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Abstract

We propose and discuss sensitivity metrics for reliability analysis, which are based on the value of infor-
mation. These metrics are easier to interpret than other existing sensitivity metrics in the context of a
specific decision and they are applicable to any type of reliability assessment, including those with depen-
dent inputs. We develop computational strategies that enable efficient evaluation of these metrics, in some
scenarios without additional runs of the deterministic model. The metrics are investigated by application
to numerical examples.
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1. Introduction

The evaluation of sensitivities is an essential part of scientific and engineering analysis. Sensitivities
provide information on the relative importance of model input quantities and they support optimization as
well as model checking. A large number of sensitivity metrics have been proposed in the literature [1–3].
Metrics exist for deterministic model inputs and for random model inputs. One can distinguish local vs.
global metrics. Among the latter, there are variance-based [4–6] or distribution-based [7–9] metrics.

The proper choice of a sensitivity metric depends on the application and decision context. In this
contribution, we consider sensitivity analysis for random input quantities X to models that are utilized
to evaluate the reliability of a system. Formally, we consider a model g(X), whose output describes the
performance of the system in such a way that a value of g(X) below some threshold corresponds to failure
F . Without loss of generality, this threshold can be set to zero, so that failure is F = {g(X) ≤ 0} and the
probability of failure is pF = Pr [g(X) ≤ 0]. In structural reliability, g is called limit-state function (LSF);
in system reliability, g is the structure function.

Many authors have proposed metrics for such a reliability sensitivity analysis [e.g., 10–17]. The sensitivity
can be with respect to deterministic input parameters θ, including distribution parameters. In this case, the
probability of failure pF can be interpreted as a function of θ and a common sensitivity metric is the partial

derivative of pF with respect to θ, ∂pF (θ)
∂θi

[12, 13, 18].
In many instances, the interest is in the sensitivity with respect to the input random variables X.

A popular metric in this context are the FORM (First-Order Reliability Method) α-factors [10, 14], or
derivatives thereof [11, 13–15]. The FORM α-factors are briefly reviewed in Section 3.3. As an alternative,
classical global sensitivity metrics, specifically variance-based and distribution-based metrics, have been
adapted for reliability analyses [19–22]. In addition, quantile-based sensitivity metrics can be utilized in the
context of reliability and risk analysis [23].

In many application and decision contexts, the motivation for the sensitivity analysis is to understand on
which input random variables one should collect more information to reduce their uncertainty. One refers
to this setting as Factor Prioritization [1]. To provide a meaningful prioritization, one needs to understand
the purpose of the model. In an engineering context, models ultimately serve as decision support. Hence
the prioritization should consider how the uncertainty in the input random variables affects the decisions
taken based on the model outcome, i.e., by a measure of decision sensitivity [24]. In decision analysis, the
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value of information concept quantifies the effect of reducing uncertainty on the optimality of a decision
made based on the model outcome [25, 26].

The use of value of information for sensitivity analysis dates back to Felli and Hazen [24], who proposed
the expected value of partial perfect information1 (EVPPI) as a sensitivity metric in the context of medical
decision making. Around the same time, Pörn [27] suggested the use of EVPPI as a component importance
measure in Probabilistic Safety Assessments (PSA). More recently, also Borgonovo and Cillo [28], Fauriat
and Zio [29] and Bjørnsen et al. [30] propose and demonstrate value of information concepts for sensitivity
analysis for PSA. In PSA, the system is a deterministic function of binary components with availabilities pi,
e.g., through a fault tree model; i.e., the X are Bernoulli random variables and g is the so-called structure
function [31].

In contrast to these works, we focus on the application of value of information for reliability sensitivity
when the reliability is estimated based on a general model with discrete or continuous input random variables.
Examples are assessments using physics-based system performance models, such as those found in structural
reliability applications [13, 32]. In this context, the value of information concept is applied mainly for
optimization of inspection and monitoring schemes [e.g., 33–39]. Rather surprisingly, its use as a sensitivity
metric has received little attention.

In this paper, we develop the EVPPI sensitivity metric for two key decision contexts. The first one
corresponds to a safety assessment case, in which the decision is between accepting the current system or
performing an upgrade that significantly increases reliability. The second decision context corresponds to a
reliability-based design, in which one or more design parameters can be selected from a typically continuous
set of alternatives. The definition of the EVPPI for these two decision contexts, together with algorithms for
computing them, are presented in Sections 3 and 4, after a general introduction to the value of information
in Section 2. We also demonstrate the relation of the proposed reliability sensitivity metrics to existing
sensitivity metrics, in particular the FORM sensitivities and reliability-oriented variance-based sensitivity
metrics.

Computation of the EVPPI can be computationally demanding, in particular if the analysis involves
advanced computer models. This has been addressed by Oakley and co-authors [40–42], who present com-
putation strategies for evaluating the EVPPI as well as the expected value of sample information (EVSI)
through the use of surrogate modeling strategies. In this paper, we present computational strategies to
efficiently evaluate the EVPPI in reliability applications for the two decision contexts. In Section 3, we show
that for the safety assessment case, the EVPPI can be obtained by a mere post-processing of the reliability
analysis results without additional runs of the model g.

The proposed sensitivity metrics and their computation are investigated and demonstrated by application
to examples in Section 5.

2. Value of information

The ultimate goal of an engineering analysis is the recommendation of an optimal action or decision.
Example decisions are the selection of a system design, the choice of a management strategy or the decision
on whether or not an engineering system is safe to be operated. In line with the literature on decision
analysis [25, 43], a denotes a decision alternative.

Following expected utility theory, the optimal decision aopt is the one maximizing the expected utility
or – equivalently when the utility is linear with loss – minimizing the expected loss L:

aopt = arg min
a

EX [L(X, a)] . (1)

X is the vector of random variables affecting the loss and EX is the mathematical expectation with respect
to the probability measure of X.

1Felli and Hazen, as well as most other authors, refer to the metric as expected value of perfect information (EVPI). In
agreement with the general decision analysis literature we use the term EVPPI for the same metric. The reason for this
clarification becomes apparent in Section 2.
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The loss function L is problem specific. A frequently used loss function is of the quadratic form,

L(X, a) = [Y (X)− a]
2
. (2)

This loss function occurs when the system design a is optimal if it matches the quantity Y and a deviation
of Y from a leads to a loss that increases quadratically with the deviation. Y is a function of the random
inputs X.

