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Abstract. The feasibility of high-fidelity single-qubit operations on a hole spin
in a quantum dot molecule by electric g tensor control is demonstrated. Apart
from a constant external magnetic field the proposed scheme allows for an
exclusively electric control of the hole spin. Realistic electric gate bias profiles
are identified for various qubit operations using process-tomography-based
optimal control. They are shown to be remarkably robust against decoherence
and dissipation arising from the interaction of the hole with host-lattice nuclear
spins and phonons, with a fidelity loss of ≈ 1% for gate operation times of
≈10 ns. Spin-echo experiments for the hole spin are modeled to explore
dephasing mechanisms and the role of pulse-timing imperfections in the gate
fidelity loss is discussed.
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1. Introduction

We propose and study the feasibility of all-electric control of a qubit realization based on the
hole spin in a quantum dot molecule (QDM). This system offers two main advantages over
electron-spin-based realizations: the use of hole spins increases the dephasing time associated
with the interaction with nuclear spins by about an order of magnitude and allows for an efficient
g tensor control, thereby facilitating essentially all-electric control of the qubit.

Spin-based quantum bit realizations in semiconductor quantum dots (QDs) have gained
wide interest in the quantum computing community due to their potential regarding scalability
and their long relaxation times. Most work, both theoretical and experimental, has focused on
electron spin qubits, which have spin relaxation times ranging from several milliseconds [1]
to seconds [2]. However, it has turned out that this type of qubit is prone to decoherence
processes due to the interaction with surrounding nuclear spins of the host lattice [3, 4].
The Fermi contact hyperfine interaction ultimately limits the inhomogeneous dephasing time
to T ∗

2,e ≈ 10 ns [5]. Several techniques to circumvent this problem have been devised, e.g.
nuclear state preparation [6]–[9], fabrication of silicon-based semiconductor heterostructures
with zero nuclear magnetic moment [10] or employing hole spins instead of electron spins
[11, 12]. The p-type symmetry of the hole Bloch function leads to cancellation of the Fermi
contact hyperfine interaction. However, it has been shown that the dipole–dipole hyperfine
interaction and the coupling of the hole orbital angular momentum to the nuclear spins
cannot be neglected [13]–[15]. These lead to an inhomogeneous dephasing time T ∗

2,h one
order of magnitude longer than that of electrons [14], which is in good agreement with recent
experiments [16].

Basic spin qubit implementation schemes usually require local magnetic fields for
individual spin manipulations [17]. Another technique, which has been proposed and tested
recently, is to exploit the tunability of electron-spin and hole-spin g tensors by electric fields
rather than employing control by local magnetic fields [18]–[21]. If an external magnetic
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Figure 1. (a) Vertically stacked pyramidal QDs, dot spacing d = 1.5 nm, height
h = 2.5 nm and width w = 15 nm. The coordinates x , y and z denote the [100],
[010] and [001] directions, respectively. The origin of the coordinate system is
indicated by 0. The external electric field points along the [001] direction, i.e.
EE = (0, 0, E). (b) Electric field dependence of the g tensor elements. The solid
and the dashed line denote g001(E) and g11̄0(E), respectively. (Data are taken
from [21].)

field EB is present, the spin experiences an effective field g(E) · EB that can be changed locally by
means of the electric field E . The dependence of the g tensor on E is particularly pronounced
for hole spins in vertically stacked QDMs since the localization of the hole wavefunction is very
sensitive to externally applied electric fields [21]. The goal of this paper is to show that in such
a system, unitary single-qubit gates can be efficiently realized for simple pulse shapes of 10 ns
duration.

In section 2, we describe the computational basis states of the qubit, the corresponding
Hamiltonian and the mechanisms that lead to non-unitary dynamics. The equation of motion
for the qubit, including decoherence and relaxation dynamics, is given. In section 3, we apply
optimal control theory in order to find simple electric pulse shapes that execute the Hadamard
gate, as well as a π/2 and a π pulse. We find that these transformations can be implemented with
remarkably low fidelity losses of ≈ 1%. In addition, we show how spin-echo experiments can be
performed on the hole spin to explore decoherence in the system. We also discuss quantitatively
the effect of pulse-timing imperfections. We conclude with a summary of the present work. The
model for the interaction of the nuclear spins with the hole is detailed in appendices A and B.

2. Theory

In this section, we present the qubit realization and give the effective Hamiltonian for a single
hole in a QDM composed of vertically stacked self-assembled InAs/GaAs QDs separated by a
small tunnel layer. The detailed geometry of the QDM, which we use for the present study, is
shown in figure 1(a). Two pyramidal dots (height h, width w) are stacked on top of each other
and separated by a barrier of distance d. The QDM is exposed to a static magnetic field, as well
as a time-dependent electric field applied along the [001] growth direction. It is controlled by
a gate bias and used to modulate the hole g factor by shaping the hole wavefunction [21]. The
controlled growth of InAs/GaAs QDMs as well as the electric modulation of exciton g factors
in such structures has been demonstrated experimentally in [19].
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Next to the interaction of the hole with the externally applied control fields, all contained
in the effective Hamiltonian H0, there will be additional (unwanted) interactions with the solid-
state environment. Therefore, we account for the interaction of the host-lattice nuclear spins
with the hole, develop a phenomenological description of the hole–phonon interaction and give
the resulting equation of motion on which our analysis is based.

The first task is to compute the effective interaction of the hole with a constant external
magnetic field. The interaction is characterized by a g tensor, which depends on the externally
applied electric field, as shown in figure 1(b) [21]. We have performed three-dimensional 8-band
envelope function calculations, including external fields, strain and piezoelectric polarization,
in order to determine the QDM heavy-hole and light-hole components of the ground |90〉 and
the first excited Zeeman state |91〉. Details of this method have been published elsewhere
[22, 23]. For a vertical external magnetic field, the energy eigenstates |90〉 and |91〉 of the
full 8×8 Hamiltonian correspond predominantly to heavy-hole (hh) down ( jz = +3/2) and hh
up ( jz = −3/2) states, respectively. The conduction and split-off (SO) band contributions are
neglected, since they are .1%. However, light-hole (lh) contributions cannot be neglected. We
write the hole wavefunctions as

〈Er |9k〉 ≡9k(Er)=
√
�
∑
j, jz

F (k; j, jz)(E, Er)ψ ( j, jz)(Er),

(1)

j ∈

{
3

2
,

1

2

}
, jz ∈

{
±

3

2
,±

1

2

}
, k ∈ {0, 1} ,

where F (k; j, jz)(E, Er) denotes the envelope function associated with the 0-point basis function
ψ ( j, jz)(Er), which transforms like the eigenfunction | j, jz〉 of the angular momentum operator
Jz, and � is the volume of the unit cell of the crystal. For zero electric field EE and for vertical
magnetic field EB = (0, 0, 10)mT, the hh and lh contributions, respectively, are given by∫

dEr
{
|F (k;3/2,+3/2)(E, Er)|2 + |F (k;3/2,−3/2)(E, Er)|2

}
≈ 0.909,∫

dEr
{
|F (k;3/2,+1/2)(E, Er)|2 + |F (k;3/2,−1/2)(E, Er)|2

}
≈ 0.075, with k ∈ {0, 1} .

