
Fast and Accurate Face Detection using Feature
Pyramid with Grid Anchors

1st Liguo Zhou
Institut für Informatik VI

Technical University of Munich
Garching, Germany
liguo.zhou@tum.de

2nd Guang Chen
School of Automotive Studies

Tongji University
Shanghai, China

guangchen@tongji.edu.cn

3rd Alois Knoll
Institut für Informatik VI

Technical University of Munich
Garching, Germany

knoll@in.tum.de

Abstract—CNN-based face detection methods have achieved
significant progress in recent years. However, making a good
balance between time cost and detection accuracy is still a
challenging problem. Those methods which can reach a very
high detection accuracy always have complicated networks and
rely on expensive GPUs for inference, while those methods
which have shallow networks and can run on common devices
always lose detection accuracy to a large extent. In this paper,
we propose an effective anchor generation and bounding-box
regression method which can improve the detection accuracy by
modifying the detection head of the popular detection networks.
With this effectiveness, we can reduce the trainable weights
of the network to speed up the inference while maintaining
high accuracy. As a result, our method can get a better speed-
accuracy balance. In our method, we divide the input image into
grids according to the sizes of the pyramid-like feature maps
produced by CNN. In training, those grids close to the center
of the ground-truth bounding-boxes are selected as anchors.
After training, the regression mapping from the anchors to the
ground-truth bounding-boxes can be acquired by the exponential
transformation we designed. Our method explicitly and strictly
use feature maps in different levels to detect faces of different
sizes. The higher-level feature maps and larger grid anchors are
responsible for detecting larger faces, while the lower-level feature
maps and smaller grid anchors are dedicated to detecting smaller
faces. Therefore, our method is effective for detecting multi-scale
faces. The experiments on both GPU and CPU demonstrate that
our method is effective. Our source code is publicly available on
https://github.com/zhouliguo/GAFace.

Index Terms—CNN, Face Detection, Bounding-box Regression,
Image Processing

I. INTRODUCTION

Face detection is an important task in computer vision and
has been widely studied in the past decades. Nowadays, many
emerging applications, such as identity authentication and se-
curity surveillance, hinge on face detection. Since AlexNet [1]
was proposed, Convolutional Neural Networks (CNN) have
achieved significant progress in face detection. However, for
high-performance face detection, there are still a series of
challenging problems. The balance between detection speed
and accuracy is an essential problem because it determines
whether a face detection method can be applied in practi-
cal applications. To improve the accuracy of face detection,
more and more complicated structures of CNN [2], [3] are
proposed. These methods take a long time for inference, even
on expensive GPUs. To make face detection run in real-time

on common CPUs or mobile devices, some face detectors [4],
[5] utilize light networks with fewer weights. However, the
accuracy of these methods drops a lot. Instead of modifying the
structure of CNN, in this paper, we propose an effective anchor
generation and bounding-box regression method to achieve a
good speed-accuracy balance.

As a special kind of object detection, the pipeline of face
detection is similar to that of general object detection. Regions
with CNN features (R-CNN) [6], the first successful CNN-
based object detection method, contains two stages. First,
thousands of candidate regions of objects are proposed by
selective search [7]. Second, each of the candidate regions
is cropped from the image and input into CNN to classify
what kind of object it contains. If a candidate region contains
the needed object, its position will be refined by bounding-
box regression to get the predicted bounding-box. Fast R-
CNN [8] and Faster R-CNN [9] improve R-CNN and focus on
selecting candidate regions of objects better and faster. Faster
R-CNN designs a Region Proposal Network (RPN) to search
the potential regions containing objects. In RPN, a series of
rectangles with multi-scales are proposed and assumed to
contain objects. These rectangles are called anchors. If an
anchor is determined to contain an object, the coordinate of
this anchor will be transformed by bounding-box regression
to get the candidate region. Then the candidate region is
further classified to get the class of the contained object
and refined by bounding-box regression to get the predicted
bounding-box. While the series methods of R-CNN only use a
single scale of feature map to detect objects, Feature Pyramid
Networks (FPN) [10] utilizes multi-scale feature maps to
enhance the network’s ability to detect multi-scale objects.
To reduce the time consumption, SSD [11] and YOLO [12]
combine the region proposal and the region classification and
refinement to one stage by mapping the anchors and their
content to bounding box coordinates and class probabilities
directly. In general, except for the CNN’s ability of feature
extraction, both one-stage and two-stage detection methods
rely on anchor/region proposal and bounding box regression.

