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Abstract

Industrial computed tomography ( CT ) setups traditionally implement circular or helical
acquisition trajectories owing to their mechanical simplicity and the availability of
specialized reconstruction methods. Such sampling patterns are inherently inefficient
since they are applied independently of the inspection task. Contrary, the use of part-
specific orbits in combination with modern iterative reconstruction algorithms has
demonstrated great potential for advances beyond the limits of conventional  CT scans.
Notably, maintaining high image quality with fewer projections becomes feasible which
might be a remedy that counteracts the significant scan times which still pose a major
barrier to large-scale application of  CT -based imaging concepts in industrial practice.
However, while modern and highly versatile systems that allow for such novel sampling
patterns are emerging, no satisfactory systematic approach currently exists to leverage
these capabilities towards said enhancements.

To overcome these limitations this thesis provides a framework for optimization
and evaluation of the acquisition trajectory with respect to the imaging task and the
inspected object. Related simulation-based findings are validated by an experimental
lab setup as well as a robot-guided  CT platform in a shop floor environment to demon-
strate the practicability of the approach. Furthermore, several fundamental properties
are identified which are imperative to guarantee for efficient and stable trajectory op-
timization. The influence of setup geometry and object are investigated and various
tools and methods are provided for systematic analysis of inspection scenarios with
respect to achievable improvements.
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Kurzfassung

Industrielle Computertomografieanlagen verwenden typischerweise kreis- oder he-
lixförmige Aufnahmetrajektorien, da diese mechanisch einfach umzusetzen und zudem
angepasste Rekonstruktionsverfahren für diese Spezialfälle verfügbar sind. Solche ein-
fachen Abtastmuster sind jedoch in der Regel ineffizient, da sie ohne Berücksichtigung
der jeweiligen Prüfaufgabe festgelegt wurden. Im Kontrast dazu haben bauteilspezi-
fische Trajektorien in Verbindung mit modernen iterativen Rekonstruktionsalgorith-
men das Potential zu deutlichen Verbesserungen verglichen zu konventionell durchge-
führten Aufnahmen. Mit solchen Anpassungen ist es insbesondere möglich, eine hohe
Bildgüte mit einer kleineren Anzahl an erforderlichen Projektionsbildern als bisher
zu erreichen, was zu kürzeren Messzeiten führt und die Einführung von  CT -basierter
Bildgebung in großem industriellen Maßstab erleichtert. Während jedoch zunehmend
moderne und vielseitig konfigurierbare Anlagen zur Verfügung stehen, welche die freie
Festlegung von Bahnkurven ermöglichen, existiert derzeit noch kein zufriedenstellen-
der und systematischer Ansatz, der in der Lage ist, diese neu gewonnene Flexibilität
auch gewinnbringend umzusetzen.

Die vorliegende Arbeit zielt darauf ab, diese bestehenden Einschränkungen zu
überwinden. Hierfür wird ein Ansatz zur Optimierung und Bewertung von Aufnah-
metrajektorien unter Berücksichtigung des untersuchten Bauteils sowie individueller
Anforderungen an die Bildgebung bereitgestellt. Erkenntnisse, welche mittels Simu-
lationen generiert wurden, wurden hierfür sowohl mit einem experimentellen Lab-
oraufbau als auch einer robotergestützten Plattform in einer Fertigungsumgebung
validiert, wodurch ein Nachweis der praktischen Anwendbarkeit des Verfahrens er-
bracht werden konnte. Des Weiteren wurden mehrere grundlegende Voraussetzungen
identifiziert, die erfüllt sein müssen, um eine wirkungsvolle und stabile Trajektorienop-
timierung gewährleisten zu können. Schließlich wurde der Einfluss der Anlagen- und
Bauteilgeometrie untersucht sowie verschiedene Methoden und Verfahren entwickelt,
welche eine systematische Analyse der Prüfaufgabe im Hinblick auf das erreichbare
Verbesserungspotential ermöglichen.
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1 Introduction and
Motivation

