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Ich kam, weiß nicht woher, 

ich bin und weiß nicht wer.  

I leb‘, weiß nicht wie lang, 

ich sterb‘ und weiß nicht wann.  

Ich fahr‘, weiß nicht wohin,  

mich wundert, dass ich so fröhlich bin. 

(unbekannt) 

 

 

 

I came, don’t know wherefrom, 

I live, don’t know how long. 

I am and don’t know who, 

I ride, don’t know where to. 

I die and don’t know when. 

I’m amazed to be a gladsome man. 

(unknown) 
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Summary 
 

In plant breeding, genome-based prediction of breeding values is expected to boost 

selection gain because it allows the reduction of breeding cycle lengths and the 

application of high selection intensity due to cost-efficient genotyping and savings in 

phenotyping. Successful application of this novel tool depends heavily on the calibration 

set with which the model employed for genomic prediction is trained as this largely 

determines the prediction accuracy regarding new selection candidates. In this thesis, 

optimum calibration set design was investigated in two commercial breeding programs 

with maize (Zea mays) and rye (Secale cereale). For both programs, staggered, 

interconnected breeding cycles were available.  

In the maize study, prediction accuracies were promising for both grain dry matter yield 

and grain dry matter content but depended strongly on the size of the calibration set 

and its relatedness to the prediction set. If the calibration or prediction set comprised 

genetic groups of different performance levels, a significant effect on prediction 

accuracy was observed with both cross-validation and independent validation. The 

prediction accuracies of 1,000 calibration sets of size N = 500, sampled at random from 

initial datasets consisting of thousands of genotypes, were similar to those of the initial 

sets on average but, due to the large variation among them, some performed better. 

Thus, searching for optimized calibration sets when many possible candidates from 

multiple breeding cycles are available seems promising. Therefore, various genomic 

parameters were investigated for their effect on the prediction accuracy of different 

calibration sets. A close association among the effective sample size (Neff), average 

maximum kinship (umax), and linkage phase similarity (LPS) was observed but was largely 

attributable to their confounding with sample size. None of these parameters proved 

useful for identifying highly predictive subsets for calibration. Another measure, the 

expected reliability calculated from genomic data of the prediction sets, seems to be 

the only robust predictor of the accuracy of different calibration sets. 

 

In the study with rye, data for grain yield, plant height, and thousand-kernel weight were 

available. The prediction accuracies of calibration sets sampled from the same and 

different breeding cycles as the candidates to be predicted by genomic and pedigree-

based prediction was investigated. The latter approach was notably inferior to genomic 
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prediction if the model calibration was performed with aggregated data from multiple 

cycles. The accuracy of genomic prediction was about 0.70 for all traits when model 

training was based on aggregated data from all cycles, and exceeded within-cycle 

accuracy in all cases.  

Combining the findings from both studies, aggregate data from several preceding 

cycles is recommended for compiling the calibration set for new breeding cycles despite 

its decreasing relatedness over time. Further, it seems promising to concentrate future 

efforts not only on optimizing the composition of the calibration set but accounting for 

the population structure of the prediction set as well, especially if the latter displays a 

clear population structure. Tailor-made calibration sets for unphenotyped families might 

be useful to maximize the accuracy of genome-based prediction. 
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Zusammenfassung 

Genom-basierte Zuchtwertvorhersagen von Selektionskandidaten lässt einen 

Quantensprung beim Selektionsgewinn in der Hybridzüchtung erwarten. Mit genom-

basierter Selektion ist es möglich, die Zeit für einen Selektionszyklus deutlich zu senken 

und die Selektionsintensität zu erhöhen, da ein Teil des Aufwands für die 

Phänotypisierung wegfällt. Eine erfolgversprechende Anwendung der neuen Methode 

hängt stark von den Kalibrationsdaten ab, mit denen das Modell für die Vorhersage 

erstellt wird, da diese die Vorhersagegenauigkeit stark bestimmen. In dieser Arbeit 

wurde die bestmögliche Zusammensetzung eines Kalibrationsdatensatzes anhand von 

zwei kommerziellen Zuchtprogrammen bei Mais und Roggen untersucht. Für beide 

Datensätze lagen Daten aus mehreren Zuchtzyklen vor. 

In der Maisstudie waren die Vorhersagegenauigkeiten für die beiden Merkmale 

Kornertrag und Kornfeuchte vielversprechend, jedoch stark abhängig von der Größe 

des Kalibrationsdatensatzes und der Verwandtschaft zwischen Kalibrations- und 

Vorhersagedaten. Unterschiede in den phänotypischen Mittelwerten verschiedener 

genetischer Gruppen hatten eine starke Auswirkung auf die Vorhersagegenauigkeit, wie 

mit Kreuzvalidierung und unabhängigen Validierungsmethoden gezeigt werden konnte. 

Die Vorhersagegenauigkeiten von 1000 zufällig aus den vorhandenen Datensätzen 

gezogenen Kalibrationsdatensätzen mit N=500 waren im Mittel vergleichbar mit denen 

der Grundgesamtheiten. Einige der Stichproben erzielten aber deutlich höhere 

Vorhersagegenauigkeiten, da die Stichproben eine große Spannweite in der 

Vorhersagegenauigkeit aufwiesen. Deswegen scheint es erfolgversprechend, aus einer 

großen Grundgesamtheit Individuen für den Kalibrationsdatensatz auszuwählen, die für 

eine Vorhersage optimal sind. Dieser Umstand war Motivation, den Zusammenhang 

zwischen genomischen Parametern und der Vorhersagegenauigkeit zu untersuchen. Es 

zeigte sich ein enger Zusammenhang für die Parameter effektive Populationsgröße Neff, 

die durchschnittliche Verwandtschaft umax und die Ähnlichkeit der Kopplungsphasen 

LPS (englisch: linkage phase similarity). Leider konnte keiner der Parameter für die 

Erstellung eines Teildatensatzes mit hoher Vorhersagegenauigkeit herangezogen 

werden, da auch eine enge Beziehung zur Stichprobengröße des 

Kalibrationsdatensates bestand. Einzig als robuster Prädiktor für 

Vorhersagegenauigkeit in Frage zu kommen scheint die aus den genomischen 

Verwandtschaftsdaten berechnete erwartete Schätzwertsicherheit. Diese wurde in 
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verschiedenen Kalibrierungsdatensätzen mit den erreichten Vorhersagegenauigkeiten 

in Beziehung gesetzt. 

In der Roggenstudie lagen Daten zu Kornertrag, Tausendkorngewicht und Pflanzenhöhe 

vor. Es wurden Stichproben für die Kalibration aus den gleichen und anderen 

Zuchtzyklen gezogen, die auch für die Vorhersagedatensätze verwendet wurden. Für 

alle Stichproben wurden Zuchtwerte mit genomischen und Pedigree-basierten 

Zuchtwerten errechnet. Die Zuchtwerte auf Basis des Pedigrees waren deutlich 

schlechter in der Vorhersagegenauigkeit, vor allem, wenn die Kalibration aus 

verschiedenen Zuchtzyklen zusammengesetzt war. Die genomischen 

Vorhersagegenauigkeiten lagen im Bereich von 0.70 für alle Merkmale über aggregierte 

Datensätze aus Zuchtzyklen hinweg und waren höher als die Vorhersagen innerhalb 

eines Zuchtzyklus. 

Aus den Ergebnissen der beiden Studien kann geschlossen werden, dass Daten aus 

mehreren vorhergehenden Zuchtzyklen zusammengefasst werden sollten, trotz der 

über die Zeit abnehmenden Verwandtschaftsnähe. Außerdem scheint es 

erfolgversprechend nicht nur auf die Zusammensetzung des Kalibrationsdatensatzes zu 

achten, sondern auch auf die Populationsstruktur innerhalb der Linien, die vorhergesagt 

werden sollen. Bei deutlichen Populationsstrukturen sollten die Kalibrationsdatensätze 

speziell für nicht phänotypisierte Familien bzw. Teilpopulationen angepasst werden. 
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Key message  

The calibration data for genomic prediction should represent the full genetic spectrum 

of a breeding program. Data heterogeneity is minimized by connecting data sources 

through highly related test units.  

Abstract 

One of the major challenges of genome-enabled prediction in plant breeding lies in the 

optimum design of the population employed in model training. With highly 

interconnected breeding cycles staggered in time the choice of data for model training 

is not straightforward. We used cross-validation and independent validation to assess 

the performance of genome-based prediction within and across genetic groups, testers, 

locations, and years. The study comprised data for 1,073 and 857 doubled haploid lines 

evaluated as testcrosses in 2 years. Testcrosses were phenotyped for grain dry matter 

yield and content and genotyped with 56,110 single nucleotide polymorphism markers. 

Prediction accuracies strongly depended on the relatedness of the doubled haploid 

lines from the estimation set with those on which prediction accuracy was assessed. 

For scenarios with strong population heterogeneity it was advantageous to perform 

predictions within a priori defined genetic groups until higher connectivity through 

related test units was achieved. Differences between group means had a strong effect 

on prediction accuracies obtained with both cross-validation and independent 

validation. Prediction accuracies across subsequent cycles of selection and years were 

only slightly reduced compared to prediction accuracies obtained with cross-validation 

within the same year. We conclude that the optimum data set for model training in 

genome-enabled prediction should represent the full genetic and environmental 

spectrum of the respective breeding program. Data heterogeneity can be reduced by 
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experimental designs that maximize the connectivity between data sources by common 

or highly related test units. 

 

Candidate’s contribution 

The candidate contributed significantly to the data analysis. The candidate contributed 

significantly to the development and curation of the software package “synbreed”, 

which was used in the data analysis. He discussed and interpreted the results with the 

coauthors and read, edited, and approved the final manuscript.   
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Key message 

Genomic prediction accuracy can be significantly increased by model calibration across 

multiple breeding cycles as long as selection cycles are connected by common 

ancestors. 

 

Abstract 

In hybrid rye breeding, application of genome-based prediction is expected to increase 

selection gain because of long selection cycles in population improvement and 

development of hybrid components. Essentially two prediction scenarios arise: (1) 

prediction of the genetic value of lines from the same breeding cycle in which model 

training is performed and (2) prediction of lines from subsequent cycles. It is the latter 

from which a reduction in cycle length and consequently the strongest impact on 

selection gain is expected. We empirically investigated genome-based prediction of 

grain yield, plant height and thousand kernel weight within and across four selection 

cycles of a hybrid rye breeding program. Prediction performance was assessed using 

genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A 

total of 1040 S2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 

S2 lines were phenotyped in seven or eight locations. The performance gap between 

GBLUP and PBLUP increased significantly for all traits when model calibration was 

performed on aggregated data from several cycles. Prediction accuracies obtained from 

cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS 

= 832) were used for model training and exceeded within-cycle accuracies in all cases. 

As long as selection cycles are connected by a sufficient number of common ancestors 

and prediction accuracy has not reached a plateau when increasing sample size, 

aggregating data from several preceding cycles is recommended for predicting genetic 

values in subsequent cycles despite decreasing relatedness over time. 
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Key message 

Model training on data from all selection cycles yielded the highest prediction accuracy 

by attenuating specific effects of individual cycles. Expected reliability was a robust 

predictor of accuracies obtained with different calibration sets. 

 

Abstract 

The transition from phenotypic to genome-based selection requires a profound 

understanding of factors that determine genomic prediction accuracy. We analysed 

experimental data from a commercial maize breeding programme to investigate if 

genomic measures can assist in identifying optimal calibration sets for model training. 

The data set consisted of six contiguous selection cycles comprising testcrosses of 

5968 doubled haploid lines genotyped with a minimum of 12,000 SNP markers. We 

evaluated genomic prediction accuracies in two independent prediction sets in 

combination with calibration sets differing in sample size and genomic measures 

(effective sample size, average maximum kinship, expected reliability, number of 

common polymorphic SNPs and linkage phase similarity). Our results indicate that 

across selection cycles prediction accuracies were as high as 0.57 for grain dry matter 

yield and 0.76 for grain dry matter content. Including data from all selection cycles in 

model training yielded the best results because interactions between calibration and 

prediction sets as well as the effects of different testers and specific years were 

attenuated. Among genomic measures, the expected reliability of genomic breeding 

values was the best predictor of empirical accuracies obtained with different calibration 

sets. For grain yield, a large difference between expected and empirical reliability was 

observed in one prediction set. We propose to use this difference as guidance for 

determining the weight phenotypic data of a given selection cycle should receive in 

model retraining and for selection when both genomic breeding values and phenotypes 

are available. 
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 Introduction 

Food. Everyone needs food almost every day. At the beginning of human history, people 

lived as hunters and gatherers. Plants and animals occurring in nature were used; 

sometimes, long distances had to be covered to find them. With the beginning of 

sedentary lifestyles, plants and animals that exhibited positive properties were 

propagated in a targeted manner. Animals were fed to compensate for seasonal 

fluctuations and plants were fertilized or irrigated if necessary. From this point on, plants 

and animals could be selected and bred according to human requirements. The 

selection of desired properties was long based purely on visible phenotypes, but are 

these are subject to environmental influences and, thus, only partially heritable, genetic 

improvement was a rather slow process. Nevertheless, impressive achievements have 

been made through selection and breeding over the centuries. Rye, for example, was 

originally a weed that occurred in fields of common wheat and migrated from the Fertile 

Crescent to Europe, where it was selected as a cereal for human consumption 

(Miedaner 2013). Likewise, maize was developed by human selection from its wild 

ancestor teosinte in Mexico, taking advantage of mutations in a relatively small number 

of genes. While teosinte has many inflorescences and seeds with hardened fruit cases, 

maize has few ears and soft kernels and depends on humans for propagation. Besides 

such changes in characters with relatively simple inheritance, quantitative traits such as 

yield have also undergone impressive improvements in the millennia after agriculture 

began.  