(2)

We have chosen our coordinate system along the cubic axes, where z is the growth direction of
the QDs. In figures 2(a) and (b), respectively, we present contour plots of |F (1;3/2,−3/2)(E, Er)|2

and |F (1;3/2,−1/2)(E, Er)|2 in the x = 0 plane. The corresponding coordinate system is depicted in
figure 1(a).

The energy difference between |91〉 and the next higher energy eigenstate |92〉 is larger
than 1 meV, versus a splitting of ≈ 0.4µeV between the lowest two states. Hence, the system
near the ground state is well described by a two-level system with basis states |90〉 and |91〉.
These are essentially linear combinations of upper- and lower-dot hole states, with the admixture
depending on the value of the external electric field. The effective Hamiltonian of the pseudo-
spin system reads [21]

H0 =
µB

2
Eσ · g(E) · EB, (3)

where Eσ , g(E) and EB, respectively, denote the Pauli matrix vector of the pseudo-spin- 1
2 system,

the electrically tunable hole g tensor and the externally applied magnetic field. Note that
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(a) |F (1;3/2,−3/2)( r)|2 (b) |F (1;3/2,−1/2)( r)|2

Figure 2. Spatial dependence of the envelope functions |F (1;3/2; jz)(E, Er)|2 within
the x = 0 plane (see figure 1(a)) for (a) the hh contribution with jz = −3/2 and
(b) for the lh contribution with jz = −1/2. All envelope functions are given for
E = 0 kV cm−1 and EB = (0, 0, 10)mT. The cross-sections of the pyramidal QDs
are indicated by red dashed lines.

equation (3) is given in the basis {|91〉, |90〉}. By choosing a constant magnetic field of the
form EB = (B,−B, B), equation (3) takes the form

H0 =
µB

2
Eσ


g110+g11̄0

2
g110

−g11̄0

2 0

g110
−g11̄0

2
g110+g11̄0

2 0

0 0 g001


 B

−B

B

=
µB

2
B[(σx − σy)g

11̄0 + g001σz]. (4)

Throughout this paper, we choose a value of B = 10 mT and an external electric field pointing
along the [001] direction, EE = (0, 0, E). A non-vanishing in-plane magnetic field is necessary
in order to obtain full control over the qubit.

2.1. Hole–nuclear-spin interaction

In addition to the externally applied magnetic field, the hole experiences an effective magnetic
field that results from the nuclear spins of the host lattice. This is a consequence of the
non-vanishing dipole–dipole hyperfine interaction (in contrast to the Fermi contact hyperfine
interaction that vanishes for wavefunctions of p-symmetry), as well as the coupling of the hole
orbital angular momentum to the nuclear spins [14, 15]. We now determine this effective field.

The corresponding interaction Hamiltonian of a single nuclear spin with a hole has the
form [24]

H i
I = 2µBγi EI

i
·

[
El i

ρ3
i

−
Es

ρ3
i

+
3Eρi (Es · Eρi)

ρ5
i

]
, (5)

where EI i denotes the i th nuclear-spin operator and γi and µB, respectively, denote the
gyromagnetic ratio of the i th nuclear spin and the Bohr magneton. The hole spin operator
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is denoted by Es, Eρi = Er − ERi is the distance vector between the hole and the i th nuclear spin
(located at ERi ), and El i

= Eρi × Ep denotes the hole orbital angular momentum operator. We note
that Er and ERi are given in the coordinate system introduced in figures 1(a) and 2(a) and (b). The
matrix elements of HI are now calculated in the {|90〉, |91〉} basis defined above. We closely
follow the approach given in [13, 15] and obtain

〈9k| H i
I |9l〉 ≡

∑
jz, j ′

z

[F (k;
3
2 , j ′

z)(E, ERi)]
∗F (l; 3

2 , jz)(E, ERi)V
i
j ′
z, jz
. (6)

The matrix elements with respect to the four basis functions {ψ ( 3
2 ,

3
2 ), ψ ( 3

2 ,
1
2 ), ψ ( 3

2 ,−
1
2 ), ψ ( 3

2 ,−
3
2 )}

are given by4

V i
j ′
z, jz

≡ ci


I i

z
1

√
3

I i
−

0 0
1

√
3

I i
+

1
3 I i

z
2
3 I i

−
0

0 2
3 I i

+ −
1
3 I i

z
1

√
3

I i
−

0 0 1
√

3
I i

+ −I i
z

, (7)

where I i
±

= I i
x ± I i

y and I i
z are the nuclear-spin operators and

ci =
8µBγi h̄�

5

∫ R0

0
dρ

|κ(ρ)|2

ρ
. (8)

The integration in equation (8) extends over the dominant part of the interaction defined by a
radius R0 around the nuclear spin under consideration and κ(ρ) is the radial part of the basis
functions. The details of the calculation are given in appendix A. Finally, the interaction of the
ensemble of nuclear spins with the two-level system can be cast into the form

Hnuc( EBn)=

∑
i

H i
I =

µB

2
Eσ · EBn, (9)

where i runs over all N ≈ 104–105 nuclear spins interacting with the hole. This has the form
of the interaction of the pseudo-spin with an effective operator-valued magnetic field EBn.
The dynamics of the hole is much faster than that of the nuclear spins. This allows one
to employ a quasi-static approximation for EBn for the time period of a single measurement
(initialization, manipulation and readout) of the hole spin qubit so that EBn may be approximated
by a classical constant vector [3, 4, 25]. During the time it takes to perform 103–104

repetitions of the measurement, the effective nuclear magnetic field varies significantly, leading
to inhomogeneous-broadening-type dynamics [25]. The simplest way to take into account this
variation is to treat the vector components of EBn = (Bx

n , B y
n , Bz

n) as random variables with
Gaussian probability distributions [3, 4, 25]

P( EBn)= P(Bx
n )P(B

y
n )P(B

z
n) with P(B i

n)=
1

√
2π1i

exp
[
−(B i

n)
2/(212

i )
]
. (10)

Here, P(B i
n) is the probability of finding a value B i

n for the effective nuclear magnetic field along
the i-direction and 12

i ≡ 〈B i
n B i

n〉 − 〈B i
n〉

2 denotes the corresponding variance of the effective

4 Note that we find positive signs for the matrix elements V i
1/2,−1/2 and V i

−1/2,1/2 in contrast to [15].
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magnetic field fluctuation. We assume an ‘infinite temperature’ nuclear-spin density matrix, i.e.
ρn = (2I + 1)−N 1 [4]. Hence, the mean values 〈B i

n〉 vanish for all directions i . Furthermore,
we assume that the spin bath is uncorrelated, i.e. 〈B i

n B j
n 〉 = 0 for i 6= j . Finally, the total

Hamiltonian of the system reads

H( EBn)= H0 + Hnuc( EBn). (11)

We note that H( EBn) is time dependent via the electric field that is applied to control the hole
dynamics.

