Physics-Based Mathematical Models of Low-Dimensional Semiconductor Nanostructures IOP Publishing
Journal of Physics: Conference Series 107 (2008) 012002 doi:10.1088/1742-6596/107/1/012002

Theoretical model for the detection of charged
proteins with a silicon-on-insulator sensor

Stefan Birner, Christian Uhl, Michael Bayer and Peter Vogl

Walter Schottky Institute and Physics Department, Technical University of Munich, Am
Coulombwall 3, 85748 Garching, Germany

E-mail: stefan.birner@nextnano.de

Abstract. For a bio-sensor device based on a silicon-on-insulator structure, we calculate the
sensitivity to specific charge distributions in the electrolyte solution that arise from protein
binding to the semiconductor surface. This surface is bio-functionalized with a lipid layer so
that proteins can specifically bind to the headgroups of the lipids on the surface. We consider
charged proteins such as the green fluorescent protein (GFP) and artificial proteins that consist
of a variable number of aspartic acids. Specifically, we calculate self-consistently the spatial
charge and electrostatic potential distributions for different ion concentrations in the electrolyte.
We fully take into account the quantum mechanical charge density in the semiconductor. We
determine the potential change at the binding sites as a function of protein charge and ionic
strength. Comparison with experiment is generally very good. Furthermore, we demonstrate
the superiority of the full Poisson-Boltzmann equation by comparing its results to the simplified
Debye-Hiickel approximation.

1. Introduction

The quickly progressing technology of low-dimensional semiconductor nanostructures requires
and depends on reliable predictive theoretical methods for systematically improving, designing
and understanding the electronic and optical properties of such structures. The situation
becomes even more complicated if these nanostructures are combined with biomaterials to
form bio-sensors [1]. These sensors are gaining importance due to their large potential in
commercial applications, like pH, protein, virus or DNA sensors (bio-chips). Ion-selective
field effect transistors (ISFETs) usually contain biomaterials in an electrolyte and consist of
a two-dimensional electron (or hole) gas (2DEG) in the semiconductor region where a source-
drain voltage is applied in the 2DEG plane. The measured source-drain current depends on
the electron density in the 2DEG. The goal is to influence the electron density in the 2DEG
in a reproducible manner through changes in the electrostatic potential which are caused by
the charge distribution inside the electrolyte and in the vicinity of the interface between the
semiconductor and the electrolyte, i.e. the electrolyte acts through this field effect as a gate.
Several variations of this concept are possible, e.g. instead of having a 2DEG one could use a
nanowire with quantum confinement in two directions, and thus enhance the sensitivity due to
the increased surface-to-volume ratio, or one could use an optical device where the electrostatic
potential in the electrolyte modifies transition energies in quantum wells, quantum wires or even
quantum dots. Modeling of such devices [2] is essential not only for analyzing and interpreting
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experimental results, but also for verifying theoretical concepts, and for the understanding of
how to efficiently improve sensitivity.

In this article, we present realistic models of the electrolyte solution, its interaction with
the semiconductor device surface, and of the semiconductor device itself. We discuss detailed
simulations of protein sensors based on silicon in order to demonstrate the applicability of
this approach. In section 2, we describe how we solve the Schrodinger equation and calculate
the charge density in the semiconductor region. Our method that models the charge density
in the electrolyte is outlined in section 3. Comments about the numerical treatment of the
coupled system of semiconductor and electrolyte equations are given in section 4. Details
of previously performed relevant experiments, and the theoretical model of the sensor are
discussed in section 5. In section 6, we present results of self-consistent calculations of the
spatial charge and electrostatic potential distributions for various protein charges and different
ion concentrations in the electrolyte. Finally, the calculated surface potential is compared with
experiments. The results indicate that the full Poisson-Boltzmann equation is able to reproduce
experimental data whereas the widely used Debye-Hiickel approximation faces severe limitations.

2. Modeling the semiconductor
The charge distribution within a general semiconductor device is given by

p(x) = e [-n(x) + p(x) + N (x) — Ny (x) + pax(x)] , (1)

where e is the positive elementary charge, n and p are the electron and hole densities, and Ng and
N, are the ionized donor and acceptor concentrations, respectively. If required, fixed interface
or volume charge densities pgx can be taken into account. The electron and hole densities can
be calculated classically within the Thomas-Fermi approximation or quantum mechanically if
quantum confinement effects are important. The p-type doped silicon sensor that is investigated
in this work is operated in the inversion regime. Hence, only a quantum mechanical treatment
of the conduction band electrons close to the X points in the Brillouin zone is necessary. The
contributions to the density of all other bands like the conduction bands at the I' and L points,
and the heavy, light and split-off hole valence bands are negligible. In bulk silicon there are six
equivalent conduction band valleys close to the X points in the Brillouin zone that are described
by ellipsoidal effective mass tensors with one longitudinal and two transverse masses, m; and
my, respectively. As these ellipsoidal mass tensors are oriented differently with respect to each
other, we have to treat these minima separately, i.e. we have to consider three different valleys
where each one is two-fold degenerate. The quantum mechanical electron charge density for
each of these three valleys is given by