At the beginning of the 20th century, plant breeding was professionalized and 

systematized after the rediscovery of Mendel’s laws. In many countries, including 

Germany, breeding companies were founded—often by farmers—and conducted field 

trials to find the best varieties from genotypes within existing landraces or by generating 

new genetic variation through intra-specific crosses and subsequent inbreeding. This 

improved cultivar performance significantly.  

The Food and Agriculture Organization of the United Nations (FAO) provides statistics 

on agricultural production starting in 1961. Over the last six decades, the yield of 

important field crops has doubled or even tripled (Figure 1). Voss-Fels et al. (2019) 

showed that these impressive increases in productivity as well as other important traits 

in wheat are mainly due to the genetic improvement of our crops. The acreage devoted  
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Figure 1: Yield development for important field crops worldwide. Except for sugar beets only 

the usage of grains is considered. (FAOSTAT 2021). 

 

Figure 2: Acreage of important crops worldwide. (FAOSTAT 2021). 
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to maize was expanded tremendously after the introduction of hybrid breeding (Figure 

2). Commercialization of hybrid seed allows intensive breeding because farmers buy 

certified seed every year. Thus, there is a higher return on investment to breeders 

compared to line breeding. Meanwhile, the rye acreage has slightly decreased despite 

the introduction of hybrid varieties in the 1980s. In the future, this trend may be reversed 

with new end-uses, such as fermentation for biogas production. 

The focus of this thesis lies on the optimization of advanced cycle breeding of two 

hybrid crops, rye and maize, with the aid of genomic selection. Rye (Secale cereale L.) 

belongs to the family Poaceae and genus Secale. Rye has a diploid genome of seven 

chromosomes and a genome size of about 7.9 gigabases with more than 90% repetitive 

sequences (Bauer et al. 2017). Within the Poaceae, rye belongs to the tribus Triticeae 

together with barley and wheat (Jäger et al. 2003). Barley, rye, and wheat presumably 

evolved from a common Triticeae progenitor (Middleton et al. 2014, Murat et al. 2014). 

The genomes of all three cereals are largely syntenic, except for numerous 

rearrangements (Devos et al. 1993, Martis et al. 2013). Rye evolved, like barley and 

wheat, in the Fertile Crescent in the Near East and started its spread after domestication 

in Anatolia (Hilman 1978). From the Middle Ages on, rye was intensively cultivated and 

became the main bread cereal in Middle Europe (Behre 1992). Today, Germany, Poland, 

and Russia are the main producers of winter rye. Rye is mainly grown in dry areas on 

poor and sandy soils due to its excellent tolerance of unfavorable climatic or soil 

conditions (FAOSTAT 2021). The acreage of rye for grain production has been 

decreasing continuously since 1960 (FAOSTAT 2021, Figure 2), but it might gain 

importance in the context of improving the sustainability of plant production. Rye is an 

important cover crop to keep fields under cultivation in winter and can contribute to 

more diverse crop rotation systems. Rye is often planted before maize or sorghum and 

used as silage for animal feed (Miedaner 2013).  

The second species used in this study is maize. Maize (Zea mays L.) belongs to the 

family Poaceae and genus Zea. The plants are diploid with ten chromosomes and a 

genome size of about 2.3 gigabases (Schnable et al. 2009). Maize was domesticated 

about 10,000 to 7,000 years ago from the wild grass teosinte (Zea mays ssp. 

parviglumis) in Mesoamerica (Beadle 1939; Goodman and Walton 1988). From there, 

maize spread quickly over both American continents and became popular even in the 

cool growing areas of modern Canada. The introduction of maize to Europe is attributed 

to Christopher Columbus, who brought maize to Europe after his first expedition to the 

New World in 1493. In the following years, further explorers brought maize germplasm 
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from other American regions to Europe, mainly from the Caribbean islands but also from 

Canada (Tenaillon and Charcosset 2011, Mir et al. 2013). During its spread and 

cultivation in various areas of Southern, Central, and Western Europe, landraces of 

maize became well adapted to colder climatic conditions (Dubreuil et al. 2006). Today, 

maize cultivation spans a vast range of latitudes and longitudes and it is one of the most 

important crops (Crow 1998, Barcaccia et al. 2003) in Germany and worldwide. 

The increase in maize yield during the last six decades in Germany is largely the result 

of hybrid breeding and the introduction of early-maturing cultivars. Maize combines high 

productivity with relatively low requirements for plant protection. The wide variety of 

possible end uses also contributes its success as a crop. The whole plant can be used 

as silage for feeding livestock or for biomass and energy production. Maize grains can 

be used directly for human consumption, but also as feed, for the production of ethanol, 

or as raw material for bioplastics. 

 

 

Figure 3: Grain yield development of the most important crops in Germany relative to 1961 

baselines. (FOASTAT 2021) 
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Figure 4: Acreage of maize in Germany separated by end use. Before 1990, the values 

represent only West Germany, omitting the German Democratic Republic. (DESTATIS 2021) 

 

In Germany, the acreage of grain maize has increased only slightly (DESTATIS 2021, 

Figure 4). It is mainly used for silage production in Germany. To produce silage, the 

whole plant is chopped, compressed, and preserved through natural lactic acid 

fermentation. From 1960 on, maize silage replaced other crops, such as beets, as cattle 

feed. During the 1990s, the maize acreage decreased with the decreasing number of 

cattle. In the first decade of the 21st century, the acreage of maize for silage production 

increased impressively again as government programs promoted the generation of 

renewable energy. To use maize for renewable energy production, bacteria in huge 

fermenters convert silage, over about 35 days, into methane, which is then converted 

into electricity by generators. 
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1.1 From phenotypic to genomic selection 

 

1.1.1 Quantitative genetics and breeding 

With his famous laws derived from experiments with peas, Gregor Mendel (1822–1884) 

laid the foundation of modern genetics. Mendel was fortunate to work with simply 

inherited qualitative traits controlled by one or two loci. Even after the rediscovery of 

Mendel’s laws in 1900, the hereditary foundation of quantitative traits was still heavily 

disputed for almost two decades. Ronald A. Fisher offered a breakthrough in 1918 with 

his seminal paper on “The correlation between relatives on the supposition of Mendelian 

inheritance”, which is considered the foundation of quantitative genetics. He explained 

that quantitative traits, such as height in humans, were driven by a genetic component, 

environmental influence, and possible interactions between these two factors. Most 

importantly, he explained the hereditary portion as the action of many loci, each having 

only a small effect on the expression of the trait; nowadays, this is known as the 

infinitesimal model of quantitative genetics. In his mathematical derivations, Fisher 

allowed for additive and dominant gene action as well as epistatic interactions between 

loci, and decomposed the total genetic variance according to these components. Thus, 

he was able to describe the resemblance between relatives based on these 

components, which is a fundamental principle of breeding. 

A further milestone in quantitative genetics was Malecot’s (1948) proposition to quantify 

relatedness between relatives. He introduced the coefficient of coancestry as the 

probability that two alleles taken at random from two individuals at a given genetic locus 

are “identical by descent”. The coefficient of coancestry can be calculated from 

pedigree data. For many genotypes, the values are commonly stored in the pedigree-

based numerator relationship matrix, which provides the basis for estimating the 

components of the phenotypic and genotypic variances and covariances observed in 

experimental data (Henderson 1974). 

In his 1918 paper, Fisher gave an example for the percentage of phenotypic variance 

that is explained by “essential genotypes,” which corresponds to the formal definition 

of heritability or the ratio of the genetic variance divided by the phenotypic variance 

corrected for known effects such as nutrition, sex, or controlled environmental factors. 

Wright (1920) introduced the correlation between genotype and phenotype as a 

measure of heredity. The square of this correlation is the heritability, denoted as h², 

which corresponds to the regression coefficient of the genotypes on the phenotypes. In 
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breeding, narrow-sense (h2) and broad-sense (H2) heritability are differentiated. To 

calculate narrow-sense heritability, the variance explained by additive effects is used as 

the numerator and divided by the phenotypic variance. Broad-sense heritability is not 

strictly defined, but the genetic variance (including additive, dominance, and epistatic 

effects) is commonly used as the numerator. In plant breeding, the “operative” 

heritability suggested by Strube (1967), is commonly used, where the experimental error 

and genotype x environment interaction variances in the denominator are divided by the 

number of replications (R) and R x the number of test environments (E). Crucially, this 

heritability is specific to a given trait, the studied population, and the test environments 

used for phenotyping. This can be illustrated in the heritabilities estimated in this study 

(Table 1). In the maize experiments, comprising six different datasets (S1 to S6), two 

sets (S4 and S6) showed rather low heritabilities for grain yield, whereas set S3 had low 

heritability for grain moisture. The reasons for these observations are different. In S4, 

the genetic variance for yield is low; in S6, the experimental error variance is large; and 

moisture in S3 was subject to large interactions between genotypes and environments. 

In the rye experiment of this study, cycle C3 showed lower heritabilities for all traits due 

to rather specific environmental conditions during the study year. Nevertheless, 

heritabilities for a given trait are often similar among populations and datasets (Visscher 

et al. 2008) as confirmed, for example, for plant height in the rye experiments. In 

addition, in plant breeding, broad-sense heritabilities are generally quite high for most 

traits if experiments are replicated and conducted in several environments. 

The genetic improvement of crops depends on efficient selection and breeding progress 

is commonly measured by the selection response, denoted as ΔG. Selection response 

is defined as the difference between the mean of the offspring of the selected fraction 

of genotypes and the mean of the population from which the parental genotypes were 

selected. The well-known breeder’s equation relates ΔG to its relevant components with 

the following formula: ΔG = h² S = h² σp i = h σg i (Falconer and Mackay, 1996). S denotes 

the selection differential, which is the difference between the mean of the selected 

genotypes and the population mean, and h² represents the heritability. The selection 

differential can be expressed as product of the selection intensity (i) and the phenotypic 

standard deviation (σp). The selection intensity iscalculated as the expectation of a 

random variable from a truncated normal distribution with probability α in the tail, and 

therefore standardized without units. Naturally, ΔG can 
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Table 1: Broad sense heritabilities in the maize and rye data used in this thesis. The traits 

are grain dry matter yield (GDY), grain dry matter content (GDC), plant height (PHT) and thousand 

kernel weight (TKW). 

Cultivar Dataset Year 
Heritability 

GDY GDC PHT TKW 

Maize 

S1 2010 0.86 0.96   

S2 2011 0.78 0.97   

S3 2012 0.75 0.75   

S4 2013 0.56 0.92   

S5 2014 0.74 0.88   

S6 2015 0.52 0.88   

Rye 

C1 2009 0.86  0.91 0.90 

C2 2010 0.86  0.94 0.80 

C3 2011 0.77  0.89 0.76 

C4 2012 0.83  0.94 0.87 

 

also be expressed as the product of the square root of the heritability, the genetic 

standard deviation (σg), and the selection intensity. In genome-based selection, the 

square root of the heritability is replaced with the prediction accuracy, which denotes 

the correlation between the estimated and the true breeding value. When estimated 

from data, the prediction accuracy is the correlation between the observed phenotype 

and the predicted breeding value divided by the square root of the heritability (Dekkers 

2007). 

In many breeding programs, the aim is not only to select the best candidates but to 

achieve improved performance in their progenies. This led to the introduction of the 

concept of breeding values in animal breeding. The breeding value of a candidate is 

defined as twice the deviation of the mean of its offspring from the population mean 

(Bernardo 2020a). Thus, the breeding value of milk yield for a bull can be estimated by 

the average milk yield of his daughters. Breeding values depend exclusively on the 

additive effects of alleles because only individual alleles, and not the allele combinations 
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of the candidate, are transmitted to the next generation. Thus, dominance effects that 

depend on the allele combination at the same locus in an individual, as well as epistatic 

effects that depend on allele combinations at different loci, do not contribute to an 

individual’s breeding value. 