In reliability applications, the loss function is typically

L(X, a) = c(a) + I [g(X, a) ≤ 0] cF , (3)

where c is a function giving the cost of implementing the decision alternative a and cF is the cost of failure.
I is the indicator function, which results in 1 if the argument holds and 0 otherwise. The corresponding
expected loss is

EX [L(X, a)] = c(a) + Pr [g(X, a) ≤ 0] cF . (4)

In some cases it is possible to obtain information on X prior to making the decision a. When data d
is available, it can be utilized to update the probability distribution of X through Bayesian analysis. An
a-posteriori optimal decision can then be found as

aopt|d = arg min
a

EX|d [L(X, a)] , (5)

wherein EX|d denotes the expected value with respect to the conditional distribution of X given d.
By subtracting the corresponding a-posteriori expected loss from the expected loss achieved under the

a-priori optimal decision aopt, one finds the so-called conditional value of information:

CV OI(d) = EX|d [L(X, aopt)]− EX|d
[
L(X, aopt|d)

]
. (6)

Since aopt|d results in the minimum a-posteriori expected loss, it is EX|d
[
L(X, aopt|d)

]
≤ EX|d [L(X, aopt)]

and the CVOI cannot be negative.
Initially, the data d is not yet available. To understand the potential value of collecting the data, one

evaluates the expected value of Eq. 6 over the distribution of the data. This is the (expected) value of
information:

EV OI = Ed [CV OI(d)] . (7)

Since the CVOI cannot be negative, also the EVOI cannot be negative.
Computation of the EVOI is non-trivial in the general case. Algorithms for efficient computation have

been proposed in the literature in different application contexts [e.g., 40, 42, 44, 45].
In the limit, the decision maker is able to obtain perfect information, such that X becomes known with

certainty. For such a clairvoyant decision maker, finding the optimal a reduces to a deterministic decision
problem:

aopt|x = arg min
a
L(x, a). (8)

By analogy with Eq. 7, the expected value of perfect information is

EV PI = EX

[
L(X, aopt)− L(X, aopt|X)

]
. (9)

The EVPI is the upper bound on the EVOI, i.e., the best data collection cannot provide a higher expected
value than EVPI in the considered decision context.

A special case of value of information arises when obtaining perfect information on a subset of input
parameters. Consider that input random variable Xi is observed to take value xi. One can evaluate the
conditional value of partial perfect information on Xi as

CV PPIXi(xi) = EX−i [L(X, aopt)|Xi = xi]− EX−i

[
L(X, aopt|xi)|Xi = xi

]
, (10)

wherein X−i indicates the vector of all random variables X except Xi.
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By evaluating the expected value of the CVPPI over the prior distribution of Xi, one obtains the expected
value of partial perfect information:

EV PPIXi = EXi [CV PPIXi(Xi)]

= EX [L(X, aopt)]− EX

[
L(X, aopt|Xi)

]
.

(11)

The EVPPI is a decision-theoretic metric for factor prioritization. It describes the expected gains due
to improved decision making when learning a specific input random variable.

Remark 2.1 : When the loss function is of the quadratic form of Eq. 2, the optimal decision a-
priori is aopt = EX [Y (X)]. The associated expected loss is EX [L(X, aopt)] = VarX [Y (X)]. Correspond-
ingly, the expected loss associated with the optimal posterior decision is EX−i

[
L(X, aopt|xi)|Xi = xi

]
=

VarX−i [Y (X)|Xi = xi]. Inserting these expressions into Eq. 11 gives

EV PPIXi = VarX [Y (X)]− EXi
{

VarX−i [Y (X)|Xi]
}

= VarXi
{

EX−i [Y (X)|Xi]
}
.

(12)

Dividing this result with VarX [Y (X)] gives the first-order variance-based sensitivity index, the Sobol’ index2.
Hence, the EVPPI associated with a quadratic loss function is equivalent to the first-order Sobol’ index [40].
The EVPPI is also related to other sensitivity metrics, as discussed in [3, 46].

Remark 2.2 : The definition of the EVPPI can be extended to groups of input random variables Xv =
{Xi, i ∈ v}, with v being a subset of {1, . . . , n}. In the case of the quadratic loss function, the resulting
EV PPIXv normalized with VarX [Y (X)] is equal to the closed Sobol’ index of Xv.

The formulation of the decision alternatives and the loss function depends on the decision context. In
Section 3, we derive the EVPPI for cases when the analysis is performed to assess the safety of a given
system or design. In Section 4 we consider the case of reliability-based optimization, in which a includes a
set of optimization parameters. For both cases, we discuss efficient estimators for the EVPPI. In the context
of reliability sensitivity, efficiency is measured in terms of the number of additional evaluations of g(x) after
the reliability is computed.

3. Safety assessment

3.1. Decision analysis

A common decision situation in engineering is associated to the safety assessment of an existing system.
In its simplest form, the problem can be represented by the decision tree of Figure 1. It has two decision
alternatives a = {a0, ar}, corresponding to doing nothing and replacing/strengthening the system. The
state of the system is binary, it either fails F = {g(X) ≤ 0} or survives F̄ = {g(X) > 0}. The loss function
is of the form given by Eq. 3.

We make the assumption that following a replacement or strengthening action ar, the system has a
negligible probability of failure3, hence Pr(F |ar) = 0. This model is equivalent to the one of [27], in which
ar is the decision to reject a component in a system design. The resulting expected loss is

EX [L(X, a)] =

{
pF cF , a = a0

cr a = ar,
(13)

where pF = Pr[g(X) ≤ 0], cF is the cost of failure and cr is the cost of replacement.

2Under a quadratic loss function, VarX [Y (X)] is the expected value of perfect information EVPI according to Eq. 9,
since the expected loss under perfect information is zero. Therefore, the first-order Sobol’ index corresponds to the EVPPI
normalized with the EVPI.

3While this is not the case in reality, it can be expected that the probability of failure of the updated system Pr(F |ar) is
indeed much lower than the original Pr(F ).
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replace/strengthen a
r

do nothing a 0

failure g(X)<0 cF

0

Losses 
L(X,a)

failure g(X)<0

safe g(X)>0

cr + cF

cr 

safe g(X)>0

Figure 1: Decision tree representing the safety assessment.