Whilst already well-established in medical disciplines, X-ray computed tomography
( CT ) has also increasingly expanded to the industrial field for many decades. Since the
first applications focusing on non-destructive testing ( NDT ) in the 1980s [  1  ] and the
introduction of commercially available scanners in 2005 [  2  ] these methods have nowa-
days turned into a valuable tool for a large variety of applications, such as metrology
or quality control [  3  ]. Other relevant areas range from material analysis to the food
industry [  4  ] and driven by recent advancements in additive manufacturing new use
cases are emerging [ 5  – 7  ] with the number of potential applications increasing further
on. The inspected objects are manifold and comprise small items, such as electronic
devices or carbon composite fibers [  4  ,  8  ], as well as larger assemblies or even entire
vehicles [  9  ], turning industrial  CT into a much broader-ranged field than its medical
counterpart.

Most advances in  CT imaging over the last decades have focused on improvements
to the hardware or the reconstruction method. While the luminosity of X-ray tubes is
approaching the limits dictated by fundamental physics, X-ray detectors have reached
a quantum efficiency where only limited gains can still be expected using conventional
technology. On the other side, with the advent of fast graphical processing units and
efficient implementations, modern algorithms allow for reconstruction in real time
with sufficient room to spare for more sophisticated techniques. As a consequence,
it has become necessary to explore unusual concepts off the beaten track to achieve
further progress in this field. As such, concentrating on the most informative data and
acquiring only the projections that are related to those appears to be a viable concept.

In practice, sampling patterns are determined by the number of projections and the
trajectory implemented by the  CT system. For the course of this work a trajectory is de-
fined as the composition of all considered acquisition positions, specified by the relative
spatial position of the imaging system to the test object. In this thesis, these poses are
located in three-dimensional space and do not necessarily need to be connected by a
smooth path. While the influence of reducing the total number of projections has been
investigated [ 10  – 12  ], several designs with various drawbacks and advantages have also
been proposed with the planar (partial) circle and the helix being today by far the most
commonly applied trajectories owing to their mechanical simplicity and the availability
of specialized reconstruction algorithms. However, these standard approaches are
highly inefficient, since the particular geometry of the inspected object is not taken into
account. Furthermore, it has been demonstrated that not every projection carries the
same degree of informative value and that the choice of acquisition poses, especially
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in cases where only few projections are available, can drastically influence the attain-
able image quality of the reconstructed volumes [  13  – 15  ] and the reliability of further
metrological analysis [  16  – 19  ].

For industrial  CT , two recent advancements can be identified that allow the adjust-
ment of the acquisition trajectory in such a way that performance improvements can
be achieved. For one, the broader availability of highly adaptive or even robot-based
platforms, which allow the free positioning of X-ray source and detector in space, has
enabled the inspection of larger and more complex components than the conventional,
granite-based installations that are restricted by a more limited test volume. However,
the high flexibility of such setups has barely been exploited in practice and common
planar circle trajectories or laminographic methods are still most frequently applied.
A second important driver is the high impact of approaches related to compressed
sensing ( CS ), which are now feasible due to technological advances in computation
speed in very recent years. The amount of data required can be greatly reduced with

 CS -based methods, provided certain side conditions are met to compensate for the
missing information. Such approaches can even generate reasonable results with fewer
projections than defined by the Nyquist-Shannon theorem, which is considered the
lower bound of required information by conventional methods. Following similar
concepts and ideas to those used in compressed sensing, acquisition patterns with a
projection count significantly below this threshold, which are referred to as sparsely
sampled trajectories [ 20  ], bear considerable potential for improvements, but may also
result in severe reconstruction artifacts if not handled properly. Both technologies
complement each other well: while many degrees of freedom are required to leverage
the potential of  CS -inspired sampling patterns, each projection is particularly expensive
in case of flexible  CT setups, since the offset between source and detector is often larger
than in conventional systems, so that long exposure times are required owing to the
inverse-square law. Thus, scan time reduction by sparse acquisition methods becomes
highly attractive [  21  ] and this work will focus on concepts to leverage the choice of the
trajectory towards more efficient imaging and obtaining a higher visual quality.

