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Abstract

The software industry experienced tremendous growth, together with the complexity
of the used software systems in professional enterprises. More and more car manu-
facturers move their software systems to the cloud. This results in more demand for
professional monitoring solutions. The market provides different monitoring solutions
dedicated to special needs, and Prometheus is a well-known and widespread time-series
monitoring solution. Time-series monitoring often only provides a view of past or
current events and metrics, but more intelligent solutions are required to fulfill the
challenge of ever-growing complexity.

This thesis focuses on building a flexible anomaly detection integration platform
(called FADIP) that allows the evaluation and usage of different anomaly detection
algorithms on various timeseries from car monitoring (unlabeled and labeled) and per-
forming this evaluation. Functional and non-functional requirements for the platform
are presented, as well as a fair comparison methodology. It is shown that the MCC
score and specificity of the algorithms are the relevant metrics to compare algorithms
for productive operation, and the algorithms iForest, HBOS, KNN, CBLOF, and COPOD
are compared on selected datasets. The evaluation results show that the time-series
differ significantly, so every algorithm needs to be assessed before using it in the
infrastructure.
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1 Introduction

1.1 Introduction to Monitoring

Over the last years, the software industry experienced tremendous growth in various
aspects [30]. The demand for professional enterprise software is continuously growing,
with an estimate of 669,82 billion us dollars in revenue predicted for 2022 by Statista [26].
Not only the demand for software is growing. The increasing amount of IoT devices [14],
the ever-advancing digitisation of a wide variety of industries leads to a complexity
that is not manageable by humans. Especially in the last years, cloud computing
has became a real and relevant trend, helping corporates move their applications
into the offered target environments (Infrastructure-as-a-service, Platform-as-a-service,
Software-as-a-service, Functions-as-a-service).

In modern computational cloud infrastructure, the demand for professional monitor-
ing solutions continuously grows, together with the number of servers, load-balancers,
and other infrastructure. Applications also tend to be more geographically distributed.
Different challenges come with these demands, for example, fast processing, storage,
and visualization of the monitoring data. Also, user-interface, provided functionality,
alerting, and help-desk integration play an important role. [13]

Monitoring can be precisely defined as the "tools and processes by which you
measure and manage your technology systems" [34]. These technology systems often
involve many different applications, services, systems, tools, processes, and connections.
This heterogeneity poses different requirements to the monitoring tool (in terms of
flexibility & stability). According to James Turnbull, Monitoring has two customers, the
technology and the business. [34] The technology stands for the operation team that
maintains the technological system, often called DevOps or Site Reliability engineering.
Monitoring supports the fault detection, resolution, and other potential problems
by giving information about the current or past state of the systems and measuring
performance metrics to ensure the operational quality, in the best case before there is
an impact on the internal customer (business). [34] The business customer represents
the business team and their processes that should be supported. They gain value from
having detailed metrics of the systems used in the business processes and can help plan
investments into product & technology, as well as demonstrate the value proposition of
the monitored systems. [34]
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1 Introduction

There are different monitoring tools and software available on the market dedicated
to special needs. General-purpose paid monitoring tools like DataDog, NewRelic
One, Nagios XI, Dynatrace are known as well as specialized tools like InfluxDB as
a time-series database, SCOM for Microsoft-based infrastructures, or PRTG Network
Monitor for infrastructure and networks. [16]

Additionally to these solutions, open-source software solutions and open-source
variants of enterprise products are available. Especially in cloud & microservices infras-
tructures, one very known and used monitoring solution is Prometheus. Prometheus
was developed in 2012 by Matt Proud and Julius Volz at Soundcloud using the Go
programming language, and in 2015 it was open-sourced on GitHub. Prometheus is
architected as a system that receives the monitoring data of the systems via so-called
exporters that prepare the data so that Prometheus can process and store it. [38]

Prometheus itself stores the data in a self-developed high efficient format on the local
disk. The basic format is that Prometheus stores time-series data, so every datapoint
consists of a millisecond-precision timestamp together with the metric value (float64
data type) and some labels. Every time-series has a unique metric name (identifier) and
optional key-value pairs (labels, key, and value are of data type string). [6]

1.2 Challenges of Monitoring

Monitoring involves a variety of challenges and goals. Monitoring does not only
involve monitoring the application software but also network infrastructure, hardware,
or virtual machines. There are also discussions on how to monitor the monitoring
system, with different approaches, for example, multiple monitoring stacks that monitor
each other or rely on continuous alerting.

Under the assumption that the monitoring system can handle the load of collecting
metrics from many systems, long-term storage (more than a few months) is a challenge.
The monitoring tool used in this thesis, Prometheus, is not specialized in long-term
storage. It recommends only keeping the data for about 60 days in the internal time-
series database. It can be configured to hold it for a longer time period, but the
performance when querying the data can drop significantly. This is a notable challenge
because, as shown in the section before, the system complexity is increasing, increasing
the complexity of monitoring simultaneously. There are other options for storing the
time-series data longer, for example Cortexmetrics, Thanos.io or victoriametrics [27].
In the monitoring stack used in this thesis, Thanos.io was the choice. Thanos is a
flexible, microservice-based approach that solves the problem of long-term storage. It is
deployed alongside the existing Prometheus setup, and there are no changes required
to the existing monitoring stack [31]. Thanos.io uses different microservices for writing,
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1 Introduction

accessing & caching the data and allows to use object storages like AWS S3. There are
no upper bounds in terms of storage; AWS S3 can be continuously used, and scaling or
reconfiguring is not necessary (and not even possible) [36]. The storage challenge is
solved sufficiently by adding Thanos.io to the Prometheus stack. [32]

From the challenge of storing monitoring data, accessing the data and visualizing
it in an appropriate time window can also be problematic. A standard configuration
of Prometheus fulfils these requirements, but Prometheus can only access the stored
metrics from its own TSDB. Thanos provides a remedy here as well, allowing data
from different Prometheus instances and object stores to be queried through the query
microservice [33].

An important problem of monitoring is that in most cases, it only provides a view
on the past or current events, parameters, and metrics. This leads to the problem
that software reliability engineers need to manually check for trends and (potentially)
upcoming problems by watching the relevant metrics and analyzing their trends. This
is not always possible, since in increasingly complex software infrastructures, it is
tough to always have an overview of the interconnections and dependencies between
all components and their impact on the overall performance of the software systems
(performance in the context of business performance, not application performance). As
a result, it is challenging to have a continuous outlook into the future and to identify
trends and potential problems or vulnerabilities.

A potential solution for the problem just outlined is anomaly detection (or also called:
outlier detection). It helps the software reliability engineers and DevOps engineers
to automate certain parts of monitoring and supports a pro-active approach on the
monitoring and early detection of faulty behaviour of components and systems.

1.3 Research Objectives and Main Contributions

The main research objective of this thesis is to develop a flexible anomaly detection
integration platform that allows to evaluate & use different available anomaly detec-
tion algorithms on open-source and monitoring datasets from a known German car
manufacturer. The design of the platform is geared towards use in the monitoring
infrastructure of a car manufacturers backend.

• RO-1: Define objective and fair comparison criteria for available anomaly detec-
tion algorithms.

• RO-2: Formulate functional and non-functional requirements that the anomaly
detection platform needs to fulfill for productive usage in professional cloud
infrastructure.
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• RO-3: Provide an evaluation of different anomaly detection algorithms and their
suitability for productive usage in professional cloud infrastructure.

The key contributions of this thesis include:

• We develop a flexible anomaly detection integration platform (called FADIP)
that allows to evaluate and use different anomaly detection algorithms in the
application domain of monitoring complex backend infrastructure. We present
the integration into the current monitoring stack, the configuration process, and
explain the detailed functionality. Non-functional and functional requirements to
the platform are defined, and the compliance to them is shown.

• We present a fair methodology and comparison criteria to compare different
unsupervised anomaly-detection algorithms for univariate time-series of the
monitoring data from car manufacturers.

• Lastly, a short overview of known anomaly detection algorithms and their way of
function is provided, together with an analysis and evaluation of the algorithms
on different open-source datasets and monitoring data from a car manufacturer’s
backend.

1.4 Outline of the Thesis

This thesis is structured as follows:

• Chapter 2 provides some background information on the topic anomaly detection,
as well as an analysis of the application. The application domain itself is divided
into an explanation of the application delivery controllers that are monitored and
the stack that collects the monitoring data.

• Chapter 3 presents related work in the anomaly detection area. First, an overview
is given about basic machine learning concepts, then, the used anomaly detection
algorithms are explained based on their functionality.

• Chapter 4 explains the methodology used to evaluate the anomaly detection
algorithms, as well as the defined functional and non-functional criteria.

• Chapter 5 provides information about how the platform is structured and de-
veloped, the overall architecture, and the configuration and integration options.
This chapter also defines requirements that the platform fulfills for a professional
usage in distributed cloud environments.

4



1 Introduction

• Chapter 6 presents the results of the evaluations on different datasets. First, the
used datasets are explained, and then the results of the anomaly detection algo-
rithms on these datasets is explained. This chapter also provides an assessment of
which algorithms are suitable for professional usage in the specified application.
Also, different improvements on anomaly detection are described.

• Chapter 7 summarizes and concludes the thesis with an outlook on the potential
options and improvements.

5



2 Background

2.1 Anomaly Detection

There exist different definitions of anomalies, each tailored to the right scope. In this
thesis, we rely on the definition provided by Lavin and Ahmad: "We define anomalies
in a data stream to be patterns that do not conform to past patterns of behavior for the stream.
This definition encompasses both point anomalies (or spatial anomalies) as well as temporal
anomalies." [20]. This definition focuses on detecting of anomalies for the past, not
including other data input types that could identify anomalies, e.g., past outliers or
unwanted system behaviour.

For a better definition, we first adapt the definition from Shiblee Sadik and Le
Gruenwald to time-series: A time-series "is an infinite set of data points, P = {Dt|0  t}
where a data point Dt is a set of attribute values with an explicit or implicit timestamp. Formally
a data point is Dt = (V, ⌧t) where V is a p-tuple, each value of which corresponds to one
attribute, and ⌧t is the timestamp for the t-th data point." [28].

Therefore, this thesis extends the definition of anomalies and sets the focus to time-
series data: We define: Anomalies in time-series data are a collection of data points or a single
data point that shows a deviation of the monitored metric from the expected behaviour. This
definition seems vaguer, but its advantage is that it also considers trends independent
of seasonal behaviour and sets the focus to the unexpected behaviour on the underlying
monitored system. Of course, this definition is only useful, when it is guaranteed that
the behaviour and state of the monitored system are present in the available monitoring
data. Another advantage of this definition is that it also captures the problem of concept
drift described by Nan Jiang and Le Gruenwald in their paper [17], since the focus of
the definition of anomalies is on the system behind it. Concept drift means that the
distribution of data in a data stream will change over time (and this is not necessarily
related to an anomaly), and of course, all anomaly detection algorithms should be able
to tolerate this behaviour and continue to detect anomalies accurately and successfully.

2.1.1 Anomaly types

There exist different types of anomalies (as they appear in the datasets), and they can
be categorized into three main categories [28]:
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2 Background

• Individual Outliers in the context of the complete dataset. This type of outlier represents
an individual outlier in the whole dataset context and extreme derivation, for
example, an incredible peak in a dataset that describes the number of requests to
a web-server of an online-shop. Identifying this outlier is compared to the other
types relatively easy since the outlier deviates strongly from all other points.

• Individual Outliers in sub-context. This type is also a single datapoint like the first
type, but it deviates from the typical behaviour of similar datapoints instead of
the whole dataset. An example would be the number of requests to a web server
that, for some reason, is twice as high on a Tuesday afternoon as on all other
Tuesdays in the afternoon.

