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Abstract—The internal forces and torques arising in cooper-
ative manipulators ensembles are the grasp forces/torques and
it is obviously desirable to control them. We present a novel
approach that describes the internal loading as the interaction
forces/torques arising in a multi-body system formed by multiple
manipulators that behave like a formation of robots. We show
that these quantities belong to the null space of the grasp matrix,
thus they do not affect the dynamics of the object. The main
contribution of this paper is a decoupling control scheme for
tracking the internal and the motion-inducing forces and torques
in a physically consistent way. The scheme is based on a physically
and mathematically consistent model of the dynamics of the
constrained interaction.

Index Terms—Cooperative Manipulation, Internal Forces, In-
teraction Dynamics, Impedance Control, Input Allocation

I. INTRODUCTION AND BACKGROUND MATERIAL

DEXTERITY and payload capacity of cooperative manip-
ulator ensembles have moved the interest of the scientific

community from single-arm robots configurations towards
multi-arm robot technologies. In fact multi-robot cooperation
is necessary in applications that require high load capacity,
or when flexible objects or objects with extra degrees of
freedom have to be handled, or even in the assembling
of multiple parts. They can be employed in manufacturing,
construction, forestry, medical applications and other domains.
The challenge of the increased dexterity lies in the higher
complexity of the robot configuration, which is mainly due to
the redundancy of the system and to the coordination of the
manipulators.

Force control in a cooperative manipulator ensemble is a
quite considered topic in the literature and was first addressed
in [1]. In many application it is desirable to control the
squeezing (also named internal) forces and torques acting on
the object. Undesired and uncontrolled internal forces can
damage the manipulated object as well as the robotic arm
itself; on the other hand, in many operations we would like to
impose a desired value of the internal loading, for example in
those situation where the contact between the object and the

tips of the manipulators is guaranteed by the friction in the
contact points. Thus the design of a decoupled control scheme
for tracking the desired object trajectory and the internal
wrenches plays a vital role in the cooperative manipulation
scenario. The relevance of a consistent internal force and
torque model is mentioned in [2] and is consistently addressed
in [3]. An interesting approach for the computation of internal
forces is the virtual linkage model proposed in [4].
In a cooperative task each manipulator applies individually a
force and a torque (or equivalently a wrench) to the object to
obtain, in cooperation with the other manipulators, the desired
object motion. The allocation of the manipulators wrenches is
called load distribution problem [5]. The cooperative system
is over-actuated, thus there exist infinitely many solutions to
the load distribution problem, varying to each other for the
different internal components that do not induce the motion
of the object. Assuming the existence of a non-squeezing [6]
load distribution strategy (in [3] it is shown that there exist
infinitely many non-squeezing solutions), we can define the
setpoints for the wrenches exerted by the manipulators on
the object, that are free of internal components. The control
scheme presented in [7] aims at tracking the desired object
motion and the coordination of the manipulators by means of
an impedance control scheme, but the control of the internal
wrenches is not addressed. In this paper we show that the onset
of the squeezing wrenches coupled with the motion-inducing
ones does not affect the motion of the object, thus the tracking
of the desired trajectory can be achieved neglecting the internal
components. The main contribution of this paper is the design
of a decoupling control scheme able to track the desired
trajectory and the internal wrenches. A promising approach for
the study of cooperative manipulators dynamics is proposed
in [8] and [9], where the cooperative ensemble is considered
as a constrained multi-body system. In [7] this approach
is employed to express analytically the forces and torques
arising in the interaction dynamics; the same authors compute
the internal wrenches as the formation-violating forces and



torques arising in a system formed by the manipulators that
moves together as a formation of robots1.
In Section II we present a number of fundamental results
derived from the definition of internal wrenches. These results
are useful for the design of the decoupling scheme, performed
in Section III; finally, in Section IV we illustrate the outcomes
of a numerical simulation.

