explicitly not meant as a guideline to develop the
’perfect’ ransomware. Rather, the results are meant to help detecting
errors during the implementation of cryptographic primitives or
even avoid them from the very beginning. Simultaneously, the
AntiPatterns should increase the developers’ awareness regarding
the fragility of cryptographic implementations and that even minor
errors can have a severe impact on a future product’s security.
Following the original idea of patterns, this paper does not discuss
specific protocols or libraries but rather generic methodologies
which can be wrongly applied by developers. The proper usage
of publicly available protocols and libraries which are actually
considered secure but turned out to be vulnerable is not regarded as
an error. However, incorrect usage of such libraries by the developer,
for example a weakly initialized block cipher or wrongly set status
indicator, is on the other hand very well considered to be an error.

https://doi.org/10.1145/3407023.3409182
https://doi.org/10.1145/3407023.3409182

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Heinl et al.

2 RELATEDWORK
Multiple authors already discussed the topic of flawed crypto-
graphic implementations in different contexts [17, 29, 38, 49, 52, 54,
58]. Making use of these papers, section 3 presents error categories
which are in turn used to derive AntiPatterns.

In [38], the authors analyze a selection of 269 Common Vulnera-
bilities and Exposures (CVEs) marked as Cryptographic Issues. They
are then categorized regarding the following aspects:

• type of error making the system vulnerable,
• part of the system containing the error,
• the error’s impact on the system’s security.

The categorization shows that 83% of the analyzed CVEs are caused
bymisuse of cryptographic libraries. The study is supported by brief
descriptions of errors and exemplified by corresponding CVEs. The
authors also provide recommendations for improvement which are,
however, rather on a procedural level (formal verification of code,
test phases etc.) than the more tangible AntiPatterns developed in
the present paper.

Schneier et al. [54] discuss the problem of implementation weak-
nesses from the perspective of a saboteur who aims to clandestinely
insert vulnerabilities in order to compromise a system’s security.
The authors discuss various ways how this goal can be achieved, un-
derpinned by corresponding historic examples. The vulnerabilities
are then categorized by a self-developed classification system.

Similar to the present paper, Herzog and Balmas [29] analyze
implementation flaws in the area of cryptography by the example
of various types of malware such as exploit kits, trojans, and ran-
somware. Herzog and Balmas describe the errors without giving
recommendations on how to avoid them.

The study of Das et al. [58] discusses the erroneous usage of
six cryptographic libraries which are analyzed regarding typical
problems, such as improper default parameters or insecure code
examples, and how they promote misuse by developers. Implemen-
tation flaws of the cryptographic libraries themselves are out of
scope but the study gives an overview of errors possible to happen
during the implementation of these very libraries. Additionally,
recommendations are given in form of best practices.

Egele et al. [17] analyze implementation flaws of Android appli-
cations. For this, six rules for the implementation of cryptographic
primitives are formulated and integrated into a tool which is then
used to analyze approximately 11,700 Android applications in or-
der to find out whether they violate those rules. According to the
study, 88% of the analyzed applications contain cryptographically
relevant implementation flaws. The recommended mitigations to
decrease the error rate focus on implementation and documentation
of application programming interfaces (APIs).

Gadient’s work [49] builds on [17]. The work identifies and
briefly describes 28 sources of error and corresponding mitigations
whereby several have no relation to cryptography. One important
point is that Gadient formulates so-called ’symptoms’ for each
source or error, indicating possible vulnerabilities in the source
code. Similar to Egele et al., Gradient develops a tool which he uses
to search a total of 46,000 Android applications for indications of
the formerly described symptoms. The paper concludes that these
symptoms are a good indicator for actual implementation flaws.

In [55], different Java applications are analyzed for security risks.
Using the gained insights, a catalog containing seven AntiPatterns
focussing on Java components is developed. However, these An-
tiPatterns are not related to cryptography.

The structure of the AntiPatterns formulated in the present pa-
per is based on recommendations of Brown et al. [63] who give
not only a comprehensive introduction to AntiPatterns but also
describe different types of notation. Furthermore, example AntiPat-
terns focusing on software development, software architecture,
and project management are provided, however, without taking
security-related topics into consideration.

3 CONCEPT
This section describes the conceptual foundations of this work
by detailing on the used approach and the categorization of the
results. The described process is shown in Figure 1. First, relevant
ransomware samples are identified during a literature survey in
subsection 3.1. Also, the errors resulting in a broken ransomware
for the found samples are identified. Then, a hierarchy of errors is
developed for categorization of these errors in subsection 3.2. Here,
individual ransomware samples are assigned to their respective
error categories. The results of this section are then, consequently,
used in deriving the AntiPatterns in section 4.

Assign
Ransomware

AntiPatterns

Broken
Ransomware

Derive
AntiPatterns

Develop
Hierarchy

Survey
Sources of Error

Error
Categories

Hierarchy
Error Categories

Figure 1: Conceptual process of the work.

3.1 Ransomware Literature Review
This section describes the process of surveying ransomware sam-
ples required for the description of the AntiPatterns. The criteria
used to chose relevant ransomware for further studies is provided
first. For the remainder of this work, only ransomware samples
affecting the availability of data by encryption are discussed (cryp-
tographic ransomware). The focus is on cryptographic ransomware
affecting end user and office computers. Cryptographic ransomware
for mobiles or Internet of Things (IoT) devices is out of scope.

Ransomware samples are categorized in regard to their program-
ming errors that lead to broken cryptography. For this, it is para-
mount that the ransomware contains such an error. Ransomware
samples which are broken because of the following reasons are
therefore out of scope:

• private key leakage (TeslaCrypt v3-4 [37]),
• issues with non-crypto mechanisms such as manipulation
of unencrypted server responses (e.g. Jigsaw v1 [11]).

In order to allow an exact categorization, the ransomware’s vul-
nerability needs to be fully documented. Non or only partially
documented ransomware is also out of scope.

AntiPatterns Regarding the Application of Cryptographic Primitives by the Example of Ransomware ARES 2020, August 25–28, 2020, Virtual Event, Ireland

The goal of this paper is to point out errors that can occur dur-
ing the implementation of cryptographic primitives. Hence, only
cryptography-related errors produced by the developers of the
ransomware are relevant. The usage of protocols allowing attacks
under certain circumstances (e.g. TLS allows padding oracle attacks
when using certain configurations [62]) are not considered. The
same applies for errors within cryptographic libraries used for the
implementation of cryptography within the respective ransomware.
The process used for conducting the literature review is shown in
Figure 2.

Selection
Criteria

Examination
of Ransomwares

All Ransomwares

Broken Ransomwares

59
Examined

Ransomwares

14
No Fitting

Criteria

30
Suitable for

Further Study

15
Insufficent

Information

AntiPatterns

Figure 2: The process of selection and research.

First, an overview of the landscape of cryptographic ransomware
is generated. Sources for this are publications of government insti-
tutions as well as scientific ransomware databases such as ID Ran-
somware which is capable of identifying 560 different ransomware
samples.1 From this, the set of ransomware (see top right-hand
corner of Figure 2) is derived. Continuing from there, databases
for decryption tools for ransomware provided by manufacturers
of antivirus software give insight into which of those ransomware
samples are effectively broken, i.e. a decryption solution is pub-
licly available. This broken ransomware is further examined in
regard to their vulnerability and the requirements stated in sub-
section 3.2. However, some antivirus companies do not publish
detailed information about the discovered vulnerability such as
how the encryption is broken or details about the implementation
of the tool used to decrypt the files targeted by the ransomware.
This can be explained by antivirus companies not wanting to aid
the developers of ransomware in improving their ’product’.

In conclusion, a total of 59 cryptographic ransomware samples
are examined. From those, 14 do not satisfy the conditions for fur-
ther examination stated above. Another 15 ransomware samples
are considered broken but are still unsuitable as no information on
them is available during the time of this study. For the 30 remain-
ing ransomware samples, detailed information on their respective
vulnerabilities can be found.

