TUTl

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Introduction to Recommender Systems and
their Applications

Katjana Kosic

0

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Introduction to Recommender Systems and
their Applications

Einfiihrung in Empfehlungsdienste und
ihre Anwendungen

Author: Katjana Kosic
Supervisor: Prof. Dr. Christian Mendl
Advisor: Dr. Felix Dietrich

Submission Date: 15.03.2022

I confirm that this bachelor’s thesis in informatics is my own work and I have
documented all sources and material used.

Munich, 15.03.2022 Katjana Kosic

Acknowledgments

First and foremost, I would like to express my gratitude towards my thesis advisor
Dr. Felix Dietrich for supporting and guiding me throughout the process of writing the
thesis and always being eager to help.

I would like to thank my family and friends for being great supporters. Their motivation
and belief in me helped me during all ups and downs

Abstract

The usage of recommender systems and their impact on everyday life has gained a lot
of importance in recent years. The primary objective is to guide users to the discovery
of new products and services by providing suggestions based on already known user
interests and ratings. This is an essential feature in the digital world, since users tend
to easily get overwhelmed by choice if given a large number of items to choose from.
There is a big variety of areas in which recommender systems are used, like product
recommendations for online shopping stores or artist-based song recommenders for
music streaming platforms. As the datasets for the respective recommendation tool
can differ in size and structure, it is crucial to find the best suiting recommendation
technique for rating predictions out of a big collection of different approaches and
methods. A complication that can occur in recommender systems is the cold-start
problem, which refers to an issue in which it is challenging for the system to infer
interactions between users and items due to insufficient information.

This thesis introduces recommender systems in general and how they can be ap-
proached with different techniques as well as possible solutions for the cold start
problem. The presented dataset describes a case of the cold-start problem, which needs
to be resolved in recommender systems. For this purpose, this thesis describes an
analysis of existing recommendation methods and discusses their suitability for solving
the cold-start problem for the arXiv dataset. The results achieved in this thesis can
provide essential insights into how to deal with the cold-start problem in datasets that
do not contain any user records.

v

Contents

Acknowledgments
Abstract
1 Introduction

2 State of the Art

2.1 Challenges for Recommender Systems

2.2 Dataset Types

2.3 Known applications of Recommender Systems

3 Introduction to Recommender Systems and their Applications

3.1 Recommender Systems
3.1.1 Collaborative Filtering .
3.1.2 Content-based Methods
3.1.3 Hybrid Approaches . .

3.2 Turning Datasets into Knowledge Graphs

3.3 Evaluation Metrics

3.4 Methods for creating Recommender Systems

3.41 Matrix Factorization and
3.4.2 Deep Neural Networks
3.43 Bayesian Statistics . . .

Matrix Completion

3.5 Cold Start Problem and Solution Methodologies

3.6 Study Object: ArXiv Dataset . .

3.7 Application of recommendation
3.7.1 Implementation
3.7.2 Visualization and Results

4 Conclusions

Bibliography

methods to the study object.

iii

iv

T O IR)

e O O O

10
11
12
14
14
16
18
20
22
23
24
28

31

33

1 Introduction

The voluminous material available on the Web and in digital libraries, along with its
dynamic and varied nature, has resulted in an ever-increasing difficulty in locating
users’ preferences and needs in the most efficient manner possible. Users require
personalized assistance in searching through huge amounts of available data based on
their interests and preferences. As a technique of tailoring material for users, several
information sources utilize recommender systems (Lops, de Gemmis, & Semeraro,
2011). The influence and importance of recommender systems on daily digital life has
increased in recent years and can be found in many online content delivery services
that provide recommendations.

As users tend to easily get overwhelmed by choice, recommender systems aim to help
users with their decision by narrowing the decisions into fewer recommendations and,
thus, help users discover new products that might match their interests. This is done
by predicting each user’s rating for a certain item (Ramlatchan et al., 2018). Due to the
inevitability of recommendation service applications in various fields like e-Commerce,
product recommendation, online advertisement and so on, a big variety of algorithms
and methodologies for data filtering and recommendation giving has been discovered
in order to suggest the optimal items to the user (Asanov, 2011; Rocca, 2019)

Recommendation systems are built based on one of the three main approaches: col-
laborative filtering, content-based methods and hybrid approaches. In collaborative
filtering the rating predictions are made based on past user interactions, which are
stored in an user-item matrix. The preferences, that users have for certain items, can
either be expressed as implicit or explicit feedback.

In comparison to collaborative filtering, content-based approaches additionally take
both user and item information into account, which describes both user characteristics
and item content.

Content-based and collaborative filtering based recommenders can be combined in
order to build a hybrid recommender system, which leads to more precise recom-
mendations (Ramlatchan et al., 2018). The choice of the most suitable approach is
task-dependent.

1 Introduction

In order to get a general overview of recommender systems and how they can be
implemented, this thesis is structured as follows. The following section introduces
general challenges, that recommender systems face, as well as various dataset types
and known recommendation systems applications. Section 3 focuses on the structure
of recommender systems. It describes three possible methodologies to implement
recommender systems and adresses the cold-start problem in detail and how to solve
it. In addition to that, the section describes the usefulness of knoelwdge graphs and
similarity measures recarding recommender systems. This is followed by a case study,
which is conducted to propose a solution for the cold-start problem for a given dataset.
The results will be summarized and discussed in section 4.

2 State of the Art

The following section gives insights into the most common shortcomings and challenges
that recommender systems face, as well as well-known recommender systems that are
used in practice.

2.1 Challenges for Recommender Systems

In an increasingly competitive online market, recommender systems represent a funda-
mental tool for increasing user satisfaction and bring advantages for business growth
(Blumenfeld, 2021). Nevertheless, recommender systems still have challenges and issues
that can reduce the degree of accuracy of rating predictions. In the following, the most
common issues will be presented.

Sparsity issue: Usually, the majority of all system users do not rate most of the items
that are available due to the lack of interest or users simply not wanting to rate anything.
This causes the ratings matrix, also called the user-item matrix, to become sparse, which
makes it difficult for collaborativ filtering based recommender systems to predict user
ratings and identify similar user groups (B. Kumar & Sharma, 2016; Yuan et al., 2016),
causing an unsatisfactory recommendation (Yi, Zhong, Chen, & Jie, 2020). The most
extreme case of sparsity in such systems is called cold-start, which will be discussed in
more detail in section 3.5.

Scalability problem: Another crucial shortcoming that recommender systems face
is the problem of scalability. The amount of dynamically changing input data for
recommender systems that is generated by user-item interactions is increasing as new
users and items are added to the system, which can lead to less accurate prediciton
results. This leads to scalability of algorithms with real-world datasets being a major
issue for recommender systems (Tyagi, 2021).

Privacy issue: In order to produce accurate recommendations it is often required for
a recommender system to obtain presonal user information and preferences in order
to receive the most optimal and individualized outcome. Nevertheless, this causes
concerns about data privacy and security and leads users to being hesitant about
feeding the system with personal data (Tyagi, 2021).

Cold-start problem: The cold-start problem describes a situation in which it is difficult
to recommend a newly added item to the users due to the lack of user interaction with

2 State of the Art

this item. Similarly when a new user joins the system it is difficult to recommend
anything to the user since there are no rating records present (Yuan et al., 2016). This
shortcoming will be discussed in more detail in section 3.3.

2.2 Dataset Types

Due to the wide range of application fields of recommender systems there exist different
kinds of dataset types to work with. As recommender systems aim to predict and
estimate user preferences or ratings, it is crucial that the dataset contains information
about users’ preferences and, if required, user information data like age, sex, location,
etc.

User preference can be expressed by two different categories. Explicit feedback is given
directly by the user in form of e.g. a rating ranging from 1 to 5, a direct feedback,
reviews or likes that express whether the user liked the item or not. Implicit feedback
is collected when a user interacts with items and describes indirect user preferences
like clicks, views, queries, etc. For instance, if a user bought a product, it is not clear
whether the user liked the product or not.

An example for a well known dataset for recommender systems is the MovieLens 25M
dataset, which describes 5-star ratings of more than two million user on over 60.000
movies and is therefore considered as explicit feedback.

In social networks, user preferences are considered implicit and are percieved by feed-
back in forms of clicks, views or purchases. Despite this, explicit feedback can also be
found in social networks in forms of likes or comments (Shetty, 2019).

Although recommender systems generally heavily rely on user information and prefer-
ences to make accurate predictions, there are still datasets that have no user information
at all. Such datasets usually consist only of item information, which makes it difficult
for the system to recommend anything.

2.3 Known applications of Recommender Systems

B. Kumar and Sharma (2016) stated that recommender systems have been designed and
developed to recommend a variety of items that can be broadly classified into several
domains of interest, including movies, books, web pages, clothing, etc. Recommender
systems incorporated in commercial applications recommend products to customers
and encourage them to buy things that are in their interest field, ranging from tech-
nichal products to clothing and many other. The product recommendations are based
on the customer’s demographic information or previous shopping behavior and search
histories. Recommender systems are also applied in movie or music recommendation

2 State of the Art

platforms.