A. Preliminaries

We assume that N manipulators grasp an object and the
grasp is assumed to be rigid. Each manipulator can exert both
forces and torques on the object. As a consequence of the
interaction with the cooperative setup, a force fi and a torque
ti act on the i-th manipulator, for i = {1, . . . , N}. We define
the i-th wrench as the stacked vector hi = [fT

i , tTi ]
T . In Fig.

1, the kinematic quantities and the wrenches exchanged in the
system are depicted. The vectors are expressed in the world
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Fig. 1. Kinematic and dynamic quantities of interest in the cooperative
manipulators setup.

reference frame {w} if not indicated otherwise with a leading
superscript. The object-fixed reference frame {o} has the
origin in the object center of mass. Moreover we define the i-th
end effector reference frame {i}, for i = {1, . . . , N}. The pose
of the i-th end effector xi is composed by a translation pi 2 R3

and a rotation denoted by the unit quaternion qi 2 Spin(3)2,
namely xi = [pTi , q

T
i ]

T . Similarly the pose of the object center
of mass is xo = [pTo , q

T
o ]

T . The distance between the object
center of mass and the i-th manipulator is ri = pi � po 2 R3,
for each i. The end effectors wrenches h = [hT

1 , . . . , h
T
N ]T are

mapped in the wrenches acting at the object center of mass
ho through the so called grasp matrix G(r) 2 R6⇥6N as

ho = �


I3 03 . . . I3 03
S(r1) I3 . . . S(rN ) I3

�
h = �G(r)h (1)

1Internal wrenches can be seen equivalently as formation-violating (from
the object point of view) or as formation-maintaining wrenches (from the
manipulators point of view).

2The 3D rotation group Spin(3) is a double cover of SO(3), that is the
group of all rotations about the origin of the three-dimensional Euclidean
space R3.

where S(·) indicates the skew symmetric matrix3 and Im and
0m denote respectively the m ⇥ m identity matrix and the
m ⇥ m zero matrix. The vector r = [rT1 , . . . , r

T
N ]T contains

the relative distances between the object center of mass and
the manipulators, in fact ri = wRo(qo)ori, for all i where
ori 2 R3 is the (constant) position of the i-th end effector in
the object reference frame {o} and wRo(qo) 2 SO(3) is the
rotation matrix from {o} to {w}.
The definition of internal wrenches is linked to the geometry
of the grasp, in fact, in [6] the internal wrenches are defined
as the wrenches lying in the null space of the grasp matrix.
Recently, the authors of [3] provide the following more general
definition.

Definition 1. Internal forces/torques are end effectors forces
and torques for which the total virtual work is zero for any
virtual displacement of the end effectors, compliant with the
kinematic constraints.

We will show in Section II that the two definitions are
equivalent.

B. Kinematic Constraints
The manipulated object is assumed to be rigid and the end

effectors are assumed to be rigidly connected to it. Therefore
we can study the ensemble of the end effectors and the object
as a system of bodies constrained to each other by rigidity
constraints. The position ori and the relative orientation o�qi
of the i-th end effector in {o} remain constant for all i, thus we
can write the velocity and the acceleration in {w} as detailed
in [7] differentiating the constrained positions, namely

ẋi =


ṗi
!i

�
=


ṗo + S(ri)T!o

!o

�
(2a)

ẍi =


p̈i
!̇i

�
=


p̈o + S(ri)T !̇o + S(!o)2ri

!̇o

�
. (2b)

Introducing the stacked velocity4 ẋ = [ẋT
1 , . . . , ẋ

T
N ]T 2 R6N

and acceleration ẍ = [ẍT
1 , . . . , ẍ

T
N ]T 2 R6N leads to the

following compact form

ẋ = G(r)T ẋo (3a)
ẍ = G(r)T ẍo + b, (3b)

where the constraint acceleration condition in (3b) can be
reformulated as

A


ẍo

ẍ

�
= b. (4)

The constraint matrix A 2 R6N⇥6(N+1) and the vector b 2
R6N of the centripetal terms have the form

A =
⇥
�G(r)T I6N

⇤
, and b =

2

664

S(!o)
2r1

03⇥1

...
S(!o)

2rN
03⇥1

3

775 . (5)

3The skew symmetric matrix function a 2 R3 ! S(a) 2 R3⇥3

implements the cross product, id est S(a)b = a ⇥ b.
4We consider the twist velocities and accelerations. For this reason ẋ and

ẍ have dimensions 6N .



