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CORRIGENDUM

Corrigendum: Dynamical modeling of pulsed two-photon
interference (2016New J. Phys. 18 113053)
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1 E. L. Ginzton Laboratory, StanfordUniversity, StanfordCA94305,United States of America
2 Walter Schottky Institut, TechnischeUniversitätMünchen, D-85748Garching beiMünchen, Germany

E-mail: kevinf@stanford.edu

Wewere alerted byChris Gustin that our normalization of the pulse-wise second-order coherence is slightly
nonstandard and deserves a deeper explanation.We are very grateful for his help in clarifying equations (44) and
(54) in themain text, andwe apologize to any readers whomay have been confused by this definition. Please note
that the clarifications discussed here do not affect the results or conclusions in the text.

First, we briefly describe how to arrive from equations (42) to (44) in themain text. Consider equation (42) in
the limit
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Note that thefirst-order coherence inherits the envelope of coherence decay from the excitation laser for long
times, and hence always vanishes in the long time limit
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This is an experimental consideration thatmay be difficult in observing due to various long-time effects such as
blinking, potentially limited laser coherence, or operating the correlator in a start-stop configuration (see the
main text). In the long time limit, the second-order coherence terms in equation (1) become uncorrelated
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Then, using the fact that every pulse period is identical
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and also the photon flux terms in equation (1)have a similar point
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As a result, we canwrite
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Integrating to pulse-wise formwith equation (43) of the paper
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and using the definition M T t G t td ,e
T

e0

1òá ñ =ˆ ( ) ( )( ) , we have the result of equation (44) in the paper
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The potentially confusing point of this definition is that for a good single-photon source
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because thefirst-order coherence terms in equation (1) interfere with the intensity for short times resulting in
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Hence, using the normalization G G t0c d c d r
2 2
¢ ¢ ¢ ¢[ ] [ ]( ) ( ) results in a denominator that depends on thefirst-order

coherence, whichwe believe is not themost ideal definition. AsChris pointed out, an alternative way of achieving
our preferred normalization is to use the average of the cross- and auto-correlations
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Here, we used the fact that g kt g kt
c d r d c r

2 2=¢ ¢ ¢ ¢[ ] [ ]( ) ( ) , and assumed that there are no blinking effects. Another
common experimental trick to get a normalization by the intensity in equation (11) is to introduce
distinguishability (e.g. via polarization rotation) between the two sources so that the fields cannot interfere at the
detectors.

We also note a few typos regarding the spontaneous emission rate γ. Occasionally wewrote 1/γ instead of γ,
e.g. in equations (39) and (59) of themain text—the correct expressions are
g g0 0 0.4 0.0032

HOM
2

FWHMg t= = ˆ [ ] ˆ [ ]( ) ( ) . Similarly, we correct a few of our definitions of FWHMt , which
should read 0.1FWHMt g= for short pulses or 3.3FWHMt g= for long pulses.

Finally, we note an error in equation (51) of themain text.Wemean to define
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whichwas done correctly in the iPython notebooks detailing our calculational technique. Often, this parameter
is referred to as the visibilityV.We chose to avoid calling this parameter visibility because its definition does not
match the general definition for an arbitrary interferometer.We also comment that for a single-photon source
with no error rate, g 0

a
1 2∣ [ ]∣( ) is precisely the trace purity of the single-photon emission. Given afinite error rate,

this equivalence no longer holds. For instance, consider the resonantly driven two-level systemwith no
dephasing: the emitted state is a pure state (with unity trace purity) even though g 0 1

a
1 2 <∣ [ ]∣( ) (as discussed in

themain text).
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Abstract
Single-photon sources are at the heart of quantum-optical networks, with their uniquely quantum
emission and phenomenon of two-photon interference allowing for the generation and transfer of
nonclassical states. Although a few analyticalmethods have been briefly investigated for describing
pulsed single-photon sources, thesemethods apply only to either perfectly ideal or at least extremely
idealized sources. Here, we present the first complete picture of pulsed single-photon sources by
elaborating how to numerically and fully characterize non-ideal single-photon sources operating in a
pulsed regime. In order to achieve this result, wemake the connection between quantumMonte-
Carlo simulations, experimental characterizations, and an extended formof the quantum regression
theorem.We elaborate on how an ideal pulsed single-photon source is connected to its photocount
distribution and itsmeasured degree of second- andfirst-order optical coherence. By doing so, we
provide a description of the relationship between instantaneous source correlations and the typical
experimental interferometers (Hanbury-Brown andTwiss, Hong–Ou–Mandel, andMach–Zehnder)
used to characterize such sources. Then, we use these techniques to explore several prototypical
quantum systems and their non-ideal behaviors. As an example numerical result, we show that for the
most popular single-photon source—a resonantly excited two-level system—its error probability is
directly related to its excitation pulse length.We believe that the intuition gained from these
representative systems and characters can be used to interpret future results withmore complicated
sourceHamiltonians and behaviors. Finally, we have thoroughly documented our simulation
methodswith contributions to theQuantumOptics Toolbox in Python in order tomake ourwork
easily accessible to other scientists and engineers.

1. Introduction

The development of the quantum single-photon source has ushered in thefield of optical quantum information
technology [1]. Such sources, serving as generators of flying photonic qubits [2], lie at the heart of nearly every
quantum-optical technology [3], including photonic logic gates [4], quantumnetworking [5], and highly
nonclassical NOON state generation [6]. Critical to the usefulness of a single-photon source is knowledge of its
temporal profile [7–9], which has been accomplished via twomeans: heralding of the emission through a
projectivemeasurement on a continuous entangled pair source [10] or on-demand generation through pulsed
excitation of a system that releases only one photon per pulse [11]. In this paper, we thoroughly discuss the
properties of on-demand pulsed single-photon sources.

Before we beginwith our detailed analysis, we provide a brief summary of the characteristics of ideal single-
photon sources. Generally, a single-photon source creates a pulse containing atmost one photon.More
specifically, ideal and on-demand single-photon sources are characterized by their:
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• Photocount distribution, yielding atmost one photon per pulse and hence zero second-order optical
coherence [1, 12],

• First-order optical coherence, such that the output pulse is a pure state of the free radiationfield rather than an
incoherentmixture of single-photon pulses [7–9],

• Spatio-temporal profile, whose precise shape is tailored by the generating system and usefulness determined by
its application [7, 8, 11]. The spatial component includes both the physicalmode shape as well as its
polarization.

Given that single-photon pulses exist as wavepackets, theymay also display interference, and hence their
spatio-temporal profiles are critical in this respect: from this realization came one of the great discoveries of the
20th century, the concept of an identical photon [8].When a pair of photonic wavepackets share all three of the
aforementioned characteristics, they are said to be identical or indistinguishable.Meanwhile, the identical
nature of photons has provided quantumoptics with a rich class of experiments to explore. Perhaps themost
famous is two-photon interference (seen in theHong–Ou–Mandel (HOM) interferometer), whereby two
identical photons incident on a beamsplitter always exit a chosen output port together. First demonstrated in
1987with photons produced via parametric downconversion [13], two-photon interference has been observed
with photons generated via trapped ions [14], artificial atoms [11], and even circuitQED systems [15].

While writing down thewavefunction for such photon pulses is now fairly well-established (at least from a
quantum-field theoretic point of view [16]), simulating non-ideal single-photon sources has proven extremely
challenging. Only a few papers ever attempted to tackle this type of problem, and even so they investigated highly
restrictive cases [17, 18]. Here, we present amore general simulation technique that allows for the quantification
of single-photon emission from systems characterized byHamiltonianswith nearly arbitrary time-dependence.
This work also includes techniques for directly calculating the effective pulse-wise two-photon interference in
both aHOM interferometer [13, 14] and the oftenmisunderstood unbalancedMach–Zehnder (MZ)
interferometer [11, 19]. Importantly, we haveworked tomake this technique easily accessible to
experimentalists wishing tomodel their on-demand sources by contributing to the underlying code of the open-
source packageQuantumToolbox in Python (QuTiP) [20]. In addition, we have provided detailed examples to
theQuTiP repository demonstratingmany of the simulations discussed in this paper.

