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Abstract

Learning Aerosol Features from Image Data

This project is aimed at extracting information related to the spread of aerosols
directly from image data. This application is particularly interesting in monitoring the
spread of infections through air. We can track the growth of the aerosol cloud through
time and obtain useful information.

Obtaining image data by performing experiments with human subjects in a controlled
experiment is a challenging task. We instead rely on simulations which offer us greater
control over the aerosol parameters, as well as providing metadata automatically. These
simulations can be generated using a 3D rendering software, like Blender.

Once the image and ground truth data has been obtained, we train a U-Net, which is
an encoder-decoder based architecture for image segmentation. It uses convolutions,
transposed convolutions, and max pooling layers, along with skip connections. We
can train the U-Net to focus only on the aerosol cloud and not on the human subject
or other objects in the image. Using the segmented image, we can track the aerosol
temporally and extract features.
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1. Introduction

Understanding aerosol dynamics is important for several applications, including the
spread of infectious air-borne diseases, but also for fuel injection in combustion engines
or airflow through jet engines. In most of these applications, the dynamics cannot be
observed on a microscopic (aerosol) level, but only on a relatively coarse, macroscopic
level. This is often done by rapid imaging of a controlled experiment, for example,
a human exhaling white, illuminated smoke in an otherwise dark room. Aerosol
dynamics can be described by (partial) differential equations that are well known, but
relatively challenging to integrate numerically. Several additional effects need to be
taken into account, such as aerosol-air and gas-fluid-structure interactions (the aerosol
interacts with the surrounding air, which is also influenced by the geometry of a face
shield, for example) and head pose of the person.

This project is aimed at learning aerosol dynamics directly from image data. The
image dataset can be obtained from breathing experiments with humans, studying the
effectiveness of masks and face shields. This is a very challenging task. The lack of a
large amount of (labelled) training data means (crude) numerical simulations of the
aerosol have to be performed as well, to construct an abundance of synthetic training
data. We can create our synthetic dataset using a 3D rendering software like Blender,
which will provide us metadata like pose and ground truth labels out of the box. As
the imaging of breathing out aerosols is typically quite coarse and focused on the entire
cloud, individual aerosol dynamics probably cannot be extracted. Instead, the focus
of the project is on the dynamics of the volume and extent of the entire cloud. We
can track the growth or decay of the aerosol through time. Later, the dynamics can
be modelled either with ordinary or stochastic differential equations, which can be
learned using neural networks.

We will begin by creating several aerosol simulations in Blender, which will help us
generate a large synthetic dataset. Variability in the simulations will be introduced
by tuning the fluid simulation parameters like horizontal and vertical speed. We will
also add turbulence to some simulations to generate different aerosol growth patterns.
Additional variability will be introduced by performing the simulations for different
people. Blender allows us to generate image masks in parallel, which contain only the
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1. Introduction

aerosol simulation. The person is not recorded in the image masks.

Once the dataset is obtained, we will train our neural network for performing the
image segmentation task. We will train a U-Net [RFB15] for this task. It is a CNN
[L+95] based encoder-decoder based architecture. U-Net is known for its impressive
performance on binary image segmentation tasks, even when there is a lack of training
data. We will then perform several experiments by training our U-Net on different
datasets and evaluate its performance on several testing sets. We will use our final
trained model to generate the segmentations for unseen images, which we can then use
to study the evolution of the aerosol cloud in different scenarios.

In the future, this work can be extended to study the effects of the pose of the person
and their head on the aerosol growth. This can be done using existing pose estimation
software like MediaPipe1 or OpenPose2 [Cao+18]. Other effects like different camera
angles, face coverings (masks, face shields etc.) and types of exhaling (breathing,
speaking, singing etc.) can also be studied. Finally, we can learn a numerical model
in the form of a neural network that can predict volume and shape dynamics of the
aerosol.

1https://mediapipe.dev/
2https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/index.html
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2. Generating Synthetic Dataset Using
Blender

In this chapter, we take a look at the tools and methodologies we have used to generate
the synthetic dataset which we will use later to train our model.