II. CHARACTERIZATION OF THE INTERACTION DYNAMICS

Recalling [7], the equations describing the motion of the
manipulators are

M(x)ẍ = h⌃ + h, (6)

where the inertia matrix is defined as M(x) =
blkdiag(m1I3, J1, . . . ,mNI3, JN ) 2 R6N⇥6N . Notice
that the wrenches acting on the manipulators are split into
interaction wrenches h and non-interaction wrenches h⌃. The
wrenches h⌃ are all the wrenches acting on the manipulators
except those arising as a consequence of the constrained
interaction, which are named h.
The equations of motion for the object are obtained through
Lagrangian mechanics yielding

Mo(xo)ẍo + Co(xo, ẋo)ẋo + hg = h̃o + ho, (7)

where Mo(xo), Co(xo, ẋo) 2 R6⇥6 and hg 2 R6 denote
respectively the inertial, centrifugal and gravitational terms.
The disturbances h̃o are due to external unmeasured wrenches
or model uncertainties. The wrench ho comes from the inter-
action with the manipulators and is related to the end effectors
interaction wrenches h through (1). Similarly to (6), we split
the interaction h and non-interaction h⌃ wrenches, as follows

M(xo)ẍo = h⌃
o + ho, (8)

wherein h⌃
o = h̃o � C(xo, ẋo)ẋo � hg .

A. Interaction Dynamics
We aim at finding an explicit expression of the interaction

wrenches h and ho. In [10] the Gauss’ principle of least
constraints is solved on a system with acceleration constraints
of the form (4) and leads to the result


ho

h

�
= M̌

1
2 (AM̌� 1

2 )†
✓
b�AM̌�1


h⌃
o

h⌃

�◆
, (9)

where the superscript † denotes the Moore-Penrose pseudoin-
verse and matrix M̌ = blkdiag(Mo,M).
It is possible to show that matrix A exhibits some properties
that guarantee the existence of the pseudo-inverse, thus the
following result holds.

Theorem 1. The interaction wrenches ho 2 R6 and h 2
R6N (resulting from the interaction between the object and
the manipulators) are proportional to the extent to which
the accelerations imposed by the non-interaction wrenches
h⌃
o 2 R6 and h⌃ 2 R6N acting on the system tend to violate

the acceleration constraints (3b). In particular, the following
equation holds


ho

h

�
= AT (AM̌�1AT )�1

✓
b�AM̌�1


h⌃
o

h⌃

�◆
. (10)

Proof. Matrix A in (5) is full row-rank equal to 6N by
construction. We know from [11, p. 88] that, since M̌� 1

2

has full rank equal to 6N , then also AM̌� 1
2 is full row-rank.

Therefore we can write its right inverse as

(AM̌� 1
2 )† = (M̌� 1

2 )TAT (AM̌� 1
2 (M̌� 1

2 )TAT )�1.

The inertia matrix M̌ is symmetric, thus also M̌� 1
2 is sym-

metric and we can write

(AM̌� 1
2 )† = M̌� 1

2AT (AM̌�1AT )�1. (11)

Substituting (11) in (9) yields (10).

With this result we can write the overall wrenches acting on
the cooperative ensemble as a function of the non-interaction
wrenches. Now we further inspect the dynamics of the object
expressed in (7) in order to understand how the wrenches h⌃

are involved in the motion of the object. In a cooperative
manipulators scenario these wrenches are the commanded
wrenches provided at the end effectors. The new formulation
in (10) allows to state the following Lemma, associated to
Theorem 1.

Lemma 1. The actual object acceleration is described by
equation

ẍo = M�1(h⌃
o +Gh⌃ � b̃), (12)

where b̃ = GMb takes into account the centripetal terms,
and the equivalent inertia matrix M = (Mo + GMGT ) 2
R6⇥6 represents the actual inertia of the system comprising
the object and the manipulators.