2. Prototypical single-photon sources

Although the techniquewe present is fairly general, we have chosen to discuss only simplisticmodel systems that
can easily be understood and run by a broad range of quantum scientists. Similarly, while we study our systems
only under drive byGaussian pulses, our technique is trivially extensible tomore complicated pulse shapes and
systemHamiltonians. (For instance, see ourwork on single-photon emission from Jaynes–Cummings type
systems [19, 21, 22].) Instead in this paper, our three choices ofmodel systems (figure 1)will capture various
behaviors of single-photon sources with regard to their coherences, as a function of driving pulse length. These
models have been chosen as a somewhat representative set of possible on-demand single-photon sources.

(i) Coherently excited two-level system: This source was chosen to illustrate performance degradation primarily
in its second-order coherence with increasing pulse length relative to its spontaneous emission rate. This
system is described by the followingHamiltonian [23]

Figure 1. Idealizedmodels for three single-photon sources, showing a representative variety of behaviors. (i)Coherently excited two-
level system: chosen to illustrate performance degradation primarily in its second-order coherence. (ii) Incoherently excited three-level
ladder system: chosen to illustrate performance degradation only in its first-order coherence. (iii)Coherently excited three-level lambda
system: chosen to illustrate lack of performance degradation in its ideal limit of g  013 .
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where w0 is the transition frequency, wd the laser frequency, ( )W t the pulse driving strength, andσ the
atomic lowering operator.Wewill consider the dynamics of this systemwith only one collapse operator,
corresponding to spontaneous emission at a rate γ, i.e. gs=C [23]. Example experimental systems of
this type can be found in coherently excited quantumdots [24, 25], trapped ions [14], and circuitQED
platforms [15].

(ii) Incoherently excited three-level ladder system: This source was chosen to model performance degradation
only in its first-order coherence with increasing pulse length relative to its spontaneous emission rate. First,
we assume that the system is initialized into the state ∣ ñ3 each emission cycle. From there, wewill simulate
only dissipative evolution through a cascade driven by two collapse operators of rates ( )W t andg12,
i.e. { ( ) }s g s= WC t ,n 23 12 12 . Example experimental systems of this type can be found in electrically
injected or incoherently excited quantumdots [26] and the polariton-phonon cascades of solid-state
Jaynes–Cummings-like systems [22].

(iii) Coherently excited three-level lambda system: This source was chosen to illustrate lack of performance
degradation in its ideal limit. Specifically, it always has the perfect values of its first- and second-order
coherences for a single-photon source. Therefore, such a source can generate single-photons with nearly
arbitrary wavefunctions. This system is described by the followingHamiltonian
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where w0 is the transition frequency, wd the laser frequency, ( )W t the pulse driving strength, and s13 an
atomic lowering operator.Wewill consider the dynamics of this system after having been initialized each
cycle to the state ∣ ñ1 and under the influence of two collapse operators, corresponding to spontaneous
emission from the excited state towards the system’s two ground states. These give rise to dynamics
governed by two collapse operators with rates g13 and g23, i.e. { }g s g s=C ,n 13 13 23 23 . To study the ideal
case of arbitrary single-photon generation, wewill set g  013 . Example experimental systems of this type
can be found in trapped ions [5, 27].

For each of these systems, its first-order coherence can be decreased by the effect of any pure dephasing terms as
well. These terms aremodeled by the inclusion of collapse operators with the form ( )g s=C tn d n nn, , which

may potentially be time-dependent.
Finally, we note that it is trivial tomodel coupling to different spatialmodes by decomposing a given collapse

operator into independent collapse operators. For example, consider the replacement where
{ }gs g s g s=  =C C 2 , 2n : then the emission occurs at the same total rate but into two separate

spatialmodes (with potentially different polarizations). Because this phenomenon is well understood [7], wewill
implicitly assume that all of our sources emit into the same spatialmode for this paper.

3.Modeling of source dynamics

The dynamics of the above systems are governed by the quantum-opticalmaster equation [23, 28]

( ) ( ) ( ) ( )r r=
t

t t t
d

d
, 3

where ( ) t is the Liouvillian super-operator that characterizes the time-dependent system evolution.More
specifically, in theMarkovian limit of system-reservoir interactions

( ) [ ( ) ( )] [ ( ) ( ) ( )] ( )† † †

 år r r r r= - + - -
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t H t t C t C t C C C C t
d
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i
,
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2
2 , 4
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n n n n n n

where g=C an n n are the collapse operators referenced above (an are the operators throughwhich the system
couples to the environmentalmodes). As discussed in the introduction, single-photon sources are characterized
by potentially non-trivial first- and second-order optical coherences. Therefore, wewill be interested to use the
systemdynamics to calculate correlations of the form

( ) ( ) ( ) ( ) ( )t t= á + ñG t A t B t C t, , 5

whereA,B, andC are each some combination of an,
†an , and the identitymatrix. Although this calculation is

often performedwith the quantum regression theorem [29], its formal statement excludes time-dependent
Liouvillians in all references to the authors’ knowledge. Yet, when studying a systemunder pulsed excitation, a
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time-dependent Liouvillian invariably arises due to the dynamical driving. Therefore, we have extended the
quantum regression theorem to time-dependent Liouvillians below.

When the quantum regression theorem is applied for time-dependent Liouvillians, it inherits the
approximations from the quantum-opticalmaster equation and yields the following result

( ) ( ) ( ) { ( )} ( )t tá + ñ = L +A t B t C t B t tTr , , 6sys

where ( )tL +t t, is governed by the evolution equation

( ) ( ) ( ) ( )
t

t t t
¶
¶

L + = + L +t t t t t, , 7

and is subject to the initial condition

( ) ( ) ( )rL =t t C t A, . 8

Although this equation only can evolve forward in time, the correlators discussed in this paper either give rise
to physicalmeasurements and inherently require t > 0 [30] or possess a conjugate time-reversal symmetry
about τ [23].We note that the authors have added this algorithm as a routine toQuTiP, so a simple call to the
correlators automatically calculates two-time correlationswith time-dependent Liouvillians.

This evolution equation has a particularly nice interpretationwhen the probability for three successive
photodetection events is negligible and

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )† †t t tá + ñ = á + + ñA t B t C t a t a t a t a t , 9n n n n

which then represents the probability density of detecting an excitation at timet followed by another excitation
at time t+t . The quantum regression theorem clearly captures this through: first a reduction of the density of
matrix by one excitation

( ) ( ) ( )†rL =t t a t a, 10n n

and by then computing the probability density of a second reduction

{ ( )} ( )† tL +a a t tTr , . 11n nsys

Finally, we comment on the connection between the system correlators and the free radiation-field
correlators. Because single-photon detectorsmakemeasurements on the free radiation field, we physically
measure correlations having to dowith the field-flux operators, e.g. b(t). Fortunately, Gardiner andZoller’s
input–output theory [29] provides a direct connection between the internal systemoperators and external
radiationmode operators, such thatmeasuring flux correlations is equivalent tomeasuring the internal system
correlators.More specifically, if a systemoperator an(t) is coupled to the external radiationmodes represented by
b(t) andwewish to calculate a physical correlator involving an(t), thenwemay simplymake the
replacement ( ) ( )gb t a tn n .