1As of March 19, 2018: https://id-ransomware.malwarehunterteam.com/

Key Exchange Key Generation

Key Management

Clear Text
Transmission Weak Keys PRNG

Clear Text
Storage

Key Storage Hard-Coded
Key

Insufficiently
Encrypted

Poor
Seed

Nemucod 3

Linux.Encoder.2

LeChiffre

BitCrypt

HiddenTear

CryptXXX

Manamencrypt

NemucodAES

MarsJoke

Linux.Encoder.1

Linux.Encoder.0

HiddenTear

DMA-Locker 2.0

TeslaCrypt 0.25-0.3

DXXD

TeslaCrypt 2.0

TeslaCrypt 0.4

DMA-Locker 1.0

NoobCrypt 1

Nemucod 2

Nemucod 1

NoobCrypt 3

NoobCrypt 2

Figure 3: Key management error categories with assigned
ransomware samples.

3.2 Categorization Framework
In order to formulate AntiPatterns regarding the application of
cryptographic primitives, different sources of errors have to be
defined first which are then in turn used to create abstract error
categories. These error categories summarize similar errors of the
same origin with only minor differences.

Several publications discussing errors during implementation
of cryptographic primitives are used as a basis for the formulation
of the following error categories [17, 29, 38, 49, 52, 54, 58]. Based
on them, a system of possible sources of error has been developed
which is subsequently complemented by additional categories iden-
tified during the survey of broken ransomware. The sources of
error extracted from the mentioned research literature are treated
similarly as the surveyed ransomware which means that errors
which are not related to cryptography are not considered. Similarly,
errors caused by the usage of vulnerable protocols or libraries are
excluded as well. The focus especially lies on errors in the area of
key management and the implementation of cryptographic primi-
tives. In order to structure the assignment of broken ransomware to
the corresponding categories, a framework is developed clustering
similar error categories into main categories.

During the investigation, a total of ten error categories have been
identified and divided into the twomain categoriesKeyManagement
and Implementation as illustrated in Figure 3 and Figure 4.

The surveyed ransomware is categorized by a step-by-step anal-
ysis employing the developed framework (ransomware is indicated
by a grey box in Figure 3 and Figure 4). If a ransomware contains
multiple relevant errors leading to broken encryption, it is catego-
rized repeatedly (indicated by a dark-grey box).

3.2.1 Key Management Errors. Figure 3 shows error categories in
the area of key management:

• Clear text transmission of key exchange: Keys generated
on the victim’s client are transmitted to the attacker’s server
in clear text due to the absence of network data encryption
such as Transport Layer Security (TLS).

https://id-ransomware.malwarehunterteam.com/

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Heinl et al.

• Usage of weak keys: Files on the victim’s client are en-
crypted using weak, easy to break keys. This category in-
cludes keys of insufficient length and keys generated by a
flawed (potentially self-developed) key generation algorithm.

• Poor initial values (seed) of pseudo random number
generator (PRNG): An insecure (deterministic) PRNG is
used in combination with a predictable or constant initial
value.

• Clear text storage of keys: The used keys are stored unen-
crypted on the victim’s client.

• Weak encryption of keys: The used keys are stored either
inefficiently encrypted or only obfuscated.

• Hard-coded keys: The used keys can be found in the ran-
somware’s code.

Erroneous
Implementation of a

Secure Algorithm

Implementation
of an

Insecure Algorithm

Implementation

Erroneous Usage of
Cryptographic

Libraries

Self-Implementation
 of Cryptographic

Algorithms

Weak/Deprecated
Cryptographic

Algorithms

Self-Designed
Cryptographic

Algorithm

CryptoDefense

TorrentLocker

Petya

FindZip

7ev3n Hone$tBart

XRat

Telecrypt

Nemucod 2

Nemucod 1

DXXD

Figure 4: Implementation error categories with assigned ran-
somware samples.

3.2.2 Implementation Errors. Figure 4 shows error categories in
the area of implementation of cryptographic primitives:

• Erroneous usage of cryptographic libraries: Errors likely
to happen when using cryptographic libraries. Examples in-
clude wrong initialization of modes of operation, usage of
insufficient default configurations, and copying of insecure
example snippets. Errors caused by the library’s implemen-
tation itself are explicitly excluded.

• Self-implementation of cryptographic algorithms: The
algorithms used for data encryption are implemented by the
developers themselves.

• Usage of weak/deprecated cryptographic algorithms:
Algorithms known as weak or deprecated are used for the
encryption of data.

• Self-designed cryptographic algorithm: An algorithm
designed by the developers themselves is used for the en-
cryption of data.

The ransomware categorization is conducted according to the
framework presented above. The ransomware samples are assigned
to error categories by successively narrowing down the error lead-
ing to a ransomware’s vulnerability. In case a ransomware contains

multiple relevant errors which result in broken cryptography inde-
pendently from each other, the ransomware is assigned multiply.

Figure 3 and Figure 4 list the categorizations of the 30 ran-
somware samples which satisfy the requirements and are therefore
analyzed in detail. While Figure 3 shows ransomware with errors
in the area of key management, Figure 4 shows the ones with errors
in the area of implementation.

4 DERIVED ANTIPATTERNS
In the following, the derived AntiPatterns are formulated. The
sources of error presented in section 3 are the Antipatterns’ struc-
tural foundation whereby very similar errors are summarized. The
ransomware samples classified in the previous part of the paper
are referred to in the corresponding AntiPatterns. They help to
make the AntiPatterns more tangible by serving as negative ex-
amples. Hence, although AntiPatterns are generic by nature, the
paragraphs describing these ransomware examples may refer to
specific technology and languages for the sake of tangibility.

4.1 Clear Text Transmission
Developers are often confronted with the challenge of establishing
information exchange between communication partners (e.g. be-
tween an application and the corresponding server) on insecure
channels. If sensitive information has to be transmitted, this is a
very important aspect during implementation. One very pragmatic
approach is to transmit confidential information without additional
security measures in clear text, for example by employing HTTP.

Attackers can eavesdrop the unprotected transmission and ob-
tain sensitive information such as cryptographic key material. Fur-
thermore, data could be modified unnoticedly, meaning that not
only confidentiality but also integrity is at stake.

Several ransomware samples, such as Nemucod 3 or HiddenTear,
generate the keys used for encryption on their victim’s client [53,
61]. The keys are then sent over the Internet to the attacker’s server
infrastructure in order to sell them to their victims once the encryp-
tion process is complete. However, both examples communicate
unencrypted. By capturing the network traffic between the affected
computer and the Internet, the key can be extracted from the corre-
sponding message and the affected data decrypted without paying
the ransom.

4.2 Weak Keys
In order to apply cryptography, usually a key of a given length is
necessary which has to be generated beforehand. For this reason,
similarly to the AntiPattern Self-Implementation, self-developed al-
gorithms can be used. Is the generation algorithm based on constant
or deterministic values or is the generated key not long enough,
the algorithm’s security can be compromised.

Cryptographic keys generated by insecure generation algorithms
can potentially be easily recalculated. An attacker can analyze and
reconstruct the used algorithm by inspecting the program’s code.
The usage of constant or deterministic values eases the reconstruc-
tion of keys by the attacker. The security services provided by
the underlying cryptographic algorithm are therefore at stake. If
keys or other cryptographic parameters are not generated with
the necessary length, they can be vulnerable to brute-force attacks.

AntiPatterns Regarding the Application of Cryptographic Primitives by the Example of Ransomware ARES 2020, August 25–28, 2020, Virtual Event, Ireland

For example, when using algorithms based on the integer factoriza-
tion problem, the corresponding prime factors can be found within
a reasonable amount of time if the integers are too short.

The ransomware BitCrypt claims to use RSA-1024 for data en-
cryption but the used RSAmodulus is not a 128-byte/1,024-bit value
but a 128-digit number which can be represented by 426 bit [18].
As a consequence, the data is encrypted with ’RSA-426’ instead
of RSA-1024 which means that the too short RSA modulus can be
factorized within a couple of hours without having to employ any
special hardware. The private key can then be calculated with the
help of the public key embedded in the ransomware’s code.

