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Zusammenfassung

Die Kanten eines gerichteten azyklischen Graphen (DAG) können als Ursache-Wirkung-
Beziehung von Eltern- zu Kindknoten interpretiert werden. Lineare Strukturgleichungs-
modelle (LSEM) sind Mengen von Kovarianzmatrizen, deren Verteilungen diese qualita-
tive Interpretation quantifizieren und jeden Knoten als lineare Funktion aller Elternknoten
mit einem unabhängigen additiven Fehlerterm darstellen. Es wurde bereits gezeigt, dass,
ausgehend von dem LSEM eines unbekannten DAG, nur die Markov-Äquivalenzklasse
des ursprünglichen Graphen identifiziert werden kann. Unter der zusätzlichen Annahme,
dass die Fehlerterme identische Varianzen haben, kann der Graph jedoch eindeutig iden-
tifiziert werden. Das Ziel der vorliegenden Arbeit ist die Erkundung dieser sogenanten
Kovarianz-Äquivalenzklassen im allgemeinen Fall, also unter beliebiger Aufteilung der
Knoten in Gruppen mit identischen Fehlervarianzen. Das Hauptergebnis dieser Arbeit
ist die Berechnung der Kovarianz-Äquivalenzklassen von DAGs mit drei und vier Knoten
unter beliebigen gruppenweise identischen Fehlervarianzen mithilfe der Computer Alge-
bra Software Macaulay2 und Maple. Basierend auf diesen Ergebnissen wird eine Vermu-
tung für eine beliebige Anzahl an Knoten aufgestellt, welche die beiden bekannten Fälle
impliziert und mit den rechnerischen Ergebnissen übereinstimmt. Unter der Annahme,
dass die Vermutung zutrifft, werden die Größen dieser neuen Kovarianz-Äquivalenzklassen
bis zu Graphen mit sechs Knoten untersucht. Außerdem wird der Algorithmus für die
Berechnung von gerichteter zyklischer Graphen erweitert, es kann aber nicht garantiert
werden, dass diese Ergebnisse den Kovarianz-Äquivalenzklassen der gerichteten Graphen
entsprechen. Der gesamte Code ist für weiterführende Untersuchungen verfügbar.

Summary

The edges of a directed acyclic graph (DAG) can be interpreted as cause-effect relations
from parent to child node. Linear structural equation models (LSEM) are sets of matrices
of distributions that quantify these cause-effect relations by describing a node through
a linear function of its parents and some additive independent noise term. Given the
LSEM of an unknown DAG, previous results have shown that the underlying DAG can
only be identified up to the well-known Markov equivalence classes. Under the additional
assumption that all error terms have identical variance, it has been proven that the
graph can be identified uniquely. The goal of this thesis is to explore these so-called
covariance equivalence classes in the general setting of an arbitrary partition of the nodes
into groups with equal error variances. The main result of this thesis is the computation of
covariance equivalence classes of DAGs with three and four nodes under arbitrary groups
of equal error variances with the aid of the computational algebra software Macaulay2
and Maple. Based on these results, a conjecture on the case of arbitrary number of nodes
that entails the two known equal error variance settings and explains the computational
results is stated. Assuming that the conjecture holds true, the distribution of the sizes
of covariance equivalence classes of DAGs up to six nodes is explored. Moreover, the
algorithm is extended to allow cyclic graphs, however, it cannot be ensured that these
results correspond to covariance equivalence classes of directed cyclic graphs. All code is
available for further investigations.
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1 Introduction

Finding cause-effect relations in multivariate non-interventional data is of great interest in
practice and is used inter alia for medical diagnosis [17] or environmental risk assessment
[13]. Naturally, cause-effect relations can be depicted by a directed graph where each node
corresponds to an event and each edge to a causation from parent to child. We further
assume that the graph has no cycles so these relations can also be interpreted as being
subsequent in time. An example is shown in Figure 1.

global temperaturedroughts floods

Figure 1: Cause-effect graph of global temperature, droughts, and floods.

When associating each of the n nodes with a random variable Xi, these qualitative graphs
generate quantitative structural equation models that consist of all multivariate distribu-
tions X = (X1, ..., Xn) such that each random variable can be modelled as a function of
its parents and some independent noise term. Throughout this thesis, we will work with
the restricted linear structural equation models which further assume that the functions
are linear with coefficients λjk for the edge j → k and the noise terms εj are additive. In
particular, we define the model as the set of covariance matrices of X such that

Xj =
∑

i∈pa(j)

λijXi + εj, j = 1, ..., n. (1)

Now, our question of interest is the following; given a linear structural equation model for
some unknown directed acyclic graph G, can we identify the underlying causal structure,
i.e. the graph G? Under additional mild assumption, answers to this question give results
on whether we can recover the causal structure given just a single covariance matrix that
could e.g. be the sample covariance matrix from observational data in practice.
If different graphs have identical models, we cannot identify the causal structure from
the model. We call graphs with this property covariance equivalent. In general, different
graphs can be covariance equivalent and only the well-known Markov equivalence classes
can be identified [25]. A recent advance has shown that it is possible to break the Markov
equivalence classes and uniquely identify the underlying graph by introducing the addi-
tional assumption of equal error variances [20, 1]. These results give rise to the leading
question of this thesis; what characterizes covariance equivalence classes in the general
case of arbitrary groups of nodes with equal error variances?
Section 2 gives a functional and graphical description of the linear structural equation
model. Section 3 reviews the two known error variance settings and rephrases them in a
new notation. Section 4 utilizes computational algebra to calculate covariance equivalence
classes under arbitrary groups of equal error variances, applies these tools in Macaulay2
and Maple, and explores the results on directed acyclic graphs with three and four nodes.
Finally, Section 5 states a conjecture that entails the known settings and explains all
computational results, explores equivalence class sizes of graphs up to six nodes under the
conjecture, and shows results from an extension of the implementation to any directed
graph without loops that, however, cannot guaranteed to be interpreted identically.
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2 Preliminaries on graphical modelling

Directed acyclic graphs can be interpreted as cause-effect relations from parent to child
node. In this section, we will review a rigorous functional and graphical description of
this notion, the first through equations and the latter through conditional independence
statements. The functional version is also called linear structural equation model and is
the main model of consideration in this thesis. Finally, we will see that these descriptions
are very closely related.

2.1 Linear structural equation model

The definitions and propositions of this section follow the review from Drton [3]. We start
by introducing some common language on directed graphs used throughout this thesis.
A directed graph G is a tuple (V,D) of vertices V and directed edges D where V is finite
and D ⊂ V × V . Without loss of generality, we will assume that the nodes are labeled
from 1 to |V |, i.e. V = {1, ..., |V |} =: [|V |]. Instead of writing (v, w) ∈ D, we also write
v → w. We denote the parents of a node v ∈ V with pa(v) := {w ∈ V | (w, v) ∈ D}. A
directed path of length l ∈ N is a tuple of vertices (v1, ..., vl) such that (vi, vi+1) ∈ D for
i ∈ [l− 1]. A directed graph is acyclic if there exists no directed path of any length l ∈ N
such that v1 = vl. In the following, we will almost exclusively work with directed acyclic
graphs (DAG). The descendants of a node v, denoted by de(v), are all nodes w ∈ V such
that there exists a directed path from v to w and the non descendants denoted by nd(v)
are the nodes w ∈ V \ {v} such that there does not exist directed path from v to w.
An important property of a directed acyclic graph G = ([n], D) is that we can always
permute the labels of the vertices such that v ∈ pa(w) implies v < w for any v, w ∈ [n].
This is also called topological ordering [24, Thm. 13.2.10].
Now, let G := (V,D) be a DAG with n vertices, X be a n-dimensional random vector
and ε = (ε1, ..., εn) some pairwise independent noise terms with E(ε) = 0. Assume that
the equation system

Xj =
∑

i∈pa(j)

λijXi + εj, j ∈ 1, . . . n (2)

holds for some Λ = (λij) ∈ Rn×n and Ω := Var[ε] = diag(σ2
1, ..., σ

2
n) with all σ2

i > 0. The
coefficient λij quantifies the cause-effect relation from node i to node j, so we assume Λ
to be in the set

RD := {Λ ∈ Rn×n | λij = 0 if i→ j /∈ D}. (3)

We define the set of all possible Ω matrices as

DPn := {Ω ∈ Rn×n | ωij = 0 for i ̸= j, ωii > 0 for i ∈ [n]} ⊂ PDn (4)

where PDn denotes the set of all positive definite matrices in Rn×n. Originating from
Equation (2), a straight-forward way to define the linear structural equation model of the
graph G would be the set of all distributions of X such that X satisfies Equation (2)
for some Λ ∈ RD and Ω ∈ DPn. For the sake of argument, let us call this set of
distributions actual model and let us call two graphs that have identical actual models
actually equivalent. Our interest in this thesis, however, only lies in the second moment
of X, i.e. the variance Σ := Var[X]. We do not want to incorporate any higher moments
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and without loss of generality we can assume that the first moment of X is zero since
we can always center the data at zero with a linear transformation. This leaves us with
defining the linear structural equation model as the set of covariance matrices of the
distributions in the actual model. Our notion of equivalence of graphs will thus only refer
to equality of some covariance matrices. To emphasize that we are only looking at the
second moment, we will call this covariance equivalence. In general, covariance equivalence
will not imply actual equivalence. However, if we confine us to cases where the noise terms
have specific distributions such that the distribution of X is fully determined by its first
and second moment, the notions of covariance equivalence and actual equivalence are
identical. The most important case where this happens are Gaussian noise terms. Then,
X is Gaussian and a Gaussian distribution is fully determined by its mean and covariance.
In this fashion, the results of covariance equivalence can be applied to any distribution,
but make particularly sense if we further require that X has a distribution that is fully
determined by its first two moments. The remainder of this section makes the definition
of the linear structural equation model rigorous.
Writing Equation (2) in matrix notation, we obtain

X = ΛTX + ε. (5)

Let I denote the identity matrix, then we rearrange to (I − Λ)TX = ε and compute the
variance on both sides

(I − Λ)TVar[X](I − Λ) = Var[ε]. (6)

Now define Σ := Var[X] and we obtain

(I − Λ)TΣ(I − Λ) = Ω. (7)

This is the central equation of the linear structural equation model of G as it states the
only equation that a covariance matrix Σ needs to fulfill in order to be in the model. Since
we assume G to be acyclic, we can even give Equation (7) with explicit Σ.

Proposition 2.1. [3, p. 5] If graph G = (V,D) is acyclic, then (I − Λ) is invertible for
all Λ ∈ RD.

Proof. Since G is acyclic, there exists a permutation σ ∈ Sn of the labels of G such that
the permuted labels are in topological order. By permuting both rows and columns of
(I − Λ) with σ it is clear that the resulting matrix is an upper triangular matrix with
ones in the diagonal. We obtain det(I − Λ) = 1.

We rearrange Equation (7) to

Σ = (I − Λ)−TΩ(I − Λ)−1 (8)

where the −T in the exponent denotes the inverse of the transposed matrix. Now, we use
this explicit equation and the domains of Λ and Ω from Equation (3) and Equation (4)
as definition of the linear structural equation model.