Proof. First we disclose the term AM̌�1AT in (10) and,
having in mind that A can be expressed as in (5),we obtain

(AM̌�1AT )�1 =

 
⇥
�GT I6N

⇤ M�1
o 06⇥6N

06N⇥6 M�1

� "�G

I6N

#!�1

= (M�1 +GTM�1
o G)�1 = Q. (13)

We focus now on the term AM̌�1, namely

AM̌�1 =
⇥
�GTM�1

o M�1
⇤

(14)

Substituting (13) and (14) in (10) yields

ho

h

�
=

"
�G

I6N

#
Q

✓
b�

⇥
�GTM�1

o M�1
⇤ h⌃

o

h⌃

�◆
. (15)

In particular the interaction wrench acting on the object
becomes

ho = �GQGTM�1
o h⌃

o +GQM�1h⌃ �GQb. (16)

We replace ho as in (16) into the object equations of motion
(8) obtaining

Moẍo = (I6 �GQGTM�1
o )h⌃

o +GQM�1h⌃ �GQb. (17)

Using the Woodbury matrix identity to expand Q in (13)
yields

Q = M �MGT (Mo +

,⇥z }| {
GMGT )�1GM , (18)

We thus substitute (18) in (17) and inspect each term of the
expression; first consider the term multiplying h⌃

o :

I6 �GQGTM�1
o = I6 �⇥M�1

o �⇥(Mo +⇥)�1⇥M�1
o ,

= I6 �⇥(Mo +⇥)�1(Mo +⇥�⇥)M�1
o

= I6 �⇥(Mo +⇥)�1

= Mo(Mo +⇥)�1. (19)



Now we focus on the term multiplying h⌃, namely

GQM�1 = G�⇥(Mo +⇥)�1G

= Mo(Mo +⇥)�1G (20)

Similarly we inspect the term multiplying b and get

GQ = Mo(Mo +⇥)�1GM . (21)

We define the matrix M = Mo +GMGT which is the actual
inertia of the overall system as stated in [7, th. 2]. Finally we
substitute (19), (20) and (21) in (17) and obtain (12).

B. Internal Wrenches
Many authors identify the internal wrenches as those ones

that do not induce any wrench ho at the object center of
mass; recalling (1), this means that internal wrenches have
to be in the null space of the grasp matrix G. The Definition
1 proposed in [3] introduces a new approach. The following
theorem shows that the two formulations are equivalent.

Theorem 2. Given a constant set of end effectors wrenches
acting on the object and collected in the stacked vector h 2
R6N , the following are equivalent:

• the wrenches h are internal (as specified in Definition 1);
• the wrenches h belong to the null space of the grasp

matrix G.

Proof. According to Definition 1, the virtual work of a set
of internal wrenches h along the virtual displacements �x
compliant with the kinematic constraints is zero, namely

hT �x = 06N⇥1.

Dividing all members by the time variation �t we get the con-
strained virtual velocities �ẋ, namely hT �x

�t = hT �ẋ = 06N⇥1.
Notice that the ratio between the infinitesimal values �x and
�t gives the finite velocity �ẋ. The constrained velocities of
the end effectors are described by (3a), thus we can write

hT �ẋ = hTGT �ẋo

= (Gh)T �ẋo = 06N⇥1, (22)

where �ẋo is any virtual velocity of the object, therefore
(22) holds if and only if Gh = 06N⇥1. This means that the
wrenches h are internal according to Definition 1 if and only
if h 2 Ker(G).

In order to obtain a closed form equation for the internal
wrenches we will adopt the approach proposed in [7] that char-
acterizes the internal wrenches as the formation-maintaining
wrenches arising in a subsystem built by the manipulators
as depicted in Fig. 2. The end effectors can be thought of
as a rigid formation of robots that exchange wrenches to
maintain the formation, these wrenches are exchanged through
the object and thus can be considered internal. This novel
approach presented in [7] will be employed in this paper to
design a decoupling control scheme for motion-inducing and
internal wrenches. With the following theorem we show that
the interaction wrenches arising in the subsystem in Fig. 2 are
actually internal wrenches.

