
Addressing Teaching Practices Regarding SoftwareQuality:
Testing and Debugging in the Classroom
Tilman Michaeli

Computing Education Research Group
Friedrich-Alexander-Universität Erlangen-Nürnberg

Martensstraße 3, 91058 Erlangen, Germany
tilman.michaeli@fau.de

Ralf Romeike
Computing Education Research Group

Friedrich-Alexander-Universität Erlangen-Nürnberg
Martensstraße 3, 91058 Erlangen, Germany

ralf.romeike@fau.de

ABSTRACT
Software quality is seen as an integral part of CS education. Two
of the key concepts concerning software quality are testing and
debugging. Testing is considered important to verify the students’
underlying model or algorithm. Debugging is an approach related
to computational thinking which is distinct from general program-
ming skills and fosters abilities like logical reasoning and indepen-
dent problem solving. However, approaches, teaching materials,
and studies on how to teach and integrate those concepts effec-
tively into K12 classrooms are lacking. Therefore, both debugging
and testing are often neglected in teaching practice, despite them
being represented in many (but not all) curricula. In the follow-
ing, we present a research project with the intention of providing
adequate and evaluated strategies for addressing software quality
in the classroom and its rationale. For this purpose, the model of
Beizer’s testing levels has been utilized and didactically transposed,
thereby making it applicable to CS education in K12. The resulting
categories may provide a basis for teaching and research.

CCS CONCEPTS
• Social and professional topics→ K-12 education;

KEYWORDS
software quality, debugging, testing, teaching practice, CS educa-
tion
ACM Reference format:
Tilman Michaeli and Ralf Romeike. 2017. Addressing Teaching Practices
Regarding Software Quality: Testing and Debugging in the Classroom. In
Proceedings of WiPSCE ’17, Nijmegen, Netherlands, November 8–10, 2017,
2 pages.
https://doi.org/10.1145/3137065.3137087

1 INTRODUCTION
Students are confronted with software quality (SQ) or lack thereof
every day: They experience bugs in the programs and software they
employ on a regular basis, while hearing about security leaks in
the media. Testing and debugging as methods for quality assurance
are also important in CS education. By improving testing skills,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WiPSCE ’17, November 8–10, 2017, Nijmegen, Netherlands
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5428-8/17/11.
https://doi.org/10.1145/3137065.3137087

learners produce higher quality code and learn to improve their
program reasoning and abstract thinking skills [7]. A high level of
debugging proficiency leads to independence when encountering
problems, and to improved program comprehension and confidence.
Eventually, learners may prefer a systematic and planned approach
instead of trial-and-error [1]. Students as well as teachers often
do not know the difference between testing and debugging [10].
Furthermore, experience shows that in classrooms, testing and de-
bugging are the first things to be left out if time runs short, despite
the presence of tool support (e.g. [11]). This is in stark contrast to
the time and resources a professional software developer spends on
both activities. Overall, there is a lack of approaches and materials
for K12 that might help to resolve these problems in teaching prac-
tise. In the following, we present a research project addressing this
disparity. This is done by identifying existing approaches for the in-
tegration of SQ, by providing a model of SQ understanding (derived
from Beizer’s testing levels), and by classifying the approaches into
the model.

2 RELATEDWORK
In the software context, debugging is the process of finding and
correcting errors in programs. In a broader sense, debugging is a
computational thinking approach, which goes beyond fixing erro-
neous code: It involves applying logical reasoning and strategies
to overcome real life problems. Debugging chronologically follows
testing: By debugging, the developer corrects errors previously
highlighted by testing. At the same time, testing can be seen as a de-
bugging strategy [10]. Because of their common traits, an approach
that unifies both concepts via the context SQ seems adequate and
necessary.

We analyzed international and German curricula and found that
SQ, testing, and debugging have been considered increasingly im-
portant in recent years (e.g. in the ACM K12 curricula recommen-
dations 2011 vs. 2016): Every curiculum examined contained either
testing, debugging, or both. However, there is a surprising lack of
concrete approaches and materials.

For testing, there appears to be a consensus that it can not be
taught as an isolated topic but should be incorporated throughout
the whole curriculum (e.g. [5]). Existing research concerning the
teaching of debugging implies that it should be taught explicitly
(c.f. [4, 9]). There are existing approaches in literature (many of
them on a university level), which can be assigned to four levels:

(a) Debugging exercise: The learners are confronted with a piece
of source code containing a varying number of semantic or logical
errors and have to fix them using debugging strategies (e.g. [4]).

https://doi.org/10.1145/3137065.3137087
https://doi.org/10.1145/3137065.3137087


WiPSCE ’17, November 8–10, 2017, Nijmegen, Netherlands Tilman Michaeli and Ralf Romeike

(b) Test-driven development: For each program functionality, the
students have to write the tests before its implementation (e.g. [6]).

(c) Cross testing: All learners write tests which are applied to
their co-students’ implementations (e.g. [8]).

(d) Code review: In pairs or groups, the learners read through the
code, follow the control flow and therefore “execute” the program
themselves, assuming the role of the computer (e.g. [2]).

Beizer’s testing levels provide a categorization for the goals of
professional testers [3]. He therefore identifies five levels, reflecting
the maturity level of their test process. Over the course of their
career, most software developers are likely to progress through
these levels.