Definition 2.2. The linear structural equation model (LSEM) of a directed acyclic graph
G = (V,D) with n nodes is defined as

M(G) = {(I − Λ)−TΩ(I − Λ)−1 | Λ ∈ RD,Ω ∈ DPn}. (9)
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We might just say model instead of linear structural equation model if the context is clear.
The following proposition shows the model actually contains covariance matrices.

Proposition 2.3. Let G be a DAG with n nodes. Then,M(G) ⊂ PDn.

Proof. Let Σ = (I − Λ)−TΩ(I − Λ)−1 ∈ M(G) with Λ ∈ RD,Ω ∈ DPn. We use that the
hermitian matrix M is positive definite if and only if there exists an invertible B ∈ Cn×n

such that M = BTB which is a result closely related to the Cholesky factorization of
positive definite matrices [9, 7.2.7 / 7.2.P9]. Since Ω ∈ PDn, there exists an invertible
B ∈ Cn×n such that Ω = BTB. Define A := B(I − Λ)−1 then A invertible with Σ =
(I − Λ)−TBTB(I − Λ)−1 = ATA, so Σ positive definite.

We emphasize that the definition of linear structural equation models directly yields a
parametrization. Let us have a closer look.

Proposition 2.4. [3, Prop. 2.1] Let G = (V,E) be a DAG with n nodes. Define

ϕG : RD × {diag(d1, ..., dn) ∈ Rn×n | di ∈ R}, (Λ,Ω) 7→ (I − Λ)−TΩ(I − Λ)−1. (10)

Then ϕG is a well-defined polynomial map that parametrizes the linear structural equation
model of G, i.e.

M(G) = ϕG(RD, DPn). (11)

Proof. That ϕG is well-defined and that Equation (11) holds follows from Proposition 2.1
and Definition 2.2. By Cramer’s rule for matrix inversion we have that the inverse of
(I −Λ) is (I −Λ)−1 = det(I − Λ)−1 adj(I −Λ) where adj(·) denotes the adjugate matrix.
In Proposition 2.1, we have already seen that det(I−Λ)−1 = 1. Since the adjugate matrix
is polynomial in the entries of its original matrix by definition, we conclude that (I−Λ)−1

is polynomial in Λ. Now clearly, ϕG polynomial in (Λ,Ω).

The fact that ϕG is a polynomial map that parametrizes the model is an important fact
and will allow us to use algebraic tools in Section 4.1. Now, we define our notion of
equivalence of graphs.

Definition 2.5. Two DAGs G and G′ with identical vertices are covariance equivalent if
they have identical LSEMs, i.e. M(G) =M(G′).

We close this section with two remarks pointing at two interesting topics on LSEM beyond
the scope of this thesis.

Remark 2.6 (Parameter identifiability). An interesting question is whether we can
uniquely identify the strengths of the cause-effect relations and the error variances, i.e.
the entries of the matrices Λ and Ω, from the joint distribution given the DAG G. If G is
a DAG as in our setting, it turns out that we can always identify both Λ and Ω since ϕG

is invertible [24, Thm. 16.2.1].

Remark 2.7 (More general graphs). Instead of considering a DAG, we could also consider
more general graphs, e.g. digraphs that allow cycles or mixed graphs. Changing the graph
changes the interpretation of dependence [24, p. 283], e.g. our cause-effect relation in
DAGs would need to incorporate the idea of feedback loops for cyclic directed graphs.
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The undirected edges of the mixed graph correspond to correlated noise terms and are
interpreted as influences from unobserved, also called latent, variables. We note, that
parameter identifiability in the sense of the previous remark cannot be guaranteed when
using cyclic or mixed graphs [24, Thm. 16.2.1]. This gives rise to other notions of
parameter identifiability that are reviewed by e.g. Sullivant [24, Chapter 16]. Readers
further interested in mixed graphs that allow cycles may consult the review of Drton [3].

2.2 Conditional independence and Markov properties

Conditional independence statements are easy interpretable and important statements in
statistics [24, Chapter 4] and in this section, we will see how we can describe the LSEM
from Section 2.1 through a set of conditional independence statements. We will closely
follow the argumentation and definitions of Sullivant [24, Chapter 4 & 13] and Neapolitan
[19, Chapter 2]. Throughout this section, X will be a random vector of dimension n that
takes values in X =

∏n
i=1Xi. Moreover, we assume that X has a joint density f with

respect to a probability measure ν on X . For A ⊂ [n], we denote the subvector of X
with indices in A as XA. We recall the definition of conditional independence for random
vectors with densities as stated by Sullivant [24, Chapter 4.1].

Definition 2.8. Let A,B,C ⊂ [n] be pairwise disjoint and xB ∈ XB.

(a) The marginal density fA(xA) of XA is

fA (xA) :=

∫
X[n]\A

f
(
xA, x[n]\A

)
dν[n]\A

(
x[n]\A

)
for xA ∈ XA. (12)

(b) The conditional density of XA given XB = xB is

fA|B (xA | xB) :=

{
fA∪B(xA,xB)

fB(xB)
if fB (xB) > 0

0 otherwise.
(13)

(c) The random vector XA is conditionally independent of XB given XC if and only if

fA∪B|C (xA, xB | xC) = fA|C (xA | xC) · fB|C (xB | xC) . (14)

In this case, we write XA ⊥⊥ XB | XC or just A ⊥⊥ B | C if X is clear from context.

Intuitively, XA ⊥⊥ XB | XC implies that ”given XC , knowing XB does not give any
information about XA” [24, p. 71]. Since we interpret the edges of a DAG G = (V,D) as
cause-effect relations, we would expect that any node v ∈ V is determined by its parents
pa(v) and has influence on precisely all its descendants de(v). Phrased with conditional
independence, given the parents of v, knowing the remaining non-descendants of v gives
us no information about v, i.e. v ⊥⊥ nd(v) \ pa(v) | pa(v). Hence, we could also describe
distributions that follow some kind of cause-effect relation of G through the following
conditional independence statements.
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Definition 2.9. Let G = (V,D) be a DAG. The local Markov property of G is the set of
all conditional independence statements

Xv ⊥⊥ Xnd(v)\pa(v) | Xpa(v) (15)

where v ∈ V . If a distribution ν satisfies all of the above conditional independence
statements, we say ν satisfies the local Markov property of G.

The set of distributions that satisfy the local Markov property of a DAG G is also called
directed graphical model of G. Given the local Markov property of G, we ask if there
are any more conditional independence statements that a distribution has to satisfy if
it satisfies the local Markov property of G. It turns out that even for simple examples,
there are. Take the graph G = 1 → 2 → 3, then the local Markov property of G only
contains 3 ⊥⊥ 1 | 2. From the definition of conditional independence it is clear that
this also implies 1 ⊥⊥ 3 | 2 but the latter is not in the local Markov property. This
symmetry of conditional independence statements in its first two arguments is one of four
straight-forward implications from the definition of conditional independence, also called
conditional independence axioms [24, Prop. 4.1.4]. The fact that there are additional
conditional independence statements implied by the local Markov property motivates the
following definition from Neapolitan [19, Def. 2.1].

Definition 2.10. Let G be a DAG and A,B,C ⊂ [n]. We say that G entails A ⊥⊥ B | C
if A ⊥⊥ B | C holds for all distributions that satisfy the local Markov property of G.

As stated by Sullivant [24, p. 71], it is a very challenging problem to find the set of all
implied conditional independence statements in general and it is known that there exist
no finite set of rules from which all implied conditional independence statements can be
deduced in general [23]. However, it turns out that our case is endowed with a graphical
property that perfectly describes the set of entailed conditional independencies. Before we
can state this property exactly as Sullivant [24, Def. 13.1.7], we need some more notation.
An undirected path in a directed graph G = (V,D) is a tuple (v1, ..., vl) with vi ∈ V such
that (vi, vi+1) or (vi+1, vi) for all i ∈ [l− 1] in D. The ancestors of a node v ∈ V denoted
by an(v) are all nodes w ∈ V such that there exists a directed path from w to v.

Definition 2.11. Two nodes v and w in a directed acyclic graph G are d-connected given
a set C ⊆ V \{v, w} if there is an undirected path π from v to w such that

(i) all colliders on π are in C ∪ an(C) and

(ii) no non-collider on π is in C.

Let A,B,C ⊆ V be pairwise disjoint with A and B nonempty, then C d-separates A
and B if no pair of nodes a ∈ A and b ∈ B are d-connected given C. If A and B are
d-separated by C we denote A ⊥d B | C and if C = ∅ we denote A ⊥d B. If A,B or C
are single element sets, we omit the curly braces.

Example 2.12. We want to list all d-separations of the DAGs G1 = 1 → 2 → 3 and
G2 = 1 → 2 ← 3. By the definition of d-separation, it immediately follows that d-
separation is symmetric in its first two arguments and that adjacent nodes are always
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d-connected. Hence, we just need to check whether the only undirected path from 1 to
3, i.e. π = (1, 2, 3), d-connects 1 and 3 given 2 or given the empty set. In G1, it holds
that 1 and 3 are d-connected given ∅ but 1 and 3 are not d-connected given 2. Hence,
all d-separations of G1 are {1 ⊥d 3 | 2, 3 ⊥d 1 | 2}. In G2, it holds that 1 and 3 are
d-connected given 2 but 1 and 3 are not d-connected given ∅. Hence, all d-separations of
G2 are {1 ⊥d 3, 3 ⊥d 1}.

Now, we define the set of all conditional independence statements that can be char-
acterized by d-separation and state the crucial observation that gives d-separation its
importance.

Definition 2.13. Let G be a DAG. The global Markov property of G is the set of all
conditional independence statements that are characterized by d-separation, i.e. all

XA ⊥⊥ XB | XC such that A ⊥d B | C (16)

with A,B,C ⊂ [n]. If a distribution ν satisfies all of the above conditional independence
statements, we say ν satisfies the global Markov property of G.

Theorem 2.14. Let G be a DAG with n nodes. Then the following hold:

(i) [14, §3.2.2] A distribution satisfies the local Markov property of G if and only if it
satisfies the global Markov property of G.

(ii) [24, Prop. 13.1.12] For all A,B,C ⊂ [n] such that A and B are not d-separated by
C, there exists a distribution that satisfies the global Markov property of G but not
XA ⊥⊥ XB | XC.

Clearly, this theorem implies that the set of conditional independencies entailed by G
is precisely the global Markov property. Statement (ii) from the theorem above is also
referred to as completeness of the global Markov property. The theorem yields that the
d-separations of the global Markov property give an explicit description of the implicit
conditional independence statements of the local Markov property and perfectly associate
them with graphical properties.
Finally, we establish the connection of the conditional independence statements of the
Markov properties with the LSEM given in Section 2.1. We say the density f factorizes
as the product of conditionals with respect to G [5, Eq. 3.3.3], if

f(x) =
n∏

i=1

fi(xi | xpa(i)). (17)

It turns out, that this factorization is equivalent to the local Markov property.

