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Abstract 

Fresh water in the form of snow and ice melt from the mountainous regions is of critical importance for 

sustaining human subsistence in both mountains and adjacent lowlands. Due to heterogeneous 

hydrologic processes and spatio-temporal changes in hydro-meteorological variables, understanding of 

mountain hydrosphere is a complex subject as timing and amount of generated melt is highly variable 

and subject to change. In addition, changing climate poses a difficult challenge in the form of changing 

future cryosphere, which will ultimately affect the future water availability by altering the flow regimes 

from snow and ice melt driven mountainous regions. The transboundary Upper Indus Basin (UIB) in 

the High Mountain Asia (HMA), which is characterized by high altitudinal ranges, is one such example 

of a complex mountainous catchment. This mountainous region is not only crucial in terms of providing 

fresh water supply to millions of people but also vulnerable after becoming a climate change hotspot. 

Besides, food security of Lower Indus Basin (LIB) (which includes the Indus Basin Irrigation System) 

is critically dependent on timing and volumes of seasonal and long-term snow and ice melt in the UIB. 

Hence, understanding and adequate modelling of UIB’s hydrology is of utmost importance for 

sustainable water and food security within UIB and downstream in LIB. However, understanding and 

modelling the hydrology as well as climatology of the UIB is a huge challenge, since there are only few 

data measuring stations in the region, whereas its physical spread is substantial. 

This dissertation aims to contribute to the challenges faced by the UIB regarding understanding and 

quantifying future water availability as well as water resource forecasting (i.e. seasonal and long-term) 

under present and projected climate. This thesis is divided into three major topics i.e. (i) Snow and ice 

melt runoff modelling and forecasting, (ii) future water availability using enhanced hydrological 

modelling and uncertainty quantification under changing climate and (iii) improved estimation of 

degree-day factor based on energy flux components. 

A reliable forecast of seasonal water availability for the Kharif cropping season (i.e. 1st April – 30th 

September) from the UIB can pave the way towards better water management which subsequently 

enhance the agro-economy of Pakistan. In order to fulfil this objective, a temperature-index model (i.e. 

Snowmelt Runoff Model + Glaciers) in conjunction with satellite-based remote sensing data has been 

employed for modelling the snow and ice melt runoff from the UIB. The main reason for using the 

temperature-index model is that it has proved to be a suitable tool for modelling the snow and ice melt 

processes especially in data scarce mountainous regions. A seasonal scenario-based approach is used 
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for forecasting the seasonal (i.e. 6 months) snowmelt. This approach is similar to Ensemble Streamflow 

Prediction (ESP) method and uses historic meteorology as model forcing. This seasonal scenario 

approach is a step towards probabilistic forecasting of seasonal flows in the UIB. This approach may 

be further enhanced by selecting a subset of ensemble members according to forecasted seasonal 

anomalies in temperature and precipitation. 

In the UIB, seasonal snow and ice melt contributes more than 70% of water. However, due to the impact 

of climate change, hydrological regimes are bound to change. In this context, it is critically important 

to understand how the climate change will influence the future water availability from the UIB. For this 

purpose, first of all an enhanced model calibration/validation approach has been applied to calibrate and 

validate the hydrological models for the UIB. This enhanced model calibration/validation approach is 

adopted because it takes into account the quality of observational data, utilizes contrasting climate data 

for calibration, includes comparison of discharge for multiple sub-catchments (i.e. intermediate 

gauges), includes multi-variable calibration for variables like evapotranspiration, glacier mass balance 

or snow cover area and evaluate observed and simulated trends in the observational period. Based on 

the parameterisation from the enhanced model calibration approach future water availability under 

changing climate was assessed, which shows that the future flow regime will alter. The combined long-

term projected changes in discharge from both hydrological models show contrasting trends for two 

Representative Concentration Pathways (RCPs: 2.6 and 8.5). The largest increases in discharge are 

projected for RCP8.5. The analysis of variance (ANOVA) method is used in order to quantify 

hydrological model uncertainty and it can be concluded from this study that the uncertainty contribution 

from the hydrological models is getting smaller for projections simulated using the enhanced method. 

The temperature-index models are commonly used for assessing present and future water availability 

in data limited snow and glacier fed catchments. These models use degree-day factors (DDF) as key 

parameter to estimate melt merely from air temperature. The DDF is commonly treated as a model 

calibration parameter. However, in the present research, a methodology was adopted to estimate the 

DDF from energy flux components based on an assumption that the snowpack is isothermal at 0 °C and 

in fully ripe state. The melt obtained from the energy flux components is converted into DDF by 

dividing it with respective degree-days. The objective of this study is to better understand the DDF and 

its dependencies (e.g. cloud cover, snow albedo and season). Estimation of the DDF through these 

energy flux components is providing a physical background, which will help to find more realistic 

values of the DDFs. In this study, a brief analysis of the DDF under the influence of climate change 

shows that the DDFs are expected to decrease when comparing periods of similar degree-days, as melt 

will occur earlier in the year and snow albedo is then likely to be higher. Thus, the DDF cannot be 

treated as a constant parameter especially when using temperature-index models for forecasting present 

or predicting future water availability. 
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Zusammenfassung 

Süßwasser aus saisonaler Schnee- und Gletscherschmelze in Gebirgsregionen ist von entscheidender 

Bedeutung für die Aufrechterhaltung des menschlichen Lebensstandards sowohl in den Bergen als auch 

im angrenzenden Flachland. Aufgrund der heterogenen hydrologischen Prozesse und der starken 

räumlichen und zeitlichen Variabilität der hydro-meteorologischen Einflussgrößen ist die 

Gebirgshydrologie ein komplexes Thema, da Zeitpunkt und Menge der Schneeschmelze sehr variablen 

Veränderungen unterworfen sind. Darüber hinaus stellt der Klimawandel eine große Herausforderung 

in Folge der sich verändernden Kryosphäre dar, die sich auf die künftige Wasserverfügbarkeit 

auswirken wird, indem sie das Abflussregime von schnee- und gletscherbedeckten Bergregionen 

verändert. Das grenzüberschreitende Obere Indusbecken (UIB) im asiatischen Hochgebirge (HMA), 

das durch große Höhenunterschiede gekennzeichnet ist, ist ein besonderes Beispiel für ein komplexes 

Gebirgseinzugsgebiet. Diese Gebirgsregion ist nicht nur für die Trinkwasserversorgung von Millionen 

von Menschen von entscheidender Bedeutung, sondern auch äußerst vulnerabel, da sie ein Hotspot des 

Klimawandels ist. Darüber hinaus hängt die Ernährungssicherheit des Unteren Indusbeckens (LIB), zu 

dem auch das Bewässerungssystem des Indusbeckens gehört, entscheidend vom Zeitpunkt und den 

Mengen der saisonalen und langfristigen Schnee- und Gletscherschmelze im UIB ab. Daher ist das 

Verständnis und die adäquate Modellierung der Hydrologie des UIB von größter Bedeutung für eine 

nachhaltige Wasser- und Ernährungssicherheit im gesamten Indusbecken. Die Hydrologie und 

Klimatologie des UIB zu verstehen und zu modellieren ist jedoch eine große Herausforderung, da es 

nur wenige Messstationen in der Region gibt, während die räumliche Ausdehnung beträchtlich ist. 

Diese Dissertation zielt darauf ab, einen Beitrag zumVerständnis und zur Quantifizierung der 

zukünftigen Wasserverfügbarkeit sowie zur Vorhersage von Wasserressourcen (d.h. saisonal und 

langfristig) unter dem gegenwärtigen und dem prognostizierten Klima im UIB zu leisten. Diese Arbeit 

gliedert sich in drei Hauptthemen: (i) saisonale Vorhersage des Abflusses aus der Schneeschmelze, (ii) 

Abschätzung der zukünftigen Wasserverfügbarkeit durch verbesserte hydrologische Modellierung und 

Quantifizierung von Unsicherheiten unter veränderten klimatischen Bedingungen und (iii) verbesserte 

Schätzung von Gradtagfaktoren auf der Grundlage von Energieflusskomponenten. Eine zuverlässige 

Vorhersage der saisonalen Wasserverfügbarkeit für die Kharif-Anbausaison (d.h. 1. April - 30. 

September) im UIB kann den Weg für ein besseres Wassermanagement ebnen, welches in der Folge 

der Agrarwirtschaft Pakistans zugutekommt. Um dieses Ziel zu erreichen, wurde ein 



 

iv 

Temperaturindexmodell (Snowmelt Runoff Model + Glaciers) in Verbindung mit satellitengestützten 

Fernerkundungsdaten zur Modellierung des Schnee- und Eisschmelzabflusses aus dem UIB eingesetzt. 

Der Hauptgrund für die Verwendung des Temperaturindexmodells ist, dass es sich als adäquates 

Werkzeug zur Modellierung von Schnee- und Eisschmelzprozessen insbesondere in datenarmen 

Gebirgsregionen erwiesen hat. Für die Vorhersage der saisonalen (d.h. 6-monatigen) Schneeschmelze 

wird ein auf saisonalen Szenarien basierender Ansatz verwendet. Dieser Ansatz ähnelt der ESP-

Methode (Ensemble Streamflow Prediction) und verwendet die historische Meteorologie als 

Modelleingangsgröße. Dieser Ansatz für saisonale Szenarien ist ein Schritt in Richtung auf eine 

probabilistische Vorhersage der saisonalen Abflüsse im UIB. Die Methodik könnte noch weiter 

verbessert werden, indem eine Auswahl von Ensemble-Mitgliedern entsprechend den vorhergesagten 

saisonalen Anomalien bei Temperatur und Niederschlag ausgewählt wird. 

Im UIB stammen mehr als 70 % des Abflusses aus der saisonalen Schnee- und Eisschmelze. Aufgrund 

der Auswirkungen des Klimawandels werden sich die hydrologischen Verhältnisse jedoch ändern. In 

diesem Zusammenhang ist es von entscheidender Bedeutung zu verstehen, wie der Klimawandel die 

zukünftige Wasserverfügbarkeit des UIB beeinflussen wird. Zu diesem Zweck wurde zunächst ein 

erweiterter Modellkalibrierungs- und -validierungsansatz angewandt, um zwei hydrologische Modelle 

für das UIB zu kalibrieren und zu validieren. Dieser erweiterte Modellkalibrierungs-

/Validierungsansatz wurde gewählt, weil er die Qualität der Beobachtungsdaten berücksichtigt, 

kontrastierende Klimadaten für die Kalibrierung verwendet, den Vergleich der Abflüsse für mehrere 

Teileinzugsgebiete (d.h. Zwischenpegel) einschließt, eine multivariable Kalibrierung anhand von 

Variablen wie Evapotranspiration, Gletschermassenbilanz oder Schneedeckenfläche beinhaltet sowie 

beobachtete und simulierte Trends im Beobachtungszeitraum bewertet. Die kombinierten, langfristigen 

prognostizierten Änderungen des Abflusses aus beiden hydrologischen Modellen zeigen gegensätzliche 

Trends für zwei repräsentative Konzentrationspfade (RCPs: 2.6 und 8.5). Die größten 

Abflusserhöhungen werden für RCP8.5 projiziert. Die Methode der Varianzanalyse (ANOVA) wurde 

zur Quantifizierung der Unsicherheit der hydrologischen Modelle verwendet. Aus dieser Studie kann 

geschlossen werden, dass der Beitrag zur Unsicherheit durch die hydrologischen Modelle für 

Vorhersagen, die mit der erweiterten Kalibrierungsmethode simuliert wurden, geringer wird. 

Temperaturindexmodelle werden häufig zur Bewertung der gegenwärtigen und zukünftigen 

Wasserverfügbarkeit aus der Schnee- und Gletscherschmelze in Einzugsgebieten mit begrenzter 

Datenverfügbarkeit verwendet. Diese Modelle verwenden Gradtagfaktoren (DDF) als 

Schlüsselparameter, um die Schmelzhöhe anhand der Lufttemperatur abzuschätzen. Der DDF wird im 

Allgemeinen als Parameter für die Modellkalibrierung behandelt. In der vorliegenden Untersuchung 

wurde jedoch eine Methode zur Schätzung des DDF aus den Komponenten der Energiebilanz der 

Schneedecke angewandt, die auf der Annahme beruht, dass das Schneepacket isotherm bei einer 
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Schneetemperatur von 0°C und im sogenannten "reifen" Zustand ist. Die aus den 

Energieflusskomponenten gewonnene Schmelzhöhe wird in DDF umgerechnet, indem sie durch die 

entsprechenden Gradtage geteilt wird. Ziel dieser Studie ist es, den DDF und seine Abhängigkeiten z.B. 

von Bewölkung, Schneealbedo und Jahreszeit besser zu verstehen. Die Abschätzung des DDF anhand 

von Energieflusskomponenten liefert einen physikalischen Hintergrund, der helfen kann, realistischere 

Werte für den DDF zu finden. In dieser Studie zeigt eine kurze Analyse über den Einfluss des 

Klimawandels auf den DDF, dass der DDF beim Vergleich von Perioden mit ähnlichen Gradtagen 

voraussichtlich abnehmen wird, da die Schneeschmelze früher im Jahr stattfindet und die Schneealbedo 

dann wahrscheinlich höher ist. Daher kann der DDF nicht als konstanter Parameter behandelt werden, 

insbesondere wenn Temperaturindexmodelle zur Vorhersage der gegenwärtigen oder zukünftigen 

Wasserverfügbarkeit verwendet werden. 
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Chapter 1 

Introduction 

Melt water from snow and ice dominated catchments is a unique and vital source of fresh water in many 

mountainous regions. Freshwater is stored during the snow accumulation season and later on as the 

snowmelt season progresses; this water becomes available for critical consumption in the summer 

season. Hence, accurate hydrological modelling of the physically based snow and ice melt runoff 

phenomenon is crucial for numerous basins across the globe and is an important topic in hydrological 

modelling research.  

Numerous river basins of the South Asian region (e.g. Indus Basin) also rely heavily on snow and ice 

storage for consumptive water use, especially for use in agriculture and food production. The 

Himalayas-Karakoram-Hindukush (HKH) region for instance, also known as the third-pole, is amongst 

a very few regions outside of the two poles, that stores a huge bulk of fresh water in the form of snow 

and ice and thus, has become a climatic change hot spot as well (De Souza et al., 2015). This water is 

in-turn critical for water resources availability, water and food security for many countries within the 

region, including China, Pakistan, India, Bangladesh etc. Pakistan’s water resources in particular are 

intricately linked to snow and ice storage in HKH region. Almost 90% of food production in Pakistan 

is being contributed by the waters come from the Indus Basin (Qureshi, 2011). The Indus River and its 

major tributaries originate from the HKH region feed on snow and ice melt accounting for 76% runoff 

within the Indus basin (Armstrong et al., 2019). Consequently, water economy of Pakistan is at risk due 

to recent and impending changes in climate within HKH region (Hasson, 2016). 

The climate related challenges of Pakistan, especially linked to snow and ice storage in the HKH region, 

are complicated further by the transboundary nature of the Upper Indus Basin region (see Figure 1.1), 

which is a part of the HKH region. All major rivers of Pakistan (which are also part of Indus basin) are 

transboundary rivers and water sharing rights between Pakistan and India for these rivers is ascertained 

by the World Bank brokered Indus Water Treaty (IWT) of 1960. IWT gave Pakistan full consumptive 

use rights to the waters of Indus, Jhelum and Chenab rivers (i.e. western rivers), whereas full rights of 

Ravi, Sutlej and Beas rivers (i.e. eastern rivers) were given to India. This decision of IWT created 

critical water management challenges for Pakistan post 1960.  
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Freshwater originating from the Upper Indus region and routed via the eastern and western rivers are 

the primary water source for the Indus Basin Irrigation System (IBIS) (see Figure 1.2). Enaction of IWT 

post 1960 meant that significant portion of IBIS agriculture land in the Punjab province suddenly 

deprived of waters from the eastern rivers. This led to the construction of one of the major reservoirs in 

Pakistan i.e. Tarbela reservoir on the Indus River in which stored inflows are mostly derived from snow 

and ice melt (see Figure 1.1). Moreover, construction of a series of link canals were carried out, which 

helped in diverting waters from western rivers to eastern rivers (i.e. Ravi, Sutlej and Beas rivers) 

agricultural command areas. The main portion of water in western rivers is predominantly contributed 

by melting of seasonal snow and glacier cover (Lutz et al., 2014, 2016; Hasson et al., 2019). Hence, a 

complete understanding of snow storage and prediction of snowmelt-dominated runoff in the western 

river basins is critical for effective water management in Pakistan. 

The Indus River System Authority (IRSA) of Pakistan not only regulates reservoir storages but also 

monitors snow storage of the western rivers. In order to adequately forecast seasonal stream flows to 

these rivers. Every year by the end of month of March different statistical as well as hydrological models 

are run by the authority in order to forecast the seasonal water availability for the forthcoming Kharif 

cropping season (i.e. 1st April – 30th September). IRSA then distributes the water among the provinces 

as per the Water Apportionment Accord (WAA) of 1991 (IUCAN, 2010). This water availability 

forecast is relevant because the provinces then use it for running their irrigated agriculture infrastructure 

and coping with the provincial water demand and supplies. Since, Pakistan is an agrarian economy, 

which is mainly dependent on irrigated agriculture, accurate seasonal water availability forecasts are 

critical for optimizing operational water supply within the Indus Basin Irrigation System (IBIS). This 

irrigation system  is one of the largest contiguous irrigation network in the world (Bhatti et al., 2009) 

and since it has very limited reservoir storage, seasonal planning of IBIS operations is dependent on 

accurate prediction of snow storage and related runoff. The vast Indus River and its two western 

tributaries (i.e. Jhelum and Chenab) which mainly feed on the water contributed by the seasonal snow 

and ice melt, contribute a major share of water supply within IBIS. 

Given IBIS’s dependence on snow and glacial dominant runoff, it is imperative that research linked to 

Pakistan’s water resources should focus on understanding and modelling snow and ice melt. The 

importance of this understanding has been emphasised in recent years due to numerous factors including 

(i) uncertainties linked with climate change (ii) declining per capita water availability in Pakistan and 

(iii) increasing inclination towards high delta crop production. 

The sustainability of Pakistan’s agro-economy and regional food security depends upon proper 

agriculture and water resources management (with snow and glacier being critical components of water 

resource availability). In addition, any change in these available fresh water resources through climate 
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variability, socio-economic factors or international policies will ultimately have a serious impact on 

food security and the environment in Pakistan (Tahir et al., 2011). 

The impact of climate change on future water availability is also a key concern for water management 

in Pakistan. This discussion is not only limited to what will happen to these huge water towers (Viviroli 

et al., 2007) by the end of current century due to the influence of climate change but also it is focused 

on the short-term (i.e. 10-daily) as well as seasonal (e.g. Kharif cropping season) water availability. 

One major concern is seasonal shift in water availability due to changing climate. Because changing 

climate puts pressure on the available water resources as it alters the time and magnitude of water 

availability. It will also have significant impact on the state of the cryosphere in the mountainous regions 

(Vaughan et al., 2013). Because in these rugged complex mountainous regions minor changes in 

temperature highly effect the precipitation regime (e.g. snow or rain) and these changes will ultimately 

alter the future flow regimes from these mountainous areas  (Viviroli et al., 2007; Beniston, 2003). A 

shorter duration of the seasonal snow cover and shrinking glacier area will change the runoff 

characteristics in the mountainous catchments as well as downstream of these mountainous regions 

(Hock, 2005; Huss et al., 2008; Huss, 2011). Hence, mountainous catchments are among the places 

where it is expected to observe the strongest climate-induced changes and the harshest effect on the 

fresh water resources. 

 Improvements in the water availability forecasts by utilizing latest innovative techniques and remote 

sensing data for this complex mountainous region will prove to be helpful for a better planning and 

management of water resources. One of the purpose of this research is to add value in the existing 

forecasting system of IRSA, because a reliable forecast of seasonal water availability will help in paving 

the way for better decision making. 
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Figure 1.1 Upper Indus region covering all the four-rim stations (i.e. Tarbela, Mangla, Marala and 

Nowshera) 
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Figure 1.2 Schematic diagram of the Indus Basin Irrigation System (IBIS) – prepared by Haris 

Mushtaq 
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1.1 Problem statement 

Snow and ice are the significant components of the hydrological cycle. Water availability due to 

seasonal melting of snow and ice is a blessing for some regions but it can also have devastating effect 

in the form of sudden floods when snow rapidly melts in combination with rainfall. The downstream 

regions, which are depending upon seasonal snow and ice melt, are highly vulnerable with regard to the 

presence or absence of snow or ice in the upstream regions. Moreover, global climate change is a major 

cause that will modify seasonality of the runoff from mountainous catchments and thus lead to changing 

water availability. The consequences of reduced snowfall period and an increasing share of rainfall on 

precipitation may completely change the hydrology of a region and it may lead to water crisis. In this 

context, a reliable modelling and forecasting of snow and ice melt governed processes remains a 

challenge because of spatio-temporal heterogeneity of snow accumulation and melt in a complex rugged 

mountainous terrain. 

Two types of modelling techniques are used in snow and ice melt runoff modelling. One is the energy 

balance and other is the temperature-index approach. The energy balance approach is very sophisticated 

when it comes to modelling the melt processes. Hydrological models using the energy balance approach 

have shown good accuracy in simulating the process-based phenomenon. However, at the same time 

this approach is more data intensive, which limits its use only for the data abundant catchments. On the 

other hand, temperature-index models are less data intensive but with good accuracy on catchment 

scale. Even though temperature-index models work well over longer time period but their accuracy 

decreases with increasing temporal resolution as well as there exist shortcomings in modelling spatial 

variability of melt rates, which may vary considerably in mountainous regions (Hock, 2003). Both 

approaches have their pros and cons. However, it is critical to keep in mind the limitations when 

applying these approaches for simulating snow or ice melt. For example, it could either be the data 

scarcity or heterogeneous topography of the mountainous region, which makes it difficult to use an 

approach that is unable to cope with these limitations. Though, this research is primarily carried out 

with hydrological models that uses the temperature-index approach for modelling snow and ice melt 

runoffs. As stated earlier, temperature-index approach is widely popular because of its only dependence 

on air temperature, which is commonly available and also a good indicator of melt depths. 

The key parameter in the temperature-index models controlling the snowmelt, is the Degree-Day Factor 

(DDF). It transforms one degree-day TDD (°C d) into the melt depths M (mm). The DDF is not a constant 

factor but it changes as the snowmelt season progresses (Rango and Martinec, 1995; Hock, 2003). In 

snowmelt runoff models, the DDF is generally obtained by treating it as a hydrological model parameter 

and calibrating it on observed hydrograph (Luo et al., 2013). However, because of the shortage of data 

measuring points in the mountainous catchments it is always a challenge to estimate the appropriate 

values of the DDF (He et al., 2014). This challenge gets more demanding when it comes to forecasting 
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the snow or glacial melt runoffs using these temperature-index models. Because in the forecasting stage, 

the variation of the DDF should be known in advance. Thus, it is critical to know all influencing factors 

including physical catchment characteristics (Bormann et al., 2014) affecting the DDF values so that 

related uncertainties can be minimized. 

Another challenging aspect in the snow and ice melt modelling is the adoption of appropriate model 

parameterization (i.e. calibration and validation) especially when it comes to assessing the future water 

availability under climate change scenarios. It is challenging, because capturing the melt processes in a 

hydrological model is itself a complex task and if the model parameterization is incorrect then it will 

raise questions on the reliability of the outcome (i.e. simulated water availability). Hence, it is of utmost 

importance to use realistic model parameterization especially those parameters, which are associated to 

melt generation (i.e. snow or ice melt). Here in this research the parameter controlling the melt is the 

DDF. Consequently, if the DDF values either used in a hydrological model for assessing the future 

water availability under climate change scenarios or for forecasting the snow and glacier melt runoff 

are not realistic then it will result in a flawed outcome. Therefore, this dissertation is an effort to address 

these research challenges. 

1.2 Main objectives 

The main objective of this research work is to develop a framework for assessing the short and long-

term water availability for snow and ice fed catchments. In order to achieve the objective this research 

work has been divided into three topics listed as follows. 

1. Snow and ice melt runoff forecasting based on seasonal scenario approach 

2. Future water availability under changing climate with improved hydrological modelling 

3. Improved estimation of the degree-day factor for snowmelt prediction 

The objective of the first topic is to propose a snow and ice melt runoff-forecasting approach for 

assessing the seasonal water availability for a cold region. This approach is like the well-established 

Ensemble Streamflow Prediction (ESP) (Day, 1985) approach and  also take into account for the 

limitations in the absence of skilful meteorological predictions. The second topic focuses on assessing 

the impact of climate change scenarios on future water availability but following an enhanced 

hydrological model evaluation procedure so that the results obtained are more credible. The intention 

of the third topic is to propose a new and improved method for degree-day factor estimation based on 

energy flux components. 

The main hypotheses, specific research questions as well as the expected outcome is presented in the 

following section. 
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1.3 Main hypotheses and research questions 

The main hypothesis for each research topic as well as related research questions are given as follows.  

Hypothesis 1 

The forecast of seasonal snow and ice melt water availability from mountainous regions 

can be improved by implementing a scenario-based approach 

Research questions 

1.3.1 Seasonal snow and ice melt runoff modelling and forecasting  

1. How to perform a simplified snow and ice melt runoff modelling and forecasting for an 

improved seasonal water availability information? 

2. How to incorporate the ice melt component in the existing Snowmelt Runoff Model (SRM)? 

3. How to tackle the degree-day factor variation using time dependency approach? 

Expected outcome 

 Snow and ice melt runoff modelling for the Upper Indus Basin 

 Scenario based seasonal (i.e. 6-months) forecast approach 

 Time dependent degree-day factor application 

Hypothesis 2  

A good calibration and validation procedure for a hydrological model will increase 

confidence of projected impacts under climate change 

Research questions 

1.3.2 Future water availability under climate change 

1. How an enhanced calibration and validation approach works for a snow and ice melt dominated 

catchment? 

2. What are the climate change impacts on future water availability in the Upper Indus Basin? 

3. What are the contributions of different sources of uncertainty while accessing the impacts of 

climate change? 
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Expected outcome 

 Credible results by using enhanced multi-model calibration and validation approach 

 Future water availability under climate change scenarios for the snow and ice fed Upper Indus 

Basin 

 Uncertainty quantification for the different sources of uncertainty 

Hypothesis 3  

Estimation of the degree-day factors can be improved by assessing the melt generated 

through different energy flux components 

Research questions 

1.3.3 Degree-day factor estimation  

1. How degree-day factor can be estimated using the minimum available information for a data 

scare region? 

2. How degree-day factor can be separated into different energy flux components and what are 

the dependencies? 

3. How degree-day factors will change under the influence of climate change scenarios? 

Expected outcome 

 Development of a degree-day factor estimation approach using minimum available information 

 Validation of the degree-day factors estimated through energy flux components with field 

observations (i.e. using data from snow measurement station) 

 Estimation of the degree-day factors for the future climate changes  

An overview of the three research topics including specific research questions is presented in Figure 

1.3. These research questions are addressed in a series of publications (i.e. Chapters 3 – 5). 



Introduction 

10 

 

Figure 1.3 Framework of this cumulative dissertation 
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1.4 Dissertation outline 

This dissertation comprises of three research articles with relevant literature reviews and structured into 

six chapters. To summarise, this section gives an overview of the conducted research. 

 Chapter 1 provides an introduction of this dissertation 

 Chapter 2 provides an overview of the study area, models and methods 

 Chapter 3 presents scenario based seasonal snowmelt runoff modelling and forecasting 

 Chapter 4 sheds light on different multi-model calibration/validation techniques and future 

water availability under the influence of climate change  

 Chapter 5 explains the degree-day factors estimation based on energy flux components 

 Chapter 6 draws the overall conclusions and outlook for the future work 

More specifically,  

Chapters 1: provides an introduction including problem statement, research objectives, and thesis 

framework/outline. 

Chapters 2: provides an overview of the selected study areas, introduction of snowmelt runoff 

modelling techniques, snow and glacier melt runoff model and generalized methodology of this 

dissertation. 

Chapter 3: presents the first work package, which focuses the scenario based approach for forecasting 

the snow and glacier melt runoff on seasonal basis for the Upper Indus Basin. It presents the available 

data in the study area, hydrological model used, calibration and validation methods as well as evaluation 

of model forecasting skills. 

Chapter 4: presents the second work package, which focuses on the Comparison of two model 

calibration approaches and their influence on future projections under climate change in the Upper Indus 

Basin. It presents two different calibration/validation techniques for the hydrological models, applies 

climate change scenario for assessing future water availability from the snow and glacier fed catchment 

and assess the uncertainty contributions from different sources of uncertainty. 

Chapter 5: presents the final work package, which focuses on the estimation of the degree-day factors 

based on energy flux components. It discusses the dependencies as well as future course of degree-day 

factor development under the influence of climate change. It also presents the field measurements 

carried out for acquiring snow data in the German Alps. 

Chapter 6: presents the overall summarized conclusions, addressing the research questions and 

presenting outlook for further research. 
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Chapter 2 

Study areas, models and methods 

2.1 Study Areas 

This research focuses on two study areas. One is in the Hindukush-Himalaya-Karakoram (HKH) region 

namely the Upper Indus Basin (UIB). In the UIB, hydrological modelling, seasonal forecasting as well 

as the future water availability assessment has been done. Another research site is in the Ammergau 

Alps (i.e. Dreisäulerbach catchment). In this catchment, a snow measurement station in conjunction 

with standard meteorological station has been installed for studying the snowmelt dynamics. 

2.1.1 Upper Indus Basin 

The upper catchments of the Indus river basin (see Figure 2.1) primarily feed Tarbela reservoir of 

Pakistan. The Upper Indus Basin (UIB) has an area of ≈173,345 km2 out of which approximately 11.5% 

is covered by perennial glacial ice (Tahir et al., 2011). At the end of most winters, nearly the entire UIB 

above 2200 m a.s.l. is covered with snow, resulting in that more than 60% snowmelt contribution in  

annual flows in the Upper Indus River  (Bookhagen and Burbank, 2010). Seasonal melting of snow 

contributes to the bulk of the flow of the Upper Indus streams from the month of May – July. Indus 

River starts rising gradually in the month of March and reaching its maximum in July, while peak flood 

events usually occur during monsoon season in July – September. By the end of July, when the flows 

reduce due to diminished snow cover in the lower catchment, the high altitude glaciered basins become 

important contributors to the flows due to first melting of seasonal snow cover and then melting of the 

glacier ice. Glacial melt dominates the flows of the largest tributaries of Indus River, i.e. Gilgit, Hunza, 

Shigar and Shyok rivers (Tahir et al., 2011, 2016). 
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Figure 2.1 Upper Indus Basin at Tarbela spread over three countries (i.e. Pakistan, India and 

China) 

2.1.2 Dreisäulerbach catchment 

The Dreisäulerbach catchment is a part of Isar river system lies in the sub-alpine region of Bavaria in 

the Ammergauer Alps and it is approximately located between latitudes 47°34’55”– 47°35’05” North 

and longitudes 10°56’40”–10°57’07” East. It covers an area of ~2.3 km2 and has a mean hypsometric 

elevation of just over 1200 m a.s.l. The elevation ranges from 950 m a.s.l. at Linderhof gauging station 

up to 1768 m a.s.l. The snow measurement station at Brunnenkopfhütte is located at an elevation of 

1602 m a.s.l. (Figure 2.2). 

The area in the Dreisäulerbach catchment mostly consists of south facing slopes, but also contains 

northern slopes in southern parts of the catchment (Kopp et al., 2019). The catchment is densely forested 

which during the winter season is fully covered with snow. The mean annual temperature in the 

observation period (i.e. November 2016 – May 2021) is about 5.8 °C and the long-term annual 

precipitation at the Ettal-Linderhof station of the Water Science Service Bavaria is reported to be 1676 

mm (Kopp et al., 2019). 
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Figure 2.2 Dreisäulerbach catchment and location of Brunnenkopfhütte station in the German Alps 

2.2 Snowmelt modelling approach 

This section provides an overview of the snowmelt modelling approaches as well as an introduction to 

the Snowmelt Runoff Model (SRM). There are two basic approaches to model the snowmelt runoff 

process. These approaches are mentioned as follows. 

1. Energy balance approach 

2. Temperature-Index approach 

2.2.1 Energy balance approach 

Energy balance models attempt to quantify melt as residual of energy balance equation (Hock, 2003). 

Since the conversion from ice to water requires the input of energy, the process of snowmelt is 

intricately linked to the flow and storage of energy into and through the snowpack. The governing 

energy budget equation (USACE, 1998) that describes the energy available for snowmelt can be written 

as follows. These energy fluxes are usually measured as energy per time per unit area of snow. 

𝑄𝑚 = 𝑄𝑠𝑛 + 𝑄𝑙𝑛 + 𝑄𝑐 + 𝑄𝑒 + 𝑄𝑔 + 𝑄𝑝 − ∆𝑄𝑖 (2.1) 
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where 

𝑄𝑚 = total energy available for snowmelt per area unit 

𝑄𝑠𝑛 = net shortwave radiation 

𝑄𝑙𝑛 = net longwave radiation 

𝑄𝑐 = convective heat flux 

𝑄𝑒 = latent heat flux 

𝑄𝑔 = conduction of heat from the ground 

𝑄𝑝 = heat content of precipitation 

∆𝑄𝑖 = rate of change internal energy content of the snowpack 

In general, the minimum data requirements for the application of energy budget equation are air 

temperature, incoming solar radiations, vapour pressure and wind speed. However, there is usually a 

limited availability of these datasets in high altitude areas. Moreover, it is also difficult to spatially 

extrapolate this data from point measurements to mean areal values in a topologically complex and 

rugged terrain. Hence, most of the applications based on this modelling approach are restricted to only 

a point or a small catchment (Leavesley, 1989). However, there also exist another point of view in 

literature regarding the process-based snowmelt modelling especially in context of input data 

requirements. In the absence of ground observations, the process-based snowmelt modelling input data 

requirements can be reduced to only air temperatures as required by the temperature-index models 

(Walter et al., 2005). 

2.2.2 Temperature-Index or degree-day approach 

The temperature-index or degree-day approach utilizes air temperature as an index to snowmelt. Air 

temperature is assumed as a predominant variable in the energy budget equations and it is physically 

connected with many of the energy exchanges involved in the snowmelt process (Chinarro, 2014). 