A major question in the calculation of breeding values is how to weight the information 

from different relatives and traits. Henderson (1963, 1975, 1984) solved these problems 

by applying the mixed linear model to describe the various sources of information and 

their connection to a candidate’s breeding value. He developed the statistical 

framework for calculating best linear unbiased predictions (BLUPs) to obtain 

candidates’ breeding values from mixed-model equations and developed numerical 

solutions (Schön and Simianer 2015). The BLUP approach enormously improved 

selection decisions in animal breeding, especially for traits with low heritability. In plant 

breeding, BLUPs were adopted much later. One reason was that, in plant breeding, 

genetically identical plants such as hybrids, clones, or inbred lines can be produced and 

used in experiments with appropriate field designs for controlling experimental error, 

while phenotypic records in animal breeding usually come from production farms, where 

structured designs are typically impossible. Hence, in animal breeding, the collected 

data are highly unbalanced, numerous confounding effects must be modeled, and 

heritabilities are much lower than those in plant breeding. One of the first adoptions of 

BLUP in plant breeding was the prediction of maize single-cross hybrid performance 

based on molecular marker data and information from related hybrids (Bernardo 1994). 

 

1.1.2 Implementation of markers in breeding 

 

The advent of DNA markers more than three decades ago opened new avenues for 

genetic research and plant breeding. The first milestone was the introduction of 

restriction fragment length polymorphisms (RFLPs, Botstein et al. 1980), followed by 

microsatellites (SSRs, Akkaya et al. 1992), and amplified fragment length 

polymorphisms (AFLPs, Vos et al. 1995). A significant breakthrough was the use of 

single nucleotide polymorphisms (SNPs, Jordan and Humphries 1994) supported by 

advances in DNA sequencing techniques. With this advancement, we can now saturate 

the entire genomes of many plant species with high-density and high-throughput DNA 

markers. Thus, the genetic architecture of complex traits can be dissected into the 

contributions of small genomic segments or even individual genes, commonly referred 
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to as quantitative trait loci (QTL). To detect QTL and map markers, different types of 

mapping populations can be used, such as biparental families, nested association 

mapping (NAM) populations, multiparent advanced generation intercross populations 

(MAGIC), or association panels (Gage et al. 2020). To improve the power of QTL 

detection and mapping resolution, either recombinant inbred lines (RIL) or doubled-

haploid lines from these populations are phenotyped and genotyped. 

Figure 5 gives an overview and schematic representation of the different types of 

mapping populations used in the literature. A major difference among them is the choice 

of parents and the subsequent mating design. In plant breeding, most approaches 

advance the genetic material into fully homozygous pure-breeding lines, either by 

selfing or application of doubled-haploid technology (Molenaar and Melchinger 2019). 

Due the increased number of meioses, selfing steps lead to smaller haplotype blocks 

and thus to higher map resolution. In biparental families, two parents are crossed to 

produce the F1 generation, which serves as starting point for line development, as 

commonly practiced in many breeding programs. To establish a NAM population, 

several lines are crossed to a central inbred line. This set of half-sib families serves as 

a starting point for line development. To produce a MAGIC population, a distinct number 

of genetically diverse lines are specifically crossed with each other three or more 

generations before inbreeding is initiated. In an association panel, many very diverse 

lines, often collected from gene banks, landraces, or breeding programs, are used 

directly for genetic analyses. All approaches share that genome fragments of different 

sizes and contents are analyzed for their association with quantitative trait expression. 

If the appropriate statistical tests are statistically significant for one or several markers 

in a genomic region, that marker is likely linked to a QTL. Such markers can then be 

used in marker-assisted selection (MAS), where selection decisions are made based on 

the marker genotype of the candidate. Successful examples in practical plant breeding 

include resistance to rust and eyespot, recessive resistance to yellow mosaic viruses 

and powdery mildew in barley, and resistance to Fusarium head blight in wheat 

(Miedaner and Korzun 2012). Other examples include resistances to bacterial and fungal 

diseases in rice (Sanchez and Khush 2000) and seedling emergence in maize (Yousef 

and Juvik 2001). However, for complex traits, such as grain yield in maize, MAS success 

was rather inconsistent, as the contradictory results reported by Bouchez et al. (2002) 

and Openshaw and Frascaroli (1997) illustrate. In practical animal breeding, MAS of 

major genes plays an important role for selection against deleterious mutations that 

compromise important production traits (Jung et al. 2014; Kipp et al. 2016; Pausch et 
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al. 2016). Many statistical methods have been developed to integrate MAS directly into 

the breeding process (Würschum 2012). The systematic mathematical integration of 

markers in selection indices was proposed by Lande and Thompson (1990). 

 

Figure 5: Comparison of common mapping populations in plants. BP populations are derived 

from a single biparental cross, resulting in progeny that are a mosaic of long haplotypes from 

the two parents. Limited recombination restricts the mapping resolution. NAM populations 

consist of numerous RIL families that share a common parent (shown in black). The historical 

recombination accumulated in the parents permits high map resolution and many alleles. MAGIC 

populations are often derived from 8 or 16 parental lines over several generations of 

recombination. Similar to NAM populations, MAGIC populations offer increased map resolution 

and allelic richness compared with BP populations. Association panels are a sample of natural 

variation from a larger, existing population that has accumulated historical recombination events 

and mutations. They frequently have more recombination and allelic richness than the other three 

populations, but are often burdened with an inherent population structure that can be difficult to 

account for. Black “x”s indicate crosses, and circled “x”s indicate selfing until homozygosity is 

achieved. Ellipses indicate many other individuals in the population or family (taken from Gage 

et al. 2020 Figure 1, slightly modified). 

A landmark in the selection of complex traits based on DNA information was Meuwissen 

et al.’s (2001) seminal paper suggesting the use of genome-wide dense marker maps 

to predict the total genetic value of selection candidates. To establish the association 

between marker information and phenotypic trait expression, these authors used the 
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BLUP approach, assuming markers as random effects sampled from a distribution with 

uniform variance, and two Bayesian methods for estimating the effects of all markers 

simultaneously. The BLUP approach corresponds to ridge regression (Hoerl and 

Kennard 1970, Piepho 2009) and Habier et al. (2007) showed its equivalence with the 

genomic BLUP (GBLUP) approach. In GBLUP, a kinship matrix is calculated from the 

marker data, leading to a perfect correlation of the resulting predicted breeding values 

from the two approaches. Genomic selection was rapidly adopted in practical breeding 

programs and has since been applied to many important traits in animal (Hayes et al. 

2009) and plant breeding (e. g., Crossa et al. 2014). In addition to BLUP, other statistical 

methods have been developed for genome-based prediction, including Bayesian 

methods (Gianola et al. 2009), reproducing kernel Hilbert spaces regression (de los 

Campos et al. 2009), and neural networks and machine learning (Maenhout et al. 2007, 

Montesinos López et al. 2021). However, a comparison of these methods based on 

various datasets and traits failed to reveal a superior method (Heslot et al. 2012). The 

relative advantage of a method depends mainly on whether the assumptions associated 

with it, such as the absence of population structure or simple genetic trait architecture, 

are met. An improvement of the prediction accuracy estimated as Pearson’s correlation 

between the predicted and observed phenotypic values divided by the square root of 

heritability could be achieved in some cases by differentially weighting effects and 

constructing trait-specific kinship matrices (Zhang et al. 2014). Overall, GBLUP has 

emerged as the gold standard and benchmark for assessing the performance of new 

prediction methods because it is easy to apply and yields robust results across many 

selection scenarios (Lorenzana and Bernardo 2009, Bernardo 2020b). Therefore, 

GBLUP was chosen in this thesis as the statistical method for calculating genomic 

estimated breeding values. 
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1.2 Hybrid breeding 

This thesis is based on data from hybrid breeding programs in rye and maize. A basic 

prerequisite for hybrid breeding is sufficient heterosis in agronomically important traits, 

with yield as the first priority (Becker 2019). In rye, C. Kleinert first noticed the heterosis 

effect, without knowing anything about the phenomenon and its background. He 

crossed Swedish Snow Rye with Correns Rye and reported more vigorous plants than 

the Probsteier population (Rimpau 1883). In maize, farmers had already noticed 

increased vigor when crossing unrelated parents in the 19th century (Kingsbury 2009). 

This inspired William J. Beal to suggest producing hybrids in maize populations by 

detasseling one cultivar and harvesting the seed obtained by cross pollination. In 

practice, the gain in yield was low and, therefore, the effort to produce hybrid seeds 

was too high for the farmers (Kingsbury 2009).  

George H. Shull had a scientific interest in the hybrid technique and noticed the value 

of inbreeding for developing parental lines, although inbreeding depression in pure-bred 

lines was high (Shull 1908, 1909). Shull first named the phenomenon of more vigorous 

hybrid plants “heterozygosis;” later, he coined the term “heterosis” (Shull 1914). In 

general, heterosis denotes the superiority of the offspring over the mean of the parents. 

Many explanations exist for the phenomenon of heterosis, but the genetic causes 

remain elusive. Since the first findings on heterosis, it has been known that unrelated 

parents are necessary to produce more vigorous hybrid offspring. Hence, for a hybrid 

breeding program, at least two distinct, genetically distant groups, the heterotic pools, 

are required. Together they form a heterotic pattern.  

For hybrid maize breeding, Figure 6 gives a schematic overview of the selection steps 

required within each heterotic pool. At the beginning of each selection cycle, new 

variation is generated by crossing a few elite parental lines to produce many selection 

candidates. In the first selection step, many candidates are discarded based on 

unsatisfactory performance per se. The remaining candidates are then crossed to one 

or several inbred lines as single- or double-cross testers from the opposite pool. The 

evaluation of the testcrosses provides information about the general combining ability 

(GCA) of the candidates with the opposite pool. These GCA values reflect the additive 

genetic values of the candidates and, in the absence of epistasis, correspond to half 

the breeding values in animal breeding, which also reflect the additive genetic effects 

with partners from the same population. In a next step, a few of the best candidates 
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from both pools are crossed and tested as experimental hybrids to find the 

combinations with the best performance compared with commercial and other 

experimental hybrids. The genetic values estimated for the hybrids in this stage 

comprise not only the GCA effects but also the specific combining ability (SCA) of the 

hybrid, which depends on additive and dominance effects.  

 

 

Figure 6: Principle of one cycle of reciprocal recurrent selection. (modified after Schmidt 

2004) 

 

Different heterotic pools of maize exist. In the US Cornbelt, the main heterotic pools are 

the Iowa Stiff Stalk Synthetic (BSSS) and non-BSSS pools; the latter is mainly 

composed of genetic material derived from the Lancaster population. Both pools are 

dent maize types. In Central Europe, a very important pollen parent (male) heterotic pool 

is flint material tracing back to landraces cultivated in Europe for centuries after the 

introduction of maize from the Americas. This material is well adapted to the cool 

climate in Europe. The seed parent (female) pool is composed of early maturing dent 

cultivars introduced after World War II at the beginning of hybrid breeding. In the maize 

experiments of this study (Albrecht et al. 2014, Auinger et al 2021), the implementation 

of genome-based selection was investigated in the dent seed parent pool and the flint 

pollen parent pool supplied the testers used to produce the testcross seed. The 

selection candidates were fully homozygous inbred lines produced with doubled-

haploid (DH) technology. The introduction of DH technology was a milestone in maize 
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breeding. The development of inducer genotypes for in vivo haploid induction permitted 

the production of DH lines at low costs (Molenaar and Melchinger 2019). Chase (1952) 

had already described spontaneous haploids in maize, but rates below 1% were 

inefficient for commercial breeding. In subsequent years, higher rates were achieved 

and led to the development of widely used inducer lines such as RWS and UH400 

(Prigge et al. 2011). Treatment of haploid seedlings with colchicine, chemicals, or nitrous 

oxide triggers doubled chromosomes at a high rate, and these homozygous diploid 

plants are generally fertile, allowing selfing. This technique is standard in modern 

breeding programs because it shortens the cycle length, the most important lever for 

increasing the selection gain per unit of time.  

Compared with maize, rye breeding must accommodate additional technical 

procedures. Rye is an allogamous species with an effective gametophytic self-

incompatibility system (Lundqvist 1956). The development of inbred lines requires self-

fertility genes, which occur at very low frequencies in open-pollinated populations. 

Moreover, rye is recalcitrant to the production of DH lines and the method for producing 

haploid plants is highly sophisticated (Immonen and Tenhola-Roininen 2003). 

Furthermore, hybrid seed production on a commercial scale requires an absence of 

fertile pollen in the seed parent, which cannot be achieved by hand emasculation as in 

maize. One solution is the use of cytoplasmic male sterility (CMS) (Edwardson 1970) in 

the seed parent pool. The pollen parent must then possess a dominant restorer gene to 

restore fertility in the hybrids, if they are cultivated for grain production.  