Theorem 2.15 (Recursive factorization). [24, Thm. 13.2.10] A probability density fac-
torizes with respect to a DAG G if and only if it satisfies the local Markov property of
G.

The recursive factorization theorem yields that each node can be expressed through a
density conditioned on its parental nodes that can be interpreted as prior variables, so
directed graphical models are also called Bayesian networks [24, p. 296]. Specifically in
the Gaussian case, we can establish a connection between factorization and the LSEM of
Section 2.1.
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Proposition 2.16. [5, Prop. 3.3.12] A Gaussian density factorizes with respect to a
DAG G if and only if its covariance matrix is in the LSEMM(G).

Now, we can use this observation to connect the Markov properties with the LSEM.

Corollary 2.17. Let G be a DAG. The set of covariance matrices of Gaussian distribu-
tions that satisfy the local Markov property of G equalsM(G).

Proof. This directly follows from Theorem 2.15 and Proposition 2.16.

In summary, we have found a convenient way to describe our LSEM from Section 2.1
through conditional independence statements that can perfectly be associated to the
graphical property of d-separation.
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3 Covariance equivalence

After giving a functional and graphical description of the LSEM in the last section, we
will start this section by reviewing two known results on recovering causal structures from
LSEMs under two different assumptions. In the setting with no additional assumptions,
Verma and Pearl proved that only the well-known Markov equivalence classes of graphs
can be recovered [25]. However, when additionally requiring all error variances to be
equal, Peters and Buehlmann showed that the causal structure can be identified uniquely.
[20, 1]. After introducing some additional notation on equal error variance assumptions,
these results will motivate the leading question of this thesis.

3.1 Arbitrary error variances: Markov equivalence classes

In Section 2.2, we have described the LSEM of Section 2.1 through the conditional in-
dependence statements in the local or global Markov property, cf. Corollary 2.17. Now,
it is intuitive to ask whether two different DAGs always have different global Markov
properties or, equivalently, whether they have different d-separations. This is false in
general.

Example 3.1. Let G3 = 1← 2← 3. As in Example 2.12, we only need to check whether
the undirected path π = (1, 2, 3) d-connects 1 and 3 given 2 or given ∅. We see that
π d-connects 1 and 3 given ∅ but not given 2, as 2 is not a collider. Hence, the global
Markov property of G3 is {1 ⊥⊥ 3 | 2, 3 ⊥⊥ 1 | 2}. Taking graph G1 = 1 → 2 → 3 from
Example 2.12, we see that G1 and G3 have identical Markov properties although they are
not the same graphs.

This gives rise to the following definition.

Definition 3.2. Two DAGs G and G′ are Markov equivalent if they have identical global
Markov properties.

To check whether two graphs are Markov equivalent, we could compare all their d-
separations. However, there is a more convenient graphical description of Markov equiv-
alence that is well-known and has first been proven by Verma and Pearl [25]. We need
the following definition.

Definition 3.3. Let G = (V,D) be a directed graph.

(a) The skeleton of G is the undirected graph (V, {{a, b} | (a, b) ∈ D}) that removes the
directions from the edges of G.

(b) An unshielded collider of G is a triple of nodes (a, c, b) such that (a, c), (b, c) ∈ D but
(a, b), (b, a) /∈ D.

Now we can state the observation from Verma and Pearl [25].

Theorem 3.4. [25, Thm. 1] Let G,G′ be DAGs. Then, G and G′ are Markov equivalent
if and only if they have identical skeleton and identical unshielded colliders.
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Now, Markov equivalence can conveniently be checked in polynomial time [19, p. 91]
through the graphical properties of skeleton and unshielded colliders. Take the graphs
G1,G2, and G3 from Example 2.12 and Example 3.1, then we immediately see that G1

and G3 are Markov equivalent but G2 is not Markov equivalent to G1 and G3 since G2

has an unshielded collider in node 2. Clearly, two Markov equivalent graphs cannot
be differentiated based on global Markov properties or, equivalently, their LSEMs, cf.
Corollary 2.17. This is an undesired behaviour as different graphs encode different cause-
effect interpretations. The graphs that are Markov equivalent to one another formMarkov
equivalence classes and we say that graphs can only be recovered up to Markov equivalence
classes in the current setting.

Remark 3.5. In practice, given some observational data of a directed graphical model,
we can estimate the joint distribution and in particular its covariance matrix from the
data [3, p. 7] and want to recover all causal structures, i.e. DAGs, that could have
generated this distribution. This setting is slightly different in the sense that we only
have a single covariance matrix and not the whole model to recover the graph from. The
problem is the following: if two graphs are Markov equivalent, their LSEMs are identical
so they generate the same set of covariance matrices, but if two graphs are not Markov
equivalent, their LSEMs can still intersect and covariance matrices in the intersection of
the models could again be generated by both graphs. To guarantee recovery up to Markov
equivalence classes from single covariance matrices, we need an additional assumption
called faithfulness. Faithfulness is defined as the reverse implication of the global Markov
property, i.e. that the conditional independence statements of a distribution that satisfies
the global Markov property of G are only those characterized by the d-separations of
G [19, Chapter 2]. Faithfulness intuitively arises from our cause-effect interpretation
of DAGs and Zhang and Sprites state that faithfulness is ”usually made explicit —and
when not, [...][is] usually implicit—”[26, p. 240] in our framework. Interested readers
may consult the book of Neapolitan for further information [19, Chapter 2]. Methods for
recovering the Markov equivalence class from a single distribution assuming faithfulness
can be found in the review of Drton and Maathuis [4, Chapter 4]. These methods usually
try to recover a representative of the Markov equivalence class that contains v → w if and
only if all graphs in the equivalence class contain v → w and that contains the undirected
edge v ↔ w if and only if both v → w and w → v are present in graphs in the equivalence
class [4, Chapter 4].

3.2 Equal error variances: Full identifiability

It is natural to ask whether we can impose additional assumptions to break the unde-
sired Markov equivalence classes of the previous section and uniquely identify the causal
structure. It turns out that this is possible if we further require that the error variances
are equal [20, 1]. Whilst Peters and Bühlmann [20] first gave a proof by contradiction,
Chen, Drton, and Wang [1] observed that the result is implied by an ordering of some
conditional variances and provided a fast algorithm for estimating this ordering. We re-
view the result with the notation of the paper from Chen, Drton, and Wang but with
transposed definition of the coefficient matrix. This only has notational influence and the
transposed version aligns with Section 2.1 of this thesis. Let X be a centered random
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vector of dimension p. If the equation system

Xj =
∑
k ̸=j

βkjXk + εj, j = 1, . . . , p (18)

holds for some B = (βij) ∈ Rn×n and some σ2 = Var[εj] for all j ∈ [p], we denote
X ∼ (B, σ2). The causal structure of this equation system can be interpreted as a graph
G(B) that has p vertices and the edge j → k if and only if βjk ̸= 0 for j, k ∈ [p]. The
paper requires G(B) to be a DAG. The main result of Peters and Bühlmann [20, Thm.
1] as stated by Chen, Drton, and Wang [1, Thm. 1] is the following.

Theorem 3.6. [3, 20, Thm 1.] Let X ∼ (BX , σ
2
X) and Y ∼ (BY , σ

2
Y ) with both G (BX)

and G (BY ) directed and acyclic. If Var[X] = Var[Y ], then G (BX) = G (BY ) , BX = BY ,
and σ2

X = σ2
Y .

Theorem 3.6 uniquely identifies both the causal structure, i.e. the edges of the graph,
and the strengths of the cause-effect relations, i.e. the entries of matrix B, from a single
covariance matrix. This property is called full identifiability by Peters and Bühlmann [20].
It is clear that the notion X ∼ (B, σ2) with G(B) being a DAG is equivalent to saying
that Var[X] is in a LSEM as described in Section 2.1 with the two following additional
assumptions; (i) all error variances σ2

j are identical and (ii) βjk = 0 only if j → k /∈ D.

Remark 3.7. Theorem 3.6 directly gives a result on recovering the causal structure from
single covariance matrices without needing the faithfulness assumption, cf. Remark 3.5.
However, assuming (ii) implies a weak form of faithfulness called causal minimality [20,
Problem 3]. In particular, assumption (ii) breaks model subset relations for any DAGs
G = (V,D) and G′ = (V,D′) with D ⊂ D′, as we clearly haveM(G) ⊂M(G′) by setting
the edge coefficients ofD′\D to 0. As Peters and Bühlmann argue, causal minimality ”is a
natural condition and in accordance with the intuitive understanding of a causal influence
between the variables” [20, Problem 3]. Thus, it seems like an intuitive assumption for
retrieving the causal structure from single covariance matrices.

3.3 Arbitrary groups of equal error variances: A case to explore

We have reviewed that, given a LSEM, we can only recover equivalence classes of DAGs
when all error variances are arbitrary but we can recover the unique graph if all error
variances are equal. The question of what happens in the more general case when assuming
that there is an arbitrary partition of the nodes into groups with equal error variances
arises naturally. In the following, we will refer to this setting as arbitrary groups of equal
error variances or groupwise equal error variances. The sole purpose of this section is to
rephrase the previous results as statements about covariance equivalence with the aid of
some new notation and properly formulate the upper question, the leading question of
this thesis. All further investigations are content of Section 4 and Section 5.
For a DAG G = (V,D), we can fully describe arbitrary groups of equal error variances by
a partition P of the vertices V , where for i, j ∈ V holds

(∃P ∈ P : {i, j} ⊂ P ) =⇒ Var[εi] = Var[εj]. (19)
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Definition 3.8. We call a partition of the vertex set of a DAG G an equal error variance
partition of G.

If it is clear from the context, we might just say equal variance partition. If we talk about
G with the additional assumption of a variance partition P of G we say G under P . By
assuming some variance partition P , we put additional constraints on the diagonal entries
of DPn and obtain

DPP
n := {A = (aij) ∈ DPn | ∀i, j ∈ [n] : (∃P ∈ P : {i, j} ⊂ P ⇒ aii = ajj)}. (20)

Now we define the LSEM of G under P as follows.

Definition 3.9. Let G be a DAG with n nodes and P be an equal variance partition.
Then the linear structural equation model (LSEM) of G under P is defined as

MP(G) := {(I − Λ)−TΩ(I − Λ)−1 | Λ ∈ RD,Ω ∈ DPP
n }. (21)

With analogous proof as in Section 2.1, we obtain the following proposition

Proposition 3.10. Let G = (V,D) be a DAG with n nodes and P be an equal variance
partition of G. Then,MP(G) ⊂ PDn.

As before, we can parametrize the LSEM of a DAG G with

MP(G) = ϕG(RD, DPP
n ). (22)

We define an extended version of covariance equivalence of LSEMs for arbitrary groups
of equal error variances.

Definition 3.11. Let G,G′ be DAGs with n nodes and P be an equal error variance
partition of G.

(a) We say G and G′ are covariance equivalent under P ifMP(G) =MP(G′).