Degree-day models are used due to several reasons like wide availability of air temperature data, easy 

interpolation, forecasting possibilities, good model performance and computational simplicity (Hock, 

2003). Although, the degree-day model does not include all fluxes contributing to snowmelt, it is almost 

as efficient like the energy balance model (Debele et al., 2010). The general equation of classical degree-

day approach is given as under: 

𝑀 = 𝐷𝐷𝐹𝑠𝑛𝑜𝑤,𝑖𝑐𝑒 (𝑇) 
(2.2) 

Where T >TT 

Where, 𝑀 is the snow or ice melt (mm), 𝑇 is the mean daily air temperature for a day (°C d) and 𝑇𝑇 is a 

threshold temperature above which melt is assumed to occur (e.g. = 0 °C) (Rango and Martinec, 1995). 
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The outcome of the degree-day approach (i.e. snowmelt) can be improved by including net radiation, 

vapour pressure and wind speed rather than using only air temperatures (Zuzel and Cox, 1975). 

However, increasing input variables in the degree-day equation will lead to gradual transition from 

classical degree-day approach to physically based expression. One widely known example is a 

combination method  (Anderson, 1973), where a simple degree-day approach is used for the dry periods 

and simplified energy balance formulations for the rainy period (Hock, 2003). In order to improve the 

classical degree-day approach radiation term is introduced in the general melt equation of the degree-

day model (Martinec and de Quervain, 1975; Hock, 1999) The modified formulation is expressed as 

follows. 

𝑀 =   (𝑓𝑚 + 𝑅𝑓𝐼𝑝𝑜𝑡)  𝑇 (2.3) 

Where, M is the melt rate (mm h–1), 𝑇 is hourly mean air temperature (°C) and 𝐼𝑝𝑜𝑡 is potential clear-

sky direct solar radiation (Wm–2). 𝑓𝑚 and 𝑅𝑓 are two empirical coefficients, respectively the melt factor 

and radiation factor, which are expressed in mm h–1 °C–1 and m2 mm W–1 h–1 °C–1. 

Furthermore, there also exist an enhanced temperature-index approach where the melt relationship is 

updated by incorporating not only the modelled shortwave radiation data but also snow albedo 

properties (Pellicciotti et al., 2005) . The proposed equation for the enhanced temperature-index model 

is given as under: 

𝑀 = TF (T) + SRF(1 − α)G  (2.4) 

Where, α  is albedo and G is incoming shortwave radiation (W m–2). TF and SRF are two empirical 

coefficients, respectively the degree-day factor (DDF) and shortwave radiation factor, expressed in mm 

h–1 °C–1 and mm h–1 W–1 m2. 𝑇𝑇 is threshold temperature and assumed to be equal to 0 °C. There is one 

other assumption that when the temperature is below 𝑇𝑇 no melt occurs. Incorporating albedo and 

shortwave radiation in the enhanced temperature-index approach can calculate the changes in melt rate 

associated with snow metamorphism and with the transition from snow to ice.  

Although above mentioned enhancements in the original degree-day approach are important but the 

classical degree-day approach due to its only dependence on air temperature is still widely applicable 

in the large basins even for operational purposes (Schaper et al., 1999; Hock, 1999, 2003; Pellicciotti 

et al., 2005; Martinec et al., 2008; Schaper and Seidel, 2000).  

2.2.3 Snowmelt Runoff Model (SRM) 

One of the most commonly used temperature-index model is the Snowmelt Runoff Model (SRM) which 

was developed in 1973 at the Federal Institute for Snow and Avalanche Research in Davos, Switzerland 
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(Martinec, 1975). SRM was designed for remotely sensed Snow Cover Area (SCA) input and is used 

in number of countries around the globe. SRM has been applied to more than 100 watersheds ranging 

from 0.3 to 917444 km2 and an elevation range from 0 to 8840 m a.s.l. (Martinec et al., 2008). SRM 

uses percentage areal snow cover, air temperature, and precipitation as daily input variables. The 

watershed is divided into elevation zones and accounts for the degree-days in each elevation zone to 

drive the amount of snowmelt. Specific basin characteristics include runoff coefficients, degree-day 

factors, and recession coefficients. The main strength of SRM is its reliance on the snow cover area, 

which can be derived today from readily available remote sensing snow products, e.g. MODIS Snow 

Products. Another advantage of using SRM is that there are quite large number of river catchments in 

the Himalayas where it has already been applied. Experiences from these catchments provide a good 

basis for the comparison of model parameters and results. 

The governing equation of SRM is given below:  

𝑄𝑛+1 = ∑ {[𝑀𝑛,𝑖 + 𝑅𝑛,𝑖].
10000 

86400
𝐴𝑖}

𝑚

𝑖=1

. (1 − 𝑘𝑛+1) + 𝑄𝑛𝑘𝑛+1 (2.5) 

where Q is the average daily discharge (m3 s-1), M and R are the daily runoff depths originating from 

snowmelt and rainfall (cm d-1), A is the total area of the elevation zone (km2), k is the recession 

coefficient (–), n is the index of the simulation day, and i and m are the indices and total number of 

elevation zones, respectively. Daily runoff from snowmelt and rainfall is calculated by eq. (2.6) and eq. 

(2.7): 

𝑀𝑛,𝑖 = 𝑐𝑆𝑛,𝑖. 𝑎𝑆𝑛,𝑖. 𝑇𝑛,𝑖. 𝑆𝑛,𝑖 (2.6) 

𝑅𝑛,𝑖 = 𝑐𝑅𝑛,𝑖. 𝑃𝑛,𝑖 (2.7) 

where cS and cR are the runoff coefficients (–) for snowmelt and rain, respectively, aS is the degree-day 

factor for snow (cm °C-1 d-1), T the degree-days (°C d) for each elevation zone, S the ratio of the snow 

covered area to the total area (–), and P is the daily precipitation (cm d-1).  

2.2.4 Snowmelt Runoff Model (SRM) + Glaciers (G) 

The original SRM approach has been enhanced by considering a separate glacier melt contribution 

(Schaper et al., 1999). This enhancement in the model considers in addition to the variables used by 

SRM, the area covered by exposed glaciers (i.e. not snow covered). An additional melt component is 

added to eq. (2.5) that takes into account the specific degree-day factors for glaciers according to eq. 

(2.8): 
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𝐺𝑛,𝑖 = 𝑐𝐺𝑛,𝑖 . 𝑎𝐺𝑛,𝑖. 𝑇𝑛,𝑖. 𝑆𝐺𝑛,𝑖 (2.8) 

where G is the daily melt (cm d-1) from exposed glaciers in each elevation zone, cG is the runoff 

coefficient (–), aG is the degree-day factor (cm °C-1 d-1) for glaciers, and SG is the ratio of the exposed 

glacier area to the total area (–). This model was found to be highly accurate even in basins with 67% 

glacier area. The three alpine basins where this model was initially tested were Rhine-Felsberg, Rhône-

Sion, and Ticino-Bellinzona in Switzerland (Schaper and Seidel, 2000). Apart from the improvement 

in the runoff modelling, the independent computation of glacier melt is an important step towards 

evaluations of glacier behaviour with regard to climate change. 

2.3 Methodology 

The primary focus of this research is water availability in a data limited mountainous region. A prime 

example of such a region is the Himalayas-Karakoram-Hindukush (HKH). This complex mountainous 

region has also become a climate change hotspot and with such drastic climatic changes, the flow regime 

is bound to alter which would ultimately cause a seasonal shift in the water availability and thus effect 

the irrigated agriculture and agro-economy of this region. The research topic has been further divided 

into three major sub-topics, in order to understand what will be the water availability from these data 

scarce region under future climate change projections. 

In order to evaluate the current situation regarding the water availability in near future, snow and ice 

melt runoff forecasting will be carried out. Then the assessment of future water availability under 

climate change scenarios will be performed after following an enhanced hydrological model evaluation 

criterion specifically designed for climate change impact assessment studies so that the outcome (i.e. 

future water availability) would be more credible and less uncertain. Finally, in order to address the 

data scarcity problem in context of snowmelt modelling, analysis of the most critical parameter of a 

degree-day model i.e. degree-day factor will carried out with the intention that using realistic values of 

this critical parameter would ultimately enhance confidence in the simulated runoff. 

The proposed research methodology and the research workflow is given in Figure 2.3. As stated earlier, 

the research work is planned in three different phases (i.e. three major topics) as shown in the following 

work flow diagram. 
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Figure 2.3 Proposed research topics and related work flow 

Following section gives a brief overview of the overall methodology adopted in this research project. 

2.3.1 Snow and glacier melt runoff modelling and forecasting  

Flow forecasting is challenging, when it comes to complex rugged mountainous catchments where 

observed data availability is limited that leads to uncertainties in predicting input variables for the 

forecasting period. Although some limitations can be handled by applying state of the art remote sensing 

techniques (e.g. application of satellite based remote sensing datasets). In context of this specific 
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research project, which aims to forecast seasonal water availability, a simplified scenario approach is 

adopted. This scenario approach considers the weather situation of different years and results in an 

ensemble of possible flows that can be statistically evaluated to arrive at different levels of prediction. 

For example, “most likely” (median) flows as well as the probability levels of “dry” and “wet” years 

can be defined. The scenario based approach is adopted because of unavailability of reliable 

meteorological forecasts of temperature and precipitation for a lead-time of 6-months. For seasonal 

weather prediction, today’s climate models can provide a rough indication of “warmer” or “cooler” 

respectively “drier” or “wetter” compared to the average conditions, but no sufficient forecasts for 

detailed flow modelling. The main working steps are summarized as follows. 

1. Data collection and evaluation for the selected mountainous catchment 

2. Setting up a degree-day snow and ice melt runoff model 

3. Calibration and validation of simulated snow and ice melt runoffs 

4. Application and analysis of seasonal scenario based forecasting approach 

5. Analysis of time-dependent degree-day factor approach  

2.3.2 Enhanced hydrological modelling and future water availability under climate 

change scenarios 

This topic aims at assessing the future water availability in a snow and glacier dominated catchment 

under changing climate. The pre-requisite is a good calibration/evaluation procedure for the 

hydrological model especially judging model applicability for climate impact studies. The main 

hypothesis is that a good performance of a hydrological model in the historical period increases 

confidence of projected impacts under climate change and decreases the portion of uncertainty in 

projections related to hydrological models.  

In order to complete this work package, a five-step model evaluation criterion (Krysanova et al., 2018) 

has been applied. This five-step model evaluation is a helpful tool in order to have more credible model 

outcome. These five steps are listed as follows. 

1. Evaluate the quality of observational data and take into account the related uncertainty. 

2. Apply contrasting climate data for model calibration. 

3. Validate the model performance for multiple sub-catchments (i.e. intermediate gauges). 

4. Perform multi-variable calibration for variables like evapotranspiration, glacier mass balance 

or snow cover area in order to ensure internal consistency of the simulated processes. 

5. Evaluate observed and simulated trends in the observational period. 
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2.3.3 Analysis of the degree-day factors 

The main objective of this work package is to develop better understanding about the degree-day factor 

(DDF) and its dependencies.  

There are two ways by which the DDF can be obtained. 

i. By measuring the daily snowmelt and degree-days, which required field observations (i.e. snow 

and meteorological variables measurement station). 

ii. By treating it as a calibration parameter and calibrating it on flows in a degree-day model 

In order to estimate the DDF through field observations a snow measurement station in conjunction 

with a standard meteorological station has been installed in the Dreisäulerbach catchment at an elevation 

of 1602 m a.s.l. near Brunnenkopfhütte (see Figure 2.4, Appendix-A). This station is functioning since 

November 2016, and data is available with a temporal resolution of 10-minutes.  

The objective of installing a snow measurement station is to provide necessary information for 

estimating the DDF. As mentioned earlier, knowing the variation of the DDF in advance is crucial in 

seasonal flow forecasting as well as assessing the future water availability. The goal of this part of the 

research project is to develop a simple DDF estimation method based on energy flux components while 

assuming that the snowpack is in fully ripe state (i.e. isothermal at 0 °C).  

The major working steps for this research topic are summarized as follows. 

1. Installation of snow and meteorological station in the German Alps for data collection 

2. Estimation of degree-day factors based on observed data and energy flux formulations 

3. Comparison of observed vs estimated degree-day factors 

4. Analysis of degree-day factors dependencies  

5. Estimation of degree-day factor for changing climate 
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Figure 2.4 Location of automatic weather and snow measurement station at Brunnenkopfhütte 

[1602 m a.s.l.] in German Alps 
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Chapter 3 

Scenario approach for the seasonal forecast of Kharif 

flows from the Upper Indus Basin 

 

Muhammad Fraz Ismail and Wolfgang Bogacki (2018)1 

 

Abstract 

Snow and glacial melt runoff are the major sources of water contribution from the high mountainous 

terrain of the Indus River upstream of the Tarbela reservoir. A reliable forecast of seasonal water 

availability for the Kharif cropping season (April – September) can pave the way towards better water 

management and a subsequent boost in the agro-economy of Pakistan. The use of degree-day models 

in conjunction with satellite-based remote-sensing data for the forecasting of seasonal snow and ice 

melt runoff has proved to be a suitable approach for data-scarce regions. In the present research, the 

Snowmelt Runoff Model (SRM) has not only been enhanced by incorporating the “glacier (G)” 

component but also applied for the forecast of seasonal water availability from the Upper Indus Basin 

(UIB). Excel based SRM+G takes account of separate degree-day factors for snow and glacier melt 

processes. All-year simulation runs with SRM+G for the period 2003 – 2014 result in an average flow 

component distribution of 53, 21, and 26% for snow, glacier, and rain, respectively. The UIB has been 

divided into Upper and Lower parts because of the different climatic conditions in the Tibetan Plateau. 

The scenario approach for seasonal forecasting, which like the Ensemble Streamflow Prediction method 

uses historic meteorology as model forcings, has proven to be adequate for long-term water availability 

forecasts. The accuracy of the forecast with a mean absolute percentage error (MAPE) of 9.5% could 

be slightly improved compared to two existing operational forecasts for the UIB, and the bias could be 

reduced to -2.0 %. However, the association between forecasts and observations as well as the skill in 

                                                      
1 Ismail, M. F. and Bogacki, W.: Scenario approach for the seasonal forecast of Kharif flows from the Upper Indus Basin, 

Hydrol. Earth Syst. Sci., 22, 1391-1409, https://doi.org/10.5194/hess-22-1391-2018, 2018. 
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predicting extreme conditions is rather weak for all three models, which motivates further research on 

the selection of a subset of ensemble members according to forecasted seasonal anomalies. 

3.1 Introduction  

Mountains are the water towers of the world. They are the biggest resource of freshwater to half of the 

world’s population fulfilling their needs for irrigation, industry, domestic and hydropower applications 

(Viviroli et al., 2007). The Indus River on which Pakistan’s socio-economic development depends, can 

be termed as the bread basket of Pakistan (Clarke, 2015). Due to an agrarian economy, Pakistan’s 

agriculture share in water usage is about 97%, which is well above the global average of about 70% 

(Akram, 2009). In Pakistan, the Indus River System Authority (IRSA) decides the provincial water 

shares according to the Water Apportionment Accord (WAA) of 1991 and provincial irrigation 

departments subsequently determine the seasonal water allocation to the different canal command areas 

depending upon the water availability forecast carried out at the end of March for the forthcoming 

Kharif cropping season (April–September). A reliable seasonal forecast of the water availability from 

snow and glacial melt is therefore of utmost importance for agricultural production and efficient water 

management. 

On the other hand, snowmelt runoff modelling in mountainous regions faces the challenge of data 

scarcity as well as the uncertainty in parameter calibration (Pellicciotti et al., 2012). The need of the 

hour is to not only develop such a hydrological model which has the capability to cater for both snow 

and glacial melt components but also a reliable forecast technique which could help water managers 

and policy makers to enhance water resources management in the future. 

The present paper focuses on the implementation of the Snowmelt Runoff Model (SRM) including the 

glacier melt component (+G) based on the methodology proposed by (Schaper et al., 1999), which is 

an important value addition to the existing ExcelSRM version (Bogacki and Hashmi, 2013) of the 

WinSRM (Martinec et al., 2008) model. In the earlier studies on the Upper Indus Basin (UIB) and its 

sub-catchments, e.g. (Immerzeel et al., 2010a), (Tahir et al., 2011), (Butt and Bilal, 2011), and (Adnan 

et al., 2017), they have only used the SRM standard version, while glaciers are dealt with by taking 

them as a part of the snow covered area. The underestimation of flows in periods associated with the 

glacier melt contribution, as pointed out by (Tahir et al., 2011), has now been dealt with by incorporation 

of a glacier melt component. A unique methodology has been adopted to deal with the early fading of 

snow cover area from the Tibetan Plateau by separating the whole UIB into two sub-catchments, which 

is not implemented in the original WinSRM model. 

Ensemble Streamflow Prediction (ESP), developed at the U.S. National Weather Service (Day, 1985), 

is widely used to generate probabilistic long-term stream-flow forecasts. As already successfully 
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applied in the Upper Jhelum basin (Bogacki and Ismail, 2016), a scenario approach is used for seasonal 

flow forecasting in the UIB, which has much similarity to ESP. It also uses historical meteorology as 

model forcings; however, like the other operational forecast models for UIB, it is mainly focussed on a 

deterministic forecast of total Kharif inflow to the Tarbela reservoir. 

3.2 Materials and methods 

3.2.1 Study area  

The upper catchments of the Indus River basin (Figure 3.1) primarily feed the Tarbela reservoir, which 

is the larger of the only two major reservoirs in Pakistan. The UIB has an area of about 173345 km2, of 

which approx. 11.5% is covered by perennial glacial ice (Tahir et al., 2011). At the end of most winters, 

nearly the entire UIB above 2200m a.s.l. is covered with snow, resulting in more than 60% of annual 

flow in the Upper Indus River to originate from snowmelt (Bookhagen and Burbank, 2010). The 

distribution of monthly inflows into the Tarbela reservoir (see Figure 3.2) shows that these flows tend 

to rise progressively as melting temperatures advance into areas of higher snowpack at the higher 

elevations. The Indus River starts rising gradually in March reaching its maximum in July, while peak 

flood events usually occur during the monsoon season during July–September. By the end of July, the 

flows reduce due to the diminished snow cover in the lower catchment and glacier melt becomes an 

important flow component in the late summer months. This is due to the first melting of their seasonal 

snow cover and, when the snow has vanished, melting of the glacier ice. According to (Tahir et al., 

2011), glacial melt dominates the flows of the largest tributaries of the Indus River, i.e. the Chitral, 

Gilgit, Hunza, Braldu, and Shyok rivers. 
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Figure 3.1 Map of the Upper Indus Basin (UIB) showing different elevations and splitting of the 

UIB at the Kharmong gauging station into Upper and Lower UIB. 

 

 

Figure 3.2 Monthly distribution of inflows to the Tarbela Reservoir from 2000–2015. 
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3.2.2 Model structure  

The Snowmelt Runoff Model (SRM; (Martinec, 1975)) is a semi-distributed, lumped temperature-index 

model which is specifically designed to simulate the runoff in snow dominated catchments that has been 

successfully applied in more than one hundred snow-driven basins around the globe (Martinec et al., 

2008). Input variables of the SRM are daily values of air temperature, precipitation, and snow covered 

area. The catchment is usually subdivided into elevation zones of about 500m each and the input 

variables are distributed accordingly. The total daily amount of water produced from snowmelt and 

rainfall in the catchment is superimposed on the calculated recession flow according to Eq. (3.1): 

𝑄𝑛+1 = ∑ {[𝑀𝑛,𝑖 + 𝑅𝑛,𝑖].
10000 

86400
𝐴𝑖}

𝑚

𝑖=1

. (1 − 𝑘𝑛+1) + 𝑄𝑛𝑘𝑛+1 (3.1) 

 

where Q is the average daily discharge (m3 s-1), M and R are the daily runoff depths originating from 

snowmelt and rainfall (cm d-1), A is the total area of the elevation zone (km2), k is the recession 

coefficient (–), n is the index of the simulation day, and i and m are the indices and total number of 

elevation zones, respectively. Daily runoff from snowmelt and rainfall is calculated by Eqs. (3.2) and 

(3.3): 

𝑀𝑛,𝑖 = 𝑐𝑆𝑛,𝑖. 𝑎𝑆𝑛,𝑖. 𝑇𝑛,𝑖. 𝑆𝑛,𝑖  
(3.2) 

𝑅𝑛,𝑖 = 𝑐𝑅𝑛,𝑖. 𝑃𝑛,𝑖 (3.3) 

where cS and cR are the runoff coefficients (–) for snowmelt and rain, respectively, aS is the degree-day 

factor for snow (cm °C-1 d-1), T the degree-days (°C d) for each elevation zone, S the ratio of the snow 

covered area to the total area (–), and P is the daily precipitation (cm d-1). (Schaper et al., 1999) 

introduced an enhancement in the original SRM approach by incorporating the separate glacial melt 

component in the model. In addition to the variables used by SRM, it also considers the area covered 

by exposed glaciers, i.e. not snow covered. An additional melt component is added to Eq. (3.1) that 

takes into account the specific degree-day factors for glaciers according to Eq. (3.4): 

 

𝐺𝑛,𝑖 = 𝑐𝐺𝑛,𝑖 . 𝑎𝐺𝑛,𝑖. 𝑇𝑛,𝑖. 𝑆𝐺𝑛,𝑖 (3.4) 

 

where G is the daily melt (cm d-1) from exposed glaciers in each elevation zone, cG is the runoff 

coefficient (–), aG is the degree-day factor (cm °C-1 d-1) for glaciers, and SG is the ratio of the exposed 

glacier area to the total area (–). This model was tested in several basins and was found to be highly 

accurate even in basins with 67% glacier area. The three alpine basins were Rhine-Felsberg, Rhône-

Sion, and Ticino-Bellinzona in Switzerland (Schaper and Seidel, 2000). Apart from the improvement 
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in the runoff modelling, the independent computation of glacier melt is an important step towards 

evaluations of glacier behaviour with regard to climate change. The glacier melt component according 

to Eq. (3.4) was incorporated into the existing ExcelSRM (further referred to as SRM+G). This 

extension requires the glacier exposed area as an additional daily input variable and respective model 

parameters as given in Eq. (3.4). An additional enhancement is the possibility to split the watershed into 

different sub-catchments. This feature is realised by adding the pre-calculated outflow of a sub-

catchment obtained by a separate simulation to the discharge of the downstream sub-catchment. The 

travel time can be considered by applying a time lag to the daily discharge time series. 

3.2.3 Splitting the UIB into two sub-catchments 

In the Karakorum–Western-Himalayas region, snow accumulates during winter and reaches its 

maximum extent in February or March. Higher altitudes typically have a 90 – 100% snow cover that 

stays more or less constant until melting starts in spring. There is, however, a characteristic bias between 

the north-western part of the UIB, where at altitudes above 4000 m a.s.l. the snow covered area usually 

starts gradually decreasing in March, and the south-eastern part, namely the Tibetan Plateau, where at 

the same altitudes snow cover is fading away rapidly. This bias leads to an inevitable underestimation 

in forecasting the snowmelt-dominated early Kharif flows (see Sect. 3.3.1), which motivates the 

splitting of the UIB into two sub-catchments.  

Ideally, the catchment should be split directly downstream of the Tibetan Plateau. However, because 

the first gauging station where daily flow data were available is the Kharmong gauging station (when 

the Upper Indus River has entered into Pakistan), this location was chosen to split the UIB into upstream 

and downstream sub-catchments (namely the Upper and Lower UIB; Figure 3.1). The hypsometric 

characteristics including the number of elevation zones and their corresponding areas of both sub-

catchments are shown in Figure 3.3.  

According to the two sub-catchments, two separate SRM+G models were created. For each simulation, 

first the Upper UIB model is run in order to simulate flows at Kharmong. These flows are then 

superimposed onto the flows calculated by the Lower UIB model using a time lag between Kharmong 

and Tarbela that was estimated by Kirpich (Eq. (3.5); (Kirpich, 1940; USDA, 2010)). 

 

𝑡 = 0.00195 𝐿0.77 𝑆−0.385 (3.5) 

 

In this empirical equation, the time of concentration t (min) is only related to the length of the main 

channel L (m) and the slope of the longest hydraulic length S (–). Given the altitudes of Kharmong and 
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Darband (upstream Tarbela reservoir) gauging stations as 2542 and 436 m a.s.l., respectively, and a 

channel length2 of about 617 km, the approximated time lag of 5000 min was finally rounded to 3 days.  

 

Figure 3.3 Hypsometric curves and the distribution of area under 500m elevation bands for the 

Upper and Lower UIB. Eleven and seven elevation zones were made for the Lower and 

Upper UIB, respectively, and the elevation of the weather stations in the western portion 

of the UIB are presented on the right hand side y-axis. 

3.2.4 Data sources 

There are a number of high-elevation climate stations in the Pakistani part of the UIB operated by 

WAPDA’s3 Glacier Monitoring and Research Centre (GMRC) and the Pakistan Meteorological 

Department (PMD). However, they are concentrated on the western part of the UIB and data is not 

available online. In order to have the most recent data for operational flow forecasting, the World 

Meteorological Organization (WMO) climate station at Srinagar airport located at an altitude of 1587m 

a.s.l. was chosen as temperature base station, which already had proven to give representative 

temperatures for that region in the SRM model of the Upper Jhelum catchment (Bogacki and Ismail, 

2016) and a full set of climatic data can be obtained online from the GSOD4 database with a time lag 

of about 2 days only. Based on the daily air temperature data, degree-days in each elevation zone were 

calculated using a constant temperature lapse rate of -6 °C km-1. 

                                                      
2 Digitised from Esri’s World Imagery. Sources: Esri, Digital-Globe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, 

Aerogrid, IGN, IGP, swisstopo, and the GIS user community 

3 Pakistan Water and Power Development Authority 

4 Global Summary Of the Day. Download at ftp://ftp.ncdc.noaa.gov/pub/data/gsod/ 
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The MODIS/Terra Snow Cover Daily L3 Global 500m Grid (MOD10A1) product5 has been used to 

determine the daily snow covered area in the elevation zones. The compatibility of using MODIS data 

in conjunction with SRM in the Himalayas and its surroundings has already been investigated by 

(Immerzeel et al., 2009, 2010a). As the MODIS sensor cannot detect snow below clouds, a cloud 

elimination algorithm is applied using temporal interpolation between two cloud-free days for each 

pixel. Afterwards the daily percentage of snow cover area in each elevation zone is calculated and 

smoothed by moving average. 

At the beginning of the melting season, glaciers are usually completely covered by fresh snow. As the 

melting season progresses, the snow cover will fade away and glacier exposed area will increase. The 

actual glacier extent was derived from two data sources. As a major source on global glacier 

distribution, the Global Land Ice Measurements from Space (GLIMS) data archive was used (Raup et 

al., 2007). This data was complemented by interpretation of Landsat 8 scenes (30m spatial resolution) 

from late summer to early fall 2013, in order to identify the maximum of the glacier exposed area. The 

merged data were mapped on the 500m MODIS grid. On a daily basis, the glacier exposed area is 

determined by all pixels that are classified as glacier but not identified as snow by the MODIS sensor.  

A spatial interpolation of in situ (station) precipitation data in mountainous regions is particularly 

difficult and often biased towards lower values (Archer and Fowler, 2004) as the rain gauge network is 

usually sparse and mainly located at the valley floors, while maximum precipitation occurs on mountain 

slopes and increases with altitude in general. A promising alternative to station data are gridded, remote 

sensing-based precipitation products. However, regional and temporal patterns as well as multiannual 

means of these products differ significantly in the Himalayas (Palazzi et al., 2013). In particular, the 

widely used TRMM dataset is known to underestimate the precipitation at high altitudes, as found in 

the UIB (Forsythe et al., 2012) or the Andes (Ward et al., 2011).  

Based on our own precipitation product comparisons for the Upper Chenab catchment, the gridded RFE 

2.0 central Asia6 daily rainfall product (Xie et al., 2002) is used in the present model. According to 

SRM’s elevation band approach, the gridded data, having a spatial resolution of 0.1° latitude and 

longitude, is mapped to the respective elevation zones. For the period 2003–2015, the product yields a 

mean annual precipitation of 854 and 482 mm year-1 for the Lower and the Upper UIB, respectively, 

which reflects the significantly lower annual precipitation on the Tibetan Plateau compared to the 

western Himalayas (e.g. (Ménégoz et al., 2013; Bookhagen and Burbank, 2010)). The RFE basin-wide 

annual mean of 701 mm year-1 lies well in the range of 675±100 mm year-1 derived for the whole UIB 

by (Reggiani and Rientjes, 2015). 

                                                      
5 Hall et al. (2006), updated daily. MODIS/Terra Snow Cover Daily L3 Global 500m Grid V005, (February 2000–September 

2016, tiles h23v05 & h24v05). NSIDC Boulder, Colorado, USA. Download at 

https://n5eil01u.ecs.nsidc.org/MOST/MOD10A1.005. 

6 RainFall Estimates version 2.0 created by the NOAA Climate Prediction Center’s FEWS-NET group sponsored by 

USAID. Download at ftp://ftp.cpc.ncep.noaa.gov/fews/afghan 
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3.2.5 Model parameters 

The most important parameter of a temperature-index model that is controlling daily snow and glacial 

melt is the degree-day factor (cm °C-1 d-1), which transforms the index variable degree-day (°C d) into 

actual melt (cm d-1). In the case of glaciers, a constant degree-day factor of 0.70 cm °C-1 d-1, as proposed 

by (Schaper et al., 2000), was chosen, which also corresponds to degree-day factors reported from 

glaciers in the Himalayas at a comparable latitude (Hock, 2003). The approach for degree-day factors 

for snow is more elaborate. In the first step, optimal degree-day factors were obtained for each elevation 

zone and year by diagnostic calibration, i.e. by achieving the best possible fit between simulated and 

observed hydrographs for each year. From this calibration exercise, it appears that degree-day factors 

are increasing by the time melting has started in a particular elevation zone (Figure 3.4 and Figure 3.5). 

Because a generalised rule is needed in the forecasting procedure, zone-wise degree-day factor 

functions, as suggested by (Ismail et al., 2015), were developed by linear regression between the 

calibrated degree-day factors and time.  

The increase in the degree-day factors with the passage of time is because the snow absorbs energy due 

to physical conditions such as increasing temperatures and solar radiation intensities. This process of 

energy storage plays a pivotal role in the ripening of the snowpack, which melts rapidly as the snow 

melting season progresses. The extent to which degree-day factors increase is related to the calibration 

procedure because it was observed during the model calibration that in a certain elevation zone when 

the degree-day factors attain a certain value, e.g (0.80 cm °C-1 d-1), the snow cover area in that very 

elevation zone has almost completely faded away so there is no advantage in further increasing the 

values of degree-day factors. The limit of the degree-day factors increase at a certain spatio-temporal 

region depends upon various physiographic and climatic parameters and research is on-going to 

evaluate the trend of degree-day factors in response to the aforementioned parameters. 

The start of snowmelt and the corresponding application of the developed degree-day factor generalised 

rule is correlated with a certain threshold temperature (Tth) for each elevation zone (see Table 3.1 and 

Table 3.2). The other model parameters required by SRM like temperature lapse rate, recession 

coefficient, runoff coefficient for snow, lag time, etc., were applied basin-wide and kept constant for all 

years (see Table 3.3). The values of these parameters were determined according to the methods 

described by (Martinec et al., 2008) and slightly adjusted to achieve a good fit over the whole calibration 

period. It has to be noted that these parameter values will differ for other catchments. 
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Table 3.1 Zone-wise melting start threshold temperatures and time-dependent degree-day factors 

for the Lower UIB. 

 Elevation Zone (m a.s.l) 

 
≤2500 2500–3000 3000–3500 3500–4000 4000–4500 4500–5000 5000–5500 >5500 

Tth
* 9.0 7.0 5.0 4.0 2.0 1.0 1.0 1.0 

Days after 

melting start 
        

10 0.20 0.21 0.22 0.22 0.19 0.18 0.18 0.20 

20 0.30 0.32 0.32 0.32 0.30 0.31 0.31 0.33 

30 0.39 0.43 0.41 0.43 0.41 0.43 0.44 0.46 

40 0.48 0.53 0.51 0.54 0.52 0.56 0.57 0.59 

50 0.57 0.64 0.61 0.65 0.63 0.68 0.70 0.72 

60 0.67 0.75 0.70 0.80 0.74 0.80 0.80 0.80 

70 0.80 0.80 0.80 0.80 0.80    

*10-day average temperature in °C in each elevation zone. 

 

Table 3.2  Zone-wise melting start threshold temperatures and time-dependent degree-day factors 

for the Lower UIB 

 Elevation Zone (m a.s.l) 

 
≤3000 3000–3500 3500–4000 4000–4500 4500–5000 5000–5500 >5500 

Tth
* 2.0 2.0 2.0 2.0 0.5 0.5 0.5 

Days after 

melting start 
       

10 0.37 0.35 0.35 0.52 0.56 0.48 0.60 

20 0.43 0.40 0.40 0.59 0.64 0.54 0.70 

30 0.49 0.45 0.46 0.66 0.73 0.80 0.80 

40 0.54 0.51 0.51 0.73 0.80   

50 0.60 0.56 0.56 0.80    

60 0.66 0.61 0.62     

70 0.71 0.66 0.67     

*10-day average temperature in °C in each elevation zone. 
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Figure 3.4 Increase in degree-day factors with time after start of melting for elevation zones 7 and 

8 for the Lower UIB. Degree-day factors are obtained by diagnostic calibration. 

 

 

Figure 3.5 Increase in degree-day factors with time after start of melting for elevation zones 5 and 

6 for the Upper UIB. Degree-day factors are obtained by diagnostic calibration. 

3.2.6 Scenario approach for forecasting 

In the forecasting period which starts from 1 April, the four model variables temperature, precipitation, 

snow covered area, and glacier exposed area have to be predicted for the forthcoming 6 months of the 

Kharif cropping season (April–September). As the level of skill of seasonal climate forecasts for the 

Hindukush–Karakoram–Western-Himalaya region for such a lead time is still not sufficient, a scenario 

approach already successfully applied in the Upper Jhelum catchment (Bogacki and Ismail, 2016) is 

used. 

This scenario approach has a lot in common with traditional ESP methods (developed at the U.S. 

National Weather Service as a method for generating long-term probabilistic streamflow outlooks; 

(Day, 1985)). Based on the assumption that past meteorology is representative of possible future events, 

ESP uses historical temperature and precipitation time series as forcings for the hydrological model to 

produce an ensemble of streamflow traces. A probabilistic forecast is created by statistical analysis of 

the multiple streamflow scenarios produced (Franz et al., 2008). Initial basin conditions are usually 

estimated by forcing the hydrological model with observed meteorology in a “warm-up” phase up to 

the time of forecast (Wood and Lettenmaier, 2008). 

The seasonal scenario approach also uses historical temperature and precipitation as forcings for the 

SRM+G model. In contrast to ESP, however, this approach is, like the other operational forecast models 
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for the UIB, primarily focussed on a deterministic forecast of total Kharif flow volume. Besides the 

“most likely” (median) flow, SRM+G forecasts only give an indication of the bandwidth of expected 

flows by the dry (20 %) and wet (80 %) quantiles as limits of the “likely” range. 