• Grouped Outliers. Grouped outliers are a group of datapoints that form an outlier
together, and they differ in that the individual data points are not anomalies
when viewed alone in the context of the entire dataset, but their arrangement as a
group is.

More precisely, anomaly detection is a classification problem; an algorithm has to
divide a single or a series of points into two classes: Normal points and anomaly points.
The context or scope (or application domain) is relevant like all classification problems.

2.2 Application Domain

As described in Chapter 1, the application domain is derived from the increasing
complexity of technical infrastructure. The automotive industry is also benefiting from
increasing digitisation, and in recent years the vehicles produced have become more
and more digital. Digital car experiences are not possible without cloud infrastruc-
ture operated by car companies or their suppliers. [18]. As Holger Breuing and his
colleagues show in their report [4], car manufacturers face lots of different challenges,
and the cloud infrastructure for different digital services (like car provisioning, digital
entertainment services, navigation, must guarantee strong safety and security. Digital
infotainment services in particular, such as navigation, music, communication, and
concierge, require related services in the backend of the car manufacturer that provide
all the data for the functionality. Many different vehicle generations, models, model
variants, and different equipment make for a correspondingly complicated infrastruc-
ture (assuming that all vehicles are provided with updates and services even years after
delivery).

This master thesis focuses on the monitoring data of the application delivery con-
trollers and load-balancers, which perform various tasks, but mainly the routing of
vehicle requests to the corresponding systems.
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2.2.1 Application Delivery Controller

The corresponding infrastructure that is the base of the monitoring data & systems is
shown in 2.1 in a simplified version. The basic operation can be described with the
following example: The infotainment system asks the car manufacturer backend for the
current data on traffic jams and accidents for a navigation route in order to adjust the
route planning. The application delivery controllers accept this request, and after safety
protocols have been executed, it is decided which service will take over the response to
this request based on the requested data and the requesting vehicle. This request is
then forwarded to the service located in the cloud. After processing the request, the
service sends the response back to the application delivery controller, returning it to
the vehicle.

All application delivery controllers expose endpoints for a monitoring system to
collect metrics. For security reasons, the detailed operating mode and a more detailed
analysis of the exposed monitoring data is not possible, but an anonymized description
of the dataset is in chapter 6.

Figure 2.1: Simplified Overview of the infrastructure

2.2.2 Monitoring Stack

The monitoring stack in 2.1 relies mainly on Prometheus as a supplier of time-series
data. Prometheus is an open-source monitoring solution that collects metrics of different
systems directly or via so-called exporters. Prometheus stores the monitoring data in
its own Time-series-Database in the TSDB format in blocks for every two hours. Since
Prometheus is not suitable as a long-term storage solution, Thanos takes over this role.
Thanos is deployed in a microservice approach, in the base setup only consisting of
these components: Thanos Sidecar, Thanos Store, and Thanos Query. Thanos Sidecar is
a component deployed on the same instance with the Prometheus instance and allows

8
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other Thanos Components to use the Prometheus-API in the same way as other Thanos
Store APIs. Thanos Sidecar also reads the TSDB blocks written to the disk storage
(that contain the time-series data) and uploads them to an object storage solution
like Amazon Web Services S3 or Google Cloud Storage Buckets. The Thanos Store
component is a "wrapper" or interface for object storage bucket to allow querying
the data inside the bucket. Thanos Query is the component that exposes all Thanos
microservices (and connected Prometheus and storage buckets) as PromQL-compatible
Prometheus HTTP v1 API. Thanos Query translates a PromQL request into the internal
Thanos StoreAPI, and this protocol is then used to query all components registered in
the query component. The registered components (mostly Thanos Sidecar and Thanos
Store) then translate the request, collect the data and send it back to Thanos Query.
Thanos Query then assembles it and returns it in a Prometheus-compatible format.

9
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3.1 Machine-Learning Concepts

To better understand the algorithms, the machine learning concepts are first explained
in this section. Mehryar Mohri and colleagues define machine learning as "Machine
learning can be broadly defined as computational methods using experience to improve per-
formance or to make accurate predictions." in their book [25]. They consider the past
information provided to the algorithm during learning as experience.

More precisely, past information can be described as data, divided into two different
forms. A basic distinction is made between structured and unstructured data. Structured
data means that the data is represented in a structured way, like in rows and columns in
a spreadsheet or a database table. A single datum (a row) consists of different features
or attributes (a value inside a column for that row). Unstructured data are not in such a
format or have very different dimensions. Examples of unstructured data are images or
text documents. Machine Learning can operate on both of these data types (depending
on the algorithms), but in general, machine learning algorithms perform better on
structured data. [29]

The subsequent differentiation concerns the machine learning algorithms themselves,
where a distinction can be made between unsupervised and supervised learning.

• Supervised learning means that the algorithm is fed with data that contains exactly
the target attribute that is being searched for in the unknown data. In this way,
the algorithm is given help in making a decision or predicting characteristics for
new data instances. [29]

Supervised learning is used in two different forms, classification and regression.
Classification means to predict a discrete state, value, or category; an example
is dividing data points into anomalies and normal data points. This example is
called binary classification, but there is also the distinction of multiple categories
or that a single datum can be classified into multiple categories (this is called
multi-label classification). On the other hand, regression means to predict a
numerical value, so especially in the best case, the algorithm tries to find a
formula with which a good estimate of the true value can be found. [29]

10



3 Related Work

• Semi-supervised learning in the context of anomaly detection means that the ma-
chine learning algorithm is trained using a dataset that contains only training
data that belong to a single class, in this case, the class normal points. Thus, the
training data contains only normal datapoints and no anomalies, so the machine
learning algorithm can build a model of the normal data and detect anomalies
based on derivation from this model. [11]

• In unsupervised learning, it is not known in advance what the correct answer
is for the training dataset, so the machine learning algorithm itself has to find
interesting correlations. A good example of unsupervised learning is clustering,
where data is divided into several groups based on certain attributes. [29]

The main advantage of unsupervised machine learning algorithms is that they do
not need labeled data as input. The use case clearly shows that all the input data
collected by the monitoring stack does not include labels. In this thesis, the focus is
on unsupervised learning as a classification problem with two categories, anomalous
and normal. Anomalies and outliers are used as synonyms, on an implementation level, 0
denotes normal and 1 denotes anomalous.

3.2 Anomaly Detection Algorithms

A tremendous amount of anomaly (or outlier detection) methods, algorithms, and
frameworks exist. These algorithms rely on a wide variety of mathematical concepts and
methods, and their operation is sometimes fundamentally different. Some algorithms
work better for particular purposes; others are more useful for general applications. For
this reason, a selection of known anomaly detection algorithms is explained in outline
in this section so that the evaluations obtained in chapter 6 can be put into context.

3.2.1 iForest - Isolation Forest

Isolation Forest (iForest) is an unsupervised anomaly detection algorithm that works
fundamentally different than most of the mentioned anomaly detection algorithms.
As every anomaly detection algorithm, it needs to detect anomalous instances as fast
as possible with high precision and minimal space consumption. As the this section
shows, most of them rely on distance- or density-based measures to identify anomalous
points or patterns in data. Also, most algorithms focus on building a classifier for
normal (non-anomalous) instances and then distinguish the anomaly points from the
normal points.

11
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Isolation Forest takes a different approach. It relies on the concept of isolation,
meaning that anomalies are few and different, and therefore they are susceptible to this
isolation. [22]

This leads to the fact that anomaly detection in iForest is not a "byproduct"; it is
the sole purpose. Liu, Fei Tony and colleagues state in their paper, iForest is more
accurate in the detection of anomalies (by means of false-positives and false-negatives)
and can exploit subsampling. iForest is not using any distance or density measures, so
the computational cost of the isolation-based anomaly detection is lower. Also, iForest
operates with linear time complexity while being able to handle enormous data sizes
and high-dimensional problems.[22]

Isolation Forest works by separating points from the rest of the other points. iForest
utilizes binary trees with a recursive instance partition to achieve this isolation. The
advantage is that the binary trees produce shorter paths for anomalous points because
less anomalies are in a partition. Also, anomaly instances are more likely to be separated
earlier than the normal instances in the process. To gain more reliability, not only a
single binary search tree is used, a "forest" of trees is used and the average path length
of the points is used to determine the anomalies. As Liu, Fei Tony and colleagues
state in their paper, a normal point requires more partitions to be separated than an
anomalous point. It can also be seen in figure 3.1.

Figure 3.1: Isolating an anomalous point and a normal point, image from [15]

Compared to distance- and density-based anomaly detection algorithms, iForest can
also detect anomaly classes where traditional algorithms struggle. When relying on
density-based anomaly detection, the "ground-truth" is that anomalous points occur in
dense regions and anomalies in sparse regions. With distance-based anomaly detection,
the ground truth is that normal points are closer to their neighbors and anomaly points
are further away. In reality, these two assumptions should always apply to all points,
but there can be exceptions; for example, points with low density and long distance are
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not necessarily anomalies. [22]
Problems with the detection can also happen when these two metrics are measured

locally, but anomalies appear globally, especially when the dataset includes regions
with different densities. iForest should perform better with these datasets since the
path length grows in an adaptive context, advancing from global to local context, while
density and distance only concern the local context. This leads to the fact that isolating
anomalies allows detecting clustered and scattered anomalies, and distance and density
can only detect scattered anomalies. [22]

3.2.2 KNN - K-Nearest-Neighbor

K-Nearest-Neighbor-based outlier detection is a distance-based outlier detection algo-
rithm that uses a metric called "weight" that represents the sum of the distances from
the k nearest neighbors of a point. The algorithm is unsupervised, so the data used
for learning and prediction can be unlabeled. This algorithm identifies outliers as the
points with the largest "weight" values. [2]

To compute the distances to the k nearest neighbors, first, the k nearest neighbors
need to be identified. This is done by fitting the d-dimensional dataset into a hypercube
D = [0, 1]d and mapping it to the interval I = [0, 1] using the Hilbert space-filling curve
and identifying the neighbors by taking the predecessors and successors of a point on
I. The Hilbert space-filling curve has the property that if two points are close in I, they
are also in D, but the other way round is not always true. Due to this fact, there can be
a loss in the points near each other. Therefore, the dataset is shied d + 1 times along
the main diagonal of a hypercube [0, 2]d. In the figure 3.2, the iterations of the Hilbert
space-filling curve can be seen. Then, the distance is computed in the multi-dimensional
D space, and only the neighbors are identified using the one-dimensional space. [2]

Figure 3.2: First 6 iterations of the Hilbert Space Filling Curve

In detail, the algorithm consists of two phases. In the first phase, it uses a fast

13



3 Related Work

approximation to find a solution and iterates several at most d + 1 times through the
dataset. In every step, a better lower bound for the weight of potential outliers is
calculated. With every iteration, the number of anomaly candidates decreases. In the
second phase, the algorithm calculates the exact solution in a single scan of only a
small fraction of the dataset. In their paper, F. Anguilli and C.Pizzuti showed that after
d̄ steps (with d̄ << d + 1), the algorithm finds the exact solution. [2]

3.2.3 HBOS - Histogram-based Outlier Scores

Histogram-based Outlier Scores (HBOS) is an unsupervised anomaly detection algo-
rithm based on histograms. Like iForest, it considers the fact that anomalies are rare
and different (in terms of features). Due to its nature, HBOS detects anomalies very
fast in large datasets compared to supervised or semi-supervised anomaly detection
algorithms. [10]

In detail, HBOS calculates for every datapoint a histogram-based outlier score. It can
handle multivariate data but does not take into account possible correlations between
the features. The first step is the calculation of univariate histograms for every single
feature (isolated from other features). The histograms are generated depending on
the type of feature; for categorical data, a simple value count of the appearances of
data points in the category is used. For numerical data, two options can be used for
histogram creation. [10]

Every histogram contains some "bins" or containers, and every container represents a
single category or an interval of numerical values. The number of instances is counted
for every container, and all "bins" of a dataset together form a histogram. Histograms
can be created with constant bin-width (the interval width stays the same for all bins),
or the interval width adjusts on a criterion.