In a recent experiment, the dephasing time of a hole spin in a single QD has been
determined to be at least T ∗

2,h ≈ 100 ns [16]. This corresponds to a variance of 1z =

h̄/(µBT ∗

2,h)≈ 0.1 mT [25]. We use this value for our simulation of the hole–nuclear-spin
interaction. The variances 1x and 1y are calculated in appendix B. We find that 1x/1z ≈

1y/1z ≈ 10−1.

2.2. Hole–phonon interaction

The coupling of the hole to acoustic phonons via the piezoelectric and deformation potential
interactions leads to additional dephasing and relaxation [26]. To account for these mechanisms,
we employ a Lindblad model [27]. The dissipator reads

D [ρ] = 0↓

[
σ−ρσ+ −

1

2
{σ+σ−, ρ}

]
+0↑

[
σ+ρσ− −

1

2
{σ−σ+, ρ}

]
+
08ph

2

[
σzρσz − ρ

]
, (12)

with 0↓, 0↑ and 08ph denoting the relaxation rates for the transitions |91〉 → |90〉, |90〉 → |91〉

and the pure dephasing rate, respectively. The braces denote anticommutators. For simplicity,
we set 08ph = 0↑ = 0↓ ≡ 0. The range of reported relaxation times varies significantly with
temperature and the externally applied magnetic field [28, 29]. For this work, we choose
a relatively conservative value of T1,h = 1µs = 1/(0↑ +0↓)= 1/0. We note that the hole
relaxation rate for QDs due to phonon interaction does not increase with decreasing external
magnetic field [12, 26, 28, 30].

2.3. Hole-spin dynamics

Inspection of figure 1(b) reveals that the g tensor component g001(E) cannot be tuned to 0,
in contrast to g11̄0(E). For a simpler description of the hole-spin dynamics, it is therefore
useful to switch to a rotating frame |ψ〉 → ˜|ψ〉 ≡ U2 |ψ〉, which rotates around the z-axis with
a frequency given by

ω∗
= µBg001(E∗)B/h̄. (13)

The transformation is characterized by the time-dependent unitary operator U2 ≡

exp(iω∗tσz/2), where the electric field E∗ is defined by the relation

g11̄0(E∗)= 0. (14)

In addition, we perform another time-independent rotation U1 = e−i(π/8)σ z , which corresponds
to the pseudo-spin rotation σx − σy →

√
2σx in equation (4). In this rotating coordinate system
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(labeled by a tilde), the Lindblad equation for the density matrix reads

ρ̃( EBn, t)= U2U1ρ( EBn, t)U †
1 U †

2 ,

dρ̃( EBn, t)

dt
= −

i

h̄
[Hr( EBn), ρ̃( EBn, t)] + D̃[ρ̃( EBn, t)], (15)

Hr( EBn)= U2U1 H( EBn)U
†
1 U †

2 + ih̄
dU2

dt
U †

2 ,

with H( EBn) given in equation (11). It can be shown that D̃[ρ̃( EBn, t)] = D[ρ̃( EBn, t)], i.e. the form
of the dissipator is invariant under the coordinate transformations described above. The density
matrix has to be averaged over the effective nuclear magnetic field EBn of each measurement.
It is calculated by averaging over typically M = 3000 values of the random effective nuclear
magnetic field with probability distributions as given in equation (10), using

ρ̃(t)= (1/M)
∑

M

ρ̃( EBn). (16)

3. Results

3.1. Pulse shape optimization

In the previous section, we have detailed the hole-spin qubit and identified a complete control
mechanism. We are now in a position to find optimal electric fields that perform any type of
qubit transformation. However, the dependence of the g tensor elements on the electric field
E is a complex one, as can be seen in figure 1(b). Therefore, appropriate control fields can, in
general, not be determined analytically, particularly, if the finite rise time of the electric control
is to be taken into account. Here, we apply optimal control theory in order to determine both
realistic and simple pulse shapes.

We start by outlining how to characterize qubit operations. For single-qubit systems,
quantum gate transformations can be described as rigid rotations of the Bloch sphere. For
unitary dynamics, this rotation can be fully described by the time evolution propagator
U (t) corresponding to the Hamiltonian Hr( EBn) given in equation (15). However, it is more
advantageous to employ the so-called process tomography matrix (PTM) χ(t). For strictly
unitary dynamics, this matrix takes the simple form [31]

χ(t)= U (t)∗ ⊗ U (t), (17)

with U (t)∗ denoting the complex conjugate of the matrix representation of U (t). The PTM
eliminates physically irrelevant global phases of the propagator U → ei8U , can be readily
obtained in experiments [32]–[34] and can be employed for non-unitary dynamics as well
[35, 36].

The next step is to define a cost functional that quantitatively reflects how accurately a
control field achieves a given unitary gate transformation. We use the PTM of equation (17) that
implicitly depends on the electric field, χ(t)= χ [E(t); t], and seek electric pulse shapes that
minimize the following cost functional [37]:

J [E] = tr
{[
χ(t f )−χD

] [
χ(t f )−χD

]†
}
, (18)
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where χD denotes the ideal PTM and the interval (0, t f ) is the time span allowed for the
gate transformation (gate operation time). A perfect implementation of the given unitary gate
transformation corresponds to J = 0. Other distance measures for open quantum systems are
given in [38]–[42]. We choose the following analytic form of the electric control field:

E(t)= E∗ +
M∑

j=1

A j

4

{
1 + tanh

[
α

(
t −

j∑
i=1

1ti

)]}{
1 + tanh

[
α

(
j∑

i=1

1ti − t

)]}
, (19)

where A j and 1t j are the parameters to be optimized and E∗ is the working point defined by
equation (14). The pulse form of equation (19) corresponds to a sequence of M voltage steps
of amplitude A j , each of duration 1t j . The finite rise time of the pulses is determined by the
parameter α that we set to α = 8.79 ns−1. The optimal control field Eopt(t) is obtained from the
minimization procedure

Jopt[Eopt] = min
{A j ,1t j}

J [E(A j ,1t j)]. (20)

We then use the optimal control field E(t)= Eopt(t) to determine the PTM with dephasing and
relaxation included in our simulations. We note that, in the non-unitary case, χ(t) is no longer
given by equation (17) but can be computed by using equations (15) (see [37] for details of this
calculation). However, the form of the cost functional given in equation (18) does not change.
Thus, a value J > 0 reflects suboptimal pulse shaping and/or the presence of decoherence and
relaxation effects. In addition to J , it is customary to define a fidelity loss of the gate operation
by

1F [E] = (J [E] /Jmax)
1/2 , (21)

with Jmax = 2n2, where n denotes the number of basis states of the quantum system, i.e. n = 2
for single qubits. A perfect execution of the gate operation corresponds to 1F[E] = 0. For
brevity, we will write 1F instead of 1F[E] throughout this work.