By taking advantage of the characteristic of CNN, we pro-
pose a new method for anchor generation and bounding box re-
gression to improve the performance of CNN in face detection.
Although CNN has experienced considerable development, the

most popular networks always have a similar structure with
the very original LeNet [13] which contains several downscale
operations and produces pyramid-like feature maps. Fig. 1(a)
shows a face image and its feature pyramid produced by CNN.
The correlation and downscale operations in CNN establish
a connection between the points in the feature map and the
pixels in the input image. In general, a point in the feature
map has a relationship with a square area in the input image.
This square area is called Receptive Field [14]. The point in
the feature map of lower-level has a smaller Receptive Field,
while the point in the feature map of higher-level has a larger
Receptive Field. Inspired by the pyramid-like feature maps
and Receptive Field, we assign each point in the feature map
a square area in the image. This square area has the same
center as its corresponding feature point’s Receptive Field.
If the corresponding square areas of all the points in one
feature map cover the whole image without overlap and gap,
the image will be divided into grids. As shown in Fig. 1, the
four images in Fig. 1(b) are divided into grids according to the
sizes of the four feature maps selected in Fig. 1(a). The grids
located at or near the center of the faces are the nature anchors
for bounding-box regression. For each ground-truth bounding-
box, we select three grids closest to its center point as
anchors. If a selected anchor does not overlap with the ground-
truth bounding-box, we ignore it. We enhance the ability of
our method to detect multi-scale faces by regressing smaller
anchors to smaller faces and regressing larger anchors to larger
faces. Therefore, if a selected anchor is too large or too small
compared to the ground-truth bounding-box, we also ignore
it. Table I shows the correspondence between the anchor size
and the range of face size. In Fig. 1(b), the white grids are
the selected anchors. In the first and last images, none of the
grids is selected as an anchor because the grids are too small
or too large compared to the ground-truth bounding-box. Each
anchor corresponds to a point in the feature pyramid and this
point is responsible for outputting the regression parameters
and the score of the predicted bounding-box. In our method,
the sizes of our anchors are too small compared to the sizes
of many faces in normal images and the common bounding-
box regression methods are not able to regress our anchors
to bounding-box of the larger face properly. However, we can
normalize the sizes of anchor and ground-truth bounding-box
to similar scale by logarithmization. In inference, the network
only needs to output exponents that can transform the size of
the anchor into the size of bounding-box.

Compare with the state of the arts, the generation of anchors
in our method is simpler and more well-founded. We use
different levels of feature maps for detecting faces of different
sizes more explicitly and strictly. The ranges of face size
for the feature map of each level to detect are finer. These
enhance the network’s ability to detect multi-scale faces. The
grid anchor is more suitable for predicting face bounding-box
which is square-like. For one feature point, the single anchor
can make better use of the representation ability of the network
than the multi-anchors with different aspect ratios and multi-
scales used in other methods.

(a) Select Feature Maps for Face Detection

(b) Divide Image into Grids and Label Each Grid

Fig. 1. (a) CNN processes a 64×64 face image and produces a feature
pyramid. We select four features with resolutions of 2×2, 4×4, 8×8, and 16×16
for face detection. (b) The yellow box is the ground-truth. The face images
are divided into grids according to the sizes of the feature maps. The grids
with white shade are selected as anchors.