In this case, the optimal decision a-priori is

aopt =

{
a0, pF ≤ cr

cF

ar, else,
(14)

wherein cr
cF

serves as a decision threshold.
When Xi is known, the analysis is performed with pF (xi) = Pr [g(X) ≤ 0|Xi = xi], the conditional

probability of failure given Xi = xi. The conditionally optimal decision is

aopt|Xi(xi) =

{
a0, pF (xi) ≤ cr

cF

ar, else.
(15)

If the conditional pF (xi) is on the same side of the threshold cr
cF

as the unconditional pF , the optimal
decision is not altered by the knowledge Xi = xi. In this case, the CVPPI is zero. The CVPPI is only
positive, if the decision is changed. Hence it is

CV PPIXi(xi) =

{
|cF pF (xi)− cr| , aopt|Xi(xi) 6= aopt

0, aopt|Xi(xi) = aopt.
(16)

The CVPPI is illustrated in Figure 2.
The resulting EVPPI is

EV PPIXi =

∫
ΩXi

|cF pF (xi)− cr| fXi(xi) dxi, (17)

wherein the integration domain ΩXi is the set of values xi for which the conditionally optimal decision
aopt|Xi(xi) differs from the unconditional optimum aopt.

For example, if the optimal prior decision is aopt = a0, then the domain ΩXi consists of all xi for which
the following inequality holds:

pF (xi) >
cr
cF
. (18)

In most cases, pF (xi) is a monotonic function. In these cases, a threshold value xi,thres can be found at
which the optimal decision changes from a0 to ar, or reversely. It can be determined from the condition

pF (xi,thres) =
cr
cF
. (19)
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Figure 2: Conditional probability of failure for input random variable R of the example in Section 5.1, together with the
conditional value of partial perfect information CVPPI. The cost of failure is cF = 108 and the cost of replacement cr = 106,
hence the threshold is cr

cF
= 10−2. The prior probability of failure is Pr(F ) = 7.4 · 10−3, hence aopt = a0 and the CVPPI is

non-zero only for values of pF (r) > 10−2.

The evaluation of the EVPPI following Eq. 17 requires the function pF (xi). Two strategies for estimating
this function are presented in the following subsections.

Remark 3.1 : When evaluating the EVPPI for a group of input random variables Xv = {Xi, i ∈ v}, Eqs.
13 to 16 hold with xi replaced by xv. The EVPPI is

EV PPIXv =

∫
ΩXv

|cF pF (xv)− cr| fXv (xv) dxv, (20)

wherein the integration domain ΩXv is the set of values for which aopt|Xv
(xv) 6= aopt.

The computational strategies for evaluating EV PPIXi that we present in the following can be extended
to the computation of EV PPIXv , but we do not discuss this further.

3.2. Estimation based on failure samples

When estimating pF with a sampling-based method, the function pF (xi) can be estimated from samples
in the failure domain [47]. To this end, we note that the conditional pF (xi) = Pr [F |Xi = xi] can be found
through Bayes’ rule as

pF (xi) =
fXi|F (xi)

fXi(xi)
pF , (21)

wherein fXi|F is the PDF of Xi conditional on a failure event.
The relationship of Eq. 21 is illustrated in Figure 3. The fact that the EVPPI is a function of the relation

between fXi|F and fXi points to the link to distribution-based sensitivity metrics, which is discussed in [48].
If crude Monte Carlo simulation is utilized to estimate pF , then the set of samples that fall into the

failure domain are independent and identically distributed (iid) samples from fXi|F . Hence they can be
utilized to obtain an estimate of fXi|F , e.g., by means of a kernel density estimator (KDE) as illustrated in
Figure 4.

If more advanced sampling techniques are employed to estimate pF , an additional step might be nec-
essary before estimating fXi|F . In the case of importance sampling techniques, the resulting samples in
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the failure domain are weighted samples. Approximate iid samples from fXi|F can then be obtained by an
additional resampling step. When employing subset simulation, the resulting samples in the failure domain
are correlated. In this case, the same procedure as with crude Monte Carlo is applicable, but the quality of
the estimates will be lower with the same number of samples. The estimation of fXi|F from failure samples
obtained with different sampling techniques is presented in [47].

3.3. FORM-based approximation

A powerful approximation method to compute Pr[F ] is the First-order Reliability Method (FORM)
[49]. FORM is based on a transformation of the limit-state function g(X) to an equivalent G(U) defined
in terms of independent standard normal random variables U. This is achieved by an iso-probabilistic
transform, typically the Rosenblatt [50] or the Nataf [51] transform. The probability of failure is then
pF = Pr [G (U) ≤ 0] and can be approximated by a linearization of G (U) at the so-called most likely failure
point u∗. This is the point in the failure domain {G (U) ≤ 0} with the highest probability density. Because
of the rotational symmetry of the standard normal PDF, this is also the point in {G (U) ≤ 0} closest to the
origin:

u∗ = arg min
u
‖u‖

s.t. G (u) ≤ 0.
(22)

‖·‖ is the Euclidean norm.
Let G1 denote the linearized limit-state function. Provided that u∗ is not the origin, it can be shown

that Pr [G1 (U) ≤ 0] = Φ [−β0], where β0 = ‖u∗‖ is the distance of the most likely failure point from the
origin and Φ is the standard normal CDF [13, 14]. Hence the FORM approximation of the probability of
failure is

pF ≈ Φ [−β0] . (23)

The FORM α-factors α = [α1; . . . ;αn] are the directional cosines of u∗ and are commonly used as a
sensitivity metric [10, 14, 52].

To evaluate the EVPPI, we note that the FORM estimate of the probability of failure conditional on
Ui = ui is

pF (ui) = Φ

− β0 − αiui√
α2

1 + α2
2 + · · ·+ α2

i−1 + α2
i+1 + · · ·+ α2

n


= Φ

(
αiui − β0√

1− α2
i

)
.

(24)

In the case of independent random variables, Xi is related to Ui by the marginal transformation

ui = Φ−1[FXi(xi)], (25)

hence in this case it is

pF (xi) = Φ

{
αiΦ

−1[FXi(xi)]− β0√
1− α2

i

}
. (26)

Setting pF (xi,thres) = cr
cF

results in

xi,thres = F−1
Xi

(
Φ

{
1

αi

[√
1− α2

iΦ
−1

(
cr
cF

)
+ β0

]})
. (27)

The threshold of Eq. 27 is the boundary of the integration domain in the EVPPI calculation, Eq. 17.
Inserting Eq. 26 into Eq. 17 results in a FORM estimate of the EVPPI. Integration by substitution with
Φ−1 [FXi(xi)] = ui gives

EV PPIXi =

∫
Ωui

|cF pF (ui)− cr|ϕ (ui) dui, (28)
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Figure 5: EVPPI in function of the FORM sensitivity index αi, for varying values of pF , cF = 1 and cr
cF

= 10−3.

wherein pF (ui) is given by Eq. 24, ϕ is the standard normal PDF and the integration domain is

Ωui =


[ui,thres,∞] , pF ≤ cr

cF
, αi > 0

[−∞, ui,thres] , pF ≤ cr
cF
, αi < 0

[−∞, ui,thres] , pF >
cr
cF
, αi > 0

[ui,thres,∞] , pF >
cr
cF
, αi < 0.