(b) The covariance equivalence class of G under P is the set of all graphs G′ such that
G and G′ are covariance equivalent under P .

Now, we rephrase the results from the two previous sections with the notation just intro-
duced.

Proposition 3.12. Let G,G′ be DAGs with n nodes and P be a variance partition of G.

(i) If P = {{i} | i ∈ [n]}, then G and G′ are covariance equivalent under P if and only
if G and G′ are Markov equivalent.

(ii) If P = {[n]}, then G and G′ are covariance equivalent under P if and only if G = G′.

Proof. That identical global Markov properties imply identical LSEMs directly follows
from Corollary 2.17. Conversely, assume that G and G′ do not have identical global
Markov properties. It turns out that in Theorem 2.14(b), which is the completeness of
the global Markov property, we can always assume that the distribution is Gaussian [6,
Thm. 3]. Hence, without loss of generality, there exists a Gaussian distribution with
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covariance matrix Σ that satisfies the global Markov property of G but not the one of G′.
Then, Corollary 2.17 yields that Σ ∈ M(G) \M(G′). For statement (ii), let P = {[n]}.
It is clear from Definition 3.9 that identical variance partitions and identical graphs imply
identical models. Conversely, assumeMP(G) =MP(G′). For a DAG with n vertices and
directed edge set D define

RD
full := {Λ = (λij) ∈ Rn×n | λij = 0 if and only if i→ j /∈ D}. (23)

Denote G = (V,D) and G′ = (V,D′). Since RD
full ̸= ∅ ̸= DPP

n for any DAG G, we can
choose Σ ∈MP(G) with parametrization Σ = ϕG(Λ,Ω) where (Λ,Ω) ∈ RD

full×DPn. Since

MP(G) = MP(G′), we can also parametrize Σ = ϕG′(Λ′,Ω′) where Λ′ = (λ′)ij ∈ RD′

and Ω′ ∈ DPP
n . Define Ḡ = (V, D̄) as the subgraph of G′ that has all edges i → j with

λ′
ij = 0 removed. Then, Λ′ ∈ RD̄

full and clearly Σ = ϕḠ(Λ′,Ω′)∈MP (Ḡ). Now Theorem 3.6
yields G = Ḡ and thus D = D̄ ⊂ D′. By switching G and G′ we obtain that D ⊃ D′

by the same argument and thus D = D′. Since G and G′ have identical nodes, we get
G = G′.

At the time of this writing, there is no known result on covariance equivalence of the form
Proposition 3.12 for an arbitrary variance partition P . This is the leading question of this
thesis that we will explore in the next section.

Remark 3.13. LSEMs are constrained versions of the more general structural equation
models, cf. the paper from Peters and Buehlmann [20, Section 1]. The question of identi-
fying the underlying graph from a LSEM under groupwise equal error variances can thus
be interpreted as identifying the underlying graph of a structural equation model under
the additional assumptions of linear functions and Gaussian additive error terms with
groupwise equal error variances. We remark that it has been shown that two other sets
of assumptions can uniquely identify the underlying graph of a structural equation model
referenced by Peters and Bühlmann [20]: linear functions and non-Gaussian noise [22] as
well as additive noise components under exclusion of some function-noise combinations
[10].
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4 Computational exploration of arbitrary groups of

equal error variances

Instead of working with the LSEM under some equal variance partition, we will go over
to work with the ideal of polynomials vanishing on the model and utilize computational
algebra to check covariance equivalence through ideal equality. We will give a description
of an algorithm to efficiently compute all covariance equivalence classes under arbitrary
equal error variance partitions implemented in the algebraic geometry software Macaulay2
with optional Maple usage. Finally, the new material of this thesis will be presented; the
results of the algorithm on three and four nodes, i.e. the covariance equivalence classes
under all equal error variance partitions on three and four nodes. Further interpretation
of these results and additional use cases of the algorithm will be given in section 5.

4.1 Algebraic tools for computing covariance equivalence

This section mainly follows the idea of Drton [3, Chapter 9] applied to the case of group-
wise equal error variances with some additional background material about computational
algebra from Sullivant [24, Chapter 3.3] and Cox, Little, O’Shea [2, Chapter 2]. We de-
note the vanishing ideal by I(·), the ideal generated by some polynomials by ⟨·⟩, and the
algebraic variety of an ideal by V (·). Let G := (V,D) be a DAG with n vertices and P be
a variance partition of G. Instead of looking at the model itself, we look at all polynomials
that vanish on the entries of all Σ ∈MP(G) ⊂ Rn×n, i.e. the vanishing ideal

IP(G) := I(MP(G)) = {f ∈ R[Σ] : f(Σ) = 0 ∀Σ ∈MP(G)}. (24)

From Equation (24) it is clear that identical models imply identical vanishing ideals. The
converse, i.e. that identical ideals imply identical models, only follows from Equation (24)
ifMP(G) is an algebraic variety. This is unfortunately never the case, see Remark 4.9. It
turns out, that identical ideals still imply identical models, but we need a more advanced
idea for a proof.

Theorem 4.1. Let G be a DAG with n nodes and P be a partition of G. Then holds

MP(G) = V (IP(G)) ∩ PDn. (25)

Sketch of proof. In the case of arbitrary error variances, the equalityM(G) = V (I(G))∩
PDn follows from Richardson and Sprites [21, Thm. 8.1]. In the review from Drton [3,
Eq. (10.1)], a formulation close to the notation of this thesis can be found. Since the
parametrization ϕG has a rational inverse by Drton [3, Thm 7.1], each error variance
ωii is a rational function of the entries of Σ ∈ MP(G). Thus, any equal error variance
constraint of the type ωii = ωjj can be translated into some equation a/b = c/d where
a, b, c, d are polynomials on the entries of Σ. Since the inverse of ϕG always exists and b, d
are denominators, the polynomials b, d cannot be zero so we can multiply the equation
with b, d to obtain the polynomial equation ad = bc. Hence, all equal error variance
constraints can be written as polynomial constraints on the entries of Σ. Let p1, . . . , pk
be all these polynomial constraints. Then we have IP(G) = I(G) + ⟨p1, . . . , pk⟩ and
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MP(G) =M(G) ∩ V (⟨p1, . . . , pk⟩). Using the case with no equal variance assumptions
and basic properties of ideals and varieties we have that

MP(G) =M(G) ∩ V (⟨p1, . . . , pk⟩) = V (I(G)) ∩ V (⟨p1, . . . , pk⟩) ∩ PDn =

V (I(G) + ⟨p1, . . . , pk⟩) ∩ PDn = V (IP(G)) ∩ PDn. (26)

Corollary 4.2. Let G,G′ be DAGs with n vertices and P be partition of G. Then,
MP(G) =MP(G′) if and only if IP(G) = IP(G′).

Proof. If the models are equal, then the ideals are equal by definition, cf. Equation (24).
The converse statement follows from Theorem 4.1.

From Corollary 4.2 follows that DAGs are covariance equivalent under any equal variance
partition if and only if their vanishing ideals are identical. This opens the door to using
computational algebra to verify covariance equivalence. The remainder of this section out-
lines an algorithm for computationally verifying covariance equivalence without assuming
any prior knowledge on computational algebra.
To check ideal equality computationally, we need Gröbner basis. We will give a very brief
overview of their definition and properties that are useful in our setting and forward inter-
ested readers to Cox, Little, and O’Shea [2, Chapter 2]. Gröbner basis are an important
tool in computational algebra that allow to store and perform calculations with ideals
on computers conveniently. They are motivated by the fact that many questions around
ideals can easily be answered if only considering monomial ideals [2, Chapter 2.4], i.e.
ideals that are generated by only monomials. To apply results from these simpler cases,
an order on all monomials with some properties is defined and arbitrary polynomials are
associated with their highest ordered monomial. In the following, we consider K ∈ {R,C}
and the polynomial ring K[p] := K[p1, ..., pr] with r ∈ N.

Definition 4.3. A term ordering ≺ is a total ordering on the set of all monomials of K[p]
such that

(a) 1 = p0 ⪯ pu for all u ∈ Nr and

(b) pu ≺ pv implies pw · pu ≺ pw · pv for all w ∈ Nr.

Definition 4.4. The greatest monomial of a polynomial f ∈ K[p] with respect to the
term ordering ≺ is called initial monomial and denoted by in≺(f).

We emphasize that ≺ is a total ordering by definition, thus all monomials can be compared
and the initial monomial is well-defined. A simple example of a term ordering is the
lexicographical term ordering ≺lex, which has pu ≺lex pv if and only if the first non-zero
entry from the left of u− v if negative. Now, let us define Gröbner basis.

Definition 4.5. Let I ⊂ K[p] be an ideal and ≺ be a term ordering.

(a) The initial ideal of I is defined as in≺(I) := ⟨in≺(f) | f ∈ I⟩.
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(b) A Gröbner basis of the ideal I with respect to the term ordering ≺ is a finite subset
G ⊂ I such that the initial ideals of I and G are identical, i.e.

⟨in≺(g) : g ∈ G⟩ = ⟨in≺(f) : f ∈ I⟩ . (27)

We note that Gröbner basis of an ideal with respect to different term orderings can be
different. The following example from Sullivant [24, p. 49] shows that in≺(⟨f1, ..., fm⟩)
and ⟨in≺(f1), ..., in≺(fm)⟩ are not equal in general.

Example 4.6. Let r = 2 and I = ⟨p21, p1p2+p22⟩ with lexicographic term ordering≺:=≺lex.
Denote the ideal of the initial monomials of the generators of I by J = ⟨in≺(p

2
1), in≺(p1p2+

p22)⟩ = ⟨p21, p1p2⟩. It is clear that p32 /∈ J but p2p
2
1 + (p2 − p1)(p1p2 + p22) = p32 ∈ I.

A Gröbner basisG of the ideal I with respect to a term ordering≺ fulfills similar properties
to a basis of finite dimensional vector spaces; G is a finite subset of I by definition, G
generates I, i.e. ⟨G⟩ = I [24, Cor. 3.3.10], and the Hilbert basis theorem yields that
a Gröbner basis exists for every ideal and every term ordering [24, p. 50]. Although
Gröbner basis are not unique for a fixed term ordering, we can define reduced Gröbner
basis by norming all coefficients of the leading monomials and removing all redundant
polynomials from a given Gröbner basis [2, Def. 2.7.4]. Given any ideal and any term
ordering, it turns out that such a reduced Gröbner basis always exists and that this basis
is unique [2, Thm. 2.7.5]. This yields a convenient way to compare ideals by fixing a term
ordering and comparing their reduced Gröbner basis with respect to that term ordering.
To make use of Gröbner basis in practice, Buchberger’s algorithm [2, Chapter 2.7] provides
a constructive way to compute a Groebner basis for any ideal I = ⟨f1, . . . , fk⟩ with respect
to a term ordering ≺. The algorithm exploits Buchberger’s criterion [2, Thm. 2.6.6] that
gives a sufficient and necessary condition for a finite G ⊂ I being a Gröbner basis of I
with respect to ≺.