Manamencrypt uses a .rar archive protected by a password
which is a concatenation of two parts, a SHA-1 hash incorporating
three hardware features and the name of the current user [4]. If the
generation algorithm is known, the password can be recalculated by
extracting the corresponding user name and hardware information.
The calculation of the SHA-1 digest is even negligible since it is also
used as the name of the archive which further eases the password’s
reconstruction.

A similar case is LeChiffre which also uses a hash digest incor-
porating multiple hardware features as symmetric key [42].

4.3 Poor Seed
Random numbers are broadly used in the area of cryptography,
especially when it comes to the generation of cryptographic keys.
Many programming languages provide PRNG implementations
which generate numbers based on an initial value (seed) and a
deterministic algorithm. Although the output numbers appear to
be random, the pseudo-random sequence is always the same if the
PRNG is fed with the same seed.

Intuitively, such PRNGs are often used for key generation. How-
ever, if not explicitly provided by the developer, the generator might
use constant or deterministic default values, for example the cur-
rent system time, as seed. The generated sequence of numbers can
then directly be used as a key or as input value for a KDF. Another
variant could be the self-development of an algorithm for key gen-
eration based on the PRNGs how it can often be seen when it comes
to ransomware.

A poor seed can easily be guessed and recalculated under certain
circumstances. System times, for example, can be guessed based on
modification timestamps of encrypted or newly created files. If the
initial sequence is partially known (for example in the form of IVs
generated before and after the time of key generation), the exact
seed can be brute-forced within a short period of time. If this is not
the case, a dictionary consisting of seed-key pairs can be generated
and a cipher text decrypted until it results in a meaningful clear
text. The seed corresponding with the successful key is then the
searched initial value. Similar to keys, seeds of insufficient length
can easily be found by employing this brute-force method. If a
constant value is used, it can be determined by decompiling the
binary.

Once an attacker has found the correct seed, she can reconstruct
the exact sequence of random numbers and subsequently deter-
mine all cryptographic keys which have been generated using this
sequence. Each encryption using this sequence can therefore be
broken.

Linux.Encoder.1 utilizes a PRNG initialized with the system time
for generating the keys and IVs used by AES-128. CryptXXX also
uses the system time as initial value but reconstructs the original
timestamps of affected files and uses a new seed for each file [32].
However, making use of the ransom note generated in each di-
rectory after having encrypted its content, the initial value can
be guessed. The ransom note provides hours and minutes so that
for each file only seconds and milliseconds have to be determined
which results in 60,000 combinations. The PRNG gets initialized
with each of these candidates in order to generate a key. This key
is then used to decrypt the file’s first four bytes (magic number)
which indicate the type of file. If the magic number matches the
file type indicated by the original filename extension (CryptXXX
only attaches an additional extension), the correct key is found and
the file can therefore be restored.

NemucodAES renders infected files useless by overwriting the
first 2,048 bytes of each file with random values [1]. The formerly
extracted bytes are encrypted with AES-256 and stored in a data-
base. NemucodAES’s developers haven’t initialized the used PRNG
(PHP’s mt_rand) which therefore uses an automatically generated,
32-bit long seed. For cryptographic purposes, this length is not suffi-
cient and renders the initial value prone to brute-force attacks [46].
In order to restore the original files, the PRNG is successively ini-
tialized with all 232 values until the generated sequence of numbers
matches the first 2,048 bytes of the file which was (presumably) in-
fected first. Using the found seed, the keys for all encrypted entries
of the database can be computed.

4.4 Key Storage
The security of a cryptographic algorithm depends on the con-
fidentiality of the used keys. Therefore, it is very important to
appropriately store keys after their generation in order to protect
them from unauthorized access.

A naive approach would be to store the keys in a hidden file and
to trust the assumption that this file is neither found nor opened
and read. This could be realized by giving the file a self-invented
file extension and placing it in a hidden directory.

An ideal approach would be the encryption of keys before saving
them. This, however, would lead to a new keywhich has to be stored.
Another possible approach could therefore be the usage of reversible
mathematical operations which would result in encoding rather
than encryption but cannot be restored without the knowledge
about the used operation.

When a key is stored as clear text, it can be extracted and used
by an attacker, especially if there are no access restrictions enforced.
Storing a key file in a hidden directory is therefore not an effective
measure to protect the key. The same applies for disguising the file
by using a self-invented file extension.

If a key is encrypted inappropriately, for example by applying
one of the AntiPatterns formulated in this paper, it can potentially
be reconstructed. Encoding the key by applying reversible mathe-
matical operations is not considered secure encryption because the
algorithm can be extracted after decompiling the respective binary.

Concluded, the desired protection objectives which are actually
provided by the respective cryptographic algorithm are at stake
because the key is not protected properly.

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Heinl et al.

TeslaCrypt, a ransomware focusing on Windows environments,
demonstrates how the mentioned approaches can result in vulnera-
bilities. The first versions of TeslaCrypt stored the key needed for
the used AES-256 algorithm after its generation in a file located
in the default AppData folder [19]. The key stays in this file until
the end of the encryption process. If this process is interrupted, for
example by shutting down the computer, the file persists and the
key can be extracted.

TeslaCrypt 0.4 encodes the key as multiplicative inverse modulo
the order of an elliptic-curve cryptography (ECC) curve before
writing it into the file [19]. However, the key can still be extracted
by employing the already mentioned method. It just has to be
reconstructed by computing the multiplicative inverse.

TeslaCrypt 2.0 stores the generated symmetric key directly in
the infected files encoded by a method similar to Elliptic-Curve
Diffie–Hellman (ECDH) [19]. By multiplying a private key with the
generator point of an elliptic curve, the public key is generated.
The symmetric key is then obscured by linking it with the ECC
public key. However, the coordinates of the generator points are
relatively short which leads to the fact that the public key can be
factorized within a reasonable amount of time, i.e., a few minutes
up to a couple of days. Utilizing the recomputed factors, the private
key can be reconstructed and the symmetric key subsequently
restored [7, 36].

4.5 Hard-Coded Keys
Different approaches exist for providing cryptographic keys for
ciphers. One of those approaches is to directly embed the key as
a constant value into the program code, i.e., hard-coding it. This
may be sufficient when handling public keys within an asymmetric
crypto system as those keys are not required to be secret, although
it may lead to problems regarding later key revocation. However,
if hard-coding is used for keys within symmetric crypto systems,
far-reaching consequences for the security of the cipher can occur.

A hard-coded key can be extracted by decompiling the source
code. If this key is used for a symmetric cipher, the confidentiality
is threatened. The same is true if the private key of an asymmetric
cipher is extracted. In the case of generation of message authentica-
tion codes (MACs), the integrity and authenticity of the messages
cannot be guaranteed anymore. For digital signature schemes, the
integrity and authenticity as well as the accountability of all signed
messages is at stake.

Each copy of the software embeds the same key meaning one
broken copy affects all other available copies resulting in a broken
crypto system. The revocation of a (compromised) key is also dif-
ficult as the key is provided directly via the source code and can
therefore only be changed by replacing the distributed binary. If
no revocation takes place, the vulnerability remains.

All three versions of the ransomware NoobCrypt use a hard-
coded cryptographic key [25]. By examining the decompilied source
code of the ransomware, the key can be extracted. After publica-
tion of the key, all files decrypted by the ransomware could be
successfully decrypted as each version uses the same private key.
The ransomwares DXXD, Nemucod 1, and Nemucod 2 were broken
by a similar approach [35, 48, 50].

4.6 Erroneous Library Usage
Cryptographic ciphers are often implemented using cryptographic
programming libraries. These libraries provide an implementation
of different ciphers via a documented API. For correct usage of the
library, consultation of the provided documentation is required.
Otherwise, API calls can be used incorrectly and unreasonable
parameters can be handed over to the ciphers. The parameters
can be outside the expected range or chosen randomly. This can,
in turn, lead to function calls being set with predefined default
parameters during compile time. Alternatively, the sample code
included in some documentations can be used directly with only
minor or completely without any modifications.