As recommender systems seem to be unavoidable nowadays, many major companies
like Netflix, Google, Amazon or Instagram have taken advantage of these systems.
For instance, Netflix is an American company that provides users with a streaming
platform for movies and series on a fee basis. It is based on recommending suggestions
for new movies and series to users that they might not have discovered yet. This
helps users choose titles, that match their personal preference from Netflix” large movie
and series catalog. Their recommendation algorithm takes user information, time and
location data, search history and many other data points into consideration. In 2006
Netflix announced an open competition called the "Netflix Prize", which challenged the
contestants to build the most accurate collaborative filtering algorithm for predicting
the users ratings for movies based on a data set of 100,480,507 ratings that 480,189 users
provided for certain movies (Koren, Bell, & Volinsky, 2009).

Amazon is the largest online retailer and webservice provider for e-commerce world-
wide. It is well known for its personalized recommendations, which helps customers
discover new products from their item catalogue they might not have found otherwise.
Amazon’s recommendation algorithm is also based on collaborative filtering and rec-
ommends new items based on the customers current search history, purchases and past
ratings, but not including the prediction of ratings for recommended items (Schafer,
Frankowski, Herlocker, & Sen, 2007; Smith & Linden, 2017).

Google is an internet search engine that helps users obtain information about anyone or
anything in the world. For each search term, Google will offer several websites that may
contain the requested information. Besides, Google performs product recommendations
by taking user data like what kind of user views which products, users’ search histories,
user purchases and product attributes like price, categories and brand into account.
Recommender systems are also used in social media platforms like Instagram. Insta-
gram is a platform, which allows users to post pictures, stories and videos, which can
be liked, commented and viewed by other users, also called followers. It has a feature
called the explore page, which is visited daily by the Instagram community in order to
discover new pictures, videos and stories that match their interests. Based on the posts
that the user and the users they follow like, see and comment on, new posts and stories
that might be of interest to the user are suggested on the explore page.

3 Introduction to Recommender Systems
and their Applications

The intent of this chapter is to present the general structure of recommender systems as
well as possible implementation methods. In doing so, it also establishes the connection
to knowledge graphs and similarity measurements. The cold-start problem, which is in
the foreground of this work’s problem statement, is approached on the basis of a data
set while presenting a possible solution.

3.1 Recommender Systems

The aim of recommender systems is to predict user ratings based on their past behavior
and interactions with items, in order to recommend new items that fit their actual
interests. Another way of recommending new items to users is by recommending
additions or extensions, that might complement an item the user recently interacted
with. Ricci, Rokach, and Shapira (2010) describe the term item as a general term used
to describe what the system recommends to the user, where each recommender system
is focused on a specific type of item like movies, songs, products in an online retailer,
news articles, etc.

In general, recommender systems can be implemented in three different ways, namely
collaborative filtering, content-based methods and hybrid approaches. The following
sections aim to describe these approaches in more detail.

3.1.1 Collaborative Filtering

The objective of collaborative filtering algorithms is to generate a group of users by
making the predictions solely based on past interactions between users and items in
order to recommend personalized items. This is done by detecting similar users or
items based on users past behavior, assuming they tend to agree in the future as well
(Luo, 2018; Ramlatchan et al., 2018). The interactions, which are sufficient enough to
group similar users and items, are stored in a so called user-item interactions matrix
(Rocca, 2019). The entries in the matrix can be interpreted differently, depending on the
context. Taking movie streaming providers as an example, an entry in the matrix would

3 Introduction to Recommender Systems and their Applications

be a movie rating of type integer given by the user. For e-commerce recommenders,
the entries would represent booleans, whether the user clicked a recommended item or
not (Rocca, 2019).

Collaborative filtering can be divided into two sub-categories: memory-based and
model-based approaches.

Memory-based collaborative filtering works with either all recorded user-item in-
teractions, that are stored in the interactions matrix, or simply as a sample of the
interactions. The main steps of a memory-based algorithm include the similarity
calculation between users and items, taking the user-item interactions matrix in ac-
count, and the prediction of user rating for a recommended item, which can either be
a single specific recommendation or a list of the top N items (M. Sharma & Mann, 2013)).

Memory-based approaches can be classified into user-based and item-based collabora-
tive filtering.

On the one hand, user-based systems aim to identify users with similar interactions
profiles to the queried user and compute their similarity by comparing their past
ratings on the same items. Hence, the algorithm can compute the predicted rating for a
particular item based on a user’s k-nearest-neighbors (Rocca, 2019; M. Sharma & Mann,
2013). Therefore, each user can be represented by its vector of interactions with various
items. Two users can be considered close neighbors by a specific similarity measure, if
they provide similar interactions or ratings on the same items. The most popular items
among the k-nearest-neighbors, that the reference user has not yet interacted with, will
then be recommended to the user (Rocca, 2019).

Situations where a user, who has only one interaction in common with the reference
user, has a perfect match and is regarded closer than a user who has a lot more common
interactions but agrees on only 98 percent of them need to be avoided (Rocca, 2019).
On the other hand, item-based collaborative filtering computes the similarity of two
items by comparing the rating they received made by the same user. Two items are
considered similar if the majority of users that interacted with both items interacted
with them likewise. Similar to user-based collaborative filtering, the similarities be-
tween the best rated item and the rest of the items can be calculated. By keeping
the k-nearest-neighbors of the reference item, that are new to the user, the user can
receive multiple item recommendations. According to M. Sharma and Mann (2013), the
predicted interaction of an item with a user is obtained as a weighted average of the
interactions of the user on items, weighted by the similarity between those items.

3 Introduction to Recommender Systems and their Applications

In comparison to memory-based, model-based collaborative filtering algorithms
assume that the representation of users and items are built based on a model (Rocca,
2019). By using machine learning algorithms, the goal is to predict user ratings for
still unrated items. The recommendations are made by estimating statistical model
parameters for user ratings rather than using all available data to make predictions.
These ratings are then used to learn a model of user preferences in order to make
accurate rating predictions. Although this approach avoids the sprasity problem, the
model requires a lot of time to learn the predictions. Based on the user’s ratings on
previously rated items, the probabilistic technique is used to calculate the likelihood
that the user would give a specific rating to a new item (M. Sharma & Mann, 2013).
Collaborative filtering based methods are the most common recommendation algo-
rithms. An example for a popular collaborative filtering system is MovieLens, a filtering
system for movies in which the user can rate a set of movies with 1 to 5 stars. MovieLens
can then recommend a movie to a particular user, which was liked by his community
and predict how this user might rate the recommended movie.

Collaborative Filtering can be realized by the two major concepts Nearest Neigh-
borhood Algorithms and Latent Factor Models. The computation of associations
between items or users is the focus of neighborhood approaches. For instance, the
item-oriented technique assesses a user’s preference for an item based on the same
user’s assessments of "neighboring" items. Alternatively to neighborhood approaches,
latent factor models aim to explain ratings by describing both items and users based on
implicit factors inferred from the ratings patterns (Koren et al., 2009). User-based algo-
rithms generate rating predictions for a particular item by analyzing the ratings the item
got from the users similar to the queried user, which are called the user’s neighborhood.

There are plenty of frameworks that perform collaborative filtering. Apache Spark
(Apache Software Foundation, 2014) is an open-source framework for cluster computing,
data engineering and science and machine learning. Spark ML supports model-based
collaborative filtering by using the matrix factorization algorithm Alternating Least
Squares (ALS) to learn latent factors for predicting missing user-item interactions.

3.1.2 Content-based Methods

Content-based recommender systems aim to suggest products that are similar to those
that a user has positively interacted with in the past. Compared to collaborative fil-
tering, content-based methods require an additional amount of information about the
content and features of the items and user interests besides the user-item interactions
matrix. In content-based systems users usually have a profile, which includes user

3 Introduction to Recommender Systems and their Applications

information like age, location and interests in order to describe their characteristics
and preferences, or the systems obtains user information by letting the user fill out
a survey that exposes their interests and personal information. By comparing the
properties of the user profile with the attributes of an item, new interesting items can be
recommended to the user (Lops et al., 2011). Content-based systems keep track of the
content or features of each item being recommended, which is used to suggest items
that are comparable to those that the user previously favored based on how similar
particular items are to one another or how similar they are to the user’s preferences (de
Campos, Fernandez-Luna, Huete, & Rueda-Morales, 2010).

A user profile is a structured representation of the user’s interests that is used to
suggest new products that might be relevant or interesting to them. Such profiles are
usually created automatically based on user feedback and define types of items the
user positively interacted with (M. Sharma & Mann, 2013). An item profile describes its
most important features, e.g. a song can be described by the title, the artist, the genre
and the length.

The main recommendation step is to match the attributes of a potentially interesting
item against the stored attributes of the user. The more accurately the profile reflects
the interests of the user the more accurate the result of the recommender will be (Lops
et al., 2011).

Lops et al. (2011) presented in their chapter about content-based recommender systems,
that the recommendation process can be performed in three main steps.

Content Analyzer: Unstructured data needs pre-processing to extract information that
will be necessary for the recommendation. The content analyzer translates the content
into a suitable format that will be passed on to the next processing step.

Profile Learner: This step obtains information about user preferences and creates a
profile, after generalizing the collected data using machine learning techniques.
Filtering Component: In the last step, suggestions are made by matching the user’s
profile representation against the item representations.