Figure 3.3: Example histogram with static bin length, image from [7]
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Figure 3.4: Example histogram with dynamic bin length, image from [7]

HBOS can use both options, fixed bin-width histograms and dynamic bin-width
histograms. For the fixed bin-width histograms, k equally sized bins are created for
the complete value interval of the data, and the count of points in every bin (height of
the bin) represents an estimation of the density. The dynamic bin-width histograms
work by sorting the values of all datapoints and then grouping them based on: N

k with
N as the number of total data points and k the number of bins. This means, for static
bins, the size (value interval) of the bins is fixed, and for the dynamic intervals, the
amount of datapoints in each bin is fixed and the interval from the lowest value of all
datapoints inside this bin until the highest value of all datapoints inside this bin. [10]

All computed feature-histograms are normalized so that the maximum hight is 1.0 to
weight the single features equally for the outlier score. The exact outlier score is then
calculated by using this formula: HBOS(p) = Âd

i=0 log( 1
histi(p) ) with d the amount of

features, p a datapoint and histi(p) the height of the bin of the datapoint p. [10]
As Markus Goldsetin and Andreas Dengel state in their paper, in comparison to

other anomaly detection algorithms, HBOS performs well on global anomalies and
fails on local anomalies (because modeling local outliers with density estimation is not
possible with histograms). HBOS did the outlier calculation significantly faster than
some nearest-neighbor-based and k-means based algorithms. The time complexity for
HBOS is linear O(n) for static bin width and O(n ⇤ log(n)) for dynamic bin width. [10]

3.2.4 CBLOF - Cluster-based Local Outlier Factor

Cluster-based Local Outlier Factor is a proximity-based anomaly detection algorithm
that differs from the typical outlier detection algorithms as well as from the typical
clustering-based methods. First of all, CBLOF is based on a different definition of an
outlier. The algorithm identifies large and small clusters (by using an external clustering
algorithm) and then calculates the cluster-based local outlier factor by measuring the
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size of the cluster the datapoint belongs to together with the distance between the
datapoint and the nearest cluster (if datapoint lies in a small cluster) [12]

In Detail, the algorithm consists of two phases. In the first step, the algorithm tries to
identify the existing clusters. Therefore, the authors Z. He, X. Xu, and S. Deng suggest
using an existing clustering algorithm, the squeezer algorithm.

In the next step, the identified clusters are categorized by two assumptions into small
and large clusters. The first assumption is that most data points in the dataset are not
outliers, so clusters that hold a big amount of datapoints can be identified as clusters.
Secondly, large and small clusters have a significant size difference, so small clusters
can be identified by comparing to other clusters (and of course the reverse way is also
valid). [12]

For separating the clusters into large and small clusters, it is necessary that CBLOF
takes as input two parameters a and b in two formulas. For the following formulas,
C = {C1, C2, ..., Ck} is a set of clusters that is sorted like: |C1| � |C2| � ... � |Ck|.

(|C1|+ |C2|+ ... + |Cb|) � |D|⇤a

The parameter a decides how many percent of all datapoints need to be in a cluster
to have a cluster seen as a large cluster. Some clusters can meet this assumption, and
for categorizing the remaining clusters, this formula is used:

|Cb|
|Cb+1

| � b

The parameter b is a relationship multiplier; this means that a cluster is a small
cluster if it is b-times smaller than a large cluster. [12]

The calculation of the cluster-based outlier factor of a datapoint depends on the
distance between the record and the closest cluster (if datapoint is part of small cluster):

CBLOF(t) = |Ci|⇤min(distance(t, Cj))

where
t 2 Ci, Ci 2 SC

and
Cj 2 LC

for
j = 1

to
b

16



3 Related Work

and if the datapoint is part of a large cluster, the distance between the record and the
own cluster:

CBLOF(t) = |Ci|⇤(distance(t, Ci)) where t 2 Ci and Ci 2 LC

3.2.5 COPOD - Copula-based Outlier Detection

Copula-based outlier detection is a very new algorithm presented in 2020. The al-
gorithm from Zheng Li and colleagues is based on the concept of copulas used to
model multivariate data distribution, and according to their evaluations, the algorithm
outperforms most of the other outlier-detection algorithms on different benchmark
datasets. [21]

The outlier detection with copulas consists of three steps. In the first step, empirical
cumulative distribution functions (ECDFs) are constructed using the training dataset.
Next, the ECDFs are used to produce an empirical copula function. The empirical cop-
ula function is then used to approximate the tail probabilities for every new datapoint.
[21]

"Copulas are functions that enable us to separate marginal distributions from the
dependency structure of a given multivariate distribution." [21]. Uniform distributions
can be transformed into any desired distributions via inverse sampling, which leads to
the fact that a copula allows the description of a joint distribution of (X1, ..., Xd) using
only their marginals. Sklar’s Theorem guarantees the existence "of a copula for any
given multivariate CDF with continuous marginals." [21]

To let COPOD perform the outlier detection without parameters, an approach using
the fitting of empirical cumulative distribution functions (ECDFs) is used (called
Empirical Copula). This result of this approach is then used to produce an empirical
copula function. This empirical copulation function is then used to calculate the tail
probability for each xi:

FX(xi) = P(X1  x(1, i), ..., Xd  x(d, i)

COPOD relies on extremity comparison to identify outliers, therefore outliers are tail
events, so for every datapoint xi, the probability of having another datapoint that is at
least as extreme as xi. If xi is an outlier, the probability of observing a similarly extreme
value as xi should be low, and if xi is not an outlier, the probability should be high.
xi is distributed using to a d-variate distribution function FX, and the probabilities to
observe another similar point are FX(xi) = P(X  xi) and 1 � FX(xi) = P(X � xi).
FX(xi) is defined as the left tail probability and 1 � FX(xi) is defined as the right tail
probability. [21]
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Both tail probabilities need skewness correction to correct the outcome when the
outliers can only be found on one extreme end of the data distribution. Zheng Li and
colleagues illustrate this in figure 3.5.

Figure 3.5: Different tail probabilities of example dataset, image from [21]

Figure 3.5 shows a dataset with the ground truth being distributed over a 2-
dimensional space, the outliers in the left section of the space, and a cluster with
non-anomalous datapoints on the top right. The images in the middle show that using
only the left tail probabilities of the COPOD, the detection of outliers was almost 100%
precise. The images on the right show that using only the right tail probabilities of
COPOD, the identification of outliers was utterly misleading. This demonstrates the
need for skewness correction. [21]

Averaging the left and right tail probabilities does not provide an appropriate solution.
It just identifies half of the left outliers and half of the right outliers. Averaging is only
a viable solution for large and small outliers in the dataset. Since the skewness of the
dataset plays a significant role in weighting the left or right tail ECDFs, and depending
on the skew of the marginals, the left or right tail probability should be used. In figure
3.5, the left tail is longer, and the mass of the distribution is on the right, so there, the
left tail ECDF should be used. [21]

The algorithm takes as input parameter a d-dimensional dataset and produces an
outlier score vector with scores between (0, •). The outlier scores are not probabilities
but a relative measure compared to the other datapoints, with a higher outlier score
meaning a higher indication to be an anomalous point. [21]
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COPOD as an anomaly-detection algorithm is able to handle very high dimensional
data with lots of datapoints in the dataset ( 1, 000, 000) reliably in the different aspects:
ROC-AUC, precision, computation time. [21]
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For a valid comparison of the selected anomaly detection algorithms and frameworks
on the chosen datasets and datasources, it is necessary to define fair and measurable
comparison criteria. The criteria are divided into functional and non-functional criteria.
Functional criteria measure the direct functional behaviour and performance of the
algorithm on the dataset via statistical and mathematical methods and relations. The
non-functional criteria focus more on the effort of setting the algorithm up, time until
the first results can be seen, options for tuning, and usability.

4.1 Functional Criteria

The goal of defining the functional criteria is to create metrics that allow a fair, good
comparison. Since anomaly detection is a classification problem with two classes normal,
denoted as 0, and anomalous, denoted as 1, there needs to be a ground truth for every
dataset. So defined comparison criteria can only be applied to labeled datasets (labeled
by normal and anomalous datapoints). As shown in [19], in this thesis, the confusion
matrix is used, producing the 4 base metrics: true positives, false positives, true negatives
and false negatives. Figure 4.1 shows these 4 metrics.

Predicted Outlier
True False

True True positive tp False Negative f nActual Outlier
False False positive f p True Negative tn

Table 4.1: Confusion Matrix

Based on true positives, false positives, true negatives, false negatives, 5 more known
metrics are used for comparison of binary classifications [19]. Recall or sensitivity, which
means, out of all datapoints labeled as anomalies, how many got identified as anomalies
by the algorithm, can be seen in 4.1. The metric precision stands for the amount of
true anomalous datapoints of all the datapoints that were predicited as anomalies 4.1.
Specificity, shown in 4.1, represents the proportion of negatives, which are correctly
identified [19].
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precision =
tp

tp + f p
(4.1) recall =

tp
tp + f n

(4.2) speci f icity =
tn

tn + f p
(4.3)

Figure 4.1: Formulas for precision, recall and speci f icity

accuracy =
tp + tn

tp + tn + f p + f n
(4.4) f 1 � score =

2
precision�1 + recall�1 (4.5)

Figure 4.2: Formulas for accuracy and f 1 � score

From the two metrics just mentioned, "precision" and "recall", the f1-score can be
calculated, which represents both in balance. Figure 4.2 shows the exact formula.
[9] The same figure 4.2 also shows the metric accuracy, which represents the overall
percentage of correct predictions, so how many percent of the classifications were right.
However, this metric is only meaningful for symmetric datasets (with an equal amount
of normal and anomalous datapoints), for example, with a dataset with 80% normal
points and 20% anomalous points and a detector that outputs only normal instances,
the accuracy returns 80%. However, the precision and recall would be 0, both the possibly
worst values. [35]

On closer inspection, the F1 score shows an interesting problem: it depends very
much on the distribution of binary classes in the training and test dataset and also
on the contamination rate at which training is done. As Damien Fourure and his
colleagues show in their paper [9], there is a threshold needed for a classifier to divide
the datapoints into the two classes, and a standard solution for threshold computation is
to use the contamination rate of the test- or training-dataset. The theory for comparing
machine learning models is to always separate train and test sets and use the labeled
training set contamination rate for the training of the anomaly detection algorithm.
Looking at unsupervised anomaly detection algorithms, the drawback of this approach
is that the anomalous points are only used for the contamination rate calculation, but
for the actual training this information is thrown away. The evaluation gets more
precise by manually inserting these points into the test set or increasing the number
of anomalies in the test set. This results in the fact that the f1 score improves with the
number of anomalies in the test set, allows a better representation of the algorithm,
and reduces the general comparability of algorithms, especially when using different
datasets.