The usage of incorrectly chosen parameters when calling an API
can therefore lead to unexpected behavior of the application and
compromise the security of the cipher. The same applies for copying
sample code without the understanding of the code’s function. The
usage of standard, predefined execution parameters for ciphers can
enable attacks on ciphers.

The ransomwareCryptoDefense uses RSA-2048 to encrypt files on
systems running Windows [29]. The keys used by the ransomware
are generated locally on the infected system using different func-
tions of Microsoft’s Crypto API such as CryptAcquireContext.
The function call’s code was adapted from a code sample. The
flag indicating the private key’s persistence is set to the value 0
by default. This results in the key being stored in the user’s local
AppData folder [56]. Therefore, extraction and decryption of the
files is possible.

The ransomware TorrentLocker encrypts files with AES-256 in
CTR mode by employing the library LibTomCrypt [33, 41]. Each
file is encrypted with the same key and initial vector which allows
breaking the ransomware.

4.7 Weak Algorithms
By selecting a specific cipher from the large pool of existing ci-
phers, a possibly insecure cipher can be selected without intent.
Reasons for this can be manifold. Unawareness or preferred use of
already known ciphers can, for example, result in the selection of
an outdated cipher which is no longer considered secure.

Outdated or provably weak ciphers often contain severe weak-
nesses making these ciphers vulnerable to attacks. Some of them
employ insufficient key lengths which makes these ciphers suscep-
tible to brute-force or factorization attacks due to the increase in
available computing power. Weaknesses of such ciphers are often
publicly known and investigated which additionally decreases the
effort for potential attackers.

Bart, a fork of the ransomware Locky [51], uses encrypted ZIP
archives [48] utilizing the PKZIP algorithm which is vulnerable to
known-plaintext attacks [6, 31].

4.8 Self-Implementation
As outlined, developers often use libraries to integrate crypto-
graphic functionality into their programs. Alternatively, they can
implement cryptographic algorithms completely by themselves
whilst relying on published specifications. Additionally, develop-
ers can even design their own cryptographic algrithms which are
often based on simple logic operators. A motivation for this could

AntiPatterns Regarding the Application of Cryptographic Primitives by the Example of Ransomware ARES 2020, August 25–28, 2020, Virtual Event, Ireland

be the desire to keep the binary as small as possible which can
be a challenge regarding the storage claimed by some library’s
functions.

Self-implementation of secure cryptographic algorithms can re-
sult in subtle, difficult to notice errors. These errors can have se-
vere implications on the security of the used cryptography, in the
worst-case resulting in broken cryptography. In addition to this,
self-developed cryptographic algorithms also show errors on a con-
ceptual level, making broken cryptography even more likely. A
(self-developed) algorithm depending on the non-disclosure of the
technique itself, for example, violates one of the most important
foundations of modern cryptography, namely Kerckhoff’s Principle.

The 2016 ransomware Petya does not encrypt single files but
rather the MBR and the Master File Table (MFT) of the infected
computer’s hard disk drive [29, 30] which results in an unusable
operating system. The key stream of the employed stream cipher
Salsa20 is generated from an initial state of 64 bytes consisting
of a 256 bit key and a 64 bit nonce among others [5, 14]. Petya’s
developers use a self-implemented version of Salsa20 containing
several errors effectively reducing the key length by half. Thus, the
employed encryption gets prone to brute-forcing [26, 30].

The ransomware Telecrypt communicates via the API of the
messenger service Telegram [40]. For file encryption, a string of
10-20 characters randomly generated from a fixed set of symbols
including vo, pr, bm, xu, zt, and dq is used. The encryption is im-
plemented by byte-serial addition of key and file content. This
self-developed algorithm is vulnerable to known-plaintext attacks
since the key can be calculated by comparing an encrypted with an
unencrypted file resulting in a broken cipher. The ransomware sam-
ples DXXD, Nemucod 1, and Nemucod 2 also use a self-developed
cipher resulting in broken cryptography [35, 48, 50].

5 CONCLUSION AND FUTUREWORK
This paper analyzes 30 broken ransomware samples for erroneous
implementations of cryptography and presents a categorization
framework to assign the analyzed ransomware to ten different error
categories. Based on this, a total of eight AntiPatterns which can
occur during the implementation of cryptography are derived. The
analysis of the results shows that insufficient key management has
a greater potential for error than the implementation of crypto-
graphic primitives. Among the analyzed ransomware, hard-coded
keys and insufficiently chosen initial values for PRNGs are the most
common causes of vulnerabilities. Nevertheless, the set of analyzed
ransomware is not large enough in order to draw a statistically
sound conclusion about the general frequency of specific errors or
AntiPatterns, respectively.

The categorization framework developed in this paper is based
on error categories which have been extracted from previous works
on implementation errors of cryptography. None of these papers,
however, contains such an integrated frameworkwhich can not only
be used for the categorization of ransomware. Rather, erroneous
applications of all kind can be assigned to a specific error category.
Based on the assigned category, the corresponding AntiPattern
can be determined which helps developers to learn about common
mistakes, their possible consequences, and approaches to avoid an
error or even a vulnerability.

The developed AntiPatterns focus especially on the usage of
cryptographic primitives. They are not limited to a specific pro-
gramming language and are therefore universally applicable. The
given recommendations for the avoidance or correction of errors
are not meant as instructions which can be directly implemented.
This would be contradictory to the general idea of an AntiPattern.
Rather, they are intended to be proposed solutions for the specified
(and similar) problems.

This paper explicitly addresses lawful purposes only. It is not the
goal to promote the development of a ’perfect’ ransomware. The
AntiPatterns are primarily intended to support the field of software
development. No matter if libraries, applications, or embedded
systems, the AntiPatterns can help to detect and avoid errors during
the implementation of cryptography at an early stage.

A specific example is the development of industrial control sys-
tems (ICS) [23]. Apa et al. [39] analyze several devices used for
the automation of production lines and found a vulnerability in
the area of key generation, significantly reducing the search space
of brute-force attacks. This enables an attacker to obtain the cor-
rect cryptographic key within a short period of time and use it
in order to physically tamper with the production plant. Making
use of AntiPatterns, this vulnerability could have been detected
and corrected during the development phase of the device. Other
common problems in ICS security are transmission in clear text
and the use of wrong cryptographic libraries [22]. Considering the
respective AntiPatterns, these error sources can be mitigated.

Possible future work can include the analysis of a larger set of
ransomware but also other, lawful software in order to identify
additional error categories, extend the existing scheme, and con-
sequently derive corresponding AntiPatterns. By increasing the
number of research objects, a more quantitative and statistical con-
clusion can be drawn about which errors are the most common.
Based on this insight and existing methodologies [24, 27, 28], a
metric can be developed, ordering the possible errors in accordance
with their frequency and impact on the actual product in terms
of vulnerabilities. Similar to the OWASP Top Ten [45], this metric
can then be used during code reviews in order to detect and cor-
rect vulnerabilities, qualitatively making use of the accompanied
AntiPatterns.

As already discussed earlier, there are approaches to develop
tools automatically analyzing Android applications in order to find
vulnerabilities [17, 49]. Applying this concept to ransomware could
help to support manufacturers of antivirus software in their contin-
uous research for decryption tools. Decompiling the binaries first,
the actual analysis could then start on the assembly level whereby
it has to be considered that parts of the code might be obfuscated
and/or encrypted which would impede the analysis.

ACKNOWLEDGMENTS
The presented work is part of the German national security ref-
erence projects IUNO (grant number 16KIS0324) and IUNO InSec
(grant number 16KIS0933K). The authors would like to thank Patrick
Wagner for providing valuable feedback.

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Heinl et al.