4. Single-photon source photocount distribution

As discussed in the introduction, an ideal pulsed single-photon sourcewould contain only a single-photon per
pulse and hence only a single quanta of energy in its wavepacket—in this sectionwewill fully explore this
concept. Consider photon flux incident on a photon counter withfinite timing resolution.Mathematically, the
probability that theflux results in a detection event between t and +t td is

( ) ˆ ( ) ( )h= á ñp t t f t td d , 12

where η is the total detection and collection efficiency and ˆ ( )f t is the instantaneous photonflux operator

(analogous to classical intensity) [31]. Notably, the instantaneous detection probability ˆ ( )h á ñf t must be
negligible such thatmultiple photoionizations in the detector cannot occur. Integrating over the photon pulse
duration,T, there exists a classical probability distribution Pm(T) that governs the number of expected
photocounts. A single-photon source requires

( ) ( )
h

h=
- =

=

⎧
⎨⎪
⎩⎪

P T
m

m

1 if 0

if 1

0 otherwise

, 13m

where { } Îm 0 is a classical random variable that represents the number of photocounts.
Thus, it is sufficient to characterize a single-photon source by ameasurewhich roughly corresponds to

the probability of two events occurringwithinT: the second-order factorialmoment of its photocount
distribution [28]
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[ ] [ ( )] ( )( ) º -G E m m0 1 . 142

(Because the photocount distribution is over the classical randomvariablem, we use the [ ]E ... notation to
denote the classical expectation value.)While thefirst detection still depends onm, the second detection depends
on -m 1because thefirst detection subtracts a quantumof energy from the distribution [31]. Therefore, for an
ideal pulsed single-photon source [ ]( ) =G 0 02 .

Unfortunately, the detection and collection efficiency η can be quite difficult to experimentallymeasure,
whichmakes this correlation challenging to directly estimate. Insteadwewill focus on determining its
normalized version

[ ] [ ]
[ ]

[ ( )]
[ ]

( )( )
( )

º =
-

g
G

E m

E m m

E m
0

0 1
. 152

2

2 2

This normalized second-order factorialmoment of ( )P Tm is referred to as themeasured degree of second-order
coherence at zero time delay and does not depend on the efficiencyη [31]. This quantity is useful because any
value [ ]( ) <g 0 12 is disallowed by classical physics [29] and because [ ]( )g 02 approximates the error probability of
the source to produce two detection events relative to the number of single detection events.

Because the photocount distribution can only be estimated from the outcome ofmany pulse-wise
experiments, a typical experimental cycle will involve periodic generation of the photonwavepacket and its
subsequent detection every tr seconds. The number of photodetections from a given pulse at the time bin ntr can
then be represented by the classical randomvariable [ ] { } =m nt 0r .We can then extend the pulse-wise
definition of [ ]( )G 02 to non-zero time delays, i.e.

[ ] [ [ ] [ ]] ( )( ) = >G kt E m m kt k0 for 0, 16r r
2

whichwe refer to as the un-normalized second-order intensity correlation at time delayntr.We note that its
time origin is irrelevant due to the quasi-stationary nature of the pulses. If the probability for three
photodetections over a given pulse is negligible, then this correlation represents the probability that two photons
are detected between pulses separated by the time differencektr . From this definition, we can arrive at another
definition of [ ]( )g 02 whichwill turn out to be experimentallymost useful:
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2 2). Experimental realitiesmay sometimes inhibit the realization of this criterion and one can
then simply take
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While this definitionmay seem a trivial extension, this form ismost useful (due to the limitations of legacy
measurement instrumentation) in discussing experimental setups that estimate [ ]( )g 02 . Thus, we have discussed
how experimental single-photon sources can be readily characterized even in the face of unknown detection and
collection efficiencies.

4.1.Hanbury-Brown andTwiss interferometer
While one can easily estimate [ ]( )g 02 from the detection record of ideal photon counters, this is not possible for
most experimental detectors and single-photon sources. Experimental photodetectors have a so-called ‘dead
time’, for which the detector cannot register a second count following the first, that usually ismuch longer than
the temporal length of the photon pulse.With amaximumof one registered count per pulse, such a detector
could never distinguish between single- andmulti-photon sources. Fortunately, it turns out that under the right
approximations, an experimental setup known as theHanbury-Brown andTwiss interferometer (figure 2) is still
capable of precisely estimating [ ]( )g 02 by using two photon counters, and hence is still capable of characterizing
realistic single-photon sources [32].

Because our focus is on pulsed single-photon sources, wewill only discuss theHanbury-Brown andTwiss
(HBT) interferometer operated in a pulsedmode of operation, wherewe repeatedly excite our source every tr
seconds [32]. In theHBT setup, every pulse is path-entangled between two channels by a 50 : 50 beamsplitter
and each channel is fed into a single-photon detector. The periodic photon absorption events registered by the
two detectors can be represented as the classical random variables [ ] { }=m nt 0, 1c r and [ ] { }=m nt 0, 1d r

where { }Î >n 0 ; Theymay take on unity values at times ntr to represent photon detections.Here, the square
brackets will indicate the discrete nature of the random variables and their intensity correlations, due to both
their periodic pulsed nature and any timing uncertainty in their detection (either explicit by detector jitter or
implicit through purposeful erasure of timing information). Although an estimate forPm(T) could be built up
throughmany periodic trials and used to directly compute [ ]( )g 02 , traditionally [ ]( )g 02 has been extracted from a

5

New J. Phys. 18 (2016) 113053 KAFischer et al



histogramof the time-correlated detection records, i.e.

[ ] [ ] [( ) ] ( )å= +
=

⎢⎣ ⎥⎦
h kt m nt m n k t , 19r

n
c r d rHBT

0

T
tr
int

where Îk ,Tint is the integration time, and ktr is the time difference between detections [33]. Each
histogrammed time-bin [ ]h ktrHBT is an independent and binomially-distributed randomvariable, whose
standard deviation estimator is given by [ ]( ) [ ]h- »h kt h kt1r rHBT HBT formost experiments (η is again
the combined detection and collection efficiency).

After careful consideration of the detector nonidealities such as dead time and dark counts, as well as of the
expected statistics of a single-photon source [33], one can arrive at the approximation

[ [ ]] [ ] ( )( )h
»

⎢
⎣⎢

⎥
⎦⎥h kt

T

t
G ktE

4
. 20r

r
rHBT

2
int 2

Here, the factor of 1

4
accounts for the action of the beamsplitter to halve the signal at each detector. Inmaking the

connection back to the second-order factorialmoment at zero delay that was discussed in the previous section,
consider

[ ] [ [ ] [ ]] ( )( ) åh
»

=
⎢⎣ ⎥⎦

⎢⎣ ⎥⎦
G m nt m nt0

4 1
E . 21

T

t
n

c r d r
2

2
0

r

T
tr

int

int

While itmay be surprising that this expression is equivalent to [ ]( )G 02 , i.e. [ ( )]-E m m 1 , the key insight is that
the randomvariables [ ]m ntc r and [ ]m ntd r are not independent because a detection event by either detector pulls
one quantumof energy from the total path-entangled field.

As previouslymentioned, however, it is difficult to experimentally estimate [ ]( )G 02 due to unknown setup
efficiencies. Fortunately, since all correlations in [ ]( )G ktr

2 are lost at long times such that

[ ] [ ] ( )( ) =
¥

G kt E mlim , 22
k

r
2 2

then [ [ ]]¥E h ktlimk rHBT can serve as an intensity reference. Thus, we can obtain an estimate for themeasured
degree of second-order coherence from the following ratio

ˆ [ ] [ ]
[ ] [ ] [ ]

( )( ) =  +
¥

⎛
⎝⎜

⎞
⎠⎟g

h

h kt h h kt
0 lim

0
1

1

0

1
. 23

k r r

2 HBT

HBT HBT HBT

Importantly, several approximations were required to arrive at this result [33]:

• The net detection probability per pulse [ ]hE m1

2
must be very small relative to the dead time.