While most trajectory optimization approaches were initially developed in the med-
ical field, industrial setups are considered even more promising due to the fundamental
differences in the inspection task and the system properties. One advantage lies in the
typical objects that are inherently better suited due to their particular shape, which
can be expressed well in a sparse Fourier basis (see sec.  4.3 ). Furthermore, most ob-
jects are industrial parts, for which the detailed geometry is readily available in form
of computer-aided design ( CAD ) data or blueprints [  22  ], while such information can
only occasionally be provided (e.g., from previous scans) for medical investigations.
Furthermore, industrial setups themselves are better suited for the requirements of
optimized acquisition protocols. Due to the high number of typically required projec-
tions, the scans can take relatively long and the unproductive positioning time for each
position of the source-detector system is practically negligible [  23  ]. Since the setup
movements are typically slower, inertial forces are low and significant deviations from
a circular path can easily be realized from a mechanical point of view. Furthermore,
possible time savings are substantially higher if expressed in absolute numbers. This
work deals with industrial  CT from a non-destructive testing ( NDT ) point of view, for
which a lower image quality is rather satisfactory compared to typical requirements for
metrology. As result, the total number of projections can be even lower and fast scan
times become feasible in return [ 12  ]. However, the choice of an appropriate trajectory is
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always a trade-off with other important scan properties such as imaging quality, arising
artifacts or resolution, which that have to be determined and assessed individually. In
contrast to medical  CT , the inspection task is typically well-defined and often consists
only of a decision related to the occurrence of certain features (e.g., cracks or voids) in a
restricted volume of interest ( VOI ).

Even though trajectory optimization is a relatively young field of active research, it
has demonstrated great potential beyond the limit of conventional  CT imaging which is
based on planar acquisition patterns and has increasingly attracted attention in recent
years. A direct advantage deriving from fewer acquired projections is the reduction of
the required scan time, which is still considered to be the most significant bottleneck for
the examination of multiple parts [  12  ,  24  ]. This can lead to cost savings due to a higher
part throughput and may enable the broader applicability of related concepts such
as inline- CT for future mass inspection. For automatic defect recognition systems a
good data quality is required to ensure its reliable function [  25  ]. In such cases trajectory
optimization can improve the image fidelity for a predefined time budget and increase
the performance of involved algorithms. Dynamic imaging of very fast processes,
which has increasingly gained interest in recent years [  26  ], might also benefit from
such methods, since typically only few projections can be provided due to the limited
recording speed [  27  ]. Furthermore, not only versatile systems benefit from trajectory
optimization approaches, but also such where the source positions are limited and fixed
by design (i.e., improved arrangement of the setup) [  28  ] or their firing sequence can
be adapted [  29  ]. While this work focuses on the industrial application of  CT , medical
systems can also greatly benefit from sparse sampling patterns, leading to fewer motion
artifacts by faster acquisition and less radiation delivered to the patient [  30  ]. So far, these
methods have even shown more promising results for dose reduction than lowering
the X-ray tube current [  31  – 33  ], which is – for instance in form of automatic exposure
control mechanisms [  34  ] – already applied since decades.

This work is structured in four logical parts as follows: first, important preliminary
considerations and properties are outlined in part  I . This comprises the fundamentals
of  CT (sec.  2  ) and signal detection theory (sec.  3  ), the state of the art (sec.  5  ) and a
discussion of the problem itself and its implications (sec.  4  ). Next, in part  II , a trajec-
tory optimization framework is proposed and the related evaluation methodology is
defined (sec.  6  ). The subsequent variation of model parameters allows to investigate the
problem further and leads to the definition of core properties that need to be fulfilled
to assure high image quality and improve the acquisition trajectory (sec.  7  ). In part  III 

the framework is applied experimentally, which allows verification of the findings of
the previous part (sec.  8  ) and to demonstrate the practical feasibility of the approach
(sec.  9  ). Last, in part  IV , the influence of object and setup geometry is investigated
(sec.  10  ), an outlook towards future work is provided (sec.  11  ) and a conclusion is drawn
(sec.  12  ).
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Part I