The other notable differences are the initial basin conditions. SRM and SRM+G do not use any initial 

conditions, like soil moisture state of snow-water equivalent as used in other hydrological models. 

Instead, however, the snow cover area and the glacier-exposed area are input variables to the model. 

For reasons of simplicity, the glacier-exposed area is treated like the meteorological variables, i.e. the 

historical time series are used. However, the depletion of the snow covered area during the forecast 

period, which is the decisive factor for each forecast, is predicted by so-called “modified depletion 

curves”. These modified depletion curves are derived from the conventional depletion curves of each 

elevation zone by replacing the timescale with the cumulative daily snowmelt depth (Martinec et al., 

2008). The decline of the modified depletion curves depends on the initial accumulation of snow and 

represents the actual snow-water equivalent. 

When initial snow depth is low, the modified depletion curve declines faster than in years when a lot of 

snow has accumulated. At the end of March, when the seasonal forecast is carried out, an elevation zone 

already showing some decline in snow covered area, and hence having also some cumulated degree-

days, is chosen as a “key zone”. Comparing the relationship of decline in snow covered area versus 

cumulated degree-days with a statistical analysis of the modified depletion curves of previous years, 

the actual amount of snow is estimated and the future depletion anticipated accordingly, while assuming 

similar snow conditions for all elevation zones. 

The ESP approach usually has the advantage that errors in the initial conditions are progressively 

superseded by the meteorological forcings. In SRM+G, however, if an erroneous depletion estimate is 

in effect, then it will persist during the whole forecast period. As all ensemble traces are based on the 

chosen depletion curves, the initial estimate is crucially influencing each trace of the ensemble in the 

same direction. 

Table 3.3 SRM+G model parameters for both the upper and Lower UIB. 

Parameters Symbol Value Units Remarks 

Temperature lapse rate γ 6.0 °C km-1  

Recession coefficient  kx 

ky 

1.193 

1.060 

0.029 

0.020 

– 

October-February 

March – September 

October-February 

March – September  

Critical precipitation Pcrit 1 cm constant 

Lag time  L 54 h 2.5 days delay between 

melt and runoff at 

Tarbela 

Critical temperature Tcrit 0.5 – 3.0 °C variable 

Rainfall contributing area RCA 0 – November – March  
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Parameters Symbol Value Units Remarks 

1 April – October 

Runoff coefficient - snow  cS 0.80 – constant 

Runoff coefficient - glacier  cG 0.70 – constant 

Runoff coefficient - rain cR 0.25 – 0.75 –  

Degree-day factor - snow α 0.15 – 0.80 cm °C-1d-1  

Degree-day factor - glacier aG 0.70 cm °C-1d-1 constant 

 

3.2.7 Verification methods 

Model verification comprises the simulation model as well as the forecasting model. The accuracy of 

the simulation model was evaluated by the two standard criteria used in the SRM (Martinec et al., 2008), 

namely the relative volume difference Eq. (3.6) 

 

𝐷v =
𝑉 − 𝑉∗

 𝑉
× 100 [%] (3.6) 

 

and the coefficient of determination 𝑅2  Eq. (3.7) 

 

𝑅2 = 1 −
∑ (𝑄𝑖 − 𝑄𝑖

∗)2𝑛
𝑖=1

∑ (𝑄𝑖 −  �̅�)2𝑛
𝑖=1

 (3.7) 

 

where 𝑉 and 𝑉∗ are the observed and the simulated annual flow volumes,𝑄𝑖 and 𝑄𝑖
∗ are the observed 

and the simulated daily discharge values, and �̅� is the average observed daily discharge. 

The skill of the forecasting model was assessed in comparison with IRSA’s forecasts that are based on 

a statistical model and with forecasts from the UBC7 watershed model (Quick and Pipes, 1977) that is 

used by WAPDA’s Glacier Monitoring Research Centre. The set of verification metrics was chosen 

taking into account that the existing operational forecasts for Kharif flows are traditionally issued in the 

form of deterministic forecasts, thus only the ‘most likely’ values forecasted by these models are 

available. 

The accuracy of a forecast is a measure of the error between predicted and observed values. The root 

mean squared error (RMSE; Eq. (3.8)), mean percentage error (MPE; Eq. (3.9)), and mean absolute 

                                                      
7 University of British Columbia Watershed Model. 
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percentage error (MAPE; Eq. (3.10)) were used as deterministic metrics to assess the accuracy of the 

predicted mean Kharif flow volumes. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑓𝑖 − 𝑜𝑖)2

𝑛

𝑖=1

 (3.8) 

 

𝑀𝑃𝐸 =
1

𝑛
∑

(𝑓𝑖 − 𝑜𝑖)

𝑜𝑖

𝑛

𝑖=1

 (3.9) 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑓𝑖 − 𝑜𝑖|

𝑜𝑖

𝑛

𝑖=1

 (3.10) 

 

In the above equations, fi is the forecasted and oi the observed flow volume and n the total number of 

considered forecasts. Both, RMSE and MAPE measure the average magnitude of the forecast errors, 

where RMSE penalises larger errors more than MAPE. The mean percentage error measures the 

deviation between average forecasted and average observed flows, i.e. a positive MPE indicates over-

forecasting and a negative under-forecasting. 

As a commonly used deterministic measure of association, the correlation coefficient, Eq. (3.11), was 

applied to assess the correspondence between forecasted and observed values. 

 

𝑅 =
∑ (𝑓𝑖 − 𝑓̅)(𝑜𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑓𝑖 − 𝑓̅)2𝑛
𝑖=1 √∑ (𝑜𝑖 − �̅�)2𝑛

𝑖=1

 
(3.11) 

 

In addition, the uncentered anomaly correlation ACu (Eq. (3.12); (Wilks, 2006)) was used as another 

measure of association. 

𝐴𝐶𝑢 =
∑ (𝑓𝑖 − 𝑐̅)(𝑜𝑖 − 𝑐̅)𝑛

𝑖=1

√∑ (𝑓𝑖 − 𝑐̅)2𝑛
𝑖=1 √∑ (𝑜𝑖 − 𝑐̅)2𝑛

𝑖=1

 
(3.12) 

where 𝑐̅ is the climatological average value. The anomaly correlation is designed to measure similarities 

in the patterns of anomalies from the climatological average between forecasted and observed values. 

An AC ≥ 0.6 is usually regarded as an indication of some forecasting skill (Wilks, 2006). In the present 

context, the climatology average 𝑐̅  is equivalent to the average observed flows �̅�. 
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The ability of a non-probabilistic forecast to predict extreme conditions is usually assessed by defining 

discrete categories like below normal, normal, and above normal. The Heidke and Peirce skill scores 

for multi-categorical forecasts measure the fraction of correct forecasts in each category in relation to 

those forecasts, which would be correct due purely to random chance. The Peirce skill score, Eq. (3.13), 

 

𝑃𝑆𝑆 =
∑ 𝑝(𝑓𝑗, 𝑜𝑗) − ∑ 𝑝(𝑓𝑗) 𝑝(𝑜𝑗)𝑚

𝑗=1
𝑚
𝑗=1

1 − ∑ 𝑝(𝑜𝑗)2𝑚
𝑖=𝑗

 (3.13) 

 

is unbiased in the sense that it assigns a marginal distribution to the reference random forecast which is 

equal to the (sample) climatology (Wilks, 2006). In the above equation, m is the number of categories, 

𝑝(𝑓𝑗, 𝑜𝑗) the joint distribution of forecasts and observations, where 𝑝(𝑓𝑗) and 𝑝(𝑜𝑗) are the respective 

marginal distributions. 

As the existing operational forecasts are primarily designed as point estimates of the mean flow volume 

and hence a comparison of probabilistic metrics between these models is not possible, only a basic 

probabilistic evaluation of the SRM+G scenario ensembles was carried out. The ranked probability 

score RPS was used, which is essentially an extension of the Brier score to the many-event situation 

(Wilks, 2006). It reflects the overall performance of a multi-category probabilistic forecast (Franz et al., 

2003). In order to calculate the RPS, first the quantiles of m categories have to be determined based on 

given non-exceedance probabilities of the observed values. Then, for each forecast, the ensemble 

members as well as the observed flow are assigned to these categories and the respective cumulative 

distributions, Eq. (3.14), are calculated 

 

𝐹𝑖 = ∑ 𝑝𝑗(𝑓𝑖)

𝑚

𝑗=1

                 𝑂𝑖 = ∑ 𝑝𝑗(𝑜𝑖)

𝑚

𝑗=1

 
(3.14) 

 

where Fi is the cumulative ensemble distribution of forecast i and  𝑝𝑗(𝑓𝑖) is the relative frequency of an 

ensemble member falling into category j . For each forecast i, there is only one observation oi, hence 

the category j the observation falling in is given a relative frequency of 𝑝𝑗(𝑜𝑖) = 1 while all others are 

set to 0. Finally, the RPS (Eq. (3.15)) for n forecasts is the average of the sum of the squared differences 

in the cumulative distributions. 

𝑅𝑃𝑆 = ∑ {∑ [∑ 𝑝𝑗(𝑓𝑖) − ∑ 𝑝𝑗(𝑜𝑖)

𝑘

𝑗=1

𝑘

𝑗=1

]

2
𝑚

𝑘=1

}

𝑛

𝑖=1

 (3.15) 
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The RPS penalises forecasts more severely when their probabilities are further from the actual 

observations. The relative improvement or skill of a probability forecast over climatology as a reference 

forecast is assessed by the ranked probability skill score (RPSS; Eq. (3.16)) 

 

𝑅𝑃𝑆𝑆 = 1 −
𝑅𝑃𝑆

𝑅𝑃𝑆𝑟𝑒𝑓
 

(3.16) 

 

where RPSref is the RPS calculated with a constant forecast, e.g. the average of the observed series. 

Besides the RPSS as a single-number score for the forecast performance, the reliability diagram (Wilks, 

2006) is used to show the full joint distribution 𝑝(𝑓𝑖, 𝑜𝑗) of forecasts and observations of a binary 

predictand in terms of its calibration – refinement factorisation (Murphy and Winkler, 1987) 

 

𝑝(𝑓𝑖, 𝑜𝑗) = 𝑝(𝑜𝑗|𝑓𝑖) ∙ 𝑝(𝑓𝑖)         𝑖 = 1, … , 𝑚   𝑗 = 1, … , 𝑛 (3.17) 

 

where the m conditional distributions 𝑝(𝑜𝑗|𝑓𝑖) specify how often each possible observation oj occurred 

when the particular forecast fi was issued, or in other words how well each forecast fi is calibrated. 

Forecasts fi that fall near to the 1:1 line in the reliability diagram result in a small (good) reliability term 

of the algebraic decomposition of the Brier score (Murphy, 1973), which is the weighted average of the 

squared vertical distances. 

The other part of the above factorisation is the unconditional (marginal) distribution p(fi) that specifies 

how often each of the m possible forecast values occurred. This so-called refinement distribution is 

visualised by a probability histogram that is also referred to as a sharpness diagram. A distribution with 

a large spread indicates that different forecasts are issued relatively frequently, and so have the potential 

to discern a broad range of conditions. Conversely, a narrow distribution, i.e. if most of the forecasts fi 

are the same or in a similar range, indicates a lack of sharpness (Wilks, 2006). 

While the calibration–refinement factorisation relates to a binary predictand, the SRM+G scenario 

forecasts are grouped into three categories: less than normal, near normal (most likely), and higher than 

normal. According to (Murphy, 1972), this N-state situation is handled as a collection of N × m scalar 

forecasts, thus treating each category as a separate binary forecast fi that either meets or does not meet 

the observation oj. 

3.3 Results and discussion 

The development of the SRM+G forecasting model for the UIB has been an iterative process with the 

focus on creating an operational forecasting tool for Kharif flow volumes to the Tarbela reservoir. Thus, 

not all improvements have been tested individually while not changing the other components, which 
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would allow an independent assessment of the individual effects. Nevertheless, the results are discussed 

below separately for each component. 

3.3.1 Splitting of the UIB catchment  

While the simulation results using a sole model for the whole UIB showed an acceptable agreement 

between simulated and observed flows in terms of R2 and Dv, initial hindcast results proved to be 

unsatisfactory, especially for the early Kharif (1 April–10 June) season, which is the major snowmelt 

contribution period. The mean percentage error MPE between hindcasts and observations of -21.0% for 

the years 2003–2014 indicated a severe bias towards underestimating the actual flows and the respective 

MAPE of 25.9% was also unexpectedly large. 

An analysis of MODIS snow cover data indicates that in the south-eastern part of the UIB, namely the 

Tibetan Plateau, already in March the snow cover is fading away rapidly. On the other hand, in the 

north-western part of the catchment, the same elevation zone is still widely covered with snow (Figure 

3.6). In Table 3.4 the snow cover area of the relevant elevation zones for the south-eastern (Upper) and 

north-western (Lower) part of the UIB is given on 1 March and 1 April as an example for the year 2003. 

While at an elevation of 4000m a.s.l. the snow cover area reduces from 82 to 71% in the Lower UIB, 

in the Upper UIB the snow cover area shrinks sharply from 79 to 50 %. A similar behaviour can be 

observed for most of the other years as well. As in forecasting mode, the depletion of the snow cover 

area during the whole forecasting period is predicted depending on the reduction in the “key zone” in 

March (see Sect. 3.2.6). The relatively larger depletion in the Upper UIB 

leads to an underestimation of the available snow-water equivalent for the whole catchment, which 

explains the subsequent underestimation of early Kharif flows by the initial hindcasts and in turn 

motivates the splitting of the UIB into two sub-catchments and separate models (see Sect. 3.2.3). As a 

result of this splitting, the MPE of the hindcasts for early Kharif changed to a modest overestimation of 

4.2%, while the MAPE could be reduced to 15.8%. 

Table 3.4 Percentage depletion of snow cover area for the Upper and Lower UIB during March 

2003. 

Elevation  

(m a.s.l.) 

3500 4000 4500 5000 5500 >5500 

1 March 2003 

Lower UIB 66% 82% 88% 87% 83% 94% 

Upper UIB 58% 79% 58% 51% 58% 71% 

1 April 2003 

Lower UIB 42% 71% 84% 84% 78% 92% 

Upper UIB 24% 50% 48% 43% 51% 73% 
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Figure 3.6 Snow cover variation in the months of March (Left) and April (Right) 2003 in UIB. 

3.3.2 Glacier melt component 

During the first diagnostic calibration of the degree-day factors, it became obvious that in late summer, 

even with extreme high degree-day factors, it was usually not possible to reproduce the observed 

hydrograph. The analysis of the snow cover depletion showed that in most of the years, snow has 

vanished from areas below 4000m a.s.l. already in June and elevation zones below 5000m a.s.l. usually 

become snow free in July. Thus, the snowmelt contribution to the flow is rapidly diminishing in August 

and September (see Figure 3.7). 

Although the monsoon season usually starts in July, bringing the highest monthly precipitation depth 

to the UIB in July and August, the resulting flow component from rain is not sufficient to create the 

necessary discharge. Therefore, many studies postulate a substantial contribution from glacier melt to 

the annual flow in the UIB. For example, (Immerzeel et al., 2010b) estimate a contribution of 40% from 

snow and 32% from glacier melt with the remaining 28% from rain, (Charles, 2016) mentioned that the 

contribution is 50% from snow and 20% from glacial melt. 

Figure 3.7 shows the monthly distribution of the three flow components as calculated by SRM+G before 

subjecting to the recession flow calculation according to Eq. (3.1). SRM’s simple recession flow 

approach is not mass conservative and does also not allow a direct attribution, at what day these flow 

components actually occur in the daily discharge Qn+1. 

However, an overall water balance shows that the difference between water going into the (virtual) 

storage and water taken out by the recession flow term Qn is about 7%, which seems acceptable in 

relation to the uncertainty associated with the input data. Having in mind the above limitation, the 

average (2003–2014) flow component distribution as simulated by SRM+G is 53, 21, and 26% for 

snow, glacier, and rain, respectively, which is well within the magnitude of the values found in other 

studies. 

Figure 3.8 and Figure 3.9 compare the hydrographs of simulation runs with and without the glacier 

component for the Upper and Lower UIB. The effect is more visible in the Lower UIB as about 10.5% 

of the catchment is glaciated, while for the Upper UIB the glaciated area is merely 1.7 %. 
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Figure 3.7 Monthly distributions of flow components (snow, rain, and glacier) in the UIB. 
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Figure 3.8 Comparison of SRM+G (with glaciers) and SRM (without glaciers) for the Lower UIB 

in 2008. 

 

 

Figure 3.9 Comparison of SRM+G (with glaciers) and SRM (without glaciers) for the Upper UIB 

in 2008. 
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3.3.3 Simulation model verification 

The simulation model was verified by comparing full year (1st January – 31st December) simulation 

runs using the actual temperature, precipitation, and snow cover data versus observed daily flows. 

Examples of respective hydrographs for the Upper and Lower UIB are given in Figure 3.10 and Figure 

3.11. The resulting coefficients of determination R2 and relative volume differences Dv for each year 

and both the Upper and Lower UIB model are given in Table 3.5. Although the years 2003 – 2012 were 

used to calibrate certain model parameters (see Sect. 3.2.5), they are also used to validate the model in 

“forecasting mode”, as in particular the degree-day factor functions (Table 3.1 and Table 3.2) were 

applied as during a real forecasting procedure, i.e. the starting point was chosen according to the melting 

start threshold temperatures as given in Table 3.1 and Table 3.2. The years 2013 and 2014, on the other 

hand, were not used at the time of model calibration; thus, they represent a fully independent verification 

of the simulation model. 

The average R2 of 0.86 and 0.88 for the Upper and Lower UIB, respectively, indicate that in general the 

two models simulate the variations in the observed hydrographs quite acceptably. Values for the years 

2013 and 2014 are even above the average for Lower UIB, which is finally essential for Tarbela inflows, 

but extreme floods, like 2010 during monsoon season, are not reproduced that well. The average relative 

volume differences Dv of -1.89 and 0.03% for the Upper and Lower UIB, respectively, show that the 

simulation models, although not mass-conservative due to the recession approach (Sect. 3.2.2) and 

volume differences vary from year to year, are in terms of total flow volume not biased over the long 

run. 
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Figure 3.10 Results of the validation of the final Upper UIB flow forecast model (dashed line) 

compared to observed flows at Kharmong (solid line) for the year 2014. 

 

 

Figure 3.11 Results of the validation of the final Lower UIB flow forecast model (dashed line) 

compared to observed inflows at Tarbela (solid line) for the year 2014. 
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Table 3.5 Coefficient of determination R2 and relative volume difference Dv for the Upper and 

Lower UIB. 
 Upper UIB  Lower UIB 

Year R2 Dv [%]  R2 Dv [%] 

2003 0.86 -17.3  0.92 4.6 

2004 0.84 2.2  0.90 0.1 

2005 0.89 15.3  0.83 -17.4 

2006 0.85 8.4  0.91 -3.5 

2007 0.80 4.0  0.88 -4.1 

2008 0.94 -6.7  0.92 -1.4 

2009 0.79 14.2  0.86 16.4 

2010 0.90 -1.9  0.77 -16.3 

2011 0.88 -9.1  0.88 4.5 

2012 0.87 -16.0  0.89 11.9 

2013 0.77 -9.3  0.93 -2.5 

2014 0.88 -6.5  0.92 8.0 

Average 0.86 -1.89  0.88 0.03 

3.3.4 Evaluation of forecasting skills 

In order to evaluate the skills of the forecasting model, hindcasts were carried out for the years 2003 – 

2014 always using all years, i.e. also the hindcasted year, as scenario members. 

For the years 2015 and 2016, real forecasts have been determined before 1 April of these years, thus 

without using the particular year as a scenario. In all cases, the expected depletion of snow cover area 

was predicted for each scenario member based on the respective situation in March of the specific year. 

In Table 3.6, the ensemble medians of hind- and forecasts by SRM+G are compared with observed 

flows, with IRSA’s forecasts that are based on a statistical model, and with forecasts from the UBC 

watershed model (Quick and Pipes, 1977) that is used by WAPDA’s Glacier Monitoring Research 

Centre. All values are total Kharif (1 April–30 September) flow volumes in 109 m3. Figure 3.12 presents 

all model results and observed flows and shows also the 20 and 80% quantiles of the SRM+G scenario 

ensemble. Table 3.7 summarises the metrics that are used to compare the forecast skills of the three 

models. The RMSE, MAE, and MAPE show an improvement in accuracy by SRM+G and the MPE 

shows a reduction of bias where SRM+G tends to slightly underestimate, while the two other forecasts 

moderately overestimate the total Kharif flows. However, both the correlation coefficients R and the 

anomaly coefficients ACu indicate however, that the association between forecasts and observations is 

weak for all three models. Here, the UBC forecasts show the best correlation followed by SRM+G and 

IRSA. The above aspects of model performance are synoptically visualised in the Taylor diagram 

(Taylor, 2001) in Figure 3.13 that was plotted using the R-package Plotrix (Lemon, 2006). All models 

are comparable far away from the point of observations given on the x-axis, with SRM+G having the 

smallest centred root mean square difference and UBC the best correlation coefficient. 

In order to evaluate the model skills in forecasting extreme conditions, i.e. dry or wet, the Peirce skill 

score was applied. 
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Table 3.6 Comparison of Kharif flow volumes (km3) during 2003–2016. 

Year Observed IRSA UBC SRM+G 

2003 67.8 64.0 63.5 63.1 

2004 51.8 60.5 63.6 60.8 

2005 68.9 69.0 73.3 60.9 

2006 67.8 68.4 73.3 61.6 

2007 60.5 74.9 70.1 61.0 

2008 57.7 68.5 59.2 53.9 

2009 57.6 63.7 67.2 62.4 

2010 76.6 63.3 68.4 61.4 

2011 60.0 67.2 70.8 59.9 

2012 55.4 61.3 61.7 60.4 

2013 65.6 64.9 58.8 59.8 

2014 52.9 64.6 64.2 61.4 

2015 67.2 63.3 61.3 58.9 

2016 66.4 62.4 66.5 63.1 

 

 

Figure 3.12 Comparison of Kharif flow forecasts with 20 and 80% quantiles of the SRM+G scenario 

ensembles for the years 2003–2016. 

Table 3.7 Comparison of forecast skills between IRSA, UBC, and SRM+G. 

Model 
MAE RMSE MPE MAPE R ACu PSS 

km3 km3 % % – – – 

IRSA 6.5 8.0 5.8 10.9 0.107 0.085 -0.070 

UBC 6.9 7.7 6.3 11.4 0.318 0.260 0.096 

SRM+G 6.0 7.0 -2.0 9.5 0.223 0.168 -0.079 
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Figure 3.13 Taylor diagram of IRSA, UBC, and SRM+G model performance. 

 

The limits between the categories dry, normal, and wet conditions were defined as 20 and 80% non-

exceedance of the observed historic Kharif flow series 2003 – 2016, which corresponds to quantiles of 

56.8 and 67.9 km3, respectively. Obviously IRSA and SRM+G forecasts have no skill in this respect, 

while UBC shows some, although limited, skill compared to purely random chance. 

As only point estimates of IRSA and UBC forecasts were available, the assessment of probabilistic skill 

only applies to the SRM+G scenario ensembles. Figure 3.14 and Figure 3.15 show typical traces of 

ensemble members as well as the observed, mean, and historic trace. In most years, the ensemble mean 

is closer to the observed value than the historic trace. 
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Figure 3.14 Plume diagram of ensemble member traces in 2003. 

 

 

Figure 3.15 Plume diagram of ensemble member traces in 2008. 

 

The RPSS was used to assess the overall performance of the probabilistic forecast. The same category 

limits as for the Peirce skill score were chosen, i.e. the 20 and 80% quantiles of the observed flow series. 

As no other probabilistic forecasts were available as reference forecast, the ranked probability score 

RPS of the scenario forecast ensembles was compared to the climatology, i.e. the average Kharif flow 

of the observed series of 62.7 km3. The RPS of scenario forecast ensembles and climatology were 0.370 
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and 0.462, respectively. The resulting RPSS of 0.20 indicates that the scenario ensemble shows some, 

however limited, skill and improvement over a constant forecast of the historic average. 

The reliability diagram (Figure 3.16) was constructed with the aforementioned three forecast categories: 

dry (≤56.8 km3), near normal, and wet (> 67.9 km3) conditions based on the historic observations and 

using for each forecast the frequency of ensemble members falling into the respective category. The 

resulting reliability diagram is relatively rugged and has gaps in several classes, although each forecast 

category was treated as an individual forecast resulting in 42 scalar forecasts. However, in total there 

are only 14 observations, which causes the outlier at the forecast probability class 0.6. There were 3 

forecasts that fell into this very class but none of the 14 observations. As can be seen from the sharpness 

diagram, there are also empty forecast classes (0.4 and 0.5), meaning these probabilities have never 

occurred in any forecast category. Besides the shortcoming of the limited sample size and in particular 

the outlier, most points are located around the 1 : 1 line indicating that there is no dry or wet bias and 

that they fall within an acceptable distance. Resolution, although difficult to assess taking the limited 

number of points, seems to be a bit weak, i.e. with a tendency to over-confidence, which may be caused 

by the fact that the available scenario years comprise mostly near normal conditions. 

 

 

Figure 3.16 Reliability diagram of probability forecasts in the categories dry (≤ 20 %), near normal, 

and wet (> 80 %) of 2003–2014 flows. 
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3.4 Conclusions 

The SRM was applied to the UIB in order to forecast the total Kharif inflow to the Tarbela reservoir. 

Several improvements had to be introduced to SRM in order to meet the specific requirements of the 

UIB. 

Not surprisingly, a separate component had to be added to SRM in order to consider the flow component 

originating from glacier melt. Without this component, especially in the late summer months, there is a 

lack of water to meet the observed hydrograph. All-year simulation runs with SRM+G for the period 

2003–2014 result in an average flow component distribution of 53, 21, or 26% for snow, glacier, or 

rain, respectively, which fits well to the values found in a number of other studies. 

It is well known, that the Tibetan Plateau receives significantly lesser precipitation than the western 

parts of the UIB. In addition, MODIS data shows that the snow cover is fading away in early spring 

much faster than in the other parts. In the present study, SRM’s modified depletion curve approach for 

predicting the snow cover depletion during the forecast period has proven to be very sensitive to errors 

in the estimation of the actual snow-water equivalent. In such cases, it is inevitable to split the catchment 

into more homogeneous units. Therefore, the superposition of flows from sub-catchments by using a 

time lag was introduced to SRM+G, which leads to a significant improvement in the forecasts of 

snowmelt dominated early Kharif flows in particular. 

The scenario approach is a step towards probabilistic forecasting of seasonal flows in the UIB. As the 

accuracy of existing forecasts with a mean volume error of 10.9 and 11.4% is already quite high, the 

improvement by SRM+G having a MAPE of 9.5% is only limited. The bias, however, could be reduced 

to -2.0 %. Association between forecasts and observations is rather weak for all three models, just as 

none of the models has significant skill in predicting extreme dry or wet conditions. 

Regarding the scenario approach, it is obvious that as far as the variables precipitation and temperature 

are concerned, these tend towards the climatology, i.e. the long-term averages. A variance in the 

forecasts is only introduced by the different estimates of the snow-cover depletion curves for each 

forecast. Thus, a promising way to improve the association and sharpness of the scenario approach 

would be a selection of a subset of ensemble members according to forecasted seasonal anomalies in 

temperature and precipitation. A quick test using only the five lowest, middle, or highest ensemble 

members selected according to the (known) relative flow frequency of the forecasted year gives 

promising results, e.g. not only a MAPE of 4.9% but also an ACu of 0.78 and a PSS of 0.41. The 

challenge of course is to forecast the seasonal anomaly in temperature and precipitation. In this respect, 

further research is needed on how today’s global forecast systems may allow a more specific selection 

of ensemble members particularly in the UIB, where the correlation to common teleconnections like 

the ENSO8 status is known to be weak. 

                                                      
8 El Niño Southern Oscillation. 
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Abstract 

This study performs a comparison of two model calibration/validation approaches and their influence 

on future hydrological projections under climate change by employing two climate scenarios (RCP2.6 

and 8.5) projected by four global climate models. Two hydrological models (HMs), snowmelt runoff 

model + glaciers and variable infiltration capacity model coupled with a glacier model, were used to 

simulate streamflow in the highly snow and glacier melt–driven Upper Indus Basin. In the first 

(conventional) calibration approach, the models were calibrated only at the basin outlet, while in the 

second (enhanced) approach intermediate gauges, different climate conditions and glacier mass balance 

were considered. Using the conventional and enhanced calibration approaches, the monthly Nash-

Sutcliffe Efficiency (NSE) for both HMs ranged from 0.71 to 0.93 and 0.79 to 0.90 in the calibration, 

while 0.57 – 0.92 and 0.54 – 0.83 in the validation periods, respectively. For the future impact 

assessment, comparison of differences based on the two calibration/validation methods at the annual 

scale (i.e. 2011 – 2099) shows small to moderate differences of up to 10%, whereas differences at the 

                                                      
1 Ismail, M.F., Naz, B.S., Wortmann, M., Disse, M., Bowling, L.C., Bogacki, W.: Comparison of two model calibration 

approaches and their influence on future projections under climate change in the Upper Indus Basin. Climatic Change 163, 

1227–1246 (2020). https://doi.org/10.1007/s10584-020-02902-3. 
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monthly scale reached up to 19% in the cold months (i.e. October – March) for the far future period. 

Comparison of sources of uncertainty using analysis of variance showed that the contribution of HM 

parameter uncertainty to the overall uncertainty is becoming very small by the end of the century using 

the enhanced approach. This indicates that enhanced approach could potentially help to reduce 

uncertainties in the hydrological projections when compared to the conventional calibration approach. 

4.1 Introduction  

River basins in high Asia with mountainous headwaters having seasonal storage in the form of snow 

and ice are vital because they contribute substantially to the water supply in the densely populated 

lowlands by forming a natural buffer against drought (Pritchard, 2019; Vanham et al., 2008). The Upper 

Indus Basin (UIB) is one such example that supplies water to the vast Indus plain, often termed the 

bread basket of Pakistan (Clarke, 2015). It plays an important role in feeding the population of 197 

million of Pakistan. But this South Asian region is also a hotspot of climate change which will affect 

the future water availability (De Souza et al., 2015). The snow and glacier melt–dominated hydrological 

cycle of the UIB is likely to undergo drastic changes due to the adverse effects of climate change 

(Hasson, 2016) and it is expected that the flow regime could be radically altered for the UIB 

(Mukhopadhyay, 2012).  

In the last decade, a number of studies have assessed the future water availability from the UIB. For 

example, (Hasson et al., 2019) showed that when there is no change in glacier area, the annual water 

availability will increase by 34% and 43% on average in the Himalayan watersheds based on the global 

warming scenarios of 1.5 °C and 2.0 °C, respectively. But if glacier area is reduced then the overall 

water availability in the UIB will be reduced under the prevailing climatic conditions (Hasson, 2016). 

Moreover, (Lutz et al., 2014, 2016) concluded that the future water availability for the UIB is highly 

uncertain but the basin-wide trends and patterns of seasonal shifts in water availability are consistent 

across climate change scenarios based on the glacio-hydrological model’s simulations. (Lutz et al., 

2016) also projected an initial increase in water availability for the UIB in summer months in the early 

decades of the twenty-first century and a sharp decline at the end of the century due to diminishing 

glacier coverage. Similarly, (Laghari et al., 2012) concluded that climate change will result in increased 

water availability in the short term (e.g. < 10 years); however, long term water availability will decrease. 

Most of these studies suggested that the reduced water availability in the future will be intensified during 

the spring and summer months, while snowmelt will occur earlier than the main monsoon flows. 

Despite these big modelling efforts in recent years, glacio-hydrological projections are still associated 

with large uncertainties due to insufficient observations and process understanding in snow- and glacier-

dominated basins (Pellicciotti et al., 2012), as well as the coarse resolution of global climate models 

(GCMs) (Vetter et al., 2015). For example, (Krysanova and Hattermann, 2017) investigated the climate 
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change impacts on river discharge for 12 large-scale river basins and showed that larger uncertainties 

were associated with global climate projections than hydrological models; however, (Vetter et al., 2015) 

showed that in melt dominated basins, hydrological models (HMs) also have relatively high 

contribution to uncertainties in hydrological projections. These uncertainties in the HMs can be 

attributed to model parameterization (Ragettli et al., 2013), implementation of hydrological processes 

(Orth et al., 2015) or model calibration and validation approach (Troin et al., 2016). The quantification 

of different sources of uncertainties is an important factor when it comes to interpreting the results of 

climate impact studies, because different uncertainty sources could influence projected water 

availability differently. 

Judging the model performance before applying it to impact assessments can be one way to minimize 

the overall uncertainties but it is still questionable if good model performance in the historical time 

period should increase confidence in projected impacts and decrease the model related uncertainties. 

For example, (Coron et al., 2012) argue that good model performance in the historical time period might 

show lack of robustness when models are used under a changing climate, if the model parameterization 

is unable to tackle the non-stationarity of future climate data. However, some studies have shown that 

when the models are calibrated for longer records that include different hydro-climatic periods, they 

can reasonably simulate the hydrological processes under different climatic conditions (Guo et al., 

2018). Some studies have used a variety of approaches to enhance prediction for non-stationary 

conditions (Vaze et al., 2010). These approaches, for example, include better representation of 

vegetation processes (Murray et al., 2011), more complex hydrological models (Barnard et al., 2019) 

or use of different approaches for parameterization and calibration (Merz et al., 2011; Smith et al., 

2008). The choice of calibration method has a major impact on a model’s ability to represent different 

processes, especially in glacierized basins, because the compensation effect between runoff generation 

processes can impact the overall results. Therefore, constraining the snow and glacier melt in 

hydrological modelling is essential for preventing internal process compensation (Tarasova et al., 2016; 

He et al., 2018). 

In the past, most of the climate change impact assessment studies carried out specifically for the UIB 

only used a conventional calibration method in which model parameters were adjusted based only on 

comparison of simulated and observed discharges at the downstream outlet of the catchment (Lutz et 

al., 2016; Hasson et al., 2019) for one continuous time period. A common assumption implicit in most 

of these studies is that hydrological models calibrated over the historical period are valid for use in the 

future under the changed climate conditions. However, to our knowledge, there are no studies for the 

UIB investigating whether a model calibrated for different climatic conditions (dry/wet periods) will 

simulate different hydrologic response in future than the model parameterized using the conventional 

method. 
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In the present study, we have applied a five-step enhanced calibration/validation method (Krysanova et 

al. 2018) which (1) takes into account the quality of observational data, (2) utilizes contrasting climate 

data for calibration, (3) includes comparison of discharge for multiple sub-catchments (i.e. intermediate 

gauges), (4) includes multi-variable calibration for variables like evapotranspiration, glacier mass 

balance (GMB) or snow cover area (SCA) and (5) evaluates observed and simulated trends in the 

observational period. 

