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Zusammenfassung

Kernel-Methoden spielen eine wichtige Rolle bei der Lösung von Klassifizierungs- und Re-
gressionsproblemen. Während ein Kernel in der Regel von Hand entworfen wird, haben
Owhadi und Yoo vor kurzem Kernel Flows als datengesteuerten Ansatz zum Finden
geeigneter Kernel vorgeschlagen. Eine erste Analyse von Darcy hat gezeigt, dass Kon-
vergenz und Stabilität der Konvergenz von der Initialisierung der Parameter abhängen.
Wir analysieren Kernel Flows unter Verwendung des von Dietrich et al. vorgeschlage-
nen Koopman-Operator-Frameworks, um das Verhalten des Algorithmus besser zu ver-
stehen. Zu diesem Zweck formalisieren wir Kernel Flows als dynamisches System und
verwenden es, um Kernel für Spielzeugdatensätze zu erlernen und das Punktspektrum
des Koopman-Operators unter Verwendung von EDMD anzunähern. Auf der Grundlage
des Spektrums suchen wir nach Eigenwerten, die nahe bei eins liegen, und bestimmen die
Anziehungsbereiche auf der Grundlage einer Clusterung der Auswertung der Eigenfunk-
tionen zu Eigenwerten, die nahe bei eins liegen. Wir zeigen, dass die Analyse durch den
Koopman-Operator von einer guten Wahl der Anzahl der Cluster abhängt, die beim k-
means-Clustering verwendet werden. Dies stellt ein Problem dar, da unseres Wissens nach
kein Ansatz zur zuverlässigen Bestimmung der Anzahl der Anziehungsbereiche existiert.
In unserer Analyse der Kernel Flows durch den Koopman-Operator haben wir gezeigt,
dass es einen signifikanten Unterschied in der Form der dargestellten Anziehungsbereiche
der verwendeten synthetischen Datensätze im Vergleich zu den Anziehungsbereichen auf
echten Datensätzen gibt. Dies könnte auf ein Problem mit den synthetischen Datensätzen
und damit mit der darauf basierenden Analyse hindeuten.

Abstract

Kernel methods play an important role in solving classification and regression problems.
While usually a kernel is designed by hand, recently, Owhadi and Yoo proposed Kernel
Flows as a data-driven approach to obtaining suitable kernels. A first analysis by Darcy
has shown that convergence and stability of convergence depend on the initialisation of
parameters. We further analyse Kernel Flows utilising the Koopman operator framework
proposed by Dietrich et al. in order to better understand the behaviour of the algorithm.
To this end, we formalize Kernel Flows as a dynamical system and use it to learn kernels
for toy data sets and estimate the point spectrum of the Koopman operator using extended
dynamic mode decomposition. Based on the spectrum, we search for eigenvalues close
to one and determine the basins of attraction based on a clustering of the evaluation of
the eigenfunctions to eigenvalues close to one. We show that the analysis through the
Koopman operator relies on a good choice of the number of clusters used in k-means
clustering which poses a problem since, to the best of our knowledge, no approach to
reliably determine the number of basins of attraction exists. In our analysis of Kernel
Flows through the Koopman operator, we have shown that there is a significant difference
in the form of the depicted basins of attraction of the used synthetic datasets compared
to real basins of attraction on real datasets. This might indicate a problem with the
synthetic datasets and, thus, the analysis based on it.
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1 Introduction

Many problems in the real world can be formalized as some sort of prediction by a function.
That means, we have some known input variables and want to predict one or more target
variables. Even if the relationship between input variables and target variables is not
completely deterministic, it is still possible to use such an approach by extending it
with the assumption of a noisy target variable. Common examples for such problems
include the prediction of the correct drug dose based on medical features, the prediction
of stock market prices based on a history of previous values, the classification of pictures
into classes describing their content, the prediction of interesting video content based
on a users history of previously watched content, or the prediction of the progression of
diseases like diabetes based on medical information of a patient.

One important question when modeling a given real world problem is, what function
should be used to model the relationship between input features and output variables.
One option is Linear Regression, where the target variable is just a weighted sum of the
input parameters. Another common choice for classification are SVMs, which essentially
attempt to find a line separating two classes. An approach based on the distance between
datapoints in feature space is k-nearest neighbors. Here, in order to find the correct
label to a new datapoint, we calculate the distance between the new datapoint and a set
of existing ones with known label and, then, label the new datapoint according to the
majority class of the k nearest neighbors, where k is determined by the person developing
the model.

Unfortunately, all these approaches have significant limitations. For example, there just
simply might not be a linear relationship between measured medical features and the
progression of diabetes. Also, there is not necessarily a clear line one can draw between
pictures of cats and pictures of dogs. Or, for k-nearest neighbors, the natural distance
between two sets of features describing videos might not necessarily mean, that they are
similarly interesting to a watcher. One solution to these problems are kernels, which
essentially project the features into a different space, in which e.g. exists a linear rela-
tionship between projected medical features and the progression of diabetes. As a result
of this, kernel methods are one of the go-to approaches when modelling the relationship
between feature variables and target variables. While the introduction of kernels signifi-
cantly increases the expressive power of existing methods, it also comes with the problem
of selecting the best kernel for a given problem. Since the solution to the kernel selection
problem is not trivial, Owhadi&Yoo introduced Kernel Flows, a data-driven approach to
finding good kernels.

The relevance of Kernel Flows to solving the problem of finding good kernels to a given
problem motivates us to analyse the algorithm in this thesis. In order to analyse Kernel
Flows, we use the Koopman Operator Framework which has recently been proposed for
analysis of algorithm by Dietrich et al. [8]. For this purpose, we first introduce the state
of the art in chapter 2. This noticeably includes a brief introduction in the basic idea of
kernel regression in section 2.1.1. In section 2.1.2 we provide some examples of existing
families of kernels, which will later on represent the set of potential kernels in which we
search for the optimal one with Kernel Flows. But before we can formally introduce
Kernel Flows, we first present the notion of a ’good’ kernel used by Owhadi&Yoo [24] in
section 2.1.3. After introducing sufficient background knowledge, we can finally introduce
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the parametric version of Kernel Flows, the algorithm under investigation in this thesis,
in section 2.1.4.
After explaining the necessary background for Kernel Flows in the first half of the state of
the art, the second half explains the required basics for applying the Koopman operator in
section 2.2 Since the Koopman operator by composition with the flow map of a dynamical
system, we first have to provide a quick introduction of the basics of dynamical systems
in section 2.2.1. Then, section 2.2.2 briefly defines operators and their spectrum, so we
can formally introduce the Koopman operator, which forms the basis of our analysis
approach. As previously mentioned, the Koopman operator requires a dynamical system.
Because of this we present the dynamical system view on algorithms originally introduced
by Dietrich et al. [8] in section 2.2.3. Then, the only thing remaining for section 2.2.4 is
the introduction of EDMD, an algorithm for finding a finite dimensional approximation
of the Koopman operator, its eigenvalues and eigenfunctions. This allows the practical
application of Koopman Operator Theory without the requirement of explicit derivation
of the Koopman operator.
In chapter 3 we present out experiments and results. Our first contribution comes in
section 3.1, where we properly formalize Kernel Flows as a dynamical system, which allows
for the analysis of Kernel Flows through the Koopman operator. Then, we explain in detail
our approach to analysing Kernel Flows through the Koopman operator in section 3.2.
To this end, we first provide a detailed explanation of the variables and design choices
for the approximation of the Koopman operator in section 3.2.1. Next, in section 3.2.2
we exhaustively describe our approach to detecting the basins of attraction using the
Koopman operator and illustrate everything with the example provided by Dietrich et
al. [8]. The result are two major contributions of our own: First, we verify the results
of Dietrich et al. [8]. Second, we show that the fact that the correct number of basins
of attraction is not known, can cause noticeable problems. In section 3.3 we further
investigate the convergence of Kernel Flows with multiple parameters and, thus, extend
the analysis of Darcy [7]. Additionally, we compare the influence of different optimizers
on the basins of attraction. After the analysis on synthetic data, we investigate Kernel
Flows on real two real datasets in section 3.4.
Chapter 4 closes this thesis by discussing the results and possible implications in sec-
tion 4.1 and providing an outlook on future work in section 4.2.
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2 State of the Art

This chapter provides the mathematical background for the analysis of the Kernel Flows
algorithm through the Koopman operator. The algorithm under analysis in this thesis is
Kernel Flows which aims at estimating an ideal kernel to a given dataset. Section 2.1.1
will provide relevant background knowledge for kernels and provide a brief explanation on
why kernels are relevant. Then, section 2.1 will introduce Kernel Flows. Next, we explain
the background for our analysis through the Koopman operator. To this end, section 2.2
will provide a short introduction into dynamical systems, the Koopman operator, and
how methods of dynamical system analysis can be applied for the analysis of algorithms.
Section 2.2.4 explains Extended Dynamic Mode Decomposition (EDMD), a data-driven
approach to estimating the Koopman operator, which allows for the usage of approximate
models of algorithms instead of requiring manually derived analytical ones.