We perform the cost functional minimization (equation (20)) for both the Hadamard
operation (which transforms the axes of the Bloch sphere as follows: x → z, z → x and
y → −y) and a π/2 rotation around the y-axis. The corresponding unitary evolution operators
UH and Uπ/2 and the ideal PTM χH and χπ/2, respectively, read (see equation (17))

UH =
1

√
2

[
1 1

1 −1

]
, Uπ/2 =

1
√

2

[
1 −1

1 1

]
,

χH = (UH)
∗
⊗ UH, χπ/2 = (Uπ/2)

∗
⊗ Uπ/2.

We set the gate operation time t f = 10 ns. The minimization is executed within a differential
evolution algorithm [43]. For the Hadamard gate, the algorithm converges to an optimal control
field that consists of three pulses, depicted in figure 3(a). The π/2 rotation, on the other
hand, is realized by an optimal control field consisting of four pulses, as shown in figure 3(c).
Trajectories of the Bloch vector for both transformations with equal initial states (91) are given
in figures 3(b) and (d).

If we do not account for decoherence and relaxation in our simulations, the fidelity
losses due to imperfect pulse shaping are of the order 1F ≈ 0.001%. When decoherence
and relaxation are included, the fidelity loss increases to 1F ≈ 1%, which gives excellent
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Hadamard gate π
2 rotation

(a) (b) (c) (d)

Figure 3. (a) Optimal electric pulse shape Eopt(t) for the Hadamard
transformation and (c) for the π/2 rotation. The dot-dashed red lines correspond
to E = E∗ given in equation (14). (b) The trajectory of the Bloch vector for the
Hadamard gate and (d) for the π/2 pulse. The final states of both transformations
coincide for the initial state 91, although the trajectories of the Bloch vectors
differ.

(a) (b)

Figure 4. (a) Real part of the matrix elements (m, n) of the optimal Hadamard
PTM χ(t f ). (b) Deviation of the optimal PTM with respect to χH (relaxation and
dephasing included). The corresponding fidelity loss is 1F ≈ 1%.

performance. The contributions to the fidelity loss due to phonons and nuclear spins are
approximately of the same order. For the Hadamard gate, the real parts of the matrix elements
(m, n) of the optimal PTM, Re[χ(t f )mn], as well as the deviation of the optimal PTM from the
ideal PTM χH, are shown in figures 4(a) and (b), respectively.

3.2. Hole-spin echo

It is frequently important to analyze the characteristics of dephasing processes of a quantum
system that are not associated with inhomogeneous dephasing, such as caused by the
hole–nuclear-spin interaction discussed in section 2.1 in the present case. This can be achieved
with spin-echo experiments [44]. The decay of the peak value of the spin-echo recovery signal
gives information about the additional cumulative dephasing rate and the time dependence of
the coherence loss (e.g. exponential versus polynomial decay).
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(a)
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(b) Re[ρ̃01(t)] (c) Abs[ρ̃01(t)]

Figure 5. (a) Schematic spin-echo sequence as described in the main text. The
red (dark gray) arrow denotes the Bloch vector. (b) Time dependence of the
coherence Re[ρ̃01(t)]. The spike at t ≈ 0.4µs is a consequence of the π -pulse.
At t ≈ 0.8µs, a partial revival of coherence can be observed. (c) The solid
black lines denote spin-echo signals for different pulse separation times t1. The
decrease of the peak echo signal is denoted by the red dot-dashed line.

In figure 5(a), we show the crucial steps that are needed to perform a spin-echo experiment
for the hole-spin qubit.

(i) At time t = 0, one applies a π/2 pulse such as given in figure 3(c). It transforms the initial
qubit state |91〉 into the superposition state 1/

√
2 (|90〉 + |91〉) [44].

(ii) Subsequently, the Bloch vector of the qubit evolves according to the system dynamics,
including dissipation, decoherence and the effective magnetic field from the nuclear spins.
The latter causes a rotation of the Bloch vector around a random axis, given by the direction
of EBn.

(iii) At time t1 > 0, one applies a π pulse that is composed of two subsequent π/2 pulses. It
rotates the Bloch vector by an angle π around the y-axis of the Bloch sphere.

(iv) Next, the Bloch vector evolves again.

(v) At time t = 2t1, the coherence, represented by Re[ρ̃01(t)], is partly restored.

Here, ρ̃01(t) is the off-diagonal matrix element of the density matrix ρ̃(t) in the pseudo-spin
basis (see equation (16)) and serves as a measure for coherence. For t1 ≈ 0.4µs, a plot of its time
evolution during a spin-echo experiment, as obtained within our model, is shown in figure 5(b).
Spin-echo signals corresponding to different pulse separation times t1 are given in figure 5(c).
Since relaxation and pure dephasing due to the spin–phonon interaction are included in our
simulation, the restoration of coherence is obtained as imperfect. The peak values of the echoes
decrease approximately as ∼ exp{−2t1[(0↑ +0↓)/2 +08ph]}, indicated by the red dot-dashed line
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Figure 6. (a) The schematic ideal pulse sequence is denoted by the black solid
line. The second imperfect π/2 pulse (red/gray dashed line) is delayed by δ. (b)
Double logarithmic plot of the fidelity loss 1F versus the delay time error δ.

in figure 5(c). We note that the non-vanishing transversal nuclear magnetic field components
Bx

n and B y
n can also lead to a reduction of the peak value of the echo signal. However, we

have analyzed this effect and, for the present system, have found the spin-echo signal due to
longitudinal contributions and that due to longitudinal and transversal contributions (such as
given in figures 5(b) and (c)) to be congruent.