Before the discovery of self-fertility genes (Wricke 1969) and cytoplasmic male sterility 

in an Argentinean genetic resource (Geiger and Schnell 1970), rye varieties were open-

pollinated populations. In a diallel of seven populations (Hepting 1978), the two 

population varieties Carsten and Petkus exhibited the highest population heterosis and 

were subsequently used as separate heterotic groups to establish hybrid breeding 

programs in rye. Traditionally, in hybrid rye breeding, lines of the Petkus pool are used 

as seed parents and lines of the Carsten pool are used as pollen parents (Geiger and 

Miedaner 2009). In the rye experiment of this study (Auinger et al. 2016), the 

implementation of genome-based selection was investigated in the pollen parent pool 

and the seed parent pool supplied the testers used to produce the testcross seed. As 

strong inbreeding depression is still an issue in most rye breeding programs, inbred 

lines are not fully homozygous, Auinger et al. (2016) describe in their study of S2 lines. 

Because inbreeding depression is still significant in rye, double-cross hybrids are 

produced for commercialization, unlike maize, where single crosses are the main type 
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of hybrid. As in other cereals, yield is the primary trait to breed for, but yield stability, 

yield components, plant height, resistance to fungal diseases, and tolerance of abiotic 

stresses such as severe frost, drought, and heat are also relevant. Because rye is mainly 

cultivated as a winter cereal and self-incompatible, the selection cycles are long. 

Therefore, the development of hybrid components takes many years.  

In crops, a hybrid breeding scheme serves two purposes: the development of new 

hybrid components and the accumulation of favorable alleles in each heterotic pool. 

Modern breeding programs are called “second cycle” or “advanced cycle” breeding 

programs because high-performing inbred lines are “recycled” after selection for GCA 

and SCA to produce the base material for the next cycle. The selection scheme in Figure 

6 represents one cycle of such a breeding program. A cycle takes several years and 

multiple cycles run in parallel. Genome-based selection can be restricted to the 

prediction of untested selection candidates within the same cycle or across cycles. In 

this thesis, the advantages and disadvantages of within- and across-cycle predictions 

were investigated (Auinger et al. 2016, Auinger et al. 2021). 

 

1.3 Materials and methods 

This thesis comprises two large datasets, one from a rye and the second from a maize 

breeding program. Both represent mid-sized commercial programs, and in both 

programs, the data originated from the first testcross selection step, as shown in Figure 

6. The programs differ mainly in the progeny’s degree of residual heterozygosity (S2 

lines in rye and DH lines in maize) and the number of progenies analyzed in each 

selection cycle. The main goal of the rye study was to evaluate the prospects of 

genome-based prediction for grain dry matter yield, plant height, and thousand-kernel 

weight. The dataset was unique as it allowed us to compare the efficiency of genome-

based selection within and across breeding cycles. The main goal of the maize study 

was to identify useful genomic parameters for choosing datasets from earlier selection 

cycles to obtain the maximum prediction accuracies in later cycles. 

1.3.1 Experimental data  

The rye dataset comprised testcross data from four subsequent breeding cycles in 

Poland and Germany from 2009 to 2012. There were 1,416 advanced cycle S2 lines from 

the pollen parent pool. These lines were progenies of 203 parents used in 430 crosses. 
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In each cycle, the S2 lines were crossed to two of eight testers from the opposite seed 

parent pool to obtain testcross seed. The S2 lines were genotyped with a custom Rye 

16k Illumina array. The data were filtered for high-quality SNPs (GenTrain score ≥0.7, 

call rate ≥0.9). SNPs with a minor allele frequency (MAF) of less than 1% and more than 

10% missing values were discarded. This resulted in 10,416 useful SNPs, 5,607 of 

which had available mapping information.  

In the field trials, testcrosses of S2 lines with two different but related testers were 

evaluated for yield, plant height, and thousand-kernel weight. The experimental design 

used six to nine 16x10 α-designs with two replications, connected by checks. Overall, 

14 checks were used with an overlap of one to five checks across cycles. Figure 7 

shows how the datasets are connected by common parental inbred lines used to make 

crosses and generate selection candidates. The sets have 18 to 20 parents in common. 

With exception of some outliers, the data were balanced. 

 

 

Figure 7: Parents shared between sets in the rye data. The black boxes indicate the name of 

the dataset. The gray circles show the number of parents shared exclusively between two sets. 

The blue lines and circles refer to the number of parents shared exclusively among three 

connected sets. The orange lines and circles show the number of parents shared among all four 

sets. The black circles show the number of parents shared between subsequent cycles. 

 

The maize dataset comprised six datasets (S1, S2…S6) representing the selection 

candidates from six selection cycles grown from 2010 to 2015 in multiple locations in 

Germany. The genetic material comprised 5,968 DH lines from the dent heterotic group 

crossed to one or several flint testers. The publicly available Illumina maize array was 

used to genotype the DH lines of sets S1 to S4 with 56,110 SNP markers (Ganal et al. 
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2011). The DH lines of sets S5 and S6 were genotyped with custom-made chips of 

12,062 and 22,359 SNPs, respectively. The genotypic data from sets S1 to S6 were 

merged after quality filtering (GTScore ≥ 0.7, call frequency ≥ 0.9). Monomorphic and 

fully collinear SNPs, as well as SNPs with the alternative allele appearing only once, 

were removed. In the full dataset, 9,742 informative SNPs remained. The number of 

genotyped lines in each dataset varied from 551 to 1,545 DH. Individual datasets were 

generated by crossing 36 to 148 parents, which resulted in 130 to 607 crosses and 1 to 

455 progenies per parent. Figure 8 shows how the sets are genetically connected as 

the same inbred line might have been used as a parent in multiple datasets. As in the 

rye data, the connection between the sets varies, e.g., sets S2 and S3 share 49 parental 

lines, whereas sets S5 and S6 have only three parents in common. 

 

 

Figure 8: Parents shared between sets S1 to S6 in the maize data. The black boxes indicate 

the name of the dataset. The gray circles show the number of parents shared exclusively 

between two sets. The blue lines and circles show the number of parents shared exclusively 

among three sets. The orange lines and circles show the number of parents shared exclusively 

among four sets. The black circles show the number of parents shared between subsequent 

cycles. 

 

In the field trials, testcrosses of DH lines were evaluated for yield and dry matter content. 

The selection candidates from each dataset were grouped in lattice designs with 100 

entries each and each lattice featured five to seven checks. Lattice trials were replicated 

(S1 and S2), partially replicated (S3), or unreplicated (S4, S5, and S6). The six 

contiguous selection cycles were connected through 11 commercial hybrids that 

changed over time. In addition, hybrids produced from DH lines related to the selection 
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candidates and crossed to the same tester as the breeding material were included as 

checks connecting contiguous selection cycles.  

 

1.3.2 Best linear unbiased prediction 

Today, the genomic BLUP or the related ridge regression BLUP are considered the gold 

standards in genomic prediction and are widely used in commercial breeding programs. 

At the beginning of this study, the implementation and fine-tuning of genomic BLUP 

were still being discussed, especially for predictions across selection cycles. GBLUP 

methods can differ in the treatment of the response variable in the model or the 

calculation of the variance-covariance structure. In the single-stage approach, the 

response variable is the observation from each plot and all design effects, such as 

location, years, and replications, are included in the genomic prediction model. This is 

computationally feasible if the goal is a single prediction from the calibration set to the 

prediction set. In this study, the single-stage approach was computationally prohibitive 

because different cross-validation scenarios and many combinations of calibration and 

prediction sets, as well as subsampling from the calibration sets, were investigated 

(Auinger et al. 2016, 2021). Hence, phenotypic values from the rye and maize 

experiments were obtained as Piepho et al. (2012) suggested in a two-stage approach. 

Adjusted means of environments, corresponding to best linear unbiased estimates 

(BLUEs) of the genotypes, were calculated and submitted as response variables for a 

pedigree-based or genomic BLUP model. For data generated in the plant-breeding 

context, the single- and two-stage approaches have proven to yield highly correlated 

predictions (Schulz-Streeck et al. 2013). A preliminary analysis confirmed this 

correlation for both the rye and the maize datasets. The genomic breeding values 

obtained with the two approaches were highly correlated (> 0.98).  

Before the era of genomic selection, BLUP was infrequently used in plant breeding. The 

lack of deep pedigree information, high trait heritabilities as noted above, and the 

different mating designs compared with animal breeding limited its use. As BLUP relies 

on relationship matrices constructed from pedigrees, selection among non-phenotyped 

members of the same family, i.e. progenies derived from the same cross, was 

impossible because all progenies received the same predicted value. In genomic 

prediction, the relationship matrix is calculated from the marker profiles of the selection 

candidates, which allows Mendelian sampling between the members of a family to be 
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accounted for, and thus, the measurement not only of the expected but also the realized 

proportion of the genome shared between relatives. In GBLUP, the variance-covariance 

matrix of the mixed linear model replaces the pedigree-relationship matrix of the 

conventional BLUP model. The genomic relationship matrix can be calculated in 

different ways. In Auinger et al. (2016, 2021), Habier et al.’s (2007) method was chosen 

as it has a defined quantitative genetic interpretation and has been used by many other 

studies to predict genomic breeding values in plant and animal populations.  

For the inbred lines in the rye experiment, up to 10 generations of pedigree information 

were available. This information was highly useful to evaluate the relative efficiency of 

genome-based prediction over pedigree-based prediction within and across selection 

cycles. The pedigree-based relationship matrix had to be adapted to the specific mating 

scheme employed in the rye experiment. As described in Lynch and Walsh (1998), 

standard quantitative genetic algorithms exist to calculate the additive genetic 

relationship matrix A from pedigree information. To increase computational efficiency, 

the dimensionality of the relationship matrix A was reduced in this study (Auinger et al. 

2016). For propagation of S2 lines, a single-seed-descent selfing scheme was assumed. 

Consequently, the dimensionality of relationship matrix A can be reduced by omitting 

the selfing steps and modeling the diagonal elements of A for each individual i as 

 

where Aii denotes the diagonal element of A for individual i, x the number  

of selfing generations, and Agh is twice the kinship coefficient between the parents g 

and h of individual i in generation S0, i.e., before selfing. For S2 lines derived  

from S1 plants, x=1.  

 

1.3.3 Optimal calibration sets for genome-based prediction  

In commercial breeding programs, datasets accumulate over time. The datasets used 

in this thesis allowed a comprehensive analysis of the best scenarios for predicting the 

phenotypes of the selection candidates. The success criteria for the comparison of 

different scenarios was the predictive accuracy, calculated as the correlation between 

predicted and observed phenotypes in the respective prediction sets, standardized for 

each trait by the square root of its heritability.  
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In the rye data, fivefold cross-validation (CV), as Utz et al. (2000) suggested, and 

independent validation were used to evaluate the predictive accuracy of different 

methods and sample sizes (Auinger et al. 2016). To establish prediction accuracies 

within cycles using fivefold CV, the dataset was divided into five mutually exclusive 

subsets. Four subsets (80% of the data) formed the calibration set (CS) for training the 

prediction model while the fifth subset (20% of the data) represented the prediction set 

(PS) to determine the prediction accuracy (Figure 9a). CV was performed within each of 

the four selection cycles. For validation across cycles, lines for the calibration sets were 

sampled from one, two, or three cycles, and the lines for the prediction set from the 

fourth cycle were not included in the calibration (Figure 9b). Combined CV sample lines 

from all four cycles for the calibration set and lines from one of the cycles not included 

in the calibration were used for prediction (Figure 9c). Each sampling scheme was 

repeated 50 times. The calibration set sample size was constant to permit direct 

comparisons between the three scenarios.  

 

  

Figure 9: Cross-validation and validation scenarios. Cross validation within (a): Lines in 

calibration and prediction from the same breeding cycle (grey boxes). Validation across (b): Lines 

in calibration sets from one, two, or three cycles (different shades of blue) with equal numbers 

of phenotyped lines from each cycle. Combined validation (c): Lines in calibration from all four 

cycles (blue and grey boxes) and lines in the prediction set from one of the cycles (grey), not 

represented in the calibration set. Figure modified from Auinger et al. (2016). 
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In the rye study, increasing the sample size of the calibration set by aggregating data 

from several cycles increased accuracies in the prediction sets, on average. This was 

also true for the maize dataset, but some combinations of datasets performed better 

than others. In maize, data were available for two more selection cycles than for rye. 

This permitted the construction of 15 forward prediction scenarios to predict the lines 

tested in dataset S5 and 31 scenarios for S6. The 46 calibration-prediction 

combinations form a large enough database to investigate the usefulness of genomic 

parameters for maximizing prediction accuracies in the prediction sets. 

Five parameters were investigated in detail for their ability to forecast the success of 

prediction across selection cycles in the maize data. The parameters described in 

Auinger et al. (2021) were: 

1) The number of common polymorphic SNPs in the 46 combinations of calibration and 

prediction sets (nPoly). 

2) The linkage phase similarities (LPS) for all combinations of calibration and prediction 

sets, according to Schopp et al. (2017): 

 

where k is the index for the p marker pairs. The sign of rk
CS was inferred by calculating 

the D = pAB – pApB of marker pair k, where pAB denotes the frequency of haplotype AB, 

pA the frequency of allele A at one marker locus and pB the frequency of allele B at the 

other locus in the calibration set. 