2.1 The Kernel Flow Algorithm

This section introduces the Kernel Flow algorithm [24], which this thesis analyses using
the Koopman operator. This algorithm is a data-driven approach to finding a ’good’
kernel for a problem at hand. So, section 2.1.1 will first formally introduce kernels and
explain their use in practical application. Then, section 2.1.2 gives examples of kernels,
we will use later on in this thesis. In section 2.1.3 we present the notion of what a ’good’
kernel as defined by Owhadi&Yoo [24] and follow up with an explanation of Kernel Flows
in section 2.1.4.

2.1.1 Kernel Regression

The field of kernel regression is well studied and a comprehensive summary would exceed
the scope of this thesis. Thus, we limit ourselves to the basics required for understand-
ing kernels and their utility in regression. For more details we refer to Bishop [2] and
Schölkopf [28].
Let X ,Y be metric spaces and Dkernel := {(xi, yi)|(xi, yi) ∈ X × Y , i = 1, ..., N} be a
dataset with N ∈ N datapoints. Typically, we have Y ⊂ R with standard topology and
induced norm and metric. The goal of regression tasks is to find a function f : X → Y
mapping observations x ∈ X to target values y ∈ Y . It is also commonly assumed that
the target value contains some Gaussian noise ε ∼ N(0, σ2), where σ is the standard
deviation of the noise. So, for i = 1, ..., N the data yi follows

yi = f(xi) + ε. (1)

The simplest models for f would be linear, meaning yi would just be a linear combination
of the elements contained in the vector xi. Unfortunately, this simple approach imposes
limitations on the expressive power of the model. To solve this, a set of basis functions
φj : X → Y can be introduced. Since the basis functions are not necessarily linear, this
allows to first apply a non-linear function to map the input in a feature space, and then
consider the target value as a function of elements in the feature space. For the set of
basis function we introduce the vector notation φ with

φ(x)j := φj(x). (2)
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Using the basis functions we can also define the Gram matrix Θ ∈ RN×N by

Θi,j := φ(xi)
Tφ(xj). (3)

It should be noted that if points xi, xj never coincide for i 6= j, then Θ is a symmetric
and positive-definite matrix. Next, we define a kernel as a similarity measure

k(x, x′) : X × X → R. (4)

If

k(x, x′) = k(x′, x) (5)

holds for arbitrary x, x′ ∈ X , the kernel is considered symmetric. A kernel k is considered
positive-definite if the matrix K ∈ RN×N is positive-definite, where K is defined by

Ki,j := k(xi, xj). (6)

This means, that the Gram matrix Θ defined by the basis functions φ is a kernel and
already provides the first use case for kernels: If in a model the input x ∈ X is only
used in an inner product with itself, this inner product can be replaced by a kernel which
represents the usage of some base functions k(xi, yi) = 〈φ(xi), φ(xj)〉. This approach is
commonly referred to as the Kernel trick.

2.1.2 Examples of Kernels

While section 2.1.1 provides a mathematical definition and explanation of kernels in gen-
eral, this section gives some examples of commonly used kernels. The examples we will
consider are the Gaussian kernel, the n-linear Gaussian kernel, and the rational quadratic
kernel which are also used in the analysis of Kernel Flows by Darcy [7]. Before formally
introducing the aforementioned kernels, it is also worth noting that Darcy selected these
as examples, since they are universal kernels. Simplified, universal kernels are continuous
kernels capable of approximating an arbitrary continuous function f on a compact subset
of the domain of f , but since for this thesis the details of universal kernels are not of
importance, we refer to Micchelli et al. [21] for a proper mathematical description and
associated proofs.
The first kernel we introduce is the Gaussian kernel. For arbitrary x, x′ in some normed
space X the Gaussian kernel is given by

k(x, x′) := exp(−‖x− x
′‖2

2σ2
), (7)

where σ > 0 is some parameter, which has to be selected.
Since finite sums of kernels and multiplications of kernels with a scalar c > 0 result in
new valid kernels [2], it is possible to define the n-linear Gaussian kernel based on the
Gaussian kernel by

k(x, x′) :=
n∑
i=1

β2
i exp(−‖x− x

′‖2

2σ2
i

). (8)
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Here, ∀i = 1, ..., n : σi > 0 as for Gaussian kernels and βi ∈ R.
The third and last example of a kernel is the rational quadratic kernel. For parameters
α, β, γ > 0 it is defined by

k(x, x′) := (β2 + γ‖x− x′‖)−α. (9)

2.1.3 Measuring Kernel Quality

Kernel Flows focuses on finding a ’good’ kernel for a problem at hand, so in order to com-
pare different candidates of kernels Owhadi&Yoo [24] introduced a function to measure
the quality of kernels. This section will present this function and explain its rational.
The base idea of the approach introduced by Owhadi&Yoo is, that a kernel is ’good’ if a
reduction in the number of data points used to fit a kernel from Nkernel to Nkernel

2
does not

result in a large change in the optimal recovery. Colloquially, this would mean that ’the
kernel generalizes well’ when using Nkernel

2
points is sufficient. Since the computation of

the optimal recovery is essential to this approach, we will cover the subject first. So, let

Dkernel := {(xi, yi)|i = 1, ..., Nkernel} ⊂ X × Y (10)

be a dataset, where X ,Y are some metric spaces and Nkernel ∈ N is the number of data-
points in the dataset. Then, the problem of finding an unknown function u+ interpolating
the dataset can be formulated as the minimizer of the relative error

min
v∈B,

∀1≤i≤Nkernel:v(xi)=u(xi)

max
u∈B

‖u− v‖2

‖u‖2
, (11)

where B is a set of functions to which we are restricted. Let B∗ be the dual space of B
and φi(·) := δ(· − xi) ∈ B∗ be delta Dirac functions. If the norm ‖·‖ is quadratic, then
for u ∈ B

‖u‖2 = 〈Q−1u, u〉, (12)

where Q : B∗ → B is a positive symmetric linear bijection and 〈φ, u〉 denotes the duality
product for φ ∈ B∗, u ∈ B. Further, let Θ be the Nkernel × Nkernel Gram matrix with
entries Θi,j = 〈φi, Qφj〉 and A = Θ−1 be its inverse. Then, for the special case of a
quadratic norm, the minimizer for (11) is given by

v+ =

Nkernel∑
i,j=1

yiAi,jQφj. (13)

With Eq. 13 we have a solution for the case that the norm ‖·‖ is quadratic, but since
the intention is to apply the results to finding an optimal kernel, we will explain the
connection between these results and kernels next. To this end, consider the kernel

K(x, x′) := 〈δ(· − x), Qδ(· − x′)〉. (14)

Then, with the norm ‖·‖ defined by

‖u‖2 = sup
φ∈B∗

∫
φ(x)u(x)dx)2∫

φ(x)K(x, y)φ(y)dxdy
(15)
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for u ∈ B the normed space (B, ‖·‖) can be considered a Reproducing Kernel Hilbert
Space. By inserting the definition of the kernel K given in Eq. 14 into Eq. 13 we have

v+(·) = yTAK(x, ·), (16)

where yTAK(x, ·) =
∑Nkernel

i,j=1 yiAi,jK(xj, ·), A = Θ−1, and Θi,j = K(xi, xj). Note that
this is precisely the definition of the prediction formula of expectation of a Gaussian
Process Model.
The next step for evaluating the quality of a kernel is to compare the optimal recovery
for the entire dataset to the optimal one on a subset. Thus, let m ∈ Nkrnl, 1 ≤ m ≤
Nkernel be the number of datapoints to sample for an estimation and {s1, s2, ..., sm} ⊂
{1, ..., Nkernel} a selection of m distinct elements. Then, we define the sample dataset
Ds ⊂ Dkernel as

Ds := {(xsi , ysi)|i = 1, ...,m}. (17)

On this sample dataset Ds we can determine another optimal recovery vs given by

vs(·) =
m∑

i=1,j

ysiĀi,jK(xsj , ·), (18)

where Ā = Θ̄−1 and Θ̄i,j = Θsi,sj . Then, the quality of a kernel K is measured by the
ratio

ρ :=
‖v+ − vs‖2

‖v+‖2
. (19)

As shown by Owhadi&Yoo [24], the ratio ρ can also be represented by

ρ = 1− yT Āy

yTAy
. (20)

From this representation it is clear, that ρ ∈ [0, 1] and ρ close to zero indicates that vs

and v+ are similar and, therefore, we the kernel K generalizes well and can be considered
good.