2.1. Obtaining Human Images for Simulations

For obtaining a human agnostic model which is able to easily identify the aerosol
cloud irrespective of the person in the simulation, we sourced images from 22 different
persons with different skin stones, hair style and color, clothes etc. Their images were
either obtained along with their consent, or from websites which provide free to use
images1,2. Before these images can be used in the simulation, we need to remove the
background and retain only the person in the foreground. In figure 2.1, we can see a
sample image before and after removing the background.

2.2. Setting up the Scene in Blender

We require three basic components in our Blender scene to setup the simulation. The
first is an image placeholder, which will allow us to reuse the same simulation for
different persons. The second component is a smoke flow object, which controls the
physics behind generating the aerosol. We can tune several parameters which determine
the smoke behavior like smoke density, color, geometry, texture etc. We will use white
smoke and only tune the initial speed in the horizontal and vertical directions. The
final component is the turbulence component, using which we can add some noise to
the aerosol cloud. Tuning its parameters(strength, size and flow) can help us generate
interesting smoke patterns.

1https://unsplash.com/
2https://www.pexels.com/
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2. Generating Synthetic Dataset Using Blender

(a) Original Image (b) After removing background

Figure 2.1.: Human image before and after removing the background

2.3. Creating the Simulations and Exporting Images

Once we have setup the scene, we can use Blender’s animation tools to bake the
animation with the given parameters. We create 7 different simulations for each person.
Each simulation was run for 30 frames, generating 30 images. We ran each simulation
for 22 persons, giving a total of 22 x 7 = 154 scenarios, and a total of 4620 images. One
such scenario is shown in figure 2.2.

t = 1 t = 10 t = 20 t = 30

Figure 2.2.: Sample scenario

Apart from the simulation images, we need to generate the image masks as well.
These masks will contain only the aerosol cloud and not the person. These masks will
serve as the ground truth images when we train our image segmentation model. We
separate our smoke flow and turbulence objects and the image placeholder in separate
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2. Generating Synthetic Dataset Using Blender

layers, and using Blender’s compositor, we can render the two layers in parallel and
export the images. In figure 2.3, we can see a few simulation and image masks which
were generated in parallel.

Figure 2.3.: Simulations and corresponding masks

Now that we have our dataset, we can proceed to train our model using different
combinations of scenarios as training and test sets, and then evaluate the model
performance.
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3. U-Net Architecture

In this chapter, we will discuss the U-Net architecture for image segmentation tasks.
We will begin by introducing the basic Convolutional Neural Network. Then we will
look at the U-Net architecture and the novel concepts it introduced which helped it
achieve a significant improvement over other contemporary methods on the ISBI cell
tracking challenge 20151. Finally, we will see how U-Net is not limited to biomedical
image segmentation and can achieve good performance on generic image segmentation
problems as well.

3.1. Convolutional Neural Networks

3.1.1. Need for CNNs

Using fully connected neural networks for image related tasks is possible, but it also
comes with a few drawbacks:

• Fully connected networks don’t scale well for large images. Even tiny images
with multiple color channels can result in a large number of parameters, and
the size of the network quickly becomes very large and impractical. The huge
number of parameters will also lead to overfitting.

• Using FC layers for images does not provide us with any structure.

• Optimizing such networks is also very hard and computationally expensive.

• The network has too many degrees of freedom.

CNNs are often used for tasks like image classification, object localization, object
detection and instance segmentation. Convolutional layers provide a more structured
approach to the network. Each layer has a specific function for e.g. identifying a certain
set features like edges, or more complex features like eyes, nose etc. in case of facial
recognition.

1http://celltrackingchallenge.net/
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3. U-Net Architecture

3.1.2. The Convolution Operator

In mathematics, a convolution is an integral that blends one function with another. It
expresses the amount of overlap of one function as it is shifted over another function. In
the case of a 2D image with one channel, we use filters or kernels which are convolved
with the original image in a sliding window fashion, as shown in figure 3.12. The result
of the convolution with one filter is a single feature/activation map with a depth of
one. In a typical convolution layer, we apply multiple filters with different weights,
each producing a single feature map which gives the responses of that filter at every
spatial position.

Figure 3.1.: Convolution on a single channel image

Applying several filters allows us to extract different features, and also reduce the
spatial size of the image, reducing the number of parameters. These filters are learned
via backpropagation.