Because keywords are commonly used to characterize content in text-based systems,
the importance of word k; in a document d; is decided by some weighting measure
w;,j. The term frequency - inverse document frequency (TF-IDF) metric is a well-known
measures for establishing keyword weights in information retrieval. The idea behind
the weight is that the higher the weight of a term, the more frequently it appears in
that document than in the other document, and so is more significant to its content
(M. Sharma & Mann, 2013).

3 Introduction to Recommender Systems and their Applications

3.1.3 Hybrid Approaches

Content-based and collaborative filtering approaches can be combined to a hybrid rec-
ommendation approach, which is often associated with a much better recommendation
precision since it benefits from their complementary advantages. There are several
ways to combine the two above presented approaches. One method is to implement
collaborative filtering and content-based systems seperately and afterwards combine
their predictions. Another way is to incorporate features of content based systems into
a collaborative filtering approach or the other way around or constructing a model that
combines both collaborative and content-based features (M. Sharma & Mann, 2013).
Hybrid recommender approaches aim to avoid shortcomings of individual recom-
mender approaches, like the new item problem of collaborative-filtering, and to gain
better performance.

There are different hybridization methods such as weighted hybrid recommenders
or hybrid systems using switching mechanisms. In weighted hybrid recommenders,
internal models (e.g. a collaborative filtering model and a content-based model) can
be defined that take dataset as the input. The weighted recommender system then
integrates the outputs from each of the models into static weightings, which will remain
constant across the trainig and test set (Chiang, 2021).

What distinguishes swtiching-based recommenders from weighted recommenders is
that depending on the situation and criteria only one of the intern recommender models
is selected, meaning that the hybrid system switches between the recommendation
techniques. In Figure 3.1, the additional layer for switching between recommenders is
integrated in the hybrid recommender system.

e —
Selected

[—p Recommendation
"3 System 1
User Profile
No .00

Recommendation

System

Figure 3.1: Example of a switching-based hybrid recommender system (Burke, 2002;
Chiang, 2021).

10

3 Introduction to Recommender Systems and their Applications

3.2 Turning Datasets into Knowledge Graphs

There is no commonly accepted definition for knowledge graphs since it depends on
the problem statement. For the purpose of this work, knowledge graphs are defined as
a graph-structured knowledge base, which describes the relationship between entities.
The two main steps of building a knowledge graph include knowledge extraction (dur-
ing which subject-predicate-object (SPO) triples are extracted using natural language
processing and entities are recognized and linked) and graph construction (Kishore,
2019).

Depending on the task, the edges of the graph can represent different kinds of re-
lationships between the vertices, like similarites between text documents. There are
numerous frameworks that can realize a graph structure, e.g. Neo4j (Neo4j, 2010) or
spaCy (Honnibal, 2015). Neo4j is an open-source graph database that stores data in
graph structures. The data can be stored as nodes, edges, that can be labeled, and
attributes. The queries are executed in Cypher, a declarative query language. Spacy
is an open-source library for Natural Language Processing, that can extract data from
unstructured data and represent it as a graph sturcture.

Finding items or users that are similar in a recommender system relies on similarity
computing. It is determined by distance metrics. Data points that are closest to each
other are considered the most similar, while farthest foints are considered least similar.
For instance, two movies are comparable in terms of similar gernre, cast or plot.
Similarity measures can be divided into string-based (term-based), corpus-based and
knowledge based (similarity, relatedness) measures (Gomaa & Fahmy, 2013). For the
purpose of this thesis, the focus will be on string-based similarity measures. This
section aims to describe the most common similarity measures for the items g and d,
which represent the queried paper and respectively other research papers, in more
detail. g; and d; are vectors over the set of terms T = {1, ..., t; }.

The following similarity measures were all presented by Benard Magara, Ojo, and Zuva
(2018):

Cosine Similarity: This measure takes two vectors and computes the cosine of the
angle between them in order to calculate the similarity. The smaller the angle between
the vectors, the more similar they are. If the dot product of the queried vectors equals
0, it can be interpreted as a strong dissimilarity between them:

L= 7 - d,
SIMCOS<qf/dt) S (A

3] x |dy]

11

3 Introduction to Recommender Systems and their Applications

Euclidean Distance, also called L2-norm, is commonly used in machine learing prac-
tices for regularization and normalizing. It measures the degree of similarity between

two data points:
m
Deucl(qt/ di) = Z "7} —dy|? (3.2)
Vi

Jaccard Coefficient: According to Benard Magara et al. (2018) this measure calculates
similarity as the intersection of vectors divided by the union of the vectors. The result
varies in a range from 0 to 1, 1 meaning that the queried vectors are equivalent:

-

qt - dy
2 . <
— G -d

SIMuec (Gt dr) = - — (3.3)
|12 + di
Pearson Correlation Coefficient: In this case, Pearson Correlation is utilized to
measure the correlation between two text documents, ranging from -1 to +1, +1 meaning
that there is a strong correlation. Here, TF, and TF; refer to the terms that are present

in g and d:

- mY " G x d; — TF, x TF,
SIMpear (‘Tl‘/ dt) = Zt_l I t d i (3.4)

VT g — TE2) - (m ¥y d2 — TE))

3.3 Evaluation Metrics

When evaluating the performance of a recommendation algorithm, it is more interesting
to observe the performance on new data rather than on old data. Evaluation metrics can
be classified into probabilistic, qualitative, ranking and user satisfaction metrics. While
qualitiative evaluation aims to reduce the number of errors during recommendation,
ranking metrics describe how well the recommended items are ranked. User satisfaction
metrics evaluate the level of user satisfaction during empirical experiments (B. Kumar
& Sharma, 2016). This section focuses on probabilistic error metrics that evaluate the
reliability of predictions generated by recommendation algorithms (Cremonesi, Turrin,
Lentini, & Matteucci, 2008).

Cremonesi et al. (2008) proposed two general metrics to evaluate recommender systems
called Error Metrics and Classification Accuracy Metrics.

Error Metrics measure the accuracy level between the predicted rating p; and the actual
user rating a4;.

* Mean Squared Error (MSE): This error metric assesses the average squared differ-
ence between the predicted rating and the actual ratings. The lower the MSE, the

12

3 Introduction to Recommender Systems and their Applications

more accurate the rating prediction is

n

_1 RPN
MSE—nZ;(pl a;)?. (3.5)

® Root Mean Squared Error (RMSE): The difference of this metric to the MSE is that
the additional root in the equation causes the MSE to have the same dimension as
the predicted value:

10
RMSE = [—
n

Y (pi—)2 (3.6)

i=1

* Mean Absolute Error (MAE): The MAE is more robust to data with outliers and
measures the gradient of accuracy between the predicted and the outcome:

10
MAE:EZ’IJZ'—HA. (37)
i=1

When requiring a ranked result of items, e.g. the top-N-recommendations, the above
mentioned metrices might not be the best choice, since they are not meaningful enough
to evaluate classification tasks that are needed in certain recommendation systems,
which is why classification metrics are much more suiting (Cremonesi et al., 2008).

Classification Accuracy Metrics define how effective the predictions for the user
are in terms of distinction between user relevant and irrelevant items. These metrics
are used if it is more interesting to evaluate whether the user had a positive interaction
or not, rather than how accurate the prediction is to the exact prediction (Cremonesi
et al., 2008). Each recommendation can be classified as either a true positive (TP), a true
negative (TN), a false positive (FP) or a false negative (FN).

According to Bondarenko (2019), Precision and Recall refer to fractions, where pre-
cision is the fraction of relevant instances among the retrieved instances, while recall
is the fraction of relevant instances that have been retrieved over the total amount of

relevant instances
TP

Precision = TP+ P (3.8)
TP
Recall = TP+ EN’ (3.9)

13

3 Introduction to Recommender Systems and their Applications

Concerning top-N-recommendations recommenders, the data is divided into a training
set and a test set. The algorithm is initially applied to the training data and produces a
list of suggested items. A hit set refers to the fraction of the training set, which only
contains the suggested top-N items that are also contained in the test set (Baesens &
vanden Broucke, 2016).

Cremonesi et al. (2008) stated in their work, that the number of items rated by each
user is much smaller than the items available in the entire dataset and that the number
of relevant items in the test set may be much smaller than that one in the whole dataset,
meaning that precision and recall are mainly used to compare different recommenda-
tion algorithms on the same dataset.

The F-Measure combines precision and recall to bypass the problem of the recall
increasing while the precision is decreasing for increasing N

2.-TP

Fl1 = .
2-TP+FN+FP

(3.10)

3.4 Methods for creating Recommender Systems

There are plenty of methodologies that recommender systems can be built upon,
including methodologies using machine learning algorithms or statistical solutions.
The following sections aim to describe three methods in more detail: section 3.4.1
discusses the Matrix Completion problem and algorithms for Matrix Factorization,
section 3.4.2 contains a description of Deep Neural Network based recommendation
algorithms and section 3.4.3 focuses on Bayesian statistics.

3.4.1 Matrix Factorization and Matrix Completion

The Matrix Completion Problem refers to a task that aims to fill in missing rating
records in the user-item interactions matrix. Each entry (i,) in the user-item interac-
tions matrix represents the rating of item j given by user i. The entries are empty, if the
user has not yet interacted with the particular item. The goal is to predict the missing
ratings and fill the empty entries in the matrix, assuming it is low-rank, in order to
avoid the sparsity issue of recommender systems (Ramlatchan et al., 2018).