En—EF(x)> 7 @)

n(x) = gvgs Zn: 0, (x)* f ( T

where gs = 2 is the spin degeneracy and g, = 2 is the valley degeneracy. ¥, and FE, are the
wavefunctions and eigenstates of the three-dimensional Schrédinger equation and depend on the
orientation of each of the three ellipsoidal mass tensors, i.e. each valley requires the solution
of the Schrodinger equation. The occupation of the eigenstates is governed by the Fermi-Dirac
distribution function f taking into account the local quasi-Fermi level Er(x). kp is Boltzmann’s
constant and T is the temperature.

We use a standard approach to calculate the energy levels and wavefunctions, namely the
single-band effective mass Schrodinger equation within the envelope function approximation.
We discretize this equation with a finite differences method and assume a parabolic energy
dispersion [3]. For a semiconductor structure that is grown along the z direction and that is
homogeneous along the = and y directions, the envelope functions 1, (z) and the energies E,, of
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the n quantized electronic states are obtained as the solutions of the one-dimensional Schrédinger
equation

2
[‘hz aﬁ (mf()@a) + Ee(2) — ed(2) | ¥n(2) = Bnthn(2), ®)

where m (z) is one of the three effective mass tensor components along the growth direction z,
i.e. my or my, for (001)-oriented silicon. £ is Planck’s constant divided by 27 and E.(z) represents
the conduction band edge profile of the relevant valley and takes into account band offsets at
material interfaces. ¢(z) is the electrostatic potential which is obtained from solving Poisson’s
equation (eq. (6)). It includes the external bias potential and the internal potential resulting from
mobile charge carriers and ionized impurities. For a one-dimensional device that is homogeneous
along the x and y directions, the quantum mechanical electron charge density is calculated for

each valley as
Z 2 mn )’fBT Er(2) — En
= 9vs an In |1+ exp kpT ’ (4)

where the sum over n is only over the lowest occupied subbands. my|(z) is the effective mass
in the (z,y) plane. Obviously, this value depends on the conduction band valley, i.e. for
unstrained (001)-oriented silicon layers the ground state electron level is associated with the
longitudinal electron mass and thus m is the transverse mass my. For the other valleys where
the transverse mass is oriented along the growth direction z, the parallel mass is calculated as
my| = /mymy (density of states mass). Equation (4) leads to discontinuous charge densities at
material interfaces if the value of m| differs between neighboring materials. In order to avoid
this, we calculate for each subband n the parallel mass m,; according to Ref. [4].

Taking into account the charge neutrality requirement, we first solve the Schrodinger-Poisson
equation self-consistently in the whole device with the equilibrium requirement that the Fermi
level in the silicon layer is assumed to be constant at Er = 0 eV. In this case, we solve the
Poisson equation with von Neumann boundary conditions and obtain the built-in electrostatic
potential. The boundary values of the built-in potential plus optionally applied bias potentials
at ohmic or Schottky contacts are then used as Dirichlet boundary conditions for the Poisson
equation in nonequilibrium calculations.

3. Modeling the electrolyte

An electrolyte is an aqueous solution containing dissolved ions (e.g. Na™, C17) that result from
the dissociation of salts. Electrolytes that are used as bio-sensors are usually buffer solutions
and therefore resist changes in H30"™ and OH™ ion concentrations (and consequently the pH)
upon addition of small amounts of acid or base, or upon dilution. The concentrations of the ions
that are contained in the buffer depend on the pH and the pK] T value (dissociation constant)
and can be calculated using the well-known Henderson-Hasselbalch equation (eq. (B.4)). In
addition, the pK] , value depends on temperature and on ionic strength in a self-consistent
way. For instance7 when using a phosphate buffer, the concentrations of the buffer ions at a
particular pH are governed by three different pK! . values and thus it is extremely difficult
to derive the concentrations analytically. However, they can be calculated numerically in an
iterative scheme [5]. In Appendix B, we describe the details of our buffer model where we allow
the variables pH, pK! ;- and ionic strength to vary with spatial coordinates. Such an approach
is necessary for analyfes that produce local charge variations in the electrolyte, e.g. a charged
molecule that binds to the semiconductor device surface. Furthermore, a local variation of pH is
critical for the operation of EnFETs (enzyme field effect transistors) where the enzyme reaction
depends on the pH value.
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The distribution of all ion charges in the electrolyte solution is governed by the nonlinear
Poisson-Boltzmann equation which is composed of the Poisson equation (eq. (6)) and
the equation that describes the charge density distribution in the electrolyte (eq. (5)).
Conventionally, the Poisson-Boltzmann equation is linearized which leads to the Debye-Hiickel
approximation (Appendix A). However, as we will show in subsection 6.1 such a simplification
is generally not applicable in real devices and only valid for special and very limited cases. The
solution ¢(x) of the Poisson-Boltzmann equation determines the charge density in the electrolyte
at position x