• The net detection probability per pulse [ ]hE m1

2
must be very small relative to the repetition time tr.

• The probability ofmany-photon detectionmust bemoderately low; analogously, the higher-order factorial
moments of the photocount distributionmust be of order unity, i.e. [ ]( ) ~g 0 1n for >n 2.

Figure 2. Schematic of theHanbury-Brown and Twiss interferometer: the source’s emission (periodic every tr) is path-entangled by a
beamsplitter andmeasured by twodetectors. A digital recorder then correlates the detection times and computes [ ]h ktrHBT . Here,

( )W ta indicates the coherent driving field, ( ) ta represents the dynamics of the source, a(t) represents the output of the source, and
c(t) and d(t) represent thefields at the inputs to the detectors.
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• The detectors’ dark count rates dn areminimal, such that

[ ] [ ] ( )( ) 
h h

+G kt d E m d
1 1

. 24r
2

2
2

As an example of such a histogram,we reproduce data from [21] infigure 3. In this experiment, a single-photon
sourcewas run in pulsedmode and time-correlated using anHBT setup. Because all pulse-wise correlations
have decayed already after one repetition time in this experiment,

[ [ ]] [ [ ]] ( )=
¥

h t E h ktE lim 25r
k

rHBT HBT

and therefore

ˆ [ ] [ ]
[ ] [ ] [ ]

( )( ) =  +
⎛
⎝⎜

⎞
⎠⎟g

h

h t h h t
0

0
1

1

0

1
, 26

r r

2 HBT

HBT HBT HBT

which yields ˆ [ ]( ) = g 0 0.29 0.042 .
Finally, we note thatmany experimental HBT interferometers do not exactly histogram [ ]h ktrHBT . Rather,

they only approximate [ ]h ktrHBT by electronically time-correlating detections on-the-fly. This is done by taking
thefirst detector as the signal to start timing and the second detector as the signal to stop timing: each start-stop
sequence generates a count in the time-bin of the timer value. This way, the histogram is built up in real-time as
newmeasurement correlations are recorded. The downside to thismethod is that each successively longer time-
bin requiresmore failed detections to register a count, where the actual histogram constructed is

ˆ [ ] [ ] ( [( ) ]) [( ) ] ( )å = - + +
= =

-
⎢⎣ ⎥⎦

h kt m nt m n l t m n k t1 . 27r
n

c r
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k

d r d rHBT
0 0

1
T

tr
int

Here the product termmeans that at long time-correlations, ( )[ [ ]] [ ]hµ -E h kt E m1r
k1

2
approximately and

hence it decays to zero. Therefore, this electronicmethod of time-correlating to estimate [ ]( )g 02 may not always
workwell if the [ ]( )G ntr

2 shows correlated behavior for large n. Now thatwe have a good understanding of
experimentally how to characterize the photocount distribution of a single-photon source, wewill discuss the
theoretical connection to the instantaneous correlations of the photonwavepacket’s fields.

4.2. Connection to correlations of instantaneousfields
From anumericalmodeling perspective, estimating [ ]( )g 02 for a given systemLiouvillian is fairly
straightforward usingMonte-Carlowavefunction techniques [34]. Here, evolution of the systemwavefunction
ismodeled, conditioned on the detection events of an ideal single-photon detector with infinite bandwidth.
Such a detectormay absorb one quantumof energy from the emitted field at a time, in proportion to the photon
flux at a given instant, and can distinguish detection events with infinite timing resolution. Through this process,
detection records are generated that build up an estimate forPm(T) and hence [ ]( )g 02 . However, theMonte-
Carlomethod often requires an extremely large number of simulated evolutions (trajectories) to obtain an
acceptable approximation of themeasured degree of second-order coherence.

Fortunately, for systemswith reasonably-dimensionedHamiltonians, there exists a faster andmore
intellectually satisfyingway of computing [ ]( )g 02 —as used for pulsed nonclassical light sources, this algorithm
wasfirst implemented numerically in our previous work [21]. Thismethod directly relies on using the quantum

Figure 3.ExampleHanbury-Brown andTwiss histogram generated using pulsed single-photon emission from a quantum-dot-based
cavity quantum electrodynamical system. An estimate for themeasured degree of second-order coherence can be obtained by taking
the ratio of the counts at zero delay, [ ]h 0HBT , to the counts at delay tr, [ ]h trHBT . This appropriately estimates [ ]( )g 02 because the pulse-
wise correlations have already disappeared after one repetition time.
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regression theorem, as outlined in section 3, to compute correlations between the instantaneous system
operatorsan(t) previously discussed. These correlations in turn are related to the instantaneous correlations of
the continuous-mode free-field operator b(t) that describes the emitted photon-field flux. In this section, we
now fully elaborate on this explicit connection of themeasured degree of coherencewith its associated
instantaneousfield correlations.

We beginwith amore directly quantummechanicalmodel of our ideal single-photon detector that
formalizes and combines the stories from [16, 31] and [32]. In analogy to the classical integratedmean intensity,
the quantummechanical operator

ˆ ( ) ˆ ( ) ( ) ( ) ( )†ò ò= =M T t f t t b t b td d 28
T T

0 0

represents the total photon number arriving at an ideal detector over the time interval [ ]Ît T0, (whereT is
again over the duration of the photon pulse). As such, its quantummechanical expectation value yields

ˆ ( ) [ ]á ñ =M T E m . Comparing our semiclassical definition of [ ]( )G 02 to the quantummechanical operator
ˆ ( )M T we have

[ ] ˆ ( )( ˆ ( ) ) [ ] ˆ ( ) ( )( ) ( )= á - ñ = á ñG M T M T G M T0 1 or 0 : : . 292 2 2

Here, ˆ ( )á ñM T: :2 denotes the quantummechanical expectation value of the normally-ordered secondmoment
of the photon number operator ˆ ( )M T .Writing out thismoment explicitly

[ ] [ ( ) ( )] [ ( ) ( )] ( )( ) † † ò ò= ¢ á ¢ ¢ ñ- +G t t b t b t b t b t0 d d , 30
T T

2

0 0

where the operators  indicate the time-ordering required of a physicalmeasurement [35] (operators with
higher time indices towards the center of the expression).

We can also compute the quantummechanical version of the normalized second-ordermoment [ ]( )g 02 ,
with

[ ] [ ]
ˆ ( )
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ˆ ( )

( )( )
( )

=
á ñ

=
á ñ
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g
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2

2

2

and its explicit form
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Written another way by defining

( ) [ ( ) ( )] [ ( ) ( )] ( )( ) † † ¢ º á ¢ ¢ ñ- +G t t b t b t b t b t, , 332
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Therefore, themeasured [ ]( )g 02 actually represents the sumof all field-flux correlations ( )( ) ¢G t t,2 over the
detection time. This expression agrees with intuitionwhen higher-order correlations are negligible, as it then
represents the probability to detect two photons at every possible pair of times, normalized to the total photon
number squared. As previously discussed, input–output theory provides a direct connection between the
internal systemoperators and externalmode operators such thatmeasuring zero delay flux correlations is
equivalent to calculating themode correlators. Thus, wemay simply calculate

( )
[ ]

[ ( ) ( )] [ ( ) ( )]

( ) ( )
( )( )

† †

†

 ò ò

ò
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, 35
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n n

2 0 0

0

2

where an(t) could be an atomic lowering operator in the case of radiation froma few-level systemor a cavity
mode operator in the case of radiation from a cavity. Hence, we have finished outlining our novelmethod of
numerical simulation that will be used for the rest of this paper inmodeling the dynamics of pulsed single-
photon sources.