(29)

ui,thres is the transformation of the threshold xi,thresh to standard normal space:

ui,thres =
1

αi

[√
1− α2

iΦ
−1

(
cr
cF

)
+ β0

]
. (30)

In [53], we show that the integral of Eq. 28 can alternatively be evaluated as

EV PPIXi = |cFΦ2 (−β0, siui,thres,−siαi)− crΦ (siui,thres)|. (31)

Φ2(x1, x2, r) is the bivariate standard normal CDF with correlation coefficient r evaluated at x1 and x2 and

si is either = +1 or −1, depending on the integration domain: si = sgn
[(
pF − cr

cF

)
αi

]
if
(
pF − cr

cF

)
αi 6= 0,

otherwise si = −1.
Remark 3.2 : The FORM approximation of the EVPPI is identical for +αi and −αi, hence it is also

possible to utilize |αi| in the above expressions.

3.4. Relation of EVPPI to the FORM sensitivity index

Equations 28–30 show that the FORM approximation of the EVPPI does not depend on the marginal
distribution of Xi. It is a function only of β0, αi and cr

cF
. Hence, one can directly obtain the EVPPI

corresponding to a FORM sensitivity αi without any calls of the g-function.
Figure 5 shows the EVPPI in function of |αi| for different values of pF , with cost ratio cr

cF
= 10−3; Figure

6 shows the same for cost ratio cr
cF

= 10−4. The EVPPI is highest when pF is close to cr
cF

. This is to be
expected, because in these cases the observation Xi = xi is most likely to lead to a change in the optimal
decision.

The EVPPI is increasing with increasing value of |α|. Since β0 and cr
cF

are fixed for a given reliability
problem, the ordering according to FORM approximation of the EVPPI is the same as the ordering according
to the absolute values of the FORM sensitivities |α|. This holds for reliability problems with independent
input random variables when the decision problem is as in Figure 1.
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cF
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The key benefit of using the EVPPI metric rather than the FORM α-factors is that it accounts for the
effect of β0 and cr

cF
on the decision sensitivity. For example, consider the case cr

cF
= 10−3 shown in Figure 5.

One can observe that for pF = 10−3 an input random variable with |α| = 0.8 has an EVPPI that is double
the one associated with |α| = 0.35. In contrast, for pF = 10−2 the EVPPI corresponding to |α| = 0.8 is
34 times larger than the EVPPI corresponding to |α| = 0.35. Hence the ratio between |α| (or α2) values is
not a good indicator for how much more important one input random variable is relative to another in the
specific decision context. But the ratio between EVPPI values is; it is admissible to make a statement like

“learning Xi is
EV PPIXi
EV PPIXj

more valuable than learning Xj”.

3.5. Normalization

It can be preferable to express the sensitivity by an index that is normalized to lie between 0 and 1.
A trivial normalization can be achieved by normalizing the EVPPI by the sum of the EVPPI of all input
random variables:

Normalized EV PPIXi =
EV PPIXi∑n
j=1EV PPIXj

. (32)

The advantage of this normalization is that the indices sum up to one. Therefore, this normalization is
suitable for comparison with other sensitivity indices that have this property or are normalized accordingly.

A natural normalization is obtained by evaluating the EVPPI relative to the expected value of perfect
information (EVPI) of Eq. 9. The EVPI is the value associated with having full information on all inputs.
We refer to this normalized index as the relative EVPPI:

Relative EV PPIXi =
EV PPIXi
EV PI

. (33)

For the safety assessment decision, the EVPI is

EV PI =

{
pF (cF − cr) , pF ≤ cr

cF

cr (1− pF ) , else,
(34)

and is readily available.
Because the EVPI is an upper bound on the EVPPI, the relative EVPPI is bounded by zero and one.

However, the relative EVPPIs do not sum up to one. Furthermore, their sum can be larger than one, because
the EVPPI for groups of input random variables can be lower than the sum of the EVPPIs of individual
input random variables [54].

Remark 3.3 : As discussed in Section 2, the Sobol’ index is a relative EVPPI for the case of the quadratic
loss function.
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4. Reliability-based design

4.1. Decision analysis

In reliability-based design, the decision is typically not binary as in the case of the safety assessment.
Instead, one or more design parameters a can be selected from an (often continuous or continuous-discrete)
domain. The function cd(a) describes the design cost, which is here assumed to be deterministic, i.e., it does
not depend on X. As in Section 3, the cost of a failure is cF . Hence the loss function is

L(X,a) = cd(a) + I [g(X,a) ≤ 0] cF . (35)

The optimal decision a-priori is

aopt = arg min
a

cd(a) + pF (a)cF . (36)

The a-posteriori optimal decision given Xi = xi is

aopt|Xi(xi) = arg min
a

cd(a) + pF (xi,a)cF . (37)

pF (xi,a) = Pr [g(X,a) ≤ 0|Xi = xi] is the conditional probability of failure given Xi = xi for a design a.
Following Eq. 11, the EVPPI is

EV PPIXi = cd(aopt) + pF (aopt)cF − EXi
{
cd[aopt|Xi(Xi)] + pF [Xi,aopt|Xi(Xi)]cF

}
. (38)

This computation requires that pF (xi,a) is available in a manner that facilitates the solution of Eq.
37. This optimization problem has to be solved many times for varying values of Xi, hence the evaluation
of pF (xi,a) must be efficient and without noise. In general, pF (xi,a) will not be available in analytical
form. We present a computational strategy to address this challenge in the following. In Section 4.3. we
additionally discuss a FORM approximation.

4.2. Discrete or discretized design choices

In the case where the domain of a is discrete, or can be discretized, one can solve m reliability problems,
one for each design choice {a1, . . . am}. For a given aj , the conditional pF (xi, aj) can be determined with
the strategies presented in Sections 3.2 and 3.3. The solution of Eq. 37 then reduces to selecting the optimal
aj from the discrete set {a1, . . . , am}.

When the domain of a is continuous, the consideration of only a discrete set of design choices {a1, . . . am}
leads to an approximation error. The difference between the exact and approximated expected a-posteriori
loss EX−i [L(X, aopt|Xi |Xi = xi)] = cd[aopt|Xi(xi)] + pF [xi,aopt|Xi(xi)]cF , is illustrated in Figure 7. The
expected loss under the a-posteriori optimal choice aopt|Xi is overestimated for all values of Xi, except for
those where the discrete choices aj coincide with the optimal choice in the continuous domain of a.