TABLE I
FEATURES OF DIFFERENT LEVELS RESPONSIBLE FOR DETECTING FACES

OF DIFFERENT SIZES

Feature Level Anchor/Grid Size The Range of the Side Length of
Ground-Truth Bounding-Box

Feature4 (Red) 32× 32 32 ∼ 322

Feature3 (Orange) 16× 16 16 ∼ 162

Feature2 (Purple) 8× 8 8 ∼ 82

Feature1 (Blue) 4× 4 4 ∼ 42

II. RELATED WORKS

A. Object Detection

As a special kind of object detection task, the progress
of face detection benefits from the development of object
detection. Since R-CNN [6] was proposed, various excellent

object detection algorithms have emerged one after another.
Object detection algorithms can be broadly divided into two
categories: one-stage and two-stage. R-CNN and its improved
versions, Fast R-CNN [8] and Faster R-CNN [9], all belong
to the two-stage. They firstly search the region proposals
and then classify the contents in the proposals. SSD [11]
and YOLO [12] are two representative one-stage methods.
They are based on global regression/classification in which the
image pixels are mapped directly to bounding box coordinates
and class probabilities. In the above methods, bounding-box
regression is an essential part. In Faster R-CNN, YOLO,
and SSD, a series of anchors, which are assumed to contain
objects, are proposed to assist the bounding-box regression.
For detecting objects of different sizes and shapes, they design
complicated anchor generation methods.

B. Face Detection

Many CNN-based object detection methods are used in
face detection. To improve the accuracy on the popular face
benchmarks, FDDB [15] and WIDER FACE [16], loads of
complicated components are added in the networks, which
result in over-fitting in these benchmarks and loss of speed.
PyramidBox [3] proposes a context-assisted single shot face
detector. DSFD [2] introduces a feature enhance module to
extend the single shot detector to the dual shot detector.
EXTD [17] generates the feature maps by iteratively reusing
a shared lightweight and shallow backbone network instead
of a single backbone network. RetinaFace [18] unifies face
detection, 2D face alignment, and 3D face reconstruction in
single-shot inference. These SSD-based face detectors all get
high accuracy on the WIDER FACE benchmark. Based on the
YOLOv5 object detector, YOLO5Face [19] achieves a better
performance on the WIDER FACE benchmark by adding a
five-point landmark regression head and using the Wing loss
function [20]. Hambox [21] proposes an online strategy to
mine high-quality anchors for detecting outer faces.

III. METHOD

A. Network

Our network is shown in Fig. 2. The feature extracting part
includes a backbone, FPN [10] and PAN [22]. Our backbone
is similar to the CSPDarkNet which is used in YOLOv5 [23].
CSP [24] and SPP [25] are used for better feature extraction.
The Conv with S=2 and Upscale layers downscale the feature
map to 1/4 and enlarge the feature map to 4 times, respectively.
The operation layers with the same color output feature maps
with the same size.

At the end of the network, there are four branches for
predicting face bounding-boxes. The widths and heights of
Feature1-4 are 1/4, 1/8, 1/16, and 1/32 of the width and height
of the input image. In Feature1-4, the channels is 5 and a
feature point can be denoted as a vector Z(z0, z1, z2, z3, z4).
(z0, z1, z2, z3) is transformed for representing the predicted
bounding-box and z4 is used for representing the score of the
predicted bounding-box.

B. Anchor Generation

By dividing the image into grids according to the sizes of
Feature1-4, we get four grid images as shown in Fig. 1(b).
Then we select grids as anchors for training.

For a ground-truth bounding-box on a grid image, we
select anchors in three steps. First, we select the three grids
closest to the center point of the ground-truth as candidate
anchors. Second, if a candidate anchor does not overlap with
the ground-truth, we filter out this candidate anchor. Third,
according to the correspondence in Table I, if a candidate
anchor is too large or too small compared to the ground-truth,
it should also be filtered out. As shown in Fig. 1(b), the white
grids are selected as anchors.

C. Bounding-box Regression

We redesign the method of bounding-box regression to
support our anchor generation method.