3) The effective sample size 1 ≤ Neff ≤ N is given by the following formula (Auinger et al. 

2021): 

 

where N denotes the size of the calibration set under study and var( ) the estimated 

variance of the eigenvalues of the genomic kinship matrix pertaining to the GBLUP 

model.  

4) The degree of relatedness between the calibration and prediction sets, after Saatchi 

et al. (2011). For all possible combinations, the average maximum realized kinship 

coefficients (umax) were calculated based on the genomic kinship matrix pertaining to 
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the GBLUP model. The maximum kinship of line i of a given prediction set was derived 

as the maximum value of the realized kinship coefficients between line i and lines j of 

the corresponding calibration set. Averaging the lines in the prediction set produced the 

umax value for each combination of calibration and prediction sets. 

5) The average expected reliability, after Clark et al. (2012). Here, the reliability of line i 

in the prediction set is calculated from its prediction error variance (PEV (i , 

derived from the GBLUP model employing a specific calibration set as follows: 

 

where is the genomic variance pertaining to the GBLUP model and ii is the diagonal 

element of the realized genomic relationship matrix referring to line i. Averaging all DH 

lines in the prediction set gives the expected reliability estimate for each combination 

of calibration and prediction sets. The expected reliability is trait-specific. 

The relative importance of the genomic measures, their correlation with sample size N, 

and their interdependencies were analyzed with principal component analysis (Jolliffe 

and Cadima, 2016) and multiple regression, with empirical prediction accuracies for 

grain yield and grain dry matter as response variables (Auinger et al. 2021). 

To evaluate variations in the above parameters (nPoly,   , and 2) for a fixed 

sample size of the calibration set, 500 lines were sampled randomly without 

replacement from sets S1 to S4 and all their combinations. Sampling was repeated 

1,000 times. Each sample was used as a calibration set to calculate GBVs and the 

resulting prediction accuracies for S5 and S6. The distribution, mean, and variance were 

determined for the 1,000 samples of 500 lines for all five parameters.  

 

1.4 Outline 

Traditional plant breeding methods relied exclusively on estimating the genotypic values 

of genotypes based on replicated field trials. While the BLUP approach Henderson 

(1975) introduced revolutionized animal breeding, it was hardly used in plant breeding 

because it yielded identical predicted values for all members of a given family. This 

changed dramatically with the introduction of the of the concept of predicting breeding 

values based on genomic information (Meuwissen et al. 2001). The major difference 

between breeding values based on pedigree relationships and those based on genomic 
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relationships is that not only can the expected breeding value be estimated without 

pedigree information but differences in the true relationships among members of the 

same family can be measured. These differences are due to the phenomenon of 

Mendelian sampling, which means, for example, that siblings in a full-sib family might 

share 10%, 40%, or 80% of their genomes due to Mendelian segregation in meiosis. 

Thus, the genotypic value of each genotype of a full-sib family can be estimated, 

whether it was phenotyped or not, and used as a basis for selection. The idea of 

genomic selection was rapidly accepted because the costs of marker assays decreased 

dramatically—as Moore’s law predicts—over the past two decades, whereas the costs 

for phenotyping remained almost constant. Thus, the cost for evaluating the breeding 

potential of a genotype is nowadays typically much lower for genomic than for 

phenotypic selection.  

Additionally, genomic prediction can shorten the generation interval and broaden the 

basis for selection by assessing many candidates purely based on their predicted 

genotypic value (Hayes et al., 2009; Elshire et al., 2011; Bhat et al., 2016; Meuwissen et 

al., 2016; Crossa et al., 2017; Weller et al., 2017). In the last decades, extensive research 

has been conducted to identify optimal statistical methods to predict breeding values. 

For traits having a genetic architecture with many small effects and low to medium 

heritability, the BLUP method remains the method of choice. Various Bayesian and 

nonparametric methods, as well as machine-learning methods, have been suggested 

to improve prediction accuracies and account for traits of different genetic architectures 

(Gianola et al. 2009, Heslot et al. 2012, Morota and Gianola 2014, Zhang et al. 2019). 

However, the vast number of markers is a computational burden for Bayesian methods 

because many parameters must be estimated (Zhang et al. 2019). Hence, this thesis 

uses the GBLUP statistical method.  

Albrecht et al. (2014) focus on comparing the traditional pedigree-based BLUP with 

genome-based BLUP. Special attention was given to how the prediction accuracy is 

influenced by the genetic structure in the studied material and prediction across 

locations and years.  

In Auinger et al. (2016), the main research question was how the usage of data from 

additional years and selection cycles influences prediction accuracy. In the four-year 

data, predictions within and across cycles were compared using PBLUP and GBLUP.  

In Auinger et al. (2021), the impact of genetic diversity, the sample size of the calibration 

set, and the genetic connection between calibration and validation sets were 
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addressed. To do so, the degree of marker polymorphism, linkage disequilibrium, 

relatedness and reliability, and their effects on prediction accuracy were investigated.   
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 Discussion 
 

2.1 PBLUP versus GBLUP  

Accuracies in genome-based prediction are expected to be higher than in pedigree-

based methods because modeling the relatedness based on marker data accounts for 

Mendelian sampling in crosses sharing one or both parents. Albrecht et al. (2011) 

convincingly demonstrated this in commercial breeding material in maize and Auinger 

et al. (2016) in rye. The increased accuracy of GBLUP compared with PBLUP depends 

on the effective number of segregating loci in the population (Goddard 2008) and the 

mating design (Habier et al. 2013). In advanced cycle breeding populations, where 

effective population sizes are small and which are derived from a limited number of 

crosses as recombinant inbred or doubled haploid lines, genome-based selection 

exploits long-range LD and the co-segregation of marker-QTL associations.  

In the maize study, the variation of realized genetic relationships among selection 

candidates sharing the same pedigree was high. This leads to a strong increase in 

prediction accuracy for models using genomic data. For rye, this thesis demonstrated 

that the advantage of GBLUP over PBLUP was most visible when the model was trained 

on aggregated data from several selection cycles. While PBLUP accuracies for plant 

height and thousand-kernel weight were close to zero when predicting across cycles, 

both methods’ models for grain dry matter yield showed intermediate prediction 

accuracies within and across cycles.  

In the rye study, the average family size was rather small for many crosses, and PBLUP 

and GBLUP achieved similar accuracies for the prediction of grain dry matter yield. This 

aligned with expectations and suggests that the whole genome, rather than a specific 

genomic region, is involved in the expression of complex traits. For plant height and 

thousand-kernel weight, PBLUP and GBLUP prediction accuracies were intermediate 

to high within cycles. In contrast, across cycles pedigree-based prediction averaged 

close to zero and genome-based prediction. One explanation is that the close familial 

relationships within cycles favored pedigree-based prediction, which estimates family 

means well. Across cycles, the families are more distantly related and family members 

are rarely included in the calibration set. In contrast, the GBLUP model can capture 

some persistent effects in the across-cycle scenarios due to linkages between markers 

and QTL.  
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Similar to the testcross performance in rye, Michel et al. (2016) compared GBLUP with 

PBLUP in a commercial wheat breeding program. For grain yield and protein content, 

GBLUP was superior to PBLUP, especially when information from early generations of 

the candidates was not available. As a major explanation for their findings, the authors 

mentioned that PBLUP does not address the Mendelian sampling responsible for the 

variation within progeny families. If information from early generation trials cannot be 

exploited, the within-family prediction accuracy is zero for PBLUP. However, combining 

pedigree with genomic information in two-kernel models substantially increased the 

prediction accuracy and the selection response y, especially for traits with low 

heritability. In further studies with autogamous crops (wheat and barley), genome-based 

prediction accuracy was much lower within families than across a diverse panel of lines 

and families (Edwards et al. 2019, Sweeney et al. 2020). In simulation studies, prediction 

accuracies within full-sib families were highest (Schopp et al. 2017), while including 

some members from the same family significantly improved the prediction accuracy in 

half-sib families.  

Besides the population structure, the genetic architecture of a trait considerably 

influences the prediction accuracy (Auinger et al. 2016). This hypothesis is supported 

by a study on genome-based prediction of grain yield and plant height in a biparental 

rye population derived from two elite parents (Wang et al. 2014), where prediction of 

plant height based on previously identified QTL performed similarly to genome-wide 

prediction but the genome-wide prediction of grain yield was clearly superior. This is 

supported by results from QTL analyses indicating the complex polygenic nature of 

grain dry matter yield (Miedaner et al. 2012), which can only be accounted for by 

genomic prediction. 

As genomic data will accumulate over time, these data will be useful not only to predict 

genetic values but also to infer marker effects linked to major QTL. Thus, it seems 

promising to combine marker-assisted and genomic selection by including the effects 

of major QTL alleles as fixed effects in the statistical model and a polygenic component 

capturing the contributions of minor-effect QTL by genomic prediction as random 

effects with the usual genomic relationship matrix. Zhang et al. (2014) showed that this 

improved prediction in a cattle dataset for two of three traits, and in a rice diversity 

panel, including QTL improved the prediction for nine of eleven traits. For other data 

structures, further research is needed. 
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Merging data across selection cycles strongly affects prediction accuracy. As Auinger 

et al. (2016) demonstrated, the prediction accuracy for thousand-kernel weight in rye 

increased with GBLUP but remained almost constant with PBLUP. Aggregating data 

from several selection cycles increased the sample size of the calibration set and 

allowed marker effects to be modeled over several testers and years, which increased 

the mean prediction accuracy and slightly reduced the prediction error variances, 

improving prediction reliability. This is very important to optimize breeding schemes but 

is often overlooked when discussing the potential of genome-based selection. Thus, 

the reduced prediction error variance argues for model training across several selection 

cycles. 

Results with testcrosses accord with those reported for a hybrid breeding program in 

maize, for which data from factorials evaluated over a period of 15 years were analyzed 

(Schrag et al. 2019). Like aggregating results across selection cycles, GBLUP benefited 

more than PBLUP from including data from early years in the extended calibration set, 

especially for grain dry matter content. The calibration sets tested in the early years 

were less related to the prediction set, so the pedigree relationships were rather weak, 

but genome-based prediction could use linkage disequilibrium between QTL and 

markers. According to the theory presented by Habier et al. (2013), this is the 

component of prediction accuracy that persists over generations. When years in the 

calibration set, which are closest to the prediction set, were skipped and the gap 

between the calibration set and the prediction set widened, the advantage of genome-

based over pedigree-based prediction was largest. This was especially true for the 

calibration sets comprising all previous years. Thus shows, pedigree-based prediction 

is heavily dependent on calibration set data from years closest to the prediction set, 

while genome-based prediction benefits from adding past years to extend the 

calibration set and improves the prediction of the genotypes of future breeding cycles. 
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2.2 Predictions across locations 

In most plant-breeding programs, lines are tested usually only in a single year. Only hich 

performing candidates are tested in the field in subsequent years again. Selected lines 

are grown in locations, which are chosen to represent environments the breeding 

program is destined for, and at best capture genotype × environment interactions, to 

receive representative results. Using data from Albrecht et al. (2014), their analysis was 

extended to across-location cross-validation (CV) to assess whether across-location 

accuracies can predict accuracies across years. CV of environmental sampling was 

performed for a subset of 928 DH lines evaluated in four locations in 2010. The 

accuracies were compared to results from validating a constant set of genotypes tested 

in 2010 and 2011. Predictions for grain dry matter yield ranged from 0.36 to 0.53 and 

were quite similar to the results of validation across years. Thus, for grain dry matter 

yield, the effect of across-location prediction was well captured by across-location CV. 

For grain dry matter content, the accuracies were slightly overestimated. This could 

have resulted from the different growing conditions in 2010 and 2011. While 2011 was 

optimal for maize production, 2010 was a cold and wet year. Some of the late DH lines 

might have struggled to mature properly. Burgueño et al. (2012) suggested including 

genotype x environment interactions in the prediction model. However, as only two 

years are compared in Albrecht et al. (2014), little prediction improvement could be 

expected by including interactions.  

 

2.3 Predictions across testers 

For selection in hybrid breeding genomic prediction of testcross performance was 

found to be a promising tool. Restrictions are the usage of the same tester and the same 

environments in the calibration as in the prediction set (Albrecht et al. 2011, 

Riedelsheimer et al. 2012, Lehermeier et al. 2014, Lian et al. 2014, Galán et al. 2021). In 

practice, however, prediction accuracy is reduced due to change of testers, or target 

environments, of selection targets, or traits. If DH lines are evaluated for their testcross 

performance with only one inbred or single-cross tester, the effects of their general and 

specific combining ability cannot be separated with GBLUP (Albrecht et al. 2011). 