The aim of this study is to compare two calibration/validation approaches applied to two HMs, and 

analyse their influence on future climate change impact projections and the HM related uncertainty. 

The specific objectives are (a) to apply and analyse two model calibration/validation methods (i.e. 

conventional and an enhanced approach); (b) to compare climate change impacts on discharge using 

the two model parameterisations; and (c) to assess and compare the contribution of representative 

concentration pathways (RCPs)’, GCMs’ and HMs’ (based on two calibration/validation methods) 

uncertainties to the overall uncertainty. To achieve these objectives, two HMs with different model 

complexities were used. The lumped conceptual snowmelt runoff model + glaciers (SRM + G) (Schaper 

et al., 1999), which is a glacier-integrated enhanced version of SRM (Martinec, 1975), and the semi 

distributed process-based variable infiltration capacity (VIC) model (Liang et al., 1994) coupled with a 

glacier model (VIC-Glacier). Both HMs were applied to the UIB, which has dominant snow and glacier 

melt regime. For climate change impact assessment the bias-corrected climate scenarios from four 

GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC5) driven by two representative 

concentration pathways (RCPs), which were provided by the ISIMIP project (Hempel et al., 2013; 

Frieler et al., 2017) were used. 

4.2 Materials and methods 

4.2.1 Study area  

The Indus River is one of the longest flowing rivers in Asia originating from the Tibetan Plateau and 

ending in the Arabian Sea. During its course, it runs through the Karakoram and Himalayan ranges. The 

UIB primarily feeds the largest reservoir Tarbela (Supplementary Figure B.12) in Pakistan (Figure 4.1). 

The UIB upstream of Tarbela has an approximate drainage area of 173345 km2 spread over three 

countries, namely China, India and Pakistan (Ismail and Bogacki, 2018). It has a very rugged 

mountainous terrain with more than 65% of the area above 4000 m.a.s.l. (Supplementary Figure B.2). 

The glacier area in the UIB is approximately 21000 km2 (~ 12% of the total UIB area) based on the 

estimates from the Global Land Ice Measurements from Space (GLIMS) database (Raup et al., 2007). 

                                                      
2 B in numbering of Figures and Tables means that they are in Supplementary materials – B. 
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In addition, two sub-basins (Hunza and Astore) were selected for enhanced calibration. More detailed 

information about the hydro-climatic characteristics of the UIB is given in Supplementary section B1. 

 

 

Figure 4.1 Map of the Upper Indus Basin with sub-catchments Hunza and Astore showing different 

elevation zones and glacier coverage of the whole basin 

4.2.2 Hydrological models 

Two HMs, SRM + G and VIC-Glacier with different levels of complexity in the implementation of 

modelled processes, were applied in this study. The overall general comparison between the two models 

has been summarized in Supplementary Table B.1. 

4.2.2.1 SRM+G 

The Snowmelt Runoff Model (SRM) (Martinec, 1975) is a lumped, temperature index (TI) model which 

was designed to simulate the runoff in snowmelt-dominated regions. It has been successfully applied in 

more than hundred snowmelt-driven basins around the globe (Martinec et al., 2008). In this study, the 

catchment is sub-divided into elevation zones with 500m intervals (with the exception of the lowest 

zone, which extends from 432 to 1000 m.a.s.l.). The input data for the SRM consist of daily air 

temperature, precipitation and SCA, assigned to each elevation zone. SRM calculates snowmelt using 

the degree-day method. An enhancement of the original SRM approach called SRM+ G has been 
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introduced by incorporating a separate glacier melt component that considers the area covered by 

exposed (i.e. not snow-covered) glaciers (Schaper et al., 1999). This extension requires the zonal 

exposed glacier area for each elevation zone as an additional daily input variable and respective model 

parameters. 

4.2.2.2 VIC-Glacier 

The variable infiltration capacity (VIC) model is a macroscale hydrologic model (Liang et al., 1994) 

which has been successfully applied to many basins in regional and global scale applications e.g. 

(Huang et al., 2018; Naz et al., 2016) with a spatial resolution ranging from 0.04° to 2°. The VIC model 

solves full water and energy balances independently for each grid cell within a watershed. A routing 

algorithm is used to simulate streamflow at a specified location by routing runoff and base flow from 

each grid cell (Lohmann et al., 1998; Cherkauer et al., 2003). The VIC snow algorithm uses a two-layer 

energy and mass balance approach to simulate snow accumulation and ablation, including explicit 

tracking of the energy used for snowmelt and refreezing, and changes to the snowpack heat content 

(Andreadis et al., 2009). Each VIC model grid cell can be sub-divided into snow elevation bands to 

represent the effect of sub-grid topography on snow accumulation and melt. As implemented here, the 

VIC model represents the areal extent of the snow cover based on the assumption that snow fully covers 

the fractional area of each snow elevation band. To explicitly simulate glacier melt in each grid cell, a 

novel approach as a third bottom ice layer is introduced to the two-layer VIC snow model 

(Supplementary Figure B.3). During the model run, the ice thickness is updated at each model time step 

for each elevation band as a function of net mass balance changes using a similar approach to (Naz et 

al., 2014) (Supplementary section B3). It is the first time that an energy balance–based glacier model 

has been incorporated in the original VIC model, hereafter referred to as VIC-Glacier. The glacier 

movement and short-term storages of meltwater through englacial and sub-glacial drainage system as 

well as within a firn layer were not directly considered in the model. 

4.2.3 Input weather data and climatic change scenarios 

The input data required by both HMs include the altitudinal characteristics, temperature and 

precipitation while the VIC-Glacier model also requires humidity, wind speed and radiation. Ground 

observations from the Pakistan Meteorological Department (PMD) and the Water and Power 

Development Authority (WAPDA) were used to check the quality of the gridded EWEMBI3 climate 

dataset (Lange, 2018) in the historical period. For the climate impact assessment, the HMs were driven 

with outputs of four bias-corrected earth system models i.e. GFDL-ESM2M, HadGEM2-ES, IPSL-

CM5A-LR and MIROC5 for two representative concentration pathways (RCPs) (i.e. RCP2.6 and 

                                                      
3 EWEMBI = EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for ISIMIP 
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RCP8.5). For the VIC-Glacier model setup, all the above climatic input data were resampled to 0.25° 

resolution from 0.5° using bilinear interpolation and disaggregated to a 3-hourly temporal resolution. 

The 3-hourly temperature and downward short- and long-wave radiation data were derived from the 

daily temperature range and daily total precipitation using methods described in (Nijssen et al., 2001) 

and daily precipitation data were temporally disaggregated by equally apportioning precipitation to 3-

hourly intervals for each grid cell at 0.25° resolution. 

4.2.4 Spatial model setup 

In SRM + G, the whole basin was sub-divided into 11 elevation zones with an interval of 500 m using 

NASA’s 1-arcsecond Shuttle Radar Topography Missions (SRTM) Digital Elevation Model (DEM) 

(Supplementary Figure B.2). The MODIS/Terra Snow Cover Daily L3 Global 500 m Grid (MOD10A1) 

product (Hall et al., 2006) was used to determine the daily SCA after 2000 (Figure B.4). But the 

historical reference period used for climate change impact was 1976–2005. Therefore, the percentage 

of SCA before year 2000 and for future time periods was estimated using a new empirical temperature 

similarity approach based on the assumption that snow cover conditions in an elevation zone are best 

defined by temperature as described in Supplementary section B5. Mean monthly historical and future 

temperature for each zone was first compared and then based on the best fit criteria using the optimum 

Kling-Gupta efficiency (KGE) (Kling et al., 2012) (Supplementary section B6) the relevant zonal SCA 

was selected from the historical MODIS snow cover data (i.e. 2000 – 2016). 

Historical glacier extent was derived from the GLIMS data. The evolution of the exposed glacier area 

ratio which is required for the SRM + G model is presented in Supplementary Table B.2 and Figure 

B.5. For future changes in the glacier area, a glacier area reduction scenario was assumed. In this 

scenario, the glacier area is reduced to 75%in the near future (2011 – 2040), 50% in the mid future 

(2041 – 2070) and 25% in the far future (2071 – 2099) periods under both RCPs. While in the historical 

time period, 100% glacier area was used (i.e. no area reduction). Similar assumptions of glacier area 

reduction for the UIB can be found in (Hasson et al., 2019) and (Hasson, 2016). The assumption that 

the glacier area will be reduced to 25% at the end of the century is within the range of the results 

presented in (Lutz et al., 2016), where the simulated mean remaining glacier area under two RCPs (i.e. 

4.5 and 8.5) using 4 GCMs for the Hindukush-Himalayan-Karakoram (HKH) region by 2100 was 32% 

and 15%, respectively. Glacier area is reduced from lower to higher zones successively. SRM + G uses 

runoff coefficients for snow, glacier and rain in order to account for the losses, which are the differences 

between the available water volume and the outflow from the basin. 

For the VIC-Glacier model, each grid cell is divided into a maximum of 25 elevation bands to represent 

the effect of topography on precipitation and temperature to account for variability within grid. Within 

each band, the fractional area, average elevation and fractional precipitation were calculated. The 
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average elevation of the band was calculated based on the maximum and minimum elevation within 

each band using the 30m SRTM DEM. To account for the effects of sub-grid topography on 

precipitation distribution within a grid cell, the precipitation fraction within each band was calculated 

using precipitation climatology data available at 30 arc second resolution from WorldClim (version 1.4, 

(Hijmans et al., 2005)) averaged over 1950– 1990. Using the glacier cover extent, average ice thickness 

values were calculated using the surface slope information derived from the 30 m SRTM DEM for each 

band (Supplementary section B3, Eq. 1). This information was then used as an input to the VIC-Glacier 

model in addition to fractional area, average elevation and fractional precipitation for the 25 elevation 

bands. The areal extent of glaciers in the VIC-Glacier model was based on the estimated extent of snow-

covered glacier, clean ice and debris-covered areas of the glaciers from cloud-free Landsat scenes at the 

end of the melting season available between 1998 and 2002 based on (Khan et al., 2015), which showed 

a good agreement (i.e. 91% accuracy) with the GLIMS inventory for the central Karakoram region. 

4.2.5 Model calibration and validation 

Two model calibration/validation methods (i.e. hereafter referred to as conventional and enhanced 

methods) were applied. Both the HMs were calibrated and validated using the observed inflows at 

Tarbela using a manual calibration method. For SRM + G, there were 11 parameters to calibrate 

including the three-runoff coefficients and the separate degree-day factors (DDFs) for snow and glaciers 

(Supplementary Table B.3). For the VIC-Glacier model, 5 parameters including the variable infiltration 

parameter, bi, the three base flow parameters (Ws, Ds, and Ds max), and the snow roughness length were 

used to calibrate the model. After identification of the sensitive and key parameters for both models, 

the HMs were first calibrated using the conventional method, i.e. only against discharge at the final 

outlet gauge as adopted in many previous climate impact studies (Krysanova et al., 2017; Reed et al., 

2004). The models were calibrated for 9 years (i.e. 2003–2011) and validated for 8 years over two 

periods (2000–2002 and 2012–2016). Model performance was judged only on the basis of the model’s 

ability to simulate the discharge at the basin outlet. Secondly, for the enhanced calibration/validation 

method, the five calibration and validation steps suggested by (Krysanova et al., 2018) were followed, 

as explained in the following sub-sections. 

4.2.5.1 Checking the data quality 

Station data was utilized to check the data quality by comparing the observed monthly temperature and 

precipitation time series with EWEMBI data for the calibration/validation period (i.e. 2000–2016). Both 

EWEMBI temperature (Supplementary section B7–9) and precipitation (Supplementary section B10) 

were bias-corrected. In case of temperature, quantile-mapping method (Piani et al., 2010a) was used for 

bias correction, while for the precipitation; altitude correction approach adopted by (Immerzeel et al., 

2015) was used to calculate the bias correction factor. After the bias correction, EWEMBI-based annual 
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precipitation for the whole UIB averaged for the period 2000–2016 is about 604 mm/year. This value 

is in the range of previously reported e.g. 675 ± 100 mm/year (Reggiani and Rientjes, 2015) and 608 

mm/year (Khan and Koch, 2018). 

4.2.5.2 Calibration and validation for contrasting climatic periods 

Two different climatic conditions (i.e. cold/dry and warm/wet) within the given time period were 

identified to calibrate and validate the HMs for these conditions. Calibration and validation of the model 

in contrasting climates will give more credibility to the fact that the model can perform well in a 

changing climate (i.e. considering climatic non-stationarity). The available time period was sub-divided 

into ‘dry/cold’ and ‘wet/warm’ periods based on the basin-averaged bias-corrected annual precipitation 

and air temperature. The periods 2000–2004 and 2008–2010 were then selected as ‘dry/cold’ and 

‘wet/warm’ respectively (Supplementary Figure B.7). 

4.2.5.3 Multi-site calibration and validation 

The third step involved the calibration and validation for intermediate gauges. The Daniyor (Hunza) 

and Doyian (Astore) gauges were selected as intermediate gauges (Figure 4.1).  

For multi-site calibration and for different climate periods, an optimal parameter set was identified 

through an objective function θ formulated as Eq. (4.1): 

 

𝜃 = (1 −  𝐾𝐺𝐸𝑤𝑒𝑡 𝑎𝑛𝑑 𝑤𝑎𝑟𝑚 𝑝𝑒𝑟𝑖𝑜𝑑) + (1 −  𝐾𝐺𝐸𝑑𝑟𝑦 𝑎𝑛𝑑 𝑐𝑜𝑙𝑑 𝑝𝑒𝑟𝑖𝑜𝑑) (4.1) 

 

Where, KGE is calculated from the monthly discharge time series. The KGE for the two distinct 

climates is a weighted sum of KGEs of all selected gauges (Eq. (4.2) and (4.3)). 

 

𝐾𝐺𝐸𝑤𝑒𝑡 𝑎𝑛𝑑 𝑤𝑎𝑟𝑚 𝑝𝑒𝑟𝑖𝑜𝑑 =  ∑ (
𝐴𝑟𝑒𝑎𝑖

∑ 𝐴𝑟𝑒𝑎𝑖
𝑛
𝑖=1

× 𝐾𝐺𝐸𝑖, 𝑤𝑒𝑡 𝑎𝑛𝑑 𝑤𝑎𝑟𝑚 𝑝𝑒𝑟𝑖𝑜𝑑)

𝑛

𝑖=1

 
(4.2) 

 

𝐾𝐺𝐸𝑑𝑟𝑦 𝑎𝑛𝑑 𝑐𝑜𝑙𝑑 𝑝𝑒𝑟𝑖𝑜𝑑 =  ∑ (
𝐴𝑟𝑒𝑎𝑖

∑ 𝐴𝑟𝑒𝑎𝑖
𝑛
𝑖=1

× 𝐾𝐺𝐸𝑖,𝑑𝑟𝑦 𝑎𝑛𝑑 𝑐𝑜𝑙𝑑 𝑝𝑒𝑟𝑖𝑜𝑑)

𝑛

𝑖=1

 
(4.3) 

 

Where, n=3 is the number of gauges selected in catchment.  
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4.2.5.4 Calibration for additional variables 

The calibration/validation of an additional variable means that the model shall not only be restricted to 

observe discharge but also consider other observations such as snow cover area (SCA), glacier mass 

balance (GMB) or actual evapotranspiration (ETa) so that internal consistency of the simulated 

processes can be ensured. In the UIB, the most important discharge component is meltwater generation 

through snow and glacier melt. Hence, it is essential to take into account the GMB while simulating 

discharge in order to prevent internal process compensation (Hagg et al., 2006; Finger et al., 2015; He 

et al., 2018). In case of SRM + G, degree-day factors for the glaciers (ag) (Table B.3) were manually 

adjusted to consider the GMB. These calibrated ag values are well within range compared to earlier 

studies (Lutz et al., 2016). For SRM + G, GMB is calculated annually by subtracting the glacier melt 

component from snowfall on to the glaciers. For VIC-Glacier, the net annual GMB is determined from 

the change in storage states of snow and ice water equivalent at the end of each hydrological year 

(Supplementary section B11). The model parameters related to snow accumulation/ablation, snow 

roughness length and temperature lapse rate were manually calibrated to adjust GMB. Literature-based 

GMB values available for this region (Supplementary Table B.4) were considered for comparing the 

mean annual mass balance values over the UIB (period: 2000–2016) in the model calibration/validation 

in order to avoid the compensation effect between glacier and non-glacier runoff. 

Secondly, basin-averaged ETa based on the Global Land Evaporation Amsterdam Model (GLEAM) 

(Martens et al., 2017; Miralles et al., 2011) was compared with the simulated ETa of VIC-Glacier and 

with the losses generated through the runoff coefficients in the SRM + G model. 

4.2.5.5 Validation for trends 

The Mann–Kendall Trend Test (Mann, 1945; Kendall, 1975) was applied to check for consistently 

increasing or decreasing monotonic trends in simulated and observed discharges. It should be noted that 

the hydrological trend analysis should be done with long-term data (e.g. 40 years) but here the trend 

analysis was performed with only 17 years of available data. 

4.2.6 Analysis of uncertainties under climate scenarios 

In this study, we have applied the analysis of variance (ANOVA) (Gottschalk, 2005) approach to 

decompose the sources of uncertainties (Kaufmann and Schering, 2014). Here, we have three different 

sources of uncertainties including two HMs, four GCMs and two RCPs, so we have applied a three-

way ANOVA. It gives the share of uncertainties related to a specific source as well as their interaction 

terms. A more detailed description of the ANOVA method can be found in (Vetter et al., 2015). 
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4.3 Results 

4.3.1 Calibration and validation of hydrological models 

The results for the conventional and enhanced calibration/validation methods based on KGE, NSE and 

Percent bias (Pbias) criteria are presented in Table 4.1. Overall for the UIB, the monthly KGE values 

in the calibration/validation period are around 0.86 for the SRM + G model, while for the VIC-Glacier 

model the KGE values ranged from 0.57 to 0.64 using the conventional method. SRM + G 

underestimates discharge in the first half of the year when snowmelt is dominating while it 

overestimates discharge in July–September when the glacier melt comes into effect. VIC-Glacier 

overestimates peak flows, with under-prediction of winter base flow in many of the calibration years 

(Supplementary Figure B.8). 

Using the enhanced method, the model calibration/validation was performed against discharge of the 

UIB and intermediate gauges of Astore and Hunza for different climate conditions. Additionally, GMB 

and ETa were also considered. The calibration periods of 2000 – 2004 and 2008 – 2010 were selected 

for the dry and wet climate conditions, respectively. 

For the model validation, the remaining years (2005 – 2007 and 2011 – 2016) were selected. In general, 

for the UIB, both HMs perform well for dry and wet periods with KGE ≥ 0.65. For the validation years, 

the monthly KGE values are 0.91 and 0.65 for the SRM + G and VIC-Glacier HMs, respectively. 

However, both HMs show relatively weaker performance for the Hunza and Astore basins compared to 

the whole UIB. The monthly KGE values for both dry and wet periods from both HMs are greater than 

0.38 and 0.49 for Hunza and Astore river basins, respectively. For the validation period, the monthly 

KGE value for SRM + G model is 0.52 in the Hunza basin, while VIC-Glacier model shows weaker 

performance with KGE value of 0.25. For the Astore basin, SRM+ G shows satisfactory performance 

with KGE value of 0.64 while VIC-Glacier shows very good performance with KGE value of 0.79 in 

the validation time period. Some unsatisfactory results for the Hunza and Astore basins show the 

diversified hydrological regimes of the sub-catchments with Hunza being more glacier dominated and 

Astore as a snowmelt-driven catchment. In case of SRM + G, the DDFs controlling the snow and glacier 

melt were shifted and adjusted to achieve adequate results in both the Hunza and Astore basins as well 

as the whole UIB. Consequently, the results for the sub-catchments are not as good as obtained in 

previous studies (Tahir et al., 2011, 2016) since they calibrated and validated each catchment separately, 

while in the present study a single set of parameters was applied to all sub-basins which explains some 

differences in results. 

The unsatisfactory performance of the VIC-Glacier model in the wet and validation periods in the Hunza 

catchment might be related to the biases in the forcing datasets. While the air temperature in the present 

study was bias-corrected with station data, for precipitation a single basin-wide multiplication factor 
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was used. This can lead to degraded model performance (Islam and Déry, 2017), especially in the sub-

catchments with complex spatial and temporal variability in precipitation (Archer and Fowler, 2004). 

Hydrological responses in the UIB can be improved with better quality data particularly for the models 

that resolve the full energy and water balances such as VIC-Glacier. 

In order to constrain melt parameters and achieve higher internal model consistency (Mayr et al., 2013), 

a comparison of simulated GMB with the literature-based GMB was performed. Simulation for 

calibration/validation period (i.e. 2000 – 2016) yields GMB values of about -98 mm/year and -83 

mm/year for SRM + G and VIC-Glacier, respectively, which is in the range of many previous studies 

for the Karakoram ranges summarized in Supplementary Table B.4. 

The validation for ETa for the SRM + G model was not a one-to-one comparison as explained earlier 

(Sect. 3.2.5.4). However, the average annual ETa modelled by GLEAM (220 mm/year) vs SRM + G 

losses (258 mm/year) for the calibration/validation period are relatively close (Supplementary Figure 

B.9). For the VIC-Glacier model, the simulated long-term average annual ETa is underestimated (125 

mm/year) in comparison to GLEAM’s ETa, but these results are well in range compared to the values 

200 ± 100 mm/year found in the literature (Reggiani and Rientjes, 2015). Seasonally, the GLEAM-

estimated ETa is generally higher than the VIC-Glacier-simulated ETa (Supplementary Figure B.10). 

The differences in the ETa might be related to different estimation methods used by VIC-Glacier and 

GLEAM. VIC-Glacier uses an energy balance approach to account for sublimation, and GLEAM 

calculates sublimation over snow and ice-covered areas using a specific parameterization of the 

Priestley and Taylor equation (Martens et al., 2017), which highly relied on the quality of the data from 

satellites products. 

The last step was to validate the model for the observed or lack of trend. The trend was calculated for 

the annual median flows for the outlet. The calculated Mann–Kendall Tau coefficient (τ) for the 

observed flows (i.e. 2000–2016) was 0.015 while it was 0.38 and 0.45 for SRM + G and VIC-Glacier, 

respectively. Similarly, the Sen’s slope (S) (Sen, 1968) was 1.9, 25.1 and 58.0 [m3 s−1 year−1] for the 

observed, SRM + G and VIC-Glacier respectively. The positive values of τ and S for the simulated and 

observed discharges show that there are increasing trends. These trends are statistically significant for 

the simulated discharges (p < 0.05 significance level). 

After the performance evaluation, a possibility of model weighting for the impact assessment was 

analysed. Model weighting has been recommended in some studies as a feasible approach in reducing 

uncertainties in climate impact studies (Greene et al., 2006; Zhu et al., 2013). This technique gives more 

weights to the more skilful models and lesser weights to the models that do not match the observed 

dynamics (Vetter et al., 2015). In this study, there are only two HMs so both HMs have been assigned 

equal weights instead of specific weights. If there were more than two HMs, then it would make more 
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sense to apply specific weights based on model performance. The calibration/validation results have 

been summarized as Taylor diagrams (Taylor, 2001) (Supplementary Figure B.11) showing extended 

performance metrics in addition to Table 4.1. 

Table 4.1 Goodness of fit statistics’ comparison in the calibration/validation as well as overall 

time period (conventional and enhanced methods) 

Conventional 
 Calibration   Validation 
 SRM+G VIC-Glacier SRM+G VIC-Glacier 

Period 2003 – 2011 2000 – 2002 & 2012 – 2016 

NSE 0.93 0.71 0.92 0.57 

Pbias 2.2 2.7 1.2 6.3 

KGE 0.86 0.64 0.86 0.57 

Enhanced 
 Calibration Validation 
 SRM+G VIC-Glacier SRM+G VIC-Glacier SRM+G VIC-Glacier 

Period 2000 – 2004 [Dry] 2008 - 2010 [Wet] 2005 – 2007 & 2011-2016 

UIB 

NSE 0.90 0.82 0.87 0.79 0.83 0.54 

Pbias -4.3 -7.7 4.4 -0.9 1.7 11.3 

KGE 0.93 0.73 0.92 0.65 0.91 0.65 

Hunza 

NSE 0.77 0.55 0.65 -0.23 0.60 -1.2 

Pbias 6.9 14.2 18.4 15.9 18.0 34.8 

KGE 0.85 0.67 0.61 0.38 0.52 0.25 

Astore 

NSE 0.77 -0.25 0.61 0.49 0.71 0.72 

Pbias -24.9 45.0 4.1 -16.1 -23.6 -3.2 

KGE 0.64 0.49 0.80 0.54 0.64 0.79 

Period [2000 – 2016] - UIB 
Conventional Enhanced 

SRM+G VIC-Glacier SRM+G VIC-Glacier 

NSE 0.88 0.65 0.86 0.66 

Pbias 1.9 4.6 0.5 3.9 

KGE 0.88 0.61 0.93 0.62 
Note: Very good; good (bold); Satisfactory (normal); Unsatisfactory (italic) 

4.3.2 Evaluation of climate change scenarios 

To assess the climate change scenarios, three periods 2011 – 2040 (near), 2041 – 2070 (mid) and 2071 

– 2099 (far) were compared to the historical period 1976 – 2005. The changes in bias corrected 

precipitation and temperature were evaluated and compared between the historical and future periods 

for the UIB (Supplementary Figure B.12). The long-term annual median precipitation based on 4 GCMs 

in the historical period is about 620 mm. In the RCP2.6 scenario, the change in the average annual 

precipitation is in the range of 2 to 6% for all 3 future periods while it ranges between 6 and 15% for 

RCP8.5 with the highest increase at the end of the century. 
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Long-term changes in air temperature range from 1.4 to 2.0 °C and 1.7 to 6.2 °C for RCP2.6 and 

RCP8.5, respectively (historical median is close to 0 °C). The highest projected increase in the median 

temperature is more than 6 °C compared to the historical period for RCP8.5 by the end of the current 

century. 

4.3.3 Impacts on the long-term mean annual and seasonal dynamics 

Both HMs were run for the period 1976 – 2099 forced by four GCMs and two RCPs. In total, 24 time 

series were obtained for each HM (i.e. based on four GCMs, two RCPs, two calibration/validation 

methods, plus 8 historical runs for two calibration/validation methods), which were then analysed for 

the long-term mean annual and seasonal dynamics as shown in Figure 4.2a and Figure 4.2b. 

The combined long-term projected changes in discharge from both HMs show contrasting trends for 

two RCPs and between two calibration/validation methods (Figure 4.2a). The largest increases in 

discharge are projected for RCP8.5 in the mid-century (median: 15%) and far future (median: 19%) 

based on the enhanced method, and the median changes based on two methods differ in sign for RCP2.6 

in all periods and for RCP8.5 in the near future. 

The comparison of differences between the mean impacts based on two methods at the annual scale 

(Figure 4.2a) shows minor to moderate differences in impacts based on these two methods for both 

RCPs and for all three future periods, with a maximum difference of about 9% for RCP2.6 and 10% 

under RCP8.5 in the far future scenario (Supplementary Table B.5). 

However, at the monthly time scale, there are moderate to large differences in impacts between 

simulations based on the two calibration/validation methods, especially in the cold months 

(Supplementary Table B.5). The largest differences were found in October–November (6 – 9%) in all 

periods under RCP2.6, and in March (-8%, -17%) and October–November (8 – 9%, 18 – 19%) in the 

mid and far future periods, respectively, under RCP8.5. The simulated seasonal impacts are different 

based on these two calibration/validation methods especially for RCP8.5. 

The projected monthly changes in discharge (Figure 4.2b, comparison of the long-term mean monthly 

flows for historical and future periods are also shown in Supplementary Figure B.13) indicate an 

increase in discharge in the low flow season (October – March) for all three future periods and both 

RCPs. An increase in flows is projected in the early spring months where most of the water is 

contributed by snowmelt. In the high flow season (July – September), there is a projected decrease in 

discharge for all three future periods. The projected decrease in late summer flows is mainly because of 

the decrease in glacier melt which is indicated by both the HMs (Table 4.2). This change in water 

availability for the high flow season will ultimately impact the overall water availability which is also 
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evident in Figure 4.2b. Figure B.14 in Supplementary shows a comparison of projected changes in total 

discharge simulated by both HMs. There are rather small median changes (maximum: 7%) simulated 

by SRM + G for both RCPs in all periods and by VIC-Glacier for RCP2.6 in all periods and RCP8.5 in 

near future. However, quite significant increases (31 – 43%) are projected by VIC-Glacier under 

RCP8.5 in the mid and far future periods (Table 4.2). These differences reflect the differences in glacier 

parameterization in the two models. The future SCA percentages within SRM + G as estimated by the 

temperature similarity approach were 35% and 45% lower for RCP2.6 and RCP8.5, respectively, when 

compared to the historic time period (Supplementary section B5), whereas, VIC-Glacier explicitly 

models the changes in snow/glacier area as a result of snow and glacier melt within a given elevation 

zone of a grid cell. 
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Figure 4.2 (a) Projected changes in the long-term mean annual discharge under RCP2.6 and 8.5 for 

future periods based on both calibration/validation methods using two HMs and four 

GCMs. (b) Projected changes in the mean monthly discharge for the near, mid and far 

future periods compared to the historical period based on both calibration/validation 

methods under both RCPs for two HMs using four GCMs 

4.3.4 Discharge components for the UIB 

In order to assess the hydrological regime changes for different flow components (i.e. snowmelt, glacier 

melt and rainfall) under the climate change scenarios, analysis of meltwater contribution to annual 
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discharge has been performed separately for the two HMs (Supplementary Figure B.15 and Table 4.2). 

For the SRM + G model, the snowmelt, glacier melt and rain contributions to river discharge at Tarbela 

for the historical time period (1976 – 2005) are about 48%, 25% and 27%, respectively. These 

contributions are similar to the earlier studies (Mukhopadhyay and Khan, 2015). For RCP2.6, there is 

a projected increase in snowmelt ranging from 5 to 6% compared to the historical period (Table 4.2). 

The rainfall contribution increased by 36 – 40%. In case of glacier melt, large decreases ranging 

between -28 and -79% are projected. Moreover, for RCP8.5, snowmelt contribution initially increased 

a little in the near future and then decreased by -12 to -36% in the mid and far future periods. The 

rainfall contribution is projected to increase by 20 – 67%, while the contribution due to glaciers 

decreases by -19 to -45%. 

For the VIC-Glacier model, the snowmelt, glacier melt and rain contributions to total discharge are 

estimated to be about 29%, 31% and 40%, respectively, in the historical period. There is a projected 

increase in snowmelt contribution ranging from 35 to 42% under RCP2.6 and 35 – 68% under RCP8.5, 

whereas the contribution from the rainfall increases by 15 – 17% under RCP2.6 and 16 – 58% under 

RCP8.5. Glacier melt contributions in the future decrease by -77 to -93% under RCP2.6 and -73 to -

77% under RCP8.5. These changes are consistent with the previous projections of changes in glacier 

and snowmelt in the UIB (Lutz et al., 2016). 

Although two HMs apply different modelling approaches (Sect. 3.2.4), both show a similar behaviour 

towards the changes in the glacier melt contribution. It should be noted that SRM+ G assumed a glacier 

area reduction to 25% till the far future period, whereas VIC-Glacier explicitly modelled the glacier 

area as a result of glacier ablation within a given elevation zone. 

An important contrast to highlight, in SRM+ G, these decreases in glacier melt are mandated by the 

imposed decrease in glacier area, while in the VIC-Glacier model this reflects simulated change in 

storage. However, the contradictory trends in projected changes in snowmelt between the two HMs 

could be due to the fact that SRM+ G uses temperature index while VIC-Glacier is employing the two 

snow layer energy balance approach and explicitly simulates the snow sublimation, as well as 

differences in the lapsing of temperature which controls the partitioning of precipitation into snow and 

rain components. 

Table 4.2 Change in different flow components with reference to the historical period for both the 

models under RCP2.6 and 8.5 scenarios using enhanced method 

Scenario  RCP2.6 [Δ] 

Models SRM+G [%]  VIC-Glacier [%] 

Periods ΔQT Glacier Snow Rain ΔQT Glacier Snow Rain 

2011 - 2040 7.2 -28.5 5.7 36.6 0.6 -77.2 35.4 15.6 

2041 - 2070 1.5 -52.8 5.6 40.5 5.1 -85.4 41.4 17.1 

2071 - 2099 -0.8 -79.5 6.0 39.4 3.5 -93.1 41.7 16.6 

   RCP8.5 [Δ] 
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2011 - 2040 3.5 -19.1 0.1 20.3 5.5 -73.1 35.5 15.8 

2041 - 2070 -0.5 -25.6 -11.9 42.9 31.1 -74.5 68.0 36.6 

2071 - 2099 -5.1 -44.7 -35.6 67.4 43.2 -77.1 67.1 57.5 

4.3.5 Contribution of sources of uncertainty 

The sources of simulation uncertainty were analysed by the ANOVA method as applied by (Vetter et 

al., 2015). The sum of squares for different sources of uncertainty for each 30-year period for the mean 

discharge has been summarized (Figure 4.3). The uncertainty contributions from different sources (i.e. 

HMs, RCPs, GCMs and interactions) vary but the overall result shows that the uncertainty increases 

from near to far future. For the enhanced method, the uncertainty contribution from the HMs becomes 

very small towards the end of the century, compared to the conventional method (Figure 4.3). But in 

the near future, HM uncertainty contribution is larger for the enhanced method which is most likely 

related to the differences in timings of peak flow in two HMs for two calibration methods. For example, 

VIC-Glacier simulates the peak discharge in July–August under both calibration methods, while SRM+ 

G simulates the peak in July–August in the conventional and June–August in the enhanced method. 

This could explain the larger HM uncertainty based on the enhanced method in the first period. 

Regarding the RCPs, initially, the uncertainty contribution in the near future period is close to zero but 

it increases for the far future time period as the scenarios diverge. The GCMs uncertainty contribution 

is higher for the mid future period than the near and far future periods. The 1st and 2nd order interactions 

between the HMs, RCPs and GCMs also show an increased uncertainty contribution from near future 

to far future scenarios, whereas, the residual sum of squares which is the portion of total variability that 

is not explained by the model decreases from near to far future. 
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Figure 4.3 Comparison of contribution of different sources of uncertainties in future periods for 

model projections based on both calibration/validation methods: conventional and 

enhanced 

4.4 Discussion and conclusions 

This paper analyses and quantifies the influence of two calibration/validation strategies on future 

projections for the UIB. By comparing the two approaches for the same catchment, the main outcome 

is increased confidence in the projections generated using the enhanced calibration/ validation method. 