Theoretical Background





2 Fundamentals of
Computed Tomography

2.1 Basic Principles

In 1895, Wilhelm Conrad Röntgen discovered X-rays – highly energetic radiation that
can pass through objects appearing opaque to the human eye and reveals their inner
structure without having to open or destroy them. This finding, which was awarded
the first Nobel prize in physics in 1901, forms the basis for all radiographic techniques
that evolved in the following years. Planar radiography was the first application of
X-rays [ 35  ]. Unfortunately, as a projection method, its usage comes with a loss of depth
information since only a two-dimensional projection is obtained. Furthermore, the
resulting image is a summation over all layers of the object, which limits the achievable
contrast [  36  , p. 75].

Subsequently, there has been strong interest in overcoming these limitations and
probably the first tomographic method was invented by the Polish radiologist Karol
Mayer in 1914. After 1921 it was independently reinvented by at least ten different
individuals and finally advanced into the first commercially available clinical  CT system
in 1971 [  37  ]. Most of these early setups did not rotate the source-detector system in
relation to the object but used a translational movement instead. Modern versions of
such a method are usually referred to as laminography or tomosynthesis [  38  , p. 2] and
are in principle special cases of a limited angle  CT (see also sec.  7.3 ).

Figure  2.1 illustrates schematically the principle of a typical industrial  CT system. An
X-ray source (left) emits radiation which gets attenuated by interaction with the speci-
men. The remaining beam intensity is measured at the detector stage (right) and stored
in form of a projection image. The sample is rotated during the scan, thus resulting in
multiple measurements (commonly in the order of several hundred or thousand) that
are typically distributed over 360° circumference. This is in contrast to medical systems
where the source-detector setup moves around the stationary patient. The recorded
image sequence of projections can finally be processed by a reconstruction algorithm
(sec.  2.3 ) that generates the desired volumetric representation of the part. According
to the interception theorem, the projected specimen at the detector can be scaled by
varying source-detector distance ( SDD ) and source-object distance ( SOD  ), leading to
a magnification factor M = SDD

SOD . Since the measured object appears enlarged on the
detector, a nominal resolution M-times smaller than the pixel size can be obtained [  2  ].

If the detector consists only of a single one-dimensional array as depicted in fig.  2.1 ,
it is called a line detector and the setup is operated with a fan beam geometry. The
reconstruction yields only one horizontal slice of the object and to acquire the entire
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Source-Detector-Distance

Source-Object-Distance

X-ray
Source

DetectorRotation Stage
with Specimen

Figure 2.1: Schematic top view of an industrial  CBCT setup. The source emits X-rays that
are attenuated by interaction with the specimen and captured by the detector. After each
measurement, a projection image is created and the object is rotated into the next position. The
system used for this work is depicted in fig.  8.1 .

volume the source-detector system needs to be lifted to the next plane, where the scan
process is repeated. Fan beam configurations typically improve the image quality but
require very long scan times due to the repetitive workflow. If the detector resembles
a plane, the method is referred to as cone-beam computed tomography ( CBCT ) and
the entire reconstructed volume can be swiftly scanned in a single rotation [ 2  ]. For the
sake of simplicity the discussions in this chapter and in particular sec.  2.3 are based
on a parallel beam setup, while the adaption to cone beam geometry can be derived
analogously [ 39  ,  40  ].