N
— N e o ex _zie(¢(x) —Ug)
p(X) - ; 1€Ci,0 €XP < k‘BT > 5 (5)

where z; is the ion valency, e is the positive elementary charge, c; o is the bulk concentration
of the ion species i and kg7 is the thermal energy of the system at temperature T. The
bulk electrolyte potential ¢(oc) can be adjusted by varying the potential of the reference gate
electrode Ug that is connected to the electrolyte (Dirichlet boundary condition). ¢(x) is the
electrostatic potential that is obtained by solving the nonlinear Poisson equation in the overall
device self-consistently (eq. (6)). Interface reactions can be taken into account by the so-called
site-binding model for amphoteric oxide surfaces [6, 7] where the adsorption and dissociation of
H* and OH™ ions at the interface between the electrolyte and the oxide lead to interface charge
densities which depend on both the electrostatic potential at the interface and the pH of the
electrolyte. These interface charge densities simply have to be added to the charge density that
enters the Poisson equation.

4. Modeling the coupled system of semiconductor and electrolyte

The electrostatics within the electrolyte and the semiconductor require the self-consistent
solution of the Poisson and Schrodinger equations. Both equations are discretized on a
nonuniform grid with a finite differences method. They are solved numerically by iterative
methods that are described in more detail in Ref. [8]. We point out that we solve only one single
Poisson equation which includes both the electrolyte as well as the semiconductor region. It
reads

V- [e0e: (%) Vo(x)] = —p(x), (6)

where gq is the permittivity of vacuum and &, is the relative permittivity of either the electrolyte
or any of the semiconductor or insulator materials. In regions where the electrolyte is present,
the charge density p(x) is described by eq. (5), and in regions where the semiconductor materials
or the oxides are present, the typical semiconductor equation is used (eq. (1)) which may
include a suitable sheet charge density at the interface between the semiconductor device
and the electrolyte. We note that it is not necessary to solve the Schrodinger equation in
regions where the quantum mechanical density is negligible or zero, e.g. in insulators. However,
wavefunction penetration into the barrier materials (e.g. at Si/SiOq interfaces) is fully taken into
account by including a small region of the barrier material into the Schrodinger equation. We
have implemented eqs (1)—(6) and similar ones for the two- and three-dimensional Schrédinger
equations into the software package nextmano® [9]. This enables us to model combined
semiconductor-electrolyte systems in one [10], two and three dimensions for arbitrary geometries
and material compositions.

5. Description of the geometry and composition of the protein sensor

5.1. Sensor structure

Here, we discuss a silicon-on-insulator (SOI) based thin-film resistor that we will model in detail
in section 6. Indeed, such a device has been realized experimentally for chemical and biological
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Figure 1. Schematic layout of the considered
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sensor applications [11, 12]. Peptides with a single charge can be detected and it is possible to
distinguish single charge variations of the analytes even in physiological electrolyte solutions [13].

Figure 1 shows the layout of this bio-functionalized silicon-on-insulator device. It consists
of a Si09-Si-Si04 structure. Specifically, we take a silicon dioxide buffer layer with a thickness
of 200 nm and a conducting silicon layer of 30 nm which is homogeneously p-type doped with
boron (doping density p = 1-10'® cm™3). The silicon layer is covered by a native SiOg layer with
a thickness of 2 nm. This oxide layer is passivated by an ODTMS (octadecyltrimethoxysilane)
monolayer which is required for the bio-functionalization of the semiconductor device. We take
a 1.5 nm thick oxide-like ODTMS layer and use a static dielectric constant of ¢, = 1.5. Due
to the passivation by ODTMS, we assume that no interface charges are present at the native
oxide surface. The ODTMS layer is surface-functionalized with a lipid membrane that allows the
specific binding of molecules. This lipid monolayer (2 nm) consists of DOGS-NTA (1,2-dioleoyl-
sn-glycero-3-{[ N(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl}) incorporated into two
matrix lipids (DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and cholesterol). The lipid
membrane is treated as an insulator using the same material parameters as for ODTMS. Thus,
no charge carriers are assumed to be present within this layer. As the lipid layer is very dense,
no electrolyte is considered within the lipid region.

For the ionic content of the electrolyte we consider a variable concentration of KCI (10, 50,
90 or 140 mM), and a fixed concentration of 1 mM of NiCly and 1 mM of phosphate buffer saline
(PBS) solution, respectively. The NiCly dissociates into 1 mM of doubly charged cations and
2 mM of singly charged anions. For all calculations, the pH of the bulk electrolyte has been set
to 7.5. The calculated concentrations of the PBS buffer ions are listed in table 1 for different salt
concentrations. These values refer to the bulk electrolyte. In the vicinity of the semiconductor
surface and in regions around charged analytes, however, the actual concentrations of the buffer
ions vary locally. Our buffer model automatically takes this into account because the spatial
variations of pH, ionic strength and pK ;T are determined self-consistently (see Appendix B for
more details). The ionic strengths of the electrolyte solutions considered in this work, are largely
dominated by the respective concentrations of singly charged anions and cations from KCI as
can be seen in table 1. In these particular cases, i.e. small concentrations of PBS with respect
to KCIl, the Debye screening length is fully dominated by the KCI concentration.