2.1.4 Kernel Flows

With the quality measure presented in section 2.1.3 we now introduce Kernel Flows with a
parametric family of kernels. For this we will follow closely the work of Owhadi&Yoo [24].
It should be noted that there also exists a non-parametric variant of the Kernel Flows
algorithm, which will not be covered in this section.
The parametric Kernel Flows algorithm considers ρ as a function of the kernel parameters
and then minimizes it using gradient descent methods in order to find an optimal kernel
in a parameterized family of kernels. So, first we denote the finite dimensional linear
space of parameters byW . Then, let K(x, x′,W ) be a family of kernels parameterized by
W ∈ W . As previously, let X ,Y be metric spaces and let Nkernel ∈ N be the number of
datapoints in a dataset

Dkernel := {(xi, yi)|∀i = 1, ..., Nkernel : (xi, yi) ∈ X × Y}. (21)
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Let Nb ≤ Nkernel be the batch size used for gradient estimation and Nc := round(Nb

2
)

be the number of datapoints used for estimating the quality of the kernel using ρ. By
{sb,1, ..., sb,Nb

} ⊂ {1, ..., Nkernel} we denote the selection of Nb distinct datapoints in the
current batch, by {sc,1, ..., sc,Nc} ⊂ {1, ..., Nb} we denote the selection of Nc datapoints
used to estimate the quality of the kernel in ρ. We define the Nc × Nb sub-sampling
matrix π by πi,j := δsc,i,j and the sub-sampled target vectors yb ∈ RNb , yc ∈ RNc by
yb,i := ysb,i , yc,i := ysc,i , respectively. In the formulation of ρ in Eq. 20 the kernel is
implicitly contained since A = Θ−1, Ā = (πΘπT )−1, and Θi,j = K(xi, xj). So, when we
consider the function Θ(W ) : W → RNb×Nb with Θi,j(W ) = K(xsb,i , xsb,j ,W ) and insert
it in the definition of ρ, we have

ρ(W, sb, sc) = 1− ‖y
T
c (πΘ(W )πT )−1yc‖2

‖yTb Θ(W )−1yb‖2
. (22)

Thus, ρ can be considered a function of W , the parameter of the kernel. This allows to
use gradient descent methods to minimize ρ and, therefore, find an optimal kernel in the
parameterized family of kernels. The parametric variant of Kernel Flows is summarized
in algorithm 1.

Algorithm 1 Pseudo-code of parametric Kernel Flows

Initialize W
while Not end criterion do

Select sb,1, .., sb,Nb
out of {1, ..., Nkernel}

Select sc,1, .., sc,Nc out of {1, ..., Nb}
W ← W − ε∇Wρ(W, sb, sc)

end while

2.2 The Koopman Operator of Algorithms

The Koopman operator has been initially introduced by Koopman [16] in 1931 in the
context of hamiltonian systems and Hilbert spaces. It allows for analysis of non-linear
dynamical systems using a linear operator. In the decades since, noticeable progress in
the theory of the Koopman operator has been made.
The Renaissance of the Koopman operator has been brought about by Igor Mezić [18,
19, 20] by introducing majorly to extending the theoretical background and making the
Koopman Operator Theory practically viable.
Črnjarić-Žic et al. [6] analysed the properties of the Koopman operator for different types
of random dynamical systems. Further, they defined a stochastic Hankel DMD allowing
for numerical approximation of eigenvalues and eigenfunctions of the stochastic Koopman
operator. In addition to proving the convergence of their algorithm, they utilise it on
examples for model reduction.
Nüske et al. [23] showed probabilistic error bounds for prediction error and approximation
error depending on the number of training points.
Alexander&Giannakis [1] utilise the Koopman operator framework to reformulate kernel
analog forecasting techniques.
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Dogra&Redman [9] consider the optimisation of weights during the training of a neural
network as a dynamical system and use Koopman operator theory to develop a new
training technique for faster training than existing gradient-based approaches like ADAM
or SGD.
For a more detailed overview on existing literature, we refer to Budǐsić et al. [5].
Gonzalez et al. [11] disprove common misconceptions regarding the Koopman operator.
This includes attributes of the Koopman operator like boundedness or compactness. Fur-
ther, they show that, in general, there does not exist a lattice of eigenfunctions and
eigenfunctions are not necessarily shared among Koopman operators.

2.2.1 An Introduction to Dynamical Systems

The fundamental motivation behind dynamical systems is to model and study the be-
haviour of evolving systems over a long time period. Due to its prevalence in, for example,
physics, this topic is well studied in literature. Nevertheless, for this thesis the basic con-
cepts are sufficient and will be introduced here. For a more comprehensive introduction
we refer to Brin&Stuck [3].
First, let M 6= ∅ be a non-empty set. We refer to M as the state space and every
element x ∈ M is called a state. Second, we define a one-parameter family of maps
Ft := {f t : M → M}, which forms a one-parameter group or semigroup. This means
that f 0 = I, where I is the identity function, and

∀t, s : f t+s = f t ◦ f s. (23)

If t ranges over R, then the map f associated with a dynamical system is called a flow.
If t ranges over R+

0 , then it is called a semiflow.
While this is the most general definition of dynamical system, for the purpose of this
thesis, we will limit ourselves to dynamical systems based on differential equations and
follow the terminology of Dietrich et al. [8]. So, here the state spaceM will be a smooth,
k-dimensional Riemannian submanifold embedded in a d-dimensional Euclidean space.
Further, we define a differentiable vector field v : M → Rk. The flow induced by this
vector field is given by a map S : R+ ×M→M, for which holds

∀s, t ∈ R+,∀x ∈M : S(t+ s, x) = S(t, S(s, x)),
d

dt
S(t, x)

∣∣∣∣
t=0

= v(x). (24)

Using the flow map S and defining for each t ∈ R+ a new map St by

∀x ∈M : St(x) = S(t, x), (25)

we have a family of flow maps Ft. From the conditions in Eq. 24 it follows that Ft is a
semigroup. Thus, this approach is a special case of the original definition of dynamical
systems. For the remainder of this thesis, we will work with dynamical systems based on
vector fields.
In section 2.2.3 we will show how algorithms can be considered dynamical systems. While
there are continuous algorithms, the main focus in this thesis is on iterative algorithms
which work in discrete time. This can be achieved easily by discretizing the flow map
S. To this end, we fix a ∆t ∈ R+ and define S∆t(x) = S(∆t, x) for arbitrary x ∈ M.
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Then, S∆t generates a dynamical system which only allows for time steps of size ∆t and is,
therefore, a time-discrete and time-homogeneous dynamical system. Note that the inverse
direction is not possible in general: some iterative algorithms do not have a continuous
counterpart. A good example of this is the logistic map. Its iterate produce a chaotic
sequence in one dimension, but there cannot be a dynamical system in continuous time
that is chaotic in just one variable.

2.2.2 The Koopman Operator

The fundamental basis for the analysis of Kernel Flows presented in this thesis is the
Koopman operator. The following introduces the mathematical setting.
In functional analysis a continuous linear operator T : X → Y is a linear and continuous
map between two normed spaces (X , ‖ · ‖X ), (Y , ‖ · ‖Y). In the context of this thesis,
we will further assume that the normed spaces (X , ‖ · ‖X ), (Y , ‖ · ‖Y) are Banach spaces.
Due to the linearity of operators the study of operators in functional analysis can be
considered a generalisation of linear algebra, but unlike linear algebra functional analysis
is not limited to finite dimensional spaces.
One important similarity to linear algebra is the study of the spectrum of operators. In
linear algebra, the study of the spectrum refers to the analysis of the eigenvalues and
eigenvectors of a matrix. For a given field F a value λ ∈ F is an eigenvalue of a matrix
T ∈ Fn×n, if there exists a vector x ∈ Fn \ {0} with

Tx = λx, (26)

which holds if and only if

λI − T is not injective, (27)

where I is the identity matrix. In finite dimensional spaces λI − T not injective holds if
and only if λI−T is not surjective. In infinite dimensional spaces this equivalence does not
hold, so the spectrum is partitioned into three parts, the point spectrum, the continuous
spectrum, and the residual spectrum. So, let F be a field and X be a - possible infinite
dimensional - vector space over F. For an operator T : X → X , the point spectrum is
defined by

σp(T ) := {λ ∈ F : λI − T is not injective}. (28)

The continuous spectrum is given by

σc(T ) := {λ ∈ F : λI − T is injective but not surjective with dense range} (29)

and the residual spectrum by

σr(T ) := {λ ∈ F : λI − t is injective but not surjective without dense range}. (30)

The spectrum of the operator T : X → X is given by the disjoint union

σ(T ) := σp(T ) ∪ σc(T ) ∪ σr(T ). (31)



10 2 STATE OF THE ART

For the analysis in this thesis we will focus on the point spectrum. Usually, the point
spectrum σp(T ) of an operator T : X → X consists of a union of discrete points. It
should also be noted, that only λ ∈ σp(T ) is considered an eigenvalue of T and an vector
x ∈ X \ {0} is called an eigenvector. If X is a function space it is common to use the
term eigenfunction instead of eigenvector for x ∈ X .
In the context of dynamical systems the definition of a family of operators by composition
with flow maps is possible and commonly referred to as Koopman operator. The function
space on which the Koopman operator operates on is referred to as the space of observables
and every element in this function space is called an observable. In this thesis, we limit
ourselves to a common choice, we will now formally introduce. So, let L2(X ,C, µ) be the
function space of complex-valued functions which are square integrable with respect to a
measure µ. For simplicity, we will denote this space by

F = L2(X ,C, µ) = {g : X → C, s.t.
∫
X
|g(x)|2dµ(x) <∞}. (32)

The square integrability of this function space provides an intrinsic inner product defined
by

〈g1, g2〉 :=

∫
X
g1(x)g2(x)dµ(x), (33)

where the bar over g2 denotes the complex conjugation of the function evaluation. Since
F is technically a space of equivalence classes with respect to µ, meaning every function
in an equivalence class only differs in a µ-null set, this inner product induces a norm on
F , here denoted by ‖ · ‖F . So, (F , ‖ · ‖F) forms a normed space.
For the definition of the Koopman operator Kt for t ∈ R+ we require a flow map. So, let
Ft = {St : t ∈ R} be a flow as defined in section 2.2.1. Further, let g : X → C ∈ F be an
observable. Then the Koopman operator Kt : F → F is defined by