3.1.3. Max Pooling Layer

Pooling layers progressively reduce the spatial size of the representation to reduce
the number of parameters and computation in the network, and hence also control
overfitting. They are commonly inserted in between successive convolution layers. The
pooling layer operates independently on every depth slice of the input and resizes it
spatially. The most common is a max pooling layer with filters of size 2x2 applied with
a stride of 2 which downsamples every depth slice input by 2 along both width and

2Image Source: https://towardsdatascience.com/simple-introduction-to-convolutional-neural-
networks-cdf8d3077bac
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3. U-Net Architecture

height, discarding 75% of the activations. Max pooling operation can be seen in figure
3.23.

Figure 3.2.: Max Pool operation

3.1.4. Transposed Convolutions

Transposed convolutions can be thought of as the inverse operation of the regular
convolution. It allows us to increase the size of the output feature map compared to
the input feature map.

3.2. Architecture of U-Net

U-net has an autoencoder like structure i.e., it has an encoder and a decoder part in
the architecture, as shown in figure 3.34. The left half is called the contracting path,
the right half is called the expansive path and the grey arrows are called the skip
connections. We also make use of Batch Normalization, which helps in stable learning.

• Contracting Path: In the contracting path, we perform 3x3 convolutions twice
(with ReLU activation). This is followed by downsampling through a max pooling
layer with filters of size 2x2 and stride 2. We perform this series of operations
a total of 4 times. As we progress through the contracting path, the spatial size
decreases whereas the number of channels increases. We are essentially reducing
the spatial resolution, while increasing the semantic resolution. Successive appli-
cation of convolution and pooling layers results in an image representation with

3Image Source: https://cs231n.github.io/convolutional-networks/
4Image Source: https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

8



3. U-Net Architecture

high semantic resolution and low spatial resolution at the bottom of the U-Net.
This gives us a rich representation with higher level information and features
about the image, but it lacks spatial information.

• Expansive Path: In the expansive part, we perform 3x3 convolutions twice to
reduce the number of feature maps, followed by 2x2 transposed convolutions
which double the size of the image (height and width dimensions). This helps us
in recovering the size of the original image.

Figure 3.3.: U-net architecture

• Skip Connections: The stored information from the encoder part is passed to
the decoder by skip connections. These skip connections help us pass spatial
information into the deeper layers. The feature maps at the same level of the
U-Net in the encoder part (spatial information) are passed to the decoder part,
where they are combined with the upsampled output (semantic information) of
the previous layer. This concatenation of feature maps helps give localization
information.

9



3. U-Net Architecture

• Classification Layer: In the final step, we have a representation of the image
which we need to map to a segmentation map. Since we have a binary classifi-
cation problem, we will map it to 2 channels. We need to have one channel per
class. This is done using a 1x1 convolution layer which is equivalent to a fully
connected layer. It acts as a weighted sum over the channels of the input feature
map. We will do 2 1x1 convolutions in the final layer which will give us two
feature maps as output. One feature map will correspond to the foreground and
the other to the background. Finally, we apply a softmax to the final feature map
of depth 2, which gives us probability scores for each pixel over all the possible
classes (2 in this case).

3.3. Application in Image Segmentation

In the semantic segmentation problem, we have an image as input and then we try to
assign each pixel in the image a class label. This is called a segmentation map. It is a
kind of classification problem which is applied to each pixel. In our case, we have a
binary semantic segmentation problem. Each pixel in the image will be classified as
being foreground (part of aerosol) or the background.

U-Net achieves really good performance even with low amounts of data with aug-
mentation. It is able to handle almost touching objects of the same class i.e., can detect
fine boundaries between objects of same class.

U-Net has been widely used for pixel-wise image segmentation for medical images,
satellite images etc. Its performance can be improved by using a pre-trained encoder,
which can be trained on a large data set like ImageNet[IS18]. It has also been used to
solve the pansharpening problem of remote sensing images [Yao+18]. U-Net can also
be expanded to work with 3D volumetric data to generate dense 3D segmentations
from sparsely annotated volumetric images [Çiç+16]. This was done by replacing all
2D operations of the original U-Net by their 3D counterparts.