The functionalized surface exposes NTA headgroups that carry two negative charges to the
electrolyte solution. They have the ability to form a chelate complex with nickel ions if the latter
are present in the solution. Upon loading with nickel, the charge of the headgroup changes by
+1e [14] and is then considered to be —le. This results in a negative sheet charge density onj
at the lipid/electrolyte interface. The surface density of the DOGS-NTA lipids is considered to
be 5 % (fnta = 0.05). The approximated headgroup area, i.e. the average area per functional
DOGS-NTA is assumed to be Axta = 0.65 nm?. Consequently, the density of the headgroups
is snTa = fnTA/ANTA = 7.7 - 10'2 cm™2, so that the resulting charge density o is given by
oN; = —esNTA, Where we have assumed that each headgroup carries one negative charge upon
exposure to Ni.



Physics-Based Mathematical Models of Low-Dimensional Semiconductor Nanostructures IOP Publishing
Journal of Physics: Conference Series 107 (2008) 012002 doi:10.1088/1742-6596/107/1/012002

Table 1. Concentrations of ions in units of mM for several configurations of the electrolyte
(1 mM PBS, 0 or 1 mM NiCly, pH = 7.5, T' = 25°C). The ionic strength I and the Debye
screening length x~! are also indicated.

Ton 0mM KCl 10 mM KCl 50 mM KClI 90 mM KCl 140 mM KCl
HyPO4~ ] 0.303 0.256 0.214 0.192 0.176
HPO4>~|  0.697 0.740 0.786 0.808 0.824
PO 0.135-107*  0.206-10~* 0.335-10"* 0.430-107*  0.524.107*
Na™] 1.697 1.740 1.786 1.808 1.824

K] 0 10 50 90 140

[C17] 0 10 50 90 140

Ni? 7] 0 1 1 1 1

C1] 0 2 2 2 2

[H*] 0.316-10~*  0.316-10"* 0.316-10"*  0.316-10~*  0.316-10~*
[OH™| 0.316-107*  0.316-10~%  0.316-10"% 0.316-10~*  0.316-1073
I (mM)  2.393 15.481 55.573 95.616 145.648

£ (nm™1)  0.159 0.405 0.768 1.007 1.243

k7! (nm)  6.277 2.468 1.302 0.993 0.805

The charge carrier concentration of the conducting silicon layer is controlled by applying a
backgate voltage Upg which allows for switching between the accumulation (negative Upg) and
the inversion regime (positive Upg) and particularly for tuning the sensitivity of the device. In all
calculations that are mentioned in this work, the sensor is operated in inversion at Ugg = 25 V
to allow for comparison with experiment. The experiment has shown that this is a compromise
between the highest possible sensor signal and a low noise level. With this configuration, the
p-doped silicon channel is inverted and becomes n-type. One can adjust the potential in the
electrolyte by varying the voltage Ug of the reference electrode in the solution, mainly to vary
the electron density of the right inversion layer with respect to the left one (see Figs. 1 and 2).
In order to get a reasonable magnitude for the charge density in the right channel close to the
functionalized surface, we have set Ug = 1.0 V for all calculations. These assumptions allow for
a realistic comparison with specific protein binding experiments [13].

5.2. Model of the protein charge distribution

We consider two types of proteins: Aspartic acids and the green fluorescent protein. If
divalent nickel ions (Ni**) are bound to the NTA headgroups of the lipid membrane,
this surface functionalization then allows the specific coupling of histidine-tagged (his-tag)
proteins or peptides to the membrane [14]. This process can be reversed by adding EDTA
(ethylenediaminetetraacetic acid) to the electrolyte. A his-tag is a short amino acid sequence
including histidines. They can be fused to one end of a protein and can also bind transition
metal cations. We study a protein charge distribution that is spatially separated from the lipid
membrane due to a neutral tag of width d in between the charged protein and the lipids. For
simplicity, the protein charge is assumed to be distributed homogeneously over a width w.