3.3. Pulse timing imperfections

As mentioned above, the π -pulse of the proposed spin-echo sequence is composed of
two subsequent π/2 pulses. Due to the form of the Hamiltonian in equation (15), these
composite pulses should be applied at special times (integer multiples of tR = 2π/ω∗ after state
initialization) in order to preserve the high fidelity of the gate transformation. This requirement
is due to the effective magnetic field g(E) · EB along the z-direction that cannot be tuned to
zero by electric means. The dependence of the fidelity loss 1F with respect to a pulse delay
time error δ between two subsequent π/2-pulses is shown in figure 6. This figure illustrates
that the additional fidelity loss 1F is smaller than 1% as long as δ 6 10 ps, which should be
readily within the reach of present-day experiments. The sensitivity to the delay time error can
be further decreased by reducing the magnitude of the external magnetic field.

4. Summary

We propose a qubit realization in the form of the spin of a hole in a QDM, which is controlled
all-electrically by g tensor modulation, and evaluate its performance regarding controllability
and dissipative effects. The growth of InAs/GaAs QDMs and the electric control of excitonic g
tensors have already been demonstrated in the laboratory [19]. An effective qubit model for such
a QDM is derived from a detailed electronic structure calculation, as well as from the inclusion
of the interaction with nuclear spins of the host lattice and phonons. In [21], the methods of this
electronic structure calculation have been used to describe the g tensor modulation observed
in [19] and have shown excellent agreement with the experiment. On the basis of the effective
qubit model, we predict that high-fidelity gate operations for a single hole within a QDM are
experimentally feasible and promising.
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The qubit can be fully controlled by means of an external electric field E that leads to a
change of the effective magnetic field g(E) · EB. In the present work, a constant magnetic field
of the order of | EB| ≈ 10 mT leads to a moderate time scale of the qubit dynamics and therefore
ensures the experimental feasibility of the qubit control. We use optimal control methods in
order to determine simple electric control pulses, as illustrated for the Hadamard gate and for
a π/2 qubit rotation around the y-axis of the Bloch sphere. The 10 ns pulse profiles consist of
voltage steps with a finite rise time that can be generated in experiment by arbitrary waveform
generators. The performance of the gate transformations is tested with respect to dephasing and
relaxation due to the interaction of the hole spin with the surrounding nuclear spins of the host
lattice and due to the hole–phonon interaction. For electric pulses of duration 10 ns, we find that
qubit manipulations can be performed with a remarkably low fidelity loss of 1F ≈ 1%.

We propose a spin-echo experiment that allows one to completely cancel inhomogeneous
dephasing due to the hole–nuclear-spin interaction. Therefore, it would enable the experimenter
to study and characterize additional dephasing mechanisms beyond inhomogeneous broadening.
We also investigate the influence of pulse-timing imperfections on the gate fidelity. Our findings
show that the additional fidelity loss is . 1% for pulse delay time errors of less than 10 ps.
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Appendix A. Matrix elements of the hole–nuclear-spin Hamiltonian

In this section, we derive the matrix elements of equation (6). For simplicity, we omit the nuclear
spin index i . The interaction Hamiltonian of a nuclear spin EI (located at ER) with a hole reads
(see section 2.1 and [24]),

HI(Eρ, Ep)= 2µBγ EI ·

[
El

|ρ|3
−

Es

|ρ|3
+

3Eρ (Es · Eρ)

|ρ|5

]
(A.1)

= 2µBγ Im ⊗

[(
lm

|ρ|3
⊗ 1

)
−

(
ρ2δmn − 3ρmρn

|ρ|5

)
⊗ sn

]
, (A.2)

where we used the Einstein summation convention for the indices m and n. Here γ , Es and
El = Eρ× Ep, respectively, denote the gyromagnetic ratio of the nuclear spin EI , the hole spin and
the hole orbital angular momentum. In equation (A.1), we explicitly denoted the spatial and
momentum dependence of HI. The hole wave function9 can be written as a product of envelope
functions F and angular-momentum basis functions ψ ( j, j z),

9k(Er)=
√
�
∑
j, jz

F (k; j, jz)(E, Er)ψ ( j, jz)(Er), jz ∈

{
±

3

2
,±

1

2

}
, j ∈

{
3

2
,

1

2

}
, k ∈ {0, 1} , (A.3)

or, using spin-resolved zone center valence-band Bloch functions ψ (i,α), as

9k(Er)=
√
�
∑
i,α

F (k;i,α)(E, Er)ψ (i,α)(Er), i ∈ {X, Y, Z} , α ∈ {↑,↓} , k ∈ {0, 1} . (A.4)
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The matrix that describes the transformation between ψ ( j, j z) and ψ (i,α) is given in equation
(A.8) [23, 45]. The wavefunctions 90(Er) and 91(Er) denote the ground and the first excited
Zeeman state of the QDM. We neglect states with higher energy (see section 2) and calculate
the matrix elements of the interaction Hamiltonian

HI(Eρ, Ep)=

[
〈91| HI(Eρ, Ep) |91〉 〈91| HI(Eρ, Ep) |90〉

〈90| HI(Eρ, Ep) |91〉 〈90| HI(Eρ, Ep) |90〉

]
, (A.5)

with

〈9k| HI(Eρ, Ep) |9l〉 =�
∑

i, j,α,β

∫
V

dEρdEτ {[F (k;i,α)(E, Eτ + ER)ψ (i,α)(Eτ + ER)]∗

× 〈Eτ | HI(Eρ, Ep) |Eρ〉ψ ( j,β)(Eρ + ER)F (l; j,β)(E, Eρ + ER)},

where ER denotes the position of the nuclear spin with respect to the coordinate system given
in figures 1(a) and 2(a) and (b) and with Eτ = Er − ER denoting a spatial coordinate. Since the
hole–nuclear-spin interaction is short ranged, we can assume that it is non-vanishing only within
a sphere of volume VR0 and radius R0 around the nuclear spin [13]. Furthermore, the envelope
functions are approximately constant within this sphere, i.e.

〈9k| HI(Eρ, Ep) |9l〉

≈�
∑

i, j,α,β

[F (k;i,α)(E, ER)]∗F (l; j,β)(E, ER)
∫

VR0

dEρ
[
ψ (i,α)(Eρ)

]∗
HI(Eρ,−ih̄ E∇Eρ)ψ

( j,β)(Eρ),

≡

∑
i, j,α,β

[F (k;i,α)(E, ER)]∗F (l; j,β)(E, ER)Vi jαβ, (A.6)

where we used the spatial periodicity of ψ (i,α)(Eρ) and 〈Eτ | HI(Eρ, Ep) |Eρ〉 = HI(Eρ,−ih̄ E∇Eρ)δ(Eρ−

Eτ). In fact, it can be shown that VR0 is well approximated by the unit cell around the nuclear
spin under consideration. Contributions due to long range interactions lead to corrections of
the order of 1% [14, 15]. Following [13], we employ a spherical approximation of the basis
functions ψ (i,α)(Eρ). Using spherical coordinates (ρ, θ, φ), the corresponding approximate basis
functions read

ψ (X,α)(ρ, θ, φ)≈

√
3

4π
κ(ρ) sin (θ) cos (φ) |α〉 ,

ψ (Y,α)(ρ, θ, φ) ≈

√
3

4π
κ(ρ) sin (θ) sin (φ) |α〉 ,

ψ (Z ,α)(ρ, θ, φ) ≈

√
3

4π
κ(ρ) cos (θ) |α〉 .