Besides moving the specimen instead of the source-detector system, industrial
 CT also differs in several other aspects from medical setups. While X-ray sources for
diagnostic scanners typically operate with acceleration voltages below 150 eV, industrial
versions can currently be equipped with linear accelerators that reach up to 9 MeV
[  36  ,  41  , p. 16]. Furthermore, dose considerations are much less relevant compared to
medical diagnostics and instead, the achievable precision, accuracy, and scan resolution
is of more concern. As a consequence, significantly higher beam intensities are used
which results in better achievable image quality compared to medical systems. Since the
investigated objects are often much denser (for instance steel parts as opposed to tissue)
comparably long scan times are required, which is, however, usually still acceptable
since the parts do not move or alter their shape during the acquisition [  38  , p. 16f].
Additionally, metrological scanners are equipped with temperature control measures [ 2  ].
Further important differences can be found in the system price and the feasible sample
size [  42  ].
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Figure 2.2: Overview of the electromagnetic spectrum. Approximate ranges are adapted from [ 36  ,
 44  , p. 16f].

2.2 X-Ray Physics

2.2.1 Nature and Generation of X-Ray Photons

X-rays are electromagnetic waves with typical wavelengths ranging roughly between
10−8 m and 10−13 m [  36  , p. 16]. Figure  2.2 provides an approximate overview of the
electromagnetic spectrum and relevant ranges. While several different methods such as
synchrotron sources or free-electron lasers [  43  , p. 155f] are available to produce X-rays,
in industrial  CT systems typically X-ray tubes are used to reach peak photon energies
up to approx. 600 keV, while linear accelerators are necessary for higher values of up
to 9 MeV. In an X-ray tube, within a vacuum chamber, a cathode filament is heated
up until the temperature is sufficient to overcome the binding energy of the contained
electrons to the filament material. As a result, electrons are boiled off by thermionic
emission and are accelerated towards the anode as a result of the applied potential
difference. The beam is shaped by electron optics (a so-called Wehnelt cylinder) and
directed towards a small focal spot at the metallic target. Subsequently, the abrupt
deceleration of the charge carriers generates a spectrum of X-ray photons that leave the
tube [  36  , p. 16f].

The formation of X-rays is achieved by the interaction of the incident electrons
with the orbital electrons and the atomic nucleus of the target material, where the
deceleration of the charged particles leads to an electric dipole that radiates off electro-
magnetic waves in form of X-ray photons. In the extreme case, the entire energy of an
electron gets converted into a single photon, which carries the maximum obtainable
energy Emax = eUa , which equals the acceleration voltage Ua of the tube times the
elementary charge e. However, typically one incident electron leads to the formation of
several photons, and the deceleration process is realized as a cascade of interactions,
therefore leading to a continuous emission spectrum known as bremsstrahlung. If fast
electrons interact with the shells of the target material an electron can be removed due
to the kinetic energy of the collision and another electron from a higher shell filling
the vacant position. The potential difference between the shells is then released by the
emission of photons of a particular wavelength that is referred to as the characteristic
peaks of the spectrum that depend on the target material. Figure  2.3a shows the typical
emission spectrum of an X-ray tube. The characteristic peaks Kα1 ,Kα2 (transition of L-
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(a) X-ray Tube Emission Spectrum
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(b) Absorption Coefficients of Iron

Figure 2.3: X-ray tube emission spectrum (fig.  2.3a ) obtained via experimental measure-
ments [  45  ]. Shown is the bremsstrahlung, the superimposed characteristic target material
peaks Kα and Kβ, as well as the maximum photon energy Emax. The energy-dependent mass
attenuation coefficients of elementary iron are shown in fig.  2.3b . Depicted are separately coher-
ent and incoherent scattering, photoelectric absorption, and combined nucleus and electron
pair production together with the combination of all these processes. Experimental attenuation
data were obtained from the XCOM database [ 46  ].

shell electrons to the innermost K-orbital) and Kβ1 ,Kβ2 (transition of M-shell electrons
to K-orbital) of the tungsten target are not distinguishable in the depicted resolution.
Alternatively, the energy can be transferred to a weakly bound electron, which leaves
the atom as so-called Auger electron. The probability for this effect decreases with
increasing atomic number [  36  , p. 16f].