[Ktg](x) := (g ◦ St)(x). (34)

Since the Koopman operator Kt is parameterised by t, it is clear, that we actually have
a family of operators and not just a single one. It is common in literature to choose one
parameter t0 and then to only consider Kt0 and analyse this operator. If not specified
otherwise, we will work with t0 = 1 and, for notational convenience, drop the superscript
and only write K.
This covers the formal introduction of the Koopman operator and, as can be seen from
the definition, intuitively, the Koopman operator Kt can be interpreted as shifting the
observable through the dynamical system forward in time by t. This means, instead of
evaluating an observable g : X → C ∈ F at x ∈ X , it will be evaluated at the state
reached after t time has passed in the dynamical system, when we start at state x ∈ X . It
should be noted, that there also exists a notion of a stochastic Koopman operator which
takes

2.2.3 A Dynamical System Perspective on Algorithms

The idea to consider algorithms as dynamical systems and apply the Koopman opera-
tor framework for analysis was first suggested by Dietrich et al. [8] and stems from the
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observation that many iterative algorithms act upon a finite-dimensional state space. Fur-
ther, future states only depend on the current state and time passed. Thus, they can be
considered as a variant of a time-discrete dynamical system. We formalise this by first
defining a state space M ⊆ Rd, where d ∈ N. Further, we assume that M is a smooth,
k-dimensional Riemannian submanifold embedded in an d-dimensional Euclidean space,
where d ∈ N, d ≥ k holds. The embedding induces the metric on M. Then, an iterative
algorithm is defined by a differentiable map u :M→M, which steps forward in iteration
number. For a given iteration number n ∈ N and corresponding state xn ∈ M, a single
iteration is defined by

xn+1 = u(xn). (35)

By considering the map u :M→M as a flow map, we can use the definition of dynamical
systems induced by vector fields as elaborated on in section 2.2.1. This approach provides
us with a flow map S∆t :M→M. While we could assign an arbitrary time interval ∆t
in the discrete time dynamical system to a single update step in the iterative algorithm,
for simplicity, we will use ∆t = 1.
Now, that we have reformulated an iterative algorithm as a dynamical system, we can
deploy methods for dynamical system analysis. In this thesis, we will mainly focus on the
Koopman operator introduced in section 2.2.2.

2.2.4 Data-driven Estimation of the Koopman Operator

Section 2.2 has introduced the Koopman operator for a dynamical system, but so far
this is a strictly formal definition and the application of the Koopman algorithm would
require explicit calculation of the Koopman operator for a given dynamical system. This
is only possible for a very limited number of systems and not applicable in practice. In
order to solve this problem several approximative algorithms have been proposed over
time. One example is the stochastic Hankel DMD introduced by Črnjarić-Žic et al. [6]
which allows for an approximation of a stochastic Koopman operator and its spectral
elements. In this thesis we will use extended dynamic mode decomposition (EDMD)
for a data driven approximation of the Koopman operator. It was first proposed by
Williams et al. [29] in order to approximate the leading eigenvalues and eigenfunctions
of the Koopman operator given a dataset of snapshot pairs and a dictionary of scalar
observables. Williams et al. further showed that EDMD can be considered an extension
of dynamic mode decomposition [27], a previously existing algorithm for approximating
the eigenvalues of the Koopman operator, and that for Markov processes the algorithm
approximates the eigenfunctions of the stochastic variant of the Koopman operator. Other
approximation algorithms are also available. For example the stochastic Hankel DMD
introduced by Črnjarić-Žic et al. [6] which allows for an approximation of a stochastic
variant of the Koopman operator and its spectral elements.
The fundamental idea of EDMD is to find a finite dimensional approximation K of the
Koopman operator K using a dataset of snapshots of the dynamical system Dsnap and a
dictionary of observables Dobs. So, let M be a state space, St : M → M be the flow
map of a dynamical system with step size t, F be a space of observables, and K be the
Koopman operator defined by composition with St. Further, let

Dsnap = {(xi, yi)|xi, yi ∈M, yi = St(xi),∀i = 1, ..., Nsnap} (36)
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be a dataset of snapshots of the dynamical system and

Dobs = {ψi|ψi ∈ F∀i = 1, ..., Nobs} (37)

be a dictionary of observables. Here, Nsnap ∈ N is the number of snapshots in the dataset
and Nobs ∈ N is the number of observables in the dictionary. For brevity, we use FD ⊂ F
to refer to the span 〈Dobs〉 of the dictionary of observables Dobs. It should be noted that the
span FD of the dictionary of observables Dobs does not necessarily span the entire space
of observables F , but for EDMD we will assume that FD contains a sufficiently good
approximation of the leading eigenfunctions of the Koopman operator K. Additionally,
we introduce

Ψ :M→ C1×Nobs , x 7→ [ψ1(x), ψ2(x), .., ψNobs
(x)] (38)

as a helper function to simplify notation.

First, we explain the approximation of the eigenfunctions. To this end, we first note that
by definition an element φ ∈ FD can be represented as

φ =

Nobs∑
i=1

aiψi = Ψa, (39)

where a ∈ CNobs is a vector of coefficients. Then, since FD is in general not an invariant
subspace of the Koopman operatorK, we can represent the effect of applying the Koopman
operator K on an observable φ by

Kφ = (Ψ ◦ St)a = Ψ ·Ka + r (40)

for some K ∈ CNobs×Nobs and a residual term r ∈ F . In Eq. 40 we separated the application
of the Koopman operator into two parts. Firstly, Ψ(Ka), which lies within FD and,
secondly, r ∈ F which isn’t contained in FD. So, if we choose K in a way that minimizes
the residual term r, we can consider Ψ(Ka) to be the best approximation of the Koopman
operator. To this end we consider the objective function

J :=
1

2

Nsnap∑
i=1

|r(xi)|2 (41)

=
1

2

Nsnap∑
i=1

|Kφ(xi)−Ψ(xi)(Ka)|2 (42)

=
1

2

Nsnap∑
i=1

|((Ψ ◦ St)(xi)−Ψ(xi)K)a|2 (43)

=
1

2

Nsnap∑
i=1

|(Ψ(yi)−Ψ(xi)K)a|2. (44)

For the first and second equality we resolved Eq. 40 for r. For the third one we used that
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in our dataset Dsnap by definition yi = St(xi) holds for every i = 1, ..., Nsnap. Now, let

G =
1

Nsnap

Nsnap∑
i=1

Ψ(xi)
∗Ψ(xi), (45)

A =
1

Nsnap

Nsnap∑
i=1

Ψ(xi)
∗Ψ(yi), (46)

where Ψ(xi)
∗ denotes the conjugate transpose of Ψ(xi). Further, we denote the pseudo-

inverse of G by G+. Then, since J is a least squares problem, the optimal solution for K
is given by

K = G+A. (47)

Now, with an optimal finite dimensional approximation K ∈ CNobs×Nobs of the Koopman
operator K, we can consider consider the approximation of eigenvalues and eigenfunctions.
So, let ξi be the eigenvector of K to the i-th eigenvalue λi, then the approximation of the
i-th eigenfunction ϕi of K is given by

ϕi = Ψξi. (48)

While an approximation of the eigenvalues and the eigenfunctions of the Koopman oper-
ator are useful for spectral analysis, they are not sufficient to predict future states of the
dynamical system. To this end, we consider the full state observable to capture the effect
of the dynamical system on the state space using the Koopman operator. The full state
observable is defined as

g :M→M (49)

g(x) = x. (50)

Since the space of observables contains functions mapping from M to C, we have to
express the full state observable using component functions

gi :M→ C, gi(x) = e∗ix, (51)

where ei denotes the i-th unit vector in RN . Then, each component function can be ap-
proximated using the observables in the dictionary Dobs and the weights be determined.
For practical application it is common to first represent the eigenfunctions using the dic-
tionary Dobs and then represent the components of the full state observable as a weighted
sum of eigenfunctions. In this case, the weights are referred to as Koopman modes, but
since we will not use the Koopman modes for our analysis, we refer to Williams et al. [29]
for a detailed explanation.
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3 Analysis of Kernel Flows through the Koopman

Operator

This chapter details the analysis of Kernel Flows through the Koopman operator and,
thus, forms the main contribution of this thesis. First, we properly formalise Kernel Flows
as a dynamical system in section 3.1 by applying the general idea of viewing algorithms as
dynamical systems presented in section 2.2.3 to Kernel Flows presented in section 2.1.4.
Then, in section 3.2 we provide the details on the approximation of the Koopman operator,
methods to analyse a dynamical system through this approximation of the Koopman
operator, and briefly detail the implementation. After this explanation of the analysis in
general, in section 3.3 we deploy it on synthetic data in order to investigate the influence
of hyper-parameters and the behaviour of Kernel Flows. Section 3.4 further analysis the
behaviour of Kernel Flows, when applied on real datasets.

