
Whitepaper published May 2022

1

Preliminary Evaluation Results of Static Code Analysis

of Control Software in an Industrial Context

Juliane Fischer, Eva-Maria Neumann, Jan Wilch,

Birgit Vogel-Heuser*

Technical University of Munich

TUM School of Engineering and Design

Institute of Automation and Information Systems

*Core Member of MDSI, Member of MIRMI

{juliane.fischer; eva-maria.neumann; jan.wilch;
vogel-heuser}@tum.de

Martin Obermeier, Thomas Kellhammer

Krones AG, Neutraubling
{Mar.Obermeier;

Thomas.Kellhammer}@krones.com

1. Motivation for static code analysis of control software

The control software in automated production systems – primarily implemented on Siemens platforms

as the European market leader – must be maintainable for a multitude of machine and plant variants

over decades [1]. This can only be realized efficiently with the help of a suitable module structure

supporting reuse and maintenance. In reality, however, implementing new requirements often leads to

uncontrolled software growth. In many cases, the software is not systematically evolved but is enlarged

by extensions in the code to implement new requirements as quickly as possible – the result: historically

grown, unmanageable legacy software that is difficult to maintain and reuse.

Since control software has become the decisive factor for a company’s success and the differentiation

of its products from its competitors, methods that support the revision of existing code by refactoring

for improving software quality, including reusability, are required. For software quality assessment and

the identification of refactoring potentials, static code analysis has high potential as it enables the

examination of software without executing the code [2]. More precisely, it allows checking the program

structure, the contained software elements and their dependencies in early development phases.

Although the use of static code analysis is not yet state of the art in machine and plant engineering [3],

it has already been successfully applied to control software, for example, by [4], [5] and [6]. For the

application of static code analysis in an industrial context, an analysis procedure enlarging [7] and a

prototypical tool for the analysis of control software developed in Siemens TIA Portal have been

developed. The prototypical tool parses source code files exported via TIA Openness into an internal

data model for further analysis [8]. First evaluations with industry experts are promising and presented

in the scope of this whitepaper.

Acknowledgement: Parts of the results presented in this whitepaper were achieved in the advacode

project [9] (funded by Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie

and Zentrum Digitalisierung Bayern (ZD.B) under grant number DIK0112/04).The authors from TUM

would like to thank Krones AG for the active support during the evaluation and the valuable feedback.

Whitepaper published May 2022

2

2. Evaluation with industry experts

The applicability of static code analysis in an industrial context was evaluated in an online workshop

with experts from a German internationally operating plant manufacturing company in the food &

beverage and intralogistics sector. Overall, the company has over 16,000 employees worldwide. It

mainly uses automation hardware, including programming platforms, from Siemens, Rockwell

Automation, and B&R Industrial Automation. Control software projects are programmed in graphical

and textual programming languages while considering company-wide programming guidelines and

utilizing library modules, code generation and templates. The participating experts were primarily from

the company’s software development department, but some also had an electrical engineering

background. Most of the participants were control software developers, including a few participants

from the management level.

The workshop was conducted as a web meeting. After a short welcome, the intended analysis procedure

was introduced to the participants as a mixture of presentations and tool demonstrations. The procedure

introduction was divided into four blocks (each with 15 min of presentation and 5 min for participants

to voluntarily and anonymously answer one or two single-choice question(s)).

 Block 1: Overview of the means for static code analysis, including an introduction to the

proposed analysis procedure

 Block 2: Preparations for conducting a static code analysis using interview guiding questions

 Block 3: Conducting the analysis under consideration of company-specific boundary conditions,

e.g., checking the conformance of the analyzed software with company-specific programming

guidelines

 Block 4: Documentation of analysis results as a basis for deriving refactoring recommendations

The four blocks were a mixture of presentations and live demonstrations using the prototypical code

analysis tool and the institute’s Self-X Material Flow Demonstrator as an application example. In total,

46 participants joined the workshop meeting, whereby 36 remained in the web conference for the entire

duration.