In training, each grid anchor G corresponds to a ground-
truth bounding-box T and a feature point Z in Feature1-4.
The goal of training is minimizing the difference between
f1(G,T) and f2(G,Z). In testing, we can get the predicted
bounding-box T ′ by f−11 (G, f2(G,Z)). f1, f2 and f−11 are
the transformations we will design below.

tx c =
tx − gx
d

,

ty c =
ty − gy
d

,

tw c =
tw
d
,

th c =
th
d
.

(1)

f1 is described in (1). In image domain, each grid an-
chor and its corresponding ground-truth bounding-box can be
denoted as G(gx, gy, d, d) and T (tx, ty, tw, th). (gx, gy) and
(tx, ty) are the center points. (d, d) and (tw, th) are the widths
and heights. The transform result is Tc(tx c, ty c, tw c, th c).
Since G is one of the three grids closest to (tx, ty), tx c and
ty c ∈ [−1, 1]. (tw c, th c) is the size of the ground-truth in
the feature domain.

z′ =
1

1 + e−z
, (2)

f2 contains two steps. First, Z is normalized to 0∼1 by
(2) and get Z ′(z′0, z′1, z′2, z′3, z′4). Second, (z′0, z′1, z′2, z′3) is
processed by

px c = 2z′0 − 1,

py c = 2z′1 − 1,

pw c =
dz

′
2+1

d
,

ph c =
dz

′
3+1

d
,

(3)

and get Pc(px c, py c, pw c, ph c). Since z′ ∈ (0, 1), px c and
py c ∈ (−1, 1) and dz

′+1 ∈ (d, d2). Pc can be used to
represent Tc.

Fig. 2. The network consists of a backbone and a detection head with four branches. The input size is n×32a×32b×c where n is batch-size, 32a, 32b and
c are height, width and channel. K, S, P, C and N denote the kernel size, stride, padding size, output channel and number of repeated module, respectively.

We use CIoU [26] to calculate the similarity between Pc

and Tc. The regression loss of each branch is defined in

L(d)
reg =

1

N (d)

N(d)∑
n=1

[1− CIoU(P (n)
c , T (n)

c)], (4)

where N (d) is the number of grids that are selected as anchors
in one batch in one branch. The total regression loss is

Lreg = L(4)
reg + L(8)

reg + L(16)
reg + L(32)

reg . (5)

In forwarding, each feature point in Feature1-4 will be
transformed into Z ′. In testing, z′4 represents the score at
which the predicted bounding-box correctly contains a face. In
training, z′4 is given a ground-truth value to indicate whether
this point corresponds to an anchor. If this point corresponds
to an anchor, the ground-truth value is 1, otherwise 0. The
score loss of each branch is defined in

L(d)
score = −

1

M (d)

M(d)∑
m=1

[(1− z(m)
t) log(1− z

′(m)
4)

+z
(m)
t log(z

′(m)
4)],

(6)

where M (d) is the number of feature points in one batch and
zt is the ground-truth value of z′4.The total score loss is

Lscore = L(4)
score + L(8)

score + L(16)
score + L(32)

score. (7)

The loss of the whole network is

L = Lreg + Lscore + λ||W ||2, (8)

where W are the weights in the network and λ||W ||2 is added
to avoid over-fitting.

In testing, a predicted bounding-box P (px, py, pw, ph) can
be obtained from a transformed feature point Z ′ which has a
higher score z′4 by f−11 as describe in

px = (2z′0 − 1)d+ gx,

py = (2z′1 − 1)d+ gy,

pw = dz
′
2+1,

ph = dz
′
3+1.

(9)

D. Post Processing in Testing

In testing, if input an image into the network, each point
in Feature1-4 will be transformed into a vector of regression
parameters and a score. Fig. 3 shows how to generate a
predicted bounding-box using these regression parameters and
scores in the third branch of the network. As shown in the
left image of Fig. 3, the scores are labeled in the feature
points’ corresponding grids. Then the green grids, whose
scores are higher than a threshold (such as 0.5), are regressed
to bounding-boxes using their regression parameters. We fuse
these bounding-boxes by Non-Maximum Suppression (NMS)
and get the best predicted bounding-boxes of the third branch.
The other branches can also generate predicted bounding-
boxes, then we fuse the results of the four branches by NMS
to obtain the final predicted bounding-boxes.