Finally, we note that the above expressionswill later also be expanded to directly consider correlations
between twofield operators labeled, for instance, c(t) and d(t)with

( ) [ ( ) ( )] [ ( ) ( )] ( )( ) † † ¢ º á ¢ ¢ ñ- +G t t c t d t d t c t, , 36cd
2
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[ ] ˆ ( ) ˆ ( ) ( )( ) º á ñG M T M T0 : : , 37cd c d
2

and
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ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( )
( )( ) º
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0
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c d
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4.3. Simulated second-order optical coherences of single-photon sources
Now that we have fully elaborated on the theory behind theHBT setup, we can put all of the aforementioned
pieces together and begin to simulate the three different single-photon sources discussed in section 2. These
systemswere chosen because even single-photon sources withmore complicatedHamiltonians and characters
may potentially bemapped onto the source behaviors wewill present in the following simulation sections.

Thefirst featurewewill consider is the energetic shape of thewavepackets emitted from the three systems. In
fact for a given pulse, the three systems generate nearly identically shapedwavepackets when excited to emit, on
average, one photon.Here, the shape of thewavepacket refers to the profile of the average energy density at a
given point in space and time. Importantly, for long pulses, we opted against the standard definition [36] of using
constant pulse area to define our pulse lengths. Instead, we chose to determine our pulse lengths such that each
system emits, on average, one photon per pulse. For short pulses the two definitions agree, but for long pulses
this difference allows us to focus exclusively on photon statistics for comparable average photonflux.

Using these definitions, we describe the disparate situationswhen the three sources are excited by temporally
short or long pulses.When excited by a shortGaussian pulse, where short is relative to the systems’ characteristic
emission times, then the resultingwavepackets have exponentially decaying energy densities with time. An
example of this behavior is shown infigure 4(a) (red), with a pulse length of t g= 0.1FWHM in energy. On the
other hand, consider the systemswhen excited by a longGaussian pulse. Then the resultingwavepackets have
almostGaussian shapes, as shown infigure 4(b) (blue), with a pulse length of t g= 3.3FWHM in energy.
Wavepackets of these two shapes will be considered for the rest of the paper and their shapes will always be
denoted by the colors of red (exponential) or blue (Gaussian).

Given that the energy density profilesmatch so closely between our prototypical sources excitedwith the
same pulses, the differences between their wavepacketsmust lie elsewhere. Aswewill see, such differences will be
seen in their quantum statistics (optical coherences). In this section, wemake comparisons between their
second-order optical coherences, while in the next simulation section 5.3wewill compare values based onfirst-

Figure 4. Simulations of themeasured degrees of second-order coherence for the three representative systems highlighted in section 2,
which could be experimentallymeasuredwith aHanbury-Brown andTwiss setup. (a), (b)These systems are excited byGaussian
pulses of varying pulse length, which generally results in two types of pulse envelopes, exponential (red) orGaussian (blue). As
examples, we showwavepackets of an exponential shape (a) generatedwith pulse length of t g= 0.1FWHM in energy or aGaussian
shape (b) generated with a pulse length of t g= 3.3FWHM in energy. All of the prototypical systems act as single-photon sources with
zero or nearly zero [ ]( )g 02 for short excitation pulses (a), but only systems (ii) and (iii)maintain this quality for long excitation pulses
(b). (c) [ ]( )g 02 as a function of excitation pulse length for system (i). For the simulations in (a)–(c), we chose the pulse length such that
the average number of photons emitted is one.On the other hand in (d), [ ]( )g 02 as a function of excitation pulse area for system (i) is
shown.
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order optical coherences. The simulated [ ]( )g 02 values for wavepackets emitted by both three-level sources,
systems (ii) and (iii), are quite trivial: they aremanifestly zero for all possible excitation pulses. This result is quite
simple to understand—the act of initializing the system to a third state (state ∣ ñ3 for system (ii) and state ∣ ñ1 for
system (iii))means only a single quanta of energy can leave the systembefore it is reinitialized. The initial and
final states for both sources are unconnected so that the systems cannot be re-excited to emitmultiple photons
[27]. These results are summarized in the legends offigures 4(a) and (b).

On the other hand, because the initial andfinal states are the same for the two-level single-photon source
(system (i)), re-excitationmay occur. Therefore, its [ ]( )g 02 values exhibit amore complicated character andmay
be nonzero. For example, consider the effects of pulse length on [ ]( )g 02 for the two-level system (shown in
figure 4(c)). If a short excitation pulse drives photon emission, then the excitation occurs over a very short
timescale as compared to the actual emission and re-excitation is very unlikely to occur. Therefore, the system
possesses low second-order coherence and acts as a single-photon source (over the red side of the curve). In fact,
this re-excitation probability is linear with pulse length at low powers and therefore we canfit

ˆ [ ] ( )( ) t
g

= g 0 0.4 0.003. 392 FWHM

(Surprisingly, some papers discussing experimental results on state-of-the-art quantumdot sources quote values
for [ ]( )g 02 that are lower than this limit, e.g. those in [37].)Because the re-excitation probability is alwaysfinite,

[ ]( )g 02 also has a limiting value even for arbitrarily low powers. This effect can be seen infigure 4(d), where
[ ]( )g 02 as a function of pulse area is shown for a short pulse (pulse length of t g= 0.1FWHM in energy). Therefore,

even in the absence of all other non-idealities, pulsed two-level systemswill never exhibit perfect single-photon
emission.Wenote that ourmodeling agrees verywell with recent experimental results regarding the emission
froma neutral quantumdot [25].

Meanwhile, if a long excitation pulse drives photon emission from system (i), then re-excitation is highly
likely and the system inherits the photon statistics of the laser pulse ( [ ]( )g 02 =1). This regime can be seen in the
blue side offigure 4(c) and is tabulated infigure 4(b). From these simulations, we can conclude that there are
regimeswhere a pulsed two-level systemdoes not operate as single-photon emitter at all.

5. Interferometers for observing pulse-wise two-photon interference

In the previous section, we discussed how theHBT interferometer characterizes a single photon bymeasuring
the second-order intensity interference of its path-entangledwavepacket. There the spatio-temporal profiles
were irrelevant to the pulse-wise results—nowwewill consider interferometers whose outputs depend on these
profiles. However, wewill implicitly assume that thewavepackets occupy comparable spatialmodes sowe can
focus on their temporal characteristics. Next, wewill introduce several important findings and concepts that we
will elaborate on and prove in the subsequent sections.

Specifically, wewill discuss two interferometers that compare two independent photonwavepackets and
depend both on second-order (intensity) andfirst-order (field) interference: theHong–Ou–Mandel (HOM)
interferometer [7] and the unbalanced and doubly-excitedMach–Zehnder (MZ) interferometer [11]. For these
interferometers in the limit of identical single-photon inputs, the intensity correlations equal zero just like in the
HBT setup. Interestingly, thismeans that the remaining information is encoded in themutual first-order optical
interference betweenwavepackets. Therefore, this correlation could in principle bemeasured through a
traditionalMichelson interferometer and ismore recognizable as interference in classical optics. However, a
Michelson interferometer can onlymeasure the ensemble average offirst-order coherence over extremely long
time-scales, while theHOMandMZ interferometers can directly integrate the pulse-wisefirst-order coherence
of single-photonwavepackets.

First, wewill discuss theHOM interferometer, whichmeasures the indistinguishability of two single-photon
inputs by comparing the likeness of their wavefunctions directly [7, 8]. In the case of perfect identical photons at
the inputs, detection of a photon by thefirst detector projects the second photon into the same channel as the
first photon—this phenomenon is known as two-photon interference. Unfortunately, producing a single source
of indistinguishable photons is often quite challenging (let alone two), but onewould still like to characterize the
source’s instantaneous degree offirst-order coherence. Or in an alternative source architecture, an individual
single-photon source has recently been utilized to generate several coincident indistinguishable photons
through time-multiplexing, for use in a complicated quantum-optical experiment known as Boson sampling
[38, 39]. In this case, the indistinguishability of photons generated at different times, but by the same system,
needs to be compared.