3.4. Data Preparation and Augmentation

Our original dataset contains RGB images of size 1080 x 1920. We re-scale them to a
size of 160 x 240, because of computational constraints. The ground truth masks are of
the same dimensions, but contain only one channel. Each pixel here is either 0 or 1.
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3. U-Net Architecture

To add more variability to our dataset, we have used the Albumentations library 5

for data augmentation. It provides a rich variety of image transform operations which
can be easily applied. We have used image rotations, horizontal flip, and Gaussian blur.
These transformations lead to scenarios which are realistic and we can expect to see
them in the real world. Figure 3.4 shows some images after applying the transforma-
tions.

Rotation Horizontal Flip Horizontal Flip
+ Rotation + Gaussian Blur

Figure 3.4.: Sample Simulation

5https://albumentations.ai/
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4. Experiments and Results

In this section, we will train several models with different trainingdata, and evaluate
their performance on different combinations of test data. Then we will choose the
best performing model which generalizes well and use it to identify aerosol clouds on
unseen images. Finally, we will see the evolution of the aerosol clouds with respect to
time.

4.1. Evaluation Metrics

In this section, we will take a look at the metrics we have used to evaluate the perfor-
mance of our model on unseen data.

4.1.1. Pixel Accuracy

Pixel accuracy determines the percentage of pixels in the image that are classified
correctly. It is conceptually easy to understand, but it is not a very reliable metric. In
cases where there is a class imbalance in the image (no. of background pixels >> no.
of foreground pixels), a trivial solution like predicting the background class for every
pixel will give a high accuracy. A high pixel accuracy does not always imply a superior
segmentation. The formula for pixel accuracy is given below in figure 4.21.

Figure 4.1.: Pixel Accuracy formula

1Image Source: https://www.mydatamodels.com/learn/how-good-is-your-machine-learning-
algorithm/
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4. Experiments and Results

4.1.2. Dice Coefficient

Dice Coefficient or Dice Score is defined as twice the area of overlap between the
prediction and ground truth image divided by the total number of pixels in both the
images. It is a much more reliable and robust measure. Its value ranges from 0 to 1. A
value closer to 0 indicates that the overlap between the prediction and ground truth is
very small i.e. the prediction is not good. As the value moves closer to 1, the overlap
between the prediction and ground truth also increases. Simply put, the closer the
value is to 1, the better the prediction. The formula for calculating the Dice Coefficient
and the intuition behind it is illustrated in figure 4.32.

Figure 4.2.: Dice Coefficient Formula

4.2. Experiment 1

In our first experiment, we use a single simulation on a single person. We split our
30 image dataset into 80-10-10 training-validation-test sets. This gives us a 24 images
for training, with 3 for validation and 3 for testing. As expected, our model achieves
impressive results even with the small amount of training data, since we made use of
data augmentation. We achieved a test set accuracy of 99% and a Dice score of 0.98.

4.3. Experiment 2

In our second experiment, we use the model trained in experiment 1 and test it on
another simulation of the same person. The test set in this case has 30 images. We
observe that our accuracy improves slightly, but there is a decrease in the Dice score.

2Image Source: https://towardsdatascience.com/metrics-to-evaluate-your-semantic-segmentation-
model-6bcb99639aa2
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4. Experiments and Results

We achieved an accuracy of 99.6% and a Dice score of 0.93. This experiment indicates
that we need to a more diverse training set.

4.4. Experiment 3

In this experiment, we try to understand the generalization power of a model trained
on a simulation of just one person. We will use our previous model on a comparatively
large testing set containing 2310 images (7 simulations with 11 different persons i.e.
77 different scenarios). As expected, our accuracy and Dice score drop further. We
achieve an accuracy of 98.7% and the Dice score drops to 0.88. Our model is not able to
generalize to all the scenarios in the testing set. Particularly, in cases where the person
is wearing light colored clothing, have grey or blonde hair, or light is reflecting off the
person’s face, the model gets confused and classifies it as part of the aerosol cloud.

4.5. Experiment 4

In our fourth experiment, we split our previous 2310 image dataset using an 80-10-10
training-validation-testing scheme. The images are sampled randomly for the training,
validation and test sets, so we have a good mix of images from different scenario.
Training on such a diverse dataset yields good results as we achieve a test set accuracy
of 99.9% and a Dice score of 0.992.