This problem is solved by another evaluation metric, Matthews Correlation Coefficient
(MCC), shown in 4.3. This metric uses the normal points (true negatives and anomalous
points (true positives as variables and computes the correlation coefficient of both of
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them. [23] The MCC value can range from [�1,+1], 1 represents the perfect classifier,
�1 represents the perfect mis-classifier (always classify the points as the wrong class),
and MCC = 0 is the value for classifier with "coin tossing" behaviour. [5]

mcc =
(tp ⇤ tn)� ( f p ⇤ f n)p

(tp + f p) ⇤ (tp + f n) ⇤ (tn + f p) ⇤ (tn + f n)
(4.6)

Figure 4.3: Formula for Matthews Correlation Coefficient (MCC)

Since the F1 score is not the optimal metric for comparing the different anomaly
detection algorithms, MCC is used for the evaluation, and a particular focus is placed
on precision since false positives play a more significant role in the application scenario.

4.2 Non-Functional Criteria

The goal of defining non-function criteria is to estimate the usability of the anomaly
detection algorithm in the application in the industry.

4.2.1 Configuration & Setup

For the industrial use of anomaly detection algorithms, the time required for com-
missioning and the effort required for maintenance are essential metrics. Therefore,
anomaly detection algorithms that have simple, well-documented interfaces are pre-
ferred. The software code of the algorithm should be published in a well-known
programming language, open-source, well maintained, and have an active repository.

4.2.2 Tuning Options

Almost all anomaly detection algorithms need input parameters that change the be-
haviour or adapt the algorithm to the dataset used for training and testing. A large
number of configurable input parameters for an algorithm can be both an advantage
and a disadvantage. An advantage can be the finer adaptation to the data set, which in
the best case leads to better results in anomaly detection. A disadvantage can be the
time required to find the correct parameters, primarily if the data set is unknown or
constantly changing. This disadvantage can increase if the parameters are mandatory.

4.2.3 User-related application and acceptance

When putting the monitoring system into production, anomaly detection needs to be
combined with alerting the users of the monitoring system. From a DevOps perspective,
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the monitoring system should not be continuously observed by the users but only when
problems occur. In most applications, the monitoring system is supplemented with
an alerting concept that uses threshold values to detect critical application or system
states. Ideally, anomaly detection supports the detection of critical states by alerting in
time before the state occurs.

For better user acceptance, a higher false negative rate and a lower false positive rate
is the goal. Too many false positives will make the user tired because if the systems
are checked too often for faulty anomalies, the user will probably assume that future
anomaly alerts are not real anomalies, and thus he will check the system no longer
regularly. This behaviour leads to the diminishing of the added value of the anomaly
detection system. A proportionally higher false-negative classification, on the other
hand, does not reduce the added value of the solution, as the existing mode of operation
is not affected if no anomalies are detected (reacting to problems vs. early actions).

23



5 FADIP - Flexible Anomaly Detection
Integration Platform

5.1 Requirements

For a valid comparison of different anomaly detection frameworks and algorithms, we
built FADIP, the flexible anomaly detection integration platform. FADIP needs to fulfill
several requirements.

These requirements were collected from different employees working from a known
german car manufacturer, from feedback from university students and from previous
experience. Table 5.1 shows the collected non-functional requirements. The functional
requirements are shown in table 5.2. Later in this chapter, the requirements are closely
reviewed for compliance.

# Requirement Description

1
Low environmental
impact

The system needs to be able to handle extensive loads of
monitoring data without breaking or putting too much
pressure on the current monitoring stack

2 Stable & fail-safe
The system needs to be stable and fail-safe so that indi-
vidual problems allow further operation and malfunc-
tion stop damage

3 Easy extensible
The system needs to be easily extensible by adding new
anomaly detection algorithms and new datasets.

4 Automatic execution
Training, evaluation, and prediction should be made by
the system automatically with no manual interaction
involved.

5
Convenient configu-
ration

It should be possible to configure the system easily with-
out deep technical knowledge

Table 5.1: Non-Functional requirements of FADIP platform
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# Requirement Description

1
Data loading from
Prometheus

Time-series data needs to be loaded from a Prometheus
or PromQL-compatible service

2
File-based dataset
loading

Datasets from files with different formats need to be
loaded

3
Anomaly Detection
on time-series

On the loaded data, anomalies or outliers need to be
identified by different anomaly detection algorithms

4
Alerting & Notifica-
tions

For the found anomalies, the user should be able to be
notified with more information on the outliers via Slack
or Microsoft Teams

5
Evaluation of
anomaly detection
algorithms

The integrated anomaly detection algorithms should be
evaluated with selected datasets, and the results ana-
lyzed

6
Persistence of found
anomalies

The found anomalies should be persisted together with
the time-series identifiers, as well as some additional
information

7
Configuration via
YAML file

The user should be able to configure the systems, con-
nections, and attributes via a YAML configuration file

8
Triggering via REST
API

The different functionalities should be triggered by using
an open REST API

9
Local & remote
model storage

The models that were generated in the training phase of
the anomaly detection should be persisted in the local
or remote storage

Table 5.2: Feature requirements of FADIP platform

5.2 Overall architecture

Figure 5.1 shows the internal structure of FADIP and the integration into the IT infras-
tructure. On the left side, an abstraction of the monitoring stack used in combination
with FADIP is shown. The monitoring stack is explained in more detail in chapter 2.

FADIP supports two operating modes, evaluation and detection. Both operating modes
can be triggered through a REST API, but more details about the REST API and
the available routes will follow later. For the detection mode, at least one PromQL-
compatible datasource is required, but multiple are allowed. In figure 5.1, there is
one datasource shown, Thanos Query, which is a datasource that can collect metrics
from multiple Prometheus instances and multiple object storages by utilizing other
Thanos components. On the right side, the communication channels with the users
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of FADIP are shown. FADIP supports Slack and Microsoft Teams as communication
channels. The center shows FADIP and the different components. The left side shows
the data preprocessing and transformation required for all algorithms. The center shows
the training and evaluation module, both with the implemented anomaly detection
algorithms. The right side shows the component responsible for the result visualization
and mapping of results to datasets and sending the visually-understandable results
to the configured communication channels. The bottom part shows the component
management and the REST API, which handles the users’ requests as well as reading
the configuration file. It also manages the connection to a PostgreSQL database. On
the bottom, outside of FADIP, two other input options are mentioned. First, the
potential open-source datasets that need to be placed inside the FADIP platform and
the configuration file that needs to be written by the user also placed inside FADIP.
Right near the configuration file, another box represents the user that is triggering
different functionalities of the platform by sending REST requests to the REST API
using a client or an automation tool.

Figure 5.1: Architecture of flexible anomaly detection platform (FADIP)
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5.3 Operation modes

As mentioned before, the system supports to operation modes, evaluation of anomaly
detection algorithms, and continuous detection / prediction of anomalies on time-series
from Prometheus. First, the general functionality and process are explained, then the
differences between evaluation and detection are discussed.

FADIP is a stand-alone Python application packed into a Docker image that can be
started (or a standard python application, instructions can be found in the GitHub
repository [8]). First, FADIP loads the configuration file and checks the configuration
file against a defined yaml scheme. Then, the database credentials are used for trying to
establish a connection to a PostgreSQL database. The defined data models are migrated
into the database as schemata. The application fails when a non-valid configuration
file was used, but a non-existent or failed connection to the database is tolerated. After
that, a webserver is opened on port 80, and the REST API is available, a documentation
of the REST API is available under http://localhost/docs .

Figure 5.2: Routes exposed by the REST API of FADIP

For the detection mode, FADIP provides two of the routes that can be seen in figure 5.2.
Continuous prediction of anomalies requires that for every time-series, first, a model
with the historical data of the time-series is trained and stored. This model training and
creation process can be done by starting a GET request to the route /import_train_all.
The endpoint will return immediately after starting the training process by putting
a training task into the background-queue. The Flow-Chart diagram in figure 5.3
explains the scheme of how FADIP trains the algorithms. To understand the algorithm,
it is important to know that FADIP works with different for-each loops through the
configured datasources, time-series, and algorithms. The user specifies all datasources,
then, inside the datasources, the corresponding time-series, and for every time-series
the algorithms that need to train with exact this time-series. First, the background task
loads the configuration file. Then, for every datasource specified in the configuration, it
looks for time-series inside this datasource. For every time-series, it loads the training
start-time and end-time and splits this into 24-hour-long parts. Every 24-hour time
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interval is then loaded from the datasource, and all time intervals are merged into one
time-series. Then, for every algorithm specified for the time-series, a model is fitted
with the training data. This model is stored either on the local disk or in an AWS S3
bucket.

FADIPs concept of continuous prediction effectively means that time windows of
2h are constantly examined for anomalies. To analyze the time window for the last 2
hours, a simple request to /start_evaluation starts the detection of anomalies for all (in
the configuration file) specified time-series. The procedure is similar to the training,
but only the time window of the last 2 hours is requested from the data source, the
existing model is loaded, and then the time series are examined for anomalies with the
corresponding model.

In the evaluation mode, FADIP is reading datasets, parting them in according to a
train-test-split into a training time-series and a testing time-series. An overview of
the evaluation process can be seen in Figure 5.4. As in the training process, FADIP
first loads the configuration file. Every dataset in the configuration file is loaded and
necessary transformations and cleaning are done (preprocessing). In the next step,
the dataset is split using the configured train-test-split into a training time-series and
a testing time-series. If the dataset is labeled, the contamination rate of the training-
time-series is calculated using the labels. Then, for each algorithm specified in the
configuration file for the current dataset, a model is built using the training time series
and algorithm. Then the model is used for a prediction on the testing time series. If
the dataset is labeled, the performance of the dataset is evaluated (by the same metrics
specified in chapter 4). Finally, the evaluation graphs are built.
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Figure 5.3: Flow-Chart diagram of the training process of FADIP
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Figure 5.4: Flow-Chart diagram of the evaluation process of FADIP
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5.4 Technical Details

In this section, the relevant technical details of the platform are described.

5.4.1 Configuration

FADIP relies on a single configuration file that specifies all involved systems and more.
The system hot-reloads the configuration file, which means that the application doesn’t
have to be restarted and reloads the configuration file every time a REST API request is
accepted by the system.

The configuration file consists of several sections:

1. Datasources

In this section, all PromQL-compatible datasources should be specified, for
example, different Prometheus datasources. Currently, the only datasource type
supported is "prometheus". The id can be freely chosen but need to be unique. It
is used for the mapping of time-series to datasources. The application must have
access to the given URL; username and password are optional.

2. Management Database

The management database is responsible for storing the evaluation results and
the found anomalies for later analysis and usage. The connected database can
only be a PostgreSQL database, and hostname, port, username, password, and
database need to be specified.

3. Model Storage

In bigger production environments, there is maybe a need to store the models
not on the local disk (due to disk storage). Therefore it is necessary to configure
credentials to AWS S3 (simple-storage-service) and enable the s3 model storing
flag and activating it via the flag (activated flag).

4. Alerting

FADIP supports two different integrations for notifying about potential anomalies,
Slack and Microsoft Teams. Both options can be configured there, Slack needs an
OAuth Token, and Microsoft Teams needs a webhook URL. Leaving one or both
empty leads to missing alerting/notification feature.

5. Mapping

In the mapping section, the user can specify which time-series from which data-
sources will be analyzed for anomalies. The analysis consists of two steps; the
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first is the training (or fitting) phase. In the training phase, FADIP loads the
Prometheus data from the specified query and the corresponding Prometheus
instance (through the datasource_id) from the training_starttime to the train-
ing_enddtime (both formatted as Unix timestamps). The specified algorithms are
then trained with the loaded data, and the model file is stored either on the local
file system or in AWS S3. For every algorithm, also a training parameter can be
specified.

The second step is the prediction of anomalies with the newly created models.
This is also triggered by a REST API request.