REFERENCES
[1] Adam Caudill. 2017. Breaking the NemucodAES Ransomware. https://adamcaudill.

com/2017/07/12/breaking-nemucodaes-ransomware/
[2] Elaine Barker. 2016. NIST Special Publication 800-57 Part 1 Revision 4: Recommen-

dation for Key Management. Technical Report. National Institute of Standards
and Technology (NIST). https://doi.org/10.6028/NIST.SP.800-57pt1r4

[3] Elaine Barker and Allen Roginsky. 2012. NIST Special Publication 800-133: Recom-
mendation for Cryptographic Key Generation. Technical Report. National Institute
of Standards and Technology (NIST). https://doi.org/10.6028/NIST.SP.800-133

[4] Sabrina Berkenkopf. 2016. Manamecrypt – a ransomware that takes a dif-
ferent route. GDATA. https://www.gdatasoftware.com/blog/2016/04/28234-
manamecrypt-a-ransomware-that-takes-a-different-route

[5] Daniel J. Bernstein. 2008. The Salsa20 Family of Stream Ciphers. Springer Berlin
Heidelberg, Berlin, Heidelberg, 84–97. https://doi.org/10.1007/978-3-540-68351-
3_8

[6] Eli Biham and Paul C. Kocher. 1995. A known plaintext attack on the PKZIP
stream cipher. In Fast Software Encryption (Lecture Notes in Computer Science),
Bart Preneel (Ed.), Vol. 1008. Springer, Berlin, Heidelberg, 144–153. https://doi.
org/10.1007/3-540-60590-8_12

[7] BloodDolly and Lawrence Abrams. 2015. Decryption Guide for TeslaCrypt En-
crypted Files. https://up2sha.re/file?l=C5ag0MrQNqAb.pdf

[8] Bryan Lee. 2017. Ransomware: Unlocking the lucrative business model. PaloAlto
Unit 42. https://www.paloaltonetworks.com/resources/research/ransomware-
report

[9] D. Budgen. 2003. Software Design. Pearson/Addison-Wesley.
[10] Bundesamt für Sicherheit in der Informationstechnik. 2018. BSI TR-02102-1:

Kryptographische Verfahren: Empfehlungen und Schlüssellängen. Technical Re-
port. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/
TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile

[11] Check Point Software Technologies. 2016. Jigsaw Ransomware Decryption. https:
//blog.checkpoint.com/2016/07/08/jigsaw-ransomware-decryption/

[12] Lily Chen. 2009. NIST Special Publication 800-108: Recommendation for Key
Derivation Using Pseudorandom Functions (Revised). Technical Report. National
Institute of Standards and Technology (NIST). https://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-108.pdf

[13] Lily Chen. 2011. NIST Special Publication 800-56C: Recommendation for Key Deriva-
tion through Extraction-then-Expansion. Technical Report. National Institute of
Standards and Technology (NIST). https://doi.org/10.6028/NIST.SP.800-56c

[14] Daniel J. Bernstein. 2005. Salsa20 design. Department of Mathematics, Statistics,
and Computer Science. The University of Illinois at Chicago. Chicago. https:
//cr.yp.to/snuffle/design.pdf

[15] M. J. Dworkin. 2001. NIST Special Publication 800-38A: Recommendation for Block
Cipher Modes of Operation - Methods and Techniques. Technical Report. National
Institute of Standards and Technology (NIST). https://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-38a.pdf

[16] Claudia Eckert. 2014. IT-Sicherheit: Konzepte - Verfahren - Protokolle (9 ed.). De
Gruyter Oldenbourg, Berlin. https://doi.org/10.1515/9783486859164

[17] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
2013. An Empirical Study of Cryptographic Misuse in Android Applications. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security (Berlin, Germany) (CCS ’13). Association for Computing Machinery, New
York, NY, USA, 73–84. https://doi.org/10.1145/2508859.2516693

[18] Fabien Perigaud and Cedric Pernet. 2014. Bitcrypt broken. Airbus CyberSecurity.
https://airbus-cyber-security.com/bitcrypt-broken/

[19] Fedor Sinitsyn. 2015. TeslaCrypt 2.0 disguised as CryptoWall. https://securelist.
com/teslacrypt-2-0-disguised-as-cryptowall/71371/

[20] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. 2015. Cryptography
Engineering. John Wiley & Sons, Ltd, Hoboken, NJ, USA. https://doi.org/10.
1002/9781118722367

[21] International Organization for Standardization. 2010. ISO/TR 14742:2010 Recom-
mendations on cryptographic algorithms and their use. https://www.iso.org/
standard/54951.html

[22] Alexander Giehl and Sven Plaga. 2018. Implementing a Performant Secu-
rity Control for Industrial Ethernet. In 2018 International Conference on Sig-
nal Processing and Information Security (Dubai, United Arab Emirates). IEEE, 4.
https://doi.org/10.1109/CSPIS.2018.8642758

[23] Alexander Giehl and Norbert Wiedermann. 2018. Security verification of third
party design files in manufacturing. In 10th International Conference on Computer
and Automation Engineering Proceedings (Brisbane, Australia). ACM, New York,
NY, USA, 8. https://doi.org/10.1145/3192975.3192984 Best Presentation Award.

[24] Alexander Giehl, Norbert Wiedermann, and Sven Plaga. 2019. A framework to
assess impacts of cyber attacks in manufacturing. In 2019 11th International Con-
ference on Computer and Automation Engineering Proceedings (Perth, Australia).
ACM, New York, NY, USA, 8. https://doi.org/10.1145/3313991.3314003

[25] Karsten Hahn. 2016. The Rise of Low Quality Ransomware. GDATA. https://www.
gdatasoftware.com/blog/2016/09/29157-the-rise-of-low-quality-ransomware

[26] Hasherezade / Malwarebytes Labs. 2016. Uncovering the secrets of malver-
tising. https://www.virusbulletin.com/uploads/pdf/conference_slides/2016/
hasherezade-vb-2016-ransomware.pdf

[27] Michael P. Heinl. 2019. A metric to assess the trustworthiness of certificate authori-
ties. Master’s thesis. University of Ulm. https://doi.org/10.18725/OPARU-12173

[28] Michael P. Heinl, Alexander Giehl, Norbert Wiedermann, Sven Plaga, and Frank
Kargl. 2019. MERCAT: A Metric for the Evaluation and Reconsideration of
Certificate Authority Trustworthiness. In Proceedings of the 2019 ACM SIGSAC
Conference on Cloud Computing Security Workshop (London, United Kingdom)
(CCSW’19). Association for Computing Machinery, New York, NY, USA, 1–15.
https://doi.org/10.1145/3338466.3358917

[29] Ben Herzog and Yaniv Balmas. 2016. Great Crypto Failures. Technical Report.
Check Point Software Technologies. https://blog.checkpoint.com/wp-content/
uploads/2016/10/GreatCryptoFailuresWhitepaper_Draft2.pdf

[30] Ben Herzog and Yaniv Balmas. 2016. Great Crypto Failures. https://www.
youtube.com/watch?v=loy84K3AJ5Q

[31] Kyung Chul Jeong, Dong Hoon Lee, and Daewan Han. 2012. An Improved Known
Plaintext Attack on PKZIP Encryption Algorithm. In Information security and
cryptology - ICISC 2011, Howon Kim (Ed.). Lecture Notes in Computer Science,
Vol. 7259. Springer, Berlin, 235–247. https://doi.org/10.1007/978-3-642-31912-
9_16

[32] Josh Reynolds. 2016. CryptXXX Technical Deep Dive. Cisco. https://blogs.cisco.
com/security/cryptxxx-technical-deep-dive

[33] Taneli Kaivola, Patrik Nisén, and Antti Nuopponen. 2014. TorrentLocker Unlocked.
SANS Digital Forensics Incident Response. https://digital-forensics.sans.org/
blog/2014/09/09/torrentlocker-unlocked

[34] B. Kaliski. 2000. PKCS #5: Password-Based Cryptography Specification Version 2.0.
RFC 2898. RFC Editor. http://www.rfc-editor.org/rfc/rfc2898.txt