Fig. 3. The post processing pipeline on Feature3 (output of the Third Branch).

IV. EXPERIMENT

Our experiments mainly consist of two parts. One is training
large models using the network in Fig. 2 to compare the
accuracy and speed with the state of the arts on GPU. The
other is reducing the parameters of the network in Fig. 2 and
training it to compare the accuracy and speed on CPU.

Our models are trained on NVIDIA GPU V100 with the
deep learning framework PyTorch [27]. Our data augmentation
includes mosaic augmentation, resizing the image with a
random scale from 0.5 to 1.5, and flipping the image randomly
and horizontally. We use the maximum batch size that the
memory can handle and train 300 epochs. We set the initial
learning rate to 0.01 and adjust the learning rate every epoch
by cosine learning rate decay [28] until 0.001. The optimizer
used in the training is stochastic gradient descent [13].

A. Datasets
WIDER FACE [16], Dark Face [29] and MAFA [30] are

used to demonstrate the effectiveness and robustness of our
method. WIDER FACE contains 32,203 images and 393,703
labeled faces with a high degree of variability in scale, pose,
and occlusion. The whole dataset is divided into training,
validation, and test sets. The Dark Face releases 6000 images
captured in dark environments. We randomly select 5000 im-
ages for training and validation. The rest 1000 images are used
for the test. MAFA contains 30,811 Internet images and 35,806
masked faces. Faces in MAFA have various orientations and
occlusion degrees, while at least one part of each face is
occluded by a mask. Fig. 4 shows the examples of these
datasets.

(a) WIDER FACE

(b) Dark Face (c) MAFA

Fig. 4. Examples in WIDER FACE, Dark Face and MAFA.

B. Effectiveness Analysis
To demonstrate the effectiveness of our method, we replace

the detection heads of the state-of-the-art object detection

methods with our method and compare the performances
between the original detection heads and ours. As shown in
Table II, the performances of the detection methods with our
detection head are better.

TABLE II
COMPARISON OF ACCURACY WITH DIFFERENT DETECTION HEADS

(WIDER FACE VAL SET)

Methods
Average Precision

FLOPs (×109)
Easy Medium Hard

EfficientDet-D4 [31] 0.938 0.922 0.823 40.4

EfficientDet-D4-Ours 0.946 0.941 0.899 45.1

YOLOv3 [12] 0.966 0.959 0.897 154.9

YOLOv3-Ours 0.969 0.962 0.915 144.8

YOLOv5x [23] 0.969 0.960 0.901 204.2

YOLOv5x-Ours 0.972 0.964 0.921 203.3

To demonstrate the ability of our method to detect multi-
scale faces, We count the detection accuracy of each method at
different scales. Table III shows that our method outperforms
the other methods at each scale, especially the tiny faces.

TABLE III
COMPARISON OF ACCURACY ON FACES WITH DIFFERENT SIZES

(WIDER FACE VAL SET)