By this method of X-ray generation typically over 99 % of the incident electron
energy is converted into heat, resulting in a high thermal load to the target. To prevent
damage to the material, the photon output (or, equivalently, the electron power) for a
given focal spot needs to be restricted. The maximum permitted beam intensity can be
increased if the focal spot size is enlarged, therefore allowing a better heat distribution
on the anode. However, this measure comes at the cost of a decreased image quality
since the point-spread function (  PSF  , see sec.  3.3 ) becomes wider [ 36  , p. 22f].

2.2.2 Interactions and Attenuation in Matter

The photons emitted by the X-ray source interact with the material in the beamline with
respect to several physical effects. In general, the radiation intensity of a monoenergetic
photon beam passing through matter can be described by the Lambert-Beer law as

I (x) = I0 ·e−µx , (2.1)

with I0 being the initial beam intensity, I (x) the intensity at position x andµ the material-
specific attenuation coefficient, where the object is assumed to be homogeneous [ 36  ,
p. 32f]. Equation  2.1 is simplified since scattered photons are neglected and treated
as lost signal; however, in reality, multiple subsequent scattering events are possible
leading to photons hitting the detector nevertheless and therefore contributing to
the measured intensity. Additionally, here the spectrum is assumed to contain only a
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single wavelength, which is not realistic for real X-ray sources; instead, the wavelength-
dependency of the attenuation coefficient leads to the formation of beam hardening
artifacts. The attenuation coefficient is composed of several separate physical effects
that depend themselves on the material the beam is passing through and the wavelength
of the incident photon λp, so that

µ(λp) =µcs(λp)+µis(λp)+µpa(λp)+µpp(λp) (2.2)

holds. Here, µcs(λp) and µis(λp) refer to coherent and incoherent scattering, while
µpa(λp) and µpp(λp) are the attenuation coefficients of photoelectric absorption and
pair production, respectively. To obtain a polychromatic pendant to eq.  2.1 it is neces-
sary to integrate eq.  2.2 with respect to the photon energy spectrum [  36  , p. 32f]. These
most important physical mechanisms contributing to the attenuation coefficient are
also shown in fig.  2.3b and will be briefly summarized in the following while less fre-
quent interactions (e.g., the photonuclear effect) are neglected since they are of minor
relevance for this work.

Coherent Scattering In this process a photon scatters in an elastic event, i.e., its energy
(and consequently wavelength) is preserved. The photon typically interacts either with
a quasi-free (Thomson scattering) or a strongly bound electron (Rayleigh scattering).
The effect is mostly relevant for lower energies [  47  , p. 239, 291].

Incoherent Scattering A photon can also interact inelastically with a loosely bound
electron and transfer a fraction of its energy to it. As a result, the electron is ejected
from the atom, while the photon is scattered under a certain angle that can reach
values between 0° (forward scattering) and 180° (backscattering). Since the energy is
not preserved, its wavelength is shifted to higher values. The angular probability of
incoherent scattering also referred to as Compton scattering, can be calculated via the
Klein-Nishina equation. After the collision both – the released electron and the photon –
might possess enough energy to undergo further interactions [ 47  , p. 297f]. Industrial
computed tomography applications typically operate in the range between 100 keV
and 9 MeV, which makes incoherent Compton scattering the dominant attenuation
effect (see also fig.  2.3b ).

Photoelectric Absorption If the binding energy of a tightly bound electron (in contrast
to the quasi-free electron of the Compton effect) is lower than the energy carried by
an incident photon, the photon can be entirely absorbed, while the electron is either
excited or removed from the atom. The ejected electron is called a photoelectron and
the vacant position will subsequently be filled by an electron from a higher shell; the
released energy in this process is either transferred to an Auger electron (see sec.  2.2.1  )
or results in the emission of a photon of a characteristic wavelength or [  47  , p. 336f].