Since collaborative filtering approaches usually struggle with the sparsity and scal-
ability issues, Matrix Factorization describes a more advanced method, developed to
decomposes the original sparse matrix into low-dimensional matrices with latent factors
and reduced sparsity and solve the matrix completion problem. Matrix Factorization is
the most successful realization of latent factor models and is one of the most common
ways of implementing model-based collaborative filtering based algorithms (Pan & Xia,

14

3 Introduction to Recommender Systems and their Applications

2015; Ramlatchan et al., 2018). Thereby the user-item interaction matrix is decomposed
into the product of two smaller dimensionality rectangular matrices resulting in a
representation of users and items in a lower dimensional latent space (Koren et al.,
2009).

In linear algebra, matrix factorization describes a mathematical operation, which de-
composes a matrix into a product of matrices. In case of recommender systems, the
user-item interactions matrix is to be subdivided into two matrices, one containing
the users as rows and the latent factors as columns and the other containing the items
as columns and the latent factors as rows as seen in Figure 3.2 (Liao, 2018). Latent
factors refer to non-observable variables, whose presence can be identified through
their impact on observable variables.

Item
w X Y z w X Y z
A 4.5 | 2.0 Al12os 15 1.2 1.0 08
. B |40 35 | B| 1400 X 07| 06| 1.1] 04
5S¢ 5.0 2.0 ~ Cliszo
D | 3.5 4.0. 1.0 D|1208
Rating Matrix Muast?*irx l*-;‘:il:iﬁx

Figure 3.2: Example of a decomposed rating matrix (Liao, 2018).

The goal is to discover these latent factors for both users and items to create a low-rank
matrix approximation of the actual interactions matrix. N. K. Kumar and Shneider
(2016) describe the low rank matrix approximation as approximating a matrix by one
whose rank is less than that of the original matrix. The purpose of such approxima-
tions is to obtain a more compact representation of the matrix while minimizing the
loss of information. This avoids the two main problems, sparsity and scalability, of
collaborative filtering approaches.
In this context it means, the higher the correspondance between user and item latent
factors, the more likely a recommendation will be issued, leading to a more accurate
estimate of the interactions matrix (Koren et al., 2009).
Due to the fact that matrix factorization aims to approximate the actual ratings matrix
R with the user matrix U and item matrix V, the following cost function needs to be
minimized

J=I[IR=UxVlz+A([|U]l2+ [IV]]2). (3.11)

15

3 Introduction to Recommender Systems and their Applications

As already mentioned in section 3.3, the first term describes the mean squared error
between the actual ratings matrix R and the approximated matrix, whereas the second
term is the weighted-A-regularization, which is required for a better generalization of the
results, meanintg to prevent overfitting (Karat, 2015).

Alternating Least Squares (ALS) is one of the most popular algorithms for matrix factor-
ization recommenders. As mentioned in section 3.1.1, Apache Spark ML implemented
the ALS algorithm for matrix factorization based collaborative filtering for implicit feed-
back. It is a two-step procedure of iterative optimization, in which in each iteration, it
first fixes the item matrix V and then solves for the user matrix U, then fixes U and then
solves for V. Alternating between these two steps causes the cost function to decrease
until it reaches the level of convergence and stays unchanged. It is advantageous in
systems that use parallelization, due to the independence of each iteration computation
of user, respectively item factors from other iterations (Karat, 2015; Koren et al., 2009).

3.4.2 Deep Neural Networks

Deep Neural Networks have gained great importance and success in recent years,
especially for speech recognition, computer vision and natural language processing.The
influence of deep learning is equally widespread with new research confirming its
usefulness when used for information retrieval and recommender systems. The subject
of deep learning in recommender systems is evidently thriving (Zhang, Yao, Sun, &
Tay, 2017).

Deep Neural Networks are artificial neural networks consisting mainly of layers, neu-
rons, weights and activation functions. The data flows in forward direction from the
input layers and through the hidden layers until it reaches the last output layer.
Training and inference are the two main phases in which deep learning recommenda-
tions are produced. In the training phase, the model is trained to predict user-item
interactions probabilities by passed instances of prior interactions, which is followed by
inferring the likelihood of new interactions (McDonald, 2021).

Zhang et al. (2017) stated in their paper that deep learning based recommender systems
can be divided into two major categories: recommendations with neural building blocks
and recommendations with deep hybrid models.

When performing recommendations with neural building blocks, models are grouped
into eight subcategories, in accordance with the eight deep learning models that
are commonly used: Multilayer Perceprton (MLP), Autoencoder (AE), Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN), Restricted Boltzmann
Machine (RBM), Neural Autoregressive Distribution Estimation (NADE), Adversarial

16

3 Introduction to Recommender Systems and their Applications

Networks (AN), Attentional Models (AM), and Deep Reinforcement Learning (DRL)
based recommender systems. The applicability of a recommendation model is deter-
mined by the deep learning technique used. For instance, RNNs are used for text
classification prediction problems, while CNNs are used for classification prediction
problems on image data.

Recommendations with deep hybrid models means utilizing multiple deep learning
techniques in order to produce accurate recommendations. Due to the flexibility of deep
neural networks it is possible to combine numerous complementing neural building
blocks, which results in a more powerful and accurate hybrid model.

Neural Collaborative Filtering (NCF) is a neural network based framework that can
generalize matrix factorization and learns user-item interactions through a Multi-Layer
Perceprton (MLP). Regardless that matrix factorization is a useful choice for collaborative
filtering, the simple computation of the latent features, the inner product of the user
and item matrix, lowers its’ performance. This can be improved by incorporating
user-item bias terms into the interactions function (He et al., 2017; A. Sharma, 2019).
NCF aims to recommend a ranked list of items to the user. The user either interacted
with the item, not directly meaning it was a positive interaction, or not, not meaning
the user disliked the item.

According to He et al. (2017), the input layer takes the two feature vectors that describe
the user and the item as the input. The embedding layer projects the sparse repre-
sentation of each vector to a dense vector. In order to convert the obtained user/item
embedding, that can be viewed as the latent vector for the user/item, to prediction
scores, the embeddings are fed into a multi-layer neural architecture. Each of these
layers can be tweaked to uncover certain latent structures of user—item interactions.
Figure 3.3 shows the architecture of the framework.

17

3 Introduction to Recommender Systems and their Applications

», Training
raining

Output Layer Score |, ym Y. Target
AN
T
| Layer X
At
Neural CF Layers | I.ay:ar 2
f
Layer 1 |
/ \
Embedding Layer User Latent Vector Item Latent Vector
___‘-7-_'"'-_:::__P,wx;(= {Pu;(} / ‘7_"-',_’ Q,’\.’xK = {qik\
Input Layer (Sparse) |0 oo [o/ o] ... | olofofofa] o] -
User (u) Item (i)

Figure 3.3: Architecture of the Neural Collaborative Filtering framework (He et al.,
2017).

3.4.3 Bayesian Statistics

Approaches derived from Bayesian Statistics, which are based on the Baye’s Theorem for
probability computing, have also become popular for recommendation prediction.
Bayesian Personalized Ranking (BPR) is the most common Bayesian approach for rec-
ommender systems. Personalized ranking in general refers to the ranking of items
in a ranked item list based on the user’s implicit behavior over past items. The core
approach is to predict a personalized score for an item that reflects the user’s preference
for it and afterwards the items are sorted and ranked based on their score (Rendle,
Freudenthaler, Gantner, & Schmidt-Thieme, 2009). However, in BPR, rather than pre-
dicting an exact rating for a particular item, it uses item pairs and optimizes for a
correct ranking of the pairs.

Rendle et al. (2009) proposed BPR in two main steps in their work, consisting of
a BPR optimization criterion (BPR-Opt), following the LearnBPR algorithm. The BPR-
Opt is derived using the likelihood function p(i >, j|®) and the prior probability p(®),
© being the parameter vector of the model class that determines the ranking. The
probability function describes the individual probability that user u prefers the item i
over item j, while >, meeting the properties totality, antisymmetry and transitivity of a

total order
p(i >4 j1O) = o(7,(©)). (3.12)

18

3 Introduction to Recommender Systems and their Applications

Here, o(x) refers to the logistic sigmoid

- 1
C 14ex

o(x)

(3.13)

and o (#,;;(®) captures the relationship between u, i and j, which is then delegated to the
underlying model class (e.g. matrix factorization or k-nearest-neighbors) (Rendle et al.,
2009). The ranking task is completed with the following optimization computation

BPR — Opt =In P(@‘ >u) = Z 1110'(?“,‘]') —)\@H@Hz (314)
(u,i,j)€D;s

p(®) is a density of a normal distribution, Ag is a model specific regularization factor
and Dg := {(u,i,j)|i € I Aj € I\L}} is the training data.

The second step in the proposed BPR procedure is the learning of a BPR algorithm,
that is a stochastic gradient-descent algorithm aiming to optimize the performance of
the model (Chen, 2020).