6. Evaluation

The evaluation section allows the user to configure the evaluation of different
open-source datasets with the different anomaly detection algorithms. The section
allows defining the output directory of the created analysis graphs as well as
an output directory of the raw dataframes as pickled objects. For every dataset,
a unique id has to be given, together with the local path for the dataset. Also,
there is a need to specify time-series-type, either univariate or multivariate and
whether the dataset is labeled or not. For every dataset, the different algorithms
can be specified, with their identifier, the train-test-split (train_percentage), and
optionally the contamination_train which is used as input parameter for the training
phase of the algorithm. First, the dataset is split by the factor specified in the
contamination_train, and then, the first part is used for the training phase, and the
other part is used in the testing phase. The algorithm’s outcome is then compared
to the labels (if the dataset is labeled) and evaluated after several parameters and
the results stored in the management database.

1 fadip:
2 version: 0.1
3 inital_setup: True
4 working_mode: "normal"
5 datasources:
6 - type: prometheus
7 id: "prom1"
8 url: "http://0.0.0.0:9090"
9 username: ""

10 password: ""
11 management_database:
12 host: "localhost"
13 port: "5432"
14 username: "*******"
15 password: "*******"
16 db_name: "flexadf"
17 model_storage:
18 s3:
19 aws_access_key_id: "******************"
20 aws_secret_access_key: "****************************************"
21 bucket_name: "masterthesis-ad"
22 activated: True
23 alerting:
24 slack:
25 oauth_token: "****************************"
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26 teams:
27 webhook_url: "https://**********************"
28 mapping:
29 - datasource_id: "prom1"
30 time-series:
31 - id: "localhost_process_cpu_seconds"
32 query: "rate(process_cpu_seconds_total{instance='localhost:9090', job='prometheus'}[5m])"
33 chunk_size: "5m"
34 algorithms:
35 - id: "iforest"
36 contamination_train: 0.05
37 - id: "copod"
38 contamination_train: 0.02
39 alerting: false # | false
40 training_starttime: 1637587367
41 training_endtime: 1637593905
42 ts_type: "univariate"
43 - id: "cadvisor_process_cpu_seconds"
44 query: "rate(process_cpu_seconds_total{job='prometheus'}[5m])"
45 chunk_size: "5m"
46 algorithms:
47 - id: "knn"
48 contamination_train: 0.01
49 - id: "cblof"
50 contamination_train: 0.01
51 alerting: false # | false
52 training_starttime: 1637587367
53 training_endtime: 1637593905
54 ts_type: "multivariate"
55 - datasource_id: "prom2"
56 time-series:
57 - id: "prom2_localhost_p_c_s"
58 query: "rate(process_cpu_seconds_total[5m])"
59 chunk_size: "5m"
60 algorithms:
61 - id: "hbos"
62 contamination_train: 0.02
63 alerting: false
64 training_starttime: 1639044894
65 training_endtime: 1639064793
66 ts_type: "multivariate"
67 evaluation:
68 graph_output_dir: "../evaluations/graphs/"
69 df_output_dir: "../evaluations/raw_data/"
70 datasets:
71 - id: "ms_middle-tier-api-dependency-latency-uv"
72 local_path: "./datasets/MSCloudMonitoringDatasets/data/middle-tier-api-dependency-latency/outbound_2x-01.csv"
73 ts_type: "univariate"
74 labeled: true
75 unsupervised: false
76 algorithms:
77 - id: "copod"
78 train_percentage: 0.5
79 contamination_train: 0.001
80 - id: "loda"
81 train_percentage: 0.5
82 - id: "ms_data-ingress-rate-05"
83 local_path: "./datasets/MSCloudMonitoringDatasets/data/data-ingress-rate/ingress-05.csv"
84 ts_type: "univariate"
85 labeled: true
86 unsupervised: true
87 algorithms:
88 - id: "knn"
89 train_percentage: 0.5
90 - id: "cblof"
91 train_percentage: 0.5
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5.4.2 Frameworks

The system relies on several open-source projects to fulfill the functional and non-
functional requirements. The basis of the implementation is a Python FastAPI applica-
tion server that exposes several routes to consumers. The Python application is deployed
using an uWSGI server (to fulfill the production requirements of a server) inside a
Docker container. The image of the Docker container is based on tiangolo/uvicorn-
gunicorn-fastapi:python3.8, and the application is running on port 80 of the container.

For working with the different datasets, the known data-science library pandas
is used, and the incoming data is transformed into pandas dataframes. To receive
the data from the Prometheus instance (and or PromQL-compatible datasource), the
library prometheus-pandas reads the data from a specified URL and transforms it into
dataframes. To store the results of the evaluation and the detected anomalies in a
system, a PostgreSQL database is used, and to connect to this database, SQLAlchemy
(Object-Relational-Mapper) with psycopg2 as a database driver is used. When it comes
to the actual anomaly/outlier detection, several algorithms were used, mostly already
existing implementations taken from the PyOD library [37] here. For a detailed analysis,
the plots of the time-series, especially with the important areas, are visualized using
the matplotlib library.

The application is packaged into a Docker image and can be started as a container
to allow a smooth deployment. Also, a pre-configured docker-compose is available
that starts a PostgreSQL database, a Prometheus Instance, and the FADIP application.
Docker was chosen as a virtualization platform because of its advantages, it allows the
code to be portable, and the system can be deployed on almost any other system or
platform. Docker is also more performant than other virtualization methods, and it is
possible to scale the platform horizontally (by running multiple instances of the FADIP
platform), more on the scalability of FADIP later. [3]

5.4.3 Data model

Figure 5.5 shows the data model used internally and in the database. The model is
written in code, and SQLAlchemy transforms it into a PostgreSQL-compatible database
scheme. The model includes two tables, anomalies and evaluation. Anomalies store
some statistical data as well as important information that make the anomaly traceable.
The stored data contains, among other fields, the query that was used to retrieve the
data from the datasource, and the used algorithm, the date when the anomaly was
identified. start_investigated_datetime and end_investigated_datetime are the starting and
ending date of the excerpt of time-series that was analyzed for anomalies, and if the
algorithm found some, the date of the first and the last anomalous datapoint are stored
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in first_anomaly_datetime and last_anomaly_datetime. Evaluation table holds the results
of the performance evaluations of the different anomaly detection algorithms. The
data includes the exact dataset, whether it is uni- or multivariate data, and different
statistical like the true_positives, true_negatives, false_positives, false_negatives, MCC, and
more.

Figure 5.5: Entity-Relationship diagram of FADIP data model

5.5 Requirements Compliance

In general, the functional requirements were all fulfilled by the features implemented
in the platform, so in this section, the focus lays on the non-functional requirements
and their fulfillment.
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5.5.1 Low environmental impact

The goal of this non-functional requirement was mainly to let the FADIP application op-
erate without any impact on the current existing platform. To achieve this requirement,
the data loading process from the monitoring stack was optimized. The performance
of queries in Prometheus and PromQL-compatible time-series stores depends on a
number of factors, such as the scrape interval, the amount of features, the labels of
the time-series, the functions applied in the query and more. In summary, however,
personal experience and the architecture of Prometheus and Prometheus-compatible
tools show that the CPU and memory of queries that cover a longer period of time and
contain several features can affect the performance of the monitoring system.

To solve this problem, FADIP uses a method to reduce the peak load to a continuous
load under an extension of the data loading time. For both the training and prediction
phase, the data loading method splits the timeframe of every query into "dataframes"
by days so that every "dataframe" is at maximum 24 hours long and requests these
dataframes sequentially. When different time-series are requested, the single time-
series is requested (using the method mentioned the in sentence before), and then
immediately the algorithms analyze the data, and after analysis, the next time-series is
requested. This also leads to pauses in the requests to the monitoring stack so that the
system can handle other requests & loads.

5.5.2 Stable & fail-safe

System stability and fail-safe behaviour are equivalently important for FADIP. Both are
achieved by different methods. First of all, the application can be at any point restarted
because it is completely stateless, and all requests are handled in the background-queue,
so the system cannot switch into a state like stuck or need for manual interaction. Also,
the system can handle failing or wrongly implemented anomaly detection algorithms.
It informs the user about the problem but continuous its operation with the following
algorithms. The same applies to missing datasources, requests for time-series with
timeouts, and requests for wrong timespans of monitoring data. Also, downtimes of
other involved systems are ignored, FADIP can ignore a potential database failure (but
does not cache the detected anomalies or evaluations), it can ignore problems with
single or multiple datasources, and potential down-times & misconfiguration of the
alerting and notification tools.

5.5.3 Easier extensible

System extension should be as easy as possible. This requirement is fulfilled by the
overall design & architecture. The extension of datasets for evaluation is easy; the
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configuration file allows to specify the dataset and the code marks an entry-point for
the needed transformations. The dataset is identified by a freely selectable identifier
and the target transformations that are needed to be performed for the algorithms
that are specified in the code. Algorithms can be easily added be just building an-
other python class that inherits the predefined functions from a meta-class, and the
transformation and mapping of the different methods is done in the algorithm class.
The metaclass defines only the functions: train_algorithm_unsupervised, predict_sample,
load_model_from_file, store_model_to_file, store_model_to_s3 and load_model_from_s3. All
added algorithms must implement these functions and be compliant to their structure
and sense.

5.5.4 Automatic execution

Automatic execution refers to the least-possible human interaction. FADIP should
operate at best entirely without human interaction. Since the system is built with a
REST-API and background-tasks from FastAPI, the only interaction can be done through
the available REST endpoints. The REST endpoints are designed only as triggers so
that the trigger interval can be freely chosen. The system’s complete autonomous
operation is possible using periodic API triggers, implemented using AWS Lambdas or
cronjobs. The supposed way is to use AWS Lambda and implement a lambda function
that periodically triggers the API. This allows better monitoring of the system.

5.5.5 Convenient configuration

Convenient configuration is achieved through the defined yaml scheme for the configu-
ration. The given configuration file can be changed, and while the application is running
replaced, and FADIP automatically reloads. The configuration file is also validated
against a scheme, so the application does not start with an invalid configuration.
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6.1 Datasets

For a good evaluation of the different anomaly detection algorithms and frameworks,
this thesis includes different anomaly-detection datasets. Since this thesis focuses on
anomaly detection for time-series data from car monitoring, we only consider the
technically similar or somehow related time-series from all selected datasets.

6.1.1 Microsoft Cloud Monitoring Dataset

Microsoft, Inc published a real-world cloud monitoring dataset from their services and
client telemetry signals. The dataset is a collection of 9 time-series, each having three
features: TimeStamp, Value, and Label. The TimeStamp represents the exact time at
which the datapoint was collected, the Value is the value of the metric that is watched
by a single time-series, and the label designates whether a datapoint is considered as
an anomaly, with 1 equals an anomaly, and 0 normal. [24]

In this thesis, we performed the evaluation on the following datasets:

Time-series Name Description

data-ingress-rate
Data ingress rate into a cloud service, with different varia-
tions and service disruptions.

ecommerce-api-
incoming-rps

Incoming request rates to an ecommerce api

application-crash-rate-1
Represents unusual increases in application crash rates
relative to baseline, normalized to application launch counts

application-crash-rate-2
Represents unusual increases in application crash rates
relative to baseline, normalized to application launch counts

Description out of the metadata.csv files from the respective directories.