5.2.1. Aspartic acid We consider an artificial protein structure where amino acids are tagged
to a histidine chain. This artificial peptide binds to an NTA headgroup of the lipid membrane.
A part of this artificial protein remains uncharged since no amino acids get attached there. By
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contrast, the rest of the histidine backbone is negatively charged since we consider aspartic acids
that carry one negative charge each for the binding to the tag. It is possible to manufacture
the hexahistidine-tagged (His6) peptides with different numbers of charged residues, i.e. one can
engineer the number of aspartic acids (Asp) that bind to the tag. The charge of the aspartic
acids have been varied between carrying a single charge (His6Aspl) and up to ten charges
(His6Aspl10). It is expected that for each charge, a different signal can be detected and that
peptides with higher charges result in an increased sensor response. The width of the neutral
part has been taken to be d = 2.3 nm or d = 2.8 nm, depending on the concentration of KCI.
The length of the uncharged part of the peptide consists of the length of the complete NTA
headgroup including the spacer of 12 carbon atoms plus the his-tag. The width of the charged
part

w(n)=n-b (7)

has been assumed to depend linearly on the number n of aspartic acid units and on the length
b of one aspartic acid residue [13]. Thus, the spatial extent of the charge density increases with
the number of aspartic acids. Each additional aspartic acid therefore shifts the center of the
charge distribution about b/2 farther away from the lipid membrane. Additionally, we perform
calculations where we keep this width w constant. The integrated charge density in the protein
region changes in magnitudes of —esnta by increasing the number n of the aspartic acid units.
Furthermore, we assume that the amino acid charges tend to repel each other. It is plausible
that the strength of this repulsion is influenced by the ionic strength of the electrolyte. For
that reason we reduce the length b of one aspartic acid unit at large ion concentrations. The
electrolyte region starts at the membrane surface and includes the regions of both the neutral
part of the tag and the protein charge distribution so that the ions in the aqueous solution screen
the protein charge (Fig. 1).

5.2.2. Green fluorescent protein As a second protein, we consider the binding of the so-called
green fluorescent protein (GFP) to the lipid membrane. GFP is also histidine-tagged to the
NTA headgroups of the membrane. The size of GFP is larger (length of 4-5 nm) compared
to his-tagged aspartic acids. We assume a charge distribution of width w = 3.0 nm that is
connected with a neutral tag of width d = 2.3 nm to the NTA headgroups. At pH = 7.5, GFP
carries eight negative charges that we assume to be homogeneously distributed over the protein
region w.

6. Results of the calculations

Since we have specified all about the sensor and the proteins in the electrolyte, we are now
ready to calculate the electrostatic potential in the semiconductor/electrolyte system for several
protein charge distributions. The quantum mechanical charge densities are calculated self-
consistently by solving the Schrodinger equation in the silicon channel. The Schrédinger and
Poisson equations are coupled via the electrostatic potential and the charge densities.

First, we estimate the change in surface potential ¢s when one loads the NTA lipids with
Ni?t. We assume a sheet charge density change of Ao = —2esnTa — oni. We have actually
calculated that the surface potential increases for a 140 mM KCI solution by 13.5 mV which is
in agreement with the measurements [13].

Figure 2 shows the calculated conduction band edge and the electron density in the silicon
channel for a backgate voltage of Ugpg = 25 V. Indicated is also the position of the Fermi
level Er and the electrostatic potential. Specifying a value for the potential Ug of the reference
electrode is equivalent to a Dirichlet boundary condition for the electrostatic potential of the
Poisson-Boltzmann equation. An increase of Ug leads to higher electron densities in the right
channel. Therefore, the variation of Uz and the backgate voltage Upg allows one to increase
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the sensitivity of the sensor by adjusting the ratio of the densities of the two channels. Our
calculations yield channel densities of the order of a few 102 cm™2. They are modulated
slightly by the actual configuration of the system in terms of ion concentrations and protein
charges. Since a lower surface potential ¢ yields a lower electron density in the inverted silicon
channel, the source-drain current is expected to decrease if negatively charged proteins bind to
the functionalized sensor surface.

6.1. Influence of the protein charge on the sensitivity

In this subsection, we discuss results of the artificial protein that consists of several aspartic acids
as described in subsection 5.2.1. For the 50 mM KCI solution, the neutral part of the histidine
tag is assumed to have a width d = 2.8 nm and the respective protein charges are homogeneously
distributed over a distance w = nb where n is the number of aspartic acid units and b = 0.3 nm.
For the 140 mM KCI solution, the respective values are d = 2.3 nm and b = 0.1 nm [13]. These
parameters are reasonably close to the chemical structure of the histidine-tagged amino acids.
Figure 3 shows the calculated potential distributions for a varying number of aspartic acids at
50 mM KCI. The magnitude of the negative protein charge density increases with the number
of aspartic acids. This results in a lower electrostatic potential in the protein region. Also, the
surface potential ¢s decreases with increasing protein charge. The region of the charged part
of this protein is indicated schematically by the shaded triangle. We note that the electrolyte
region starts at the lipid surface at 235.5 nm.
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In the following, we calculate the potential change at the interface between the lipid membrane
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and the electrolyte as a function of the number of aspartic acids that are attached to each
histidine tag for KCI concentrations of 50 mM and 140 mM. The reference level ¢ for the scale
of the surface potential change is set to the case for zero protein charge. The surface potential
change Ags is then defined as