{!}

{i}

{j}

{1}

qj

qi

q1 r1j

r1i
r1

ri

Fig. 2. Reduced end effectors system consisting in the manipulators.

Theorem 3. Let �r = [rT12, . . . , r
T
1N ]T (with r1i = r1 � ri

the distance between the 1st and the i-th end effector for i 2
{2, . . . , N}) and the formation maintaining wrenches hint

hint = ĀT (ĀM�1ĀT )�1
�
b̄� ĀM�1h̄⌃

�
2 R6N (23a)

Ā =
⇥
�G(�r)T I6(N�1)

⇤
2 R6(N�1)⇥6N (23b)

b̄ = [ (S(!o)
2r21)

T 01⇥3 ... (S(!o)
2rN1)

T 01⇥3 ]
T 2 R6(N�1),

(23c)

which arise in the end effectors system subject to the non-
interaction wrenches h̄⌃. Then hint are internal in the sense of
Definition 1 and Ker(G) ⌘ Im(ĀT ).

Proof. First we prove the equivalence Ker(G) ⌘ Im(ĀT ). It
is sufficient to show that (i) the dimensions of Ker(G) and
Im(ĀT ) coincide and (ii) the following equation holds

GĀT = 06⇥6(N�1). (24)

The first condition is trivial to verify, in fact from the fun-
damental theorem of algebra we have that dim(Im(ĀT )) =
6(N�1) and dim(Ker(G)) = 6N�dim(Im(G)) = 6(N�1).
In order to prove the second condition we expand (24)
obtaining

Gz }| {h
I3 03 I3 03 ... I3 03

S(r1) I3 S(r2) I3 ... S(rN ) I3

i

ĀT

z }| {2

66664

�I3 03 ... �I3 03
S(r12) �I3 ... S(r1N ) �I3

I3 03
03 I3

. . .
I3 03
03 I3

3

77775
=

h
�I3+I3 03 ... �I3+I3 03

�S(r1)+S(r12)+S(r2) �I3+I3 ... �S(r1)+S(r1N )+S(rN ) �I3+I3

i

and recalling that S(r1i) = S(r1) � S(ri), 8 i = 2, . . . , N
yields (24).
As stated in [7], equation (23a) results by applying Gauss’
principle of least constraints to the end effectors system in
Fig. 2 subject to the constraints Āẍ = b̄, with Ā and b̄ as
in (23). To prove that the wrenches in (23a) are internal in
the sense of Definition 1, it is sufficient to show, according
to Theorem 2, that hint 2 Ker(G). This comes trivially by
multiplying G and hint keeping in mind the result in (24), i.e.

Ghint = GĀT
| {z }

06⇥6(N�1)

(ĀM�1ĀT )�1
�
b̄� ĀM�1h̄⌃

�
, (25)



therefore hint 2 Ker(G).

Lemma 2. If the non-interaction wrenches h̄⌃ make the
manipulators move with an acceleration compatible with the
constraints (3b), then they do not induce any internal wrench.

Proof. We write the non-interaction wrenches h̄⌃ = Mẍ =
M(GT ẍo + b), since by assumption they make the manipula-
tors move with accelerations ẍ compatible with the constraints
(3b). We substitute them in (23a), yielding

hint = ĀT (ĀM�1ĀT )�1
�
b̄� Ā(GT ẍo + b)

�
. (26)

We know from (24) that GĀT = (ĀGT )T = 06⇥6(N�1),
therefore ĀGT = 06(N�1)⇥6. Moreover, it is easy to see that
Āb = b̄. Substituting these results in (26) yields hint = 06N⇥1.

Notice that the overall interaction wrenches h are the sum of
the external (motion-inducing) wrenches hext and the internal
ones, namely h = hext + hint.