To limit the error from this approximation, the discrete design choices should cover all values of a that
might potentially be optimal. The spacing between ai’s should represent a good trade-off between accuracy
and computational cost. These choices are investigated numerically in Section 5.1.5.

4.3. A remark on the FORM approximation

It is possible to derive a FORM approximation of the EVPPI also in the design decision case. Such an
approximation is described in the Annex of the paper, assuming a linear design LSF.

The EVPPI for different values of the squared FORM α-values relative to the EVPPI of α2 = 1 are
shown in Figure 8. These results are independent of the cost parameters cδ and cF introduced in the Annex.

Based on the results of the Annex and Figure 8 one can conclude that for any design LSF with independent
inputs, whose reliability is well approximated by FORM, one should expect the relative EVPPI of the design
decision case to give similar importance measures than the FORM α-factors.
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Table 1: Probabilistic model of example 1.

Parameter Distribution Mean c.o.v.

Resistance R lognormal 100 0.2
Load S lognormal 40 0.25
Model uncertainty XR lognormal 1 0.1
Model uncertainty XS lognormal 1 0.2

4.4. Normalization

By analogy with Section 3.5, the normalized EVPPI and the relative EVPPI can also be defined for the
reliability-based design. While computation of the former is trivial, the computation of the EVPI necessary
for determining the relative EVPPI generally requires additional model runs. In most cases, this additional
effort is not justified.

5. Numerical investigations

5.1. Example 1: Component reliability

5.1.1. VOI sensitivity for safety assessment

We consider a system with resistance R and load S and two model uncertainties XR and XS . The system
fails when XSS exceeds XRR:

F = {XRR ≤ XSS} . (39)

A limit-state function describing this failure event is

g(X) = lnXR + lnR− lnXS − lnS. (40)

The probabilistic model of X = [R;S;XR;XS ] is summarized in Table 1.
Because all random variables are modelled as lognormal, the probability of failure can be computed

analytically. It is

pF = Φ

−µlnXR + µlnR − µlnXS − µlnS√∑
i,j Cij

 , (41)

wherein C is the covariance matrix of ln X.
The conditional probabilities of failure pF (xi) are evaluated by first computing (analytically) the condi-

tional moments of ln X−i given Xi = xi. pF (xi) is then obtained by analogy with Eq. 41.
The EVPPI is evaluated (a) assuming independent input random variables and (b) assuming that the

input random variables follow a Gaussian copula, with correlation matrix of X equal to

RXX =


1 0 0.5 0
0 1 0 0.5

0.5 0 1 0.5
0 0.5 0.5 1

 .
C, the correlation matrix of ln X, can be evaluated in closed form in terms of RXX [13, 51].

The probability of failure in the case of independent input random variables is Pr(F ) = 7.4 · 10−3 and
in the case of dependent input random variables it is Pr(F ) = 1.7 · 10−2.

Cost values are cF = 108 and either cr = 105 or cr = 106, corresponding to cost ratios of either cr
cF

= 10−3

or cr
cF

= 10−2.
Figure 3 shows the relation between the prior PDF fR, the conditional PDF fR|F and the resulting

conditional failure probability pF (r) for the input random variable R (independent case). Figure 2 shows
the resulting CV PPI(r) for cr

cF
= 10−2.
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Table 2: Optimal designs, together with the associated failure probabilities.

cd(a) = 105a cd(a) = 106a
independent X dependent X independent X dependent X

aopt 1.57 1.87 1.23 1.41
pF (aopt) 2.7 · 10−4 2.2 · 10−4 1.5 · 10−3 2.0 · 10−3

Table 3: Normalized sensitivity metrics for the component example with independent input random variables.

Normalized EVPPI FORM
safety safety design design α2

i
cr
cF

= 10−3 cr
cF

= 10−2 cδ
cF

= 10−3 cδ
cF

= 10−2

Resistance R 25% 27% 26% 26% 26%
Load S 49% 35% 41% 41% 41%
Model uncertainty XR 0.5% 10% 7% 6% 7%
Model uncertainty XS 25% 27% 26% 26% 26%

5.1.2. VoI sensitivity for reliability-based design

For design optimization, we consider a modified version of the limit-state function,

g(X) = aXRR−XSS, (42)

in which a is the design parameter affecting the overall resistance of the system.
The probability of failure in function of a is

pF (a) = Φ

− ln a+ µlnXR + µlnR − µlnXS − µlnS√∑
i,j Cij

 . (43)

For simplicity, we assume that the design cost is a linear function of a:

cd(a) = cδa. (44)

Two cases are evaluated, with cost factor equal to cδ = 105 and cδ = 106.
The optimal design a-priori is found by Eq. 36 and reported in Table 2, together with the associated

failure probability.

5.1.3. Results and discussion

Tables 3 and 4 summarize the resulting decision sensitivities for selected cost models. In addition, FORM
sensitivities are reported in terms of the squared α-factors or the γ2, which are a generalization of the α-
factors for dependent inputs [14, 15]. The EVPPI are stated as normalized values to facilitate a comparison
with the squared α-factors.

As expected for this linear Gaussian case, the ranking coincides for all EVPPI cases and the FORM
sensitivities. Note that in the independent case, this equivalence follows from Sections 3.3 and 4.3.

Table 4: Normalized sensitivity metrics for the component example with dependent input random variables.

Normalized EVPPI FORM
safety safety design design γ2

i
cr
cF

= 10−3 cr
cF

= 10−2 cδ
cF

= 10−3 cδ
cF

= 10−2

Resistance R 15% 26% 23% 23% 26%
Load S 61% 41% 46% 46% 41%
Model uncertainty XR 0.0% 4% 4% 4% 7%
Model uncertainty XS 24% 29% 28% 28% 26%
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Figure 9: EVPPI of the safety decision case in function of the threshold cr
cF

(case with dependent inputs X). The left panel

shows the absolute value, the middle panel the relative EVPPI (normalized with the EVPI following Eqs. 33 and 34) and the
right panel shows the EVPPI normalized to sum to one (Eq. 32).

However, for the safety decision, the relative contribution varies and is notably different for cost ratio
cr
cF

= 10−3. In this case, the EVPPI of input XR is negligible, which is due to the fact that at this cost
ratio, it is very unlikely that learning about XR will change the a-priori optimal decision.