Beside BPR it is also possible to create a recommender system using Bayesian Net-
works, a method used in model-based collaborative filtering techniques. A Bayesian
network is an acyclic directed graph containing nodes that depict random variables,
which are connected through arrows as edges. Each node N; has a conditional proba-
bility distribution that is dependent on the parent node. When realizing this approach
in terms of recommendations, most of the systems are based on the hybrid approach.
Since Bayesian network models focus on the relationships between users, items and
features, the following random variables represent the nodes of the graph (de Campos
et al., 2010):

e User nodes U; represent the probability of a user rating an item with value s
from the ratings domain R. If s equals 0, it means that there cannot be any useful
information about the user’s preference inferred.

* Item nodes I; can accept values from the domain {i;,i;;} that denote the rele-
vance of the item.

¢ For each feature that describes an item, there is a Feature node F;, which can
similarly to the item nodes denote, whether a feature applies to the given item or
not.

The content-based component of this model introduces new nodes that represent the
active user’s preference on the item, based on the user relevant features of the item. The

19

3 Introduction to Recommender Systems and their Applications

collaborative component combines the preferences that were inferred from similar user
nodes into a single node. Both nodes are then combined to the final hybrid component,
which obtains the final prediction (de Campos et al., 2010). Figure 3.4 depicts the
structure of the Bayesian network.

Feature layer

Item layer

User layer

Figure 3.4: Structure of a Bayesian Network (de Campos, Fernandez-Luna, Huete, &
Rueda-Morales, 2010).

3.5 Cold Start Problem and Solution Methodologies

So far, it is clear that recommender systems are an enrichment for the digital world, but
they still exhibit shortcomings, as discussed in section 2.1. This section will specifically
focus on the cold-start problem that collaborative filtering based recommender systems
tace and whether the above mentioned methodologies offer a solution to the cold-start
problem.

The cold-start problem is a shortcoming of collaborative filtering based recommender
systems and occurs when there is a lack of item information or preference information
about a certain user and thus, no interaction with the system given. In the complete
cold-start problem there are no rating records available at all whereas in the incomplete
cold-start problem only a few rating records of users and items are available. There
are three different cases that can be distinguished in a cold-start scenario (Bobadilla,
Ortega, Hernando, & Bernal, 2012; Volkovs, Yu, & Poutanen, 2017):

20

3 Introduction to Recommender Systems and their Applications

¢ User cold-start: When a new user is introduced to the system, he/she usually
does not have any interaction yet, which makes it difficult to recommend anything
to him/her.

¢ Item cold-start: By adding a new item to the system, it might provide content
information, however, it does not provide any interactions with the system yet.

¢ New community: This case refers to the initial start-up of a recommender system,
where a catalogue of items already exists but no users are present. Hence, the
lack of interaction leads to this cold-start case.

DropoutNet is a neural network based latent model that aims to solve the cold start
problem by focusing on dropout during training. In deep learning, dropout refers to
a regularization method, which includes dropping out neurons in a neural net. The
idea behind DropoutNet is that by randomly dropping item ratings during training,
the network can be made resistant against the item cold-start. The essential feature is
that instead of dropping the nodes as usually when using dropout during training, the
item features are randomly dropped, leading to a less dependant neural network on
specific ratings (Oshiba, 2018; Volkovs et al., 2017).

Wei, He, Chen, Zhou, and Tang (2016) proposed a solution approach for the cold
start problem that adresses the complete and incomplete cold start problem by intro-
ducing two recommendation models. The framework that successfully improves the
recommendation performance in the item cold start cases combines a collaborative
filtering model and a deep neural network. The collaborative filtering model predicts
unknown ratings whereas the deep neural network extracts content features of items.

Wang and Chen (2015) introduced a distributed hybrid framework, that adresses
the user cold start problem, that is based on user classification. First, each user is
classified into a type, taking user information into account. Depending on the user type
and the rating records, tasks are forwarded to the recommendation modules, which
will create a recommendation output seperately. Lastly, the obtained recommendation
results are combined into one final result. The cold start problem can be avoided due to
the fact that the framework dynamically assigns suitable recommendation algorithms
depending on the respective user type.

In addition to the above examples of existing cold start solution approaches, there is a
variety of deep neural network models that provide a successful method for solving
the cold start problem.

21

3 Introduction to Recommender Systems and their Applications

Even though matrix factorization is utilized to solve large-scale matrix problems,

itself it does not offer a solution for handling new users, that do not exhibit preferences
or rating records (Yi et al., 2020), and hence may not be the best recommendation
approach to solve the cold start problem. This is due to the fact that matrix factorization
is a method for implementing collaborative filtering, which requires at least some rating
records to infer similar users and items. When introducing new users or new items to
the system, this approach is not suitable (Oshiba, 2018).
Yeung, Yang, and Ndzi (2012) presented a Bayesian network based algorithm to elim-
inate the cold start problem in their framework. They stated that when a new user
enters the system, it will use group profile data to create a global Bayesian network
that can solve the data sparsity problem.

3.6 Study Object: ArXiv Dataset

The study object for this thesis will be the arXiv dataset (Cornell University, n.d.), that
was downloaded from Kaggle, an online community of data scientists, which allows
users to find, publish and use datasets for machine learning purposes. ArXiv is a digi-
tal open-access research sharing platform, containing a collection of scholary articles,
research papers and several other academic e-prints. It offers registered researchers
to submit, retrieve, search and discover articles in their area of interest. The contents
of these e-prints include research from the fields of computer science, mathematics,
physics, statistics, financial mathematics and biology.

After registering to ArXiv, the user may select one of the above mentioned research
fields and can afterwards search for any keywords or titles, that fall under the selected
tield category. ArXiv will then list all e-prints that that contain the search term.

The arXiv dataset provides metadata as a collection of over 1.7 million JSON entries,
each item consisting of necessary paper metadata as seen in Table 3.1 (Cornell Univer-
sity, n.d.).

What stands out is that the dataset does not contain any user related data like ratings,
preferences or personal user information. This represents a problem for any recom-
mender system, since it is not possible to recommend papers to users, if there is no
user preference information available.

22

3 Introduction to Recommender Systems and their Applications

Table 3.1: arXiv dataset metadata

id ArXiv id of the respective paper
submitter the name of the submitter of the paper
authors the authors of the paper

title the title of the paper

comments additional information about the paper
journal-ref information about the journal the paper was published in
doi Digital Object Identifier

abstract the abstract of the paper

categories the category the paper falls under
version the version history of the paper
update_date the date the paper was updated last
authors_parsed | the parsed author names

3.7 Application of recommendation methods to the study object

In the following it will be discussed whether the in section 3.5 mentioned cold-start
recommendation approaches are suitable to solve the cold-start problem for the arXiv
dataset.

Since every in section 3.4 presented recommendation method requires some kind of
user record data or at least personal user information, they are not applicable to the
arXiv dataset. As the cold-start problem is a shortcoming of collaborative filtering
based recommenders, the arXiv dataset needs to be approached in a different way.

In such cases, a possible attempt is to use natural language processing techniques and
knowledge graphs in order to produce accurate recommendations. For this problem
statement it is crucial to look at the structure of the dataset. The dataset exhibits a lot
of item content features like the author of a paper, the abstract or the title of the paper,
which would be most interesting for a person reading the according paper. If a reader
is interested in a certain research paper, they might be interested in either other works
that the author published, or papers that have a similar title to the reference paper.
Abstracts contain keywords that might be highly relevant to the reader. These may also
appear in other papers the user might show interest in. The above properties may be
independent of user information, but it is possible to calculate similarities between the
research papers. If a user had a positive interaction with a certain paper, they might
either want to read more papers the author published or they would want to read
papers, that either continue the subject or that are similar to the reference paper.

23

3 Introduction to Recommender Systems and their Applications

3.7.1 Implementation

To solve the cold-start problem for the arXiv dataset, the following practical part of this
work presents two experimental approaches, in which the top N paper recommenda-
tions can be produced based on either authors or similar titles. Table 3.2 shows the
general setup for both experiments.

Table 3.2: Code Setup
Programming Language | Python 3.9

Environment Jupyter Notebook
Graph Database Neodj v. 4.4.4

Author Experiment: This experiment aims to produce research paper recommendations
based on authors. As users might be interested in an author’s further works, they might
want to receive recommendations about other papers the author published, indepen-
dent from the topic that is discussed in the respective papers. The core implementation
of the author experiment is structured as follows, and will be explained in more detail
in the text below:

1. First, the dataset is cleaned so that only the relevant parts are included in the
dataframe. The relevant parts include the id and the title of the paper and the
author names.

2. The dataset is then transformed into a knowledge graph that represents the
relationships between author and title nodes: an author node is connected to a
title node if the author authored the respective paper

3. Through specifying the importance measure, the query outputs the recommended
papers.

Sullivan (2021) published a tutorial on how to create a graph database using the above
mentioned Neo4j framework, which will be the base for the implementation of the
author experiment. As seen in section 3.6, the dataset contains more than ten properties
that can be used to infer recommendations from. For the author experiment, only the
authors_parsed, the id and the title are relevant.

Figure 3.5 shows how the relationship between an author and the papers he/she wrote
is visualized in Neo4;.

24

3 Introduction to Recommender Systems and their Applications

discrete
tocha..

Sobolev
gradients
of visc...