3 UNDERSTANDING SQ: 5 LEVELS
We developed a didactically transposed learning process version
of Beizer’s categorization which seems promising for teaching and
research with respect to SQ.

Level 0: Software that compiles works. A level 0 student
focuses on making a project compile and run, therefore seeing no
difference between testing and debugging.

Level 1: Software that successfully processes sample data
works. On level 1, the learner attempts to show that the software
works by letting the program successfully run with some arbitrary
or instructor-given sample data. This view is reported to be common
for students as well [7].

Level 2: By using edge cases one should show that the soft-
ware does not work. A student understands that the purpose of
testing is to show that the software does not work, e.g. by building
equivalence classes and thinking of edge and special cases (“If you
test software thoroughly, it will work perfectly”).

Level 3: Testing and debugging can’t prevent but reduce
the risk of software failures and therefore improve SQ. A
learner on this level is aware of the phenomenon visible in everyday
life: Testing and debugging may improve SQ but even professionals
are not able to guarantee a software free of bugs. A residual risk of
software failures remains. Testing and debugging are important for
reducing the risk of such failures and preparations should be taken
for analyzing issues found later.

Level 4: Testing and debugging help with looking for mis-
takes and suggesting improvements in any scenario. Learners
on the highest level transfer their debugging and testing skills and
the underlying principles from software development to general
problem solving in the sense of computational thinking.

4 DISCUSSION
This model might help to assess the students’ current level and
thereby customize and adjust the teaching accordingly. Achieving
at least a level 3 degree of understanding should be the goal for
teaching practice, as levels 0 to 2 are contextualized to specific
classroom tasks and activities. This may present an obstacle for the
transfer and application of knowledge in a broader sense. But which
levels of understanding are addressed with current approaches?

(a) Debugging exercise: 1-2. The students see that while the pro-
gram compiles, it still has errors. Depending on the exercise, they

locate those errors by using sample data or edge cases to investi-
gate further. If they test properly, they eliminate all errors and the
program works.

(b) Test-driven development: 3-4. Students might experience that
despite their testing efforts, there are still errors in their programs.
Using test-driven development, they use testing and debugging as
methods in various contexts and for different functionalities. This
helps foster the transfer to general problem solving.

(c) Cross testing: 2. The students try to show that their classmates’
programs do not work properly by including edge and special cases.

(d) Code review: 1-2. The students go through the code step by
step using a concrete problem instance, or special and edge cases
to find errors. Due to the static nature of this approach, they may
not notice their code might still be erroneous.

Many existing approaches may not enable learners to reach level
3, although they typically attempt to empower learners to generalize
their testing and debugging skills for problem solving. This raises
the question whether level 3 is required to advance to level 4 – or
are students able to transfer their testing and debugging skills from
lower levels to problem solving in other contexts? The levels might
represent the steps in the learners’ usual software development
process: First, the program needs to compile (level 0). Subsequently,
tests are conducted with sample data (level 1) and edge cases (level
2). Despite these efforts, the software might still contain errors
(level 3). Thinking of this model in a strictly hierarchical sense
makes it difficult to assign a position to the fourth level. Therefore,
further research needs to determine if the fourth level is part of this
hierarchy or separate? Regardless of the structure of the model, the
most important question appears to be how to reach the third/fourth
level.

The next step in the research project is to develop a assess-
ment tool for the current level of a learner. Afterwards, existing
approaches will be further analyzed and new approaches will be de-
veloped. These results will be empirically validated with respect to
our model to provide materials and solutions and therefore address
their lack in the teaching practice.

REFERENCES
[1] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An analysis of

patterns of debugging among novice Computer Science students. ITiCSE ’05 37,
3 (2005), 84–88.

[2] David J Barnes and M Kölling. Objects First with Java: A Practical Introduction
Using BlueJ, (2006). Prentice Hall.

[3] Boris Beizer. 1990. Software Testing Techniques (2 ed.). Van Nostrand Reinhold
Co., New York, NY, USA.

[4] Ryan Chmiel and Michael C Loui. 2004. Debugging: from Novice to Expert.
SIGCSE ’04 36, 1 (2004), 17.

[5] Henrik Bærbak Christensen. 2003. Systematic testing should not be a topic in
the computer science curriculum! ACM SIGCSE Bulletin 35, 3 (2003), 7.

[6] Chetan Desai, David S. Janzen, and John Clements. 2009. Implications of inte-
grating test-driven development into CS1/CS2 curricula. ACM SIGCSE Bulletin
41, 1 (2009), 148.

[7] Stephen H. Edwards. 2004. Using software testing to move students from trial-
and-error to reflection-in-action. ACM SIGCSE Bulletin 36, 1 (2004), 26.

[8] Michael H. Goldwasser. 2002. A gimmick to integrate software testing throughout
the curriculum. ACM SIGCSE Bulletin 34, 1 (2002), 271.

[9] Irvin R. Katz and John R. Anderson. 1987. Debugging: An Analysis of Bug-
Location Strategies. Human-Computer Interaction 3, 4 (1987), 351–399.

[10] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirky –
a qualitative analysis of novices’ strategies. SIGCSE ’08 40 (2008), 163.

[11] A. Patterson, M. Kölling, and J. Rosenberg. 2003. Introducing unit testing with
BlueJ. ITiCSE ’03 June 2003 (2003), 11–15.


	Abstract
	1 Introduction
	2 Related Work
	3 Understanding SQ: 5 levels
	4 Discussion
	References