Here, κ(ρ) denotes the radial part of ψ (i,α)(ρ, θ, φ) and |α〉 is a ket in the spin basis {↑,↓}.
An estimation of the magnitude of the hole–nuclear-spin interaction is given in [14], where
the authors used a linear combination of atomic orbitals for the hh Bloch function. In the
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basis ψ (i,α) [α, β ∈ {↑,↓} and i, j ∈ {X, Y, Z}] and by employing the aforementioned spherical
approximation, the integral Vi jαβ (equation (A.6)) can be expressed as

Vi jαβ

�
=2µBγ Im

∫ R0

0
dρ
κ(ρ)2

ρ

[
−ih̄εi jmδαβ−

2

5

(
δi jδmn −

3

2

(
δimδ jn +δinδ jm

))
〈α| sn |β〉

]
. (A.7)

A discussion of modifications of the interaction at small ρ due to the finite size of the nucleus
can be found in [46].

Since we want to express the hole–nuclear-spin interaction in terms of lh and hh
contributions, we change the basis representation of Vi jαβ from {ψ (i,α)

} to {ψ ( j, j z)}. The
transformation is governed by the unitary matrix [23, 45]

Uλν =
1

√
6



−
√

3 0 i
√

3 0 0 0

0 −1 0 i 2 0

1 0 i 0 0 2

0
√

3 0 i
√

3 0 0

0 −
√

2 0 i
√

2 −
√

2 0

−
√

2 0 −i
√

2 0 0
√

2


, (A.8)

where the new matrix representation Ṽ is given by Ṽµν = UµσVσλU
†
λν . Here, we use the

shorthand notation
µ, ν = ( j, jz) ∈

{(
3
2 ,+3

2

)
,
(

3
2 ,+1

2

)
,
(

3
2 ,−

1
2

)
,
(

3
2 ,−

3
2

) (
1
2 ,+1

2

)
,
(

1
2 ,−

1
2

)}
,

σ, λ= (i, α) ∈ {(X,↑), (X,↓), (Y,↑), (Y,↓), (Z ,↑), (Z ,↓)} .
(A.9)

The transformed matrix Ṽµν in the {ψ (3/2,+3/2), ψ (3/2,+1/2), ψ (3/2,−1/2), ψ (3/2,−3/2)
} basis thus

reads

Ṽµν =
8µBγ h̄�

5

∫ R0

0
dρ

|κ(ρ)|2

ρ


Iz

1
√

3
I− 0 0

1
√

3
I+

1
3 Iz

2
3 I− 0

0 2
3 I+ −

1
3 Iz

1
√

3
I−

0 0 1
√

3
I+ −Iz

≡ V̄ j ′
z, jz . (A.10)

Split-off contributions ( j =
1
2 ) have been neglected as discussed in section 2. We finally arrive

at the expression

〈9k| HI(Eρ, Ep) |9l〉 ≈

∑
jz, j ′

z

[F (k; j=3/2, j ′
z)(E, ER)]∗F (l; j=3/2, jz)(E, ER)V̄ j ′

z, jz , (A.11)

for the {|90〉, |91〉} matrix representation of the hole–nuclear-spin interaction (for the definition
of V̄ j ′

z, jz see equation (A.10)).
The Wigner–Eckart theorem can be used to determine the matrix elements of the

hole–nuclear-spin interaction as well [47]–[49]. In addition to the calculation presented above,
we decomposed the spatial part of equation (A.1) into spherical tensors l̃m and Q̃mn,

lm/ρ
5
→ l̃m,

ρ2δmn − 3ρmρn

ρ5
→ Q̃mn, (A.12)

which correspond to angular momenta j = 1 and j = 2, respectively. The Wigner–Eckart
theorem can then be readily applied to obtain the matrix elements in terms of Clebsch–Gordan
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coefficients and so-called reduced matrix elements. However, in order to obtain a relation
between the reduced matrix elements of the spherical tensors l̃m and Q̃mn, approximations have
to be employed as well. Hence, we decided to present the calculation of the matrix elements in
terms of the spherical approximation given above.

Appendix B. Variances of the effective nuclear magnetic field

Here, we derive the expression for the effective nuclear magnetic field EBn given in equation (9),
as well as the ratio of the variances 1x and 1y with respect to 1z (equations (10)). We rewrite
equation (A.11) into

〈9k| HI(Eρ, Ep) |9l〉 = c[Akl(E, ER)I+ + A†
kl(E, ER)I− + Az

kl(E, ER)Iz], (B.1)

with A(E, ER), A†(E, ER) and Az(E, ER) denoting 2×2 matrices and with c given in equation (8).
The corresponding matrix elements read

Akl(E, ER)=
1
3{

√
3[F (k;3/2,−1/2)( ER)]∗F (l;3/2,−3/2)( ER)+ 2[F (k;3/2,1/2)( ER)]∗F (l;3/2,−1/2)( ER)

+
√

3[F (k;3/2,3/2)( ER)]∗F (l;3/2,1/2)( ER)},

Az
kl(E, ER)=

1
3{−3[F (k;3/2,−3/2)( ER)]∗F (l;3/2,−3/2)( ER)− [F (k;3/2,−1/2)( ER)]∗F (l;3/2,−1/2)( ER)

+ [F (k;3/2,1/2)( ER)]∗F (l;3/2,1/2)( ER)+ 3[F (k;3/2,3/2)( ER)]∗F (l;3/2,3/2)( ER)},

where the electric field dependence of the envelope functions is omitted for brevity.
For the given dot size, the hole spin interacts with typically N ≈ 104–105 nuclear spins

at positions ERi (i = 1, . . . , N ). The full interaction Hamiltonian thus reads (with nuclear spin
index i)

Hnuc =

∑
i

H i
I

=

∑
i

ci{[A(E, ERi)+ A†(E, ERi)]I i
x + i[A(E, ERi)− A†(E, ERi)]I i

y + Az(E, ERi)I
i
z }. (B.2)