Example 4.7. With Buchberger’s criterion, it can be shown that G = {p21, p1p2 + p22, p
3
2}

is a Gröbner basis of ideal I = ⟨p21, p1p2 + p22⟩ with respect to the lexicographic term
ordering [24, Example 3.3.13], see Example 4.6.

In each step, the Buchberger’s algorithm checks if G fulfills Buchberger’s criterion and if
not, adds a specific polynomial computed fromG. We remark that Buchberger’s algorithm
always terminates but has hardly predictable runtimes that can be doubly-exponential in
the number of variables in the worst-case [18]. Moreover, the choice of the term ordering
has a profound influence on the performance of the algorithm. Usually, computer algebra
systems perform Buchberger’s algorithm in a way such that the resulting Gröbner basis
can easily be reduced computationally [2, p. 94]. In summary, we can now computa-
tionally verify ideal equality based on reduced Gröbner basis given any finite generating
sets of the ideals to compare. It remains to compute such a finite generating set for the
vanishing ideal of our model, cf. Equation (24).
For a graph G with n vertices and a variance partition P of G we consider the polynomial
parametrization of the modelMP(G), i.e.

IP(G) = I(MP(G)) = I(ϕG(RD, DPP
n )). (28)
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The general problem of describing the vanishing ideal of the image of an algebraic variety
under a polynomial map is called implicitization problem and has a well-known solution.
It turns out that we can turn the set in the domain of ϕG in Equation (28) into a variety
without changing the vanishing ideal by including any diagonal matrices that satisfy the
equal variance constraints instead of just the ones with positive entries. Define this set as

DP
n := {diag(a1, ..., an) ∈ Rn×n | ∀i, j ∈ [n] : (∃P ∈ P : {i, j} ⊂ P ⇒ ai = aj)}. (29)

Proposition 4.8. Let G = (V,D) be a DAG with n vertices and let P be a variance
partition of G. Define CPG := ϕP

G(RD, DP
n ). Then holds

IP(G) = I(CPG). (30)

Proof. We clearly have MP(G) = ϕG(RD, DPP
n ) ⊂ CPG so IP(G) ⊃ I(CPG). Conversely,

let f ∈ IP(G) and Λ ∈ RD. We write P = {P1, ..., Pp} for some p ≤ n and define

Mk := {diag(m1, ...,mn) ∈ Rn×n | ∀j > k ∀i ∈ Pj : mi > 0} (31)

for k ∈ [p]∪{0}. The diagonal matrices in Mk can be described by having positive values
for the entries of some sets in the partition and any values for the entries of the remaining
sets of the partition. We claim that for any k ∈ [p] ∪ {0}, the polynomial f vanishes on
all ϕG(Λ,Ω) with Ω ∈ Mk. We show this by induction over k. Since M0 = DPP

n and
MP(G) = ϕG(RD, DPP

n ) it is clear that the claim holds for M0. Now, assume the claim
holds for Mk. Without loss of generality we denote Pk+1 = {1, ..., r − 1} for some r ≤ n.
Let Ω = (ωij) ∈Mk and define Ωx := diag(x, ..., x, ωrr, ..., ωnn) for x ∈ R. Then, Ωx ∈Mk

for x > 0. Since ϕG and f are polynomial maps, we can define the polynomial

g(x) := f(ϕG(Λ,Ωx)) ∈ R[x] (32)

Then, g(x) = 0 for all x > 0 by induction assumption. Since R is an infinite field and
g is polynomial in one variable with the infinite roots x > 0, it follows that g = 0 so in
particular g(x) = 0 for all x ∈ R. Since Ω ∈ Mk arbitrary, we obtain f(ϕG(Λ,Ω)) = 0
for all Ω ∈ Mk+1. This completes the induction. Hence we have shown that f vanishes
on ϕG(Λ,Ω) for any Ω ∈ DP

n = Mp. Since Λ ∈ RD arbitrary, f vanishes on all elements
of ϕG(RD, DPn) = CG.

Remark 4.9. Proposition 4.8 implies thatMP(G) is never an algebraic variety. For any
DAGG and variance partition P , we have 0 ∈ DP

n so 0 ∈ CG ⊂ V (I(CG)) = V (I(MP(G)))
but 0 /∈MP(G) ⊂ PDn. Thus,MP(G) ⊊ V (I(MP(G))).

Proposition 4.8 shows that IP(G) = I(ϕG(RD, DP
n )) where RD × DP

n is an algebraic
variety, so a solution of the implicitization problem would be useful for us.

Theorem 4.10 (Implicitization). [24, Prop. 3.4.7] Define a polynomial ring over a field
K ∈ {R,C} with indeterminates p1, ..., pn and q1, ..., qm where n,m ∈ N. Denote K[p] :=
K[p1, ..., pn] and K[q] := K[q1, ..., qm]. Let ϕ : Km → Kn be a polynomial map and V ⊂ Km

an algebraic variety. Denote the graph of ϕ by

Γϕ = {(ϕ(x), x) : x ∈ Km} ⊂ Kn+m. (33)

Then the vanishing ideal of the image of ϕ under V is

I(ϕ(V )) = (I(V ) + I(Γϕ)) ∩K[p]. (34)
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Before we give a proof, let us have a closer look at Equation (34). We have I(V ) ⊂ K[q]
and I(Γϕ) ⊂ K[p, q] where K[p, q] := K[p1, ..., pn, q1, ..., qm]. Since K[q] ⊂ K[p, q], we can
properly add the ideals together and obtain an ideal in K[p, q]. The intersection with
K[p] removes any polynomial f ∈ K[p, q] that contains any q1, ..., qm indeterminate which
yields an ideal in K[p]. Ideals like Equation (34) that intersect with a polynomial ring to
eliminate some terms are also called elimination ideals.

Proof of Theorem 4.10. We follow the proof of Sullivant [24, Prop. 3.4.7]. Define

Γϕ(V ) := {(y, x) ∈ Kn+m | x ∈ V, y = ϕ(x)}. (35)

We first claim that
I(ϕ(V )) = I(Γϕ(V )) ∩K[p]. (36)

Let πp be the projection πp : Kn+m → Kn, (a1, ..., an, b1, ..., bm) 7→ (a1, ..., an). Then
clearly πp(Γϕ(V )) = ϕ(V ) so we want to show that

I(πp(Ṽ )) = I(Ṽ ) ∩K[p] (37)

with Ṽ = Γϕ(V ). We have that f ∈ I(πp(Ṽ )) if and only if f vanishes on πp(Ṽ ) and
f ∈ K[p]. But this is the case if and only if f vanishes on Ṽ and has indeterminates only
in K[p], which is precisely that f ∈ I(Ṽ ) ∩ K[p]. We note that Equation (36) holds for
any algebraic variety Ṽ ⊂ Kn+m. We obtain Equation (37). It remains to show that

I(Γϕ(V )) = I(V ) + I(Γϕ). (38)

Let f ∈ I(Γϕ(V )). Define M := {p1 − ϕ1(q), ..., pn − ϕn(q)}, then clearly ⟨M⟩ = I(Γϕ).
Now we choose a term ordering ≺ such that pi ≻ qj for all i ∈ [n] and j ∈ [m]. Similar to
one-dimensional polynomial division, it turns out that we can always write

f =
n∑

i=1

hi(pi − ϕi(q)) + r (39)

with hi ∈ K[p, q] and r = 0 or no monomial of r being divisible by any leading monomial
of M [2, Thm 2.3.3]. Thus, by the choice of term order, no monomial of r is divisible by
any p1, ..., pn, so r ∈ K[q]. Since Γϕ ⊃ Γϕ(V ), we have ⟨M⟩ = I(Γϕ) ⊂ I(Γϕ(V )) and
hence

∑n
i=1 hi(pi − ϕi(q)) ∈ I(Γϕ(V )). Together, we obtain

r = f −
n∑

i=1

hi(pi − ϕi(q)) ∈ I(Γϕ(V )) ∩K[q]. (40)

We utilize the idea of the projection from above again, but this time with πq : Kn+m →
Km, (a1, ..., an, b1, ..., bm) 7→ (b1, ..., bm) to obtain

I(Γϕ(V )) ∩K[q] = I(πq(Γϕ(V ))) = I(V ). (41)

Hence, we have r ∈ I(V ) and thus

f = r +
n∑

i=1

hi(pi − ϕi(q)) ∈ I(V ) + ⟨M⟩ = I(V ) + I(Γϕ) (42)
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as claimed. Conversely, all ideals vanishing on V also vanish on the latter entries of
Γϕ(V ), i.e. I(Γϕ(V )) ⊃ I(V ), and from Γϕ(V ) ⊂ Γϕ follows I(Γϕ(V )) ⊃ I(Γϕ). We
obtain I(Γϕ(V )) ⊃ I(V ) + I(Γϕ) since ideals are closed under addition. This completes
the proof.

Let us apply implicization to the vanishing ideal of the model. The p indeterminates
are the upper diagonal entries of Σ, which is sufficient since Σ is always symmetric, and
the q indeterminates are the entries of Λ and Ω that can be non-zero. The remaining
entries of Λ and Ω are set to zero. It is clear that the domain of ϕG is R|D|+|V | and that
RD × DP

n ⊂ R|D|+|V | is an algebraic variety described by the polynomials that encode
the equal error variances along the diagonal of Ω. Moreover, ⟨Σ− ϕG(Λ,Ω)⟩ is a basis of
I(ϕG), cf. the set M in the proof of the implicitization theorem. We obtain

IP(G) = (⟨ωii − ωjj | ∃P ∈ P : {i, j} ⊂ P ⟩+ ⟨Σ− ϕG(Λ,Ω)⟩) ∩ R[Σ]. (43)

We can further simplify Equation (43). Since Σ − ϕG(Λ,Ω) vanishes if and only if Ω −
(I − Λ)TΣ(I − Λ) vanishes, we have

IP(G) =
(
⟨ωii − ωjj | ∃P ∈ P : {i, j} ⊂ P ⟩+ ⟨Ω− (I − Λ)TΣ(I − Λ)⟩

)
∩ R[Σ]. (44)

Now we can easily eliminate Ω by substitution with K := (I − Λ)TΣ(I − Λ) = (kij).
For the equal error variance assumptions, we can just replace ωii and ωjj by kii and kjj.
Hence, Ω − (I − Λ)TΣ(I − Λ) = 0 if and only if the equal variance assumptions on the
diagonal entries of K vanish and kij = 0 for i ̸= j, since Ω is a diagonal matrix. This
yields

IP(G) = (⟨kii − kjj | ∃P ∈ P : {i, j} ⊂ P ⟩+ ⟨kij | i ̸= j⟩) ∩ R[Σ]. (45)

It is clear, that a generating set of the ideal in Equation (45) before elimination is

JP
G := {kii − kjj | ∃P ∈ P : {i, j} ⊂ P} ∪ {kij | i ̸= j} (46)

which we can easily be generated on a computer. It remains to compute a generating set
of the elimination ideal.