For these purposes, wewill discuss the unbalanced and doubly-excitedMZ interferometer. Using this
interferometer, one can quantify how a sourcewould behave in aHOMexperiment [19] by interfering pulses
emitted at different times. Notably, unlike in the continuous excitation case, the two interferometers (HOMand
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MZ) do not necessarilymeasure the same interference visibilities for comparable sources, nor do they share the
same threshold for nonclassicality.

5.1.Hong–Ou–Mandel interferometer
Here, we detail interference in aHOM interferometer. In such an interferometer, two identically independent
sources are interfered on two detectors by the action of a single beamsplitter. This setup is shown schematically
infigure 5: consider two systems periodically driven by the pulses ( )W ta and ( )W tb , respectively. Their outputs,
theHeisenberg free-field operators a(t) and b(t), are subsequently fed into the beamsplitter whichmixes the two
according to the unitary transformation

( )
( )
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( )= -⎡
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The detection events are then correlated electronically to arrive at a temporal coincidence histogram
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In terms of the instantaneous correlations discussed in section 4.2, wewish to calculateG(2)
c′d′[0]which is

[ [ ]]µE h 0HOM . To perform this calculation, we first decomposed the underlying instantaneous correlations of
G(2)
c′d′[0], i.e.G

(2)
c′d′(t, t′) , intomoremanageable components based on a(t) and b(t) that allowed for the averaging

over all quickly-varying phase terms. These phase terms are difficult to observe experimentally since they depend
on femtosecond phase locking and are, regardless, not required for the observation of two-photon interference.

It has been shown that after performing this procedure [7] one arrives at
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where ( ) ( ) ( )( ) †¢ = á ¢ ñG t t e t e t,e
1 represents the sources’first-order optical coherences and

( ) {( ) ( )} ºa b a b b a, , , , . Thenwe again remark that in its pulse-wise form
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This formulation can easily represent any formof inter-source distinguishability, possibly arising due to a
frequency difference, temporal or amplitudemodemismatch,multiphoton pulse, or an excitation timing jitter.
However, we need a valid intensity reference to compare this correlation against in experiment due to unknown
detection and collection efficiencies. Similar to the long-time correlation in theHBT setup, here the only true
reference is in proportion to the statistically independent cross-correlation

[ ] ( ˆ ( ) ˆ ( ) ) ( )( ) = á ñ + á ñ
¥

¢ ¢G kt M T M Tlim
1

4
. 44

k
c d r a b

2 2

Figure 5. Schematic of theHong–Ou–Mandel interferometer: the emission from two independent sources (periodic every tr) is
interfered on two detectors by a beamsplitter. A digital recorder then correlates the detection times and computes [ ]h ktrHOM . Here,

( )W ta and ( )W tb indicate the coherent driving fields, ( ) ta and ( ) tb represent the dynamics of the sources, a(t) and b(t) indicate the
continuousmode free-field operators at the output of the driven systems, and ( )¢c t and ( )¢d t indicate the free-field operators at the
inputs to the detectors.
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Sincewe’re only interested in determining the pulse-wise correlations, we consider
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whose estimate from theHOMsetup is
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While the analytical expression for [ ]( )g 0
HOM

2 is somewhat complicated once expanded, one can derive insight
by investigating limiting cases. For instance, consider two (potentially distinguishable) single-photon sources as
the inputs to theHOM interferometer. Then,
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which could represent the interference between two single-photon sourceswith different temporal delays, center
frequencies, or pulse shapes. This expression can be understood asmeasuring the overlap of the sources’ single-
photonwavefunctions: when the sources perfectly share the aforementioned characteristics, then they have
identical first-order coherences.When thefirst-order coherencesmatch, so do thewavefunctions and thus

[ ]( ) =g 0 0
HOM

2 ismeasured [8]. Importantly, we nowhave the second requirement for a good single-photon
source—a good sourcemust be able to interfere with other sources, which requires both the wavepackets to be identical
and hence in pure states [7, 8]. This ismet only if both states have complete first-order coherence. Unlike for the
HBT interferometer, it is also this dependence on the first-order coherence thatmakesMonte-Carlo simulation
of theHOMhistogrammuchmore difficult.

Finally, in preparation for our comparisonwith theMZ interferometer, we look tomake a fewmore
simplifications.We note that if the sources are both identically independent and temporallymatched, but we
allow for non-ideal second-order coherence, then equation (45) simplifies significantly to

( ) [ ( ) ( ) ( ) ∣ ( )∣ ] ( )( ) ( ) ( ) ( ) ( )= + -¢ ¢G t t G t t G t t G t t G t t,
1

2
, , , , . 48c d aa a a a

2
1 2

2
1 2

1
1 1

1
2 2

1
1 2

2

Here, the source correlations between ( )¢c t and ( )¢d t have terms only coming froma single source (the indices
again could trivially be switched as a(t) and b(t) are identically independent). Now the proportionality of the
square of the experimental intensity reference reduces to

[ ] ˆ ( ) ( )( ) = á ñ
¥

¢ ¢G kt M Tlim . 49
k

c d r a
2 2

Therefore, we are interested in the computation of the integrated and normalized correlation

[ ] [ [ ] ∣ [ ]∣ ] ( )( ) ( ) ( )= + -g g g0
1

2
0 1 0 , 50

aa aHOM
2 2 1 2

where

[ ] [ ]
ˆ ( )

[ ] ( ) ( )( )
( )

( ) ( )ò òº
á ñ

º ¢ ¢g
G

M T
G t t G t t0

0
and 0 d d , . 51

a
a

a
a

T T

a
1

1
1

0 0

1

Onemay immediately notice the nonclassical threshold of [ ]( ) <g 0 0.5
HOM

2 due to the classical limit

of [ ]( ) g 0 1
aa

2 .
Hence the observable pulse-wiseHOM interference for identically independent sources simply comprises

terms involving the totalfirst- and second-order coherences of the source. Aswith the continuous formofHOM
interference [7], whether this pulse-wise interference is truly just two-photon interference therefore depends on
the nature of the source outputs. Additionally, we note that inmany real systems the first-order coherence
extracted here is wildly different than the first-order coherence extracted from aMichelson interferometer due
to the long-time averaging action of theMichelson.

5.2. Unbalanced anddoubly-excitedMach–Zehnder interferometer
While theHOM interferometer compares two single photons between a pair of different sources, the goal of the
MZ interferometer (shown schematically infigure 6) is to ascertain how a single sourcewould behavewere it and
its identical twin fed into anHOM interferometer. To this end, it was previously realized that some aspect of
two-photon interference can be observed for a single source at the input to aMZ interferometer [11]. However,
we note that further formalismwas required beyond previous analyses, whichwewill provide here.