It can be cast into a pseudo-spin- 1
2 form, where the hole interacts with an effective nuclear

magnetic field EBn, i.e. Hnuc =
µB

2 Eσ · EBn. Contributions proportional to the identity operator of the
pseudo-spin-1

2 space do not change the dynamics and have been omitted. The kth component of
EBn is calculated by projecting equation (B.2) onto the Pauli matrix σk (k ∈ {x, y, z}),

( EBn)k =
1

µB
tr {σk Hnuc} ≡

1

µB

∑
i

ci [g
kx
n (E, ERi)I

i
x + gky

n (E, ERi)I
i
y + gkz

n (E, ERi)I
i
z ], (B.3)

with

gkx
n (E, ERi)≡ 2Re[tr{σk A(E, ERi)}]

gky
n (E, ERi) ≡ − 2Im[tr{σk A(E, ERi)}],

gkz
n (E, ERi) ≡ tr{σk Az(E, ERi)}.
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As noted in section 2.1, we employ a quasi-static approximation for the dynamics of the
nuclear spins. We further assume that the spins are uncorrelated, e.g. 〈I i

x I m
x 〉 = 0 for i 6= m, and

that only a single nuclear spin species with spin I is present. The ‘infinite-temperature’ density
matrix of the nuclear spin ensemble reads ρnuc = 1(2I + 1)−N [4]. Hence, the mean values 〈I i

x〉,
〈I i

y〉 and 〈I i
z 〉 vanish and the variances of the nuclear spin components are 〈I i

x I i
x〉 = 〈I i

y I i
y〉 =

〈I i
z I i

z 〉 = I (I + 1)/3. Furthermore, we can set ci = c. The variances thus read

12
k =

〈
Bk

n Bk
n

〉
=

(
c

µB

)2 I (I + 1)

3

∑
i

{[gkx
n (E, ERi)]

2 + [gky
n (E, ERi)]

2 + [gkz
n (E, ERi)]

2
}. (B.4)

The sum in equation (B.4) is performed by a spatial sampling (104 points) of the lh and hh
envelope functions. The value of the ratio of the variances with respect to 1z is 1x/1z ≈

1y/1z ≈ 0.12. We then calculate 1x and 1y by setting 1z = 0.1 mT (this value corresponds
to the experimentally determined lower bound of the hole dephasing time, T ∗

2,h ≈ 100 ns, see
section 2.1). We note that the effective nuclear magnetic field and the variances depend on the
externally applied electric field via the electric-field dependence of the envelope functions. The
values for 1k/1z given here have been calculated for E = 0 kV cm−1 and EB = (0, 0, 10)mT.
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[6] Imamoḡlu A, Knill E, Tian L and Zoller P 2003 Optical pumping of quantum-dot nuclear spins Phys. Rev.
Lett. 91 017402

[7] Ramon G and Hu X 2007 Dynamical nuclear spin polarization and the Zamboni effect in gated double
quantum dots Phys. Rev. B 75 161301

[8] Reilly D J, Taylor J M, Petta J R, Marcus C M, Hanson M P and Gossard A C 2008 Suppressing spin qubit
dephasing by nuclear state preparation Science 321 817

[9] Greilich A, Shabaev A, Yakovlev D R, Efros Al L, Yugova I A, Reuter D, Wieck A D and Bayer M 2007
Nuclei-induced frequency focusing of electron spin coherence Science 317 5846

[10] Eriksson M A, Friesen M, Coppersmith S N, Joynt R, Klein L J, Slinker K, Tahan C, Mooney P M, Chu J O
and Koester S J 2004 Spin-based quantum dot quantum computing in silicon Quantum Inf. Process. 3 133

[11] Laurent S, Eble B, Krebs O, Lemaître A, Urbaszek B, Marie X, Amand T and Voisin P 2005 Electrical control
of hole spin relaxation in charge tunable InAs/GaAs quantum dots Phys. Rev. Lett. 94 147401

[12] Bulaev D V and Loss D 2005 Spin relaxation and decoherence of holes in quantum dots Phys. Rev. Lett.
95 076805

[13] Gryncharova E I and Perel V I 1977 Relaxation of nuclear spins interacting with holes in semiconductors Sov.
Phys.—Semicond. 11 997

New Journal of Physics 12 (2010) 093012 (http://www.njp.org/)

http://dx.doi.org/10.1038/nature03008
http://dx.doi.org/10.1103/PhysRevLett.100.046803
http://dx.doi.org/10.1103/PhysRevB.72.125337
http://dx.doi.org/10.1103/PhysRevB.76.035315
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1103/PhysRevLett.91.017402
http://dx.doi.org/10.1103/PhysRevB.75.161301
http://dx.doi.org/10.1126/science.1159221
http://dx.doi.org/10.1126/science.1146850
http://dx.doi.org/10.1007/s11128-004-2224-z
http://dx.doi.org/10.1103/PhysRevLett.94.147401
http://dx.doi.org/10.1103/PhysRevLett.95.076805
http://www.njp.org/


18

[14] Fischer J, Coish W A, Bulaev D V and Loss D 2008 Spin decoherence of a heavy hole coupled to nuclear
spins in a quantum dot Phys. Rev. B 78 155329

[15] Testelin C, Bernardot F, Eble B and Chamarro M 2009 Hole spin dephasing time associated with hyperfine
interaction in quantum dots Phys. Rev. B 79 195440

[16] Brunner D, Gerardot B D, Dalgarno P A, Wüst G, Karrai K, Stoltz N G, Petroff P M and Warburton R J 2009
A coherent single-hole spin in a semiconductor Science 325 70

[17] Loss D and DiVincenzo D P 1998 Quantum computation with quantum dots Phys. Rev. A 57 120
[18] Kato Y, Myers R C, Driscoll D C, Gossard A C, Levy J and Awschalom D D 2003 Gigahertz electron spin

manipulation using voltage-controlled g-tensor modulation Science 299 1201
[19] Doty M F, Scheibner M, Ponomarev I V, Stinaff E A, Bracker A S, Korenev V L, Reinecke T L and Gammon

D 2006 Electrically tunable g factors in quantum dot molecular spin states Phys. Rev. Lett. 97 197202
[20] Pingenot J, Pryor C E and Flatté M E 2008 Method for full bloch sphere control of a localized spin via a

single electrical gate Appl. Phys. Lett. 92 222502
[21] Andlauer T and Vogl P 2009 Electrically controllable g tensors in quantum dot molecules Phys. Rev. B

79 045307
[22] Andlauer T and Vogl P 2008 Gauge-invariant discretization in multiband envelope function theory and g

factors in nanowire dots Phys. Rev. B 78 075317
[23] Andlauer T 2009 Optoelectronic and spin-related properties of semiconductor nanostructures in magnetic

fields Selected Topics of Semiconductor Physics and Technology Vol 105 (Garching: Verein zur Förderung
des Walter-Schottky-Inst. der Techn. Univ. München)