3.1 Kernel Flows as a Dynamical System

Before we can analyse Kernel Flows through the Koopman operator, we have to specify
how we can view them as dynamical systems. While section 2.2.3 presents the fundamental
idea for viewing algorithms as dynamical systems, this section will provide the specifics for
Kernel Flows with a parametric family of kernels. It should be noted, that some variables
will still be defined somewhat vague, since they are dependent on the specific scenario in
which we analyse Kernel Flows through the Koopman operator.
First, we define two metric spaces X ,Y and a dataset

Dkernel = {(xi, yi)|xi ∈ X , yi ∈ Y , 1 ≤ i ≤ N} (52)

with N ∈ N datapoints. The metric space X is the feature space which will be used by
the kernel to predict a target in the target space Y . The dataset Dkernel will be used
for Kernel Flows and, thus, corresponds to the dataset defined in Eq. 21. The index
kernel is used to clearly mark the dataset as use for Kernel Flows and distinguish it
from the dataset used to estimate the Koopman operator K using EDMD as presented in
section 2.2.4. This dataset will be introduced later on. Both metric spaces X and Y , the
dataset Dkernel, and the number of datapoints N depend on the specific experiment and,
therefore, can not be specified any further at this place, but will be briefly explained for
each experiment.
Next, we need to determine the family of kernels and the corresponding parameter space
W . The choice of the family of kernels is a research question in itself and not the topic of
this thesis, so we use - depending on the experiment - either a family of kernels based on
Gaussian kernels or rational quadratic kernels. This choice is mainly motivated in order to
allow for comparison of the results to the previous analysis performed by Darcy [7]. Since
the family of kernels depends on the experiment, the specifics will be explained for each
experiment individually. Important for our formalisation of Kernel Flows as a dynamical
system is that the algorithm updates the parameter space W with each iteration step.
Therefore, the parameter spaceW will be considered the state spaceM of the dynamical
system.
The last remaining step is to formally define the flow map S :M→M of the dynamical
system. As explained in section 2.2.3 we use the update function u : M → M of the
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algorithm to do so. In order to determine the update function u, we consider Kernel Flows
as summarized in algorithm 1. In the first step a variable W for the current parameters
of the kernel is initialized. Then, in a while loop this variable W is repeatedly updated
by first selecting 1 < Nb ≤ N datapoints with an index vector sb from the dataset as a
batch, then from these Nb datapoints 1 ≤ Nc < Nb datapoints with index vector sc are
selected for determining the quality of the kernel. The last step is updating the variable
W containing the kernel parameters by assigning the new value

Wn+1 = Wn − ε∇Wnρ(Wn, sb, sc). (53)

Since the update function u : M → M we use has to be a function only in M = W ,
but the current update also depends on sb and sc an approach for removing the variables
sb and sc from the domain of the update function is required. The simplest approach
to this, would be to consider the index vectors sb and sc to be fixed. While simple, this
approach would also result in Kernel Flows finding a kernel where optimal recovery for
the sub-datasets of Dkernel selected by sb and sc, respectively, is similar. Each datapoint
(xi, yi) ∈ Dkernel not selected by the index vector sb would therefore be completely ignored.
Since such a reduction of the dataset is not acceptable in general, this approach is unfit.
Another potential approach is to define Kernel Flows as a random dynamical system. This
requires a formal introduction of a probability space according to which the indices in sb
get selected from all indices in the dataset. A reasonable probability distribution would be
uniform distribution on the set of indices in the dataset Dkernel. Then, another probability
space for the selection of indices sc from the indices in sb is required. Once again a uniform
distribution on the set of previously selected indices would be reasonable. Then, these
two probability spaces induce a conditional probability space onW which determines the
distribution of the next value of W given its current one. The associated conditional
probability distribution would be the replacement of the update function uW →W in a
stochastic setting. Further, due to the introduction of the probability space related to a
random dynamical system, the Koopman operator as defined in section 2.2.2 can not be
used directly, but instead has to be adapted to a stochastic Koopman operator.
Since we do not see a significant benefit from the introduction of probability spaces, we
instead model the update function u :W →W without any probability spaces onW and
assume that sb and sc are the images of pseudo-random functions. This allows us to still
model Kernel Flows as a deterministic dynamical system as opposed to a random one,
while not fixing the selection of datapoints to only a few ones. In order to further justify
this approach, we want to point out, that due to the selection of the state space W for
our experiments a repeated visit of exactly the same state during a run of Kernel Flows
is unlikely and as long as a state W ∈ W does not get revisited a random selection of sb
and sc is indistinguishable from a pseudo-random one depending on W . We now formally
introduce our approach. So, let

Ab := {s ∈ {1, ..., N}Nb|∀1 ≤ i, j ≤ Nb : i 6= j =⇒ si 6= sj} (54)

be the set of valid selections of Nb different indices from the dataset Dkernel. Then, the
selected indices sb are the image of the pseudo-random function

rb :W → Ab. (55)
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Analogously, let

Ac := {s ∈ {1, ..., Nb}Nc |∀1 ≤ i, j ≤ Nc : i 6= j =⇒ si 6= sj} (56)

be the set of valid selections of Nc indices from an vector of dimension Nb > Nc and

rc :W → Ac (57)

be another pseudo-random function. Then, the index vector sc selected for estimating the
quality of the kernel with parameters W is given by

sc = π(sb, rc(W )) (58)

= π(rb(W ), rc(W )), (59)

where

π : Ab ×Ac → {1, ..., N}Nc , (60)

πi(x, y) = xyi (61)

selects the elements of the first variable according to the indices provided by the second
variable. As a result the parameter update assignment of Kernel Flows described in Eq. 53
can be reformulated as

Wn+1 = Wn − ε∇Wnρ(Wn, sb, sc) (62)

= Wn − ε∇Wnρ(Wn, rb(Wn), π(rb(Wn), rc(Wn))). (63)

Here, it should be noted that we slightly abuse notation of the nabla operator. In our
case ∇Wnρ(Wn, rb(Wn), π(rb(Wn), rc(Wn))) still only refers to the Frechét derivative of
ρ with respect to the first variable Wn and not the second and third one, which also
depend on Wn now. As can be seen in Eq. 63, now the new set of parameters depends
deterministically on the previous ones and we can define a deterministic update function
u by

u :W →W , (64)

W 7→ W − ε∇Wρ(W, rb(W ), π(rb(W ), rc(W ))). (65)

As explained in section 2.2.3 we now define the flow map S of the deterministic dynamical
system by setting

S = u. (66)

So, to summarize, we model Kernel Flows as a deterministic dynamical system where the
state space is given by the parameter space W of the family of kernels used in Kernel
Flows. The flow map of the dynamical system is the update function used in Kernel
Flows to assign a new value to the current estimate of the best parameters for the kernel.
The random selection of datapoints involved in the parameter update of Kernel Flows is
modelled by using pseudo-random functions.
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3.2 Analysis Methodology

This section explains the general approach for analysing Kernel Flows through the Koop-
man operator and uses gradient descent on Himmelblau’s function [14] as an illustrative
example. For the selection of the example, we have several reasons. First, it is the ex-
ample provided by Dietrich et al.[8], which allows us to verify their results. Further, due
to the fact that Himmelblau’s function is well-known and well-established in numerical
analysis, it allows for easier understanding of results like detection of basins of attraction
than when performed on Kernel Flows. Third, since Dietrich et al.[8] already made use
of this example, we do not have to properly formulate gradient descent as a dynamical
system, but can refer interested readers to the work of Dietrich et al.[8].

3.2.1 Approximation of the Koopman Operator

Before we can explain the analysis of Kernel Flows through the Koopman operator, we
first have to provide the specifics on how we use EDMD presented in section 2.2.4 to find
a finite-dimensional approximation K of the Koopman operator K. To this end, we first
repeat some notation introduced in previous sections. So, as described in section 3.1, we
consider Kernel Flows as a dynamical system. Therefore,W denotes the state space of the
dynamical system and S is the flow map. Of this dynamical system we estimate a finite-
dimensional approximation K of the Koopman operator K by using EDMD described in
section 2.2.4. To this end, we require a dataset of snapshots of the dynamical system

Dsnap = {(xi, yi) ∈ W ×W|1 ≤ i ≤ Ns, S(xi) = yi}, (67)

where Ns is the number of snapshots we have. Here, we briefly want to remind that
this dataset for approximating the Koopman operator K is not to be confused with the
dataset Dkernel which is used in Kernel Flows. In order to generate the dataset Dsnap, we
first select a connected, compact subsetWc of the parameter spaceW , which is the subset
of interest within we want to analyse our dynamical system. Since this subset of interest
Wc depends on the parameter space W , we provide the specifics for each experiment in
the corresponding section. For the illustrative example we use the compact subset [−4, 4]2

like Dietrich et al. [8]. After deciding on a subset of interest, we select Ns datapoints from
Wc, which are equidistant with respect to the maximum norm. On these datapoints, we
evaluate the flow map S of our dynamical system. So, for our experiments this means we
initialize Kernel Flows with a selected datapoint xi as parameters and then calculate one
update step of Kernel Flows to get the corresponding next state yi. In the illustrative
example the computation of a datapoint corresponds to one gradient descent step on
Himmelblau’s function.
Besides the dataset of snapshots Dsnap, we also require a dictionary of observables Dobs
which serves as the basis to approximate the space of observables F . While the choice of
the dictionary Dobs is important, we simply follow Dietrich et al. [8] in order to keep the
illustrative example comparable. Thus, the dictionary of observables Dobs contains three
different groups of observables. The first one only contains the one function

1 :W → R, (68)

W 7→ 1. (69)
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The second one is the set of axis functions πj

πj :W → R, (70)

W 7→ Wj, (71)

where 1 ≤ j ≤ dim(W) and dim(W) is the dimension of the finite-dimensional state
space W . The third one is a set of 500 thin-plate radial basis functions [10]. For these,
we set the parameter δ = 10−3 and select 500 function centers µi uniformly at random
from the set of interest Wc. Then, the thin-plate radial basis functions are given by

di :W → R, (72)

di(W ) = ‖W − µi‖2 ln(‖W − µi‖+ δ). (73)

So, in total the dictionary of observables Dobs contains Nobs = 501 + dim(W) observables
to approximate the space of observables F . For our illustrative example, the number
of observables in the dictionary of observables Dobs is Nobs = 503 since Himmelblau’s
function is a function mapping from R2 into R and, therefore the state space of gradient
descent is also two-dimensional.
Now that we have explained the generation of the dataset of snapshots Dsnap and the
dictionary of observables Dobs, we can use EDMD as described in section 2.2.4 to find
a finite-dimensional approximation K ∈ CNobs×Nobs of the Koopman operator K of the
dynamical system under analysis. This approximation forms the basis of our analysis.
Since eigenvalues and eigenfunctions play an important role, we want to repeat that we
use λi to denote the i-th eigenvalue of the Koopman operator and ϕi for the corresponding
eigenfunction.