Average Precision
Longer Side of GT BBox ≤16 (16, 64] (64, 256] >256

Number of GT BBox 16844 17793 4482 586

PyramidBox [3] 0.566 0.898 0.954 0.934

EXTD [17] 0.507 0.862 0.917 0.917

DSFD [2] 0.534 0.917 0.968 0.951

YOLOv3 [12] 0.569 0.919 0.967 0.874

EfficientDet-D4 [31] 0.356 0.846 0.936 0.941

YOLOv5x [23] 0.579 0.922 0.969 0.895

Ours 0.675 0.926 0.972 0.958

C. Comparison of Models Inferring on GPU

WIDER FACE collects and releases the detection accuracy
of the state of the arts. As shown in Fig. 5, the performance of
our method can reach the state-of-the-art on WIDER FACE.
To compare the accuracy on Dark Face and MAFA, the open-
source face detection methods DSFD [2], EXTD [17] and
PyramidBox [3] as well as the state-of-the-art object detection
methods YOLOv3 [12], EfficientDet [31] and YOLOv5x [23]
are selected. Table IV shows our method outperforms the
others and demonstrates that our method is robust in adverse
conditions. The above methods are also used for comparing the
detection speed. We resize the 3,226 images in WIDER FACE
Val set to specific resolutions and input them into the networks
running on NVIDIA V100 GPU one by one to calculate the
average FPS. Table V shows our method is faster than the
other methods at each resolution.

(a) Val-Easy (b) Val-Medium (c) Val-Hard

(d) Test-Easy (e) Test-Medium (f) Test-Hard

Fig. 5. Comparison of PR Curves and Average Precision on Val and Test Sets of WIDER FACE.

TABLE IV
COMPARISON OF ACCURACY ON DARK FACE AND MAFA

Methods Average Precision
Dark Face MAFA

PyramidBox [3] 0.796 0.748
EXTD [17] 0.689 0.661
DSFD [2] 0.634 0.772

EfficientDet-D4 [31] 0.755 0.753
YOLOv3 [12] 0.801 0.773

YOLOv5x [23] 0.824 0.788
Ours 0.850 0.796

D. Comparison of Light Models Inferring on CPU

By reducing the channels of each Conv layer in Fig. 2 to
1/4 and setting the module number of each CSP block to 1, we
can get a light network that can work on Non-GPU devices.
We convert the existing light face detection models, retrained
YOLOv5n [23] model and ours to ONNX [32] format and run
them on Intel i7-5930K CPU for comparison. The images in
the WIDER FACE Val set are resized to 640×480 for the test.
Table VI shows our method can run on a Non-GPU device
with real-time speed while keeping a high detection accuracy.

TABLE V
COMPARISON OF DETECTION SPEED ON NVIDIA V100 GPU

Methods Layers Params FLOPs Speed (FPS)
(×106) (×109) 640×480 1280×720 1920×1080

PyramidBox 234 67.269 296.2 2.75 1.99 1.40
EXTD 93 0.162 27.9 6.07 4.24 2.45
DSFD 544 120.058 691.6 3.48 3.36 2.37

YOLOv3 333 61.524 154.9 25.27 22.94 22.39
EfficientDet-D4 1111 20.543 40.4 14.50 8.53 3.15

YOLOv5x 567 86.218 204.2 77.09 75.02 74.13
Ours 679 57.054 155.7 80.87 76.56 75.18

V. CONCLUSION

In this paper, we propose a new method of anchor genera-
tion and bounding-box regression for face detection, which can
achieve a good balance between accuracy and speed on both
GPU and CPU, and also perform well in adverse conditions,
such as faces in low light and masked faces. Our method takes
advantage of the characteristic of classic CNNs and uses the
pyramidal feature maps to enhance the ability to detect multi-
scale faces. Our method is more effective for detecting faces
with small sizes.

TABLE VI
COMPARISON OF LIGHT MODELS ON INTEL I7-5930K CPU

(WIDER FACE VAL SET)

Methods Layers Params (×106) FLOPs (×109)
Average Precision Latency (ms)

Easy Medium Hard Forward Post-Proc

FaceBoxes [33] 33 1.013 1.541 0.845 0.777 0.404 16.52 7.16

ULFG-slim-640 [34] 42 0.401 2.000 0.810 0.794 0.630 19.03 2.37

ULFG-RFB-640 [34] 52 0.085 2.426 0.816 0.802 0.663 21.27 1.90

YuFaceDetectNet [5] 43 0.085 2.549 0.856 0.842 0.727 23.47 32.81

LFFD-v2 [4] 45 1.520 37.805 0.875 0.863 0.752 178.47 6.70

LFFD-v1 [4] 65 2.282 55.555 0.910 0.880 0.778 229.35 10.08

YOLOv5n [23] 270 1.872 4.520 0.942 0.933 0.856 29.21 0.80

Ours 301 1.746 4.536 0.943 0.933 0.870 26.15 0.69

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] J. Li, Y. Wang, C. Wang, Y. Tai, J. Qian, J. Yang, C. Wang, J. Li,
and F. Huang, “Dsfd: dual shot face detector,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 5060–5069.