Theorem 4.11. [24, Thm. 3.4.6] Let I ∈ K[p1, ..., pm, q1, ..., qn] be an ideal and let G be
a Gröbner basis of I with respect to a term ordering ≺ such that qi ≻ pj for all i ∈ [n]
and j ∈ [m]. Define K[p] := K[p1, ..., pm], then

G ∩K[p] (47)

is a Gröbner basis of the elimination ideal I ∩K[p] with respect to ≺.

Proof. We follow the proof from Sullivant [24, Thm. 3.4.6]. We directly show the defi-
nition of a Gröbner basis. Let f ∈ I ∩ K[p], then we have in≺(f) ∈ in≺(G) since G is a
Gröbner basis of I. Since in≺(G) is a monomial ideal and in≺(f) is a monomial, this is
equivalent to saying that there exists a g ∈ G such that in≺(g) divides in≺(f) [2, Lem.
2.4.3]. Since f ∈ K[p], we have in≺(f) ∈ K[p] and thus also in≺(g) ∈ K[p]. By our choice
of term ordering, in≺(g) ∈ K[p] implies that g ∈ K[p]. Hence, g ∈ G ∩K[p] and by same
argument as above, in≺(f) ∈ in≺(G ∩K[p]). Since f arbitrary, G ∩K[p] is Gröbner basis
of I ∩K[p].
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A term ordering with the above property is also called elimination ordering. We remark
that the term ordering we used in the proof of the implicitization theorem is not an
elimination ordering that eliminates q1, ..., qn.
In summary, we can now compute whether two DAGs G and G′ are covariance equivalent
under some equal variance partition P with the following steps: compute the polynomials
in JP

G , compute a Gröbner basis of the ideal ⟨JP
G ⟩ with respect to an elimination ordering

that eliminates the entries of Λ and Ω, compute the Gröbner basis of IP(G) with Theo-
rem 4.11, and reduce that Gröbner basis . If we denote this reduced Gröbner basis by RP

G

and do the same to obtain RP
G′ , the two DAGs G and G′ are covariance equivalent under

P if and only if RP
G = RP

G′ . Luckily, large parts of these steps are already implemented in
computer algebra systems as we will see in the next section.

4.2 Implementation in Macaulay2 with Maple add-on

In the previous section, we have outlined a way to compute and compare the vanishing
ideals of linear structural equation models of any DAG under any equal variance partition
using computational algebra. Let us see how these results can be implemented for a simple
example in the free-to-use algebraic geometry software Macaulay2 [8].

Example 4.12. The following Macaulay2 code snippet shows how to compute the van-
ishing ideal of G1 = 1 → 2 → 3 from Example 2.12 under P = {{1, 2}, {3}}. The
variable vanishIdeal corresponds to IP(G1) and evaluates to an ideal with generators
s13s22 - s12s23, s11^2 + s12^2 - s11s22. Note that Macaulay2 starts indexing at
0. To compute covariance equivalence of two DAGs G,G′, we just execute the code be-
low twice for the corresponding Lambda matrices and compare the resulting ideals with
vanishIdeal == vanishIdeal’. The command == is a built-in command that computes
and compares the reduced Gröbner basis of the ideals internally.

-- create the polynomial ring

R = QQ[l12,l13,l21,l23,l31,l32,s11,s12,s13,s22,s23,s33]

-- compute matrices from the model

Sigma = matrix{{s11,s12,s13},{s12,s22,s23},{s13,s23,s33}}

Lambda = matrix{{0,l12,0},{0,0,l23},{0,0,0}}

K = transpose(id_(R^3) - Lambda) * Sigma * (id_(R^3) - Lambda)

-- compute vanishing ideal

I = ideal({K_(0,1),K_(0,2),K_(1,2), K_(0,0) - K_(1,1)})

vanishIdeal = eliminate({l12,l13,l21,l23,l31,l32},I)

Now, we want to scale this idea to compute all covariance equivalence classes for n nodes
under any equal variance partitions. We observe that the structure of a graph and its
equal variance partition do not change by permuting the labels. Thus, it seems intuitive
that computing the covariance equivalence classes of both variance partitions {{1, 2}, {3}}
and {{1, 3}, {2}} does not provide any new information since both partitions have two
nodes with equal error variances and one node with arbitrary error variance. Let us make



4.2 Implementation in Macaulay2 with Maple add-on 21

this idea rigorous. The labels of a DAG correspond to the positions in the matrices Λ,Ω,Σ
of the model, e.g. λij corresponds to the edge from label i to label j. Hence, the following
holds.

Proposition 4.13. Let G be a DAG with n nodes, let P be an equal variance partition of
G, and let σ ∈ Sn be a permutation of [n]. Then, the vanishing ideal of G under P with
labels permuted by σ is simply IP(G) with indices of the indeterminates permuted by σ.

Example 4.14. Using Proposition 4.13 and the Macaulay2 notation and result from
Example 4.12, the generators of the vanishing ideal of G3 = 3 → 2 → 1 under P =
{{3, 2}, {1}} are s13s22 - s23s12, s33^2 + s23^2 - s33s22. We note that G3 al-
ready appeared in Example 3.1. Moreover, we remark that we only defined the upper half
of the symmetric covariance matrix Σ of the model as indeterminates, so we need to be
careful when permuting the indices of the ’s’ indeterminates.

We say two variance partitions P and P ′ of [n] are isomorphic, if P can be obtained by
permuting the labels of P ′. It is clear that this relation is an equivalence relation on the
partitions of [n]. Let P be any partition of [n], let σ ∈ Sn be a permutation of [n], and
define P ′ = σ(P) isomorphic to P , where σ(·) denotes a permutation of the labels by
σ. By Proposition 4.13 and Corollary 4.2, the DAGs G and G′ are covariance equivalent
under P if and only if σ(G) and σ(G′) are covariance equivalent under σ(P) = P ′. Hence,
computing covariance equivalence classes of only one representative of each equivalence
class of partitions of [n] is sufficient. Let Bn be the set of representative partitions such
that we can order the sets in each partition in Bn by descending cardinality and read
the labels in ascending order from left to right skipping all curly braces. We call Bn base
partitions of n and will only consider these base partitions in the remainder of the thesis.

Example 4.15. We have B3 = {{{1}, {2}, {3}}, {{1, 2}, {3}}, {[3]}}.

A straight-forward algorithm to compute these sufficient covariance equivalence classes is
described in Macaulay2 pseudocode by Algorithm 1. Let us comment on some implicit
functions in the pseudocode: vanishingIdeal computes the steps outlined in Exam-
ple 4.12, compareVanIdeals computes the equivalence classes based on vanishing ideal
equality, and generateAllDags computes all DAGs with n nodes by generating all simple
directed graphs with n nodes and removing the cyclic ones. Although the latter imple-
mentation is inefficient and could be improved significantly, it will be sufficient for our
purposes.
To improve the performance of Algorithm 1, we further exploit Proposition 4.13. Let Dn

denote the set of all DAGs with n nodes, then we only want to compute the vanishing
ideals of a minimal subset An ⊂ Dn × Bn and obtain the remaining vanishing ideals by
permutation. Similarly as before, we say two DAG partition tuples (G,P) and (G′,P ′)
are isomorphic if (G,P) can be obtained by permuting the labels of (G′,P ′). Again,
it is clear that this relation is an equivalence relation on Dn × Bn and that An can be
any set that contains exactly one representative per equivalence class of n nodes. Giving
a constructive combinatorical description of any An is beyond the scope of this thesis
and also not necessary for our purposes. After computing a vanishing ideal under P , we
simply permute the labels by all possible permutations and save the permuted ideals with
permuted partition equal to P that were not known before. We note that we can treat
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Algorithm 1: Base version

input : Number of nodes n
output: One file per base variance partition containing the covariance

equivalence classes
1 allDags← generateAllDags(n) ;
2 baseV arPart← generateBasePartitions(n);

3 for P ∈ baseV arPart do
4 vanIdealDict← new MutableHashMap;
5 for G ∈ allDags do
6 vanIdealDict#G← vanishingIdeal(G,P) ;

7 covEqClasses← compareVanIdeals(vanIdealDict) ;
8 saveResultsToFile(P , covEqClasses);

the base partitions separately in this step as they are not isomorphic to one another and
thus cannot interfere when permuting the vanishing ideals. Since computing the vanishing
ideal is a very expensive operation as it involves the computation of a Gröbner basis, this
speeds up the algorithm substantially. The Macaulay2 pseudocode is given in Algorithm
2. To give an idea of the magnitude of improvement, we compare the cardinalities of

Algorithm 2: Improved version

input : Number of nodes n
output: One file per base variance partition containing the covariance

equivalence classes
1 allDags← generateAllDags(n);
2 baseV arPart← generateBasePartitions(n);
3 allPermus← generateAllPermutations(n);

4 for P ∈ baseV arPart do
5 vanIdealDict← new MutableHashMap;
6 validPermus← {σ ∈ allPermus | σ(P) = P} ;
7 for G ∈ allDags do
8 if G ∈ keys(vanIdealDict) then
9 continue ;

10 I ← vanishingIdeal(I,P) ;
11 vanIdealDict#G← I ;
12 for σ ∈ validPermus do
13 if σ(G) /∈ keys(vanIdealDict) then
14 vanIdealDict#σ(G)← σ(I) ;

15 covEqClasses← compareVanIdeals(vanIdealDict) ;
16 saveResultsToFile(P , covEqClasses);

An and Dn × Bn. We can explicitly compute the cardinality of Dn × Bn by multiplying
the number of labeled DAGs with n nodes [12] for |Dn| and the number of partitions of
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the integer n [11] for |Bn|. For |An|, we obtain values from executing the algorithm for
n ∈ {3, 4, 5}. The results can be seen in Table 1. We see a substantial improvement using
|An| instead of Dn×Bn. We note that we could further reduce the runtime by running the

Nodes Base version Improved version Quotient
n |Dn| · |Bn| |An| |Dn||Bn|/|An|
3 25 · 3 = 75 26 2.89
4 543 · 5 = 2172 393 5.52
5 29281 · 7 = 175686 13714 12.81

Table 1: Number of vanishing ideals needed to compute for the two different versions of
the algorithm.