[24] Abragam A 1961 Principles of Nuclear Magnetism (Oxford: Clarendon)
[25] Merkulov I A, Efros Al L and Rosen M 2002 Electron spin relaxation by nuclei in semiconductor quantum

dots Phys. Rev. B 65 205309
[26] Lü C, Cheng J L and Wu M W 2005 Hole spin relaxation in semiconductor quantum dots Phys. Rev. B

71 075308
[27] Lindblad G 1976 On the generators of quantum dynamical semigroups Commun. Math. Phys. 48 119
[28] Heiss D, Schaeck S, Huebl H, Bichler M, Abstreiter G and Finley J J 2007 Observation of extremely slow

hole spin relaxation in self-assembled quantum dots Phys. Rev. B 76 241306
[29] Gerardot B D, Brunner D, Dalgarno P A, Öhberg P, Seidl S, Kroner M, Karrai K, Stoltz N G, Petroff P M and

Warburton R J 2008 Optical pumping of a single hole spin in a quantum dot Nature 451 441
[30] Trif M, Simon P and Loss D 2009 Relaxation of hole spins in quantum dots via two-phonon processes Phys.

Rev. Lett. 103 106601
[31] Havel T F 2003 Robust procedures for converting among Lindblad, Kraus and matrix representations of

quantum dynamical semigroups J. Math. Phys. 44 534
[32] O’Brien J L, Pryde G J, Gilchrist A, James D F V, Langford1 N K, Ralph T C and White A G 2004 Quantum

process tomography of a controlled-NOT gate Phys. Rev. Lett. 93 080502
[33] Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Katz1 N, Lucero E, O’Connell A, Wang H, Cleland A N

and Martinis J M 2008 Process tomography of quantum memory in a Josephson-phase qubit coupled to a
two-level state Nature Phys. 4 523

[34] Bialczak R C et al 2009 Quantum process tomography of a universal entangling gate implemented with
Josephson phase qubits arXiv:0910.1118

[35] Poyatos J F, Cirac J I and Zoller P 1997 Complete characterization of a quantum process: the two-bit quantum
gate Phys. Rev. Lett. 78 390

[36] Altepeter J B, Branning D, Jeffrey E, Wei T C, Kwiat P G, Thew R T, O’Brien J L, Nielsen M A and White
A G 2003 Ancilla-assisted quantum process tomography Phys. Rev. Lett. 90 193601

[37] Roloff R and Pötz W 2009 Time-optimal performance of Josephson charge qubits: a process tomography
approach Phys. Rev. B 79 224516

[38] Schulte-Herbrüggen T, Spörl A, Khaneja N and Glaser S J 2006 Optimal control for generating quantum
gates in open dissipative systems arXiv:quant-ph/0609037 v2

New Journal of Physics 12 (2010) 093012 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevB.78.155329
http://dx.doi.org/10.1103/PhysRevB.79.195440
http://dx.doi.org/10.1126/science.1173684
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1126/science.1080880
http://dx.doi.org/10.1103/PhysRevLett.97.197202
http://dx.doi.org/10.1063/1.2937305
http://dx.doi.org/10.1103/PhysRevB.79.045307
http://dx.doi.org/10.1103/PhysRevB.78.075317
http://dx.doi.org/10.1103/PhysRevB.65.205309
http://dx.doi.org/10.1103/PhysRevB.71.075308
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1103/PhysRevB.76.241306
http://dx.doi.org/10.1038/nature06472
http://dx.doi.org/10.1103/PhysRevLett.103.106601
http://dx.doi.org/10.1063/1.1518555
http://dx.doi.org/10.1103/PhysRevLett.93.080502
http://dx.doi.org/10.1038/nphys972
http://arxiv.org/abs/0910.1118
http://dx.doi.org/10.1103/PhysRevLett.78.390
http://dx.doi.org/10.1103/PhysRevLett.90.193601
http://dx.doi.org/10.1103/PhysRevB.79.224516
http://arxiv.org/abs/quant-ph/0609037 v2
http://www.njp.org/


19

[39] Grace M, Brif C, Rabitz H, Walmsley I A, Kosut R L and Lidar D A 2007 Optimal control of quantum gates
and suppression of decoherence in a system of interacting two-level particles J. Phys. B: At. Mol. Opt.
Phys. 40 103–25

[40] Wenin M and Pötz W 2008 Minimization of environment-induced decoherence in quantum subsystems and
application to solid-state-based quantum gates Phys. Rev. B 78 165118

[41] Rebentrost P, Serban I, Schulte-Herbrüggen T and Wilhelm F K 2009 Optimal control of a qubit coupled to a
non-Markovian environment Phys. Rev. Lett. 102 090401

[42] Grace M D, Dominy J, Kosut R L, Brif C and Rabitz H 2010 Environment-invariant measure of distance
between evolutions of an open quantum system New J. Phys. 12 015001

[43] Storn R and Price K 1997 Differential evolution—a simple and efficient adaptive scheme for global
optimization over continuous spaces J. Global Optim. 11 341

[44] Slichter C P 1992 Principles of Magnetic Resonance (Berlin: Springer)
[45] Ivchenko E L and Pikus G E 1997 Superlattices and Other Heterostructures (Berlin: Springer)
[46] Stoneham A M 2001 Theory of Defects in Solids (Oxford: Clarendon)
[47] Sakurai J J 1994 Modern Quantum Mechanics (Reading, MA: Addison-Wesley)
[48] Edmonds A R 1996 Angular Momentum in Quantum Mechanics (Princeton, NJ: Princeton University Press)
[49] Cornwell J F 1984 Group Theory in Physics (New York: Academic)

New Journal of Physics 12 (2010) 093012 (http://www.njp.org/)

http://dx.doi.org/10.1088/0953-4075/40/9/S06
http://dx.doi.org/10.1103/PhysRevB.78.165118
http://dx.doi.org/10.1103/PhysRevLett.102.090401
http://dx.doi.org/10.1088/1367-2630/12/1/015001
http://dx.doi.org/10.1023/A:1008202821328
http://www.njp.org/

	1. Introduction
	2. Theory
	2.1. Hole--nuclear-spin interaction
	2.2. Hole--phonon interaction
	2.3. Hole-spin dynamics

	3. Results
	3.1. Pulse shape optimization
	3.2. Hole-spin echo
	3.3. Pulse timing imperfections

	4. Summary
	Acknowledgments
	Appendix A.  Matrix elements of the hole-- nuclear-spin Hamiltonian  
	Appendix B.  Variances of the effective nuclear magnetic field 
	References