The impact results based on the enhanced method are more credible because in this method, (i) 

calibration parameters were tested for intermediate gauges as well as for the contrasting climatic 

conditions, (ii) GMB was considered in model calibration/ validation and (iii) model parameters 

remained homogenous throughout the catchment. It is true that discharge for the intermediate gauges 

was better reproduced in previous studies (Hayat et al., 2019) but our weaker results can be attributed 

to the fact that in previous studies the intermediate gauges were separately calibrated and validated. 

Calibrating for the contrasting climate in the enhanced method can help to address climate non-

stationarity (Vaze et al., 2010) by giving more assurance that the model with these parameters is more 
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suitable to variable climate conditions. The enhanced method also addressed to some extent problems 

related to equifinality by validating for additional variables (e.g. ETa and GMB). 

It can also be concluded that the uncertainty contribution from the HMs is getting smaller for projections 

simulated using the enhanced method compared to the conventional method, except for the near future 

(Sect. 3.3.5). The two different parameterizations for the HMs provided quite different impact 

assessment results under RCP8.5. As the enhanced method is considered more reliable, impacts based 

on this method are more trustworthy. Different HMs might give different signals for projected 

hydrological change, especially for the different flow components as shown here, where one model 

showed increased snowmelt and the other decreased. It is recommended to use a multi-model ensemble 

for impact assessment in order to minimize the model-related uncertainties. 

The assessment of the hydrological regime changes in the UIB is a complex subject because it involves 

snow and glacier melt dominated processes and uncertainties related to these methods. There exist 

different estimates on the contributions from glacier and snowmelt for the UIB in the literature. 

Recently, some studies for the UIB showed that there is an increase in overall discharge. For example, 

(Hasson et al., 2019) suggested that in the UIB, future flow will increase from 34 to 43%, while 

assuming that glacier areas remain unchanged. But if it is assumed that glacier area will decline in the 

future then ultimately flows will show a negative trend (i.e. UIB discharge will reduce to roughly 8% 

under RCP4.5) (Hasson, 2016). Moreover, (Lutz et al., 2016) also concluded that there could be both 

rising as well as falling trends for the water availability in the UIB ranging from -15 to 60% by the end 

of the twenty-first century under RCP4.5 and 8.5, based on a different GCM ensemble and for different 

areal extent of the UIB. 

Bearing in mind that the focus of this study is the comparison of different calibration strategies in a 

mountainous catchment, we have to admit that some assumptions in the modelling had certain 

shortcomings (due to data scarcity and data quality problems in this region) for an accurate estimation 

of future contributions of snow and glacier to river discharge. For example, in the VIC-Glacier model, 

the change in glacier area is explicitly modelled as a result of glacier ablation within a given elevation 

zone of a grid cell, although no glacier movement to lower elevations is simulated. As a result, the 

decrease in glacier area is likely overestimated which may also contribute to the strong decrease in 

glacier melt contribution by end of the century (more than 70%). In SRM + G, this is overcome by 

forcing future glacier area reduction based on results of previous studies on glaciological modelling. 

We acknowledge that if different glacier area reduction scenarios had been considered for each RCP, 

then the outcome would have been different. Thus, a precise assessment of existing glaciers tipping 

point is critical for assessing the future water availability. 
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Long-term mean annual GMB as simulated by SRM + G in the historical period (1976 – 2005) is about 

-86 mm/year, with similar trends in future periods ranging between -52 and -15 mm/year, and -85 and 

-74 mm/year for RCP2.6 and RCP8.5, respectively (Supplementary Figure B.16). For VIC-Glacier, the 

long-term historical mean annual GMB is about 0.62 mm/year. While for the future period, it ranges 

between 22 and 44 mm/year and -125 and 3 mm/year for RCP2.6 and RCP8.5, respectively 

(Supplementary Fig. S16). Simulated GMB for the calibration/validation period (2000 – 2016) is 

comparable to earlier studies (Bolch et al., 2017; Muhammad et al., 2019) for the Karakoram ranges 

(Supplementary Table B.4). The use of different datasets and time periods as well as different size of 

study areas is among the potential reasons for differences between the modelled GMB results compared 

to previous studies. Although our knowledge of snow/glacier changes and their responses to climate 

forcing is still incomplete, consideration of GMB in the enhanced method makes the simulated glacier 

melt contribution more credible. However, it is important to note that presently the glacier evolution is 

not explicitly modelled in both HMs. A dynamic representation of glaciers in a HM would be better 

suited to simulate future glacio-hydrological changes in such a catchment (Wortmann et al., 2019). 

Moreover, the procedural gap like the unavailability of simulated actual evapotranspiration 

(ETa) data from SRM + G model was handled by using model losses as a proxy for ETa. Besides, a new 

temperature similarity approach was used to estimate the future depletion of snow cover in the 

catchment, which can be improved by taking into account seasonal snow accumulation. This is to say 

that the models used here can be further improved for a more accurate assessment of future water 

availability but are used here to demonstrate the influence of different calibration strategies on 

projection of discharge. 

The main conclusions from this study can be summarized as follows: 

 The model parameterization achieved in the enhanced calibration/validation method is better 

suited for climate change impact assessment because these parameters were tested at three 

gauges under different climate conditions and GMB was also given due consideration. 

 Calibration/validation for multiple variables (i.e. discharge, GMB, ETa) leads to more accurate 

simulation of hydrological processes with little sacrifice of model performance in terms of 

goodness of fit statistics. 

 Two different parameterizations of the HMs lead to different impact assessment results at the 

mean monthly and annual scales reaching up to 19% and 10%, respectively. We consider the 

impacts based on the enhanced method more credible. 

 According to the analysis of variance, the contribution of HM parameter uncertainty to the 

overall uncertainty becomes very small by the end of the century based on the enhanced 

calibration/validation approach. 
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Estimating degree-day factors based on energy flux 

components 

 

Muhammad Fraz Ismail, Wolfgang Bogacki, Markus Disse, Michael Schäfer and Lothar 

Kirschbauer (2022)1 

 

Abstract 

Melt water from snow and ice dominated mountainous catchments is a valuable source of fresh water 

in many regions. Seasonal snow cover and glaciers act like a natural reservoir by storing precipitation 

during winter and releasing it in spring and summer. Snowmelt runoff is usually modelled either by 

energy balance or by temperature-index approaches. The energy balance approach is process-based and 

more sophisticated but requires extensive input data, while the temperature-index approach uses the 

degree-day factor (DDF) as key parameter to estimate melt merely from air temperature. Despite its 

simplicity, the temperature-index approach has proved to be a powerful tool for simulating the melt 

process especially in large and data scarce catchments. 

The present study attempts to quantify the effects of spatial, temporal, and climatic conditions on the 

DDF, in order to gain a better understanding which influencing factors are decisive under which 

conditions. The analysis is physically based on the individual energy flux components, however 

approximate formulas for estimating the DDF are presented to account for situations where observed 

data is limited. A detailed comparison between observed and estimated DDF values yielded a fair 

agreement with BIAS= 0.2 mm °C-1 d-1 and RMSE=1.1 mm °C-1 d-1. 

                                                      
1 Ismail, M. F., Bogacki, W., Disse, M., Schäfer, M., and Kirschbauer, L.: Estimating degree-day factors based on energy 

flux components, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2022-64, in review, 2022. 
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The analysis of the energy balance processes controlling snowmelt indicates that cloud cover and under 

clear sky snow albedo are the most decisive factors for estimating the DDF. The results of this study 

further underline that the DDF changes as the melt season progresses and thus also with altitude, since 

melting conditions arrive later at higher elevations. A brief analysis of the DDF under the influence of 

climate change shows that the DDFs are expected to decrease when comparing periods of similar 

degree-days, as melt will occur earlier in the year and albedo is then likely to be higher. Therefore, the 

DDF cannot be treated as a constant parameter especially when using temperature-index models for 

forecasting present or predicting future water availability. 

5.1 Introduction  

Melt water from snow and ice dominated mountainous basins is a unique source of fresh water in many 

regions. Seasonal snow cover and glaciers act as natural reservoirs which significantly affect catchment 

hydrology by temporarily storing and releasing water on various time scales (Jansson et al., 2003). In 

such river basins, snow and glacier melt runoff modelling is a valuable tool when predicting 

downstream river flow regimes, as well as when assessing the changes in the cryosphere associated 

with climate change (Hock, 2003). Therefore, a most accurate quantification of the melt processes and 

related parameters is the key to a successful runoff modelling for the prediction of present and future 

water availability.  

Two different approaches are common in snowmelt runoff modelling. The energy balance approach is 

process-based however data-intensive, since melt is deduced from the balance of in- and outgoing 

energy components (Braithwaite, 1995; Arendt and Sharp, 1999). On the contrary, temperature-index 

or also-called degree-day models merely use the air temperature as an index to assess melt rates 

(Martinec, 1975; Bergström, 1976; Quick and Pipes, 1977; DeWalle and Rango, 2008). The relationship 

between temperature and melt is defined by the degree-day factor (DDF) (Braithwaite, 2008), which is 

the amount of melt that occurs per unit positive degree-day (Braithwaite, 1995; Kayastha et al., 2003; 

Martinec et al., 2008). There are different methods by which the DDF can be determined, e.g. by 

measurements using ablation stakes (Zhang et al., 2006), using snow lysimetric outflows (Kustas et al., 

1994), by estimating daily changes in the snow water equivalent (Martinec, 1960; Rango and Martinec, 

1979, 1995; Kane et al., 1997), or using satellite based snow cover data (Asaoka and Kominami, 2013; 

He et al., 2014). 

Because sufficient direct observations are typically lacking in large catchments, the DDF is usually 

treated as a decisive parameter subject to model calibrations. Most commonly, for calibrating the DDF, 

runoff is used (Hinzman and Kane, 1991; Klok et al., 2001; Luo et al., 2013; Bogacki and Ismail, 2016). 

However, it is also important to note that the calibration of the DDF can be significantly affected by 

other model parameters due to their interdependency (Gafurov, 2010; He et al., 2014).  
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Snowmelt runoff modelling using the degree-day approach is very common (Hock, 2003) and popular 

since air temperature is an excellent surrogate variable for the energy available in near-surface 

atmosphere that governs the snowmelt process (Lang and Braun, 1990). Despite its simplicity, this 

approach has proved to be a powerful tool for simulating the complex melt processes especially in large 

and data scarce catchments (Zhang et al., 2006; Immerzeel et al., 2009; Tahir et al., 2011; Lutz et al., 

2016). 

Extensive research has been devoted to the enhancement of the original degree-day approach. Braun, 

(1984) introduced the Temperature-Wind-Index method by inclusion of a wind-dependent scaling 

factor. A hybrid approach, which combines both, temperature-index and energy balance methods was 

introduced by Anderson, (1973). Hock, (1999) attempted to improve the simple temperature-index 

model by adding a term to consider potential incoming direct solar radiation for clear sky conditions. 

The potential clear sky solar radiation is calculated as a function of position of the sun, geographic 

location and a constant atmospheric transmissivity (Hock and Noetzli, 1997; Hock, 1999). This model 

is comparable with the data requirements of a simple degree-day model. Pellicciotti et al., (2005), 

considered the net shortwave radiation instead of just incoming shortwave radiation by including snow 

albedo in their proposed degree-day model. Although all these enhancements focus on adding more 

physical foundation to the original degree-day method, the classical approach is still more popular 

because of its simplicity and merely dependence on air temperatures. 

A weakness of the degree-day approach is the fact that it works well over longer time periods but with 

increasing temporal resolution, in particular for sub-daily time-steps, the accuracy decreases (Lang, 

1986; Hock, 1999). In addition, the spatial variability of melt rates is not modelled accurately as usually 

the DDFs are considered invariant in space. However, melt rates can be subject to substantial small-

scale variations, particularly in high mountain regions due to topography (Hock, 1999). For example, 

topographic features (e.g. topographic shading, aspect and slope angles) including altitude of a basin 

can influence the spatial energy conditions for snowmelt and lead to significant variations of the DDF 

(Hock, 2003; Marsh et al., 2012; Bormann et al., 2014). Under otherwise similar conditions, DDFs are 

expected to increase with increasing elevation, with increasing direct solar radiation input and with 

decreasing albedo (Hock, 2003). 

Obviously, the DDF cannot be treated as a constant parameter as it varies due to the changes in the 

physical properties of the snowpack over the snowmelt season (Rango and Martinec, 1995; Prasad and 

Roy, 2005; Shea et al., 2009; Martinec et al., 2008; Ismail et al., 2015). The spatio-temporal variation 

in the DDF (Zhang et al., 2006; Asaoka and Kominami, 2013) not only affects the accuracy of snow 

and ice melt modelling (Quick and Pipes, 1977; Braun et al., 1993; Schreider et al., 1997) but also is a 

key to estimate heterogeneity of the snowmelt regime (Hock, 1999, 2003; DeWalle and Rango, 2008; 

Braithwaite, 2008; Schmid et al., 2012). Since the melt depends on energy balance processes, changes 

in DDFs are a result of energy components that vary with different climatic conditions (Ambach, 1985; 
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Braithwaite, 1995). Another topic that needs attention is the stationarity of the DDF under climate 

change (Matthews and Hodgkins, 2016). Future water availability under climate change scenarios is 

typically modelled with DDFs calibrated for the present climate, which increases the parametric 

uncertainty introduced by the hydrological models (Lutz et al., 2016; Ismail and Bogacki, 2018; Hasson 

et al., 2019; Ismail et al., 2020). 

In order to allow for a more process-based estimate of the DDF, the present study attempts to quantify 

the contribution of each energy balance component to melt and subsequently to the overall DDF. 

Considering that degree-day models are typically utilised in large catchments with data scarce 

conditions, energy balance components are approximated by formulas with minimum data requirement 

following the approach by Walter et al., (2005). Based on these formulas, the DDF contribution 

corresponding to the respective energy components is quantified in tables and graphs for common 

snowmelt conditions, which can be used for a rapid appraisal. The presented approach is open in the 

sense that if for any of the energy balance components observed data is available or more sophisticated 

models are desired, these can easily replace each of the presented approximations. 

It shall be emphasised, that the objective of this study is not to incorporate an energy balance based 

DDF approach into temperature index models. The aim is rather to gain a quantitative idea how different 

factors affect the DDF in order to obtain a good estimate and realistic limits for calibration of this model 

parameter as well as to predict changes during the melt season in case of forecasting or due to the effects 

of climate change. 

5.2 Study area  

The study area covers the Dreisäulerbach catchment, which is a part of Isar River system lies in the sub-

alpine region of Bavaria in the Ammergauer Alps. It is approximately located between latitudes 

47°34’55”– 47°35’05” North and longitudes 10°56’40”–10°57’07” East. It covers an area of about ~2.3 

km2 and has a mean hypsometric elevation of just over 1200 m a.s.l. (Figure 5.1). The elevation ranges 

from about 950 m a.s.l at Linderhof gauging station up to 1768 m a.s.l at the Hennenkopf. 

The area is mostly made up by south facing slopes, but also contains northern slopes in southern parts 

of the catchment (Kopp et al., 2019). The catchment is densely forested which during the winter season 

is fully snow-covered. The mean annual temperature in the observation period (i.e. November 2016 – 

May 2021) is about 5.8 °C and the long-term mean annual precipitation at the Ettal-Linderhof station 

of the Water Science Service Bavaria is reported to be 1676 mm (Kopp et al., 2019). 

In order to observe the seasonal snow dynamics, snow measurement instruments in addition to standard 

meteorological station has been installed at the Brunnenkopfhütte at an elevation of 1602 m a.s.l. (see 

Figure 5.2). The installed station has various sensors including temperature, pressure, wind, solar 
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radiation (incoming, outgoing), snow depth, snow scale, snowpack analyzer and pluviometer. Table 5.1 

summarize the observed monthly meteorological data at Brunnenkopfhütte station. 

Table 5.1 Observed monthly average meteorological data – (Brunnenkopfhütte: November 2016 

– May 2021) 

* Albedo (A):  only considered when ground is snow covered. 

 

 

Figure 5.1 Location of Brunnenkopfhütte snow station in the Dreisäulerbach catchment – German 

Alps 

 

 

 

Variables Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Ta (°C) -2.48 -0.41 0.52 4.14 6.76 12.40 13.62 14.22 9.69 7.72 3.06 0.08 

P [mm] 230.2 147.3 138.8 115.1 188.0 185.4 216.5 241.5 183.7 162.4 107.2 195.9 

u (ms-1) 1.08 1.01 1.10 0.97 0.71 0.60 0.59 0.59 0.60 0.79 1.02 1.00 

RH (%) 74.2 69.3 73.4 72.2 82.1 78.2 76.7 78.1 82.8 71.7 70.5 69.4 

*A (-) 0.80 0.74 0.69 0.51 0.42 - - - - - 0.45 0.72 

KT (-) 0.51 0.52 0.53 0.53 0.40 0.43 0.43 0.45 0.48 0.55 0.50 0.49 

SRin (KJ m-2d-1) 5310 8367 12814 17270 15628 17922 17320 15997 12989 10282 5899 4408 
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Figure 5.2 Automatic weather and snow measurement station at Brunnenkopfhütte in Ammergauer 

Alps [1602 m a.s.l.] – (image credit: Wolfgang Bogacki)  

5.3 Materials and methods  

The primary objective of this paper is to analyze the contribution of individual energy balance 

components to snowmelt, in order to better understand and probably to predict, how the lumped degree-

day factor will vary with the season, latitude, altitude, and the concrete meteorological conditions. In 

addition, we want to demonstrate along the approach of Walter et al., (2005), how these energy balance 

components can be estimated with minimal data requirements, as limited data availability is the major 

reason to apply temperature-index respectively degree-day factor models.  

5.3.1 Degree-Day Factor  

The basic formulation of the degree-day method to calculate daily snowmelt depth M (mm) multiplies 

the number of degree-days TDD (°C d) with the degree-day factor DDF (mm °C-1 d-1) (Rango and 

Martinec, 1995).  

𝑀 = 𝐷𝐷𝐹 × 𝑇𝐷𝐷 (5.1) 

Degree-days TDD are only defined if a characteristic air temperature lies above a reference temperature; 

otherwise, T is set to 0°C. Typically, the freezing point 0°C is chosen as reference temperature. The 

characteristic air temperature is usually calculated by the average of daily minimum and maximum 
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temperature, but other approaches like the mean of hourly temperature observations, daily maximum 

temperature (Bagchi, 1983), or integrating only the positive temperatures of a day (Rango and Martinec, 

1995; Ismail et al., 2015) are also common. By a simple re-arrangement of eq. (5.1) to  

𝐷𝐷𝐹 =
𝑀

𝑇𝐷𝐷
  (5.2) 

the DDF can be back-calculated for given degree-days TDD, if the daily melt depth M is known either 

by observation or by calculation. Likewise, the portion of the degree-day factor DDFi associated to the 

melt depth Mi related to any of the individual energy balance components (see eq. (5.4)) can be 

determined. 

The energy needed to melt ice at 0°C into liquid water at 0°C is defined by the latent heat of fusion of 

ice (333.55 kJ kg-1). Thus the melt depth Mi caused by an energy flux Qi (W m-2) over a certain time-

period Δt (s) can be calculated from the relation (USACE, 1998; Hock, 2005) 

𝑀𝑖 =
𝑄𝑖

𝜆 𝜌𝑤
∆𝑡 ≅ 3.00 × 10−6 𝑄𝑖∆𝑡 (5.3) 

where ρw is the density of water at 0°C (999.84 kg m-3). In the context of degree-day factor models, the 

time-period Δt is usually taken as 1 day = 86400 s, though some authors (Hock, 1999; McGinn, 2012) 

have calculated degree-day factors also for sub-daily, e.g. hourly periods. According to the relation 

given in eq. (3), an energy flux of 1 W m-2 for 1 day will result in a melt depth of 0.26 mm.  

5.3.2 Energy Balance  

The energy flux available for snowmelt QM can be calculated from the balance of energy fluxes over 

the surface of the snowpack and the change in the internal energy stored in the snowpack ΔQ (e.g. 

USACE, 1998) 

𝑄𝑀 = 𝑄𝑆 + 𝑄𝐿 + 𝑄𝐻 + 𝑄𝐸 + 𝑄𝐺 + 𝑄𝑃 − ∆𝑄 (5.4) 

where QS and QL are the net short- and longwave radiation, QH is the sensible heat, QE the latent energy 

of condensation or vaporization, QG the heat conduction from the ground, and QP the energy contained 

in precipitation (all terms in W m-2).   

In the following sections, the individual components of the energy balance will be discussed in more 

detail. 
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5.3.2.1 Shortwave Radiation 

Shortwave radiation emitted from the sun is usually the most important source of energy input to the 

snowpack. The net energy flux QS (W m-2) entering the snowpack by absorption of shortwave radiation 

is (USACE, 1998) 

𝑄𝑠 = (1 − 𝐴)𝑆𝑖 (5.5) 

where A is the snow albedo (–) and Si the incident solar radiation (W m-2) on the snow surface. A widely 

used approach to determine the incident solar radiation on earth’s surface is the introduction of a 

clearness index KT (–) 

𝑆𝑖 = 𝐾𝑇𝑆0 (5.6) 

where S0 is the mean daily potential extra-terrestrial solar radiation (W m-2) that would insolate a 

horizontal surface on the earth’s ground if no atmosphere would be present. The potential insolation, 

which is only dependent on the changing position of the sun during the year in relation to the geographic 

location of the incident point on the earth’s surface, can be calculated from the equation (Masters, 2004)  

𝑆0 = 𝐺𝑠

1

𝑑𝑟
2

1

𝜋
(cos(∅) cos(𝛿) cos(𝜔𝑠) + 𝜔𝑠 sin(∅) sin(𝛿)) 

(5.7) 

where GS is the solar constant (W m-2), dr the relative distance earth to sun (–), ϕ the geographic latitude 

(rad) of the incident point, 𝛿 the solar declination (rad), and ωs the sunrise hour angle (rad). The solar 

constant GS is slightly varying with the occurrence of so-called sunspots, however a constant value of 

1367 W m-2 has been used for the last decades. New measurements indicate a somewhat lower value of 

1361 W m-2 (Kopp and Lean, 2011).  

Both sun position variables, the relative distance earth to sun and the solar declination, can be calculated 

quite exactly by rigid astronomical algorithms (Meeus, 1991; Reda and Andreas, 2004) however for 

non-astronomical purposes, more simple formulas are sufficiently accurate. The relative distance earth 

to sun, which is varying over the year due to the elliptical orbit of the earth, can be approximated by 

(Masters, 2004)  

1

𝑑𝑟
2 ≈ 1 + 0.034 cos (

2𝜋. 𝐽

365
) 

(5.8) 

where J is the day of the year, while the solar declination can be obtained from the sinusoidal 

relationship 

𝛿 ≈ 0.409 sin (
2𝜋

365
(𝐽 − 81)) (5.9) 

that puts the spring equinox on day J = 81. Knowing the solar declination δ, the sunrise hour angle ωs 

can be calculated from  
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cos 𝜔𝑠 = − tan(∅) tan(𝛿) (5.10) 

On the northern hemisphere the maximum extra-terrestrial radiation occurs at the summer solstice with 

a fairly identical mean daily energy flux of about 480 W m-2 over latitudes 30° – 60° North, as the sun’s 

lower altitude angle at higher latitudes is compensated by longer daylight hours. On the contrary, 

minimum extra-terrestrial radiation at the winter solstice varies strongly with latitude, e.g. 227 W m-2 

at 30° and only 24 W m-2 at 60° North. 

When the solar radiation passes through the atmosphere, it is partly scattered and absorbed. While even 

on a clear day only about 75% of the incoming radiation reaches the ground, by far the largest 

attenuation is caused by clouds. A vast number of solar radiation models exist that parameterize this 

effect, which is denoted as clearness index KT or atmospheric transmissivity τ, as a function of 

meteorological variables. For a review see e.g. Evrendilek and Ertekin (2008), Ahmad and Tiwari 

(2011), or Ekici (2019).  

A fundamental and widely used solar radiation model which is proposed in the context of 

evapotranspiration calculations (Allen et al., 1998) is the Ångström-Prescott model, that relates the 

clearness index to the relative sunshine duration 

𝐾𝑇 =
𝑆𝑖

𝑆0

= 𝑎 + 𝑏
𝑛

𝑁
  

(5.11) 

with n is the actual and N the maximal possible duration of sunshine (hr) where the latter can be 

calculated from the sunrise hour angle ωs by 

𝑁 =
24

𝜋
𝜔𝑠   (5.12) 

The parameters a and b in eq. (5.11) are regression parameters, that usually have to be fitted to observed 

global radiation. In case no actual solar radiation data is available, the values a = 0.25 and b = 0.50 are 

recommended (Allen et al., 1998). Though the Ångström-Prescott model has the disadvantage, that the 

parameters have to be fitted and the actual duration of sunshine has to be observed, it has the benefit, 

that both parameters allow for a direct physical interpretation and a straight demonstration of the effects 

of cloud cover. The parameter a represents the clearness index KT on overcast days (n = 0), while their 

sum a + b gives the clearness index on clear days (n = N). 

In the common situation in remote mountainous regions, that only temperature data is available, another 

group of solar radiation models can be utilised, which uses the difference between daily maximum and 

minimum air temperature ΔT (°C) as a proxy for cloud cover, because clear sky conditions result in a 

higher temperature amplitude between day and night than under overcast conditions. Typical models 

are the exponential approach proposed by Bristow and Campbell (1984) and its later modifications or 

the simple empirical equation by Hargreaves and Samani (1982)  
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𝐾𝑇 = 𝑘. √∆𝑇 (5.13) 

with the empirical coefficient k = 0.16 for inland and k = 0.19 for coastal locations.  

It is obvious, that the attenuation of extra-terrestrial solar radiation is a function of the distance the rays 

have to travel through the atmosphere, as absorption and scattering occurs all along the way. Several 

solar radiation models consider altitude as a variable, from which the models below are of Ångström-

Prescott type, thus the altitude effects can be directly compared.  

Jin et al. (2005): 

(a) 
𝐾𝑇 = (0.0855 + 0.0020∅ + 0.030𝑧) + 0.5654

𝑛

𝑁
    

(5.14) 

(b) 
𝐾𝑇 = (0.1094 + 0.0014∅ + 0.0212𝑧) + (0.5176 + 0.0012∅ + 0.0150𝑧)

𝑛

𝑁
    

(5.15) 

Rensheng et al. (2006): 

𝐾𝑇 = (0.122 + 0.001∅ + 0.0257𝑧) + 0.543
𝑛

𝑁
 

(5.16) 

Liu et al. (2019): 

𝐾𝑇 = (0.1755 + 0.0136𝑧) + (0.5414 + 0.0117𝑧)
𝑛

𝑁
 (5.17) 

For all models, z is the altitude (km) and ϕ the latitude (deg). In order to separate the altitude effect from 

other parameters, a clearness altitude factor KZ (–) with 

𝐾𝑧 =
𝐾𝑇

𝐾𝑇0

 
(5.18) 

is introduced, where 
0TK  is the clearness factor at z = 0 m a.s.l. which results in KZ  = 1 at sea level for 

all models and all values of relative sunshine duration n/N. Though the individual clearness altitude 

factors obtained from the above models are different, they all exhibit a constant increase per unit altitude 

for a given n/N and highest values for overcast conditions (n/N = 0) while the altitude effect under clear 

sky conditions (n/N = 1) is significantly smaller.  

While the albedo of fresh snow is well above 0.9 (Hock, 2005), indicating that most of the shortwave 

radiation is reflected, it may drop significantly within a few days due to snow metamorphism. Well 

aged snow generally has an albedo in the range of 0.4 – 0.5 (Anderson, 2006). Snow albedo is primarily 

dependent on the grain size of the snow crystals near the surface but also on aerosols in the snow and 

dust deposits. Respective snow albedo models are proposed e.g. by Wiscombe and Warren (1980) and 

Warren and Wiscombe (1980) however, due to the data requirements, commonly surrogate exponential 

decay models as formulated by (USACE, 1956) are used, which assume the decrease of albedo as a 
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function of time after the last significant snowfall. For example Walter et al., (2005) use the empirical 

relationship 

𝐴𝑛 = 0.35 − (0.35 − 𝐴𝑚𝑎𝑥). 𝑒𝑥𝑝 [− (0.177 + ln (
𝐴𝑚𝑎𝑥 − 0.35

𝐴𝑛−1 − 0.35
)

2.16

)]

0.46

 (5.19) 

where, An-1 is the albedo of the previous day and Amax is the maximum albedo (~0.95) of fresh snow. 

Following eq. (5.19), the snow albedo will decrease from 0.95 to 0.52 after 10 days and to 0.43 after 30 

days if no new snowfall occurs. 

5.3.2.2 Longwave Radiation 

The longwave radiation net energy flux over the snow surface QL (W m-2) is the balance 

𝑄𝐿 = 𝑄𝐿,𝑖𝑛 − 𝑄𝐿,𝑜𝑢𝑡 
(5.20) 

between incoming longwave radiation that is emitted by the atmosphere QL,in (W m-2) and outgoing 

radiation from the snowpack QL,out (W m-2). 

Longwave radiation is a function of the temperature of the emitting body and can be calculated with the 

Stefan-Boltzmann law 

𝐿 = 휀 𝜎 𝑇4 (5.21) 

where L is the radiative flux (W m-2), ε and T are the emissivity (–) and the absolute temperature (K) of 

the emitting body, and σ is the Stefan-Boltzmann constant (5.67×10-8 W m-2 K-4).  

In particular fresh snow is nearly a perfect blackbody with respect to longwave radiation, thus it has a 

high emissivity of 0.99 (Warren, 1982; USACE, 1998; Anderson, 2006). For old snow, Brutsaert (1982) 

gives an emissivity value of 0.97. Given a melting snowpack having a surface temperature of 0°C, the 

outgoing energy flux can be taken as constant with QL,out ~310 W m-2. 

For the atmospheric longwave radiation, usually the air temperature Ta (K) is used in eq. (5.21). 

However, while the snowpack longwave emissivity is virtually a constant, the emissivity of the 

atmosphere is highly variable. Typical values under clear sky conditions range from 0.6 – 0.8, primarily 

depending on air temperature and humidity (Anderson, 2006) whereas for overcast conditions it can be 

close to 1.0. 

A number of empirical and more physically based approaches exist to estimate atmospheric longwave 

emissivity from standard meteorological data (see Hock, 2005 for a discussion). For clear sky 

conditions, Brutsaert (1975) developed a theoretically based formula depending on air temperature and 

vapour pressure 

휀𝑎𝑐 = 1.24 (
𝑝𝑣

𝑇𝑎
)

1
7
 (5.22) 
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where εac is the clear sky longwave emissivity (–), pv the actual vapour pressure (hPa), and Ta the air 

temperature (K). Later, Brutsaert reconciled eq. (5.22) with an empirical approach proposed by 

Swinbank (cited in Brutsaert, 1982)  

휀𝑎𝑐 = 9.2 × 10−6 𝑇𝑎
2 (5.23) 

that considers the strong correlation between vapour pressure and air temperature, thus only air 

temperature is needed as input variable. Using above relation, at an air temperature of 10 °C the 

atmospheric longwave radiation flux into the snowpack will amount to QL,in = 281 W m-2 under clear 

sky conditions, which is less than the outgoing flux of 310 W m-2, i.e. the snowpack will lose energy in 

this situation.  

The variability of atmospheric emissivity due to cloud cover, which increases the longwave emissivity, 

is significantly higher than variations under clear sky conditions. Monteith and Unsworth (2013) give 

the simple linear relationship. 

휀𝑎 = (1 − 0.84𝑐)휀𝑎𝑐 + 0.84𝑐  (5.24) 

where εa is the atmospheric longwave emissivity, c the fraction of cloud cover (–), and εac is calculated 

by eq. (5.22) or eq. (5.23). For overcast conditions and an air temperature of 10 °C, eq. (5.24) yields an 

atmospheric emissivity of 0.96, which results in an atmospheric longwave radiation flux of QL,in = 351 

W m-2 and thus a positive flux of QL = 41 W m-2 into the snowpack. 

Although cloud cover is difficult to parameterise as clouds can be highly variable in space and time and 

effects on radiation dependent on the different cloud genera, a strong correlation between cloud cover 

and sunshine duration is obvious. Doorenbos and Pruitt, (1977) give a tabulated relation between 

cloudiness c and relative sunshine hours n/N (see eq. 11), that can be fitted by the quadratic regression 

𝑐 = 1 − 0.5544 
𝑛

𝑁
− 0.5483 (

𝑛

𝑁
)

2

 (5.25) 

Nevertheless, in simple sky models usually a linear relation between cloudiness and relative sunshine 

hours is applied as a first approximation (e.g. Brutsaert, 1982; Annandale et al., 2002; Pelkowski, 2009), 

for which Badescu and Paulescu, (2011) give a probabilistic reasoning. 

5.3.2.3 Sensible Heat Exchange 

Sensible heat exchange describes the energy flux due to temperature differences between the air and 

the snow surface while air is permanently exchanged by wind turbulences. A frequent approach to 

parameterise turbulent heat transfer is the aerodynamic method, that explicitly includes wind speed as 

a variable (Braithwaite et al., 1998; Lehning et al., 2002; Hock, 2005). 

𝑄𝐻 = 𝜌𝑎𝑐𝑝𝐶𝐻𝑢(𝑇𝑎 − 𝑇𝑠) 
(5.26) 
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where ρa is the air density (~1.29 kg m-3), cp the specific (isobaric) heat capacity of air (= 1006 J kg-1 

°C-1), CH the exchange coefficient for sensible heat (–), u the mean wind speed (m s-1), Ta the air 

temperature (°C), and Ts the temperature at the snow surface (°C).  

The exchange coefficient CH can be approximated with (Campbell and Norman, 1998) 

𝐶𝐻 =
𝑘2

𝑙𝑛 (
𝑧𝑢
𝑧𝑚

) 𝑙𝑛 (
𝑧𝑇
𝑧ℎ

)
 

(5.27) 

where k is the von Karman’s constant 0.41 (–), zu and zT the height of wind and temperature observation 

above the snow surface (m), zm the momentum roughness parameter, and zh the heat roughness 

parameter. For a snow surface, the roughness parameters are given by Walter et al., (2005) as zm 

~ 0.001 m and zh ~ 0.0002 m. 

Eq. (5.27) is equivalent to the calculation of aerodynamic resistance in the Penman-Monteith equation 

(Allen et al., 1998) when applying a zero plane displacement for the snow surface and assumes neutral 

stability conditions, i.e. temperature, atmospheric pressure, and wind velocity distributions follow 

nearly adiabatic conditions. Otherwise, diabatic correction factors (see Campbell and Norman, 1998) 

have to be applied. 