Nevertheless, it would be desirable to estimate the expected decline in the prediction 

accuracy of genomic prediction for given calibration data in such conditions.  
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A quantitative genetic analysis of the genetic correlation of testcross performance with 

different testers shows that the correlation among testers depends directly on the 

relative size of the variances of GCA and SCA effects,  and , respectively, 

which can be modeled with:  

where is the general combining ability of the candidate and  ( ) is 

its specific combining ability with the tester T1 (T2). Thus, if  is much smaller than 

, the genetic correlation between testcrosses is close to 1. If there are distinct 

heterotic groups, as in hybrid maize breeding in Europe and the USA, then the relative 

importance of  relative to  is expected to be small (Reif et al. 2007). The genetic 

correlations between homozygous lines crossed to different testers of the opposite 

should be medium to high. Schopp et al. (2015) showed that under certain assumptions 

about the stochastic independence of the error terms of genomic prediction with 

different testers, the prediction accuracy for testcross performance with a new tester 

can be described as the product of the prediction accuracy for testcross performance 

with the original tester and the genetic correlation between the two testers. In the maize 

data, genetic correlations between testers could not be estimated because each DH 

line was only crossed to one of several testers, so there was no correlation among 

testers. However, if a lower bound of  is assumed based on results 

from the literature (e.g., Melchinger et al. 1998), the prediction accuracies obtained with 

a different tester in Albrecht et al. (2014) were rather low. This is especially 

unsatisfactory, because the two Flint single-cross testers T1 and T3 shared a common 

parent. DH lines were assigned to the tester according to maturity rather than at 

random. This could explain the low prediction accuracies across testers. Population 

structure due to subsets or large effects of specific combining ability may also have 

affected the results. The choice of tester and the size of specific combining ability 

effects needs further research in the context of genomic prediction. 
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2.4 Predictions across selection cycles 

In both studies conducted for this thesis (Auinger et al. 2016 and Auinger et al. 2021), 

prediction across selection cycles was possible. However, prediction accuracies were 

reduced compared to within-cycle prediction unless model training was performed with 

data from several selection cycles, which naturally requires substantially larger 

calibration sets. The prediction accuracy is known to depend heavily on the relationship 

between the calibration set and prediction set (Clark et al. 2012, Scutari et al. 2016), so 

the relationships among selection cycles were analyzed.  

In the rye study, the average maximum kinship of calibration and validation sets in 

across-cycle scenarios was about half that of within-cycle scenarios. As the breeding 

program advances, new unrelated parents are used to counterbalance inbreeding, so 

more distant selection cycles share fewer common ancestors (Figure 7 and Figure 8). 

This decreased connection through common parents over time was reflected in reduced 

kinship, which was accompanied by significantly reduced prediction accuracy when 

predicting lines from cycle 4 with a model trained in cycle 1. However, in the rye study, 

the association of prediction accuracy and average maximum kinship was only 

intermediately strong for grain yield and not significant for the other traits. This 

contrasted with other studies where the average maximum kinship and the prediction 

accuracy showed a tight linear relationship (Habier et al. 2010, Windhausen et al. 2012, 

Albrecht et al. 2014, Schrag et al. 2019). In plant populations are often introduced 

unrelated material. Therefore, the average maximum kinship must be interpreted with 

caution as a predictor for prediction accuracy, even for complex traits such as grain 

yield. If the calibration set comprises entries that are closely related to many entries of 

the validation set, e. g. one line with a resistance gene introduced as parental line in 

many crosses, the average maximum kinship will be high, but the prediction accuracy 

may not be. The latter depends on the genomic relationships of every genotype in the 

prediction set to all genotypes in the calibration set, as follows from the general formula 

of the BLUPs obtained as solutions to the mixed model equations (Henderson 1975). 

Therefore, the role of parameters like the average maximum kinship on the prediction 

accuracies was further investigated in Auinger et al.’s (2021) maize study.  

While adding related genotypes should always improve the prediction accuracy, the 

benefit of including unrelated individuals in the calibration set remains unclear. No effect 

is expected because unrelated or distantly related lines contribute only little to 

prediction performance (de los Campos et al. 2013), but a few experimental studies 
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reported a negative effect. A closer examination revealed that these studies generally 

involved structured populations such as different animal breeds (e.g., Lund et al. 2014), 

different plant breeding programs (e.g., Lorenz and Smith 2015), or large biparental 

families (e.g., Riedelsheimer et al. 2013). In Auinger et al. (2021), no decrease in the 

prediction accuracy was observed when aggregating data from several cycles. Thus, 

as long as selection cycles share sufficient common ancestors and prediction accuracy 

has not plateaued to further increases in the sample size, aggregating data from several 

selection cycles to predict the phenotypes of subsequent selection candidates is 

recommended despite the decreasing relatedness over time.  

In the across-cycle prediction scenarios of the rye study, whether the increased 

prediction accuracy was mainly attributable to the increased calibration set size or the 

combination of data from different years and testers was investigated. Therefore, CV 

was performed with fixed calibration set sample sizes of N = 208, 416, and 624 but 

different compositions in that the genotypes originated from one, two, or three cycles. 

The prediction accuracies were essentially the same when, for a given N, the lines were 

sampled from one, two, or three cycles. This shows that the main driver for the 

increased prediction accuracy observed with aggregated data over cycles was the 

increase in the sample size of the calibration set, whereas estimating marker effects 

from data collected with multiple testers over several years was only of minor 

importance. These findings align with the experimental results Auinger et al. (2021) 

reported in maize, where sample size was also a major driver of prediction accuracies. 

Lorenz (2013) investigated the effect of sample size and replication on the prediction 

accuracy of GBLUP in a simulation study. He observed that the allocation of the two 

factors is very flexible and therefore a second order problem. However, when 

experimental plant populations have small effective population sizes, prediction 

accuracy seemingly cannot be increased beyond a certain upper limit, even with greater 

sample sizes (Albrecht et al. 2011; Jan et al. 2016). Compared with our results for the 

genome-based prediction of complex traits in rye and maize, studies on genome-based 

prediction in self-pollinating crops showed few advantages of merging datasets from 

subsequent progeny sets (e.g., Sallam et al. 2015). A major difference is that, in 

autogamous crops, the calibration set is often composed of highly unbalanced historical 

datasets with many lines phenotypically evaluated at low intensity, which only 

marginally enhances the prediction accuracy. In the rye study (Auinger et al. 2016), the 

predictive ability of GBLUP for grain yield increased steadily up to a sample size of 

about 800 S2 lines (Figure 10). The variation of predictive ability increased with 
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increasing calibration set sample sizes because the size of the prediction set decreased 

simultaneously. Erbe et al. (2010) observed this as well. For a given constant prediction 

set, as in the maize study, the findings are inverted. The range decreases dramatically 

with increasing calibration set size (Auinger et al. 2021). Considering the costs of 

phenotyping and genotyping, the results suggest how to optimize the allocation of 

resources in a rye breeding program to maximize the selection gain from genome-based 

selection per unit of time and budget. 

 

 

Figure 10: Predictive abilities for grain dry matter yield (GDY) and plant height (PHT) as a 

function of increasing sample size in the calibration set (CS) and decreasing sample size 

in the prediction set. The calibration and prediction sets from the 1,040 S2 lines were sampled 

in steps of 100 and repeated 50 times for a given CS. Here, predictive abilities instead of 

accuracies are given because accuracies could not be estimated properly with the prediction 

set formed of lines from several cycles with different heritabilities (Supplemental Figure S7 from 

Auinger et al. 2016). 

 

The data analyzed for maize (Auinger et al. 2021) also originated from a medium-sized 

commercial hybrid breeding program. However, when the experiments were planned, 

they were designed for phenotypic selection, because practical implementations of 

genomic selection were in their infancy. Thus, there was considerable heterogeneity 

within and between datasets S1 to S6 for sample size, mating design, the number of 

crosses, progenies per cross, and the relatedness of DH lines. The six datasets all 



Discussion 

34 

comprised germplasm from the same heterotic group that was adapted to the same 

maturity zone, but the testcrosses from each set were evaluated in different years and 

thus experienced different environmental conditions. As the breeding cycles were at 

least three years, direct progenies produced from crosses with selected DH lines of a 

previous cycle were tested several years later (e.g., when the selected parents were 

members of set S1, some of their progenies were tested in S4). To capture this 

connectedness among cycles, analyzing at least four cycles was of utmost importance. 

By merging datasets across years, prediction accuracy could be significantly increased 

for both prediction sets and both grain yield and grain dry matter, but some calibration 

sets comprising only three and four datasets yielded slightly higher accuracies than 

those observed for the full set (see Fig. 2 and Suppl. Table S3 from Auinger et al. [2021]). 

Thus, there seems to be room to create optimized calibration sets using existing 

genotypic and phenotypic data. In the literature, different optimization criteria have been 

suggested, including the prediction error variance and the CDmean criterion (Rincent et 

al. 2012; Isidro et al. 2015), which require only genotypic data, the EthAcc criterion 

(Mangin et al. 2019), which requires both genotypic and phenotypic data, and the sparse 

selection index (Lopez-Cruz and de los Campos 2021), which integrates selection index 

methodology with sparsity-inducing techniques commonly used for high-dimensional 

regression to identify the best calibration set for each individual in the prediction set. 

Despite the availability of these tools, identifying the best calibration sets is difficult and, 

for larger datasets, a computational challenge as well. To model systemic effects such 

as testers, genetic groups, years, locations, and trials correctly, in-debth knowledge of 

the genetic composition of the population is necessary (Albrecht et al. 2014). 

Consequently, the calibration set must be specifically optimized for each trait. In 

general, optimization is most rewarding for improving prediction accuracy for small 

sample sizes but shows diminishing returns for larger calibration sets (e. g., Daetwyler 

et al. 2008, Zhong et al. 2009, Isidro et al. 2015, Michel et al. 2017, Norman et al. 2018, 

de Bern Oliviera et al. 2020, Auinger et al. 2021). As the range of prediction accuracy 

for random samples decreases for larger N values (Figure 3 of Auinger et al. [2021]), the 

application of any of the above trait-specific optimization criteria to choose DH lines 

from the entire dataset for better prediction accuracy is not convincing. Brandariz and 

Bernardo (2019) proposed the general combining ability (GCA) model for genomic 

prediction in hybrid breeding, where only crosses sharing a common parent with the 

prediction set are used for model training. However, this approach is recommended 

only if both the biparental families to be predicted and the calibration set are fairly large, 

https://www.frontiersin.org/articles/10.3389/fpls.2021.715910/full#B25
https://www.frontiersin.org/articles/10.3389/fpls.2021.715910/full#B25
https://www.frontiersin.org/articles/10.3389/fpls.2021.715910/full#B119
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and thus, did not apply to the medium-sized breeding populations in this study, where 

fewer progenies per cross and fewer crosses per parent were available. Thus, other 

genomic measures were investigated for their association with the prediction accuracy 

of the entire dataset comprising different selection cycles and different years, as 

detailed in section 2.5. 

Michel et al. (2016) pointed out that prediction accuracies estimated by cross-validation 

within cycles could be biased. To examine the potential bias, they treated breeding 

cycles as folds in cross-validation and sampled nonoverlapping sets of genotypes from 

multiple breeding cycles as training populations to predict an independent breeding 

cycle. Their prediction yielded accuracies on the upper bound of previous reports from 

studies of admixed wheat populations (Heffner et al. 2011; Poland et al. 2012; Combs 

and Bernardo 2013; Storlie and Charmet 2013; Charmet et al. 2014; Isidro et al. 2015, 

Dreisigacker at al. 2021), but lower as in Haile et al. (2020) with a special composition 

of the material under study. Longin et al. (2015) found prediction accuracies of about 

0.3. Combining these findings, Michel et al. (2016) considered prediction accuracies 

between 0.3 and 0.4 realistic for predicting wheat grain yield across breeding cycles. 

Interestingly, Piepho et al. (2014) analyzed German official variety trials of bread wheat 

and calculated variance components of long-term trends. They found, that the values 

for prediction accuracy correspond to the broad-sense heritability. In a barley breeding 

population, Sallam et al. 2015 reported prediction accuracies from 0.03 to 0.99 for grain 

yield and three other traits and found connections to genetic architecture and 

heritability. 

Hofheinz et al. (2012) also investigated the genome-based prediction of testcross 

performance in sugar beets using genotypes from the preceding breeding cycle for 

training and compared it with the prediction accuracies obtained by cross-validation 

within cycles. In the latter case, the estimates were high regardless of the trait, whereas 

independent validation using materials from the subsequent breeding cycle were high 

for sugar content but low for molasses loss, similar to the heritabilities for both traits. 

Thus, cross-validation in breeding pools of related material from the same breeding 

cycle seems to over-fit the prediction model. Consequently, high correlations between 

predicted and observed performance in cross-validation are no certainty that the 

prediction model can be applied successfully to new breeding materials. This brings the 

validity of comparisons of different statistical approaches for genomic prediction 

reported in the literature, such as RR-BLUP or various Bayesian methods that were 

based on comparisons of prediction accuracies determined by cross-validation within 
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materials from the same breeding cycle, into question for their prediction performance 

across cycles.  