3.2.2 Basins of Attraction

One of the main tools in the analysis of algorithms through the Koopman operator is
the determination of basins of attraction. Determining and visualising the basins of
attraction provides a rough overview on which regions the dynamical system is expected
to converge to some value. This section provides an abbreviated explanation of the idea
behind this analysis technique and explains the approach used in this thesis. For a large
part, the approach is based on the work of Dietrich et al. [8]. For a more extensive
explanation and the mathematical foundation of this approach, we refer to Dietrich et
al. [8], Budǐsić&Mezić [4], and Budǐsić et al. [5].
First, we start with the basic idea. To this end, we remind the reader that, as explained in
section 3.2.1, we acquired a finite-dimensional approximation K of the Koopman operator
K through the application of EDMD. Further, this resulted in Nobs approximations λi of
the eigenvalues of the Koopman operator K and corresponding approximative eigenfunc-
tions ϕi. As mentioned in section 2.2.2, the pure-point spectrum σp(K) of a continuous
linear operator like the Koopman operator can be considered a generalisation of eigenval-
ues and eigenvectors of matrices in linear algebra. This can also be seen in the definition

σp(K) = {λ ∈ C|λI −K is not injective}. (74)

So, for a pair of eigenvalue λi and eigenfunction ϕi of the Koopman operator K it holds

Kϕi = λiϕi. (75)
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Further, we remember that the eigenfunctions ϕi can be used to reconstruct the full-state
observable

g :W →W , (76)

g(W ) = W, (77)

and, thus, allow to mimic the behaviour of the dynamical system on the state space. As
a result of these two facts, we can split eigenvalues into different sets, which allow for
analysis of long term behaviour of the associated eigenfunctions and, therefore, to some
extend the dynamical system. One set, one can consider is the set of eigenvalues within
the open unit circle B1(0). By repeatedly applying Eq. 75, we can see that the influence
of associated eigenfunctions on the state of the dynamical system vanishes. Because of
this observation we will not further consider eigenvalues in this set.
Another interesting set to consider is the set of absolutely large eigenvalues, meaning
eigenvalues λi for which holds |λi| � 1. Here, when applying Eq. 75 n times, we have
that the effect of the eigenfunctions ϕi on the state is increased by a factor λni � 1.
Therefore, their associated eigenfunctions describe regions in which it can be assumed
that the dynamical system accelerates over time.
In this analysis we mainly focus on eigenvalues λi ≈ 1. By considering Eq. 75, we see
that eigenfunctions associated with these eigenvalues are preserved under the flow of the
dynamical system. This allows to construct an ergodic decomposition [4, 5] of the state
space which separates basins of attraction. To this end, we first select the eigenvalues
λi ≈ 1 and their corresponding eigenfunctions ϕi. In the illustrative example, we can
assume that we will have at least four such eigenvalues, since Himmelblau’s function is
known to have four local minima which together with some environment form the basins
of attraction. In general, the number of basins of attraction or the number of eigenvalues
λi ≈ 1 is not known. So, we chose an approximation tolerance ε > 0 so that if |λi− 1| < ε
we consider the eigenvalue λi to be one. Since the choice of ε also depends on the dynamical
system, we further limit ourselves to at most ten clusters. Our selection process for
eigenvalues leaves us with N1 ∈ N eigenvalues λi ≈ 1 and corresponding eigenfunctions
ϕi : W → C. The exact value of N1 depends on the dynamical system under analysis.
Without loss of generality, we assume that these eigenvalues λi and eigenfunctions ϕi have
indices i ∈ {1, ..., N1}, since otherwise these indices can be enforced by relabeling them
with a suitable permutation. In order to approximate the ergodic decomposition, we use
a helper function

Ψ :W → CN1 , (78)

W 7→ [ϕ1(W ), ..., ϕN1(W )], (79)

which evaluates the eigenfunctions associated with eigenvalues λi ≈ 1 at a given point
W in the state space W and returns a N1-dimensional vector thereof. Next, we evaluate
the helper function Ψ on the first element of each datapoint in the dataset of snapshots
Dsnap. To be more specific, for each (xi, yi) ∈ Dsnap we evaluate zi := Ψ(xi) ∈ CN1 and
store it in a dataset Dbasins. To recall the first elements xi of each datapoint (xi, yi) in the
dataset of snapshots Dsnap are chosen so they create a mesh on the set of interest Wc on
which we want to analyse the dynamical system. Therefore, the dataset Dbasins contains
evaluations of relevant eigenfunctions on the entire compact set of interest Wc.
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The next step to finding the basins of attraction for our dynamical system is to cluster
the dataset Dbasins in the space CN1 . Then, each cluster should correspond to a basin of
attraction. For the illustrative example with Himmelblau’s function, we know that we
have four basins of attraction and, thus, require four clusters. Unfortunately, the number
of basins of attraction of a dynamical system is not known, in general. As a result, the
number of clusters we have to find is also not known, in general. While there are several
approaches to solve this problem[22] we instead use an upper bound of the number of
clusters we need. Then, we just cluster according to this upper bound. We note, that this
approach is not perfect and might very well result in datapoints which should belong to a
single cluster to be distributed among several clusters, but it saves us the development of
a more elaborate solution to this nontrivial problem. In order to find an upper bound of
the number of clusters required, we exploit our knowledge on how the number of clusters,
the number of basins of attraction, and the number of eigenvalues λi ≈ 1 relate to each
other. We know that N1, the number of eigenvalues λi ≈ 1, is an upper bound of the
number of basins of attraction. Therefore, N1 is also an upper bound of the number of
clusters since ideally each cluster corresponds to one basin of attraction,. Even when the
number of cluster is known (or estimated as in our case) there are still several algorithms
to chose from. In this thesis we use k-means, mainly because it is the algorithm use by
Dietrich et al. [8], but its speed is also a significant benefit.
After clustering the datapoints in Dbasin we plot them in the set of interestWc, where the
color represents the cluster. It should be noted, that the label associated with a cluster
is arbitrary and we are only interested in which datapoints belong to the same cluster.
Thus, a legend for the colors is not required.

Figure 1: Plot of clustering results on gradient descent on Himmelblau’s function. Each
color represents one cluster. In practice, one basin of attraction can correspond to multiple
clusters. Here, we can see nine different clusters, but still make out the contour of the
actual basins of attraction.

An example of a plot visualising the results of this analysis for gradient descent on Him-
melblau’s function is provided in Fig. 1. As can be seen the area is split into nine different
clusters, even though four would be sufficient. If the regions of the basins of attraction of
the gradient descent algorithm on Himmelblau’s function are known, it is still possible to
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see which clusters should be considered together in order to form a basin of attraction.
In order to investigate, why we see nine clusters instead of four, as we expected, we first
reduce the number of clusters to four, meaning N1, the number of eigenvalues λi ≈ 1, is
set to four, instead of estimating it with a tolerance value ε > 0. The results of this can
be seen in Fig. 2.

Figure 2: Plot of clustering results on gradient descent on Himmelblau’s function. Each
color represents one cluster. In practice, one basin of attraction can correspond to multiple
clusters. Here, we have restricted the number of clusters to four artificially. The clusters
roughly correspond to the basins of attraction.

While the results do not depict the basins of attraction completely correct, each cluster
still roughly corresponds to a basin of attraction. Thus, the discrepancy of our results to
the results of Dietrich et al. [8] are mainly due to the varying number of clusters, which
again is the result of us not assuming to know the correct number of basins of attraction
and, thus, of clusters when running the analysis. The remaining difference is likely due
to differing centres for the thin-plate radial basis functions used in EDMD and a varying
number of datapoints used to approximate the Koopman operator.

0.00049 0.00049 0.00264 0.00352 0.00352 0.00632 0.00776 0.00808 0.00808

Table 1: This table provides the distance of the nine closest eigenvalues to one in the
example with Himmelblau’s function. As can be seen, the table contains duplicate values,
which might indicate duplicate eigenvalues. Further, no significant jump in the distance
of the eigenvalues can be noticed.