As can be seen from eq. (5.26), the sensible heat component is mainly dependent on wind speed and air 

temperature. During stable clear weather periods with typically light winds, the turbulent exchange is 

of less importance compared to the radiation components. For example, a wind speed of 1 m s-1 and an 

air temperature of 5 °C will result in a sensible heat flux of about 17 W m-2. However, at warm rain 

events or at Föhn conditions with strong warm winds, turbulent exchange can significantly contribute 

to the melt process. 

5.3.2.4 Latent Energy of Condensation or Vapourisation 

The latent energy exchange reflects the phase change of water vapour at the snow surface, either by 

condensation of vapour contained in the air or by vapourisation of snow. Thus, it can either warm or 

cool the snowpack (Harpold and Brooks, 2018). The energy flux is dependent on the vapour gradient 

between air and snow surface and is, like the sensible heat exchange, a turbulent process that increases 

with the wind speed. Thus, the aerodynamic formulation is analogously to eq. (5.26) 

𝑄𝐸 = 𝜌𝑎𝜆𝑣𝐶𝐸𝑢(𝑞𝑎 − 𝑞𝑠) (5.28) 

where λv is the latent heat of vapourisation of water at 0°C (= 2.501×106 J kg-1), CE the exchange 

coefficient for latent heat (–) which is assumed to be equal to the exchange coefficient for sensible heat 

CH, qa the specific humidity of the air (–), and qs the specific humidity at the snow surface (–).  

The specific humidity qa can be derived from measurements of relative humidity or dew point 

temperature. In cases where such data is not available, Walter et al., (2005) approximate the dew point 
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temperature by the minimum daily temperature. For any air temperature T (°C), the saturation vapour 

pressure p0 (Pa) can be calculated by an empirical expression known as the Magnus-Tetens equation in 

the general form (Lawrence, 2005) 

𝑝0 = 𝐶 𝑒
𝐴 𝑇

𝐵+𝑇
 
 (5.29) 

where A, B, and C are coefficients e.g. after Allen et al., (1998) A = 17.2694, B = 237.3 °C, C = 610.78 

Pa. At the snow surface, according to Lehning et al., (2002) the air temperature can be assumed equal 

to the snow surface temperature and eq. (5.29) is applied with coefficients for saturation vapour pressure 

over ice A = 21.8746, B = 265.5 °C, C = 610.78 Pa (Murray, 1967). At a temperature of 0°C, both 

coefficient sets yield the same saturation vapour pressure of p0 = 611 Pa. 

Knowing the vapour pressure pv (Pa) at a given temperature, the respective specific humidity of the air 

or at the snow surface can be calculated by 

𝑞 =
𝑒  𝑝𝑣

𝑝 − (1 − 𝑒)𝑝𝑣
≈

𝑒

𝑝
𝑝𝑣 

(5.30) 

where p is the atmospheric pressure (Pa) and e the ratio of molar weights of water and dry air = 0.622. 

Thus, similar to the sensible heat flux QH, the latent energy exchange at the snow surface QE can be 

taken as a function of wind speed in combination with air and snow surface temperature, where the 

latter is assumed as 0°C at melting conditions. 

While at positive air temperatures the sensible heat flux is always warming the snowpack, the latent 

heat flux can cool the snow by vapourisation if the relative humidity of the air is low. Even when 

assuming a relative humidity of 100% the latent heat flux into the snowpack will be comparatively 

small if wind speed is low, e.g. about 13 W m-2 at an air temperature of 5 °C and a wind speed of 1 m 

s-1. 

5.3.2.5 Ground Heat 

Heat conduction from the ground into the snowpack is small and can be in general neglected except 

when first snow falls on warm ground (Anderson, 2006). If the snowpack is well established, due to the 

low thermal conductivity of snow the heat flux across the soil-snow interface becomes independent of 

air temperature fluctuations and depends only on the thermal conductivity of the soil and the 

temperature gradient in the upper soil layer. USACE, (1998) gives a range between 0 – 5 W m-2 for 

constant daily values. DeWalle and Rango, (2008) approximate a flux of 4 W m-2 assuming a soil 

temperature of 1 °C at a depth of 0.5 m, and a soil thermal conductivity of 2 W m-1 °C-1 that is at the 

higher end of the range of 0.2 – 2 W m-1 °C-1 given by Oke, (1987). It has to be noted, that the soil 

temperature gradually approaches the snowpack temperature during the winter (USACE, 1956; Marks 

et al., 1992), thus ground heat conduction will generally decrease. Own measurements of soil 

temperature show a similar behaviour. Soil temperature dropped from 1 – 3 °C shortly after 
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establishment of the snowpack to > 0 – 1 °C after about a month and then stayed constant until final 

melt. 

5.3.2.6 Precipitation Heat 

The heat transfer into the snowpack by lowering rain’s temperature, that is usually assumed to be equal 

to the air temperature Ta (°C), down to the freezing point at 0°C can be estimated as 

𝑄𝑃 = 𝑐𝑤  𝑃 𝑇𝑎 (5.31) 

where cw is the specific heat capacity of water (4.2 kJ kg-1 °C-1) and P is the daily rainfall depth (kg m-

2 d-1). The energy input from precipitation is usually quite small and even extreme weather situations, 

like heavy warm rain storms with temperatures of 15°C and a precipitation depth of 50 mm, that may 

occur e.g. during early winter in the alps, would result in a modest mean daily energy flux of 36.5 W m-

2 where it has to be taken into account, that such events are only singular. 

5.3.2.7 Change in Internal Energy 

The rate of change in the energy stored in the snowpack ΔQ (W m-2) represents the internal energy gains 

and losses due to the change of snow temperature and the melting of the ice portion or refreezing of 

liquid water in the snow. Until the snowpack temperature is isothermal at 0°C, any melt produced by 

surplus energy in the surface layer of the snowpack will percolate downward when the liquid water 

holding capacity of the porous snow matrix is exceeded and may be refrozen in colder lower layers. If 

a snowpack is isothermal at 0°C and is saturated, i.e. the residual volumetric water content of about 8% 

(Lehning et al., 2002) is filled with liquid water, the snowpack is called ‘ripe’. In that state, any 

additional energy input will immediately produce snowmelt runoff according to eq. (5.3). If however a 

snowpack is still in the ripening phase, at least part of the incoming energy is absorbed to decrease the 

energy deficit and has to be subtracted from energy available for melt thus will reduce the respective 

DDF. The energy needed to bring the snowpack temperature isothermal at 0°C, i.e. the snowpack’s 

energy deficit, is usually expressed as ‘cold content’ (Marks et al., 1999; Schaefli and Huss, 2011; 

Jennings et al., 2018). 

The present paper aims to demonstrate the contribution of each energy flux component towards a 

resulting DDF. In this respect, the energy deficit in the ripening phase plays no role, as each flux 

component is analysed individually. Only when it comes to a comparison with observed melt data (see 

Sec. 5.4.6) the ripening state of the snowpack has to be taken into account. In this context, the study 

focusses only on melt periods where the snowpack is ripe while melt periods where the cold content is 

increased e.g. by new snow events or significant cooling phases are excluded from the analysis. 

Certainly it is of interest to estimate DDFs also in cases where an internal energy deficit exists, e.g. 

because of radiational cooling during clear cold nights. The cold content usually is either estimated as 
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a function of meteorological parameters or calculated by keeping track of the residuals of the snowpack 

energy balance (Jennings et al., 2018). The SNOWPACK model (Lehning et al., 2002), that is 

operationally employed on a day-to-day basis for avalanche warning, is an excellent tool for a detailed 

simulation of the vertical mass, energy, and besides other state variables the snow temperature 

distribution inside a snowpack, taking into account the complex processes of snow metamorphosis and 

heterogeneity of layers in the snowpack, and as a by-product, also simulates snowmelt runoff. However, 

SNOWPACK requires a considerable number of qualified input variables with preferably at least hourly 

observations, which both is usually not available in the context where degree-day factor models are 

employed.  

On the other hand Walter et al., (2005) apply a lumped approach, that accounts for the cold content by 

changing the (isothermal) snowpack temperature depending on the daily net energy flux. When the 

incoming energy flux is sufficient to raise the snow temperature to 0°C or when it is already at 0°C the 

day before, all additional available energy produces melt. This appealing approach, which does not need 

any additional data, however seems to significantly over-estimate the snowpack temperature in 

particular in situations with negative energy fluxes at night but a positive daily net balance, as a 

comparison with SNOWPACK results and with observations at Brunnenkopfhütte shows. Thus a 

suitable parametrisation of the cold content, that would enable satisfactory estimates of DDFs in 

situations when the snowpack is not completely ripe, remains subject to further research. 

5.4 Results  

In this section, the contribution of each energy flux component Qi to the lumped daily DDF is presented. 

For this purpose, the respective melt depth Mi is calculated according to eq. (5.3) and further converted 

into the corresponding degree-day factor component DDFi using eq. (5.2). Degree-days TDD (°C d) in 

eq. (5.2) are estimated by the average daily air temperature, thus having the same numerical value as 

the air temperature Ta (°C) used in the calculation of several energy flux components. 

Besides demonstrating the dependency of the DDF components on decisive parameters of the energy 

flux components, the presented tables and graphs, which are based on the approximate relationships 

given in section 3, can be used to estimate the DDF component values in case either observed data is 

not available or not sufficient for more sophisticated approaches. It should be noted that parameters are 

normalised where applicable, i.e. set to hypothetical values like clearness index KT = 1 or wind speed u 

=1.0 m s-1, thus final DDF values can be obtained by multiplying the given figures by the actual values 

of those parameters. Furthermore, all results are based on the assumption that the snowpack is 

isothermal at 0°C and in fully ripe state. 
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5.4.1 Shortwave radiation component – DDFS  

Shortwave radiation induced melt is usually considered the most important DDF component especially 

at higher altitudes. The net energy flux QS is calculated using eq. (5.5), which consists of three factors 

(a) latitude, (b) albedo, and (c) clearness index KT. The dependency of DDFS on these factors is 

demonstrated in Figure 5.3 for the period between winter solstice (21st December) and summer solstice 

(21st June). As shortwave radiation is independent of air temperature and hence of degree-days, the 

corresponding melt is divided by a hypothetical degree-day value of 1 °C d to arrive at DDFS values as 

presented. In case of actually higher degree-days, the given DDFS values have to be divided accordingly. 

Figure 5.3 (a) shows the variation of DDFS depending on latitude for the range 30° – 60° North, while 

albedo (A = 0) and clearness index (KT = 1) are set constant. Obviously, there is a significant difference 

in DDFS for different latitudes around the winter solstice due to solar inclination, making latitude the 

predominant factor for DDFS at this time of the year. However, around the summer solstice, DDFS has 

nearly the same value at different latitudes because the lower solar angle at higher latitudes is 

counterweighted by a larger hour angle, i.e. longer sunlight hours. Thus, with the progress of the melting 

season the factors albedo and clearness index become more important than latitude. 

Figure 5.3 (b) shows the influence of albedo on the DDFS at a given latitude (Brunnenkopfhütte station 

latitude 47.58°) and normalised constant clearness index (KT = 1). Snow albedo is varied between 0.9 – 

0.4 covering the range between fresh and well-aged snow. As to be expected, the influence of albedo 

increases with increasing incoming solar radiation towards the summer solstice. A good estimate of 

albedo is therefore much more important when the snowmelt season progresses than in early spring. If 

for example the same degree-day value of 10 °C d is assumed on 21st March and on 21st May, the 

difference in DDFS between fresh (A = 0.9) and aged (A = 0.4) snow would be 0.8 and 4.6 mm °C-1 d-1 

in March compared to 1.2 and 7.1 mm °C-1 d-1 in May respectively. 

The dependency of DDFS on the clearness index KT is shown in Figure 5.3 (c). As also evident from eq. 

(5.6), DDFS under clear sky (KT = 0.75) is always higher than under overcast conditions (KT = 0.25). 

Similar to albedo, the influence of the clearness index becomes more pronounced, and thus the 

assessment of clearness conditions more important, with increasing solar angle when the snowmelt 

season progresses. 

The influence of altitude on DDFS in terms of increasing KT values can be considered separately by 

multiplying 𝐾𝑇0
 (at z = 0 m a.s.l.) calculated by any of the numerous solar radiation models with a 

clearness altitude factor as given in eq. (5.18). Figure 5.4 shows the range of clearness altitude factors 

for latitude 45° derived from four solar radiation models, which were calibrated including high altitude 

data (see Sec. 5.3.2.1). The dark grey area indicates the common overlap of the four models. All of 

these models show the same tendency of linear increase by altitude, with the altitude factor being 

comparatively smaller under clear sky compared to overcast conditions. When averaging models as 
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well as sky conditions, the clearness altitude factor and thus the resulting DDFS increases by about 6% 

for each 1000 m altitude. 

 

 
 

(a) (b) 

(c) 
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Figure 5.3 Variation of solar radiation based DDFS for a degree-day value of 1°C d (a) for different 

latitudes under constant snow albedo and clearness index (b) for different snow albedo 

under constant latitude and clearness index (c) for different clearness index under 

constant latitude and snow albedo – Latitude 47.58° corresponds to the location of 

Brunnenkopfhütte snow station 

 

Figure 5.4 Clearness altitude factor for different altitudes ranges, based on different models 

presented in equations (5.14 – 5.17, i.e. Jin (a), Jin (b), Rensheng, and Liu) for latitude 

45° where applicable 

5.4.2 Longwave radiation component – DDFL  

The net longwave energy flux QL is calculated using eq. (5.20), in which the outgoing radiation from 

the snowpack can be assumed as constant. Thus, the contribution of longwave radiation component 
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DDFL is mainly dependent on air temperature and the emissivity of the atmosphere, in particular 

cloudiness conditions. Figure 5.5 and Table 5.2 present the DDFL as a function of degree-days TDD, 

which are equivalent to the average daily air temperature, and cloudiness. For a wide range of degree-

days especially in conjunction with low cloudiness, the outgoing longwave energy flux is higher than 

the incoming, resulting in a theoretically negative degree-day factor that will reduce the total DDF. This 

means that the DDFL component under clear sky conditions usually is rather contributing to a cooling 

of the snowpack than to melting. Under overcast conditions, the DDFL is relatively constant around 1 

mm °C-1 d-1 with a maximum value of 1.3 mm °C-1 d-1 at TDD = 20 °C d. Although this contribution to 

the total DDF is small compared to the shortwave radiation component DDFS, it can be of importance 

at the onset of snowmelt in early spring, when the solar radiation is still low and the albedo of fresh 

snow is high. 

Table 5.2 Longwave radiation component (DDFL) [mm °C-1 d-1] for selected cloudiness [%] 

 DDFL   

 Cloudiness   

TDD [°C d] 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

1 -19.08 -17.17 -15.26 -13.35 -11.45 -9.54 -7.63 -5.72 -3.81 -1.90 0.01 

2 -8.89 -7.94 -6.99 -6.04 -5.09 -4.14 -3.19 -2.24 -1.29 -0.33 0.62 

3 -5.49 -4.86 -4.23 -3.59 -2.96 -2.33 -1.70 -1.07 -0.44 0.19 0.82 

4 -3.78 -3.31 -2.84 -2.37 -1.90 -1.42 -0.95 -0.48 -0.01 0.46 0.93 

5 -2.75 -2.38 -2.00 -1.63 -1.25 -0.88 -0.50 -0.13 0.25 0.62 1.00 

6 -2.06 -1.75 -1.44 -1.13 -0.82 -0.51 -0.20 0.11 0.43 0.74 1.05 

7 -1.57 -1.30 -1.04 -0.77 -0.51 -0.24 0.02 0.29 0.55 0.82 1.08 

8 -1.19 -0.96 -0.73 -0.50 -0.27 -0.04 0.19 0.42 0.65 0.88 1.11 

9 -0.90 -0.69 -0.49 -0.29 -0.08 0.12 0.32 0.53 0.73 0.93 1.14 

10 -0.66 -0.48 -0.30 -0.11 0.07 0.25 0.43 0.61 0.79 0.98 1.16 

15 0.08 0.19 0.31 0.43 0.54 0.66 0.77 0.89 1.01 1.12 1.24 

20 0.48 0.56 0.64 0.72 0.81 0.89 0.97 1.05 1.13 1.21 1.30 

 

 



Estimating degree-day factors based on energy flux components 

96 

 

Figure 5.5 Longwave Radiation component (DDFL) for selected cloudiness [%] 

5.4.3 Sensible heat component – DDFH  

The sensible heat flux QH as given by eq. (5.26) is linear dependent on the temperature difference 

between air and snow surface. If the snowpack temperature is assumed to be constant at Ts = 0 °C, the 

division by degree-days according to eq. (5.2) makes DDFH independent of temperature and 

proportional to the wind speed, resulting in a value of 0.86 mm °C-1 d-1 for an average daily wind speed 

of u = 1.0 m s-1. DDFH for any other wind speed can easily be obtained by multiplication with the actual 

average daily value. Table 5.3 presents some examples for different values of u. It should be noted that 

Table 5.3 refers to melt conditions with positive air temperature, whereas negative air temperature 

would lead to respective negative DDFH resulting in a cooling of the snowpack and a decrease of total 

DDF. 

If wind speed observations are not available, DDFH may be approximated using typical values. Stigter 

et al., (2021) for example give a range of wind speed at two different sites in the central Himalayas. At 

Ganja La the wind speed is generally low i.e. < 2 m s-1 and has no distinct diurnal cycle, whereas at 

Yala the wind speed exhibit a strong diurnal cycle with wind speeds ≥ 5 m s-1 occurring in the afternoon 

during the entire snow season. Dadic et al., (2013) found values around 3 – 5 m s-1 for a glaciered 

catchment in Switzerland. However, typical average values may not represent the actual wind 
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conditions and thus DDFH on a certain day. While for example the geometric mean of observed daily 

wind speed at the Brunnenkopfhütte station is about 0.8 m s-1 resulting in a DDFH of approx. 0.7 mm 

°C-1 d-1, the maximum daily average wind speed is about 4.5 m s-1 which increases DDFH to approx. 3.9 

mm °C-1 d-1. 

Table 5.3 Sensible heat component (DDFH) [mm °C-1 d-1] for selected wind speed (u) [m s-1] 

Wind Speed (u)  0.1 0.5 1.0 2.0 3.0 4.0 5.0 10.0 

DDFH   0.09 0.43 0.86 1.73 2.59 3.46 4.32 8.64 

5.4.4 Latent heat component – DDFE  

The latent heat flux QE approximated by an aerodynamic model as in eq. (5.28) shows, that the latent 

heat component DDFE is dependent on the humidity gradient near the snow surface and proportional to 

the wind speed. Table 5.4 and Figure 5.6 give the resulting DDFE as a function of degree-days for 

different values of relative humidity and an average daily wind speed of u = 1.0 m s-1. As with the 

sensible heat component DDFH, DDFE for any other wind speed can be obtained by multiplication with 

the actual value. For relative humidity < 30% the DDFE is negative over the whole range of degree-

days, hence the latent heat component will reduce the total DDF under these conditions. Even if the air 

is humid and warm, contribution of latent heat is moderate, e.g. DDFE =1.05 mm °C-1 d-1 at a relative 

humidity of 100% and TDD = 20 °C d. 

In general, humid air will promote condensation at a cooler snow surface, which releases latent energy 

and contributes to a positive DDF, while dry air will promote evaporation and sublimation from the 

snow surface, which abstracts energy from the snowpack. Especially in spring, when relative humidity 

is comparatively low in middle and northern latitudes, large parts of the incoming solar radiation can 

be consumed by evaporation from the snow surface reducing significantly the energy available for melt 

and thus reducing the corresponding DDFs (Lang and Braun, 1990; Zhang et al., 2006). 

Table 5.4 Latent heat component (DDFE) [mm °C-1 d-1] for selected relative humidity [%] 

 DDFE 

 Relative Humidity 

TDD [°C d] 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

1 -7.28 -6.40 -5.53 -4.66 -3.78 -2.91 -2.04 -1.16 -0.29 0.58 

2 -3.61 -3.14 -2.67 -2.21 -1.74 -1.27 -0.80 -0.33 0.13 0.60 

3 -2.38 -2.05 -1.72 -1.38 -1.05 -0.72 -0.38 -0.05 0.29 0.62 

4 -1.77 -1.50 -1.23 -0.97 -0.70 -0.43 -0.16 0.10 0.37 0.64 

5 -1.40 -1.17 -0.94 -0.71 -0.49 -0.26 -0.03 0.20 0.43 0.66 

6 -1.15 -0.95 -0.75 -0.54 -0.34 -0.14 0.07 0.27 0.47 0.68 

7 -0.98 -0.79 -0.61 -0.42 -0.23 -0.05 0.14 0.33 0.51 0.70 

8 -0.84 -0.67 -0.50 -0.32 -0.15 0.03 0.20 0.37 0.55 0.72 

9 -0.74 -0.58 -0.41 -0.25 -0.08 0.08 0.25 0.41 0.58 0.74 

10 -0.66 -0.50 -0.34 -0.18 -0.02 0.13 0.29 0.45 0.61 0.77 
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15 -0.40 -0.26 -0.11 0.03 0.18 0.32 0.47 0.61 0.75 0.90 

20 -0.26 -0.12 0.03 0.18 0.32 0.47 0.61 0.76 0.90 1.05 

Note: These values are for u=1 m s-1, for a different wind speed these values can be multiplied for desired wind speed. 

 

 

Figure 5.6 Latent Heat component (DDFE) for selected relative humidity [%] and wind speed u = 1 

m s-1 

5.4.5 Precipitation heat component – DDFP  

Rainfall can affect the snowpack energy budget by adding sensible heat due to warm rain and by release 

of latent heat if the rain is frozen in the snowpack (DeWalle and Rango, 2008). The latter effect is not 

considered in this study, as the snowpack is assumed at 0 °C melting condition. Because according to 

eq. (5.31) the precipitation heat QP is linearly dependent on air temperature, division by respective 

degree-days makes DDFP independent of temperature and proportional to rainfall, resulting in a DDFP 

= 0.0125 mm °C-1 d-1  for a precipitation depth of 1 mm per day. DDFP for any other precipitation can 

be obtained by respective multiplication. The exemplary values in Table 5.5 show however, that the 

contribution of precipitation heat component DDFP is modest compared to other DDF components. 

Even high rainfall of 50 mm in a day would release only a small amount of sensible heat, resulting in a 

DDFP of 0.6 mm °C-1 d-1. 
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Table 5.5 Precipitation heat component (DDFP) [mm °C-1 d-1] for selected precipitation [mm d-1] 

Precipitation (P)  1 2 5 10 25 50 

DDFP   0.0125 0.025 0.0625 0.125 0.313 0.625 

5.4.6 DDF results comparison  

In addition to the discussion on individual DDF components in previous sections, resulting total DDFs 

estimated from energy flux approaches are compared with observed DDFs at the Brunnenkopfhütte 

snow station. For this purpose, observed melt was estimated from the daily difference of observed snow 

water equivalent during melt periods (see Figure 5.7). Energy flux based melt was calculated by the 

formulas given in Sec. 5.3.2 using observed daily data from the Brunnenkopfhütte snow station (e.g. 

air temperature, wind speed, etc.) where applicable. Monthly averages of observed data (November 

2016 – May 2021) can be found in Table 5.1. 

As in operational degree-day models typically at least 10-daily constant degree-day factors are used, 

both, energy flux based and observed daily melt values were accumulated on 10-daily basis and divided 

by the degree-days of the respective period. This averaging procedure also smooths daily noise in the 

observed data, in particular inaccuracies in the determination of observed daily melt and unrealistic 

DDF values because of daily temperature averages just above 0 °C. 

The comparison between observed and simulated (energy flux based) DDFs (see Figure 5.8) yields a 

fair agreement with BIAS = 0.2 mm °C-1 d-1 and RMSE = 1.1 mm °C-1 d-1. Snowmelt periods in which 

a new snow event occurred (marked by hollow circles in Figure 5.8) were excluded from the calculation 

of the error metrics, since new snow events contradict the condition that the snowpack is ripe and 

isothermal at 0 °C. Fresh snow increases the cold content of the snowpack and a certain amount of the 

incoming energy is needed to bring it back to ‘ripe’ conditions, thus is not available for melt. This effect 

can be clearly seen in Figure 5.8, since all simulated DDFs belonging to periods with new snow events 

considerably overestimate the observed DDFs. Taking into account such changes in the internal energy 

of the snowpack under limited data availability would require a suitable parametrisation as discussed in 

Sec. 5.3.2.7, which is beyond the scope of the present study but may be subject to further research. 
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Figure 5.7 Observed snow water equivalent (SWE) at the Brunnenkopfhütte snow station (period: 

Winter 2016/2017 – 2020/2021) 
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Figure 5.8 Comparison of observed vs simulated (energy flux based) 10-daily DDF for the 

Brunnenkopfhütte snow station (period: November 2016 – May 2021) – Hollow points 

represent DDFs during periods with new snow events 

5.5 Discussion  

While in the previous section the characteristic of each energy flux based DDF component is presented 

individually, in this section the influence of spatial, seasonal or meteorological conditions on the overall 

DDF is discussed. As before, all conclusions are under the assumption that the snowpack to isothermal 

at Ts = 0 °C and in ripe condition, hence all net incoming energy is available for melt and contributes 

to the total DDF. Other than the discussed variables are assumed constant with standard values u =1 m 

s-1, RH = 70%, A = 0.5, P = 0 mm, latitude = 48° North (Brunnenkopfhütte snow station), and typical 

melt conditions of TDD = 5 °C d if not stated otherwise. 

5.5.1 Influence of latitude  

Whereas local spatial variability in mountainous regions heavily affects melt by topographic effects, 

such as slope, aspect and shading, regional patterns of DDFs could not be detected in the data review 

by Hock, (2003). This observation is supported by a brief analysis of the effect of latitude where the 

DDF is compared not on the same date but at comparable melt conditions. The example compares 
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typical melt conditions of TDD = 5 °C d at latitude 35° North (Naran station, Upper Jhelum catchment) 

(Bogacki and Ismail, 2016), which usually occur around mid-February, with similar conditions at a 

higher latitude of 48° (Brunnenkopfhütte) that arrive about one month later in mid-March. Figure 5.9 

shows that the decisive solar radiation component is very similar in both situations, thus the total DDF 

is virtually identical at both locations. Therefore, at least in moderate latitudes, there is no significant 

effect of latitude on DDF when compared under similar melt conditions. 

 

Figure 5.9 Influence of different latitudes on the DDF under clear sky and overcast conditions 

5.5.2 Influence of altitude 

Contrary to the compensating effect in the case of latitude, the delayed onset of snowmelt due to altitude 

influences the DDF noticeably, which becomes important in temperature-index models where 

calculation is usually based on elevation bands. In order to demonstrate the influence of altitude on the 

DDF, two elevation zones with an altitude of 2000 and 4000 m a.s.l. respectively are compared near 

Naran station in the Upper Jhelum catchment. As already mentioned, typical melt conditions of TDD = 
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5 °C d occur at Naran usually around mid-February, while at 4000 m a.s.l. similar degree-days arrive 

about mid-May. The resulting DDFs (Figure 5.10) show a significant difference, both under clear sky 

as under overcast conditions, because of the different input in solar radiation caused by the alteration in 

solar angle. 

Figure 5.10 shows an additional term DDFA on top of the solar radiation component that represents the 

increase in incoming solar radiation due to the clearness altitude factor, which takes into account the 

increase of the clearness index with altitude. Averaging the factors proposed by different solar radiation 

models (see Figure 5.4) results in an additional component DDFA of 0.4 and 1.4 mm °C-1 d-1 under clear 

sky and of 0.5 and 1.6 mm °C-1 d-1 und overcast conditions at 2000 and 4000 m a.s.l. respectively. 

While for exemplification, snow albedo is assumed constant at 0.5 in Figure 5.10, taking into 

consideration the decrease of albedo as the snow ages e.g. A = 0.74 in February and A = 0.42 in May 

results in a more pronounced difference with altitude, i.e. a total DDF of 0.3 compared to 10.5 mm °C-

1 d-1 under clear sky and of 2.7 versus 7.3 mm °C-1 d-1 under overcast conditions for the two altitudes 

respectively. 

 

Figure 5.10 Influence of different altitudes on the DDF under clear sky and overcast conditions, 

DDFA represents the increase in incoming solar radiation due to the clearness altitude 

factor 
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5.5.3 Influence of albedo  

As already discussed in the sections before, snow albedo is a critical parameter for the DDF since 

according eq. (5.5) albedo directly controls the net solar radiation flux into the snowpack. While albedo 

of fresh snow is well above 0.9 hence reflecting most of the incoming shortwave radiation, it drops 

rapidly when larger grains form due to snow metamorphism. Figure 5.11 demonstrates the effect of 

aging snow after a new snow event, when a simple exponential decay model as given in eq. (5.19) is 

used and typical melting conditions TDD = 5 °C d are assumed. Since directly after a new snow event 

(Day = 0) the fresh snow albedo is high (A = 0.95), the overall DDF is generally small. Under clear sky 

conditions, in case longwave radiation cooling is larger than net shortwave radiation flux, even a 

negative DDF value, i.e. no melt, may occur. If there is no new snow event in-between, albedo will 

decrease following the exponential decay model to 0.52 after 10 days resulting in a DDF of 5.8 mm °C-

1 d-1 under clear sky and 4.4 mm °C-1 d-1 under overcast conditions. As described qualitatively in the 

literature e.g. (Hock, 2003), under all sky conditions the DDF is continuously increasing with 

decreasing albedo, with the increase however being more pronounced under clear sky than under 

overcast conditions. 

 

Figure 5.11 Influence of albedo over time on the DDF under different sky conditions 
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5.5.4 Influence of season 

Since the solar angle is rising from its minimum at winter solstice in December to its maximum on 21th 

June, the solar radiation component DDFS is increasing during the snowmelt season and thus the DDF 

is expected to increase respectively. Figure 5.12 shows the influence of season on the DDF at 

Brunnenkopfhütte snow station during the melt period, assuming average degree-days of 1, 4, and 7 °C 

d in March, April, and May respectively (see Table 5.1). Under clear sky conditions, as expected total 

DDF increases from a negative value of -3.6 mm °C-1 d-1 in March to 6.6 mm °C-1 d-1 in May. Under 

overcast conditions however, the DDF is virtually stable ranging from 4.4 to 4.5 mm °C-1 d-1 in the 

same period.  

An evaluation of the individual DDF components shows, that under clear sky conditions the high impact 

of solar radiation in combination with low degree-days at the onset of the snowmelt season is 

counterweighted by a strong negative longwave radiation component that decreases as the season 

progresses. Under overcast conditions, DDFL is neutral or slightly positive while the DDFS component 

decreases because degree-days are rising faster than solar radiation input, which implies that sky 

conditions are more decisive for an estimate of the DDF than the date. 

The effect of cloud cover is further amplified by the decrease in albedo while the melt season progresses, 

which becomes more significant under clear sky conditions. In the present example, that uses the 

average monthly albedo as specified in Table 5.1, only 30% of incoming solar radiation is contributing 

to melt in March, while it is about 60% in May, enhancing the marked increase of DDF under clear sky 

conditions. 
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Figure 5.12 Influence of season on the DDF under different sky conditions 

5.5.5 Rain on snow events  

In general, precipitation heat component alone has only a minor effect on the DDF. However, in 

conjunction with certain weather conditions like braking in of warm and moist air, rain over snow events 

may lead to sudden melt and severe flooding. In a well-documented event in the Alps in October 2011 

(Rössler et al., 2014) intensive rainfall (on average 100 mm d-1) was accompanied by an increase in 

temperature by 9 °C, which shifted the 0 °C line from 1500 to 3200 m a.s.l. during one day. Similar 

conditions occurred e.g. end-December 2021 in Switzerland, when after the establishment of a solid 

snow cover, an Atlantic cyclone caused a sudden temperature rise up to 19 °C, wind gusts of 35 – 40 m 

s-1 and locally more than 70 mm precipitation (MeteoSchweiz, 2022), which e.g. at Adelboden (1325 

m a.s.l.) caused the complete melt of an approx. 40 cm snow cover. 
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Figure 5.13 shows the different DDF components resulting from a hypothetical rain over snow event 

assuming an air temperature of 15 °C, a precipitation of 70 mm d-1, an average daily wind speed of 10 

m s-1, a relative humidity of 100%, and overcast conditions. Although the amount of precipitation is 

substantial and rain’s temperature is comparatively high, the contribution of DDFP is still modest. 

However, air temperature, relative humidity, and in particular wind speed associated with such events 

increase the sensible and latent heat components significantly. Thus, the resulting overall DDF is much 

higher than under usual melt conditions, which may lead to a considerable melt that adds to the runoff 

already caused by the heavy rain. 

 

Figure 5.13 Influence of rain on snow events on the DDF, DDFP is representing the contribution due 

to rainfall 

5.5.6 DDF estimation for temperature-index modelling  

Snowmelt runoff models using the temperature-index approach have proven useful tools for simulation 

and forecasting in large snow or glacier dominated catchments, in particular in remote mountainous 

regions where data is usually scarce. A good estimate of the degree-day factor as the decisive model 
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parameter is important either to stay in a realistic range when calibrating this parameter or in case of 

forecasting when estimating its changes while the season progresses. In order to demonstrate the 

alteration of DDFs over time and altitude, energy flux based DDFs are estimated using 10-daily average 

temperature (i.e. period 2000 – 2015) for the key elevation zones in the Upper Jhelum catchment 

(Bogacki and Ismail, 2016). Because of the lack of other than temperature and precipitation data, 

prevailing conditions during the melt season are crudely approximated by the standard conditions used 

in this section, assuming persistent clear sky conditions and albedo declining according eq. (5.19) after 

last fresh snow just before the beginning of the melting period.  

Figure 5.14 (a) shows the development of DDFs in the elevation zones over time. As expected, melt 

starts earlier in lower elevation zones and successively progresses to higher altitudes. Interestingly, the 

DDF in the first 10-daily period of melting in each elevation zone increases with altitude. Obviously 

this is a combined effect of higher solar radiation input and decreasing albedo while the season 

progresses and the circumstance that the onset of melt in higher elevation zones starts at a lower degree-

day threshold than in lower zones. In contrast to Figure 5.12, the DDF decreases continuously in all 

elevation zones in the subsequent melting periods since air temperature and thus degree-days rise faster 

than melt increases. 