2.1. Questionnaire-based evaluation

During the workshop, nine single-choice questions were asked via a polling application of the used web

meeting tool MS Teams. Workshop questions are referred to as W#[question number], e.g., question 1

is referred to as W#1. The originally asked German questions, including their answer options, have been

translated to English. The questions and the responses are provided in the following Tables 1 to 9.

Whitepaper published May 2022

3

Table 1: Answers to W#1: Have you ever used static code analysis methods or tools in the development

process in your daily work?

Answer options Number of responses

Yes, means of static code analysis are an inherent part of the development process 2 (5.4%)

Means of static code analysis are used optionally / irregularly in the development process 8 (21.6%)

No, means of static code analysis are not applied 24 (64.9%)

I do not know 3 (8.1%)

Sum (total answers n) 37

Table 2: Answers to W#2: Do you find the interview guiding questions helpful for preparing the analysis and

identifying the analysis goal?

Answer options Number of responses

Yes, the interview guiding questions are helpful 19 (48.7%)

In part, I find the interview guiding questions helpful 17 (43.6%)

No, the interview guiding questions are not helpful 1 (2.6%)

I do not know 2 (5.1%)

Sum (total answers n) 39

Table 3: Answers to W#3: Do you consider the analysis procedure to be successfully applicable in your

company with regard to the boundary conditions (such as unchangeable design decisions)?

Answer options Number of responses

Yes, definitely 9 (22.5%)

Partially the procedure can be used 16 (40.0%)

No, the procedure is not applicable 4 (10.0%)

I do not know 11 (27.5%)

Sum (total answers n) 40

Whitepaper published May 2022

4

Table 4: Answers to W#4: Do you think the approach can sufficiently address the constraints of your

application sector and would therefore be applicable?

Answer options Number of responses

Yes, definitely 4 (10.5%)

Partially the procedure would be applicable 14 (36.8%)

No, the procedure would not be applicable 3 (7.9%)

I do not know 17 (44.7%)

Sum (total answers n) 38

Table 5: Answers to W#5: From your point of view, is the documentation of the analysis results on different

levels in the context of your own software helpful to identify anomalies as well as disadvantageous

software elements?

Answer options Number of responses

Yes, the documentation is helpful 15 (38.5%)

Partially I think the documentation is helpful 18 (46.2%)

No, the documentation is not helpful 1 (2.6%)

I am uncertain 5 (12.8%)

Sum (total answers n) 39

Table 6: Answers to W#6: Does the documentation enable the derivation of recommendations for action and

a rough estimate of effort?

Answer options Number of responses

Yes, the documentation of the analysis results enables this 7 (20.0%)

Partly the documentation enables this 21 (60.0%)

No, the documentation does not allow this 4 (11.4%)

I am uncertain 3 (8.6%)

Sum (total answers n) 35

Whitepaper published May 2022

5

Table 7: Answers to W#7: After an introduction to the procedure, would you be able to independently

transfer and apply the code analysis procedure to your control software?

Answer options Number of responses

Yes, after an introduction, I could use the approach 7 (18.9%)

Partly I could use the approach after an introduction 11 (29.7%)

I am unsure, as this depends strongly on the scope of training 13 (35.1%)

No, even after an introduction, I could probably not use the approach 5 (13.5%)

I do not know 1 (2.7%)

Sum (total answers n) 37

Table 8: Answers to W#8: In principle, could you imagine integrating the described procedure for static code

analysis of control software into your company workflow?

Answer options Number of responses

Yes, the entire procedure can be integrated in principle 7 (18.9%)

Yes, parts of the procedure can be integrated 18 (48.6%)

I am unsure if the approach would be integratable 11 (29.7%)

No, the procedure cannot be integrated at all 1 (2.7%)

No answer 0 (0.0%)

Sum (total answers n) 37

Table 9: Answers to W#9: From your point of view, is the application of static code analysis easier with the

shown approach than without the approach?