In order to observe this type of interference, the systemmust be doubly excited at a time interval that
matches the temporal delay between the two paths of theMZ interferometer. Additionally, this intervalmust be
long enough that the emission resulting from the two excitations is identically independent. For perfect single-
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photon input theMZoutput correlation is in fact two-photon interference and thus equivalent toHOM
interference. However, inmany cases the literature has incorrectly compared the twowhen the source has some
finite probability of emitting non-single photons. Thus, we nowoutline the derivation of the correctmeasured
correlation. Consider the schematic infigure 6: a single system is periodically drivenwith the coherent driving
field ( ) ( ) ( )W¢ = W + W -t t t ta a a d and hasfield-mode operator output ( ) ( ) ( )¢ = + -a t a t a t td , where td is
long enough so that the state of the system is reset between excitations. The first beamsplitter simply splits ( )¢a t
in two—we have dropped the vacuumoperator in anticipation that our detectors onlymeasure a normally-
orderedmoment of their impinging fields. Next, one path is delayed by the excitation interval td and the second
beamsplitter thenmixes ( )¢a t1

2
with the time delayed version of itself. The time delay is absolutely critical: for

time delaysmuch less than td, ( )¢a t1

2
can interfere with itself, and therefore reproduce a correlation similar to

theHOMcross-correlation. Finally, the detection apparatus generates the histogram

[ ] [ ] [( ) ] ( )å= +
=

 

⎢⎣ ⎥⎦
h kt m nt m n k t . 52r

n
c r d rMZ

0

T
tr
int

Following themethods outlined in the previous section, we similarly calculate [ ] [ [ ]]( ) µ G E h0 0c d
2

MZ in

terms of the instantaneous correlations. Although computation of [ ]( )
 G 0c d
2 in terms of source correlations

certainly appears daunting due to the doubly excited source, the independence of ( )¢a t for times of order td or
larger dramatically simplifies calculation of [ ]( )

 G 0c d
2 . This expansion is further simplified by consideration of the

correlations centered around time delays that are integermultiples of td. It is fairly trivial to show that the
majority of terms for delays larger than td are zero, with only a few additional phase-dependent terms arising.We
note that while onemight expect the correlations to be phase locked by theMZ interferometer, typical
integration times quickly destroy the phase interference; Besides, this phase dependence is unwanted for two-
photon interference [7].

Consider the correlations about zero delay: ( )¢a t and its time delayed version are statistically independent so
equation (48) holds butwith the source correlations of ( )¢a t instead of a(t). Because the source is doubly excited
the ratio of the correlations in terms of a(t) is altered, which can easily be seen by applying the above rules. Now,

[ ] [ ] [ ˆ ( ) ∣ [ ]∣ ] ( )( ) ( ) ( )= + á ñ - G G M t G0 2 0 0 . 53c d aa a a
2 2 2 1 2

Again, we need a long-time reference for the square of the experimental intensity, which is proportional to

[ ] ˆ ( ) ( )( ) = á ñ
¥

 G kt M tlim 3 54
k

c d r a
2 2

and sowe consider the normalized pulse-wise correlation

[ ] [ ]
[ ]

[ ]
( )( ) ( )

( )

( )º =  ¥

 

 

g g
G

G kt
0 0 lim

0
. 55

c d k

c d

c d r
MZ

2 2
2

2

Thus, we arrive at

[ ] [ ] [ ∣ [ ]∣ ] ( )( ) ( ) ( )= + -g g g0
2

3
0

1

3
1 0 , 56

aa aMZ
2 2 1 2

Figure 6. Schematic of the unbalancedMach–Zehnder interferometer: a single source is doubly excited at an interval of =t 1.9 nsd

periodically (every tr), to have its emission interfered with a time-delayed copy of itself. Importantly, this re-excitation only occurs
after all excited population from thefirst pulse has decayed, so that the operator ( )¢a t is identically independent between excitations.
The vacuummode operator at the input to the first beamsplitter has been omitted in anticipation that our detectors onlymeasure a
normally-orderedmoment of their impinging fields. A digital recorder then again correlates the detection times and computes

[ ]h ktrMZ . Here, ( ) ( ) ( )W¢ = W + W -t t t ta a a d indicates the coherent driving field, ( ) ¢ ta represents the dynamics of the source,
( ) ( ) ( )¢ = + -a t a t a t td indicates the continuousmode free-field operator at the output of the driven system, and ( )c t and ( )d t

indicate the free-field operators at the inputs to the detectors.
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whose estimate from theMZ setup is given by

ˆ [ ] [ ]
[ ] [ ] [ ]

( )( ) =  +
¥

⎛
⎝⎜

⎞
⎠⎟g

h

h kt h h kt
0 lim

0
1

1

0

1
. 57

k r r
MZ

2 MZ

MZ MZ MZ

Importantly, we note that this different interference visibility as comparedwith equation (50) for theHOM
setup holds only for the pulsed case [22]. Additionally, the threshold for a nonclassical correlation has now
changed to [ ]( ) <g 0

MZ
2 2

3
. On the other hand, if theMZ interferometer is used for two-photon interference under

continuous excitation, its interference visibility and nonclassical threshold actuallymatch that of theHOM
interferometer.

Finally as an experimental example, we discuss the observed two-photon interference in aMZ setupwhen
interfering single-photon generation from a cavity-quantum electrodynamical source (figure 7); The data is
reproduced from [22]. TheMZhistogram shows groups offive peaks with non-trivial correlations. By applying
the above analysis to each delay, i.e. { }t Î - -t t t t2 , , 0, , 2d d d d , we can compute [ ]( )g ktdMZ

2 in terms of source
correlations.However, the experimental beamsplitters often have a transmittivity (T) to reflectivity (R) ratio
deviating from 50 : 50. Therefore, tofit the observedfive-peak pattern in correlationmeasurements, we need to
include the individual transmittivities and reflectivities of the first beamsplitter (T R,1 1) and second beamsplitter
(T R,2 2). Recently, a very intuitive set of pictorial rules of this process were given in the supplementary
information of reference [40]. Combining these rules with our formalism, the amplitudes of thefive peaks in
correlationmeasurements are given by:
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5.3. Simulatedfirst-order optical coherences of single-photon sources and hence two-photon interference
In the previous simulation section 4.3, we examined the second-order optical coherences of our three
prototypical systems.We saw that under the right conditions, each system could act as a single-photon source
that emitted precisely only one photon per pulse.However in this simulation section, wewill discuss the other
requirement of an ideal single-photon source, that it possess complete first-order optical coherence.Wewill
calculate the expected first-order coherence for each of ourmodel systems, andwill directly show the expected
two-photon interference between photons of the prototypical systems.

5.3.1. Identical inputs
Wediscuss simulations ofHOM interference for identical inputs, since theMZ interferometer configuration is
very popular in characterizing single-photon sources and is closely related to aHOMexperiment with identical
inputs. As previously, our systems have been excited by the sameGaussian pulses andwith the red (blue) lines
corresponding to exponential (Gaussian)wavepacket shapes. Similarly, unless otherwise noted the pulse lengths

Figure 7.Example unbalanced and doubly-excitedMach–Zehnder histogram generated on pulsed single-photon emission from a
cavity quantum electrodynamical system. An estimate for theHong–Ou–Mandel interference that would occur, should the source’s
identical copy and itself be input to anHong–Ou–Mandel interferometer, can be obtained by fitting the characteristic five-peaked
distribution. This distribution contains enough information to accurately determine both the degrees offirst- and second-order
optical coherence.
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were chosen to ensure an average of one photon per pulse. Now,wewill examine themeasured degrees ofHOM
coherence [ ]( )g 0

HOM
2 (colored lines infigure 8) and their decompositions into components that depend on their

sources’first-order (yellow shaded) or second-order (green shaded) coherences.
First, again consider the pulsed two-level source (system (i)) but nowwith the emission from two identical

systems as inputs to the interferometer. Although the emission from the two-level systems is almost exclusively
incoherently scattered, it still possesses relatively goodfirst-order coherence for all excitation pulse lengths. The
first-order coherence is greatest for long pulses (at low instantaneous power) or short pulses (where no
dephasing can occur): this can be seen nicely in theminimal yellow shading offigure 8(a). Therefore, the

[ ]( )g 0
HOM

2 almost perfectly tracks the source’s [ ]( )g 0
a

1

2
2 (green shaded). Aswith the second-order coherence, we see

that emission from ideal two-level systems can only generate perfect two-photon interferencewithin some
allowable tolerance for errors. Notably, the terms involving the second- and first-order coherences degrade at
identical rates for lowpowers. Therefore, the double-click probability has an identical lower bound as for the
HBT andHOMexperiments with this source, i.e.

ˆ [ ] ( )( ) t
g

= g 0 0.4 0.003. 59
HOM

2 FWHM

For shorter excitation pulse lengths, the emission is perfectly coherent and theHOMerror probability is also
dominated by the second-order coherence (figure 8(d)).