In order to see, if there would be a better natural value for the approximation tolerance
ε, we have a look at the distance of the nine eigenvalues λi closest to one. The distances
are shown in Table 1. As can be seen, there are several duplicate values, meaning there
are multiple eigenvalues which have equal distant to one. Equal distance might indicate
identical eigenvalues, which might lead to the idea of removing duplicates in order to
reduce the number of clusters and get a better depiction of the basins of attraction. we
want to note that in the ideal case the approximation of the eigenvalues provided by
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EDMD converges to the true eigenvalues, which would be one in our scenario. Therefore,
this would result in a reduction of the estimated number of clusters and, thus, basins
of attraction to one which would be incorrect. Because of this consideration we do not
remove duplicate eigenvalues from the list. Next, we can also consider if we can select a
better value for ε by hand. As can be seen in Table 1, there are no noticeable jumps in
distance anywhere. As a result a simple consideration of the distances of eigenvalues λi
to one is not sufficient.

3.2.3 Implementation

In this section we briefly note the software and tools used for our implementation of the
analysis. The code is written in Python 3.9.7. Basic numerical operations and data pro-
cessing is done using the numpy library [12]. This noticeably also includes the random
sampling for the generation of synthetic data and the calculation of the corresponding tar-
get values. Existing datasets are imported used functionality provided by scikit-learn [26].
Further processing of data requires pandas [25] as an intermediate representation, which
is then used by datafold [17] in order to generate time series datasets. These time series
datasets are used by datafold implementation of EDMD. Here, we want to note that the
thin-plate kernels we use in this thesis do currently not exist in datafold. In order to solve
this, we developed our own implementation compatible with datafold. In this thesis, we
use k-means for clustering. The implementation thereof is provided by scikit-learn. For
plotting we use matplotlib [15].

3.3 Kernel Flows on Synthetic Data

In this section, we generate synthetic datasets in order to analyse Kernel Flows in a
controlled environment. First, in section 3.3.1 we analyse the behaviour of Kernel Flows
in a scenario with two parameters to optimize in order to be able to set the results of
Darcy [7] in context. Then, in section 3.3.2 we investigate the influence of the optimizer
on our analysis. Under investigation are stochastic gradient descent (SGD) and Nesterov
Momentum.
Before we explain the details of the analysis, we explain the data generation process. Some
variables depend on the experiment and, therefore, the specific values will be given in the
corresponding section. So without further ado, let X := R,Y := R be normed spaces
with the euclidean norm. In order to be able to train Kernel Flows, for each experiment
we generate a synthetic dataset

Dkernel = {(xi, yi) ∈ X × Y|1 ≤ i ≤ Nkernel}, (80)

where Nkernel = 100. For the generation of each datapoint (xi, yi), i ∈ {1, ..., Nkernel},
we first sample xi ∼ Uni(−10, 10). Here, we use Uni(−10, 10) to denote the uniform
distribution on the interval (−10, 10). The target value yi will be calculated according
to the sum of two Gaussian kernels. So, let σ1, σ2 > 0 be two standard deviations for
Gaussian kernels, then based on the sample value xi ∈ X , we calculate the target value
yi ∈ Y according to

yi := exp(−‖xi‖
2

2σ2
1

) + exp(−‖xi‖
2

2σ2
2

). (81)
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The exact values for σ1 and σ2 depend on the experiment and will be provided in the
respective section. So to summarize, the data generation process consists of first sampling
random values xi from a pre-defined interval and then calculating the corresponding value
of a sum of two Gaussian kernels as target value yi.
Another hyper-parameter we have to specify for our analysis is the kernel we use for
Kernel Flows. Here, we select a two-linear Gaussian kernel, where we set β1 = β2 = 1.
The parameters σ1, σ2 > 0 are the parameters Kernel Flows will optimise. Therefore, out
kernel k : X × X → Y is given by

k(x, x′) = exp(−‖x− x
′‖2

2σ2
1

) + exp(−‖x− x
′‖2

2σ2
2

), (82)

where x, x′ ∈ X .
For the selection of this kernel we have two main reasons. First, in section 3.3.1 it allows
us to be consistent with Darcy [7] for the convergence analysis in the multi-parameter
scenario, which enables comparison of results. Second, the depiction of the parameter
space is easiest when it is two dimensional. For a higher number of dimensions, it would
be necessary to use some approach for dimensionality reduction like PCA. This in turn
would further complicate the interpretation of the results.

3.3.1 Multiple Parameters

In this section, we first analyse the behaviour of Kernel Flows for multiple parameters.
The main reason for this analysis are the results of Darcy [7]. He showed that Kernel
Flows reliably converges to the true value when we only have to optimise one parameter,
but when two parameters are optimised simultaneously Kernel Flows does not necessarily
converge to the true parameters. It should be noted, that Kernel Flows still converges
and yields good results, just not with the true parameters. In order to investigate this
behaviour further, we analyse the scenario using the Koopman operator and attempt to
detect basins of attraction.
For this experiment the parameter space isW := R+×R+, the squared set of positive real
numbers. In order to be consistent with Darcy [7], we select the values σ1 = 0.9, σ2 = 1.5
for the generation of the dataset Dkernel for training Kernel Flows. Accordingly, we define
the set of interest Wc to be the cube [0.1, 3] × [0.1, 3] and use 71 sample points per
dimension which leaves us with a total Ns = 5041 datapoints in Dsnap.
The results of our search for basins of attraction are shown in Fig 3. As can be seen, the
with our approach we find ten different clusters, but due to the arrangement of the set
of clusters in the top-right corner and the fact that some clusters like the light orange
one are disconnected, it can be assumed that the number of clusters our method yields
is larger than the number of basins of attraction. Therefore, some clusters probably have
to be combined. Which ones these are cannot be determined reliably by inspection, thus
the remainder of this analysis is somewhat speculative.
First, we note that the line σ1 = σ2 can be clearly noticed in the plot. Further, the plot
can be somewhat mirrored around this line. These facts can easily be explained by the
fact that our kernel is the sum of two Gaussian kernels with equal weights β1 = β2 = 1
and addition is commutative. We notice that the both solutions for the true values for
the parameters σ1, σ2 are contained in the same cluster. In Darcy’s work, the parameters
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σ1, σ2 converged to 1.00 and 1.25 respectively. This point is also in the same cluster as
the true values 0.9, 1.5. Thus, assuming the clusters are sufficiently correct, this indicates
that the converged point and the true value of the parameters are in the same basin
of attraction. This would implicate that either convergence to the true values is given,
but slows significantly over time, or there truly is non-convergence which is then likely
introduced by the random nature of the algorithm or an insufficient approximation due
to the dataset being to small.

Figure 3: Plot of basins of attraction for analysis of convergence in a two-parameter space.
Each color represents one cluster. In practice one basin of attraction can correspond to
multiple clusters. The axes represent the different dimensions in parameter space.

3.3.2 Comparison of Optimizers

In this section we investigate the effect of the optimizer used in Kernel Flows. The
optimizers under investigation are stochastic gradient descent (SGD) and Nesterov Mo-
mentum. The reason for this analysis is that Nesterov Momentum is capable of using
information of past gradients in order to avoid getting trapped in local minima. Thus,
we want to analyse if this difference in behaviour can be detected by locating the basins
of attraction using the Koopman operator.
Like in the previous section, the parameter space is W := R+ × R+. For the generation
of the dataset Dkernel we select the true values 2.0, 3.0 for σ1, σ2 respectively. The set
of interest is the cube [0.1, 6.0] × [0.1, 6.0] and we use 71 sample points per dimension.
Therefore, the total number of datapoints Ns in the dataset Dsnap is 5041.
The results of the analysis with stochastic gradient descent are depicted in Fig. 4. Fig. 5
shows the clustering results for Nesterov Momentum. Once again, we note that the
number of clusters can not reliably be selected to be the correct number of basins of
attraction. Therefore, we have to consider that some clusters should be united in order
to get the correct basins of attraction. The fact that in both images some clusters are
disconnected suggests, that the selection of the number of clusters is not optimal.
By comparing Fig. 4 and Fig.5, we notice that the rough layout of the clusters is compa-
rable. In both figures, we can see a set of clusters which roughly covers the area of the
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Figure 4: Plot of basins of attraction for the comparison of optimizers. This plot depicts
the results for SGD. Each color represents one cluster. In practice one basin of attraction
can correspond to multiple clusters. The axes represent the different dimensions in pa-
rameter space.

cube [2, 6] × [2, 6]. Further, we can detect a set of clusters covering the area of the cube
[0, 2] × [0, 2] in both images. The main difference is that for Nesterov Momentum the
bottom left corner is split in noticeably less clusters than for SGD, but this might just be
a result of too many clusters in the analysis.
To summarize, our analysis did not find noticeable difference in the basins of attraction
in the parameter space. This indicates that both algorithm converge in roughly the same
regions to similar values, but it should also be noticed that an overestimation of the
number of clusters might have significant effect on the results of the analysis.