Answer options Number of responses

Yes, the application seems easier to me with the procedure 22 (64.7%)

No, the procedure does not make the application easier 4 (11.8%)

I do not know 8 (23.5%)

Sum (total answers n) 34

After the presentations and questions, the workshop participants were divided into three groups (Group 1

with 13 participants, Group 2 with 11 participants and Group 3 with 15 participants) to discuss the

applicability and usefulness of the presented and demonstrated concepts. Each of the three groups was

moderated by a member of the AIS Institute.

Whitepaper published May 2022

6

2.2. Challenges regarding the applicability in an industrial context

First, the applicability and usefulness of the presented approach were rated in the groups. A summary

of all groups (illustrated with different colors) is depicted in Figure 1.

Figure 1: Ratings of the usefulness and applicability of the presented assessment approach (Group 1 = black

(12 replies), Group 2 = dark grey (6 replies), Group 3 = light grey (12 replies)).

In the subsequent group discussions, experts indicated challenges hindering the approach’s applicability,

ways to overcome these and points for supporting the development of high-quality control software.

These are listed according to their scope in Table 10.

Table 10: Identified challenges during the discussion sorted by their scope.

Scope Specifically mentioned challenges

tool-related

challenges

 Mix of programming platforms used, including the analysis of the correctness of data exchange

between these platforms

 Single tool capable of analyzing control software across different platforms

 Automated suggestions from an analysis tool are challenging due to the required domain knowledge

(including the identification of the highest pain points)

organizational

challenges

 Organization of the software development department was seen as an obstacle

 Successful application of static code analysis requires assigning a team responsible for the analysis,

documentation and subsequent software improvement

 Limited capacity in a software developer’s day-to-day tasks to resolve the identified weaknesses

(appointing resources for refactoring is a strategic question)

 Control software developers have little experience with static code analysis

 Definition of reusable modules in different disciplines, e.g., mechanics and software development, do

not always match since each discipline has different perceptions about module boundaries

Not applicable

at all

Very helpful

Not helpful at all

Fully applicable

Assessment of the applicability and usefulness of the procedure

Whitepaper published May 2022

7

Scope Specifically mentioned challenges

analysis-

related

challenges

 First trials to analyze software structure in the development environment:

Results interpretation, including differentiation between positive and negative software ratings, is

challenging due to different stakeholders with different requirements concerning the control software

(different stakeholders come to different results)

o Suggestion to overcome the challenge: definition of desired software architecture and

goals prior to conducting static code analysis (enables setting of evaluation criteria and

focal points)

 (automatically) analyzing and documenting the software’s conformance with company-specific

programming guidelines would be beneficial but also challenging since these are partly defined

flexibly, leading to different interpretations among software developers

o Suggestion to overcome the challenge: differentiating between software parts, which

must strictly follow the rules, and less critical parts

 The effort to apply the static code analysis to monolithic legacy software is estimated as very high

Despite the raised concerns, according to the industry experts, the integration of the analysis procedure

into the company’s current development workflow would be possible. Moreover, in the scope of the

discussions, various suggestions to support the development of high-quality software and specific

application scenarios were mentioned. These are listed in the following.

 The presented prototype and analysis procedure were rated as “very strong” to support software

quality management once software architecture and evaluation criteria are defined

 Analyzing, visualizing and documenting the dependencies between control software parts to

estimate the required effort and cross effects after a modification (addition, modification or

removal of software parts)

 Means to support testing if the software is still functional after a change

 Comparison of a machine’s control software versions to detect incorrect use of the template,

similar to the application scenario described in [7]

 Inclusion of hardware dependency in the static code analysis

 Assessment of a control software’s functional correctness by including a model-based

description of the automation hardware as information on the required functionality

 Best practices for initially designing high-quality software are required and could be combined

with static analysis (identify used design patterns, represent them abstractly and compare them

with the planned structure)

 Performing static code analysis within the used development environment to receive instant

feedback while editing the control code would be helpful

 User interface to insert company-specific programming guidelines in the code analysis tool for

a subsequent conformance check, which would also enable a cross-departmental comparison

Whitepaper published May 2022

8

(e.g., between machine types) of guideline conformance (meanwhile, the prototype was

extended with company-specific rules for assessing the data exchange, details in [10])

Overall, the sub-group discussions provided insights into challenges and improvement suggestions for

including static code analysis in an industrial context.