Dataset: application-crash-rate-1

This dataset shows the unusual increases in application crash rates relative to the
baseline, normalized by the number of application launch counts. This dataset contains
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Figure 6.1: Timeserie: application-crash-rate-1: app1-03.csv

9 different time-series inside CSV files, all with different characteristics and amounts of
anomalies. Three datasets were selected due to their characteristics, the corresponding
CSV files are: app1-01.csv, app1-03.csv, app1-07.csv. An example dataset, which can be
seen in Figure 6.1 shows the CSV file app-03.csv. The time-series shows no significant
trend over time. It contains seasonal patterns, but they do not follow an exact scheme
with minimal derivations. They exist outside the areas marked as anomalies, with
different amplitudes, but mostly in the same wide. This time-series contains a high
rate of anomalies; when looking at the first 80% of the dataset (used for training the
algorithms), the percentage of anomalies is 25%. This dataset was chosen because it
comes close to monitoring an application cluster (e.g., several scalable services in a
Kubernetes cluster), where services are terminated or crashed (e.g., in the event of a
DDoS attack) and are restarted.

Dataset: application-crash-rate-2

The dataset application-crash-rate-2 contains 10 CSV files with each a time-series inside.
As dataset application-crash-rate-1, it displays the application crash rates relative to
the baseline normalized by the number of application launch counts. Out of the 10
time-series, 2 were selected due to their characteristics, app2-01.csv and app2-09.csv. The
time-series in Figure 6.2 was selected due to the (in comparison to other time-series
from the dataset application-crash-rate) high amplitude in the seasonal sections and
because of the few anomalous points in the whole set. When using the first 80% of
the dataset for training and the remaining 20% for evaluation, both parts only contain
one "section" with anomalous datapoints. This dataset was chosen because it comes
close to monitoring an application cluster (e.g., several scalable services in a Kubernetes
cluster), where services are terminated or crashed (e.g., in the event of a DDoS attack).
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Figure 6.2: Timeserie: application-crash-rate-2: app2-09.csv

Dataset: data-ingress-rate

This dataset includes datapoints of the data ingress rate of an anonymous cloud service.
Figure 6.3 and figure 6.4 shows two uni-variate time-series graphs. In both graphs, Value
and Label are plotted, with datapoints starting at 05.04.2018 and ending at 05.05.2018.
Out of the provided open-source dataset from Microsoft, only the files: ingress-01.csv,
ingress-04.csv, ingress-05.csv were found to be useful for the evaluation. All three time-
series show two relatively big (in comparison to the whole dataset) anomalous sections
in the same time area. These two anomalous sections are drops in the data-ingress with
varying amplitude. ingress-04.csv and ingress-05.csv add additional anomalies, in all
cases high deflections in the graphs. This dataset was chosen because it contains very
similar metric data to a typical backend service in the automotive industry, for example,
the metrics of calls to the weather service by the infotainment system installed in the
vehicle.

Figure 6.3: Time-series data-ingress-rate: data-ingress-01.csv
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Figure 6.4: Time-series: data-ingress-rate: data-ingress-04.csv

Dataset: ecommerce-api-incoming-rps

This dataset shows the incoming request rate on an e-commerce API. Figure 6.5 shows
the plot of the dataset values (in blue) and the points designated as anomalies (in red).
The labeled anomalous are, without exception, peaks in the number of requests. While
the periodicity is very narrow, there is no discernible trend in the values. The anomalies
are almost evenly distributed. This dataset can be compared in particular with the
metrics of an online shop for parking space bookings of an infotainment system in the
vehicle.

Figure 6.5: Time-series: ecommerce-api-incoming-rps: api-01.csv

6.1.2 Anonymized commercial datasets

This section presents the evaluated anonymized commercial datasets from a known
german car manufacturer. The dataset represents the sum of the established connections
to an application delivery controller but separated by regions and the target application
of the request. The regions in the dataset are: reg1 and reg2, and the selected applications
are app4, app8, app10, app17 and app18, however, not every application is available in
every region. The available combinations and datasets used are shown below. Almost
all time-series in this dataset contain daily and weekly seasonalities, which is due to
the fact that the average car infotainment usage correlates with the average car usage of
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the population (drive to work in the morning and back in the evening). All time-series
in the datasets were sampled from data points every 15 seconds to data points every
minute to improve performance, and because such fine-granular data is not necessarily
more meaningful for monitoring applications, this downsampling often occurs when
data is stored for long periods.

Application 4

When looking at the dataset in figure 6.6, it is relatively straightforward that there is a
weekly as well as a daily seasonality. There is no discernible trend visible, but a few
anomalous datapoints are visible, especially in the middle and at the beginning of the
second half of the time-series. There is also a temporary change in the characteristic
pattern of the time-series.

Figure 6.6: Time-series: Region 1 - Application 4 (reg1-app4.csv)

Application 8

Application 8 is available in two regions, region 1, and region 2. The two time-series in
figure 6.7 and in figure 6.8 differ in their details, except for one common feature. This
common feature is that both time-series show a low amplitude in their daily and weekly
seasonalities from the halfway point onwards. This makes both time-series particularly
interesting, as there are anomalies in both, and the pattern changes seasonalities, i.e., a
certain trend is present, but it is not an anomalous behaviour. Both time-series contain
anomalies, so train-test-splits of 0.8 or more should not result in detected anomalies.

Application 17

Application 17 is also available in two regions, region 1 and region 2. The two time-
series in figure 6.9 and in figure 6.10 are fundamentally different, while the time-series of
region 1 show a continuously rising trend with daily and weekly seasonality. There are a
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Figure 6.7: Time-series: Region 1 - Application 8 (reg1-app8.csv)

Figure 6.8: Time-series: Region 2 - Application 8 (reg2-app8.csv)

few peaks in the dataset, and the peaks are continuously rising and have an increasingly
bigger amplitude. In contrast, the other time-series has no well recognisable seasonality,
and no trend, but some enormous spikes (outliers) that are mostly concentrated in the
middle of the time-series.

Figure 6.9: Time-series: Region 1 - Application 17 (reg1-app17.csv)

Application 18

Application 18 of region 2 was selected because it is an irregular time-series with
seasonality but constantly varying amplitudes and some anomalous points in the
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Figure 6.10: Time-series: Region 2 - Application 17 (reg2-app17.csv)

beginning. However, after the first month of the time-series, there are no anomalies
that an algorithm could detect.

Figure 6.11: Time-series: Region 2 - Application 18 (reg2-app18.csv)

6.2 Algorithm performance on datasets

In this chapter, the selected anomaly detection algorithms explained in chapter 2 are
compared and evaluated. The configuration file necessary for the evaluations can be
found in this Github repo [8].

6.2.1 Outlier detection on the Microsoft Cloud Monitoring Dataset

When looking at the open-sourced cloud monitoring dataset from Microsoft, we selected
different time-series. In order to compare the algorithms fairly, the datasets described
in this chapter before are divided into training & test data. This split is represented
by the train-test-split, where a train-test-split of 80% (or 0.8) means that the 80% of the
dataset is used for training and the remaining data for prediction. The prediction
is then compared with the true anomalies (indicated by labels), and the metrics are
calculated.
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In this section, the anomaly detection algorithms are compared by some metrics
based on the different train-test-splits on the single time-series.

Dataset: Application-Crash-Rate

Figure 6.12 shows the MCC and specificity scores of all algorithms for different train-test-
splits on the dataset application-crash-rate1. Looking at the MCC scores of the algorithms
on time-series 6.12a, the algorithms do not behave consistently. While iForest and HBOS
have a relatively good MCC score for 0.6, the MCC score drops for a train-test-split of 0.7
and after that increases to levels above from the values for 0.6 and 0.4. COPOD shows
the MCC scores’ expected behavior with the increase of the proportion of training data.
KNN and CBLOF behave relatively erratically, increasing for some train-test-splits and
decreasing again for other train-test-splits. An explanation of this behaviour can be
found in figure 6.12b, which shows that the amount of false positives in the detections
of the algorithms continuously increases (and the specificity decreases). Interestingly,
KNN has the maximum of false-positives with a train-test-split of 0.7 and KNN with a
train-test-split of 0.8. The only valid explanation for the differences in the performance
of the algorithms is the sensitivity of the contamination rate (that changes with the
train-test-split) and the characteristics of the algorithm.

On the time-series app1-07.csv, figure 6.12c shows the expected behaviour that for
almost all algorithms, more training data leads to better performance (except for a
minimal difference at a train-test-split of 0.7 and 0.8 for HBOS). The specificity scores
in figure 6.12d show that for KNN, HBOS, and CBLOF the amount of false-positives
is relatively high at train-test-split of 0.8, however the MCC score is increasing for this
train-test-split. One explanation for this would be that the algorithms get preciser on
detecting the actual anomalous datapoints and leave more false-positives out.

In the time-series plotted in 6.12e, the MCC value of the COPOD algorithm is
significantly lower than the values of the 4 other algorithms (which are all on the
same MCC curve with the same values). The reason for the equal performance of
KNN, HBOS, iForest, and CBLOF on the time-series can be explained by looking at
the evaluation of one of the algorithms on the test-time-series 6.13. The test-time-series
contains a small range of anomaly points towards the end of the time-series that are
significantly higher than the rest of the data. Looking at the entire time-series, it is
clear that the time-series is very well suited for anomaly detection, as the anomalies are
extreme peaks compared to the normal datapoints. Looking at the classification of the
4 algorithms in figure 6.13, it is clear that the most significant deflections were detected
as anomalies, but not the point immediately before and immediately after. These two
points are, however, noted as anomalies in the given dataset from Microsoft; if correct,
the performance of the algorithm would be equal to that of a perfect detector (and
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the MCC score = 1) The unusual behaviour of COPOD on the time-series 6.12e cannot
be explained, but it can be observed that the only difference with a train-test-split of
0.6 is one point less of false negatives and one point more of true positives, for the
actual application this difference is not relevant, and the performance of all algorithms
is sufficient for a detection (since no algorithm produces false positives, which can be
seen in figure 6.12f).
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(a) MCC of time-series: app1-01.csv (b) Specificity of time-series: app1-03.csv

(c) MCC of time-series: app1-03.csv (d) Specificity of time-series: app1-03.csv

(e) MCC of time-series: app1-07.csv (f) Specificity of time-series: app1-07.csv

Figure 6.12: MCC & specificity scores of all algorithms on application-crash-rate1
dataset
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Figure 6.13: Evaluation result of app1-07.csv with HBOS

Looking at the other two time-series of the application-crash-rate2 dataset 6.14, the
performance of all algorithms is the best for a train-test-split of 0.8 (except KNN, which
achieves a little better performance in 0.9, as seen in figure 6.14a). Interestingly, for a
train-test-split of 0.7 there were more false-positives as for 0.6 while having almost a
constant MCC score, and the same behaviour for 0.9 in relation to 0.8. On this dataset,
COPOD performs overall best since, for app2-01.csv, COPOD always achieves the
highest MCC score and highest specificity (lowest amount of false-positives). When
looking at the time-series of app2-09.csv, all algorithms except CBLOF stay on the
same curve in the specificity curve 6.14d, and all algorithms reach a specificity score
of 1.0 for train-test-splits of 0.8 and above. The worst performing algorithm on this
dataset is HBOS, for train-test-splits of 0.8 and 0.9 (figure 6.14c), the MCC score is
fundamentally lower. The algorithm’s performance on this dataset can again be only
explained by the different sensitivity of the contamination rate and the shift of anomaly
points from the test time-series to the train time-series with increasing train-test-split.
The time-series app2-09.csv is also interesting because it only includes one section of
anomalous datapoints in the middle and one in the section that needs to be predicted.
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(a) MCC of time-series: app2-01.csv (b) Specificity of time-series: app2-01.csv

(c) MCC of time-series: app2-09.csv (d) Specificity of time-series: app2-09.csv

Figure 6.14: MCC & specificity scores of all algorithms on application-crash-rate2
dataset

Dataset: Data-Ingress-Rate

Looking at the time-series from ingress-01.csv the MCC score is for all train-test-split
from 0.6 to 0.9 not available since there are no anomalies in the test data set (figure
6.15a). When 0.4 or 0.5 is selected as the train-test-split, there is an MCC score available,
as there are anomalous points in the dataset. Since there are no anomalies in the
time-series, no anomalies are recognisable, false negatives cannot appear, and there
should be as few false positives as possible. Specificity would be the next metric that
would make sense for a fair comparison. The figure 6.15b shows the specificity of all
algorithms with the different train-test-splits. The optimal value of the specificity should
be 1 for all algorithms. As can be seen in the graph, all algorithms reach the ideal value
with a train-test split of 0.9, but they differ fundamentally with lower train-test-splits.
The algorithms COPOD and KNN stand out here in particular, and there is another
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clear difference between the algorithms at 0.6 and 0.7 as a train-test-split. At 0.6 and
0.7, there are still some differences due to the lack of representative datapoints, and the
best performing algorithm was HBOS. Interestingly, the jump in specificity between
0.6 and 0.7 is the largest for all algorithms. This is due to the fact that there are now
fewer individual points in the test data set that are slightly higher, and half of these
have been included in the training set when using 0.7 as train-test-split.