[35] Lawrence Abrams. 2016. Decryptor Released for the Nemucod Trojan’s .CRYPTED
Ransomware. Bleeping Computer. https://www.bleepingcomputer.com/news/
security/decryptor-released-for-the-nemucod-trojans-crypted-ransomware/

[36] Lawrence Abrams. 2016. TeslaCrypt Decrypted_ Flaw in Tes-
laCrypt allows Victim’s to Recover their Files. Bleeping Computer.
https://www.bleepingcomputer.com/news/security/teslacrypt-decrypted-
flaw-in-teslacrypt-allows-victims-to-recover-their-files/

[37] Lawrence Abrams. 2016. TeslaCrypt shuts down and Releases Master Decryption
Key. Bleeping Computer. https://www.bleepingcomputer.com/news/security/
teslacrypt-shuts-down-and-releases-master-decryption-key/

[38] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. 2014. Why Does
Cryptographic Software Fail? A Case Study and Open Problems. In Proceedings
of 5th Asia-Pacific Workshop on Systems (Beijing, China) (APSys ’14). Association
for Computing Machinery, New York, NY, USA, Article 7, 7 pages. https://doi.
org/10.1145/2637166.2637237

[39] Lucas Apa and Carlos Mario Penagos Hollman. 2013. Compromising Industrial
Facilities from 40 Miles Away. https://media.blackhat.com/us-13/US-13-Apa-
Compromising-Industrial-Facilities-From-40-Miles-Away-WP.pdf

[40] Malwarebytes Labs. 2016. TeleCrypt – the ransomware abusing Telegram API –
defeated! https://blog.malwarebytes.com/threat-analysis/2016/11/telecrypt-the-
ransomware-abusing-telegram-api-defeated/

[41] Marc-Etienne M.Léveillé. 2014. TorrentLocker: Ransomware in a country
near you. ESET. https://www.welivesecurity.com/wp-content/uploads/2014/12/
torrent_locker.pdf

[42] McAfee. 2016. McAfee Labs Unlocks LeChiffre Ransomware. https:
//securingtomorrow.mcafee.com/mcafee-labs/mcafee-labs-unlocks-lechiffre-
ransomware/

[43] Microsoft. 2016. RNGCryptoServiceProvider-Klasse (System.Security.Cryptography).
https://msdn.microsoft.com/de-de/library/system.security.cryptography.
rngcryptoserviceprovider(v=vs.110).aspx

[44] Open Web Application Security Project (OWASP). 2017. Cryptographic Storage
Cheat Sheet. https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_
Sheet#Providing_Cryptographic_Functionality

[45] Open Web Application Security Project (OWASP). 2020. OWASP Top Ten. https:
//owasp.org/www-project-top-ten/

[46] Openwall. [n.d.]. php_mt_seed - PHP mt_rand() seed cracker. Openwall. http:
//www.openwall.com/php_mt_seed/

[47] Oracle. 2014. Class SecureRandom (Java Platform SE 8). https://docs.oracle.com/
javase/8/docs/api/java/security/SecureRandom.html

[48] Dorka Palotay. 2016. Ransomware Cryptonite. https://hsbp.org/tiki-download_
wiki_attachment.php?attId=207&download=y

[49] Pascal Gadient. 2017. Security in Android Applications. Master’s Thesis. http:
//scg.unibe.ch/archive/projects/Gadi17.pdf

[50] Roland Dela Paz. 2016. Nemucod Adds Ransomware Routine. Fortinet. https:
//blog.fortinet.com/2016/03/16/nemucod-adds-ransomware-routine

[51] Proofpoint Staff. 2016. Doh! New ”Bart” Ransomware from Threat Actors
Spreading Dridex and Locky. Proofpoint. https://www.proofpoint.com/us/threat-
insight/post/New-Bart-Ransomware-from-Threat-Actors-Spreading-Dridex-
and-Locky

https://adamcaudill.com/2017/07/12/breaking-nemucodaes-ransomware/
https://adamcaudill.com/2017/07/12/breaking-nemucodaes-ransomware/
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.6028/NIST.SP.800-133
https://www.gdatasoftware.com/blog/2016/04/28234-manamecrypt-a-ransomware-that-takes-a-different-route
https://www.gdatasoftware.com/blog/2016/04/28234-manamecrypt-a-ransomware-that-takes-a-different-route
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/3-540-60590-8_12
https://doi.org/10.1007/3-540-60590-8_12
https://up2sha.re/file?l=C5ag0MrQNqAb.pdf
https://www.paloaltonetworks.com/resources/research/ransomware-report
https://www.paloaltonetworks.com/resources/research/ransomware-report
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://blog.checkpoint.com/2016/07/08/jigsaw-ransomware-decryption/
https://blog.checkpoint.com/2016/07/08/jigsaw-ransomware-decryption/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
https://doi.org/10.6028/NIST.SP.800-56c
https://cr.yp.to/snuffle/design.pdf
https://cr.yp.to/snuffle/design.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://doi.org/10.1515/9783486859164
https://doi.org/10.1145/2508859.2516693
https://airbus-cyber-security.com/bitcrypt-broken/
https://securelist.com/teslacrypt-2-0-disguised-as-cryptowall/71371/
https://securelist.com/teslacrypt-2-0-disguised-as-cryptowall/71371/
https://doi.org/10.1002/9781118722367
https://doi.org/10.1002/9781118722367
https://www.iso.org/standard/54951.html
https://www.iso.org/standard/54951.html
https://doi.org/10.1109/CSPIS.2018.8642758
https://doi.org/10.1145/3192975.3192984
https://doi.org/10.1145/3313991.3314003
https://www.gdatasoftware.com/blog/2016/09/29157-the-rise-of-low-quality-ransomware
https://www.gdatasoftware.com/blog/2016/09/29157-the-rise-of-low-quality-ransomware
https://www.virusbulletin.com/uploads/pdf/conference_slides/2016/hasherezade-vb-2016-ransomware.pdf
https://www.virusbulletin.com/uploads/pdf/conference_slides/2016/hasherezade-vb-2016-ransomware.pdf
https://doi.org/10.18725/OPARU-12173
https://doi.org/10.1145/3338466.3358917
https://blog.checkpoint.com/wp-content/uploads/2016/10/GreatCryptoFailuresWhitepaper_Draft2.pdf
https://blog.checkpoint.com/wp-content/uploads/2016/10/GreatCryptoFailuresWhitepaper_Draft2.pdf
https://www.youtube.com/watch?v=loy84K3AJ5Q
https://www.youtube.com/watch?v=loy84K3AJ5Q
https://doi.org/10.1007/978-3-642-31912-9_16
https://doi.org/10.1007/978-3-642-31912-9_16
https://blogs.cisco.com/security/cryptxxx-technical-deep-dive
https://blogs.cisco.com/security/cryptxxx-technical-deep-dive
https://digital-forensics.sans.org/blog/2014/09/09/torrentlocker-unlocked
https://digital-forensics.sans.org/blog/2014/09/09/torrentlocker-unlocked
http://www.rfc-editor.org/rfc/rfc2898.txt
https://www.bleepingcomputer.com/news/security/decryptor-released-for-the-nemucod-trojans-crypted-ransomware/
https://www.bleepingcomputer.com/news/security/decryptor-released-for-the-nemucod-trojans-crypted-ransomware/
https://www.bleepingcomputer.com/news/security/teslacrypt-decrypted-flaw-in-teslacrypt-allows-victims-to-recover-their-files/
https://www.bleepingcomputer.com/news/security/teslacrypt-decrypted-flaw-in-teslacrypt-allows-victims-to-recover-their-files/
https://www.bleepingcomputer.com/news/security/teslacrypt-shuts-down-and-releases-master-decryption-key/
https://www.bleepingcomputer.com/news/security/teslacrypt-shuts-down-and-releases-master-decryption-key/
https://doi.org/10.1145/2637166.2637237
https://doi.org/10.1145/2637166.2637237
https://media.blackhat.com/us-13/US-13-Apa-Compromising-Industrial-Facilities-From-40-Miles-Away-WP.pdf
https://media.blackhat.com/us-13/US-13-Apa-Compromising-Industrial-Facilities-From-40-Miles-Away-WP.pdf
https://blog.malwarebytes.com/threat-analysis/2016/11/telecrypt-the-ransomware-abusing-telegram-api-defeated/
https://blog.malwarebytes.com/threat-analysis/2016/11/telecrypt-the-ransomware-abusing-telegram-api-defeated/
https://www.welivesecurity.com/wp-content/uploads/2014/12/torrent_locker.pdf
https://www.welivesecurity.com/wp-content/uploads/2014/12/torrent_locker.pdf
https://securingtomorrow.mcafee.com/mcafee-labs/mcafee-labs-unlocks-lechiffre-ransomware/
https://securingtomorrow.mcafee.com/mcafee-labs/mcafee-labs-unlocks-lechiffre-ransomware/
https://securingtomorrow.mcafee.com/mcafee-labs/mcafee-labs-unlocks-lechiffre-ransomware/
https://msdn.microsoft.com/de-de/library/system.security.cryptography.rngcryptoserviceprovider(v=vs.110).aspx
https://msdn.microsoft.com/de-de/library/system.security.cryptography.rngcryptoserviceprovider(v=vs.110).aspx
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet#Providing_Cryptographic_Functionality
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet#Providing_Cryptographic_Functionality
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
http://www.openwall.com/php_mt_seed/
http://www.openwall.com/php_mt_seed/
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://hsbp.org/tiki-download_wiki_attachment.php?attId=207&download=y
https://hsbp.org/tiki-download_wiki_attachment.php?attId=207&download=y
http://scg.unibe.ch/archive/projects/Gadi17.pdf
http://scg.unibe.ch/archive/projects/Gadi17.pdf
https://blog.fortinet.com/2016/03/16/nemucod-adds-ransomware-routine
https://blog.fortinet.com/2016/03/16/nemucod-adds-ransomware-routine
https://www.proofpoint.com/us/threat-insight/post/New-Bart-Ransomware-from-Threat-Actors-Spreading-Dridex-and-Locky
https://www.proofpoint.com/us/threat-insight/post/New-Bart-Ransomware-from-Threat-Actors-Spreading-Dridex-and-Locky
https://www.proofpoint.com/us/threat-insight/post/New-Bart-Ransomware-from-Threat-Actors-Spreading-Dridex-and-Locky