Ags(n) = ¢ — ¢g(n), (8)

where n denotes the number of aspartic acid units. A positive potential change therefore implies
that the reference level is higher compared to the situation with a nonzero number of aspartic
acids. The results are shown in figure 4 and show excellent agreement with the experimental
data of Ref. [13] where the surface potential was extracted from measurements of the sheet
resistance of the silicon channel. Due to the lower ion concentrations in the case of 50 mM KCI,
the protein charge density is less efficiently screened. Consequently, the surface potential change
is larger compared to the case of 140 mM KCI. Therefore, the variation of the charge density in
the silicon channel — and thus the sensitivity — is greater for a 50 mM KCI solution, as compared
to 140 mM KCl.

7 T T T T
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S 7 i , , , , dashed line represents the case of 140 mM KC1
0 2 4 6 8 10 in the electrolyte solution. The experimental

no. aspartic acid units data points are from Ref. [13].

One important parameter of our model is the width d of the neutral part of the histidine
tag. This distance between the lipid membrane and the beginning of the charge distribution
of the aspartic acids influences the screening of the protein charges by ions in the solution.
Hence, the impact of the amino acid charges decreases with increasing spacing of the lipid
membrane, assuming the same protein charge distribution. This means that the influence on
the semiconductor device can be enhanced by using a tag that allows small distances of the
protein to the lipid membrane.

So far, we have considered homogeneous protein charge distributions where the width w
has been varied as a function of the number of aspartic acid units n. In the following, we
demonstrate that also a constant width w reproduces experimental data. Now, the number
of aspartic acids solely determines the magnitude of the charge density but leaves the spatial
extent of the peptide unchanged. For the 50 mM KCI solution, we use d = 2.8 nm and a constant
width of w = 1.5 nm for all n. For the 140 mM KCI concentration, values of d = 2.3 nm and
w = 0.5 nm are taken. The surface potential change as a function of the number of aspartic
acids is illustrated in figure 5 for a protein charge of constant width w. Indicated are the results
for both the Poisson-Boltzmann (PB) and the Debye-Hiickel (DH) equation. The latter show
a linear variation of the surface potential change with the number of aspartic acids. This is
expected from the DH equation because a linear variation of the protein charge density leads to
a linear variation of the surface potential change. In contrast, the results of the nonlinear PB
equation resemble a logarithmic behavior and are in very good agreement with the experimental
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data. This nonlinear dependence is attributed to screening effects in the electrolyte which cannot
be reproduced correctly within the DH approximation (Appendix A). It is important to note
that both assumptions, i.e. a constant width w and the linear variation of w with the number of
aspartic acids n, reproduce experimental data, whereas the DH equation leads to unsatisfactory
results. This emphasizes the importance of using the full PB equation rather than the linearized
DH equation as it allows more insight into the screening of charges in electrolyte solutions. This
is especially true if complex bio-functionalized surfaces are used where the binding of charged
molecules occurs at about 5-10 nm from the surface, and where the prediction of the sensitivity
limitations is desirable.
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o L[ . ;{/'/ﬁ 140 mM kel ] t.he Debye-Hiickel (DH) gquation (dashed
§ L N ¥ ] lines). The latter show a linear dependence
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Figure 6. Calculated spatial potential distributions for (a) the full Poisson-Boltzmann equation
and (b) the linearized Debye-Hiickel equation for a negative protein charge distribution of
constant width w = 1.5 nm. This width is indicated by the shaded region. Both figures include
the solutions for different numbers of aspartic acids n =0, 1, ..., 10.

The differences in the surface potential change that is either obtained within the full Poisson-
Boltzmann theory or the simplified Debye-Hiickel approximation can be further understood by
investigating the spatial potential distributions in the electrolyte for different numbers of aspartic
acids. This is shown in figure 6 where part (a) refers to the PB solutions and part (b) depicts
the solutions of the DH approximation. Again, we have included the cases for integer numbers
of aspartic acids n from 0 to 10. In both figures, the number of aspartic acids increases from the
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top to the bottom. As one can see from figure 6(b), the potential differences at the membrane
surface between adjacent potential solutions are constant. By contrast, the potential solutions
in figure 6(a) do not show this behavior, in agreement with the experiment (see also Fig. 5).