[3] X. Tang, D. K. Du, Z. He, and J. Liu, “Pyramidbox: A context-assisted
single shot face detector,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 797–813.

[4] Y. He, D. Xu, L. Wu, M. Jian, S. Xiang, and C. Pan, “Lffd: A light and
fast face detector for edge devices,” arXiv preprint arXiv:1904.10633,
2019.

[5] S. Yu, “libfacedetection,” https://github.com/ShiqiYu/libfacedetection,
2021.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[7] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” International journal of com-
puter vision, vol. 104, no. 2, pp. 154–171, 2013.

[8] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), December 2015.

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” arXiv preprint
arXiv:1506.01497, 2015.

[10] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[11] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[12] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[14] J.-M. Alonso and Y. Chen, “Receptive field,” Scholarpedia, vol. 4, no. 1,
p. 5393, 2009.

[15] V. Jain and E. Learned-Miller, “Fddb: A benchmark for face detection
in unconstrained settings,” UMass Amherst technical report, Tech. Rep.,
2010.

[16] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “Wider face: A face detection
benchmark,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 5525–5533.

[17] Y. Yoo, D. Han, and S. Yun, “Extd: Extremely tiny face detector via
iterative filter reuse,” arXiv preprint arXiv:1906.06579, 2019.

[18] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “Retinaface:
Single-shot multi-level face localisation in the wild,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[19] D. Qi, W. Tan, Q. Yao, and J. Liu, “Yolo5face: Why reinventing a face
detector,” arXiv preprint arXiv:2105.12931, 2021.

[20] Z.-H. Feng, J. Kittler, M. Awais, P. Huber, and X.-J. Wu, “Wing loss for
robust facial landmark localisation with convolutional neural networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2235–2245.

[21] Y. Liu, X. Tang, X. Wu, J. Han, J. Liu, and E. Ding, “Hambox: Delving
into online high-quality anchors mining for detecting outer faces,” arXiv
preprint arXiv:1912.09231, 2019.

[22] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network
for instance segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 8759–8768.

[23] G. Jocher, “ultralytics/yolov5,” https://github.com/ultralytics/yolov5,
Oct. 2020.

[24] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H.
Yeh, “Cspnet: A new backbone that can enhance learning capability of
cnn,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition workshops, 2020, pp. 390–391.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 37, no. 9, pp. 1904–
1916, 2015.

[26] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-iou loss:
Faster and better learning for bounding box regression,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020,
pp. 12 993–13 000.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” arXiv preprint
arXiv:1912.01703, 2019.

[28] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of
tricks for image classification with convolutional neural networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 558–567.

[29] W. Yang, Y. Yuan, W. Ren, J. Liu, W. J. Scheirer, Z. Wang, T. Zhang,
Q. Zhong, D. Xie, S. Pu et al., “Advancing image understanding
in poor visibility environments: A collective benchmark study,” IEEE
Transactions on Image Processing, vol. 29, pp. 5737–5752, 2020.

[30] S. Ge, J. Li, Q. Ye, and Z. Luo, “Detecting masked faces in the wild
with lle-cnns,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 2682–2690.

[31] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 10 781–10 790.

[32] “Open neural network exchange,” https://github.com/onnx/onnx.

[33] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li, “Faceboxes:
A cpu real-time face detector with high accuracy,” in 2017 IEEE
International Joint Conference on Biometrics (IJCB). IEEE, 2017,
pp. 1–9.

[34] Linzaer, “1mb lightweight face detection model,”
https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-
1MB, 2020.