The design EVPPI results of the independent case are similar to the squared α-factors, which confirms
the conclusions in Section 4.3. Generally, the results for the EVPPI sensitivity of the reliability-based design
case are independent of the ratio cδ

cF
for this linear Gaussian model. This is in agreement with the findings

reported in the Annex.
Figure 9 plots the EVPPI of the safety decision case in function of cr

cF
for the case with dependent

inputs. (The plot for independent inputs looks similar.) It compares the absolute value of the EVPPI
with the relative and the normalized EVPPI. Both the absolute and the relative EVPPI are highest with
a decision threshold cr

cF
close to the probability of failure pF . This is not surprising, since in this case it

is more likely that learning an input parameter will change the optimal decision. The normalized EVPPI
shows that when cr

cF
is close to pF , the differences between the EVPPIs are smaller. Near the threshold,

even learning the less important input random variables still has considerable value. The further cr
cF

deviates
from pF , the larger the differences between EVPPIs. In the extreme, the normalized EVPPI of the most
important input random variable will approach 1.

5.1.4. Monte Carlo approximation for the safety decision case

To investigate the accuracy of the Monte Carlo approach of Section 3.2, we determine the EVPPI with
102 and 103 failure samples. This is the typical range of the number of samples in the failure domain one
would expect from a sampling-based reliability evaluation.

The results are summarized in Table 5. Each analysis is repeated 100 times, to obtain an approximate
mean and standard deviation of the MCS estimate. The results show that for this example the accuracy of
the estimate is sufficient for as low as nF = 100 independent failure samples.

5.1.5. Discrete approximation for the design decision case

We investigate the discrete approximation of design choices following Section 4.2. Results are shown
here for the setting cδ = 105 and independent input random variables.

Discrete design parameter choices between a1 = 0.5 and am = 2.0 are considered, with step size ∆a =
1.5
m−1 . The approximation of the posterior expected loss in case of m = 4 is shown in Figure 7.

Figure 10 shows the convergence of estimated EVPPI to the exact values with increasing m. While
an accurate evaluation of the absolute EVPPI here requires m ≥ 6 discrete design choices, the normalized
EVPPI is already evaluated reasonably well with m as low as 3, see Table 6.
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Table 5: EVPPI for the safety-assessment case with cr
cF

= 10−2, cF = 108 and independent input random variables. Exact

value and sample-based value with nF failure samples. For the latter, the mean value and coefficient of variation (in parenthesis)
are evaluated by 100 repetitions of the analysis.

EVPPI
exact nF = 103 nF = 102

Resistance R 349 344(3.2%) 337(7.1%)
Load S 454 443(2.3%) 443(6.0%)
Model uncertainty XR 131 131(8.3%) 127(22.4%)
Model uncertainty XS 349 344(3.2%) 339(7.9%)
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Figure 10: Convergence of the EVPPI with number of discrete values m of the design choice. (EVPPI evaluated for the
reliability-based design case with cδ = 105 and independent input random variables.)

Table 6: Normalized EVPPI for the reliability-based design case with cδ = 105 and independent input random variables. Exact
value and approximation with a discrete representation of the design choice with m values.

Normalized EVPPI
exact m=3 m=4 m=6

Resistance R 26% 27% 26% 26%
Load S 41% 36% 44% 39%
Model uncertaint XR 7% 9% 5% 8%
Model uncertainty XS 26% 27% 26% 26%
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Table 7: Probabilistic model of example 2, including correlation matrix RXX.

Parameter Distribution Mean c.o.v. RXX

M1 M2 P Y

Bending moment M1 [kNm] normal 250 0.3 1.0 0.5 0.3 0.0
Bending moment M2 [kNm] normal 125 0.3 0.5 1.0 0.3 0.0
Axial force P [kN] Gumbel 2500 0.2 0.3 0.3 1.3 0.0
Yield strength Y [N/mm2] Weibull 40 0.1 0.0 0.0 0.0 1.0

Table 8: Normalized sensitivity indices for example 2. FORM and GRIM results are taken from [15] and are provided for
comparison.

Parameter Nor. EVPPI Nor. EVPPI Nor. EVPPI FORM GRIM
( cr
cF

= 10−3) ( cr
cF

= 10−2) ( cr
cF

= 10−1) α2 γ2

M1 21% 22% 9% 7% 8%
M2 23% 23% 9% 7% 6%
P 8% 24% 28% 20% 25%
Y 48% 31% 54% 65% 61%

5.2. Example 2: Non-linear limit state

We consider a short column subjected to biaxial bending moments M1 and M2 and axial force P that
was previously investigated in [14, 15]. The failure is defined by the limit-state function:

g(X) = 1− M1

s1Y
− M2

s2Y
−
(
P

AY

)2

. (45)

The random variables are X = [M1;M2;P ;Y ], with Y being the yield strength of the material. Their joint
probability distribution is a Gaussian copula model as in [15] with the parameters given in Table 7. The
deterministic parameters are the flexural moduli of the plastic column section s1 = 0.03m3 and s2 = 0.015m3

and the column cross section A = 0.190m2.
The reliability is evaluated with crude Monte Carlo with 106 samples. The MC estimate of the probability

of failure is 0.0094 with 95% credible interval [0.0092, 0.0096].
We consider only the safety assessment case. The EVPPI is determined based on the MC samples in the

failure domain, following Section 3.2. Figure 4 exemplary shows the KDE fit of the conditional distribution
of M1 given failure.

Different cost ratios cr
cF

are considered to reflect different decision situations. The results are summarized
in Table 8, together with results from the sensitivity metrics evaluated in [15].