5.5.7 Influence of climate change  

Climate change will ultimately influence snowmelt patterns depending on the projected changes in 

temperature and precipitation. In recent studies, usually model parameters including DDFs are 

considered as constant when assessing the climate change impact on future water availability from snow 

and glacier fed catchments (Lutz et al., 2016; Hasson et al., 2019; Ismail et al., 2020). However, due to 

the physical processes on which they depend these parameters are subject to climate change. In this 

section, an attempt is made to estimate the influence of climate change on the DDFs in different 

elevation zones. For this analysis, projected temperature changes for the period 2071 – 2100 that 

according to data for the Upper Indus Basin (Ismail et al., 2020) amount to ΔT = 2.3 °C under RCP2.6 

and to ΔT = 6.5 °C under RCP8.5 are added to the temperatures in present climate for each elevation 

zone. 

The first effect to be observed in Figure 5.14 (b) and (c) is the common finding that snowmelt will start 

earlier under climate change as temperatures rise earlier above freezing. In addition, since being earlier 

in the year, the DDFs in corresponding elevation zones are generally smaller compared to the current 

climate, though there are some outliers at the start of melting, due to division by low degree-day values. 

In case of the pessimistic scenario RCP8.5 (Figure 5.14 (c)), a seasonal snow cover will not establish 

any more in the lowest elevation zone (i.e. 2500 – 3000 m a.s.l.) as air temperature at this altitude is 

projected to stay well above freezing throughout the winter. In general, the results of this brief analysis 
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indicate, that the DDFs are expected to decrease under the influence of climate change, as melt will 

occur earlier in the year when solar radiation is smaller. 

 

 

Figure 5.14 (a) DDF estimation for a temperature-index modelling (b) Influence of climate change – 

2071 – 2100 under RCP2.6 (c) Influence of climate change – 2071 – 2100 under RCP8.5 

5.6 Conclusions  

Degree-day models are common and valuable tools for assessing present and future water availability 

in large snow or glacier melt dominated basins, in particular when data is scarce like e.g. in the 

Hindukush-Karakoram-Himalayas mountain ranges. The present study attempts to quantify the effects 

of spatial, temporal, and climatic conditions on the degree-day factor (DDF), in order to gain a better 

understanding which influencing factors are decisive under which conditions. While this analysis is 

physically based on the energy balance, approximate formulas for estimating the DDFs are used to 

account for situations where observed data is limited. In addition, resulting tables and graphs for typical 

melt conditions are provided for a quick assessment. 

A comparison between observed and estimated DDFs at the Brunnenkopfhütte snow station shows a 

fair agreement with BIAS = 0.2 mm °C-1 d-1 and RMSE = 1.1 mm °C-1 d-1 that however only takes into 

account periods without new snow events, since fresh snow increases the cold content of the snowpack 

and contradicts the condition of the snowpack being ripe and isothermal at 0 °C. If, under the constraint 

of limited data availability, also changes in the cold content of the snowpack shall be considered, further 

research is needed on an approach that sufficiently parameterizes the diurnal dynamic of vertical 

temperature distribution in the snowpack. 

(a) (b) (c) 
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Furthermore, it is neither intended to use these DDF estimates directly as a model parameter nor to 

incorporate an energy balance based DDF approach into a degree-day model. One important aspect of 

temperature-index models is, that the DDF is a lumped parameter, which is usually subject to calibration 

and accounts for uncertainties in different variables and parameters, e.g. temperature estimates, runoff 

coefficients, etc. Thus, the DDF estimated by the energy balance approach are rather aimed to validate 

the results of parameter calibration or to indicate necessary adjustments due to climate change. 

The analysis of the energy balance processes controlling snowmelt indicates that cloud cover is the most 

decisive factor for the dynamics of the DDF. Under overcast conditions, the contribution of shortwave 

radiation is comparatively low whereas the other components are in general small. Therefore, total DDF 

is moderate and variations due to other factors are usually limited, apart from exceptional rainstorm 

events, for which however energy balance models are the more suitable approach. 

Under clear sky conditions on the other hand, shortwave radiation is the most prominent component 

contributing to melt. The increase of solar angle while the melt season progresses in combination with 

declining albedo and a decreasing cooling effect by the longwave radiation component along with 

increasing air temperature leads to a pronounced temporal dynamic in the DDF. Whereas incoming 

solar radiation and net longwave radiation can be determined fairly accurate under clear sky conditions, 

albedo becomes the crucial parameter for estimating the DDF, especially when new snow events occur 

during the melt period. 

Clear sky conditions promote the effect of increasing DDF with altitude if similar melting conditions 

are compared, since melting temperatures arrive later in the season at higher altitudes. The opposite 

effect can be observed with regard to climate change. It is well known and because of higher temperature 

evident, that at a certain altitude climate change will shift the snowmelt season earlier in the year. 

Consequently, when comparing periods of similar degree-days, as results from this study indicate the 

DDFs are expected to decrease, since solar radiation is lower and albedo is likely to be higher. 

Therefore, and as pointed out by many researchers, the DDF cannot be considered a constant model 

parameter. Rather, its spatial and temporal variability must be taken into account especially when using 

temperature-index models for forecasting present or predicting future water availability. 
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Chapter 6 

Conclusions and outlook 

This research focuses on assessing and forecasting the seasonal as well as future water availability in a 

data limited region (e.g. Upper Indus Basin – UIB) by employing an enhanced hydrological modelling 

as well as scenario-based forecasting approach. In order to fulfil the objectives of this research the main 

research topic was divided into three sub-topics. These topics focused on three important aspects listed 

as follows. 

(i) Snow and ice melt runoff modelling and forecasting  

(ii) Enhanced model evaluation for assessing the future water availability under current and 

climate change scenarios 

(iii) Analysis of the degree-day factor 

In this dissertation, a degree-day model with separate snow and ice melt component in conjunction with 

seasonal scenario forecast approach is used to forecast the seasonal water availability. Secondly, a 

comparison between conventional and enhanced hydrological model calibration/validation approach is 

performed in order to increase the confidence in the modelling outcome (i.e. simulated flows). 

Furthermore, assessment of future water availability especially major changes in snow and glacial water 

availability as well as changes in uncertainty contribution from different sources of uncertainty under 

the influence of climate change are carried out. Lastly, energy flux based degree-day factor (DDF) 

estimation is done to quantify the influence of different spatio-temporal and climatic conditions on the 

degree-day factors. The aim of this part of the study is to better understand the dependencies of the 

DDF and to help in selecting realistic values of the DDF during model calibration as well as specify 

necessary adjustments due to climate change. 

6.1 Summary 

Seasonal melting of snow and glaciers from the headwater catchments (i.e. Upper Indus, Kabul, Upper 

Jhelum and Upper Chenab) deliver a steady streamflow to the irrigated areas of Pakistan. However, 

there is a dire need to assess and evaluate seasonal melt water contributions from the Indus region in a 
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broader spectrum. Because in this region climate change has now started to influence, for example in 

the form of increasing intensities of natural disasters. With these climatic changes across this region, it 

is better to prepare the water managers and decision makers for different scenarios beforehand so that 

they might be able to take informed decisions regarding seasonal shift in the future water availability. 

There are several problems in this complex mountainous region for example, lack of sufficient ground 

based data, presence of large uncertainties in the hydrological budget due to complex snow and ice 

hydrology. This dissertation is an effort to help in tackling these challenges. Conclusions from all the 

work packages are discussed one by one as follows. 

Firstly, the main challenge of simulating the snow and glacier ice runoff for the UIB was handled by 

employing a phenomenon based hydrological model with the aim of better understanding the snow and 

ice melt processes (Ismail and Bogacki, 2018). It is critical to develop an understanding about the snow 

and ice melt processes because their contributions as well as the response to the flows are different. 

Secondly, a scenario based seasonal water availability forecasting method was devised (Ismail and 

Bogacki, 2018), which has many commonalities with traditional Ensemble Streamflow Prediction 

(ESP) method (Day, 1985). The reason for using the scenario-based approach is its simplicity and the 

unavailability of reliable meteorological forecast of temperature and precipitation for a lead-time of 6 

months.  

Furthermore, numerous improvements have been introduced to the snowmelt runoff model in order to 

handle the specific needs of the UIB. One major modification in the model was the introduction of 

separate degree-day factor for considering the glacial ice melt contribution. Without glacial melt 

component, there exist a lack of water in simulations compared to observed hydrograph especially in 

the late Kharif season (i.e. July – September) when the snow line reaches to the higher elevations (i.e. 

permanent glacier areas). Besides, the eastern part of the UIB (i.e. Tibetan Plateau) which receives less 

precipitation behave quite differently compared to the western UIB even though the altitudinal ranges 

are similar for both the eastern and western portions of the basin. The reason for receiving less 

precipitation in the eastern part of UIB could be related to the westerlies (i.e. western disturbances). 

The MODIS snow data also confirmed that the snow cover was disappearing much faster in the Tibetan 

Plateau compared to the Karakoram region. This problem of unstable snow coverage led to the division 

of the UIB into two homogeneous units (i.e. upper and lower portions) in order to tackle this issue more 

reasonably. Application of the degree-day factor (DDF) in the forecast mode was handled by using a 

unique ‘time-dependent’ variation approach, where the DDF starts increasing by the time when melting 

has started in a particular elevation zone. This time dependent DDF approach is based on linear 

regression between the calibrated DDFs and time (i.e. 10-daily period). The increase in the DDF during 

the melt season is reasonable because of changing snow properties over time (i.e. snowmelt 

metamorphism). However, the weakness of this time dependent approach is that the DDF will not go 
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down if for example, there is a change in the meteorological conditions (i.e. decrease in temperatures 

or there is new snow event). In this case, simulated flows will be overestimated by this approach because 

of using high values of the DDFs, whereas in reality there is less or not snowmelt. 

Furthermore, the seasonal scenario-based forecast approach is a step towards a hybrid forecasting 

approach, which uses a combination of process-based hydrological models as well as probabilistic 

forecasting approaches. On one hand, availability of reliable temperature and precipitation forecast on 

seasonal basis are still a major challenge. On the other hand, modelling results are primarily based on 

these (i.e. temperature and precipitation) input variables. One possible improvement in the seasonal 

water availability forecast could be the incorporation of teleconnection signals e.g. Southern Oscillation 

(ENSO: El Nino, La Nina) and North Atlantic Oscillation (NAO1). That could be a source of 

predictability of seasonal anomaly variation. If teleconnections can be found for this region, they can 

improve the seasonal forecasting of flows from the Indus River and its tributaries that will also help in 

addressing the current water crisis situation in Pakistan by allowing improved water management. 

The summary of main conclusions from this study is as follows: 

 The Snowmelt Runoff Model + Glaciers (SRM+G) model has the ability to simulate the snow 

and ice melt runoff for a complex rugged mountainous catchment. 

 MODIS snow cover data presumed to be one of the best information sources to monitor the 

snow cover situation in the data scare regions and it represented well the variability of snow 

cover extent in the Upper Indus Basin. 

 The seasonal scenario-based approach for forecasting the seasonal water availability is a 

reasonable approach in the absence of actual long-term forecasted data. 

 The time dependent DDF approach shows the development of the DDF over time. However, 

this approach can be further improved by taking into account for the energy available for melt. 

The second work package focuses on the enhanced calibration/validation approach and future water 

availability under climate change scenarios (Ismail et al., 2020). In climate impact studies there are two 

possible approaches to distinguish (i) using a multi-model ensemble disregarding model performance 

(ii) using models only after proper evaluation and considering their performance. In this work package, 

for climate impact assessment hydrological models were used after following a proper evaluation 

procedure. The main hypothesis was that a good performance of a hydrological model in the historical 

time period will increase confidence in projected impacts under climate change as well as decrease 

uncertainty of projections related to hydrological models. To do this, two hydrological models 

calibration/validation strategies were analysed and their influences on future water availability were 

                                                      
1 El Niño-Southern Oscillation (ENSO); North Atlantic Oscillation (NAO) 
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quantified. The results of this analysis shows that the projections based on enhanced 

calibration/validation approach are more credible compared to conventional approach. In the enhanced 

method the hydrological model calibration parameters were not only tested for the sub-catchments but 

also contrasting climatic conditions were considered. Furthermore in order to ensure internal 

consistency of the simulated processes as well as comparatively addressing the challenge related to 

equifinality, proper attention was given by validating for additional variables in the form of considering 

glacier mass balance, evapotranspiration (or model losses) and snow cover dynamics. It has to be noted 

that the results for the intermediate gauges were not up to the mark in some cases because of the use of 

harmonized parameterization throughout the whole catchment. On the other hand, the outcome 

produced by this method to some extent can pave a way to address the climate non-stationarity by 

assuring that the model with these parameters is more appropriate to variable climate conditions. 

Regarding the uncertainty quantification an analysis of variance (ANOVA) assessment was applied 

which showed that the results based on the enhanced model evaluation are more credible in terms that 

the uncertainty contribution is getting smaller for projections based on enhanced method. Even though, 

the results based on the conventional method are also quite reasonable. It was noted that different 

hydrological models give different signals for projected hydrological changes especially when the flow 

components are based on different sources like snow and ice melt. Moreover, the type of melt modelling 

approach (i.e. energy balance or temperature-index) also influences the results. This is the reason, it is 

important to use a multi-model ensemble for impact assessment in order to some extent minimize the 

model-related uncertainties. 

It is admitted that the assessment of future water availability in terms of hydrological regime changes 

in the Upper Indus Basin is a vast and complex subject because there are a lot of interconnected 

phenomenon involved (e.g. melt-dominated dynamics) which ultimately cause uncertainties in 

estimating the hydrological budget. There are some assumptions (e.g. unavailability of simulated 

evapotranspiration in SRM+G model, estimated future snow cover area, absence of dynamic 

representation of glaciers) in the modelling approaches, which have certain shortcoming. In addition, 

these assumptions were made due to lack of data availability and data quality problems in such 

mountainous region. It is acknowledged that the results in this study would have been different if 

different assumptions were made. For example, a fixed glacier area reduction scenario had been 

assumed with an interval of 25% reduction under both Representative Concentration Pathways (i.e. 

RCP2.6 and RCP8.5). It would has made a lot more sense if glacier reduction scenario was considered 

separately for both RCPs depending upon how these climate forcing are developing for the future. Thus, 

a precise assessment of existing glaciers ‘tipping point’ is mandatory for assessing the future water 

availability and this can be done by dynamic representation of glaciers in a hydrological model. 

Moreover, depletion of Snow Cover Area (SCA) in the future was estimated by using a novel 
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‘temperature similarity’ approach with the assumption that snow cover conditions in an elevation zone 

are best defined by temperature. Of course, temperature is only one of the critical variable. Incorporation 

of precipitation (i.e. snow accumulation) in this approach might help in improving the results. The 

procedural gap like the absence of simulated actual evapotranspiration (ETa) in the Snowmelt Runoff 

Model (SRM) model was handled by using model losses as a proxy to actual evapotranspiration. It can 

be said that the models used in this study can be further improved for a more accurate assessment of 

future water availability. 

The key conclusions from this study can be summarized as follows: 

 The model parameterization achieved in the enhanced calibration/validation method is better 

suited for climate change impact assessment because these parameters were tested at different 

gauges under different climate conditions and glacier mass balance (GMB) was also given due 

consideration. 

 Calibration/validation for multiple variables (i.e. discharge, GMB, ETa) lead to more accurate 

simulation of hydrological processes with little sacrifice of model performance in terms of 

goodness of fit statistics. 

 Two different parameterizations of the hydrological models lead to different impact assessment 

results at the mean monthly and annual scales reaching up to 19% and 10%, respectively.  

 According to the analysis of variance, the contribution of hydrological model parameter 

uncertainty to the overall uncertainty becomes very small by the end of the century using the 

enhanced calibration/validation approach. 

The third work package is primarily focusing on the estimation of the DDF based on energy flux 

components (Ismail et al., 2022). Degree-day models are considered to be important tools for assessing 

water availability in snow or ice fed catchments, in particular when data is limited. Energy flux based 

estimation of the DDF is a value addition to time-dependent variation of the DDF (Ismail and Bogacki, 

2018). The objective of this work package is to provide a simple solution for estimating the DDF with 

minimum possible available information. The advantage of this study is that it can rely exclusively on 

energy balance equations and climatic classification in the absence of ancillary ground observations. It 

is important to identify the actual variations of the DDF in order to accurately compute the snow and 

ice melt runoff. Under the influence of climate change, realistic computation of snowmelt will be 

beneficial for the water managers as well as policy makers in order to devise a better water management 

plan. Moreover, this DDF estimation method can act as a baseline for further validating the already 

calibrated DDF for the HKH region  (Ismail and Bogacki, 2018). 

A comparison between observed and estimated degree-day factors at the Brunnenkopfhütte snow station 

shows a fair agreement with BIAS = 0.2 mm °C-1 d-1 and RMSE = 1.1 mm °C-1 d-1. But these results 
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are without consideration of new snow events, since fresh snow increases the cold content of the 

snowpack and contradicts the condition of the snowpack being ripe and isothermal at 0 °C. If cold 

content of the snowpack needs to be considered then further research is needed on an approach that 

appropriately parameterizes the dynamics of vertical temperature distribution within the snowpack.  

The results from this study also supports the findings of other researchers that the DDF cannot be taken 

as a constant parameter and its spatio-temporal variability should be taken into consideration. Especially 

when using degree-day models for forecasting present or predicting future water availability. 

The main conclusions from this study are summarized as follows. 

 Snow albedo and sky conditions (i.e. clear sky and overcast) are crucial factors in deciding 

the final value of the DDF.  

 If similar melting conditions are assumed then DDFs at higher altitude are expected to 

increase. However, DDFs are fairly stable at two different latitudes (but at the same altitude) 

as the melting conditions arrive early in the year at lower latitudes compared to the higher 

latitudes. 

 DDFs are expected to decrease under the influence of climate change as snowmelt will shift 

earlier in the year due to projected increase in temperatures when radiation input will be 

lower and snow albedo will then likely to be higher. 

 This study supports the findings of other researchers that the DDF is not constant but 

variable, even within a snowmelt season it varies from one event to another depending on 

changes in physical properties of snow in conjunction with the prevailing meteorological 

conditions. 

To sum up, this dissertation consists of three main research objectives i.e. developing a method for 

seasonal water availability forecast for a snow and glacier fed catchment, assessing future water 

availability while considering the model performance for climate impact studies, and finally estimating 

degree-day factor with minimum available information. These three objectives are considered to be the 

building blocks of a water availability predictions. It shows that a temperature-index approach based 

hydrological model in conjunction with satellite based remote sensing snow and glacier data could be 

used for simulating the snow and ice melt runoff. In addition, for climate impact studies a 

comprehensive model evaluation has been implemented so that it could help minimize the uncertainties 

related to the hydrological models especially for a catchment that primarily has a snow and ice melt 

regime. All the results presented here are based on the temperature-index approach, therefore estimation 

of DDFs through energy flux-components is justified in order to know which influencing factors are 

decisive under which conditions and how to adjust the DDFs under different circumstances. 
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6.2 Future outlook 

In this section of the dissertation a possible outlook for future research activities are given. Hence, a 

specific outlook is given in context of improvement in the existing SRM approaches as well as 

developing a snow and glacier assessment tool for a water availability dashboard. 

6.2.1 Improvement in existing SRM+G approaches 

The process-based snow and glacier melt runoff-modelling approach of existing SRM+G model can be 

improved by incorporating the evapotranspiration component in the existing model. In present state, the 

model is not directly dealing with evapotranspiration losses. Additionally, estimation of future depletion 

of the snow cover area in a catchment using the temperature similarity approach can be improved by 

taking into account not only the temperatures but also seasonal snow accumulation. 

6.2.2 Hybrid forecasting approach 

Process-based models can be more skilful in producing the forecasts compared to statistical models 

because these models have the capability of modelling the non-linear process of snow and ice melt. 

However, statistical models can quantify the uncertainties related to predictions more robustly in 

comparison to these process-based models. In order to better handle the uncertainties related to 

forecasts, hybrid forecasting models can be established which make use of the strengths of the statistical 

and process-based models. Scenario-based seasonal forecast in this dissertation is a step in this 

direction, which can be further improved by taking into account of different available statistical models 

and approaches. 

6.2.3 Water availability dashboard 

One future perspective of this research is the development of a water availability dashboard for Pakistan. 

Presently, there is no such tool/dashboard available in public domain. The core idea is to develop a 

water dashboard with freely available datasets that would provide an overview of the existing and future 

water availability. A special focus area will be the situation of fresh water resources (i.e. snow and 

glacier) under changing climate.  

This Ph.D. project has opened new research paths and one possible future research activity relates to 

better utilization of freely available satellite-based snow and glacier information. In this respect, a Snow 

and Glacier situation Assessment Tool (SGAT) is in development. This tool will be helpful for water 

managers as well as policy makers for taking decisions related to future water availability in the Upper 

Indus Basin (UIB). 
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A complete software based on R-programing language has been prepared, which will provide the final 

product in the form of a map as shown in the Figure 6.1 and Figure 6.2. All the data as well as related 

information used to prepare these maps are freely available and is in public domain. Figure 6.1 is 

representing the snow and glacier situation in the upper basins (i.e. UIB, Upper Jhelum, Upper Chenab 

and Kabul River Basin) at the start of Kharif cropping season when most of the catchment area is 

covered with snow. In this map, locations and related information for all the hydro-meteorological 

stations operated by different departments and authorities have been provided. Furthermore, historic as 

well as current statistics of snow and glacier cover areas are also given. 

Figure 6.2 is an example, showing end of Kharif cropping season when most of the seasonal snow has 

been disappeared and the glacier area has been exposed. This sort of visualization is providing a real 

time spatial coverage of snow and glaciers which will help in judging the snow and glacier situation in 

the upper catchments. Of course, this is just an initial idea to better utilize freely available remote 

sensing data. In the future, this tool will be further improved. 

 

Figure 6.1 Outcome of SGAT – providing snow and glacier situation in the broader study area at 

the start of Kharif season – i.e. snow covered 
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Figure 6.2 Outcome of SGAT – providing snow and glacier situation in the broader study area at 

the end of Kharif season – i.e. glacier covered 

Figure 6.3 shows a flowchart of different processes being implemented in SGAT. As mentioned earlier, 

the complete software has been coded in the R-programming language. The major steps include 

downloading and processing of (i) MODIS snow data, (ii) preparation of glacier data i.e. Global Land 

Ice Measurements from Space (GLIMS) (Raup et al., 2007) and (iii) catchment shape files for extracting 

the area of interest as well as preparing maps. Production of cloud free MODIS snow cover data has 

been done by applying the similar methodologies presented in literature (Dong and Menzel, 2016; 

Gafurov et al., 2016). An application based on Shiny platform of R-programming language is under 

development. It will provide more freedom to the end users in terms of data interpretation as well as 

data visualization. 

Additionally, in future it is intended to share automatically generated reports on the snow and glacier 

situation in the upper basins with the concerned departments in Pakistan. Figure 6.4 shows a draft of an 

overview of automatically generated report. 

Present Snow and Glacier situation Assessment Tool (SGAT) will also be integrated in the anticipated 

water availability dashboard. Additionally, different key categories of information which are crucial for 

the understanding of water availability will be included in this dashboard. 
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Figure 6.3 Flowchart of Snow and Glacier situation Assessment Tool (SGAT) 

 

 

Figure 6.4 Automatically generated report format of SGAT   
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A Appendix 

Snow measurement station – fieldwork impressions 

 

Figure A.1 Snow station relocation - work in progress [May-2019] – (image credit: Oliver Koch) 
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Figure A.2 Snow situation at the Brunnenkopfhütte station – (March – 2019) 

 

 

Figure A.3 Snow core sampling in the Dreisäulerbach catchment – (image credit: Michael Schäfer) 
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B Article supplementary materials 

Supplementary materials to chapter 4 

B.1 Climate and sub-catchments of the Upper Indus Basin 

The climate of UIB is under the influence of two different climatic systems. The South West Indian 

Monsoon is the source of monsoonal rainfall in the summer season, mainly affecting the most eastern 

and the southern slopes of the basin. The Westerlies control the north and west of the basin. In winter, 

the snow line reaches down to about 2200m a.s.l accumulating more than 60% of annual water input, 

later discharged as snowmelt into the Upper Indus River (Bookhagen and Burbank, 2010).  

The UIB is comprised of several snow and glacier fed sub-basins (e.g. Astore (3,980 km2) and Hunza 

(13,740 km2)), where Astore is dominated by snowmelt and Hunza is driven by glacier melt (Archer, 

2003; Mukhopadhyay and Khan, 2015). Astore basin contributes about 2.3% and 6.4% in area and 

discharge of the total UIB, respectively. Whereas, Hunza contributes 7.9% in area and 13.2% in 

discharge of the total UIB. The distribution of monthly inflows to Tarbela (capacity: 13.7 km3) (see 

Figure B.1) shows that flows tend to rise progressively (e.g. April) as melting temperatures advance 

into areas of densified snowpack at the higher elevations until they reach their maximum in July. Peak 

flow events usually occur during the intersection of meltwater and monsoonal peaks in July–September. 

As the snow cover recedes in summer, the glacier melt contribution increases. The calculated mean 

annual flow volume from the available time series (i.e. 2000 – 2016) at Tarbela is about ~70 km3. A 

major portion of meltwater is contributing to irrigation requirements of the Kharif cropping season from 

April to September throughout Pakistan (Ismail and Bogacki, 2018).  The hypsometric mean elevation 

characteristics for the UIB is give in Figure B.2. 

B.2 Hydrological Models  

B.2.1 SRM+G  

SRM+G has already been applied with high accuracy to several European basins, such as Rhine-

Felsberg (3241 km2, 1.9% glacier area, 575 – 3614 m a.s.l.), Rhone-Sion (3371 km2, 17% glacier area, 

488 – 4634 m a.s.l.), Ticino-Bellinzona (1515 km2, 0.5% glacier area, 192 – 3402 m a.s.l.) and Massa-
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Blatten (196 km2, 67% glacier area, 1447±4191 m a.s.l.) under different topographic, physiographic 

and climatic conditions (Schaper et al., 1999; Schaper and Seidel, 2000). 

B.2.2 VIC  

In contrast to lumped models, the semi-distributed VIC model represents the spatial variability of soil 

and vegetation in a watershed by grid cell. A routing algorithm external to the VIC model is used to 

simulate the streamflow at a specified location by routing runoff and base flow from each grid cell 

(Lohmann et al., 1998). Each VIC model grid cell can be subdivided into snow elevation bands to 

represent the effect of sub-grid topography on snow accumulation and melt. As implemented here, the 

VIC model represents the areal extent of the snow cover based on the assumption that snow fully covers 

the fractional area of each snow elevation band. The elevation bands where the glaciers do not exist, 

were only covered with seasonal snow. The snow and ice melt within each elevation band directly 

contribute to surface runoff at each time step. To explicitly simulate glacier melt in each grid cell, a 

novel approach as a third bottom ice layer is introduced to the two-layer VIC snow model (Sup., Fig. 

S3). During the model run, the ice thickness is updated at each model time step for each elevation band 

as a function of net mass balance changes using a similar approach to (Naz et al., 2014). 

In case of VIC-Glacier, a one-at-a-time sensitivity analysis was done for a single grid cell to analyse 

the influence of subsurface flow parameters on total runoff, base flow and snow roughness on peak 

discharge. The sensitivity analysis showed that peak discharge and timing was highly sensitive to the 

snow roughness length parameter, while less sensitive to the subsurface flow parameters of the VIC-

Glacier model, which might be because of the limited water holding capacity in this area due to shallow 

soil depth and sandy soil texture. 

B.3 Ice ablation in the VIC model 

The required input to the ice accumulation and ablation routine in the VIC model is the initial ice 

thickness (IWQinit) for ice layer introduced in the VIC snow model. The IWQinit for each individual 

elevation band (the elevation bands where glacier ice exists) for glacier grid cells was estimated using 

the surface slope information from the high resolution digital elevation data and assuming the 

gravitational driving stress 𝜏𝑏 = 𝜌gh sin(𝛼) equals 1 at the glacier base (Paterson, 2002), as: 

   

𝐼𝑊𝐸𝑖𝑛𝑖𝑡 = (
1

𝜌𝑖𝑐𝑒𝑔 sin(𝛼)
) ×

𝜌𝑖𝑐𝑒

𝜌𝑤
        Eq. (1)  

Where, g is acceleration due to gravity (910 kg/m3), 𝜌𝑖𝑐𝑒 is the mean ice density, 𝜌𝑤  is the water density 

and α is the DEM-derived surface slope. 
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As shown in Figure S3, for each elevation band the upper two snow layers overlie a bottom layer of 

glacier ice. When the snow has completely melted, the ice layer becomes exposed and continues to thin 

by melting at a rate determined using the energy balance approach in the VIC model. The ice water 

equivalent (IWE) (m w.e.) of the ice layer is therefore updated at sub-daily time steps only through ice 

melt and snow densification to ice as follows: 

 

 𝐼𝑊𝐸(𝑖, 𝑡 + 𝑑𝑡) = 𝐼𝑊𝐸(𝑖, 𝑡) + 𝑆𝑊𝐸𝑑𝑒𝑛𝑠    Eq. (2)  

 

Where, IWE is updated through the amount of ice melt out of the elevation band 𝑖 which is calculated 

using a similar energy balance approach as used for snowmelt (Andreadis et al., 2009). 𝑆𝑊𝐸𝑑𝑒𝑛𝑠 refers 

to the amount of SWE from the overlying snow pack which compacted to ice through the densification 

process.  The transformation of snow to ice during the snow metamorphism process is implemented 

based on snow ice density changes within the snow pack. Snow densification in the VIC model is 

represented using a variation of the SNTHRM algorithm as described by (Andreadis et al., 2009), which 

predicts a mean pack density in each time step. The snow to ice transformation process only takes place 

when snow density increases to a threshold density of 850kg/m3 at any time step. Assuming a linear 

distribution of snow density within the pack from the density of fresh snow at the top, the amount of 

SWE that can be added to IWE and subtracted from the SWE is calculated by estimating the maximum 

snow density at the bottom of the pack. The temperatures of the snow layers are explicitly simulated, 

while the temperature of the ice layer is considered isothermal (0°C).   

The net annual glacier mass balance is determined from the change in storage states of SWE and IWE 

at the end of each hydrological year as follows: 

𝐺𝑀𝐵𝑖 =  Δ𝑆𝑊𝐸𝑖 +  ΔIWE𝑖                  Eq. (3) 

where Δ𝐼𝑊𝐸 (𝑚. 𝑤. 𝑒) is the annual change in the ice layer as a result of ice melt and snow densification 

and Δ𝑆𝑊𝐸 (𝑚. 𝑤. 𝑒) is the annual change in SWE through snow accumulation, melt, and densification 

to ice in a given year. 

B.4 Future course of snow covered area 

Due to unavailability of the future snow cover area which is a major input variable to the SRM+G 

model, different tests were done in order to get the approximate future snow cover area for the UIB. 

The approach is named as ‘Temperature Similarity’ approach. All of these tests have an assumption 

that at an elevation zone the snow cover condition is best defined by the temperature patterns in that 

elevation zone. Figure B.4 is showing a typical snow depletion curve and Figure B.5 is showing the 

exposed glacier area for different elevation zones for the UIB.  
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B.5 Temperature Similarity Approach 

In the selected methodology, mean monthly historic and future temperature data for each zone were 

compared and then based on the best KGE value the relevant zonal snow covered area was selected 

from the historic dataset [i.e. 2000 – 2016 obtained from the MODIS snow cover data MOD10A1-

Collection 5]. Following is a description of the three different methods evaluated to get the future time 

series of snow covered area.  

In the first method, the mean monthly temperature from the GCMs was compared to the mean monthly 

historical temperatures for each elevation zone and each month. Based on this comparison a best 

matched value of temperature (i.e. minimum difference) is obtained from the historical data. 

Corresponding to that temperature data the historical snow covered area for that month was selected.  

Example: Monthly mean temperature from GCM (rcp8.5) in January 2071 from elevation zone 5 was 

compared to all the observed January mean values for elevation zone 5, in all the historic years (i.e. 

2000 – 2016) and the month which has the least difference was identified (e.g. January 2005). The snow 

covered area from January 2005, zone 5 was selected as an input to the model for January 2071 zone 5. 

In the second method, a set of 12 monthly (i.e. January–December) values from the GCMs were 

compared to the historical data for the same elevation zone in order to find the best matched year, on 

average. The snow covered area from all 12 months was selected as an input to the model.  

Example: The monthly average temperature from GCM (rcp8.5) in year 2071 and elevation zone 5 was 

compared to the mean monthly temperature in zone 5 for each historic year (i.e. 2000–2016) and the 

Kling-Gupta Efficiency (KGE) was calculated.  The year with the highest KGE was selected.  For 

example, if year 2012 has the maximum KGE value from the given matrix. Then, the snow covered 

area of year 2012, zone 5 was picked up as an input to the model for the year 2071 zone 5. 

In the third method instead of remaining in the relevant zone, more flexibility was given in which the 

temperature comparison was not restricted to the same elevation zone but the set of 12 monthly (i.e. 

January – December) values from the GCMs were compared to all 11 elevation zones, as well as all the 

years from the historical time series (i.e. 2000–2016).  The best KGE value was used to locate the year 

and zone to be selected as an input snow covered area in the future. 

Example: Temperature data from GCM (rcp8.5) in year 2071 is compared with the data from all historic 

years as well as 11 elevation zones. Then, the data was filtered for the different elevation zones from 

different years. e.g.: 

1. For the elevation zone-1 year 2071 best KGE was found in year 2007 in zone-2.  

2. For the elevation zone-2 year 2071 best KGE was found in year 2011 in zone-3.  

3. For the elevation zone-3 year 2071 best KGE was found in year 2006 in zone-4.  

4. For the elevation zone-4 year 2071 best KGE was found in year 2002 in zone-5.  

5. For the elevation zone-5 year 2071 best KGE was found in year 2005 in zone-7.  
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Finally we have selected the 3rd method for this study which is more flexible in a way that it encompass 

both the earlier applied methods.  

Figure B.6 presents the monthly variation of snow covered area for the historic time period while the 

RCP2.6 and RCP8.5 data represents the overall picture of snow covered area obtained using the third 

method for three different climate change scenarios (i.e. near future: 2011 – 2040, mid future: 2041 – 

2070 and far future: 2071 – 2099).   

B.6 Kling-Gupta Efficiency (KGE) 

The Kling-Gupta Efficiency (Kling et al., 2012) addresses several shortcomings in Nash-Sutcliffe 

Efficiency (NSE) and is increasingly used for model calibration and evaluation: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2      Eq. (4) 

Where 𝑟 is the linear correlation between observations and simulations, 𝛼 is a measure of relative 

variability in the simulated and observed values, and 𝛽 is the ratio between the mean simulated and 

mean observed flows i.e. 𝛽 represents the bias (see Eq. below) 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝑠

𝜎𝑜
− 1)

2

+ (
𝜇𝑠

𝜇𝑜
− 1)

2

    Eq. (5) 

Where, 𝜎𝑜 is the standard deviation in observations, 𝜎𝑠 is the standard deviation in simulations, 𝜇𝑠 is 

the simulation mean, and 𝜇𝑜 is the observation mean. KGE = 1, indicates perfect agreement between 

simulations and observations. The range for KGE is -∞ to 1.0. Negative KGE values are viewed as bad 

model performance, and only positive values are seen as good model performance. 