III. DECOUPLING CONTROL

The control scheme proposed in [7] is based on an
impedance control law to obtain the compliant behavior of
the end effectors. We add to this scheme an allocator that
makes the internal wrenches hint coincide with desired ones
hint,d, so that the impedance control still achieves the tracking
of xd

o, ẋ
d
o, ẍ

d
o, in a fully decoupled way. In Fig. 3 the overall

proposed control scheme is depicted.

A. Motion-Inducing Wrenches Control
Following [7], each of the N manipulators is individually

controlled by an impedance control law, which renders the end
effectors compliant according to

Mi(xi)[ẍi�ẍd
i ]+Di(xi, ẋi)[ẋi�ẋd

i ]+hK
i (xi, x

d
i ) = hi+hd

i . (27)

The impedance parameters matrices Mi(x), Di(xi, ẋi) 2
R6⇥6 represent the apparent mass and damping of the i-th
manipulator. They are uniformly positive definite matrices and
exhibit a block diagonal structure to decouple the translational
and the rotational effects, namely Mi = blkdiag(miI3, Ji) and
Di = blkdiag(diI3, �iI3). The term hK

i (xi, xd
i ) represents the

geometrically consistent translational and rotational stiffness
[12], id est

hK
i (xi, x

d
i ) =


(kiI3)�pi

(2�⌘iiI3)�✏i

�
,

where the relative position is �pi = pi � pdi and the relative
orientation is �qi = [�⌘i,�✏Ti ]

T . The terms ki,i 2 R+

denote the impedance translational and rotational stiffnesses.
Inspired by [7], we rewrite (27) as

M(x)ẍ =

,h⌃

z }| {
hx + hd +h (28)

where hx = M(x)ẍd�D(x, ẋ)[ẋ�ẋd]�hK(x, xd) represents
the wrenches involved in the local end effectors dynamics.
The matrices M(x) and D(x, ẋ) are block diagonal matrices
and have respectively on their diagonal the terms Mi(x) and

Di(x, ẋ). In the nominal case hx = M(x)ẍd denotes the
wrenches needed to obtain the desired acceleration ẍd of
the manipulators according to (3b). The desired end effectors
wrenches hd can be obtained by distributing the desired object
wrench hd

o among the manipulators with a load distribution
strategy. The term h denote the interaction wrenches. Notice
that we have defined the non-interaction wrenches h⌃ =
hx + hd, consistent with the formulation in (6). The stability
of this system (without the allocator) has been already proven
in [7, Th. 3-4] and is based on the fact that the system of
the object and the manipulators is strictly output passive [7,
Lemma 1].

B. Internal Wrenches Control
The choice of the time-varying reference value hint,d for the

internal wrenches has a pivotal importance in the formulation
of the control law.

Proposition 1. The reference internal wrenches hint,d must
satisfy hint,d 2 Ker(G), or equivalently hint,d 2 Im(ĀT ) (see
Theorem 3). Thus we can write hint,d as

hint,d = ĀT z (29)

for a suitable vector z 2 R6(N�1). Note also that the
grasp matrix G is constant in the object reference frame
{o}, thus we choose first ohint,d in the object reference frame
where Ker(G) is constant and then we transform each of
its N components in the world reference frame {w}, namely
hint,d
i = blkdiag(wRo(qo),wRo(qo)) ohint,d

i , for all i.

The control of the internal wrenches is achieved by means
of the following decoupling control law.

Theorem 4. The control signal

hx
w = ĀT (ĀM�1ĀT )�1(�ĀM�1hint,d + v) (30)

where v = b̄ � ĀM�1hx makes the internal wrenches hint

coincide with the desired reference hint,d. Moreover hx
w does

not affect the interaction dynamics (12) and the stability
properties of the closed-loop system still holds.