Sublinear
Elliptic

Figure 3.5: Relationship between an author and papers

For further processing, it is convenient to clean the data. In this case, the au-
thors_parsed column is an array of arrays, each containing the name of one of the
collaborating authors of the respective paper. To get a more clear representation, the
authors of each paper are all added into one single array.

In addition to that, it might be useful for the user to know the release date of a paper,
which is stored in the version property for each paper of the dataset. Here, the date is
transformed to the YYYY-MM-DD format and stored in a new column. Both the cleaned
author lists and the new date properties can be observed in the resulting dataframe
depicted in Figure 3.6.

After creating a normalized representation of the data, the next step is to create the
knowledge graph. For this, the graph-database Neo4j, that was introduced in section 3.2,
will be used. Neo4j provides so called Sandboxes, that enable access to a Neo4j database
online, without installing anything locally. In order to populate the database with the
arXiv data that was cleaned in the first step, the implementation uses a Blank Sandbox.
The connection between the notebook and the Sandbox database is established via
Python, using the Bolt URL, the password and the username, that are noted in the
Blank Sandbox connection details. Here, it is important to note, that Blank Sandbox
instances expire after ten days. After expiry, a new Sandbox instance can be created
with different connection details that afterwards need to be adjusted in the notebook.

25

3 Introduction to Recommender Systems and their Applications

id cleaned_authors_list created_date

0 0704.0001 [C. Baldzs, E. L. Berger, P. M. Nadolsky, C. -... ~ 2007-04-02

1 0704.0002 [lleana Streinu, Louis Theran] 2007-03-31

2 0704.0003 [Hongjun Pan] 2007-04-01

3 0704.0004 [David Callan] 2007-03-31

a4 0704.0005 [Wael Abu-Shammala, Alberto Torchinsky] 2007-04-02
2021776 supr-con/9608008 [R. Prozorov, M. Konczykowski, B. Schmidt, Y. ... 1996-08-26
2021777 supr-con/9609001 [Durga P. Choudhury, Balam A. Willemsen, John ... 1996-08-31
2021778 supr-con/9609002 [Balam A. Willemsen, J. S. Derov, S. Sridhar] 1996-09-03
2021779 supr-con/9609003 [Yasumasa Hasegawal] 1996-09-18
2021780 supr-con/9609004 [Naoki Enomoto, Masanori Ichioka, Kazushige Ma... 1996-09-25

Figure 3.6: Dataframe containing the cleaned author lists and dates

To avoid duplicates, it is crucial to create constraint queries for the nodes by asserting
the author name and the paper id to be unique.

The next step is to populate the database by creating the author and paper nodes
and connecting them using Cypher. Each node has properties that can be accessed in
queries. In this case, each paper node has the paper id, the creation date and the title as
properties, whereas author nodes have the author name and the author id as properties.
The following code example shows how the paper and author nodes are connected and
how paper nodes are created:

def add_papers(rows, batch_size=50):

query = '''

UNWIND $rows as row

MERGE (p:Paper {id:row.%d}) ON CREATE SET p.title = row.title,
p.created = row.created_date

WITH distinct row, p

UNWIND row.cleaned_authors_list AS author
MATCH (a:Author {name: author})

MERGE (a)-[:AUTHORED]->(p)

RETURN count(distinct p) as total

i

return insert_data(query, rows, batch_size)

26

3 Introduction to Recommender Systems and their Applications

The nodes are connected via the [AUTHORED] relationship, indicating that an au-
thor authored a particular paper. The actual recommendation step is done by querying,
which papers might be interesting for a user that is interested in a particular author.
This will be visualized and discussed in more detail in the next section.

Title Experiment: The title experiment aims to recommend papers, whose titles are
decisive for the recommendation process. Unlike in the author experiment, the authors
of these papers do not matter. Here, all papers, that have similar titles to the title of the
paper the user is currently reading, should be recommended.

Similar to the author experiment, the data needs to be cleaned first. Some of the titles
in the dataset are saved in Latex format, which can cause difficulties when computing
title similarities. This can be solved by converting the titles into UTF-8 format using
Python libraries like pylatexenc.

The next step is to calculate the embedding for each title. For this task, there are plenty
of useful NLP tools like the context-free model word2vec, sentence2vec or BERT models.
The simplest approach for obtaining the vector representation of a sentence is to take
the average of the word representations of each word in the sentence using word2vec,
e.g. a title has 10 words and each word is represented by a vector of size 5. A problem
that could arise when using this approach is information loss. As Karimi (2021) stated,
for sentences containing commonly used terms that do not usually indicate sentiments,
averaging over the words can result in similar representations.

Sentence2vec avoids this issue by taking the averaged vector sum to get the vector
representation of the sentence. The similarity between two sentences is then calculated
using the cosine similarity of their vectors, which was adressed in section 3.2.

Bratanic (2020) used SciBERT (Beltagy, Cohan, & Lo, 2019) to obtain embeddings
for each title in the dataset. It is a BERT model, that was trained on scientific text data,
making it a useful tool to use for the arXiv dataset. The pretrained model can be used
by importing the transformers library into the notebook.

The embeddings can be then stored in the Neo4j database as a node property for the
respective paper node. Considering this, it makes sense to use the Neo4j integrated
similarity algorithms. Neo4j provides algorithms for computing the Cosine similarity
of vectors as well as algortihms for Jaccard and Pearson similarity computing. An
example usage can be seen in the following Cypher statement:

RETURN gds.alpha.similarity.jaccard([1,2,3], [1,2,4,5]) AS similarity

As the goal is to recommend the top N papers to the user, that are most similar to the
currently interesting paper, Neo4j provides the K-Nearest-Neighbors algorithm, which
generates new relations between each node and its k nearest neighbors by computing a

27

3 Introduction to Recommender Systems and their Applications

distance value for all node pairs in the graph. The distance is determined using the
properties of the nodes. In this case, the properties are the title embeddings of each
title node, that were computed by SciBERT previously. To project the in-memory graph,
the following query needs to be executed (Bratanic, 2020):

CALL gds.graph.create('paper_similarity', 'Paper’','x*"',
{nodeProperties: ['embeddings']})

Assume the user wants to receive the top five recommendations that are the most similar
to a particular paper, that "Y. Wang" wrote. The recommendation is then executed in
the Neo4j Sandbox by the following query:

MATCH (p:Paper {id:"0804.1862"})-[s:SIMILAR TO0]->(q)

RETURN p.title as paper, q.title as recommendation, g.score as score
ORDER BY score DESC

LIMIT 5

3.7.2 Visualization and Results

In the following the results of the author experiment are being visualized with Neo4j’s
Sandbox.

After connecting to the Neo4j Sandbox, the knowledge graph can be displayed with the
following query:

MATCH (a:Author)-[:AUTHORED]->(p:Paper) RETURN a, p

The query returns the author and paper nodes and their relationships. An author node
is connected to a paper node, if the author wrote the respective paper. As seen in Figure
3.7, the paper nodes are displayed in blue whereas the author nodes are displayed in
orange. An author can be connected to multiple papers indicating that he/she was a
co-author in many papers.

The following scenario describes how a possible recommendation is queried: assume a
user is interesed in "Y. Wang"’s work and wants to receive recommendations about this
authors other papers. It would be simple to output all papers this author collaborated
in, but since the number of returned papers can be too large, it is necessary to narrow
down the recommendation. A possible attempt would be to recommend the top five
papers that ""Y. Wang collaborated in with the highest count of authors in a descending
order:

MATCH (a:Author{name:"Y. Wang"})-[:AUTHORED] ->(p:Paper)
RETURN size(()-[:AUTHORED]->(p)) as num_authors, a, p
ORDER BY num_authors DESC

LIMIT 5

28

3 Introduction to Recommender Systems and their Applications

[D G
+(1,606) Jll AUTHORED!(1,606)

e
& e @
b LR °°§e°° [
[N 8.2
% @
%
®
[d [}
° b o of% o
<2 (N ® oo e %o
® [o] \
o % -%o] []
°;':'¢'h.e= ® d L]
Z ® ' !
[) 7 9.330 .(; .° » ‘B °
&, » o3 ot S
'e® ¢ & < oe ¢
ol e‘.‘
]
] ° °
e 4 e ® oo
® S)
° ® . e‘lo_ pe
o . ee
o ° o ®)
° h [
[] L]
o oo oo e o
oo e e, © e ?
o o -] [] o o - (]
[] & ® e o >
- - oPe ° = o-®

Figure 3.7: Section of the knowledge graph for the arXiv dataset

The resulting graph in Figure 3.8 consists of the top five most co-authored papers for
the above mentioned constraints.