B.7 EWEMBI Temperatures Evaluation 

This issue came into notice while calibrating the hydrological model for the Upper Indus Basin (UIB). 

It was found that EWEMBI1 temperatures (Tavg
2) within the UIB do not go along with the observed 

temperatures specifically at higher elevations (e.g. >3000 m a.s.l.). This behaviour is consistent 

throughout the time period i.e. 2000 − 2012 for which the data has been analysed. Table B.6 shows the 

list of stations and providing agency/organization. 

The following steps were adopted to perform the evaluations for the EWEMBI temperatures: 

1. A 30 m DEM aggregated to 0.5° in order to have the same spatial resolution as EWEMBI grid. 

Three methods for aggregation (Min., Max. and Median) were adopted in order to see the 

elevation variation within a pixel size of 50 km. Figure B.17 shows the pixels variations in the 

                                                      
1 (Lange, 2016): EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI). GFZ 

Data Services. http://doi.org/10.5880/pik.2016.004 

2 Tavg was used for this analysis because SRM+G ultimately uses the average temperatures 
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western portion of the UIB, while Figure B.18 Shows the portion of the UIB (western-UIB) 

where all of the observation stations are located. It can be seen that there is more than 4000 m 

of elevation variation within a pixel, which ultimately has an impact on the temperature 

gradient. 

2. A comparison of the SRTM 30 m aggregated to 0.5° grid vs the EWEMBI elevation grid is 

shown in Figure B.19. It is evident that there are certain difference between these two datasets. 

The EWEMBI elevation grid data has been utilized for the temperature bias correction, because 

this grid has been used in developing the EWMEBI temperature. 

3. A daily regression analysis between the EWEMBI data for each pixel vs elevation of each pixel 

for 13 years (i.e. 2000 − 2012) has been performed (see Figure B.20). There are 308 EWEMBI 

grid cells covering the UIB extent (xmin=71.5, xmax=82.5, ymin=30.5, ymax=37.5). The observed 

data was plotted versus their station elevation to observe the differences between the EWEMBI 

temperatures and the observed station data. It seems that at higher elevations the EWEMBI 

temperatures are very high (sometimes difference is more than 10 °C) thus producing more 

snow and glacier melt than actually anticipated. 

4. Figure B.21 presents a typical example for stations >3000 m a.s.l. Where the observed 

temperatures at the Khunjerab station (4730 m a.s.l.) were compared with the adjusted 

EWEMBI temperatures calculated by a linear model (i.e. EWEMBI Temperature vs EWEMBI 

Elevation).  

5. SRM+G works with elevation zones (bands). The recommended elevation interval (Martinec 

et al., 2008) is 500 m a.s.l. The hypsometric characteristics for the UIB can be seen in Figure 

B.22, including the 11 elevation zones identified for the whole UIB.  

6. A long term mean annual temperature lapse rate for the whole UIB was also calculated using 

the available observed data having Skardu as a base station (Figure B.23). This gives an idea 

about the generalized temperature lapse rate for the UIB. The estimated lapse rate with Skardu 

as base station is about 6.57 °C km-1. 

B.8 EWEMBI Temperatures Bias Correction 

There were two methods adopted to correct the EWEMBI temperatures. Both the methods are explained 

below. 

B.8.1 Method 01: Direct Difference 

1. First of all, a daily regression analysis of observed (station) temperatures vs elevation was 

performed to get the daily lapse rate from the observed data (Figure B.24).  

2. Based on this daily temperature lapse rate from the observed data the temperatures were 

predicted according to the hypsometric mean elevation of each elevation zone. 
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3. A daily lapse rate analysis for western portion (where all the observation stations are located) 

of the UIB as well as for the whole UIB against their corresponding elevations was also 

performed in order to check the differences between the lapse rate obtained from the western 

(Figure B.25) as well as whole UIB (Figure B.26). 

4. In Figure B.27, it seems that there is no major difference between the lapse rate of the whole 

UIB and UIB-west so the whole UIB was selected for further analysis. 

5. A raster brick consisting of 11 layers (i.e. 11 elevation zones) was prepared for the whole UIB 

with reference to the hypsometric mean elevation of each elevation zone as well as using a daily 

variable temperature lapse rate obtained from the regression analysis between the EWEMBI 

grid elevations vs EWEMBI temperatures as explained in the previous step.  

6. In this step, the lapsed temperature for each elevation zone was extracted from this raster brick. 

7. Station based zonal temperatures as obtained in step 2 as well as EWEMBI based zonal 

temperatures as obtained in step 6 are then aggregated on monthly basis for each elevation zone 

in order to get the difference of mean monthly temperatures between these two data sets. 

8. The monthly difference of these two temperature datasets (see Table B.7 were then subtracted 

from the daily EWEMBI zonal temperatures to get the daily bias corrected EWEMBI 

temperatures. 

B.8.1.2 Method 02: Quantile Mapping 

1. In this method, a quantile (probability) mapping (Piani et al., 2010a, b)was performed to bias 

correct the EWEMBI temperatures. 

2. First of all, the quantiles were calculated against each temperature for each elevation zone using 

the EWEMBI as well as the station based zonal temperatures (see Method 1).  

3. The probability of daily zonal EWEMBI temperatures was calculated using the curve as shown 

in Figure B.28. These probabilities were then mapped to the station based curve and then 

temperatures were interpolated with the help of linear interpolation against each probability to 

get the temperature time series for each elevation zone. The Table B.8 and Table B.9 summarize 

the details for zonal temperatures based on EWEMBI and station based observed data. 

4. The final comparison between the results of these two methods as well as station and EWEMBI 

based temperatures for an elevation zone can be seen in Figure B.29. There is not much 

difference between the results of these two methods so finally the method 2 was selected to bias 

correct the temperatures because it not only provide the differences but also the same 

distribution. 
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B.9 Bias correction for the GCMs Temperature data 

The available GCMs dataset is bias corrected to the EWEMBI data set. Therefore, it is indeed necessary 

to bias corrected the GCMs temperatures as well because of the bias correction of EWEMBI 

temperatures data with the observed temperature data. It was assumed that the transformation T (and 

thus the correction) between observed and EWEMBI is the same as between observed (station based) 

and the GCMs. 

In bias correcting the GCMs, the difference of EWEMBI temperature data to the observed data has been 

subtracted from the GCMs using the quantile (probability) mapping method as discussed earlier. 

Concerning the tackling of future higher temperatures of the GCMs, the difference between EWEMBI 

and observed data for the highest EWEMBI temperatures has been used as a constant offset for the 

GCMs temperatures outside the present range (Henning et al., 2015). 

B.10 Bias correction for the EWEMBI precipitation 

EWEMBI data strongly underestimate precipitation for the UIB. Average annual precipitation by these 

gridded products for the period (2000 – 2016) has been summarized in Table B.10, In order to see the 

range provided by these gridded products. Therefore, precipitation was bias corrected using the altitude 

correction formula proposed by (Immerzeel et al., 2015). Following method has been applied for 

correcting the EWEMBI precipitation. 

 

The precipitation fields are corrected using Precipitation Gradient PG (%m-1). Precipitation is positively 

lapsed using a PG between a reference elevations (HREF) to an elevation of maximum precipitation 

(HMAX). At elevations above HMAX, the precipitation is negatively lapsed from its maximum at 

HMAX with the same PG according to equation (6 and 7).  

 

𝑃𝑐𝑜𝑟𝑟 = 𝑃𝐴𝑃𝐻𝑅𝑂𝐷𝐼𝑇𝐸  × (1 + (𝐻 − 𝐻𝑅𝐸𝐹)) × 𝑃𝐺 × 0.01)             𝑓𝑜𝑟 𝐻𝑅𝐸𝐹 < 𝐻

≤ 𝐻𝑀𝐴𝑋                                                                                                                  𝐸𝑞. (6) 

𝑃𝑐𝑜𝑟𝑟 = 𝑃𝐴𝑃𝐻𝑅𝑂𝐷𝐼𝑇𝐸  × (1 + (((𝐻𝑀𝐴𝑋 − 𝐻𝑅𝐸𝐹) + (𝐻𝑀𝐴𝑋 − 𝐻)) × 𝑃𝐺 × 0.01)         𝑓𝑜𝑟 𝐻

> 𝐻𝑀𝐴𝑋                                                                                                                                              𝐸𝑞. (7) 

 

Where, HREF=2500 m, HMAX=4500 m for Himalayan and 5500 m for Hindu Kush and Karakoam 

regions. 

Based on the elevation of each grid cell, (Immerzeel et al., 2015) have calculated a correction factor 

using different Median PG values for each of the mountain regions. Median precipitation gradients in 

the Hindu Kush and Karakoram ranges (0.260 and 0.119%m-1) respectively, are significantly larger 

than those observed in the Himalayan range, e.g. 0.044%m-1.  
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In the first step, we applied these equations to the APHRODITE (Yatagai et al., 2012) data for the UIB 

upstream of Tarbela in order to calculate the correction factor for our catchment. The reclassified (0.5°) 

original EWEMBI grid (download: ftp://rfdata:forceDATA@ftp.iiasa.ac.at/) file was used to extract the 

elevation information for each grid cell. 

The corrected APHRODITE precipitation for the UIB using this method is about 578.5 mm/yr for a 

period of 2003 – 2007, while it is 913±323 mm/yr for the same period (Immerzeel et al., 2015). The 

difference in results is because of the consideration of different catchment area.  

Based on this correction of APHRODITE data a bias correction factor of 1.65 (Corrected APHRODITE 

= 578.5 mm/a divided by Uncorrected EWEMBI = 350.9 mm/a) has been estimated for EWEMBI 

precipitation data for the concurrent period (i.e. 2003 – 2007). Finally, bias corrected EWEMBI 

precipitation for the UIB upstream of Tarbela is about 604 mm/a (i.e. Period: 2000 – 2016). This bias 

corrected precipitation is in range comparable to the values found in literature i.e. 675±100 mm/a 

(Reggiani and Rientjes, 2015), 608 mm/a (Khan and Koch, 2018) and 593 mm/a (Shafeeque et al., 

2019) who considered a similar catchment area to the present study. Lastly, the same bias correction 

factor has been applied to the GCMs based precipitation data. 

B.11 Inclusion of Glacier Mass Balance (GMB) in model 

calibration/validation 

In the UIB, the most important discharge component is melt water generation through snow and glacial 

melt. Hence, it is essential to take into account the GMB while simulating discharges in order to prevent 

internal process compensation (Hagg et al., 2006; Finger et al., 2015; He et al., 2018). In case of SRM+G 

model, we have manually adjusted the Degree-Day Factors for glaciers (ag) in order to tune the mass 

balance for the enhanced calibration method. The ag values ranges from 2.5–6.0 mm °C-1 day-1 (see 

Table S3). These values are well within the range as suggested by (Lutz et al., 2016) for the Upper Indus 

Basin (See Table S11). 

In case of VIC-Glacier model, the model parameters related to snow accumulation/ablation such as 

maximum and minimum snow temperature and snow/glacier albedo parameters were set to default 

parameters (hard coded in the code) (see (Cherkauer et al., 2003) for more details). The snow roughness 

length parameter (range of 0.005–10mm) and temperature lapse rate parameter (i.e. temperature lapse 

rate to lapse the mean pixel temperature from the meteorological forcings to each elevation band) were 

manually calibrated which have higher impact on the timings/magnitude of the snowmelt. A higher 

value of the snow roughness length will force the snowmelt to come earlier in the snowmelt season. 

After calibration a final value for the snow roughness length of 5 mm and lapse rate of -6.5°C/km were 

selected based on the higher weighted KGE values for both dry/cold and wet/warm periods (2000–2004 

and 2008–2010, respectively), and comparison of the mean annual glacier mass balance value over the 

UIB for the period of 2000–2016 with observations was done.  

ftp://rfdata:forceDATA@ftp.iiasa.ac.at/
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In addition, bias correction of precipitation and number of elevation bands within a grid cell also has a 

greater impact on the snow accumulation and melt processes in the case of VIC-Glacier model, 

particularly smaller elevation band intervals allow to determine glacier area more accurately within a 

grid cell. With these changes the model predicted lower mass loss (-130 mm/year) compared to -200 

mm/year for the model run without bias-correction of precipitation. 
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Figure B.1 Monthly distribution of discharge volumes at Tarbela [Period: 2000 – 2016]  

 

 

Figure B.2  Hypsometric curve of the UIB. The primary y-axis is showing the glacier and zonal 

area per elevation zone while the secondary y-axis is showing the elevation of different 

meteorological stations within the UIB [GLIMS dataset was used for the glaciers area 

representation] 
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Figure B.3 Implementation of the snow elevation bands and glacier representation in the VIC snow 

model. 
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Figure B.4 Daily snow cover depletion curves for the Upper Indus Basin [Year-2013] – thick lines are 

representing the 9-day moving averages while the thin lines are the original data [Data 

source: MODIS MOD10A1 - C5] 

 

 

Figure B.5 Daily ratio of zonal area to exposed glacier area in the UIB [Year-2009] thick lines are 

representing the 9-day moving averages while the thin lines are the original data [Source: 

GLIMS dataset]  
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Figure B.6 Comparison of the historic [2000–2016] and future [Near: 2011–2040, Mid: 2041–2070 and 

Far: 2071–2099] distribution of monthly snow cover area in the UIB  

 

 

Figure B.7 Subdivision of available data into different climatic periods (dry/cold: 2000–2004, 

wet/warm: 2008–2010) based on the bias corrected EWEMBI temperature and 

precipitation 
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Figure B.8 Results of calibration and validation using SRM+G and VIC-Glacier model for the UIB 

– [conventional calibration 1st facet], [enhanced calibration 2nd to 4th facet] including 

the intermediate gauges (Hunza and Astore) modelled from 2000–2012 while the UIB 

was simulated for 2000–2016. The right side panel is showing the long-term mean 

monthly dynamics 
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Figure B.9 Long term mean monthly comparison of actual evapotranspiration modelled by 

GLEAM vs losses (SRM+G uses runoff coefficients for snow, glacier and rain in order 

to account for the losses) from the SRM+G model [period: 2000–2016]  

 

Figure B.10 Long term mean monthly comparison of actual evapotranspiration modelled by 

GLEAM vs VIC-Glacier model [period: 2000–2016] 
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Figure B.11 Taylor diagram for model performance evaluation in the conventional and enhanced 

calibrations [circles around the observed flow are the centred Root Mean Squared Error 

[m3sec-1] the smaller the better]. Blue dotted circles around the origin show the standard 

deviation SD of observed and modelled flows [m3sec-1]. The nearer the model SD to 

the observed flow’s SD the better. The strait dotted lines represent the anomaly 

correlation between observed and simulated flows. 
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Figure B.12 Evaluation of ensemble mean long-term basin averaged bias corrected precipitation 

(left) and temperature (right) simulated by four GCMs in the UIB for the historical 

[1976 – 2005] as well as three future periods near: 2011 – 2040, mid: 2041 – 2070 and 

far: 2070 – 2099 including two RCPs scenarios: 2.6 and 8.5 
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Figure B.13 Long-term mean monthly simulated discharges for RCPs 2.6 and 8.5 in three future 

periods based on both calibration methods using both HMs (SRM+G has assumed the 

glacier area reduction scenarios with 75% remaining glacier area in the near, 50% in 

the mid and 25% in the far future periods, while VIC-Glacier explicitly model the 

glacier area as a result of glacier ablation within a given elevation zone) 
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Figure B.14 Comparison of SRM+G and VIC-Glacier model for projected long-term hydrological 

changes in the total discharge using the enhanced calibration/validation approach 

(SRM+G, has assumed the glacier area reduction scenarios with 75% remaining glacier 

area in the near, 50% in the mid and 25% in the far future periods, while VIC-Glacier 

explicitly modelled the glacier area as a result of glacier ablation within a given 

elevation zone). 
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Figure B.15 Ensemble mean monthly flows and separation of runoff components for the near, mid 

and far future periods also highlighting glacier area loss scenario [75%, 50% and 25%] 

under both the RCPs using only SRM+G model  

 

Figure B.16 Estimation of glacier mass balance for historical (i.e. 1976 – 2005) and future periods 

(2011 – 2099) based on 4 GCMs using VIC-Glacier and SRM+G hydrological model 
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Figure B.17 Elevation variation within a pixel aggregated to 50km for the western UIB 

 

 

Figure B.18 EWEMBI elevation pixels covering the Upper Indus Basin 
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Figure B.19 Comparison of pixels elevation between aggregated 30m SRTM (Median) and original 

EWEMBI grid 

 

 

Figure B.20 Regression analysis between the EWEMBI elevation grid vs EWEMBI temperatures 

(Tavg) (hollow circles = EWEMBI data and Red points = observed data (Tavg)) 
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Figure B.21 Comparison of observed data (Tavg at Khunjerab 4730m a.s.l.) vs EWEMBI temperature 

(using the daily lapse rate which was obtained from the regression analysis between the 

EWEMBI elevation grid vs EWEMBI temperatures) 

 

 

Figure B.22 Hypsometric curve and area per elevation zone for the Upper Indus Basin 
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Figure B.23 Long-term mean annual temperature lapse rate [Base station: Skardu] 

 

 

Figure B.24 Daily regression analysis between the station elevations and average temperatures 
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Figure B.25  Daily regression analysis between the EWEMBI elevation grid vs EWEMBI 

temperatures – UIB west [Red dots are representing the stations] 

 

 

Figure B.26  Daily regression analysis between the EWEMBI elevation grid vs EWEMBI 

temperatures – whole UIB [Red dots are representing the stations] 
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Figure B.27 Comparison of daily temperature lapse rate for western UIB, whole UIB and stations 

 

 

Figure B.28 Probability mapping for the EWEMBI and station based zonal temperature 
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Figure B.29 Comparison of zonal bias corrected (Method-1 & Method-2) temperature with the 

EWEMBI and stations based temperature   
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Table B.1 Main components and methods used by the two hydrological models used in the study 

Hydrological Models 

Model Features SRM+G VIC-Glacier 

Spatial type 
Lumped elevation zones, 11 

elevation zones of 500m each 

Grid cells (0.25°), sub-grid 

heterogeneity (8 elevation 

bands and land cover classes 

and initial glacier thickness) 

Input climate data 

Temperature, Precipitation, Snow 

cover area and Glacier exposed 

area  

Temperature, Precipitation, 

Humidity, Wind speed, 

Shortwave and Longwave 

Radiation 

Soil representations  NA 3 soil layers and 19 parameters 

Calculation of potential 

evapotranspiration 
Represented in runoff coefficients Penman-Monteith 

Snowmelt calculation method Degree-day 
Two snow layer energy 

balance  

Glacier melt calculation 

method 
Degree-day One layer energy balance 

Runoff routing method  Non-constant recession approach 
Linearized St. Venant 

equations 

Calibration/validation 

approaches 

1. Conventional 

2. Enhanced 
1. Conventional 

2. Enhanced 

Parameters 

1. Temperature Lapse Rate 

2. Recession Coefficients 

3. Critical Precipitation 

4. Lag Time 

5. Critical Temperature 

6. Rainfall Contributing Area 

7. Runoff coefficient – snow, 

rain, glacier 

8. Degree-Day Factor – snow, 

glacier 

1. Ds (base flow 

parameter) 

2. DSmax (maximum 

base flow that occur 

from the lowest soil 

layer) 

3. Snow roughness 

length  

4. Ws (the fraction of the 

maximum soil 

moisture of the lowest 

soil layer) 

5. bi (Variable 

infiltration  parameter 

Gauging stations  

1. Indus @ Tarbela 

2. Hunza@ Daniyor 

3. Astore @ Doyian 
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Table B.2 Area and percentage of glaciers by elevation zone [GLIMS dataset was used for the 

glaciers area representation] 

Elevation 

Zone 

Altitude 

[m a.s.l.] 

Zonal Area 

[km2] 

Glacier Area 

[km2] 

Glacier Area 

[%] 

1 - 3 ≤ 2000 9554 – – 

4 2500 4395 1.0 0.01 

5 3000 5690 39.9 0.19 

6 3500 9998 213.0 1.01 

7 4000 16183 659.1 3.14 

8 4500 28845 1750.1 8.33 

9 5000 39473 3928.4 18.70 

10 5500 37819 6065.6 28.88 

11 ≥ 5500 21388 8346.9 39.74 
 Total 173345 21004.0 100% 

Table B.3 SRM+G model parameters used for the calibration and validation 

Parameters Symbol Value Units Remarks 

Temperature Lapse-Rate γ 6.0 °C km-1  

Recession Coefficient  kx 

 

ky 

1.050 

 

0.015 

0.019 

0.020 

0.100 

0.017 

– 

constant 

 

January – March 

April – May 

June - July 

August – September 

October - December  

Critical Precipitation Pcrit 1 cm constant 

Lag Time  L 45 

18 

18 

h UIB @ Tarbela 

Hunza @ Daniyor 

Astore @ Doyian 

Critical Temperature Tcrit 0.5–3.0 °C variable 

Rainfall Contributing Area RCA 0 

1 
– 

November – March  

April – October 

Runoff Coefficient - Snow  cS 0.80 – constant 

Runoff Coefficient - Glacier  cG 0.70 – constant 

Runoff Coefficient - Rain cR 0.40–0.60 – variable 

Degree-Day Factor - Snow αS 1.0–7.0 mm °C-1d-1 variable 

Degree-Day Factor - Glacier aG 2.5–6.0 mm °C-1d-1 variable 

Note: Degree-day factors (snow and glaciers) and critical temperature (which bifurcates the falling precipitation 

between snow and rain) are not constant parameters but they are varied on monthly basis depending upon 

prevailing temperature in the catchment. These ranges are also available in the literature (e.g. Tahir et al. 2011, 

Ismail and Bogacki 2018, Hayat et al. 2019) for the UIB and its sub-catchments. 
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Table B.4 Comparison of results for Glacier Mass Balance (GMB) for the calibration/validation 

period (i.e. 2000–2016) in present study to other studies 

 Glacier Mass Balance [mm w.e. yr-1] 

Reference Period Karakoram 

Kääb et al. (2015) 2003–2009 -100 ± 60 

Braun et al. (2017) 2000–2016 -30 ± 70 

Bolch et al. (2017) 1999–2009 -80 ± 210 

Lin et al. (2017) 2000–2014 -101 ± 58 

Muhammad et al. (2019) 2000–2016 -30 ± 170 

Present Study 2000–2016   

SRM+G  -98 

VIC-Glacier  -83 

 

Table B.5 Differences between mean monthly and mean annual impacts (as presented in Figures. 

4.2a and 4.2b) based on two model parameterizations after the conventional and 

enhanced calibration/validation methods 

 

Monthly 
Enhanced - Conventional [RCP2.6] Enhanced - Conventional [RCP8.5] 

2011−2040 2041−2070 2071−2099 2011−2040 2041−2070 2071−2099 

Jan 2.9% 2.3% 2.2% 1.5% 2.4% 3.0% 

Feb 0.9% 0.4% 0.9% -0.7% -1.0% -2.7% 

Mar -2.8% -2.9% -3.5% -3.0% -8.2% -17.2% 

Apr 0.9% 1.6% 1.5% 0.6% 3.6% 3.3% 

May 3.5% 5.6% 5.9% 3.5% 3.9% -2.1% 

Jun 3.8% 6.2% 7.4% 3.6% 2.4% -5.7% 

Jul 1.6% 3.6% 6.3% 1.4% 3.7% 6.5% 

Aug 1.5% 3.0% 4.2% 0.5% 3.8% 6.9% 

Sep 2.6% 3.4% 4.6% 0.7% 3.2% 8.1% 

Oct 6.3% 6.9% 7.5% 2.6% 8.0% 18.9% 

Nov 6.3% 7.3% 8.6% 4.3% 9.3% 17.6% 

Dec 5.6% 3.3% 4.1% 2.6% 3.7% 5.7% 

Annual 

Enhanced - Conventional [RCP2.6] Enhanced - Conventional [RCP8.5] 

2011−2040 2041−2070 2071−2099 2011−2040 2041−2070 2071−2099 

6.3% 8.1% 9.4% 5.5% 8.2% 10.0% 

 

Table B.6 List of the hydro-meteorological data sets, providing agencies as well as location and 

altitude of the stations 

Sr. No. 

Station  

Name 

Station  

Type Period 

Data  

Agency 

Latitude 

[degrees] 

Longitude 

[degrees] 

Altitude  

[m a.s.l.] 

1 Skardu Meteorological 2000 - 2012 PMD 35.30 75.68 2317 

2 Astore Meteorological 2000 - 2012 PMD 35.37 74.90 2168 

3 Hunza Meteorological 2000 - 2012 PMD 35.32 74.65 2156 

4 Gilgit Meteorological 2000 - 2012 PMD 35.92 74.33 1460 

5 Chilas Meteorological 2000 - 2012 PMD 35.42 74.10 1250 

6 Khunjrab Meteorological 2000 - 2012 WAPDA 36.84 75.42 4730 

7 Burzil Meteorological 2000 - 2012 WAPDA 34.90 75.16 4310 

8 Deosai Meteorological 2000 - 2012 WAPDA 35.09 75.54 4240 
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9 Ziarat Meteorological 2000 - 2012 WAPDA 36.77 74.46 3669 

10 Shendure Meteorological 2000 - 2012 WAPDA 36.09 72.55 3712 

11 Rama Meteorological 2000 - 2012 WAPDA 35.36 74.81 3344 

12 Yasin Meteorological 2000 - 2012 WAPDA 36.40 73.50 3280 

13 Naltar Meteorological 2000 - 2012 WAPDA 36.17 74.18 2898 

14 Rattu Meteorological 2000 - 2012 WAPDA 35.15 74.80 2920 

15 Shigar Meteorological 2000 - 2012 WAPDA 35.63 75.53 2560 

16 Shangla Meteorological 2000 - 2012 WAPDA 34.88 72.59 2240 

17 Tarbela Discharge 2000 - 2016 WAPDA 34.33 72.86 475 

18 Daniyor Discharge 2000 - 2012 WAPDA 74.38 35.93 1370 

19 Doyian Discharge 2000 - 2012 WAPDA 35.55  74.70  1583 

 

PMD = Pakistan Meteorological Department. 

WAPDA = Water and Power Development Authority Pakistan. 

 

Table B.7 Monthly temperature bias correction for each elevation zone 

Bias Correction - Tavg 

Elevation zones z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 

Mean elevation [m a.s.l] 749 1255 1755 2266 2767 3272 3769 4272 4754 5240 5771 

Jan 0.26 0.61 0.73 0.81 1.26 2.08 2.90 3.75 4.46 5.22 5.75 

Feb -1.38 -1.02 -0.79 -0.41 0.28 1.37 2.40 3.52 4.51 5.53 6.37 

Mar -2.35 -1.75 -1.15 -0.30 0.71 2.10 3.31 4.47 5.43 6.59 7.72 

Apr -2.14 -1.78 -1.33 -0.56 0.35 1.66 2.76 3.88 4.81 5.91 7.00 

May -1.58 -1.66 -1.61 -1.29 -0.68 0.32 1.20 2.25 3.14 4.11 5.01 

Jun -2.23 -2.26 -2.11 -1.69 -0.95 0.22 1.25 2.62 3.81 4.97 6.10 

Jul -4.91 -4.46 -3.70 -2.65 -1.45 0.16 1.52 3.17 4.58 5.98 7.52 

Aug -5.44 -4.85 -3.99 -2.87 -1.67 -0.12 1.19 2.70 3.95 5.27 6.77 

Sep -2.90 -2.61 -2.12 -1.34 -0.38 1.00 2.13 3.43 4.52 5.68 6.92 

Oct -1.53 -0.97 -0.43 0.29 1.11 2.26 3.21 4.01 4.55 5.41 6.34 

Nov -1.07 -0.54 -0.18 0.20 0.78 1.70 2.51 3.22 3.71 4.44 5.11 

Dec 0.53 0.93 1.06 1.18 1.62 2.43 3.19 3.89 4.42 5.07 5.53 

 

Table B.8 Probability mapping for zonal temperature – EWEMBI based 

Elevation zone z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 

Mean elevation [m asl] 749 1255 1755 2266 2767 3272 3769 4272 4754 5240 5771 

Probability [%]            

0 4.2 0.8 -3.2 -7 -9.8 -12.7 -15.2 -17.2 -20.6 -24.3 -28.7 

5 8.9 5.9 2.5 -0.9 -3.8 -6.3 -8.7 -11.2 -13.7 -16.2 -19.3 

10 10.1 7.1 3.9 0.8 -2 -4.5 -7 -9.4 -11.9 -14.4 -17.4 

15 11.1 8.2 5.2 2.1 -0.7 -3.1 -5.5 -8 -10.6 -13 -15.9 

20 12.2 9.3 6.3 3.4 0.7 -1.7 -4.1 -6.6 -9.1 -11.5 -14.35 

25 13.6 10.7 7.8 4.7 2 -0.4 -2.8 -5.2 -7.7 -10.1 -12.8 

30 14.9 12 9 6 3.4 1.1 -1.3 -3.9 -6.4 -8.7 -11.5 

35 16.1 13.2 10.3 7.4 4.8 2.4 0 -2.5 -5.1 -7.5 -10.2 

40 18 14.9 11.9 9 6.4 4.2 1.7 -0.9 -3.5 -5.9 -8.7 

45 19.6 16.5 13.5 10.6 7.9 5.6 3.1 0.6 -2 -4.4 -7.2 

50 21.2 18 14.9 12 9.3 6.9 4.5 1.9 -0.7 -3.2 -5.8 

55 22.6 19.4 16.2 13.3 10.6 8.2 5.7 3.2 0.7 -1.7 -4.4 



Article supplementary materials - Appendix 

 

172 

60 23.9 20.7 17.5 14.55 11.8 9.4 7 4.6 2.2 -0.2 -3 

65 24.8 21.8 18.8 15.8 13.1 10.8 8.3 6 3.7 1.2 -1.5 

70 25.6 22.6 19.8 16.9 14.3 12.1 9.7 7.3 4.9 2.7 0.1 

75 26.3 23.3 20.5 17.8 15.4 13.1 10.8 8.8 6.6 4.6 2.2 

80 26.9 23.9 21.1 18.5 16.1 14.1 12 10 8.1 6.1 3.8 

85 27.6 24.5 21.7 19.2 16.9 15 13 11.2 9.3 7.4 5.3 

90 28.6 25.4 22.5 20 17.7 15.8 13.9 12.1 10.2 8.4 6.4 

95 29.8 26.5 23.5 21 18.8 16.9 14.9 13.1 11.2 9.4 7.5 

100 36.8 32.5 28.3 24.9 22.9 21 18.9 16.6 14.3 12.4 10.7 

 

Table B.9 Probability mapping for zonal temperature – Station based 

Elevation zone z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 

Mean elevation [m asl] 749 1255 1755 2266 2767 3272 3769 4272 4754 5240 5771 

probability            

0 5.1 2.3 -1.6 -5.7 -9.7 -13.7 -17.7 -21.6 -25.5 -29.3 -33.9 

5 8.6 5.5 2.4 -0.9 -4.4 -7.8 -11.4 -15.0 -18.5 -22.1 -26.1 

10 9.9 6.6 3.4 0.1 -3.2 -6.5 -9.9 -13.4 -16.8 -20.1 -24.0 

15 11.4 7.9 4.5 1.2 -2.0 -5.3 -8.6 -12.0 -15.3 -18.6 -22.2 

20 13.1 9.7 6.2 2.7 -0.7 -4.1 -7.4 -10.7 -13.9 -17.0 -20.6 

25 14.6 11.2 7.8 4.3 0.9 -2.6 -5.9 -9.1 -12.4 -15.6 -19.2 

30 16.2 12.7 9.2 5.7 2.3 -1.0 -4.4 -7.8 -11.0 -14.2 -17.8 

35 18.0 14.5 11.0 7.6 4.1 0.6 -2.8 -6.1 -9.4 -12.7 -16.1 

40 19.7 16.3 12.8 9.2 5.7 2.3 -1.2 -4.6 -8.0 -11.3 -14.9 

45 21.2 17.8 14.4 10.8 7.4 3.8 0.4 -3.0 -6.4 -9.8 -13.5 

50 22.6 19.1 15.7 12.2 8.7 5.3 1.8 -1.7 -5.1 -8.4 -12.1 

55 24.1 20.6 17.2 13.7 10.3 6.8 3.4 -0.1 -3.5 -6.9 -10.6 

60 25.4 22.1 18.7 15.2 11.8 8.3 4.9 1.4 -1.9 -5.3 -9.0 

65 26.8 23.4 20.0 16.6 13.1 9.7 6.2 2.8 -0.5 -3.8 -7.5 

70 28.3 24.8 21.4 17.9 14.5 11.0 7.5 4.0 0.8 -2.6 -6.2 

75 29.5 26.1 22.8 19.2 15.8 12.4 9.0 5.6 2.3 -1.1 -4.8 

80 30.8 27.3 23.8 20.4 17.1 13.7 10.4 6.9 3.7 0.3 -3.2 

85 32.0 28.5 25.1 21.6 18.2 14.9 11.5 8.2 5.0 1.8 -1.7 

90 33.2 29.7 26.2 22.6 19.3 15.9 12.7 9.4 6.4 3.3 -0.1 

95 35.0 31.4 27.8 24.3 20.8 17.4 14.1 10.9 7.9 4.8 1.7 

100 40.0 36.0 32.2 28.4 24.6 21.4 18.4 15.6 13.0 10.3 7.5 

Table B.10 Comparison of annual precipitation totals averaged for the UIB from Gridded 

precipitation products [period: 2000–2016] 

Precipitation Product Precipitation [mm yr-1] 

EWEMBI 366.2 

RFE v2.0 Central Asia 789.5 

MERRA-2 262.9 

APHRO_MA_V1101* 253.3 

APHRO_MA_V1901 408.5 

TRMM_3B42_v7 344.0 

CMORPH_bld 185.7 

ERA-interim 751.2 

* period: 2000 - 2007 
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Table B.11 Literature based ranges of the parameters used in the models calibration in the Upper 

Indus Basin 

Model Source Parameter  Range 

SRM+G Lutz et al. (2016) DDF (debris-covered glaciers) 5.0–8.0 mm °C-1 day-1 

 DDF (debris-free glaciers) 2.0–4.5 mm °C-1 day-1 

VIC-Glacier Cherkauer et al. (2003) Snow roughness length 0.005–10mm 

 De Scally, F. A., (1997) Temperature lapse rate -9.0– -6.5 °C/km  
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