However, an MCC score is available when using 0.4 or 0.5 as train-test-split. With 0.4
and 0.5, KNN and COPOD perform worse than all the other algorithms, and HBOS
performs best, followed by CBLOF and iForest. The bad performance of KNN could
not be improved relevantly by varying some of the input parameters (like the exact
detector). The rule: "more training data, fewer test data" led to a better result for all
algorithms.

For the time-series ingress-04.csv the situation is similar, like ingress-01, ingress-04
also contains no anomaly points for train-test splits in [0.6, 0.9]. The time-series differ
only slightly in the number of anomalies, but the amplitude of the seasonality of
the normal points is significantly higher. Exactly this increased amplitude shows its
effect when looking at the number of false positives (respectively the specificity) at
low train-test-splits in figure 6.15d. The number of false positives in the time-series
decreases progressively with the amount of training data. Points that were marked as
false positives in all training test splits were no longer marked in the highest training
test split of 0.9, which is a very positive effect.

Time-series ingress-05.csv is very similar to ingress-rate 01, but the last third of the
dataset contains a strong deflection that is recognised as an anomaly point, which is
part of the test data series for train-test-slits of [0.4, 0.7]. For [0.8, 0.9] as a train-test-split,
specificity can again be used as a comparative metric, since the number of false positives
is decisive here, and for [0.4, 0.7] the MCC score. A closer look at the MCC scores in
figure 6.15e reveals a very unusual effect: COPOD achieves enormously high MCC
scores on the smaller training test splits 0.4 and 0.5, in contrast to all other algorithms.
This effect can only be explained by the amount of data used for training and testing,
with a train-test-split of 0.5 the test data contain a large section with some anomalies,
which were all correctly recognised by COPOD, with 0.6 this section is not present.
However, in contrast to all other algorithms, COPOD detected significantly fewer false
positives. The specificity scores on the time-series show similar behaviour for iForest,
CBLOF, and KNN as in the other time-series from the same dataset; at 0.6 and 0.7 as a
train-test-split, too many false positives are output, only COPOD and HBOS output few
false positives. Overall, COPOD performs best on the time-series ingress-05.csv. HBOS
struggles recognising the true positives with smaller train-test-splits.
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(a) MCC on time-series: ingress-01.csv (b) Specificity on time-series: ingress-01.csv

(c) MCC on time-series: ingress-04.csv (d) Specificity on time-series: ingress-04.csv

(e) MCC on time-series: ingress-05.csv (f) Specificity on time-series: ingress-05.csv

Figure 6.15: MCC & specificity scores of all algorithms on dataset: data-ingress-rate
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Dataset: ecommmerce-api-incoming-rps

Figure 6.16a shows the MCC scores on the time-series api-01.csv. All algorithms behave
the same on the dataset, the MCC score drops sharply for all at a train-test-split of 0.8
compared to a train-test-split of 0.7, and exceeds all previous values at train-test-split
of 0.9. This behaviour can only be explained by the nature of the dataset and the
train-test-split. However, the dataset shows no abnormalities except for the shift of
one anomalous datapoint section from the test dataset to the training dataset when
changing from 0.7 to 0.8. The Specificity score in figure 6.16b offers no relevant insight,
interestingly the number of false-positives increases and the specificity score decreases,
except for COPOD and CBLOF, which have the highest MCC scores at 0.9 probably for
this reason.

(a) MCC on time-series: api-01.csv (b) Specificity on time-series: api-01.csv

Figure 6.16: MCC & specificity of all algorithms on dataset: ecommerce-api-incoming-
rps

6.2.2 Outlier detection on anonymized commercial datasets

The anonymized commercial datasets cover a longer period than the datasets before,
the period from 01.08.2021 to 01.02.2022. This also means that a typical train-test-split
of 0.8 (80% training data, 20% test data) only represents the concrete use case to a
limited extent, since a period of 2 hours is the standard for the "detection" mode. A
train-test-split of 0.98 makes more sense, since this includes only about 3.5 days of
data instead of about 37 days. Every algorithm was evaluated with a train-test-split of
0.8 and 0.98, and a contamination of 0.5% and 0.1%, so for every dataset and every
algorithm, 4 evaluations and graphs were created. For the sake of clarity, only selected
algorithms that show particularly interesting behaviour are selected for each time-series.
All time-series are not labelled, the anomalies are recognisable due to the characteristics
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of the time-series and the existing context and are evaluated according to this scheme.

Time-series: Application 4

Looking at the train-test-split of 0.98, no directly visible anomalies are in the examined
area, but an individual anomaly in the sub-context, at 01.02.2022 datapoints are untypi-
cally far down in relation to the other points in this daily seasonality. This anomaly
was detected exclusively by the KNN algorithm (with both contamination rates of 0.5%
in figure 6.17a and 0.1% in figure 6.17a, but with the trade-off that with 0.5, a lot of
other points were detected as anomalies. The other points are only a common upward
swing and not an outlier, making the detection false-positive. All algorithms with a
contamination rate of 0.1% did not detect any anomalies in the dataset. Interestingly,
all algorithms except HBOS produced false positives in the first peak of the time-series
on 29.01.2022 with a contamination rate of 0.5. With a contamination rate of 0.1%, no
algorithm except KNN detected an anomaly, so it can be clearly stated that for this
time-series and this section KNN performed best.

The results of evaluating the algorithms with a train-test-split of 0.8 give the same
results, but with a contamination rate of 0.5 more false positives for all algorithms
except HBOS.
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(a) Detected anomalies of KNN (Cont:
0.5%) on time-series: reg1-app4.csv

(b) Detected anomalies of KNN (Cont:
0.1%) on time-series: reg1-app4.csv

(c) Detected anomalies of HBOS (Cont:
0.5%) on time-series: reg1-app4.csv

(d) Detected anomalies of HBOS (Cont:
0.5%) on time-series: reg1-app4.csv

Figure 6.17: Detected Anomalies on time-series: reg1-app4.csv with train-test-split of
0.98

Time-series: Application 8

Application 8 is present in both regions, and as explained earlier in this chapter, the
behaviour of the two anomalies does not correlate except for a change in the amplitude
of the dataset. When analysing the time-series of region 1 app 8, it is noticeable that all
algorithms with both contamination rates (0.5% and 0.1%) detect no anomalies (and
thus no false positives). Since no algorithm is better or worse suited for this time-series
and this train-test-split, a train-test-split of 0.3 is used for comparison. This is not a
common distribution in machine learning, but it is not problematic because the training
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domain contains enough data points, and only the immediate beginning of the test data
(which also contains anomalies) is considered for the evaluation. Figure 6.18 shows the
performance of KNN on the time-series with a train-test-split, a contamination rate of
0.0375% (which is the contamination rate of 0.1% adjusted to the smaller interval), and
all algorithms detect the visible anomalous datapoints, and no false-positive datapoints.
However, using a higher contamination rate of 0.1%, COPOD and HBOS detect two
additional false-positives, while iForest and CBLOF detect 6 false positives, and KNN
detects a large number of false positives (can be seen in figure 6.19). As a result, all
algorithms perform well on this dataset, but the KNN, iForest, and CBLOF algorithms
are much more sensitive to changes in the contamination rate, and this rate is crucial
for a low number of false positives.

Figure 6.18: Detected anomalies of KNN (Cont: 0.1%) on time-series: reg1-app8.csv

Figure 6.19: Detected anomalies of KNN (Cont: 0.0375%) on time-series: reg1-app8.csv

The time-series of application 8 in region 2 also does not contain any anomalies that
algorithms should recognise with a train-test-split of 0.98. The first peak on 29.01.2022
can be considered an anomaly at first glance, as it is minimally higher than the other
peaks of the previous month, but in the overall context of the time-series it is not an
anomaly point. All algorithms do not detect any outliers with a contamination rate of
0.1% (figure 6.20b, but with a contamination rate of 0.5%, KNN detects the datapoint of
the first peak (in figure 6.20a, which is again a sign that the algorithm reacts very finely
to the contamination rate.
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(a) Detected anomalies of KNN (Cont:
0.5%) on time-series: reg2-app8.csv

(b) Detected anomalies of KNN (Cont:
0.1%) on time-series: reg2-app8.csv

Figure 6.20: Detected Anomalies on time-series: reg2-app8.csv with train-test-split of
0.98

Time-series: Application 17

Application 17 is again available in both regions. In the region, the time-series shows
interesting behaviour. Due to the steady increase in amplitude, there are no recognisable
anomalies in the dataset, and the individual peaks can be interpreted with normal
behaviour. If the algorithms are trained with a very small contamination rate, such
as 0.0001%, then no algorithm will detect anomalies, and thus no false positives (see
figure 6.21c and 6.21d). Nevertheless, to compare the algorithms, they were trained
with a contamination rate of 0.1%, and the algorithms show different behaviour. HBOS
detected only the isolated peaks in figure 6.21b (as did KNN), while iForest, CBLOF
and COPOD (in figure 6.21a) also marked other points around these peaks, and also
relatively smaller deflections.
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(a) Detected anomalies of COPOD (Cont:
0.1%) on time-series: reg1-app17.csv

(b) Detected anomalies of HBOS (Cont:
0.1%) on time-series: reg1-app17.csv

(c) Detected anomalies of COPOD (Cont:
0.0001%) on time-series: reg1-app17.csv

(d) Detected anomalies of HBOS (Cont:
0.0001%) on time-series: reg1-app17.csv

Figure 6.21: Detected Anomalies on time-series: reg1-app17.csv with train-test-split of
0.98

Application 17 in region 2 has a different character, but also, like in region 1 no
anomalies in the test data. Overall, however, the dataset already contains anomalies, so
that a contamination rate of 0.1% allows meaningful results to be obtained about the
algorithms. KNN and HBOS correctly detect no anomalies here (figure 6.22a), while
COPOD, CBLOF and iForest falsely detect the first peak with the value 3.0 (figure
6.22b. The reason for this behaviour may be the sensitivity to the contamination rate
of COPOD, iForest, and CBLOF, which we check by setting the contamination rate to
0.5%. Our assumption was confirmed, as figure 6.22d, CBLOF immediately identifies
all further peaks as anomalies, while KNN is for this time-series more robust to changes
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in the contamination rate.