Proof. First inspect the internal wrenches in (23a) replacing
h̄⌃ = hx + hx

w as depicted in Fig. 3 and obtain

hint = ĀT (ĀM�1ĀT )�1
⇣

vz }| {
b̄� ĀM�1hx +

� ĀM�1ĀT (ĀM�1ĀT )�1(�ĀM�1hint,d + v)
⌘

= ĀT (ĀM�1ĀT )�1(v � v + ĀM�1hint,d)

= ĀT (ĀM�1ĀT )�1ĀM�1hint,d

and knowing that, as stated in Proposition 1, the reference
hint,d can be written as hint,d = ĀT z for a suitable function z,
we finally get:

hint = ĀT (ĀM�1ĀT )�1ĀM�1ĀT z

= ĀT z = hint,d,

therefore we have shown that the control law in (30) makes
the internal wrenches hint coincide with the reference hint,d. To
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Fig. 3. Overall control scheme: impedance control for motion-inducing wrenches and static allocator (in red) for internal wrenches.

prove that the interaction dynamics is not affected by hx
w we

substitute h⌃ = hx + hx
w + hd in (12) and get

ẍo = M�1(h⌃
o +G(hx + hx

w + hd)� b̃).

Recalling the expression of hx
w in (30) we know, from The-

orem 3, that Ghx
w = 06⇥1, therefore hx

w does not alter the
acceleration of the manipulated object ẍo. Thanks to this
property, we can infer that the control signal hx

w does not affect
the stability properties of the system addressed in [7].

IV. EXAMPLE

In this section we illustrate the results obtained by means
of an example. We analyze a rigid bar grasped by two coop-
erative manipulators independently controlled, accordingly to
the control scheme in Fig 3. The coordinate systems adopted
are the ones depicted in Fig. 4. The end effectors have
coordinates or1/2 = [0, 0,±0.40]T m in the object reference
frame {o}. The bar has mass mo = 1.75 kg and inertia
Jo,x = Jo,y = 0.055 kgm2 and Jo,z = 10�5 Kgm2. The

{w}

{1}
{o} {2}

x

y
z

x

y

zx
y

z

xy

z

Fig. 4. Coordinate systems involved in the simulation.

impedance inertial parameters for both manipulators are mi =
10Kg, Ji = 0.5Kgm2, the impedance damping parameters
are di = 180Ns

m and �i = 10Nms
rad and finally the impedance

translational and rotational stiffnesses are ki = 300N
m and

i = 50Nm
rad .

We want the object to follow the trajectory depicted in Fig. 5.
The bar is lifted up along the z-axis and rotated about the same
axis in the world reference frame {w}. A disturbance wrench
h̃o = 10[1, 1, 0, 0, 0, 0]T N in the world reference frame {w}
acts on the object. At the same time a load cycle of traction
and compression is applied by the manipulators to the bar as
indicated in Fig. 6. As expected, the static allocator makes
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Fig. 5. Trajectory of the object center of mass and of the manipulators.

the actual internal wrenches (solid lines) perfectly coincide
with the desired time-varying reference (dashed lines). It can
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Fig. 6. Load cycle of traction and compression exerted by the manipulators
along the z-axes of the object.

be seen from Fig. 7 that the object follows very well the
desired trajectory and the actual velocities and accelerations
correspond to the reference ones, regardless of the internal



wrenches applied to it. Thus we have shown that our control
approach allows to independently control the motion-inducing
wrenches (necessary to obtain the desired motion of the object)
and the internal wrenches exerted by the manipulators in
a fully decoupled manner. This simple academic simulation
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Fig. 7. Translational and rotational position, velocity and accelerations of the
object center of mass along and about the world z-axes.

illustrates properly the effectiveness of our control approach.
We have shown that the motion of the object is not affected by
the application of internal wrenches and, vice versa, internal
wrenches follow the desired setpoint independently of the
motion-inducing wrenches.

V. CONCLUSIONS AND FUTURE WORK

In this paper we design a control scheme able to achieve
the tracking of the motion-inducing and the internal wrenches
involved in a cooperative manipulators setup, in a fully decou-
pled way. This result is based on a physically and mathemat-
ically consistent characterization of the interaction dynamics
and of the internal wrenches. An impedance control low is
used to achieve the compliant behavior of the end effectors,
while a static allocator make the internal wrenches coincide
with the desired reference, without affecting the motion of
the object. Future developments of this paper include an
experimental evaluation of the proposed technique.
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