4.6. Experiment 5

In our final experiment, we try to understand the generalization power of our model
trained on a diverse dataset. The results of this experiment will tell us whether U-Net
is appropriate for our particular problem or not. We use our model from experiment 4
and test it on simulations for 11 different persons. These simulations are completely
unseen by the model. We achieve virtually the same metrics as we did in the previous
experiment, a test set accuracy of 99.9%, and a Dice score of 0.992.

The results of the experiments are compiled in table 4.1. Based on these results, we
can confidently say that our U-Net model has been able to generalize well to unseen
data. We have trained it on a diverse dataset along with augmentations, and this has
allowed our model to identify aerosols in unseen images with good results.

14



4. Experiments and Results

Experiment No. Accuracy Dice Score
1 99.01% 0.983
2 99.66% 0.93
3 98.76% 0.879
4 99.93% 0.992
5 99.94% 0.993

Table 4.1.: Results of the experiments

4.7. Study of Aerosol Cloud Growth with Time

Now that we have trained and tested our model, we can use it for the inference stage.
In particular, we will take a look at two scenarios to visualize the performance of our
model. The predictions made by the model are overlaid over the original image in
red. In the first scenario, shown in figure 4.3, we can see that the prediction is able to
identify the aerosol and its boundaries.

t = 1 t = 10 t = 20 t = 30

Figure 4.3.: Model predictions overlaid on original images for Scenario 1

In the second scenario, shown in figure 4.4, the model prediction suffers because of
the light colored hair, which is being detected as a separate aerosol cloud. Our model is
detecting the original aerosol cloud well, but it is also detecting a false positive cloud,
which is actually the hair of the person. But as the simulation proceeds and the size
of the aerosol cloud increases, the model puts more emphasis in detecting the ground
truth cloud and the size of the false positive cloud decreases, giving better performance.

We can now track the growth of the aerosol cloud in any simulation. We tracked the
aerosol growth for the 7 simulations for each person. In figure 4.5, we have plotted the
aerosol cloud growth with time for each person.

Since the simulations we have created are same across different persons, we would

15



4. Experiments and Results

t = 1 t = 10 t = 20 t = 30

Figure 4.4.: Model predictions overlaid on original images for Scenario 2

expect the aerosol cloud growth plots to also be same across persons. Our plots show
that it is indeed true, with only minor differences observed. The general trends are
pretty similar across all persons.

The first three simulations (1 to 3) had a linear growth of the aerosol cloud, and our
plots show that this behaviour is captured by our model. In the rest of the simulations
(4 to 7), we added different amounts of turbulence, leading to nonlinear growth of
the aerosol cloud. Our model is also able to capture this nonlinear growth as well, as
shown in the plots.

16



4. Experiments and Results

Person 1 Person 2 Person 3

Person 4 Person 5 Person 6

Person 7 Person 8 Person 9

Person 10 Person 11

Figure 4.5.: Aerosol cloud growth with time
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5. Conclusion

Understanding the dynamics of aerosols and how they behave in the real world has
several applications, especially in predicting the spread of air-borne diseases. However,
training such a model requires a diverse dataset. Generating synthetic data is a fast
growing and popular way for training machine learning models. When compared with
the alternative of capturing data from experiments with willing human participants,
this method can be very efficient, flexible and cost-effective.

In this project, we have demonstrated that we can create realistic simulations of
aerosol spread using Blender. Using a software for this purpose allowed us to simulate
several different scenarios, which would not have been possible to do in real life. We
subsequently trained a U-Net on the training data, and saw that it generalizes well to
unseen data. We were later able to use it to track the growth of aerosol clouds through
time across all simulations.

In the future, this work can be extended to include other factors which might
influence the aerosol dynamics, like head pose, face coverings, camera angles etc. We
can also learn a numerical model which can predict the volume and shape dynamics of
an aerosol.

18



A. Software and Libraries Used

A.1. Simulation Software

Software Name Version
Blender 2.93

Table A.1.: Simulation software used

A.2. IDEs

IDE Name Version
Jupyter Notebook 6.4.0

Pycharm 2021.2.3 (Community Edition)

Table A.2.: IDEs used

A.3. Python Libraries

Library Name Version
Numpy 1.17.0
Pillow 8.3.1

Matplotlib 3.3.4
Pytorch 1.6.0

Torchvision 0.7.0
Albumentations 1.0.3

Tqdm 4.62.3

Table A.3.: Python libraries used
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