3. Summary and outlook

This paper presents first evaluation results of a static code analysis procedure and prototype for the

quality assessment of control software. In the scope of an online workshop with a German plant

manufacturing company, the participating industry experts confirmed the general applicability of the

presented approach in an industrial context. Moreover, suggestions to overcome the mentioned

challenges and improve the development of high-quality control software have been gathered. These

will be targeted in future work.

References
[1] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of software in automated production systems: Challenges

and research directions,” Journal of Systems and Software (JSS), vol. 110, pp. 54–84, 2015.

[2] P. Emanuelsson and U. Nilsson, “A Comparative Study of Industrial Static Analysis Tools,” Electronic Notes in

Theoretical Computer Science, vol. 217, pp. 5–21, 2008.

[3] B. Vogel-Heuser, J. Fischer, and E.-M. Neumann, “Goal-Lever-Indicator-Principle to Derive Recommendations for

Improving IEC 61131-3 Control Software,” in 2020 IEEE International Conference on Industrial Engineering and

Engineering Management (IEEM), Singapore, Singapore, 2020, pp. 1131–1136.

[4] H. Prähofer, F. Angerer, R. Ramler, and F. Grillenberger, “Static Code Analysis of IEC 61131-3 Programs:

Comprehensive Tool Support and Experiences from Large-Scale Industrial Application,” IEEE Transactions on

Industrial Informatics, vol. 13, no. 1, pp. 37–47, 2017.

[5] S. Stattelmann, S. Biallas, B. Schlich, and S. Kowalewski, “Applying static code analysis on industrial controller code,”

in Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), Barcelona, Spain, 2014.

[6] J. Fuchs, S. Feldmann, C. Legat, and B. Vogel-Heuser, “Identification of Design Patterns for IEC 61131-3 in Machine

and Plant Manufacturing,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 6092–6097, 2014.

[7] J. Fischer, B. Vogel-Heuser, C. Huber, M. Felger, and M. Bengel, “Reuse Assessment of IEC 61131-3 Control Software

Modules Using Metrics – An Industrial Case Study,” in 2021 IEEE 19th International Conference on Industrial

Informatics (INDIN), Palma de Mallorca, Spain, 2021, pp. 1–8.

[8] E.-M. Neumann et al., “Refaktorisierung von Steuerungssoftware cyber-physischer Produktionssysteme – Potentiale und

Nutzen,” in VDI Berichte 2021, Baden-Baden, 2021, pp. 679–690.

[9] Institute of Automation and Information Systems, Advanced systems engineering for control software as a prerequisite

for flexible, adaptive cyberphysical production systems (advacode). [Online]. Available: https://www.mec.ed.tum.de/ais/

forschung/aktuelle-forschungsprojekte/advacode/ (accessed: Apr. 28 2022).

[10] J. Fischer, B. Vogel-Heuser, F. Haben, L. Beuggert, and E.-M. Neumann, “Towards Configurable Conformance Checks

of PLC Software with Company-specific Guidelines,” in 5th IEEE International Conference on Industrial Cyber-Physical

Systems (ICPS), Coventry, United Kingdom, 2022, accepted.

https://www.mec.ed.tum.de/ais/forschung/aktuelle-forschungsprojekte/advacode/
https://www.mec.ed.tum.de/ais/forschung/aktuelle-forschungsprojekte/advacode/