On the other hand, interference between a pair of three-level ladder systems (systems (ii)) perfectly tracks the
degradation offirst-order coherence with increasing pulse length (figure 8(b)). As the incoherent excitation
pulse becomes longer relative to the radiative decay time, the coherence of the state coupled to the emission
channel is destroyed. From aMonte-Carlo perspective, this amounts to amore randomized time of excitation of
the intermediate level ∣ ñ2 and hence randomized phase of the first-order coherence. This ideal system therefore
has a source error probability whose lower bound is determined by the speedwithwhich the intermediate level
can be populated.

Unlike these other systems, the ideal three-level lambda source (system (iii)) possesses completefirst-order
coherence for all possible excitation pulses, in addition to possessing the correct photocount distribution.
However, we canmanually add a non-ideality, such as a pure dephasing rate (with collapse operator

g s=C d 22), that can destroy theHOM interference between two identical ladder systems. TheHOM
interference between such systems, as the dephasing rate gd is increased, is shown infigure 8(c). As is the case for

Figure 8. Simulations of themeasured-degrees of second-orderHong–Ou–Mandel coherence [ ]( )g 0HOM
2 , for the three representative

systems highlighted in section 2, as if the emission from two identical systems impinged on the inputs. [ ]( )g 0HOM
2 is graphically broken

into two colors to depict portions dependent on the source’sfirst-order (yellow shaded) or second-order (green shaded) coherences.
(a) [ ]( )g 0HOM

2 as a function of excitation pulse length for system (i), showing degradation primarily in source [ ]( )g 0aa
2 . (b) [ ]( )g 0HOM

2 as a

function of excitation pulse length for system (ii), showing degradation exclusively in source [ ]( )g 0a
1 . (c) [ ]( )g 0HOM

2 as a function of an

additional dephasing rate for system (iii), showing degradation exclusively in source [ ]( )g 0a
1 . Again, for the simulations in (a)–(c), all

pulse lengths were chosen such that the average number of photons emitted is one. For (c) and (d), exponential wavepackets are
generated with an excitation of pulse length t g= 0.1FWHM in energy. (d) [ ]( )g 0HOM

2 as a function of excitation pulse area for system (i),
showing degradation in both source [ ]( )g 0a

1 and [ ]( )g 0aa
2 .
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all three scenarios infigures 8(a)–(c), the nonclassicality of theHOM interference is completely destroyed by
either a large pulse length or an explicit dephasing rate. Note: often the dephasing rates could be power
dependent, such as those arising fromphonon-induced dephasing [41]—this situation is also easily calculable
fromour formalism andwithQuTiP. The physical effect of including a power-dependent dephasing rate is
comparable to the degradation offirst-order coherence seen in figures 8(b) and (c) (butwith increasing power),
and therefore we did not include this redundant demonstration.

5.3.2. Non-identical inputs
Finally, we discuss simulations ofHOM interference for non-identical inputs, since sources in realistic quantum
networkswillmost likely never be completely identical. Therefore, we believe it useful to knowhow to calculate
interference between disparate sources. This differencemay arise due to different temporal delays, center
frequencies, or pulse shapes between the interfering wavepackets [7]. Because the calculational tool for achieving
any of these three effects is identical, we have chosen only to discuss temporal delay and pulse shape asways of
introducing source distinguishability. Thesemethodswill be used to discuss two representative ways of
destroyingHOM interference.

For simplicity, our systems have again been excited by the sameGaussian pulses and as before, with
interference between two identical exponential (Gaussian) packets denotedwith the red (blue) lines. Similarly,
the pulse areas were chosen to ensure an average of one photon per pulse. Now, however, we have additional
purple lines that represent interference between aGaussianwavepacket and an exponential wavepacket.

ConsiderHOM interference between a pair of three-level lambda systems (systems of type (iii)) centered at
the same frequency but potentially excitedwith different pulses and temporal offsets (figure 9(a)). Notice that
theHOM interference only occurs when thewavepackets overlap (around zero delay), while for large delays the
HOMcross-correlation reaches the limit of nonclassicality ( [ ]( ) <g 0 0.5

HOM
2 ). Because all three-level lambda

systems are perfect single-photon sources, both the red and blue curves that correspond to identical exponential
orGaussian photon inputs, respectively, exhibit perfect two-photon interference at zero delay. On the other
hand, when the twowavepackets do not perfectly overlap due to their differing shapes (purple), then the
interference is imperfect for any delay.

This situation ismade evenmore non-ideal if one considers interference betweenwavepackets emitted by a
pair of two-level systems (systems of type (i)), as shown infigure 9(b). In this situation, the exponential
wavepackets show goodHOM interference visibility at zero delay (red).Meanwhile, in the case of theGaussian
wavepackets, the significant probability of re-excitation (due to [ ]( ) =g 0 0.44

a
2 ) partially destroys the visibility of

theHOM interference (blue); TheHOMdip at zero delay still is below the nonclassical threshold.However, if
Gaussian and exponential wavepackets, each generated by two-level systems, are interferedwith one-another
then theHOM interference is not below the nonclassical threshold (purple). Interestingly, the destruction of the
HOMvisibility ismuchworse for thewavepackets generated by the two-level systems as compared to that
generated by the three-level lambda systems. This is a result of the re-excitation action that scrambles the phase
of the first-order coherence. Therefore, only aminimal first-order contribution to theHOM interference occurs
over the entire range of roughly t g 10delay .

Figure 9. Simulations of themeasured-degree of second-orderHong–Ou–Mandel coherence [ ]( )g 0HOM
2 , for interference between

delayed photons at the two inputs. Interference as a function of temporal delay between the emittedwavepackets is shown for photons
generated by two systems of type (iii) in (a) and two systems of type (i) in(b). Colors indicate the following types of wavepacket
envelopes—red: two exponential envelopes with pulse lengths of t g= 0.1FWHM in energy, blue: twoGaussian envelopes with pulse
lengths of t g= 3.3FWHM in energy, andViolet: one exponential and oneGaussian envelopewith comparable pulse lengths as before.
Note: the excitation pulse lengthswere again chosen such that each system emitted, on average, one photon per pulse.
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6. Conclusions

Herein, we have thoroughly discussed the properties of on-demand pulsed single-photon sources. In particular,
we provided a general recipe for the complete numerical characterization of the behavior of pulsed single-
photon sources. Using our technique, we looked beyond previous studies in order to completely describe the
non-idealities of single-photon sources. By considering the character of single-photon emission from three
prototypical systems, we believe we have provided a set of source behaviors thatmost other pulsed single-photon
sources can bemapped onto. In this way, we hope that our workwill be used to understandmore complex
single-photon sources and establish lower-bounds for potential source non-idealities. Considering its
applicability tomore complicated systems, we have already used these techniques to characterize a cavity
quantum electrodynamical source [19, 21, 22].

Through detailed simulations that utilized an extended formof the quantum regression theorem,we showed
how such sources are characterized by the following attributes:

• Photocount distribution, yielding atmost one photon per pulse and hence zero second-order optical coherence,

• First-order optical coherence, such that the output pulse is a pure state of the free radiationfield rather than an
incoherentmixture of single-photon pulses,

• Spatio-temporal profile, whose precise shape is tailored by the generating system and usefulness determined by
its application.

The photocount distribution and second-order coherence can be observed in theHanbury-Brown and
Twiss setup, while thefirst-order optical coherencemanifests itself experimentally inHOMandMZ
interferometers. Finally, we haveworked tomake these characterizations easily accessible to experimentalists
wishing tomodel their on-demand sources by contributing to the underlying code of the open-source package
QuTiP. In addition, we have provided detailed examples to theQuTiP repository demonstratingmany of the
simulations discussed in this paper.
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