The resulting EVPPI indicate that the decision sensitivities can vary strongly among different decision
situations. For the situation cr

cF
= 10−1, the EVPPI is more or less comparable to the sensitivies obtained

with the indices from FORM and GRIM (Generalized Reliability Importance Measures). This corresponds
to the case where the cost of repair is large and hence the a-priori decision is not to repair. cr

cF
= 10−2 is very

close to the a-priori probability of failure of 0.0094. In this case, learning the value of any of the four inputs
is likely to change the decision from not repairing to repairing, which explains the more uniform sensitivity
values. In the case cr

cF
= 10−3, the EVPPI leads to a different ranking. In this case, the prior decision is

to repair. The probability of changing this decision depends on the other tails of the distributions than in
cases cr

cF
= 10−1 and cr

cF
= 10−2. This explains the differences between these two decision situations, and

also highlights that the EVPPI does account for the full distribution

5.3. Example 3: Foundation reliability

We consider a monopile foundation of an offshore wind turbine in stiff, plastic soil (Figure 11). The
soil-structure interaction is described by a nonlinear finite element model. Details regarding the engineering
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Figure 11: Wind turbine monopile foundation [55].

model setup can be found in [55]. Deterministic parameters of the monopile foundation are its depth L = 30
m, diameter d = 6 m, wall thickness t = 0.07 m, Poisson ratio ν = 0.3 and Young’s modulus E = 2.1 · 105

MPa. The uncertain inputs comprise the Gumbel-distributed lateral load H and its distribution parameters
aH and bH as well as the undrained shear strength s and its hyperparameters s0 and s1. s is modelled as a
1-D, non-stationary, log-normal random field with a linear drift along the z-coordinate. It is discretized using
the midpoint method [56] and an 82-dimensional standard-normal random vector ξ. Its hyperparameters
are the ground-level shear strength s0 (at z = 0) and the mean shear strength slope s1. The latter two can
be thought of as representing inter-site variability while ξ models intra-site variability. The probabilistic
inputs are summarized in Table 9. A detailed description of the probabilistic model setup is provided in
[22, 57].

Table 9: Input variable definitions of the monopile foundation.

Input Distribution Mean µ CoV δ
ξ [-] Standard-Normal 0 n.d. (Σξξ = I82×82)
s0 [kPa] Log-Normal 33.7094 0.3692
s1 [kPa] Log-Normal 0.7274 0.8019
H [kN] Gumbel µH|aH ,bH δH|aH ,bH
aH [kN] Log-Normal 2274.97 0.2
bH [kN] Log-Normal 225.02 0.2

Failure occurs when the maximum stress in the foundation, σmax(X) exceeds σcrit = 100 MPa. The
corresponding limit-state function is

g(X) = σcrit − σmax(X). (46)

The analysis is performed with subset simulation with 104 samples per level [58, 59]. To evaluate the
coefficient of variation of the subset simulation estimate, we repeat the computation 100 times. The a-priori
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Table 10: Normalized sensitivity measures for the monopile. In brackets: coefficient of variation of the estimate (first position),
absolute estimated value (second position). The coefficients of variation of the safety cases are estimated based on 100 repeated
runs of subset simulation.

Normalized EVPPI Sobol’ [22]
safety safety design design

cr
cF

= 10−4 cr
cF

= 10−3 linear cd(a) quadratic cd(a)

s0 0% (1.6; 4.7) 2% (0.84; 542) 8% (−; 4971) 8% (−; 2790) 0.58%
s1 0% (1.81; 2.5) 34% (0.23; 7414) 19% (−; 11434) 14% (−; 5084) 4.59%
aH 36% (0.63; 678) 36% (0.16; 8019) 41% (−; 24351) 41% (−; 14542) 22.70%
bH 63% (0.31; 1176) 28% (0.26; 6071) 32% (−; 18792) 36% (−; 12662) 70.39%

5 6 7
D [m]

5 · 105

6 · 105

7 · 105

c d
(D

)

linear cd
quadratic cd

Figure 12: Linear and quadratic design cost models.

failure probability is estimated as P (F ) ≈ 3.66 · 10−4 with a c.o.v. of 0.08. This result is also verified with
crude Monte Carlo based on 2.8 · 106 samples, which results in a 95% credible interval [3.33, 3.78] · 10−4.

5.3.1. VoI sensitivity for safety assessment

The safety assessment scenario is evaluated for a cost of failure cF = 108 and two values of the cost of
repair, cr = [104; 105]. Hence the resulting cost ratios are cr

cF
= [10−3; 10−4].

The EVPPI is estimated with failure samples according to Section 3.2 for all input random variables
except ξ and H. The decision sensitivity of the former cannot be estimated reliably with the proposed
method, due to its 82 dimensions, but we know from [22] that its importance is small. The decision
sensitivity of the latter can be estimated, but is not meaningful, since it is not possible to reduce uncertainty
on H directly. It is only possible to reduce the uncertainty of its distribution parameters, aH and bH .

The conditional density in the numerator of Eq. 21 is estimated with the 104 samples that are produced
in the final level of subset simulation. Note that these samples are dependent, because of the MCMC
algorithm that is used to propagate samples from one level to the next in subset simulation. The results
are reported in Table 10. In addition to the normalized EVPPI, also the reliability-oriented Sobol’ indices
of log pF introduced in [22] are presented for comparison.

In the case cr
cF

= 10−4, the EVPPI-based ranking is identical to the one of obtained with the reliability-

oriented Sobol’ indices. In the case cr
cF

= 10−3, the EVPPI-based ranking differs. In particular, s1 becomes
considerably more relevant as the repair cost is increased and bh becomes less important.

5.3.2. VoI sensitivity for reliability-based design

We consider the monopile diameter d ∈ D as the design parameter, with the feasible domain D = [5, 7] m.
The cost of failure is cF = 108 and the design cost is modeled with either a linear cost model cd(d) = 105 · d
or a quadratic cost model cd(d) = (5 + 2 · ((d− 5)/2)2) · 105, such that for both models, 5 · 105 ≤ cd ≤ 7 · 105

on D. The two models are plotted in Figure 12. We discretize the feasible domain for the design parameter
in m = 201 steps of ∆d = 0.01m as {5.00, 5.01, 5.02, . . . , 7.00}m and run 201 subset simulations to obtain
104 failure samples associated with each discrete design. Based on these failure samples, we compute the
conditional failure probabilities associated with all variables but ξ and H according to Eq. 21 for each
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discrete design. The EVPPI results for the reliability-based design case are summarized in Table 10. The
linear cost model produces more expensive designs on average thus yielding larger absolute EVPPI than
the quadratic model. The difference in normalized EVPPI (percentages) between the two cost models is
negligible.

6. Discussion

Many sensitivity metrics exist in the literature, also in the context of reliability assessment. The in-
terpretation of these metrics is often difficult, even for experts [60]. In this sense, the decision-theoretic
sensitivity metrics have a clear advantage: They have a straightforward interpretation in the context of a
specific decision situation. This makes them applicable to all models and applications, including system
reliability problems and problems with dependent inputs.

In this paper, we have shown how the expected value of partial perfect information (EVPPI) can be
evaluated by post-processing the results of a reliability analysis. For the safety decision case, no additional
model evaluations are necessary, hence the computation of EVPPI is cheap. For the design decision case,
additional model evaluations are necessary, so the metric might not be convenient when models are compu-
tationally expensive. Even if not sufficient computational ressources are available to evaluate the EVPPI for
the design decision, the consideration of the decision-theoretic basis of the EVPPI metric can nevertheless
be helpful for interpreting other sensitivity metrics.