for-loops in lines 4 and 7 of Algorithm 2 in parallel or improving the generation of DAGs
through constructive procedures or parallelisation. However, computing the elimination
ideal turns out to be the bottleneck as we will see in the next section.
Finally, let us turn to more technical aspects. All code is written and tested in Macaulay2
under version 1.19.1 [8]. In Macaulay2, we use the built-in command eliminate to cal-
culate the elimination ideals, and the == operator to check for ideal equality. Since
the Macaulay2 elimination command turned out to be slow in practice, we offer the
possibility to outsource ideal elimination and comparison to Maple 2022 [16] via the
Macaulay2 run command. In Algorithm 2, these are the functions vanishingIdeal and
compareVanIdeals. In Maple, we use the EliminationIdeal command and twice the
IdealContainment command of the package PolynomialIdeals to calculate the elimi-
nation ideal and check for ideal equality. All code with documentation is available on
Github at:

https://github.com/LeWaldm/covarianceEquivalence

4.3 Results on three and four nodes

Now, we want to investigate the results of the algorithm from the previous section. Let
n denote the number of nodes. We remark that the case n = 2 is completely covered
by the known results from Section 3 so only n > 2 is considered. All code was executed
on a machine with 16GB memory and two physical cores at 2.50 GHz (Intel® Core™
i5-4200M). This machine could only compute the results for n ∈ {3, 4} and crashed for
n = 5 due to insufficient memory while computing a specific elimination ideal in Maple. To
obtain results for n ≥ 5, more memory is needed before applying any other improvements
mentioned in the previous section. The runtimes of the two versions of the algorithm from
Section 4.2 for n ∈ {3, 4} nodes with and without utilizing Maple to perform elimination
and ideal comparison can be seen in Table 2. All versions of the algorithm worked very
well for n = 3, that the versions with Maple were slower is due to computational overhead
needed to communicate between Macaulay2 and Maple. For n = 4, the versions with
Maple behaved substantially better. In particular, the calculation of a specific elimination
ideal in Macaulay2 was interrupted after 72h without termination. The computation of
this particular elimination ideal took less than a minute in Maple. It is well known that
Gröbner basis computations can be improved significantly by prioritizing the elements
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nodes Base version Base version with Maple Improved version with Maple
3 2.5s 8s 3.3s
4 >72h 70min 21min

Table 2: Runtimes of the base and the improved version with and without the aid of
Maple for three and four nodes.

that are added in the Buchberger’s algorithm [18], see, e.g., the M4GB algorithm from
Makarim and Stevens [15]. However, the tremendous performance difference between
Macaulay2 and Maple came as a surprise. With Maple, we see that the improved version
ran 3.3 times faster than the base version. That the expected speed up of around 5.52 from
Table 1 was not observed is likely due to the different sizes of the permutation equivalence
classes of DAGs and the high variation in the time needed to compute vanishing ideals.

Now, let us have a look at the actual results, i.e., the covariance equivalence classes of the
partitions not dealt with in Section 3.1 and Section 3.2. Table 3 counts the number of
classes by their number of members. Readers interested in similar properties of Markov
equivalence classes up to ten nodes may consult the results from Gillispie and Perlmann
[7]. We see that all partitions but P = {{1, 2}, {3}, {4}} result in unique models. Let us

n |Dn| Partition Class size distribution
3 25 {{1, 2}, {3}} with 1 member: 25

4 543
{{1, 2}, {3}, {4}} with 1 member: 405

with 2 members: 69
{{1, 2}, {3, 4}} with 1 member: 543
{{1, 2, 3}, {4}} with 1 member: 543

Table 3: Distribution of covariance equivalence class sizes under the base partitions |Bn|
not covered by the cases discussed in Section 3 for three and four nodes.

focus on P for the remainder of this section. All covariance equivalence classes under P
with more than one member contain precisely two graphs that only change the direction
of the edge between node 3 and 4. If a graph G is in such a covariance equivalence class,
we say that the edge between 3 and 4 in G is invertible. The edge between node 3 and
4 is not always invertible. Figure 2 depicts some graphs (a),(b),(c), and (d) where the
edges between 3 and 4 of (a) and (b) but not the one of (c) are invertible.

Remark 4.16. In general, we cannot deduce the covariance equivalence class of a graph
with isolated nodes from lower dimensional cases disregarding the isolated nodes in the
graph and the partition. Take graph (d) in Figure 2, denote the subgraph of (d) that
removes node 1 with G′ and denote P ′ = {{2}, {3}, {4}} that removes node 1 from P .
Then, the covariance equivalence class of G′ under P ′ is the Markov equivalence graph of
G′ and contains, e.g., G′′ = 4→ 2→ 3. However, the graph with node 1 added again as
isolated node to G′′ is not covariance equivalent to (d) under P since (d) is in a covariance
equivalence class under P on its own. This makes sense as assuming that node 1 and 2
have equal error variance adds another polynomial to the vanishing ideal although node
1 is isolated, cf. Equation (45).
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Figure 2: Some DAGs with four nodes under {{1, 2}, {3}, {4}} where graph (a) and (b)
are in covariance equivalence classes with two members and graph (c) and (d) are in
covariance equivalence classes on their own.

All graphs where the edge 3 → 4 is invertible can be seen in the appendix. In the next
section, we will conjecture a precise characterisation of covariance equivalence based on
the results of this section.
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5 Interpretation of results and extension to cyclic di-

rected graphs

Based on the results from Section 4.3, we will state a conjecture on covariance equivalence
of DAGs with arbitrary number of nodes under any variance partition. This conjecture
entails the two known equal error variance settings from Section 3 and explains the com-
putational results on three and four nodes. Assuming that the conjecture holds true, we
will compute the distribution of covariance equivalence class sizes up to six nodes and
give a conjecture on their possible sizes under arbitrary number of nodes and arbitrary
variance partitions. Finally, we will see how we can apply adjustments to Section 2.1 and
Section 4.2 to compute and compare the vanishing ideals of cyclic directed graphs under
any variance partition and will present some results on cyclic graphs with three and four
nodes. However, we cannot guarantee that the resulting classes can be interpreted as
covariance equivalence classes anymore.

5.1 Conjecture explaining computational results

Now, we want to investigate the results in Section 4.3 to analyse under which con-
ditions two DAGs are covariance equivalent under arbitrary equal variance partitions.
We want to have a closer look at when the edge between 3 and 4 is invertible under
P = {{1, 2}, {3}, {4}} and consider the graphs (a),(b),(c) from Figure 2 again. Let
(a′), (b′), (c′) denote the graphs that have the edge between 3 and 4 inverted. We observe
the following. Graph (a) and (a′) are covariance equivalent under P and neither (a) nor
(a′) has a collider in node 3 or 4. Graph (b) and (b′) are covariance equivalent under P
and both (b) and (b′) have shielded or no colliders in node 3 or 4. Graph (c) and (c′)
are not covariance equivalent under P and (c) has the unshielded collider 2 → 3 ← 4
where (c′) has no unshielded collider in 3. Motivated by these observations, we compu-
tationally verify that identical unshielded colliders are indeed a necessary condition for
DAGs being in the same covariance equivalence class under P . Putting it together, we
have observed that if two graphs are in the same equivalence group under P , they (i)
have identical skeleton, (ii) identical unshielded colliders, and (iii) identical incoming and
outgoing edges of nodes 1 and 2. Interestingly, these conditions are not only necessary
but also sufficient to characterise the covariance equivalence classes of P as we can again
verify computationally.
Now, let us assume that conditions (i) to (iii) are sufficient and necessary for any variance
partition where we formulate condition (iii) in the more general way that incoming and
outgoing edges of nodes of an equal variance group with more than one member have to
be identical. With equal variance group, we refer to the sets in a variance partition. Then,
the model uniqueness of all other partitions of Table 3 can be explained by condition (iii).
Moreover, the conditions incorporate the known cases from Section 3. In the arbitrary
variance case, condition (iii) becomes vacant and we precisely obtain Markov equivalence.
In the case where all variances are equal, condition (iii) implies that the covariance equiv-
alence groups consist of exactly one member. Hence, conditions (i) to (iii) bridge the gap
between the two known cases and align with our computed covariance equivalence classes
for any partition with three and four nodes. We make the conjecture that conditions (i) to
(iii) are the precise characterisation of covariance equivalence classes for any equal error
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variance partition.

Conjecture 5.1. Let G,G′ be two DAGs with n nodes and let P an arbitrary equal error
variance partition of G. Then, G and G′ are covariance equivalent under P if and only
if G and G′ have

(i) identical skeleton,

(ii) identical unshielded colliders, and

(iii) identical incoming and outgoing edges for nodes in equal variance groups with more
than one member.

We emphasise that the conjecture preserves the Markov equivalence classes, i.e., adding
equal error variance assumptions only restricts the existing Markov equivalence classes.
Finally, we remark that the conjecture is based on little empirical evidence considering
that we only investigated four low-dimensional variance partitions of which only one
showed groups with more than one member. Nevertheless, Conjecture 5.1 might still be
promising as it reasonably generalizes the two known cases, at least for three and four
nodes.

5.2 Distribution of equivalence class sizes under conjecture

Assuming that the conjecture holds true, we want to investigate the distribution of the
sizes of covariance equivalence classes similar to Table 3. By property (iii) of Conjec-
ture 5.1 and Proposition 4.13 it is clear that the distribution of the sizes of covariance
equivalence classes under an equal variance partition P only depends on the number of
vertices without any equal error variance assumption in P . Let us call these vertices
free nodes of P . It is clear that one and n − 1 free nodes is not possible, that zero free
nodes implies that all models are unique, and that n free nodes correspond to the Markov
equivalence classes. The class size distribution for n ∈ {4, 5, 6} nodes under 2, ..., n − 2
free nodes were computed with a script that generates all DAGs with n nodes and then
compares the graphs by the graphical properties of Conjecture 5.1 without involving any
algebra. The script is written in Python, utilizes parallel computation and was executed
on a remote machine with 128GB of memory and 32 cores in the Elastic Compute Cloud
of Amazon Web Services. The script can also be found in the Github repository men-
tioned in Section 4.2, however, the code is inefficient and could be improved significantly.
The results are shown in Table 4.

We note that in Table 4, the set of possible sizes of covariance equivalence classes under k
free nodes is always identical to the set of possible sizes of Markov equivalence classes of
DAGs with k nodes, cf. Table 5 generated by the same script. This seems reasonable at
first glance since only the edges in between the free nodes can be changed by conditions
(i) and (iii) of Conjecture 5.1 and they have to preserve unshielded colliders. However,
things are more complicated since unshielded colliders and acyclicity with the non-free
nodes have to be preserved as well. We are not able to give a proof but state this idea as
conjecture.
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n |Dn| free nodes Number of classes Class size distribution
4 543 2 474 (1: 85.4%), (2: 14.6%)

5 29281
2 26786 (1: 90.7%), (2: 9.3%)

3 22025
(1: 74.3%), (2: 21.5%),
(3: 3.1%), (6: 1.1%)

6 3781503
2 3554766 (1: 93.6%), (2: 6.4%)

3 3116955
(1: 82.2%), (2: 15.8%),
(3: 1.5%),(6: 0.5%)

4 2510733
(1: 67.0%), (2: 24.8%), (3: 5.1%),
(4: 1.0%), (6: 1.4%), (8: 0.4 %),

(10: 0.2%), (24: 0.1%)

Table 4: Distribution of covariance equivalence class sizes for four, five, and six nodes
assuming that Conjecture 5.1 holds true where the number before the colon in the tuples
in the rightmost column denotes the class size and the percentage its occurrence.

n |Dn| Number of classes Class size distribution
2 3 2 (1: 50.0%), (2: 50.0%)

3 25 11
(1: 36.4%), (2: 27.3%),
(3: 27.3%),(6: 9.0%)

4 543 185
(1: 31.9%), (2: 25.9%), (3: 19.5%),
(4: 10.3%), (6: 2.2%), (8: 6.5 %),

(10: 3.2%), (24: 0.5%)

Table 5: Distribution of Markov equivalence class sizes with two, three, and four nodes
where the number before the colon in the tuples in the rightmost column denotes the class
size and the percentage its occurrence.