In contrast to the above studies, He et al. (2016) reported only a marginal loss in 

accuracy for a large commercial population comprising 2,325 European winter wheat 

lines when data collected from one year were used to predict genotypes in the following 

year. They concluded that using robust genomic selection models calibrated with a 

huge dataset can predict the performance of materials in subsequent breeding stages 

with decent accuracy. Interestingly, excluding genotypes evaluated only in a single 

location from the calibration set maximized the prediction ability, but the accuracy 

decreased again when phenotyping was performed in more than two locations. 

Consequently, an updated training population should include all selected genotypes 

except those evaluated in a single location. However, the findings from this study must 

be interpreted with caution because, although no clear grouping of the materials was 

detected by principal component analysis, the proportion of the variation explained by 

the first two principal components far exceeded the values reported in other 

comparable studies.  

For rye, Bernal-Vasquez et al. (2017) evaluated different genomic prediction approaches 

to simultaneously model genotype x year interactions and breeding values. They 

compared different scenarios in practical breeding programs, including different 

degrees of relatedness of the calibration and prediction sets and selected genotypes 

from the previous generation. They concluded that using two or three years in the 

calibration set is always advantageous because it allows genotype x year effects to be 

separated from genomic estimated breeding values. Moreover, the authors stressed the 

critical importance of the predicted candidates being sufficiently related to the 

genotypes in the calibration set.  

 

2.5 Genomic parameters to maximize prediction accuracy 

Compared with calibration sets chosen at random, the application of criteria such as 

CDmean proved useful for identifying more optimal calibration sets for the genomic 

prediction of individuals or sets of genotypes with the aid of genetic or simulated 

annealing algorithms or a combination of these (Akdemir et al. 2021). Nevertheless, to 

redesign breeding schemes and take full advantage of the new possibilities offered by 

genomic prediction, knowledge about the association of prediction accuracy with 

various genomic parameters could be enlightening. All of the genomic parameters 
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(effective sample size [Neff], average maximum kinship [umax], expected reliability [ ²], 

number of common polymorphic SNPs [nPoly], and linkage phase similarity [LPS]) 

analyzed by Auinger et al. (2021) in the maize dataset were significantly correlated with 

prediction accuracy.  

The sample size (N) was tightly correlated to the prediction accuracy for both grain dry 

matter yield and grain dry matter content (Figure 11). The importance of the calibration 

set sample size to the prediction accuracy was quantified under simplifying 

assumptions in the formula derived by Daetwyler et al. (2008). A larger sample size 

improves the precision of the estimated effect of markers associated with trait 

expression and, therefore, directly affects the prediction accuracy provided the markers 

are good proxies for the quantitative trait loci affecting the trait. As the parameter Neff 

depends on the linkage disequilibrium and N, it was unsurprising that prediction 

accuracy and Neff were closely associated.  

The average maximum kinship (umax) was also closely correlated with prediction 

accuracy, which translated into specific relations between the calibration and prediction 

sets. For example, if one of the datasets (S3) was included in calibration sets to predict 

set S6, the umax was much higher than in calibration sets without S3, illustrating the 

shortcomings of the umax as a parameter to choose and optimize calibration sets. 

Therefore, quantiles of kinship coefficients, or the mean and median of the kinship 

coefficients, were also evaluated as alternatives to reduce the exclusive weight given to 

the closest related individual and get a more robust measure. However, these 

alternatives yielded no improvement supporting the use of the umax to characterize the 

relationship between the calibration and prediction sets. 

The tight correlation of prediction accuracy with expected trait-specific reliability ( ²) 

aligned with Ould Esthaghvirou et al.’s (2013) theoretical results. They suggested this 

parameter as an alternative to determining the prediction accuracy by cross-validation. 

He et al. (2016) also suggested reliability as an optimization criterion and found it 

superior to taking random samples for calibration. While these authors recommended 

including the genotypes with the highest ² in the calibration set, based on Ould 

Esthagvirou et al.’s (2013) theoretical results and the experimental findings in this thesis, 

I recommend choosing lines for calibration that maximize the mean reliability of the 

genotypes in the prediction set.  

As the number of polymorphisms (nPoly) shared between the calibration and prediction 

sets depends strongly on N, its correlation to the prediction accuracy for grain dry 
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matter yield was unsurprising. The magnitude of nPoly also depends on the composition 

of the prediction sets and varied by about 20%, exceeding the variation among the 

calibration sets. This difference could be due to the SNPs selected for the custom-made 

chips used to genotype sets S5 and S6, which had only about one-third of the 

polymorphic markers on the commercial 50k Illumina chip.  

Schopp et al. (2017) examined the association of linkage phase similarity (LPS) with 

prediction accuracy in detail. With high LPS, the associations between markers and 

QTL present in the calibration set are more likely to carry over to the prediction set. In 

synthetics, this association was tight if (i) the populations were generated from a small 

number of parents and (ii) the calibration and prediction sets were closely related and 

separated by no more than one generation of intermating (Müller et al. 2017). Weir and 

Hill’s (1980) analytical results provide a link between the LD parameter r² and the sample 

size. Accordingly, the expectation for r² in populations of DH lines is given by: 

 

where c is the recombination frequency between the loci,  is the effective population 

size and n is the sample size. As the measured LD depends on the size of the underlying 

set, the LPS is also influenced by the sample size via the LD in the compared sets. This 

may explain why, in this thesis, LPS values between calibration and prediction sets 

differed substantially by whether the prediction set was S5 or S6 because S5 is nearly 

three times bigger than S6. However, this formula does not explain the differences in 

LPS between calibration sets of equal size. Potentially, equal-sized sets with different 

LPS have different effective population sizes. Alternatively, Weir and Hill (1980) mention 

that deviations from random mating in the population might cause deviations from their 

theoretical results; therefore, their theoretical results might cause the differences 

between the equal-sized sets in this thesis.  

To determine which of the genomic parameters and N had the strongest influence on 

the prediction accuracy, multiple regression models were fitted with a prediction set 

coded as a categorical covariable and calibration set size and the genomic parameters 

as regressors. The variance explained by the different models was very similar. 

Reliability was consistently included in the best 10 models with the best fit in model 

selection, together with one or two additional factors. nPoly was also always included 

in the best models for grain dry matter yield, with other parameters. Further, the size N 
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of the calibration set was always included in the best models, although it showed some 

degree of collinearity with all genomic parameters. 

In summary, the size of the calibration set is indisputably the main driver of prediction 

accuracy. However, the genomic parameters have additional features that contribute to 

differentiation between the calibration sets. Their utility for improving the prediction 

accuracy seems largely trait-dependent. Hence, further research is warranted to 

investigate how additional knowledge about genetic trait architecture could help to 

identify calibration sets that are optimized for high prediction accuracy for each trait.  

 

2.6 Predictions with constant sampling size 

Several studies in the literature reported substantial variation in the prediction accuracy 

among biparental progenies (Marulanda et al. 2015; Lian et al. 2014) and other types of 

populations (Albrecht et al. 2011, Würschum et al. 2013, Lehermeier et al. 2014) for a 

given size of calibration set, without finding convincing explanations. This motivated me 

to more closely investigate the prediction accuracies obtained in sets S5 and S6 with 

different calibration set compositions. First, all genotypes in sets S1 to S4 and their 

combinations were used as “full” calibration sets with a large sample size (842 ≤ N ≤ 

3,872) range. Second, random subsets of N = 500 genotypes from each of these full 

calibration sets were sampled as new calibration sets and the mean, minimum, and 

maximum of the prediction accuracies obtained from 1,000 subsets derived with this 

sampling process were calculated. Third, for a given full calibration set, the 1,000 

subsets with N = 500 were ranked in decreasing order of their prediction accuracy and 

for each genotype, the average of the rank of the subsets in which it was included was 

calculated. Finally, two new calibration sets with N = 500 were assembled, one 

containing the genotypes with the highest average rank, termed highly predictive (+), 

and one containing those with the lowest average rank, termed poorly predictive (-), and 

the prediction accuracies for these calibration sets were determined.  

Tables 2 and 3 show the prediction accuracies obtained with this huge number of 

calibration subsets for prediction sets S5 and S6 and grain dry matter yield and grain 

dry matter content in the maize study presented by Auinger et al. (2021). The prediction 

accuracies were similar in both sets for grain dry matter content but much lower in set 

S6 than S5 for grain dry matter yield. Interestingly, the prediction accuracies for the full 

calibration sets, with N ranging from 842 to 3,872, were almost the same as the mean 

https://dict.leo.org/englisch-deutsch/indisputable


Discussion 

40 

of the 1,000 subsamples with N = 500. This indicates that the average prediction 

accuracy seems to have plateaued for N > 500. However, the variation in the prediction 

accuracy among the 1,000 replications with N = 500 was quite substantial, as the range 

shows. The range was extremely large for grain dry matter yield in set S6, where the 

minimum values were often negative. Consequently, if many genotyped and 

phenotyped candidates are available from previous breeding cycles, it seems rewarding 

to find subsets for calibration that surpass the prediction accuracy of the original set. 

The potential to identify such calibration sets is clearly demonstrated by the higher 

predictive power of the samples composed of the 500 highly predictive genotypes and 

the lower prediction accuracy of the sample with the 500 poorly predictive genotypes 

compared with the entire sets from which they were sampled. 

This raises the question of how to identify highly predictive genotypes from a large set 

of potential candidates. The criterion of the average rank of genotypes described above 

can only be applied after enough genotypes from the prediction set have been 

genotyped and phenotyped. However, this is quite laborious and expensive, especially 

if genomic selection is to be used for testcross performance in hybrid breeding. 

Furthermore, it would considerably increase the duration of breeding cycles and 

product development. 
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Table 2: Prediction accuracies for grain dry matter yield (GDY) and grain dry matter 

content (GDC) for genotypes in set S5 obtained with different compositions of the 

calibration sets (CS).  

        predictive § 

Trait CS N† all mean‡ min‡ max‡ - + 

 S1 928 0.47 0.48 0.30 0.57 0.17 0.57 

 S2 842 0.46 0.47 0.34 0.57 0.11 0.58 

 S3 1085 0.49 0.37 0.22 0.51 0.09 0.56 

 S4 1017 0.41 0.44 0.33 0.56 0.01 0.58 

 S1_2 1770 0.53 0.55 0.48 0.63 0.18 0.65 

 S1_3 2013 0.53 0.55 0.45 0.62 0.09 0.67 

 S1_4 1945 0.49 0.52 0.40 0.59 0.10 0.65 

GDY S2_3 1927 0.53 0.47 0.33 0.58 0.19 0.60 

 S2_4 1859 0.45 0.50 0.39 0.59 0.00 0.67 

 S3_4 2102 0.48 0.49 0.40 0.57 0.03 0.62 

 S1_2_3 2855 0.57 0.59 0.50 0.66 0.18 0.68 

 S1_2_4 2787 0.52 0.56 0.49 0.64 0.15 0.68 

 S1_3_4 3030 0.53 0.55 0.46 0.64 0.11 0.69 

 S2_3_4 2944 0.51 0.54 0.44 0.61 0.06 0.67 

 S1_2_3_4 3872 0.56 0.60 0.53 0.66 0.15 0.71 

Average   0.50 0.51 0.40 0.60 0.32 0.45 

 S1 928 0.64 0.50 0.38 0.61 0.35 0.70 

 S2 842 0.56 0.48 0.36 0.56 0.15 0.65 

 S3 1085 0.57 0.50 0.33 0.61 0.29 0.63 

 S4 1017 0.67 0.50 0.33 0.62 0.33 0.68 

 S1_2 1770 0.67 0.59 0.52 0.67 0.43 0.74 

 S1_3 2013 0.65 0.62 0.53 0.68 0.37 0.74 

 S1_4 1945 0.71 0.65 0.57 0.74 0.48 0.78 

GDC S2_3 1927 0.60 0.49 0.35 0.60 0.32 0.68 

 S2_4 1859 0.69 0.67 0.60 0.73 0.38 0.78 

 S3_4 2102 0.68 0.64 0.54 0.70 0.38 0.75 

 S1_2_3 2855 0.67 0.63 0.56 0.69 0.43 0.75 

 S1_2_4 2787 0.73 0.70 0.64 0.76 0.51 0.78 

 S1_3_4 3030 0.70 0.71 0.65 0.75 0.44 0.80 

 S2_3_4 2944 0.70 0.69 0.62 0.75 0.44 0.77 

 S1_2_3_4 3872 0.72 0.72 0.67 0.77 0.50 0.80 

Average   0.67 0.61 0.51 0.68 0.49 0.59 
† N number of genotypes in the full calibration set (CS) 
‡ Mean, maximum and minimum of the prediction accuracies for calibration subsets with samples of size 