Figure 3.8: Recommendation of the top five papers with the highest count of authors,
that "Y. Wang" collaborated in

29

3 Introduction to Recommender Systems and their Applications

Another scenario that might be interesting is to recommend the top five papers that
"Y. Wang" wrote since January 1st 2021, that have the most co-authors. The resulting
recommendation can be obtained by the following query:

MATCH (a:Author{name:"Y. Wang"})-[:AUTHORED]->(p:Paper)

WHERE p.created > "2021-01-01"

WITH p.created as date, p.title as title, size(()-[:AUTHORED]->(p)) as num_authors
ORDER BY num_authors DESC

RETURN date, title, num_authors

LIMIT 5

30

4 Conclusions

The main objective of this thesis was to outline the general idea behind recommender
systems, discuss several current implementations, and refer to current applications in
practice. At first, shortcomings that can occur in recommender systems and already
known recommender systems that are used in practice were presented. This was fol-
lowed by a detailed description of the main forms in which recommender systems can
occur namely collaborative filtering, content-based and hyrid recommender systems.
Out of the many algorithms and methodologies that recommender systems can be
based upon, this thesis introduced Matrix Factorization, Deep Neural Networks and
Bayesian statistics, which were evaluated on whether they represent an effective solu-
tion to the cold-start problem. Besides introducing knowledge graphs, as they represent
a useful tool for managing large datasets and help represent relationships between
entities, the thesis presented common similarity measures and evaluaton metrics for
recommender systems.

The case study focused on solving the cold-start problem of the arXiv dataset by split-
ting the problem into two experiments, one focusing on author-based recommendations
and the other one using paper titles to create recommendations. Both experiments were
based on upon knowledge graphs using Neo4j.

The author experiment was conducted in accordance with the procedures described
by Sullivan (2021) and Bratanic (2020). The resulted recommender system approach
shows that scenarios like the presented cold-start problem for the arXiv dataset can
be approached by using graph databases and querying the desired recommendation.
Note that in this experiment the recommendations can only be provided by specifying
the exact author names and the given constraints such as the number of co-authors,
which means that the preferences are not stored or learned. In this case, only the user
who has installed this approach locally can call his personal preferences, meaning that
the success of the recommendation is subjective.

In comparison to that the title experiment can be classified as a content-based approach
since it takes advantage of the k-nearest-neighbors algorithm provided by Neo4j to
compute similar papers and recommend those that are most similar to the queried

paper.

31

4 Conclusions

How good these approaches perform cannot be measured using the evaluation metrics
presented in section 3.3 since the accuracy of the recommendations is measured based
on predicted ratings and actual user ratings, which are not present in the arXiv dataset.
This means that user satisfaction can only be measured qualitatively, i.e. whether the
recommended paper is useful for the user or not.

Along with the results that Fleischman and Hovy (2003) and Bai et al. (2019) pesented in
their papers, this thesis demonstrates that recommendations without user preferences
can be generated by content-based approaches using NLP tools.

An addition for the title experiment would be the inclusion of the paper abstracts
for the calculation of similar papers in order to obtain more precise recommendations.
For the purpose of creating a collaborative-filtering based recommendation engine
similar to the examples that Neo4j (Neo4j, n.d.) provided it would be necessary to
include user records into the arXiv dataset that contain paper ratings given by each user.
A possible extension to the presented approach is the implementation of user bots that
simulate user behavior by rating papers and afterwards storing the ratings in a dataset
along with the papers from the arXiv dataset, resulting in a user-item interactions
matrix. Based on that, the user can receive paper recommendations according to the
calculation of similar users.

32

Bibliography

Apache Software Foundation. (2014). Spark. https:/ /spark.apache.org/docs/2.2.0/ml-
collaborative-filtering. html. 2.2.0.

Asanov, D. A. (2011). Algorithms and methods in recommender systems.

Baesens, B., & vanden Broucke, S. (2016). What are popular ways of evaluating rec-
ommender systems? https://www.dataminingapps.com /2016 /04 /what-are-
popular-ways-of-evaluating-recommender-systems/ .

Bai, X., Wang, M., Lee, L, Yang, Z., Kong, X., & Xia, F. (2019). Scientific paper recommen-
dation: A survey. IEEE Access, 7, 9324-9339. doi:10.1109/ ACCESS.2018.2890388

Beltagy, I., Cohan, A., & Lo, K. (2019). Scibert: Pretrained contextualized embeddings for
scientific text. CoRR, abs/1903.10676. https:/ /github.com/allenai/scibert. arXiv:
1903.10676

Benard Magara, M., Ojo, S. O., & Zuva, T. (2018). A comparative analysis of text
similarity measures and algorithms in research paper recommender systems. In
2018 conference on information communications technology and society (ictas) (pp. 1-5).
doi:10.1109/ICTAS.2018.8368766

Blumenfeld, Z. (2021). Exploring practical recommendation systems in neo4j. https:
/ / towardsdatascience.com / exploring-practical-recommendation-engines-in-
neo4j-ff09fe767782.

Bobadilla, J., Ortega, F.,, Hernando, A., & Bernal, J. (2012). A collaborative filtering
approach to mitigate the new user cold start problem. Knowledge-Based Systems,
26, 225-238. doi:https:/ /doi.org/10.1016/j.knosys.2011.07.021

Bondarenko, K. (2019). Precision and recall in recommender systems. and some metrics
stuff. https:/ /bond-kirill-alexandrovich.medium.com /precision-and-recall-in-
recommender-systems-and-some-metrics-stuff-ca2ad385c5£8.

Bratanic, T. (2020). Network analysis of arxiv dataset to create a search and recommen-
dation engine. https://medium.com/swlh/network-analysis-of-arxiv-dataset-to-
create-a-search-and-recommendation-engine-of-articles-cd18b36a185e.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction, 12. doi:10.1023/ A:1021240730564

Chen, D. (2020). Recommender system — bayesian personalized ranking from implicit
feedback. https:/ / towardsdatascience.com / recommender-system-bayesian-
personalized-ranking-from-implicit-feedback-78684bfcddf6.

33

https://spark.apache.org/docs/2.2.0/ml-collaborative-filtering.html
https://spark.apache.org/docs/2.2.0/ml-collaborative-filtering.html
https://www.dataminingapps.com/2016/04/what-are-popular-ways-of-evaluating-recommender-systems/
https://www.dataminingapps.com/2016/04/what-are-popular-ways-of-evaluating-recommender-systems/
https://doi.org/10.1109/ACCESS.2018.2890388
https://arxiv.org/abs/1903.10676
https://doi.org/10.1109/ICTAS.2018.8368766
https://towardsdatascience.com/exploring-practical-recommendation-engines-in-neo4j-ff09fe767782
https://towardsdatascience.com/exploring-practical-recommendation-engines-in-neo4j-ff09fe767782
https://towardsdatascience.com/exploring-practical-recommendation-engines-in-neo4j-ff09fe767782
https://doi.org/https://doi.org/10.1016/j.knosys.2011.07.021
https://bond-kirill-alexandrovich.medium.com/precision-and-recall-in-recommender-systems-and-some-metrics-stuff-ca2ad385c5f8
https://bond-kirill-alexandrovich.medium.com/precision-and-recall-in-recommender-systems-and-some-metrics-stuff-ca2ad385c5f8
https://medium.com/swlh/network-analysis-of-arxiv-dataset-to-create-a-search-and-recommendation-engine-of-articles-cd18b36a185e
https://medium.com/swlh/network-analysis-of-arxiv-dataset-to-create-a-search-and-recommendation-engine-of-articles-cd18b36a185e
https://doi.org/10.1023/A:1021240730564
https://towardsdatascience.com/recommender-system-bayesian-personalized-ranking-from-implicit-feedback-78684bfcddf6
https://towardsdatascience.com/recommender-system-bayesian-personalized-ranking-from-implicit-feedback-78684bfcddf6

Bibliography

Chiang, J. (2021). 7 types of hybrid recommendation system. https://medium.com/
analytics-vidhya/7-types-of-hybrid-recommendation-system-3e4f78266ad8.

Cornell University. (n.d.). Arxiv dataset. https:/ /www.kaggle.com/Cornell-University /arxiv.

Cremonesi, P., Turrin, R., Lentini, E., & Matteucci, M. (2008). An Evaluation Methodol-
ogy for Collaborative Recommender Systems. In 2008 international conference on
automated solutions for cross media content and multi-channel distribution (pp. 224-231).
doi:10.1109/ AXMEDIS.2008.13

de Campos, L. M., Ferndndez-Luna, J. M., Huete, J. F., & Rueda-Morales, M. A. (2010).
Combining content-based and collaborative recommendations: A hybrid approach
based on bayesian networks. International Journal of Approximate Reasoning, 51(7),
785-799. doi:https:/ /doi.org/10.1016/j.ijar.2010.04.001

Fleischman, M., & Hovy, E. H. (2003). Recommendations without user preferences: A
natural language processing approach. In Iui '03.

Gomaa, W., & Fahmy, A. (2013). A survey of text similarity approaches. international
journal of Computer Applications, 68. doi:10.5120/11638-7118

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative
filtering. In Proceedings of the 26th international conference on world wide web (pp. 173
182). d0i:10.1145/3038912.3052569

Honnibal, M. (2015). Spacy. https:/ /spacy.io.

Karat, S. (2015). How do you build a “people who bought this also bought that”-style
recommendation engine. https://datasciencemadesimpler.wordpress.com/2015/
12 /16 /understanding-collaborative-filtering-approach-to-recommendations/.

Karimi, A. (2021). How to get vector for a sentence from word2vec of tokens.