Conjecture 5.2. Let n ∈ N and k ∈ [n] \ {1, n − 1}. The possible sizes of covariance
equivalence classes of DAGs with n nodes under a variance partition with k free nodes is
equal to the possible sizes of Markov equivalence classes of DAGs with k nodes.

Finally, we remark that the percentage of classes with one member under a fixed number
of free nodes and increasing number of graph nodes seems to increase. A vague intuition
could be that more non-free nodes are ’more likely’ to have edges that fix edges in between
the free nodes by needing to preserve unshielded colliders or acyclicity with the non-free
nodes. This is far from a formal proof. Running this analysis with optimized code for
higher number of nodes might give more insights.

5.3 Ideal equivalence allowing cyclic graphs

So far, we have only considered directed acyclic graphs. It is worth mentioning that
we can use the methods implemented in Section 4.2 to study vanishing ideals of models
from cyclic graphs by only making minor changes. However, some adjustments in their
interpretation as covariance equivalence classes will need to be made. Throughout this
section, let G = (V,D) be any directed not necessarily acyclic graph with n nodes and
no loops, that is no edges v → v with v ∈ V . We have seen in Proposition 2.1 that the
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matrix I − Λ with Λ ∈ RD is always invertible for DAGs. This fails for cyclic graphs for
particular values of Λ.

Example 5.3. Let G = ({1, 2}, {1→ 2, 2→ 1}). Define

Λ1 :=

(
0 2
1 0

)
, Λ2 :=

(
0 1
1 0

)
(48)

then Λ1,Λ2 ∈ RD and (I − Λ1) invertible but (I − Λ2) is not invertible.

Following the review of Drton [3], a straight-forward solution is to define

RD
reg := {Λ ∈ RD | det(I − Λ) ̸= 0} (49)

and the linear structural equation model of G under an equal variance partition P as

MP(G) := {(I − Λ)−TΩ(I − Λ)−1 | Λ ∈ RD
reg, Ω ∈ DPP

n }. (50)

Although this seems like a minor change, the parametrization map ϕG is now a rational
map instead of a polynomial map [3, Prop 2.1]. This makes cyclic directed graphs much
more complicated, e.g. ϕG is not injective anymore cf. Remark 2.7. As before, we still
haveMP(G) ⊂ V (IP(G)) ∩ PDn with a similar proof as in Proposition 3.10. However,
the proof of the converse statement as in Theorem 4.1 does not hold anymore since it
used that ϕG has a rational inverse. Finding a valid proof for the converse statement is
beyond the scope of this thesis, so for now, we only know that different vanishing ideals
imply different models. Hence, if the vanishing ideals of graphs are identical we will just
say that the graphs are ideal equivalent.
We can still compute and compare the vanishing ideal in a similar fashion to Section 4.1
and Section 4.2. To apply the implictization theorem as in Section 4.1 we need a polyno-
mial map and a variety in the domain. The inverse of (I−Λ) is det(I−Λ)−1 adj(I−Λ), cf.
Proposition 2.1. In the acyclic case, the topological ordering implied that det(I −Λ) = 1,
however, we cannot use this fact for cyclic graphs. Since we only consider Λ ∈ RD

reg, the
determinant of (I − Λ) never vanishes and ϕG · det(I − Λ)2 is a polynomial map that
preserves the relations among the entries of the matrices that belong to the model. Thus
we can use it for implicitization. To show that RD

reg is a variety we encode det(I −Λ) ̸= 0
with an additional indeterminate t with values in R and the polynomial equation

1− det(I − Λ) · t = 0. (51)

Since there are no additional assumptions on t, Equation (51) holds if and only if det(I−
Λ) ̸= 0 and, thus, RD

reg ×R is an algebraic variety. Now, we can apply the implicitization
theorem as in Section 4.1. We note that all polynomials containing t will be eliminated
in the elimination ideal. We obtain

IP(G) = (⟨ωii − ωjj | ∃P ∈ P : {i, j} ⊂ P ⟩+ ⟨1− det(I − Λ)t⟩+ ⟨Σ− ϕG(Λ,Ω)⟩)∩R[Σ].
(52)

Again, we eliminate Ω by substituting K := (I − Λ)TΣ(I − Λ) = (kij). This yields

IP(G) = (⟨kii − kjj | ∃P ∈ P : {i, j} ⊂ P ⟩+ ⟨1− det(I − Λ)t⟩+ ⟨kij | i ̸= j⟩) ∩ R[Σ].
(53)

Instead of introducing the additional indeterminate t we can also utilize saturation.
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Definition 5.4. Let K ∈ {R,C} and I, J ∈ K[p]. The saturation of I with respect to J
is

I : J∞ := {f ∈ K[p] | ∀g ∈ J ∃N ≥ 0 : fgN ∈ I}. (54)

If J = ⟨g⟩, we omit the brackets around g. Saturation yields a useful proposition.

Proposition 5.5. [2, Thm. 4.4.14] Let K ∈ {R,C} and f1, ..., fs, g ∈ K[p]. Define
I := ⟨f1, ..., fs⟩ and Ĩ := ⟨f1, ..., fs, 1− tg⟩ where t is a new indeterminate. Then,

I : g∞ = Ĩ ∩K[p]. (55)

Readers further interested in saturation might consider the book from Cox, Little, and
O’Shea [2, Chapter 4.4]. Applying this proposition to Equation (53), we finally obtain

IP(G) = ((⟨kii − kjj | ∃P ∈ P : {i, j} ⊂ P ⟩+ ⟨kij | i ̸= j⟩) : det(I − Λ)∞) ∩ R[Σ]. (56)

To compute IP(G), we could use Equation (53), just add 1 − det(I − Λ)t to the set JP
G

defined in Equation (46), and proceed as outlined in the end of Section 4.1. In Macaulay2
and Maple, things are even simpler since both software packages offer algorithms to com-
pute saturations. Such an algorithm is described by Cox, Little, and O’Shea [2, p. 205].
Hence, we adjust the algorithms from Section 4.2 by only adding the saturation with
det(I − Λ) before computing the elimination ideal and by generating all directed graphs
without loops instead of only the directed acyclic graphs. The results of all variance
partitions that the machine from Section 4.3 could compute with this version of the
algorithm before running out of memory during elimination can be seen in Table 6. We
emphasize one more time that these classes are ideal equivalence classes and not covariance
equivalence classes. The number of digraphs with n nodes without loops is 4n(n+1)/2 since
we have n(n + 1)/2 pairs of nodes v, w where there is either v → w, v ← w, both of the
edges before, or none of the edges before. We highlight that the ideal equivalence classes

n Number of digraphs Partition Class size distribution

3 43 = 64
{{1}, {2}, {3}} (1: 7), (2: 3), (3: 3), (42: 7)
{{1, 2}, {3}} (1: 64)
{{1, 2, 3}} (1: 64)

4 46 = 4096 {{1}, {2}, {3}, {4}} (1: 59), (2: 91), (3: 40), (4: 19),
(6: 4), (8: 12), (18: 6), (64: 1)

Table 6: Ideal equivalence class sizes when allowing directed graphs without loops. In
each tuple in the rightmost column, the number before the colon denotes the size of the
class and the number after the colon denotes the number of classes with that particular
size.

of cyclic directed graphs without loops behave completely different than the covariance
equivalence classes of DAGs under no equal error variance assumptions. In particular,
skeletons and unshielded colliders can change within ideal equivalence classes. Moreover,
we note that it seems like cyclic graphs can always change the direction of their cycles
and that cyclic and acyclic graphs can belong to the same equivalence class. The ideal
equivalence class under no equal error variance assumptions depicted in Figure 3 shows
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most of the aforementioned behaviours. We especially emphasize the behaviour of the
outgoing edges of node 4. It might be interesting to obtain results for other partitions
by running the code on a more powerful machine. We remark that the Github repository
mentioned in Section 4.2 contains the ideal equivalence classes of all results investigated
as well as functions and documentation for further exploration.
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1

3
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4

Figure 3: An interesting ideal equivalence class with two members considering directed
graphs without loops with four nodes under P = {{1}, {2}, {3}, {4}}.
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6 Conclusion

Motivated by previous results on covariance equivalence of linear structural equation
models with arbitrary [25] and equal error variances [20, 1], the goal of this thesis was to
investigate covariance equivalence in the more general setting of an arbitrary set of equal
error variance assumptions.
After rigorously describing the linear structural equation model with functional [3] and
graphical properties [24, 5], we re-stated the known results through the new notion of
equal error variance partitions. Then, we reviewed how to associate models with their
vanishing ideals [3] and reviewed Gröbner basis and other computational algebra [24, 2] to
give an algorithmic way to check covariance equivalence through ideal equality. We used
these findings to implement an algorithm in the algebraic geometry software Macaulay2
[8] that can compute covariance equivalence classes under any variance partition and
improved its performance through permutation and outsourcing of heavy computations
to Maple [16]. The main result of this thesis are the covariance equivalence classes of three
and four nodes under any equal variance partition computed by the algorithm. Based on
these results, we stated a conjecture on covariance equivalence of graphs with arbitrary
number of nodes under any equal error variance partition. The conjecture entails the
two known equal error variance settings and explains the computational results on three
and four nodes, cf. Conjecture 5.1. Assuming that this conjecture holds true, we also
computed the possible sizes of covariance equivalence classes of graphs up to six nodes
under arbitrary equal error variance partitions and stated a conjecture in the case of
arbitrary number of nodes, cf. Conjecture 5.2. We remark that we could not give any
proof of the two conjectures. Finally, we extended the implementation of our algorithm to
also compute the equivalence of vanishing ideals of cyclic graphs [3] and presented some
results for directed graphs with three and four nodes. However, these equivalence classes
of vanishing ideals could note guaranteed to be identical to covariance equivalence classes.
The results shown in this thesis might only be the beginning; the ready-to-use code could
be further improved, cf. the thoughts at the end of Section 4.2, and executed on a
more powerful machine with especially more memory capacity to obtain results on larger
equal error variance partitions. These results could either solidify the conjectures or shed
additional light on covariance equivalence of directed acyclic graphs under groupwise equal
error variances.
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Appendix: Covariance equivalence classes of four nodes

We consider DAGs with four nodes and the variance partition P = {{1, 2}, {3}, {4}}. In
section Section 4.3, we have noted that the covariance equivalence classes under P consist
of at most two graphs that have the edge between node 3 and 4 inverted. Thus, we called
the edge between 3 and 4 invertible in those graphs. The following figures show all 69
graphs for which 3→ 4 is invertible. These figures provide enough information to deduce
any covariance equivalence class under P .
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Figure 4: DAGs 1 to 15 with invertible edge 3→ 4
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Figure 5: DAGs 16 to 35 with invertible edge 3→ 4
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Figure 6: DAGs 36 to 55 with invertible edge 3→ 4
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Figure 7: DAGs 56 to 69 with invertible edge 3→ 4
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