AntiPatterns Regarding the Application of Cryptographic Primitives by the Example of Ransomware ARES 2020, August 25–28, 2020, Virtual Event, Ireland

[52] S. Rahaman and D. Yao. 2017. Program Analysis of Cryptographic Implemen-
tations for Security. In 2017 IEEE Cybersecurity Development (SecDev). 61–68.
https://doi.org/10.1109/SecDev.2017.23

[53] ReaQta. 2016. Nemucod meets 7-Zip to launch ransomware attacks. https:
//reaqta.com/2016/04/nemucod-meets-7zip-to-launch-ransomware/

[54] Bruce Schneier, Matthew Fredrikson, Tadayoshi Kohno, and Thomas Ristenpart.
2015. Surreptitiously Weakening Cryptographic Systems. Technical Report. https:
//eprint.iacr.org/2015/097.pdf

[55] Marc Schönefeld. 2010. Refactoring of Security Antipatterns in Distributed Java
Components. Ph.D. Dissertation. University of Bamberg. https://fis.uni-bamberg.
de/bitstream/uniba/224/2/Dokument_1.pdf

[56] Mark H / Shearwater. 2014. Cryptodefense infection, some lessons
learned. https://isc.sans.edu/forums/diary/Cryptodefense+infection+some+
lessons+learned/18165/

[57] Nigel P. Smart and Rodica Tirtea. 2014. Algorithms, key sizes and parameters report
2014 (november 2014 ed.). Technical Report. European Network and Information
Security Agency (ENISA). https://doi.org/10.2824/36822

[58] Somak Das, Vineet Gopal, Kevin King, and Amruth Venkatraman. 2014.
IV = 0 Security Cryptographic Misuse of Libraries. Technical Re-
port. MIT. https://courses.csail.mit.edu/6.857/2014/files/18-das-gopal-king-
venkatraman-IV-equals-zero-security.pdf

[59] Trend Micro. 2017. Ransomware - Definition. https://www.trendmicro.com/
vinfo/us/security/definition/ransomware

[60] Meltem Sönmez Turan, Elaine Barker, William Burr, and Lily Chen. 2010. NIST
Special Publication 800-132: Recommendation for Password-Based Key Derivation -
Part 1: Storage Applications. Technical Report. National Institute of Standards
and Technology (NIST. https://doi.org/10.6028/NIST.SP.800-132

[61] Utku Sen. 2015. Destroying The Encryption of Hidden Tear Ran-
somware. https://utkusen.com/blog/destroying-the-encryption-of-hidden-tear-
ransomware.html

[62] Serge Vaudenay. 2002. Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS In Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques: Advances in Cryptology
(EUROCRYPT ’02). Springer-Verlag, Berlin, Heidelberg, 534–546.

[63] William Brown, Raphael Malveau, Hays McCormick, and Thomas Mowbray.
1998. AntiPatterns: Refractoring Software, Architectures and Projects in Crisis. John
Wiley & Sons, Ltd. https://doi.org/10.1016/B978-1-85573-259-9.50003-4

A APPENDIX: MITIGATION STRATEGIES
This section gives an overview on mitigation strategies for each
AntiPattern. The mitigation strategies are composed of a summary
of established best practices in the area of secure implementation
of cryptography.

A.1 Clear Text Transmission
The transmission of sensitive information such as passwords or
cryptographic keys always has to be encrypted. The implemen-
tation can thereby be realized on different levels of the TCP/IP
Reference Model. In the tansportation layer, for example the Se-
cure Shell Protocol (SSH) or Transport Layer Security (TLS) can
be used in order to secure application protocols such as HTTP by
end-to-end encryption [16]. Especially the latter is widely spread
and can be implemented by using libraries such as OpenSSL. On
the network layer, the transmission of data can be protected by
employing IPSec’s Encapsulating Security Payload (ESP) Protocol
which builds a tunnel between communication partners. Similarly
to TLS, ESP also provides confidentiality, integrity, and authenticity.

If confidential information only has to be transmitted once, for
example the key in case of ransomware, one might want to keep
the effort as low as possible and therefore not implement one of
the more sophisticated protocols mentioned above. In this case, the
key’s confidentiality could also be protected by encrypting it before
transmission employing asymmetric encryption. This way, only
the owner of the private key is able to decrypt the key, although
the corresponding public key is hard-coded into the ransomware.

A.2 Weak Keys
It is not advisable to employ self-developed key generation algo-
rithms, especially if constant or deterministic values are used. A
much better alternative is to use standardized key derivation func-
tions (KDFs) which derive cryptograpic keys of a specific length
based on a secret input value [12, 13, 57].

A special version of KDFs are password-based KDFs (PBKDFs)
which take a user-defined password as well as a salt as input val-
ues [60]. The salt’s purpose is to slow down attacks based on pre-
computed tables of possible key values. Another way to make such
attacks more difficult is to increase the number of iterations during
the key derivation. These parameters, however, have to be chosen
very carefully since they otherwise do not offer any additional se-
curity. The salt should be generated by an RNG instead of using a
constant value [17, 60]. RFC 2898 (PKCS #5) [34] defines a minimum
length of 64 bit whereas the National Institute of Standards and Tech-
nology (NIST) recommends 128 bit [60]. Furthermore, the password
should be of high entropy and the number of iterations not below
1,000. Alternatively, keys can also be generated by making use of
(P)RNGs (see AntiPattern Poor Seed).

Various authorities such as the German BSI [10] or NIST [2]
constantly publish guidelines containing recommendations about
respective key lengths which should be considered during the im-
plementation of cryptographic primitives.