If suitable surrogate models exist, efficient computation of the EVPPI in the design decision case might
be possible. We have experimented with such a surrogate model approach, based on [22], and have applied
it to the example of Section 5.3. However, we have found that the computation of the EVPPI requires a
surrogate with high accuracy over a wide range of the input random variable’s outcome space. Standard
surrogates used for reliability analysis do not have this property. The development of suitable surrogates is
left for future research.

Our paper focuses on computational strategies for evaluating the EVPPI and provides only limited guid-
ance on how to select the decision case and the associated cost/threshold parameters in specific applications.
In some projects the analyst faces a situation closely resembling the decision cases presented here, in other
projects less so. In the following, we discuss two applications with different decision situations, to indicate
how the presented decision cases can nevertheless be utilized as a proxy if the cost/threshold parameters
are chosen appropriately.

Firstly, in the analysis presented here we have assumed that the decision is taken based on minimizing
expected loss. However, regulatory constraints often result in a decision that is based on a reliability criterion
in the form of a safety threshold pTF . In this case, one aims at minimizing the expected life-cycle costs under
the constraint pF ≤ pTF . This case is also considered in [28], who suggest to find a utility function such that
the optimal decision is repair (ar) if Pr(F ) > pTF and do nothing (a0) otherwise. In our framework, this
translates to setting cr

cF
= pTF and then applying the methods of Section 3.

If the costs cr and cF are known, setting cr
cF

= pTF might not reflect well the decision situation. Instead,

one could include the constraint pTF into the decision analysis. This might, however, have the effect that
the EVPPI can become negative, e.g., if the a-priori probability of failure is slightly below the acceptable
pTF . In this case, the decision maker might prefer not to gain additional information, as that might change
the probability of failure estimate to an unacceptable level and incur the repair costs cr. Such information
avoidance has been discussed in the literature [61]. For the purpose of sensitivity analysis, we suggest to
avoid the issue, by either ignoring the safety criterion pTF in the EVPPI calculation, or by setting cr

cF
= pTF .

Secondly, scientific analyses are often undertaken without a specific decision in mind [46]. Or the analyst
might find it difficult to specify a loss function for other reasons. In these cases, an EVPPI based on the
safety decision case might be computed, with varying threshold cr

cF
, as depicted in Figure 9. Reporting

sensitivities for varying cr
cF

has the advantage that the dependence of the sensitivity on the decision context
is clearly communicated.
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7. Conclusion

We demonstrate that the expected value of partial perfect information (EVPPI) is an informative sen-
sitivity metric for factor prioritization in reliability assessments, which – in contrast to other sensitivity
metrics – is straightforward to interpret. It is a measure of decision sensitivity and measures how learning
an input random variable improves the decision taken based on the reliability assessment. With the compu-
tational strategies proposed in this paper, the EVPPI of the safety decision case can be evaluated following
a reliability analysis without any additional model runs.
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Annex: A FORM approximation for the reliability-based design case

We postulate the following design limit-state function with design parameter a:

gd(X, a) = g(X) + a. (47)

We let β0 denote the FORM reliability index for a = 0 and α = [α1, . . . , αn] the corresponding row vector of
FORM sensitivities. The corresponding FORM approximation G1(U) of the limit-state function in standard
normal space is

G1(U) = ||∇G(u∗)|| (β0 −αU) . (48)

||∇G(u∗)|| is the norm of the gradient of limit-state function G in standard normal space, evaluated at the
design point. Without loss of generality, we set ||∇G(u∗)|| = 1.

We assume that G1(U) is also a reasonable approximation of g(X) when a 6= 0, which is valid for mildly
non-linear problems. Hence the approximation of gd(X, a) in standard normal space becomes

Gd(U, a) = β0 −αU + a. (49)

The corresponding approximation of the probability of failure in function of a is

pF (a) ≈ Φ (−β0 − a) . (50)

Additionally conditioning on ui results in (by analogy with Eq. 24)

pF (ui, a) ≈ Φ

(
αiui − β0 − a√

1− α2
i

)
. (51)

Using a linear cost function cd(a) = cδa, the optimal design choice following Eq. 36 is

aopt = arg min
a

cδa+ pF (a)cF

≈ arg min
a

cδa+ Φ (−β0 − a) cF .
(52)

Without loss of generality, we choose cδ such that aopt = 0 is the optimal design in the a-priori case,
which results in

cδ = ϕ (−β0) cF , (53)

wherein ϕ is the standard normal PDF.
The conditionally optimal design is

aopt|Ui(ui) = arg min
a

cδa+ pF (ui, a)cF

≈ arg min
a

cδa+ Φ

(
αiui − β0 − a√

1− α2
i

)
cF

= αiui − β0 +

√
−2 ln

(√
2π

cδ
cF

√
1− α2

i

)
(1− α2

i ).

(54)

Inserting Eq. 53 results in

aopt|Ui(ui) = αiui − β0 +
√

[β2
0 − ln (1− α2

i )] (1− α2
i ). (55)

For ease of notation, we introduce

b =
√
β2

0 − ln (1− α2
i ). (56)
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Figure 13: EVPPI evaluated with the FORM approximation in function of the squared FORM α-factors, for different levels of
reliability β0. The cost of failure is cF = 1 and cδ is determined according to Eq. 53.

By inserting the above expressions into Eq. 38, the EVPPI follows as

EV PPIXi = cδaopt + pF (aopt)cF − EUi
[
cδaopt|Ui(Ui) + pF {Ui, aopt|Ui(Ui)}cF

]
= Φ (−β0) cF − EUi

[
cδ

(
αiui − β0 + b

√
(1− α2

i )

)
+ Φ (−b) cF

]
=

[
Φ (−β0) + ϕ (−β0)

(
β0 − b

√
(1− α2

i )

)
− Φ (−b)

]
cF ,

(57)

where we have utilized aopt = 0 and EUi [Ui] = 0.
Figure 13 summarizes the resulting EVPPI in function of α2

i for different β0. The relative EVPPI, which
is obtained by dividing the EVPPI with the value obtained at α2 = 1, is almost identical for different β0, as
shown in Figure 8. Note that the relative EVPPI does not depend on cF and cδ. Hence the relative EVPPI
values shown in Figure 8 are expected to be approximately valid for any reliability problem, which has a
single design point and a limit-state function that is mildly non-linear in standard normal space.
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