Pair Production For very high energies of the incident photon, its interaction with
the Coulomb field of the nucleus can lead to the formation of an electron-positron
pair. In practice, the positron always recombines with another electron after a short
traveling distance, which results in the emission of two photons in approximate opposite
directions. This effect is called the pair annihilation process and is utilized in positron
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emission tomography ( PET ). To occur, the incident photon needs to carry at least the
rest energy of both particles, which leads to a threshold of 1.022 MeV under which pair
production is physically not possible. For very high energies over 10 MeV the effect
becomes dominant [  36  , p. 39f]. Pair production is also feasible, but typically much less
likely to appear in the electric field of an electron, which is then referred to as triplet
production [ 48  , p. 189].

2.2.3 Detection

After passing through the object of investigation a detector is necessary to measure
and quantify the remaining intensity of the X-ray beam. While historically gas-filled
ionization chambers (e.g., the famous Geiger-Mueller-counter) or films have been ap-
plied [  48  , p. 215f], today typically digital flat-panel detectors are used. These can be
separated into systems using direct and indirect conversion. In direct conversion detec-
tors incident X-ray photons hit a photoconductor (consisting of amorphous selenium
for instance) where they are converted into electrical charge without any intermediate
steps. Under this layer, a thin-film transistor array is placed, which is subsequently
used to detect the generated charge. In detectors using an indirect conversion setup
X-rays first strike a scintillator layer typically consisting of cesium iodide or gadolinium
oxysulfide, which emits visible light proportional to the incident energy. This light is
then detected by a photodiode array [ 49  ]. For all integrated circuit based detectors it is
important to calibrate the system properly, since each separate detector element may
differ in amplification gain and mean dark signal. If not taken into account, these varia-
tions lead to a systematic bias, the so-called fixed-pattern noise, which is superimposed
onto the measurements [  50  , p. 1091].

2.3 Image Reconstruction

2.3.1 Radon Transform and the Fourier Slice Theorem

In sec.  2.2.2  the Lambert-Beer law (eq.  2.1 ) was introduced, which can be used to
describe the attenuation of X-rays in matter. If the condition of homogeneous matter is
relaxed to an arbitrary spatial distribution of attenuation values it becomes necessary
to integrate over all infinitesimal path elements dl along the photon path L [  36  , p. 156f]:

− ln

(
Im

I0

)
=

∫
L
µ(l )dl , (2.3)

where Im denotes the measured intensity at the detector. For a given setup the straight
X-ray path L can be fully defined without loss of generality by the rotation angle φ of the
source-detector system relative to the object coordinate system and its lateral offset ξ
as indicated in fig.  2.4 . The expression on the left side is then the angle-dependent
one-dimensional Radon transformation pφ of the imaged object. However, in practice
not a single pixel but a detector array is used, so that the left side becomes a function
depending also on ξ, turning the expression into [  36  , p. 156f]

pφ(ξ) =
∫

L
µ(ξ,φ)dl . (2.4)
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Figure 2.4: Relation between object, Fourier and Radon space. A projection of the object f (x, y)
is acquired by the one-dimensional Radon transform R1. The projections pφ(ξ) originating from
all angles φ together form the sinogram and the inverse two-dimensional Radon transform R−1

2
is necessary to recover the original image. In theory, this can be accomplished by applying
the inverse Fourier transform F−1

2 to the sum of all Fourier-transformed projections, which is
referred to as the Fourier slice theorem. In practice, this is accomplished by analytic (sec.  2.3.2  )
or iterative (sec.  2.3.3  ) methods. The unfiltered backprojection that plays a fundamental role in
the former is schematically indicated in light blue.