A.3 Poor Seed
Although seeming to be an unremarkable aspect, the generation
of cryptographic keys by PRNGs can have a severe impact on the
security of the used cryptography and consequentially on the whole
product. The ideal solution would therefore be true RNGs (TRNG)
utilizing physical processes such as thermal resistance noise in order
to generate non-deterministic sequences [16]. TRNGs don’t need a
seed but usually dedicated hardware which regularly renders them
unavailable. Another possibility to generate true random numbers
are non-physical non-deterministic RNGs (NPTRNGs) [10, 16]. The
values generated by them are based on intrasystem values such as
the content of random access memory (RAM), keyboard and mouse
interactions by the user, and audio driver noise. Linux provides
such an NPTRNG in form of the device file /dev/random. When
using NPTRNGs, it has to be ensured that attackers are not able to
interact with, i.e. manipulate, it.

In order to use deterministic PRNGs for cryptographic purposes,
it has to be initialized with a truly random seed [10, 38]. If there is
no TRNG available for the generation of the seed, NPTRNGs can be
used as well. Since /dev/random is blocking if there is not enough
entropy available, the generation of random values can be heav-
ily delayed [10]. Therefore, the combination of letting NPTRNGs
generate a seed of suffcient length which is then fed to a PRNG
can result in a better output rate. The German BSI recommends an
entropy of n bit in order to ensure a security of n bit [10].

As demonstrated by the formerly mentioned ransomware exam-
ples, a PRNG’s seed can partially be determined by the sequences
generated by the PRNG. Hence, non-secret values such as IVs
for block ciphers should be generated independently from crypto-
graphic keys by initializing the PRNG with a new, truly random
seed each time.

https://doi.org/10.1109/SecDev.2017.23
https://reaqta.com/2016/04/nemucod-meets-7zip-to-launch-ransomware/
https://reaqta.com/2016/04/nemucod-meets-7zip-to-launch-ransomware/
https://eprint.iacr.org/2015/097.pdf
https://eprint.iacr.org/2015/097.pdf
https://fis.uni-bamberg.de/bitstream/uniba/224/2/Dokument_1.pdf
https://fis.uni-bamberg.de/bitstream/uniba/224/2/Dokument_1.pdf
https://isc.sans.edu/forums/diary/Cryptodefense+infection+some+lessons+learned/18165/
https://isc.sans.edu/forums/diary/Cryptodefense+infection+some+lessons+learned/18165/
https://doi.org/10.2824/36822
https://courses.csail.mit.edu/6.857/2014/files/18-das-gopal-king-venkatraman-IV-equals-zero-security.pdf
https://courses.csail.mit.edu/6.857/2014/files/18-das-gopal-king-venkatraman-IV-equals-zero-security.pdf
https://www.trendmicro.com/vinfo/us/security/definition/ransomware
https://www.trendmicro.com/vinfo/us/security/definition/ransomware
https://doi.org/10.6028/NIST.SP.800-132
https://utkusen.com/blog/destroying-the-encryption-of-hidden-tear-ransomware.html
https://utkusen.com/blog/destroying-the-encryption-of-hidden-tear-ransomware.html
https://doi.org/10.1016/B978-1-85573-259-9.50003-4

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Heinl et al.

Several programming languages and APIs do not only offer
PRNGs but also cryptographically secure PRNGs (CSPRNGs) such
as Java’s SecureRandom [47] or Microsoft’s RNGCryptoService-
Provider [43].

A.4 Key Storage
Cryptographic keys shall under no circumstances be stored in clear
text. Key files therefore always have to be encrypted. The needed
key can be derived from a password, for example by utilizing a hash
function or PBKDF as described in subsection A.2. This approach
is for example employed by Pretty Good Privacy (PGP) in order to
protect the private key needed to decrypt email messages [16]. Fur-
thermore, the key file should only be made accessible for legitimate
users by appropriately defined file system permissions.

Another valid possibility to securely store keys are so-called
hardware security modules (HSMs), such as smart cards or USB
tokens [16, 20], where the key is stored in a read-only memory
(ROM) and additionally protected by a personal identification num-
ber (PIN). Attacks against such mobile media are usually quite
expensive.

A similar solution are trusted platform modules (TPMs) which are
chips persistently connected with a computer’s hardware and able
to generate and store keys [16]. Microsoft’s BitLocker for example
utilizes TPMs to securely store keys used for full disk encryption.

A.5 Hard-Coded Keys
The security of a crypto system depends on the confidentiality of
the used key(s). Therefore, no (private) keys and in general any
private information must be hard-coded into the source code since
hard-coded information can easily be extracted by attackers. It is
recommended to generate the required keys on the target system
instead. This also prevents the same key from being used for all
copies of the software. It is also paramount to securely store the
generated keys after its generation.

If a shared key is required, e.g., for MACs, the keys can be negoti-
ated via key exchange protocols, e.g., Diffie-Hellman. Alternatively,
the key can be generated by one of the communication parties,
encrypted via an asymmetric crypto system, and then distributed
to the other party. Public keys can also be distributed via certifi-
cates, allowing attestation of its owning entity’s identity and also
guaranteeing its integrity [3].

A.6 Erroneous Library Usage
Since the usage of cryptographic libraries can lead to errors, special
care must be taken during their implementation. The documenta-
tion should be studied prior to their usage and especially the choice
of parameters, values, and flags has to be considered carefully. Code
samples provided within the documentation should only be used
for orientation as they may lead to erroneous configurations of a
cipher. Especially for block ciphers, errors can occur more easily.
The EBC mode, for example, should only be used for plaintexts
shorter than the block length of the employed cipher [16, 17].

The choice of an initial vector is also critical as each mode has
different requirements concerning the vector. For the CBC mode,
no predictable or constant IVs must be used as otherwise attacks on
the used cipher are possible [17, 52]. In OFB mode, IVs must only

be used exactly once [15, 20] and also in CFB mode, they must not
repeat [10, 20, 58]. Hence, in order to improve the security of cryp-
tographic primitives, IVs must be generated randomly, especially
for ciphers in CBC mode [10, 52, 58]. Studying the cipher or mode
prior to implementation is highly recommended. Especially default
configurations provided by the libraries should not be assumed
secure a priori [58].

A.7 Weak Algorithms
Only ciphers that are verified by experts and considered secure
should be used. Ciphers proven to be vulnerable must not be used
under any circumstances. It is worth noting that the definition of a
secure cipher can change over time. Therefore, guidelines and rec-
ommendations such asNIST SP 800-57 [2], ISO TR 14742 [21], or pub-
lications by authorities such as the German BSI [10] or ENISA [57]
which discuss the security of ciphers should be regularly consulted
in order to be aware of updates.

A.8 Self-Implementation
Self-implementation of cryptogrpahic ciphers has to be avoided at
any time regardless how simple this may appear for experienced
developers. Instead, often used and regularly inspected implementa-
tions of ciphers, for example in the form of cryptographic libraries,
have to be used [44]. If the self-implementation of a cipher cannot
be avoided, rigorous testing of the implementation is necessary. For
this, test vectors provided by experts or official institutions have to
be used [38].

Under no circumstances should self-designed algorithms be used.
It is crucial to follow the principle Never roll your own cryptography.
A variety of tested and reliably secure ciphers are publicly avail-
able and only those must be used, preferably in the form of tested
implementations.

	Abstract
	1 Introduction
	2 Related Work
	3 Concept
	3.1 Ransomware Literature Review
	3.2 Categorization Framework

	4 Derived AntiPatterns
	4.1 Clear Text Transmission
	4.2 Weak Keys
	4.3 Poor Seed
	4.4 Key Storage
	4.5 Hard-Coded Keys
	4.6 Erroneous Library Usage
	4.7 Weak Algorithms
	4.8 Self-Implementation

	5 Conclusion and Future Work
	References
	A Appendix: Mitigation Strategies
	A.1 Clear Text Transmission
	A.2 Weak Keys
	A.3 Poor Seed
	A.4 Key Storage
	A.5 Hard-Coded Keys
	A.6 Erroneous Library Usage
	A.7 Weak Algorithms
	A.8 Self-Implementation