(a) Detected anomalies of KNN (Cont:
0.1%) on time-series: reg2-app17.csv

(b) Detected anomalies of CBLOF (Cont:
0.1%) on time-series: reg2-app17.csv

(c) Detected anomalies of KNN (Cont:
0.5%) on time-series: reg2-app17.csv

(d) Detected anomalies of CBLOF (Cont:
0.5%) on time-series: reg2-app17.csv

Figure 6.22: Detected Anomalies on time-series: reg2-app17.csv with train-test-split of
0.98

Time-series: Application 18

Application 18 in Region 2 is a time-series with strongly varying amplitude in sea-
sonality with some anomaly points at the beginning of the dataset. Towards the
end of the dataset, no anomalies are present, so the algorithms should not produce
outliers and therefore, no false-positives. As the figures 6.23a and 6.23b exemplary
show, all algorithms detect no anomalies and therefore fulfill the expectations of no
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false-positives.

(a) Detected anomalies of iForest (Cont:
0.1%) on time-series: reg2-app18.csv

(b) Detected anomalies of COPOD (Cont:
0.5%) on time-series: reg2-app18.csv

Figure 6.23: Detected Anomalies on time-series: reg2-app18.csv with train-test-split of
0.98

6.2.3 Interesting optimisation through weakly supervised learning

The performance of the previous algorithms could be improved by changing the training
phase.

Provided that the datasets are labelled, the training data can be changed so that the
first feature of the time-series is the value, and the second feature is the label of whether
a point is an anomaly or not (with the values 0 for normal point, 1 for anomaly). We
call this weak-supervision since it can be used with unsupervised outlier detection
algorithms without the need for code changes.

One problem that arises is that the test time-series must not contain fewer features
than the normal one. Since adding the anomaly label to the testing time-series does not
make sense, the feature label is also added to the testing time-series, but entirely as a
value of 0 for each datapoint (the algorithm should not know in advance which points
are anomalies).

For the algorithm COPOD on the time-series app1-01.csv from the dataset application-
crash-rate-1, this method allows to reduce the number of false positives and increase
the number of true negatives, which can be seen in the figures 6.24 and 6.25. This
method needs further research to prove its usefulness and success.
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Figure 6.24: Detected anomalies using weak-supervised COPOD with train-test-split of
0.8

Figure 6.25: Detected anomalies using unsupervised COPOD with train-test-split of 0.8

6.3 Comparison of non-functional criteria

In this section, the non-functional criteria defined in chapter 4 are evaluated for the
different anomaly detection algorithms. The implementation of all algorithms comes
from the PyOD library [37], and every algorithm supports two functions, fit() and
predict(), which are used through the evaluations and in the FADIP platform. The
input parameters for the fit() (training) and predict() methods are numpy arrays with the
shape (n_samples, n_features) or pandas dataframes, for time-series dataframes with
timestamp and value as columns and rows for the single datapoints. Additionally,
it has to be said that all algorithms presented here score very well when it comes to
maintainability and community, as all are implemented in PyOD, and PyOD has an
active community with many contributions [37].

iForest

The unsupervised outlier detection algorithm iForest was initially implemented in the
scikit-learn library. PyOD wraps iForest of scikit-learn and adds more functionalities [1].
iForest (as implemented in PyOD) has many different input parameter, that can modify
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the behaviour.
Configuration & setup is simple and can be completed in a short time when using

either the implementation in scikit-learn or PyOD. A simple import of the library and the
algorithm is ready for usage. There is no input parameter required to let the algorithm
run. However, the contamination is a relevant input parameter that determines the
ability to detect anomalies heavily. Other input parameters, like the maximum number
of samples that the algorithm takes of the training set or the maximal amount of
features to train the model, are also relevant.

In the iForest implementation of PyOD, it has 8 tuning options that allow tuning
the performance of the algorithm in different dimensions, better model prediction
performance, faster processing times for training and prediction. All tuning options (=
input parameters) come with default values.

iForest is in the middle range in terms of user experience because the scores on the
labeled open-source datasets show that iForest produces many false positives. On the
anonymized commercial datasets, iForest is prone to produce false positives, especially
on dense data points that differ from the rest of the time-series.

HBOS

HBOS, histogram-based outlier detection is again implemented in PyOD. The setup is
again straightforward, the library needs to be imported, and there are no mandatory
input parameters. However, contamination is an important parameter, it defines the
threshold of the decision function. HBOS supports two working modes, a static number
of bins as well as an automatic number of bins. [1]

HBOS supports 4 tuning parameters, the number of used bins, alpha as a regularizer
for preventing overflow, tol as flexibility for dealing with samples that fall outside of the
bins, and contamination as a threshold for the decision function. All input parameters
have defined standard values, but the model prediction performance and the processing
time can be influenced by the parameter choice. [1]

In the overall evaluation, HBOS proved to be one of the best algorithms in terms
of correct classification (and therefore, user experience). Looking at the anonymized
commercial datasets, HBOS also produces a low number of false positives, and together
with the minor tuning options, it is therefore particularly suitable for productive use.
HBOS stood out in particular for its fast execution time.

COPOD

COPOD, another outlier detection algorithm, implemented in PyOD, is just as simple in
the setup. Also one import of the library is enough, and the algorithm is ready to start.
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COPOD does not have a mandatory input parameter. Nevertheless, it is recommended
that contamination is used as input parameter to define the threshold of the decision
function. [1]

COPOD has the least tuning options. It only allows to specify the contamination rate
of the training dataset to influence the performance of the predictions, and n_jobs as
the input parameter to adjust the number of parallel jobs for fit and predict (can result
in faster execution times). Both parameters come with default values. [1]

COPOD has an interesting performance in the overall evaluation. For some time-
series the algorithm performs very well, while others produce poor results. This
also applies to the anonymized commercial datasets, where there were more false
positives than would be pleasant for the user experience. COPOD also offers hardly any
additional possibilities to improve the performance of the algorithms using parameters.

KNN

The k-Nearest Neighbors Detector (KNN) is implemented in the PyOD library, inter-
preting the distance of a point to its k-th nearest neighbors as the outlier score. KNN is
a very flexible, configurable outlier detection method. [1]

KNN allows many different input parameters to adjust the performance of the
predictions. In total, 10 input parameters for the initialization of the algorithm are
possible, some having a stronger influence on the prediction performance (like contami-
nation, n_neighbors, and radius), and some having minor to no influence on prediction
performance (like algorithm and n_jobs). [1]

The performance of KNN was also very dependent on the selected dataset. For highly
varying datasets the performance was not so good, and the number of false positives
was high. For periodic datasets the performance was partly excellent. Particularly on
the anonymized commercial datasets, the algorithm was for some cases the only one to
detect certain anomalies but was also more sensitive to the contamination rate for some
datasets. Thus, no correct statement can be made about the user experience of anomaly
detection with this algorithm. It should be noted, however, that KNN took a long time
for training and prediction.

CBLOF

PyOD also provides the implementation of Clustering Based Local Outlier Factor, an
anomaly detection algorithm that works by clustering and separating the clusters into
small and large clusters. The setup is again convenient; an import of the library and no
mandatory input parameter lead to a fast setup.

CBLOF has 8 input parameters as tuning options to improve the performance and the
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execution time of the algorithm. Contamination is again used as the input parameter
to define the threshold of the decision function. Also, the number of clusters, the base
clustering algorithm, and the values for dividing into small and large clusters can be
varied. All input parameters come with standard values.

The performance of CBLOF is also highly dependent on the datasets; for the labelled
datasets, the algorithm was among the best for some and among the worst for others.
In the anonymized commercial datasets, CBLOF detects many anomalies that turn
out to be false positives, especially with poorly chosen contamination rates. It is also
difficult to assess the user experience for anomaly detection for CBLOF.

6.3.1 Summary

In summary, it can be said that the performance of all algorithms depends very much on
the datasets used. HBOS generally performed well on many datasets, followed by KNN.
However, the other algorithms tend to produce more false positives in general, but
again this depends heavily on the dataset used. HBOS was also the fastest algorithms
in terms of execution time, and KNN the slowest algorithm. All this leads to the
conclusion that in the productive use of anomaly detection, a prior evaluation of the
algorithms on the time-series to be used must take place. Ideally, this evaluation
takes place with labelled time-series, but usually this is not possible, in which case an
evaluation with unlabelled ones will have to suffice.
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The main focus of this thesis is to develop a flexible anomaly detection platform that
allows the evaluation of different anomaly detection algorithms on different open-source
and anonymized car monitoring datasets. Furthermore, the platform should allow the
usage of the evaluated algorithms in productive IT systems to detect anomalies in the
time-series data from monitoring systems.

In chapter 2, we gave a basic understanding of anomalies and showed that there
are three different types: individual outliers in the context of the complete time-series,
individual outliers in a sub-context, and grouped outliers. Then, the application domain
of car backend monitoring was defined, and we presented the challenges of monitoring
a complex system stack and how the microservice approach of Thanos.io solved them.

Next, fair and measurable comparison criteria were defined, divided into functional
and non-functional criteria. The functional criteria consisted of different formulas
used to measure the direct performance of the algorithms on a dataset, and the MCC
score and the specificity were presented as reliable comparison metrics. The F1 score
was analysed and because of the easy possibilities to influence it with the help of the
train-test-split, the MCC score was favoured. The non-functional criteria were defined
as usability of the algorithms and tuning options, resulting in that algorithms with
fewer false-positives are preferable for this criterion.

In chapter 5, the complex requirements that a production-ready system must fulfil are
shown, and a flexible anomaly detection integration platform (FADIP) was presented.
It was demonstrated how FADIP fulfills all presented requirements, and the platform,
extendability and evaluation and detection capabilities were explained in detail. FADIP
is a very flexible, extendable solution that allows to use multiple anomaly detection
algorithms easily for evaluation and detection purposes.

Since the main focus of the monitoring data were unlabeled time-series from car
monitoring and labeled open-source time-series datasets, different datasets (unlabeled
and labeled) with multiple time-series were chosen in chapter 6. Also, all algorithms’
performance was compared (by the platform) on all these datasets using the MCC
score and specificity. The results were mixed, HBOS performed better than most of the
algorithms, and for the other algorithms, no accurate assessment could be made for all
datasets.

However, as all comparisons on the outlier detection algorithms show, the choice of
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the algorithm highly depends on the different characteristics of the time-series, and the
input parameter contamination is very relevant as a threshold for deciding between
normal and anomalous datapoints. A prior evaluation is necessary for the productive
use of the algorithms, which is easily possible with FADIP; without that, the application
in productive IT infrastructure is questionable.

7.1 Outlook

The platform itself has even more potential if it is structured more modularly. At
the moment, only PromQL data sources are supported. The conversion to a modular
system, which defines a uniform time-series format for univariate and multivariate
time-series as well as a transformation component, can be used as a solution to add
additional datasources in a modular way. Now that a common interface has been
defined for the algorithms, there is definitely further potential for improvement. The
current interface limits the adaptation of some algorithms to specific parameters only;
this limitation could be solved with a more flexible interface, thus also opening the way
for other implementations of algorithms, mainly supervised and not only unsupervised
or weakly-supervised algorithms. The current implementation scales for the used
datasets well, but it might run into a problem for larger datasets (especially multivariate
datasets), so adding automatic resampling of data or switching to another framework
for transforming and processing the data might be a good improvement. Scalability
can also be achieved by developing the application to cluster computing methods
like Apache Spark. To further improve usability, one can also consider developing
a web interface. This web interface could then provide various information about
the state of the system, the detected anomalies, and statistics. Above all, this would
make improving supervised algorithms easier to flag false-positive and false-negative
anomalies in past time-series data points and use this feedback to retrain the models.
Overall, it can be said that this platform has great potential to deploy anomaly detection
in professional cloud infrastructure in a production-ready manner and provide tangible
benefits for monitoring IT systems.
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