Kishore, R. (2019). A knowledge graph understanding and implementation tutorial
for beginners. https:/ / medium.com /analytics-vidhya / a-knowledge- graph-
implementation-tutorial-for-beginners-3c53e8802377.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recom-
mender systems. Computer, 42(8), 30-37. d0i:10.1109/MC.2009.263

Kumar, B., & Sharma, N. (2016). Approaches, issues and challenges in recommender
systems: A systematic review. Indian Journal of Science and Technology, 9. doi:10.
17485 /ijst/2015/v8il /94892

Kumar, N. K., & Shneider, J. (2016). Literature survey on low rank approximation of
matrices. ArXiv, abs/1606.06511.

Liao, K. (2018). Prototyping a recommender system step by step part 2: Alternat-
ing least square (als) matrix factorization in collaborative filtering. https:/ /
towardsdatascience.com / prototyping-a-recommender-system-step-by-step-
part-2-alternating-least-square-als-matrix-4a76c58714al.

Lops, P., de Gemmis, M., & Semeraro, G. (2011). Content-based Recommender Systems:
State of the Art and Trends. (pp. 73-105). doi:10.1007 /978-0-387-85820-3_3

34

https://medium.com/analytics-vidhya/7-types-of-hybrid-recommendation-system-3e4f78266ad8
https://medium.com/analytics-vidhya/7-types-of-hybrid-recommendation-system-3e4f78266ad8
https://doi.org/10.1109/AXMEDIS.2008.13
https://doi.org/https://doi.org/10.1016/j.ijar.2010.04.001
https://doi.org/10.5120/11638-7118
https://doi.org/10.1145/3038912.3052569
https://spacy.io
https://datasciencemadesimpler.wordpress.com/2015/12/16/understanding-collaborative-filtering-approach-to-recommendations/
https://datasciencemadesimpler.wordpress.com/2015/12/16/understanding-collaborative-filtering-approach-to-recommendations/
https://medium.com/analytics-vidhya/a-knowledge-graph-implementation-tutorial-for-beginners-3c53e8802377
https://medium.com/analytics-vidhya/a-knowledge-graph-implementation-tutorial-for-beginners-3c53e8802377
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.17485/ijst/2015/v8i1/94892
https://doi.org/10.17485/ijst/2015/v8i1/94892
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1
https://doi.org/10.1007/978-0-387-85820-3_3

Bibliography

Luo, S. (2018). Introduction to recommender system. https://towardsdatascience.com/
intro-to-recommender-system-collaborative-filtering-64a238194a26.

McDonald, C. (2021). How to build a deep learning powered recommender system, part
2. https:/ /developer.nvidia.com /blog/how-to-build-a-winning-recommendation-
system-part-2-deep-learning-for-recommender-systems/.

Neo4j. (n.d.). Tutorial: Build a cypher recommendation engine. https:/ /neo4j.com/
developer/cypher/guide-build-a-recommendation-engine/.

Neo4j. (2010). Neo4j. https:/ /neo4j.com. current verion: 4.4.4.

Oshiba, K. (2018). Tackling the cold start problem in recommender systems. https:
/ /kojinoshiba.com/recsys-cold-start/.

Pan, B., & Xia, S.-T. (2015). Matrix-completion-based method for cold-start of distributed
recommender systems. In S. Arik, T. Huang, W. K. Lai, & Q. Liu (Eds.), Neural
information processing (pp. 592-599). Cham: Springer International Publishing.

Ramlatchan, A., Yang, M., LIU, Q., Li, M., Wang, J., & Li, Y. (2018). A survey of matrix
completion methods for recommendation systems. Big Data Min. Anal., 1, 308-323.

Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2009). Bpr: Bayesian
personalized ranking from implicit feedback. In Proceedings of the twenty-fifth
conference on uncertainty in artificial intelligence (pp. 452—-461). Montreal, Quebec,
Canada: AUAI Press.

Ricci, E,, Rokach, L., & Shapira, B. (2010). Recommender systems handbook. (Vol. 1-35,
pp- 1-35). doi:10.1007 /978-0-387-85820-3_1

Rocca, B. (2019). Introduction to recommender systems. https:/ /towardsdatascience.
com/introduction-to-recommender-systems-6c66cf15ada.

Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering
recommender systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The adaptive
web: Methods and strategies of web personalization (pp. 291-324). d0i:10.1007 /978-3-
540-72079-9_9

Sharma, A. (2019). Neural collaborative filtering. https:/ /towardsdatascience.com /
neural-collaborative-filtering-96cef1009401.

Sharma, M., & Mann, S. (2013). A survey of recommender systems: Approaches and
limitations.

Shetty, B. (2019). An In-Depth guide to how recommender systems work.

Smith, B., & Linden, G. (2017). Two decades of recommender systems at amazon.com.
IEEE Internet Computing, 21(3), 12-18. d0i:10.1109/MIC.2017.72

Sullivan, C. (2021). Create a graph database in neo4j using python. https:/ /towardsdatascience.
com/create-a-graph-database-in-neo4j-using-python-4172d40f89c4.

Tyagi, N. (2021). 6 Dynamic Challenges in Formulating the Recommendation System.
https:/ /www.analyticssteps.com /blogs / 6-dynamic-challenges-formulating-
imperative-recommendation-system.

35

https://towardsdatascience.com/intro-to-recommender-system-collaborative-filtering-64a238194a26
https://towardsdatascience.com/intro-to-recommender-system-collaborative-filtering-64a238194a26
https://developer.nvidia.com/blog/how-to-build-a-winning-recommendation-system-part-2-deep-learning-for-recommender-systems/
https://developer.nvidia.com/blog/how-to-build-a-winning-recommendation-system-part-2-deep-learning-for-recommender-systems/
https://neo4j.com/developer/cypher/guide-build-a-recommendation-engine/
https://neo4j.com/developer/cypher/guide-build-a-recommendation-engine/
https://neo4j.com
https://kojinoshiba.com/recsys-cold-start/
https://kojinoshiba.com/recsys-cold-start/
https://doi.org/10.1007/978-0-387-85820-3_1
https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada
https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1007/978-3-540-72079-9_9
https://towardsdatascience.com/neural-collaborative-filtering-96cef1009401
https://towardsdatascience.com/neural-collaborative-filtering-96cef1009401
https://doi.org/10.1109/MIC.2017.72
https://towardsdatascience.com/create-a-graph-database-in-neo4j-using-python-4172d40f89c4
https://towardsdatascience.com/create-a-graph-database-in-neo4j-using-python-4172d40f89c4
https://www.analyticssteps.com/blogs/6-dynamic-challenges-formulating-imperative-recommendation-system
https://www.analyticssteps.com/blogs/6-dynamic-challenges-formulating-imperative-recommendation-system

Bibliography

Volkovs, M., Yu, G., & Poutanen, T. (2017). Dropoutnet: Addressing cold start in
recommender systems. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R.
Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information
processing systems (Vol. 30), Curran Associates, Inc.

Wang, J.-H., & Chen, Y.-H. (2015). A distributed hybrid recommendation framework to
address the new-user cold-start problem. (pp. 1686-1691). doi:10.1109/UIC-ATC-
ScalCom-CBDCom-IoP.2015.307

Wei, J., He, J., Chen, K., Zhou, Y., & Tang, Z. (2016). Collaborative filtering and deep
learning based recommendation system for cold start items. Expert Systems with
Applications, 69. d0i:10.1016/j.eswa.2016.09.040

Yeung, K., Yang, Y., & Ndzi, D. (2012). A proactive personalised mobile recommendation
system using analytic hierarchy process and bayesian network. Journal of Internet
Services and Applications, 3. doi:10.1007 /s13174-012-0061-3

Yi, J., Zhong, M., Chen, Y., & Jie, A. (2020). A hybrid collaborative filtering recom-
mendation algorithm based on user attributes and matrix completion. IOP Con-
ference Series: Materials Science and Engineering, 790, 012058. doi:10.1088 /1757-
899X/790/1/012058

Yuan, J., Shalaby, W., Korayem, M., Lin, D., Aljadda, K., & Luo,]J. (2016). Solving cold-
start problem in large-scale recommendation engines: A deep learning approach.
(pp- 1901-1910). d0i:10.1109/BigData.2016.7840810

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2017). Deep learning based recommender system:
A survey and new perspectives. doi:10.1145 /3285029

36

https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.307
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.307
https://doi.org/10.1016/j.eswa.2016.09.040
https://doi.org/10.1007/s13174-012-0061-3
https://doi.org/10.1088/1757-899X/790/1/012058
https://doi.org/10.1088/1757-899X/790/1/012058
https://doi.org/10.1109/BigData.2016.7840810
https://doi.org/10.1145/3285029

	Acknowledgments
	Abstract
	Contents
	Introduction
	State of the Art
	Challenges for Recommender Systems
	Dataset Types
	Known applications of Recommender Systems

	Introduction to Recommender Systems and their Applications
	Recommender Systems
	Collaborative Filtering
	Content-based Methods
	Hybrid Approaches

	Turning Datasets into Knowledge Graphs
	Evaluation Metrics
	Methods for creating Recommender Systems
	Matrix Factorization and Matrix Completion
	Deep Neural Networks
	Bayesian Statistics

	Cold Start Problem and Solution Methodologies
	Study Object: ArXiv Dataset
	Application of recommendation methods to the study object
	Implementation
	Visualization and Results

	Conclusions
	Bibliography