3.4 Kernel Flows on Real Data

While the analysis of Kernel Flows on synthetic data is useful to make observations,
form hypothesis, and test or prove them, it is also important to analyse the behaviour of
Kernel Flows on real datasets in order to check whether or not the process for generating
synthetic data introduces bias, which might mask challenges faced in real data. To this
end, we analyse Kernel Flows on three real datasets. Section 3.4.1 works with the Boston
Housing dataset, while we take a better look on the behaviour of Kernel Flows when
trained on the Diabetes dataset in section 3.4.2.
Like in section 3.3 we use a two-linear Gaussian kernel for Kernel flows in the experiments
in this section. As previously, the weights of the kernel are equal and set to β1 = β2 = 1.
The remaining parameters which build our parameter space W are the two standard
deviations σ1, σ2. Therefore, we have W = R+ × R+. The input space X and the target
space Y depend on the used dataset and cannot be further specified here.
For the set of interestWc we selectWc = [1, 1000]×[1, 1000] in order to cover the selection
of initial values by Darcy [7]. From the set of interest Wc we selected equidistant points
so we have 71 different values per dimensions. Thus, the total number of datapoints Ns

in the dataset Dsnap for approximating the Koopman operator K is 5041.
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Figure 5: Plot of basins of attraction for analysis for comparison of optimizers. This
plot depicts the results for Nesterov Momentum. Each color represents one cluster. In
practice one basin of attraction can correspond to multiple clusters. The axes represent
the different dimensions in parameter space.

3.4.1 Boston Housing Dataset

The Boston Housing Dataset [13] is a frequently used example dataset in machine learning.
It contains data related to the Boston housing market and contains information of the
U.S. Census Service. Further, it consists of 506 datapoints. The target when using this
dataset is usually to train a model for predicting the housing price given a set of thirteen
features. The feature list includes, but is not limited to:

• the crime rate per capita by town,

• concentration of nitric oxides in parts per million,

• average number of rooms per dwelling,

• the pupil-teacher ratio by town.

We provide a brief summary of important statistics of the dataset in Table 2. As can be
seen, the input space for Kernel Flows is the metric space X := R13, the output space is
Y := R. Since we consider the Boston Housing dataset as the training dataset for Kernel
Flows, the dataset corresponds to Dkernel and the number of datapoints in the dataset is
Nkernel := 506.

The results of the analysis are depicted in Fig. 6. For this analysis we want to note that
there are still some disconnected clusters. This might indicate that the number of clusters
is not chosen correctly, but unlike in the experiments with synthetic data, most clusters
seem more natural. Therefore, it is also reasonable to consider, that the restriction of
the number of clusters to ten might be to strict, since there might be a larger number of
basins of attraction in the considered set of interest Wc.
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Samples Total Number Features Type Features Target Range
506 13 real, positive 5. - 50.

Table 2: Summary of important statistics of the Boston Housing dataset. The column
Samples Total contains the total number of samples in the dataset, Number Features is
the dimension of the input space for a model. The column Type Features describes what
data types can be expected from the 13-dimensional feature space. In this case, we have
positive real-valued features. The Target Range gives the set of possible values in the
target variable. In this case the values range from 5. to 50., where the target value is
given in 1000$.

Figure 6: Plot of basins of attraction for the Boston Housing dataset. Each color repre-
sents one cluster. In practice one basin of attraction can correspond to multiple clusters.
The axes depict the two parameters under optimisation, σ1 and σ2.

3.4.2 Diabetes Dataset

The diabetes dataset is another commonly used toy dataset in machine learning. The goal
is to predict the progression of diabetes one year after taking the initial measurements
based on a set of features which might be of medical relevance for the prediction. The
features include information like the age of a subject in years, a subject’s sex, the body
mass index, and additional medical measurements like

• average blood pressure,

• total serum cholesterol,

• low- and high-density lipoproteins,

• total cholesterol,

• triglycerides levels,

• and blood sugar levels.
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A short summary of important characteristics of the Diabetes dataset is provided in
Table 3. The input space for Kernel Flows is modelled as metric space X := R10, the
target space as Y := R. The Diabetes dataset fills the role of the training dataset Dkernel
for Kernel Flows, where the number of datapoints is Nkernel := 442.

Samples Total Number Features Type Features Target Range
442 10 real, (-.2, .2), categorical integer, 25-346.

Table 3: Summary of important statistics of the Diabetes dataset. The column Samples
Total contains the total number of samples in the dataset, Number Features is the dimen-
sion of the input space for a model. The column Type Features describes what data types
can be expected from the 10-dimensional feature space. In this case, we have real-valued
features and features in range (−.2, .2). The Target Range gives the set of possible values
in the target variable. In this case the values range from 25-346 and only take on integer
values.

The results of the analysis are shown in Fig. 7. The first thing to notice is that most
clusters seem to touch in a single point. Based on the fact that this also happens in
the analysis of Himmelblau’s function at the local maximum of the function, this might
indicate a local maximum of the loss function ρ in the parameter space. Further, we
notice that similar to the analysis in section 3.4.1, the clusters seem to have a more
natural structure than the one in section 3.3.

Figure 7: Plot of basins of attraction for the Diabetes dataset. Each color represents one
cluster. In practice one basin of attraction can correspond to multiple clusters. The axes
represent the dimensions in parameter space.
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4 Conclusion

In this thesis we used the Koopman operator to analyse Kernel Flows, more specifically
the parametric version of Kernel Flows. To this end, we first highlighted in chapter 1 the
importance of kernel methods in general and, as a result of the requirement to determine a
good kernel for a given problem, the importance of Kernel Flows, a data-driven algorithm
to finding good kernels, in particular. This motivates and justifies the analysis of Kernel
Flows. While there already exists some analysis of the algorithm in the original work of
Owhadi&Yoo [24] and by Darcy [7], a new approach can discover new information and
result in additional insights which is the reason why we use the Koopman algorithm for
analysis.

After providing the motivation for the thesis, we cover the basics in chapter 2. This mainly
includes an introduction into the concept of kernels and an explanation of parametric
Kernel Flows in section 2.1, as well as an introduction of the Koopman operator in
section 2.2. While there exists a vast amount of literature on the topic of Koopman
operator theory and related fields, we limit ourselves to a brief introduction to dynamical
systems followed by a short summary of spectral theory in functional analysis and the
introduction of the Koopman operator. We also briefly explain the dynamical system
perspective on algorithms introduced by Dietrich et al. [8] and EDMD for approximating
the Koopman algorithm in a fashion suitable for practical application.

Our main contributions are presented in chapter 3. We start out by properly formalizing
Kernel Flows as a dynamical system in section 3.1. The formalization of Kernel Flows
as dynamical system allows us to approximate the Koopman operator of the system as
detailed in section 3.2. The approximated Koopman operator then serves as the basis to
our approach to finding the basins of attraction in the parameter space. Here, we find
based on the exemplary analysis of gradient descent on Himmelblau’s function, that the
estimation of the number of basins of attraction has a noticeable influence on the results
of the analysis. Next, we apply our method to Kernel Flows. In section 3.3 we first
consider Kernel Flows on synthetic data, so we can control for variables and know the
optimal parameters. To finish our analysis, we consider Kernel Flows on real datasets in
section 3.4.

We end this thesis by discussing our results in section 4.1 and providing an overview on
future work in section 4.2.

4.1 Discussion

In this thesis, the major observation we contribute regarding the analysis of algorithm
through the Koopman operator is that the selection of the number of clusters plays a
significant role for the results and the visibility of basins of attraction. Since the correct
number is not known in general, some method for estimating the correct number is re-
quired. In this thesis we tried the usage of a simple cut-off value ε > 0 for estimating if an
eigenvalue is close enough to one. Unfortunately, this simple approach is not successful
since the optimal value for ε varies significantly from case to case. Therefore, another
more elaborate approach is required.

Besides the problem of estimating the number of clusters, we were able to verify the results
of Dietrich et al. [8], further showing their correctness and the utility of the analysis of
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algorithms through the Koopman operator.
Regarding Kernel Flows the results of the analysis are somewhat limited due to the
aforementioned problems with estimating the number of clusters, but the results are
sufficiently good to indicate that in the multi-parameter scenario the parameters should
converge to the true values. The exact reason why convergence does not happen could
not found.
When comparing SGD and Nesterov Momentum, we could not find any noticeable differ-
ences in the results of the analysis. This indicates that both optimizers converge in similar
regions of the parameter space to similar values, but it should be noted that according to
Darcy [7] Nesterov Momentum converges noticeably faster than SGD.

4.2 Future Work

Based on our results, the most important next step would be the development of a method
to reliably cluster the evaluations of the eigenfunctions with the correct amount of clusters.
To this end, several approaches could be taken. One would be to switch from k-means to
a clustering algorithm which does not require knowledge about the number of clusters a
priori. Another option would be an iterative approach. This means first clustering with
k-means, then some evaluation on the quality of the clustering, e.g. with some version
of linkage, and the repeating the process until (hopefully) convergence. We want to not,
that before attempting the second approach the vast amount of literature on the topic
of clustering should be consulted since there might very well already exist an algorithm
which essentially performs this task, but probably more efficient.
In the analysis of Kernel Flows, we noticed that the clusters on real data seem more
natural than on the synthetic dataset. A good next step would be to analyse the cause
of this behaviour, since it might be due to some characteristics of the synthetic dataset
which render the entire analysis on these useless. Another straight forward option would
be the analysis of more elements of Kernel Flows. In this thesis we only analysed Kernel
Flows with a two-linear Gaussian Kernel, other kernel options have not been considered.
Other aspects which have not been investigated are the influence of the batch size or
regularization on Kernel Flows.
Further, in this thesis we only considered parameterized Kernel Flows. An extension of
our approach to the non-parameterized version of Kernel Flows would also be interesting.
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