6.2. Influence of the ionic strength on the sensitivity

In this subsection, we use the same sensor structure as in figure 1 but detect another protein.
We consider the specific binding of the green fluorescent protein (GFP) to the lipid membrane
and calculate the change of the surface potential as a function of the salt concentration (10,
50, 90 or 140 mM KCl) in the electrolyte. At pH = 7.5, GFP carries a net negative charge of
—8e as can be derived from the primary structure if one calculates the charge of the sidechains
for the used buffer solution. Consequently, the integrated charge density of GFP is given by
ogrp = —8esnTa. We assume for simplicity that this charge is distributed evenly over a distance
of wgrp = 3 nm which is close to the length of the GFP (4-5 nm). Based on the previous section,
the length of the neutral part of the tag has been taken to be d = 2.3 nm. Here, this length has
been assumed to be the same for all KCI concentrations.
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° A . . . n green fluorescent protein.  Included are
0 2 40 60 80 100 120 140 experimental data of Ref. [13]. The lines are
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We have calculated the change of the surface potential as a function of the KCI concentration
in the electrolyte. The electrolyte has the same properties as for the aspartic acids (1 mM
PBS, 1 mM NiCly). Figure 7 shows the results and compares them to the experimental data of
Ref. [13]. The trend of the influence of the ionic strength on the sensitivity is well reproduced
by our calculations. We note that the exact orientation of the GFP molecule at the surface is
not known. A slight tilt angle can increase the measured sensor response due to the exponential
dependence of the signal from the distance of the charges. The reduction of the spacing d or the
width wgpp of the charge distribution leads to larger surface potential changes. At higher ion
concentrations, the Debye screening length of the electrolyte decreases, and thus the charges of
the protein are more efficiently screened by the ions in the electrolyte. This leads to a reduced
sensitivity which is approximately linear to the inverse of the Debye screening length. The Debye
screening lengths of the different salt concentrations are listed in table 1.

7. Conclusions

We have presented calculations on the sensitivity of a silicon-on-insulator structure with respect
to specific charge distributions in the electrolyte solution that may arise from protein binding to
the semiconductor surface. Screening effects in the electrolyte have been taken into account using
the Poisson-Boltzmann equation. The potential change at the bio-functionalized semiconductor
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surface has been calculated for various protein charge distributions. Comparison with experiment
is generally very good. We have demonstrated the superiority of the Poisson-Boltzmann
equation by comparing its results to the simplified Debye-Hiickel approximation. In agreement
with experiment, we have found that the sensitivity of the structure is enhanced at low ion
concentrations. We demonstrated that our numerical approach — the self-consistent solution of
the Schrédinger and Poisson-Boltzmann equation — is well suited to model semiconductor based
bio-sensors in a systematic manner, which is a requirement in order to both understand and
optimize their sensitivity.
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Appendix A. Debye-Hiickel approximation

The full Poisson-Boltzmann equation is a nonlinear differential equation for the electrostatic
potential. Very often, one is interested in reducing it to a simpler form which can be solved
analytically. Within the Debye-Hiickel approximation, the Poisson-Boltzmann equation is
linearized by expanding the exponential of eq. (5) up to first order in ¢ so that the potential
distribution in the electrolyte is governed by

(V2 - k%) ¢(x) = 0, (A.1)

where the Debye screening length is given by

N 1/2
ol (Z 5r50k33T> _ (A.2)

— (2i€)%cip

The Debye screening length is often used as a descriptive parameter of the system of investigation
and is of the order of a few nanometers. However, the Debye-Hiickel equation is only applicable
for low electrostatic potentials where

ep(x) < kpT. (A.3)

Appendix B. Buffer solutions

To calculate the concentrations of the buffer ions, we briefly sketch the relevant equations that
have been implemented into the self-consistent algorithm. See also Ref. [5] for more details on
buffer solutions.

Appendixz B.1. Ionic strength
The ionic strength of the electrolyte is defined as

I(x) == Z ¢i(x)22 (B.1)

where N is the number of all different ion species that are present in the electrolyte, ¢; is the
concentration and z; is the valency of the ion species i. Because the concentrations of the ions
in the vicinity of the semiconductor surface depend on the spatial coordinates, our algorithm
allows for a spatially varying ionic strength. In physiological systems the ionic strength is of the
order 150 mM.
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Appendix B.2. Effect of temperature on buffers
The parameter dpK,/dT defines the change in pK, with temperature. This quantity depends
on the buffer, and can be negative or positive or even close to zero.

pKar = pKa + dpK, /dT - (T — 298.15 K) (B.2)

Here, T is given in units of Kelvin and the ‘thermodynamic’ pK, value is defined for 25°C.

Appendix B.3. Debye-Hiickel relationship

When using biological sensors, the pH is typically adjusted by titration and can be measured.
Thus the pH of the bulk electrolyte is an input quantity for our simulations. Knowing the pH,
one can calculate the concentrations of the buffer ions taking into account the temperature and
the ionic strength of the solution. The pK ;’T value determines the concentrations of the buffer
ions but itself depends on the ionic strength I(x) and on temperature 7. As the ionic strength
depends on the concentrations of the buffer ions, we have to solve this nonlinear equation self-
consistently by an iterative scheme. The usually employed Debye-Hiickel relationship reads

AVIT
K 7 =pKor + (224 — 1 —01-1 B.3
PR, = pKar + ( )[1+ﬁ ] (B.3)

where pK ;T is called the ‘modified’ (or ‘apparent’ or ‘working’) pK, value, z, is the charge on
the conjugate acid species and the constant A(T") depends on the temperature of the solution.
The value of A is around 0.5 (at 7' = 0°C : A = 0.4918, at ' = 100°C : A = 0.6086). pI, p(x) is
a function of position x because the ionic strength I(x) is a function of position whereas pK, 1
only depends on the temperature.