N= 500 taken from the CS, calculated from 1000 repetitions 
§ Prediction accuracies of calibration subsets with N = 500 composed of highly predictive (+) or poorly 

predictive (-) genotypes 
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Table 3: Prediction accuracies for grain dry matter yield (GDY) and grain dry matter 

content (GDC) for genotypes in set S6 obtained with different compositions of the 

calibration sets (CS).  

       predictive § 

Trait CS N† all mean‡ min‡ max‡ - + 

 S1 928 0.19 0.32 0.02 0.57 -0.34 0.55 

 S2 842 0.03 0.15 -0.09 0.40 -0.38 0.43 

 S3 1085 0.35 0.23 -0.03 0.55 -0.10 0.57 

 S4 1017 0.21 0.17 -0.13 0.48 -0.38 0.61 

 S1_2 1770 0.14 0.18 -0.10 0.43 -0.42 0.56 

 S1_3 2013 0.33 0.35 0.11 0.58 -0.26 0.69 

 S1_4 1945 0.23 0.35 0.10 0.57 -0.38 0.65 

GDY S2_3 1927 0.24 0.21 -0.01 0.50 -0.19 0.61 

 S2_4 1859 0.14 0.16 -0.09 0.36 -0.45 0.60 

 S3_4 2102 0.32 0.39 0.11 0.60 -0.30 0.66 

 S1_2_3 2855 0.26 0.28 0.05 0.48 -0.29 0.68 

 S1_2_4 2787 0.20 0.23 -0.02 0.44 -0.44 0.64 

 S1_3_4 3030 0.33 0.39 0.13 0.57 -0.28 0.68 

 S2_3_4 2944 0.25 0.31 0.11 0.51 -0.31 0.64 

 S1_2_3_4 3872 0.28 0.30 0.09 0.49 -0.35 0.69 

Average   0.23 0.27 0.02 0.50 0.04 0.28 

 S1 928 0.57 0.53 0.35 0.69 0.14 0.74 

 S2 842 0.56 0.50 0.28 0.63 0.12 0.70 

 S3 1085 0.68 0.41 0.23 0.60 0.33 0.72 

 S4 1017 0.65 0.58 0.44 0.71 0.16 0.77 

 S1_2 1770 0.64 0.59 0.44 0.72 0.20 0.77 

 S1_3 2013 0.70 0.63 0.49 0.74 0.37 0.79 

 S1_4 1945 0.69 0.67 0.54 0.77 0.25 0.82 

GDC S2_3 1927 0.68 0.40 0.23 0.54 0.40 0.76 

 S2_4 1859 0.73 0.68 0.55 0.78 0.22 0.81 

 S3_4 2102 0.74 0.69 0.59 0.77 0.37 0.82 

 S1_2_3 2855 0.70 0.64 0.52 0.72 0.44 0.80 

 S1_2_4 2787 0.74 0.72 0.61 0.79 0.34 0.83 

 S1_3_4 3030 0.74 0.75 0.67 0.81 0.38 0.85 

 S2_3_4 2944 0.76 0.73 0.60 0.81 0.44 0.83 

 S1_2_3_4 3872 0.76 0.74 0.67 0.81 0.44 0.84 

Average   0.69 0.62 0.48 0.73 0.50 0.63 
† N number of genotypes in the full calibration set (CS) 
‡ Mean, maximum and minimum of the prediction accuracies for calibration subsets with samples of size 

N= 500 taken from the CS, calculated from 1000 repetitions 
§ Prediction accuracies of calibration subsets with N = 500 composed of highly predictive (+) or poorly 

predictive (-) genotypes 
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Table 4: Pairwise correlations between genomic measures effective sample size (Neff), 

number of polymorphic SNPs shared by the calibration and the prediction set (nPoly), average 

maximum kinship (umax), linkage phase similarity (LPS), trait specific reliability ( 2), and trait 

specific prediction accuracy (r) for calibration subsets with N=500. In the upper triangle, the 

values are based on all calibration subsets with S5 as prediction set, in the lower triangle 

calibration subsets with S6 as prediction set. 

 Neff nPoly umax LPS (GDY) (GDC) r(GDY) r(GDC) 

Neff  0.08 -0.06 0.04 -0.01 0.01 0.00 -0.02 

nPoly -0.01  0.00 -0.01 -0.05 0.00 -0.04 -0.04 

umax 0.03 0.02  0.29 0.08 0.13 0.04 0.11 

LPS 0.37 -0.12 0.31  0.07 0.10 0.05 0.03 

(GDY) 0.01 0.08 0.10 0.04  0.12 0.06  

(GDC) -0.02 -0.01 0.11 0.07 0.14   -0.01 

r(GDY) 0.03 0.06 0.03 0.06 -0.08    

r(GDC) 0.01 0.03 0.08 0.06  0.09   

 

The genomic parameters Neff, nPoly, umax, and discussed in the previous paragraph 

were fairly tightly correlated with the prediction accuracy when values were based on 

combinations of all 15 calibration sets for S5 and all 31 calibration sets for S6 (see Table 

4 in Auinger et al. [2021]). For the sampling procedure, from all calibration sets were 

sampled. Correlations of previously described variables were calculated for individual 

samples of size N = 500 as well and averaged over all samples. However, in the 

combination of calibration set S4 and prediction set S6 with the largest range between 

the maximum and minimum prediction accuracy for grain dry matter yield (Table 3), no 

association of the prediction accuracy with a genomic parameter was found, which 

seems promising as a tool to identify the most predictive training dataset. Averaging 

these correlations across all 1,000 replications for all combinations of calibration data 

sets (Table 4) confirmed this conclusion. 

One problem in assessing the usefulness of genomic parameters to discover the optimal 

calibration set is their dependency on the sample size (N) of the calibration set. This 

dependency is examined in Figure 11, showing the association of various genomic 

parameters for sets S5 and S6 and the sample size of the 46 combinations of calibration 

and prediction sets. The association was fairly weak for parameters Neff, umax, and LPS 

but quite tight for nPoly and the reliability ² for both traits. For a deeper analysis, I 
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calculated the genomic parameters for the samples of size N = 500 and averaged the 

1,000 repetitions for each of the combinations of full calibration sets. Figure 12 shows 

scatter plots for the genomic parameters in the full calibration sets versus the average 

of the samples with N = 500. For Neff, umax, and LPS, the association was very tight, 

indicating that these genomic parameters are mainly properties of the population  

 

 

Figure 11: Association of sample size N of the calibration sets with various genomic 

measures for 46 combinations of sets S1 to S6.  
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Figure 12: Genomic parameters in the entire calibration set vs. their mean across 1,000 

samples of size N = 500 taken from the respective calibration sets for all 46 combinations of sets 

S1 to S6.  
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Figure 13: Genomic parameters umax, Neff, and LPS calculated for the sample sets. The highly 

predictive sets consisting of 500 highly predictive genotypes and the poorly predictive sets 

consisting of 500 poorly predictive genotypes identified amongst 1000 repetitions. As calibration 

sets were the 15 calibration sets used, which were used for predicting S5. The optimization was 

done for grain yield and grain dry matter content and for both prediction sets.  

 

and minimally influenced by the size of the calibration set once N is sufficiently large. 

By comparison, no clear pattern emerged for nPoly and the reliabilities for both grain 

dry matter yield and grain dry matter content, demonstrating their dependency on N. 

The dependency of the reliabilities follows directly from the BLUP equations. 
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Whether Neff, umax, and LPS could be used to discriminate the calibration sets yielding 

high or low prediction accuracy for a given N was also investigated. The values of these 

genomic parameters for each full calibration were calculated in the two highly predictive 

and poorly predictive calibration subsets with N = 500. For prediction sets S5 and S6 

and both grain dry matter yield and grain dry matter content, the genomic parameters 

obtained for the high and poor samples were plotted. As shown in Figure 13, the values 

were closely distributed along the bisector, indicating that none of these genomic 

parameters is promising for identifying calibration subsets.  

Hence, further research is needed to identify highly predictive genotypes based on 

genomic and phenotypic data of earlier breeding cycles and the genomic data of the 

prediction dataset. I suggest applying a reverse prediction approach in which the 

original prediction set serves as the calibration set and is used to calculate the reliability 

for each genotype in the full calibration set using variance components estimated from 

the latter. The candidates with the highest reliability can be selected to form the subset 

of highly predictive genotypes. For a proof-of-concept, one must investigate the degree 

of variation in the prediction reliability and how to choose the reliability criterion 

threshold to include a genotype in the calibration set. 

In summary, this thesis confirmed that, in principle, a set of about 500 carefully chosen 

genotypes can predict the breeding values of unphenotyped candidates with 

satisfactory accuracy. This aligns with numerous studies showing diminishing returns 

from adding further candidates past a certain calibration set size (Albrecht et al. 2014; 

Pembleton et al. 2018; Brandariz and Bernardo 2019). However, the magnitude of N to 

reach a plateau seems to depend on the germplasm and the genetic architecture of the 

trait. In rye and maize (Auinger et al. 2016, 2021), no robust criteria could be found by 

which to identify, from several successive cycles of commercial breeding programs, 

smaller subsets of genotypes yielding a consistently higher prediction accuracy across 

traits and new breeding cycles. Thus, it must be acknowledged that the idea of finding 

an optimal calibration set for one prediction set and applying it to an independent set 

has failed. The creation of a calibration set with specific characteristics seems crucial 

to the quality of the genomic prediction and further research in this direction is of 

questionable utility.  

This thesis focused on the composition of the calibration set. However, the composition 

of the prediction set is equally important. When estimating the prediction accuracy with 

the Pearson correlation of the BLUEs and the genomic-predicted values of candidates 
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in cross-validation or independent validation, the prediction set is implicitly assumed to 

be a homogeneous population. However, unlike in animal breeding, where all individuals 

usually originate from the same breed and prediction across breeds is not mixed with 

prediction within breeds, in plant breeding, the composition of the germplasm is more 

complex. It is usually composed of groups of related and unrelated full- and half-sib 

families produced from selected genotypes from previous breeding cycles. Moreover, 

new genotypes derived from foreign sources such as genetic resources or exotic 

material are commonly introgressed into elite germplasm to counterbalance the effect 

of narrowing the genetic base. In such cases, the prediction accuracy can break down 

from the effect of a small amount of new, unrelated germplasm being added to the 

material from previous breeding cycles. Identifying such outliers in prediction by 

calculating their reliability, which is expected to be much lower than that of genotypes 

descended from recycling breeding with the best lines from previous cycles, is 

promising. If the germplasm has a strong population structure due to large biparental 

full-sib or back-cross families, genomic selection might be applied primarily within 

families to identify the best family members. This is because the genetic variance within 

families due to Mendelian sampling can only be successfully exploited by genomic 

selection, not by PBLUP, as all genotypes within families are related to the same degree. 

In contrast, under an additive genetic model, as applies to per se and testcross 

performance in hybrid breeding, the differences between family means can be predicted 

fairly reliably from the performance of the parents. Hence, selection among families is 

mainly a question of the choice of parents, whereas the segregation variance within 

families can only be exploited with genomic selection.  

 

2.7 Conclusions 

The results from the studies on rye and maize included in this thesis underline the huge 

potential of genomic selection to improve the selection progress in breeding in general 

and in the hybrid breeding of these and other crops in particular. Once genotypic and 

phenotypic data from multiple breeding cycles have been gathered after implementing 

genomic selection, these large-scale calibration sets generally yield satisfactory 

prediction accuracies for new, unphenotyped germplasm. Hence, breeders can shorten 

breeding cycles and apply a much greater selection intensity by monitoring many 

candidates and saving on phenotyping. This research also found substantial variation 

in the prediction accuracy among smaller subsets of about 500 candidates chosen from 
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many genotypes. The best of these subsets surpassed the prediction accuracy of the 

full set, composed of several thousands of genotypes. However, the study data did not 

reveal robust criteria to identify the most predictive genotypes a priori, although various 

genomic parameters were tightly correlated to the prediction accuracy. Hence, based 

on theoretical results about the relationship between prediction accuracy and sample 

size (Daetwyler et al. 2008) and the experimental findings of numerous studies, including 

this one, I recommend including the entire set of genotypes for which genotypic and 

phenotypic data are available in the calibration set. Unexplored possibilities remain for 

further research to identify optimized calibration sets, such as the reverse prediction 

approach I suggested. Moreover, I recommend focusing not only on the composition of 

the calibration set but also on the composition of the prediction set. There seems to be 

particular room for improvement by identifying tailor-made calibrations for subsets, 

such as finding a specific calibration set of close relatives for each larger family in the 

prediction set, because close kinship is a major driver of prediction accuracy for full-sib 

and half-sib families (Riedelsheimer et al. 2013, Lehermeier et al. 2014, Jacobson et al. 

2014, Brauner et al. 2019). Last but not least, to take full advantage of the tremendous 

potential of genomic selection, the breeding schemes in hybrid breeding should be 

redesigned with a systematic interweaving of breeding cycles so that each genotype in 

the prediction set has a balanced number of close relatives in the calibration set. 
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