Appendiz B.4. Henderson-Hasselbalch equation
The Henderson-Hasselbalch equation relates the pH of the electrolyte to the pK;T of the
conjugate acid/base pair and the relative concentrations of acid and base.

(B.4)

Since all quantities of this equation depend on spatial coordinates, the local pH value is also a
function of position. In the vicinity of the semiconductor surface, the local pH therefore differs
from the pH of the bulk electrolyte. Most buffers involve only one chemical reaction, thus a
single pK, value is sufficient. Some buffers are more complicated and involve three reactions,
e.g. the phosphate buffer saline (PBS) solution, which is used in this work, requires three pK,;
values (i = 1,2,3). As the concentrations of the ions also depend on the electrostatic potential
through the Poisson-Boltzmann equation (eq. (6)) — which is influenced by the Schrodinger
equation that determines the quantum mechanical charge density in the semiconductor device
region — it is clear that only a numerical approach is feasible to solve this coupled system of
equations self-consistently.

Appendiz B.5. Phosphate buffer
Phosphate buffer saline (PBS) is made of orthophosphoric acid H3PO, and shows three
dissociation reactions.

pKés,T

! !
PKal,T pKaz,T

H3;PO4 =—— HyPO4~ + H'

HPO4>~ +2H* PO + 30" (B.5)
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Table B1. Buffer parameters: Phosphate buffer saline (PBS).

Symbol Value Units

pK.1(25°C)  2.15
pKa2(25°C)  7.21
pK.3(25°C) 12.33
dpKa1/dT 0.0044 K1
dpKae/dT  —0.0028 K1
dpK,3/dT  —0.026 K1

Zal 0
Za2 -1
Za3 —2
A(25°C) 0.5114
4 T : : : : 4
\ [PBS] =1 mM I'_.
- | T=25C : ,
E 3t . L= 3o Figure B1l. Calculated concentrations of
£ ' K E the buffer ions (solid lines) of the phosphate
5 , | s [Na'] 1, g buffer saline solution as a function of pH. At
‘é " Ry G ?Iinallll len;i la)rge pH 1Values, the i((i)nic str}elngth
c y 1/ 2 ] @ ashed line) strongly increases due to the in-
E ,L [HPOT « < (HPo, 1 PO 1|, '% crease in [H3O1] and [OH_] concentrations,
2 - and their corresponding anions and cations.
The influence of the valency on ionic strength
0 i : 0 . .
0 2 4 6 8 10 12 14 (quadratic dependence, cf. eq. (B.1)) is very

pH pronounced for [HPO42_] .

Using the Henderson-Hasselbalch equation (eq. (B.4)), the concentrations of the involved ions
can be calculated by the following formulas:

[H;PO,] = (PBS) (B.6)

1+ 1()PH*pK;1,T . (1 + 10pH*pKz;2,T . (1 + 10pH’pKz;3,T)>

[HoPO,~] = [HgPO]- 10P" PKawr (B.7)

[P0 = [HyPO, ] - 107 PKLr ®5)

[P0 = [HPO,*7] - 10°HPKasr (B.9)

[Nat] = —2 [HoPOs"] — 2 [HPO,?7] — 23 [PO4*] (B.10)

Here, z1 = —1, 29 = —2 and z3 = —3 are the valencies of the respective ions HyPO,4 ™, HPO,%~

and PO43~. In our implementation, the concentration of the PBS buffer and the pH in the bulk
electrolyte are fixed. However, the local value for the pH depends on the local concentration of
H307 ions. The concentrations of the buffer ions [HQPOAf], [HPO427}, [PO437] and [Na*] are
then calculated using the parameters listed in table B1. For a given local value of pH, egs (B.1),
(B.3) and (B.4) (i.e. eqgs (B.6), (B.7), (B.8), (B.9) and (B.10)) have to be solved self-consistently

in an iterative manner. Figure B1 shows the concentrations of the buffer ions and the ionic
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strength as a function of pH for a 1 mM PBS buffer. The second column (0 mM KCl) of table 1
lists these values at pH = 7.5 (dotted line in Fig. B1).

Appendix C. Material parameters
Table C1 contains relevant material parameters that were used in the calculations.

Table C1. Material parameters.

Description Symbol Value  Units
longitudinal electron effective mass (Si) m 0.916 myo
transverse electron effective mass (Si)  my 0.190 myp
static dielectric constant (Si) Er 11.7

static dielectric constant (SiOg) Er 3.8

static dielectric constant (ODTMS) Er 1.5

static dielectric constant (electrolyte) Er 80
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