Note that while such a detector array is separated into discrete pixel elements in
reality in this section, it is assumed to be continuous; this condition will be relaxed
in sec.  2.3.3  . By comparing eq.  2.3 with eq.  2.4 it becomes obvious that the Radon
transform denoted asR of an object is nothing else than its (logarithmically normalized)
measured intensity values of the projection onto a coordinate system rotated by an
angle φ. Figuratively speaking, the Radon transform does not need to be computed at
all, since the image formation process in  CT acts as a physical Radon transform.
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By expressing the object as the more general function f (x, y) with Cartesian spatial
coordinates x, y instead of representing it via its attenuation values the coordinate
systems are linked via

pφ(ξ) = pφ(x cos(φ)+ y sin(φ)), (2.5)

and the integral of eq.  2.4 can be calculated as

R
(

f (x, y)
)= f (x, y)∗δ(L) = pφ(ξ), (2.6)

pφ(ξ) =
Ï ∞

−∞
f (x, y)δ(x cos(φ)+ y sin(φ)−ξ)dxdy, (2.7)

where the Dirac delta function δ is used and the operator ∗ denotes a convolution [ 36  ,
p. 160f]. The representation of all angles φ in a single plot is called the sinogram of
f (x, y) and contains, in theory, all information necessary to reconstruct f (x, y) via the
inverse Radon transform (see sec.  2.3.2  ).

The Fourier slice theorem which is depicted in fig.  2.4 is one of the most impor-
tant principles for many reconstruction methods [ 36  , p. 167]. It states that the one-
dimensional Fourier transform of the Radon-transformed object (i.e., the projection)
equals a radial line in the two-dimensional Fourier transform of the object where the
respective angles coincide. A proof can be found in the literature [  36  , p. 165f] and the
theorem is summarized as:

F (u, v) sF cf (x, y) cR spφ(ξ) sF sFφ(q), (2.8)

where the Fourier space F (u, v) is gradually filled by Fφ(u, v) with each added projection,
whose representation in Cartesian and polar coordinates is given via

Fφ(u, v)|u=q cos(φ)
v=q sin(φ)

= Fφ(q), (2.9)

with radial coordinate q [  36  , p. 166].

2.3.2 Analytic Solution and Filtered Backprojection

While the radiographic imaging process is given by the Radon transformation described
in sec.  2.3.1  , the reconstruction of f (x, y) from projections in  CT is an inverse problem
and a closed expression for the inverse Radon transformation R−1 is required. While
such an inversion formula has been proposed by Radon in 1917 from a theoretical point
of view [ 51  ], it has turned out to be practically not feasible. First, to yield a unique
solution of relative attenuation coefficients, it requires to sample with infinitely small
angular steps, which is obviously not possible in reality. While this condition can be
relaxed, due to the discretization into voxels a certain sampling rate is nevertheless nec-
essary to avoid aliasing artifacts, which will be discussed in sec.  4.1 . Furthermore, the
formula is sensitive to noise, which is an inherent property of each projection caused
for instance by the underlying photon statistics [ 52  , p. 37f]. While a reconstruction
algorithm based on the Fourier slice theorem (sec.  2.3.1  ) could be applied instead a
regridding step is necessary between the polar representation of the Fourier space and
the object space given in Cartesian coordinates. Unfortunately, the required interpola-
tion step produces deviations that are particularly large at high spatial frequencies and
lead to severe degradation of image quality so that this method is practically also not
feasible [  36  , p. 169f].
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Instead, the most frequently used approach is based on the filtered backprojection
( FBP ), which is typically used in form of the reconstruction algorithm proposed by
Feldkamp, Davis, and Kress (the so-called  FDK algorithm [  53  ]). It can be shown that this
method is equivalent to the original solution suggested by Radon [  36  , p. 191]. Essentially,
the obtained projections are convoluted with a filter kernel and backprojected in the
volume, where the attenuation values are smeared out over the entire photon path. This
is schematically indicated (without the filtering step) in fig.  2.4 .

The backprojection of the filtered projection hφ(ξ) to obtain the reconstruction f̃ (x, y)
of the object f (x, y) can be written as [ 36  , p. 179f]

f̃ (x, y) =
∫ π

0
hφ(ξ)dφ. (2.10)

While integrating overπ instead of 2π is sufficient to describe the entire object space,
in practice projections are typically obtained from more than 180°. For one, this is due
to the use of cone-beam setups that violate the condition of parallel X-ray beams that is
inherently assumed during this entire chapter. Furthermore, the  SNR of a reconstructed
voxel improves with the number of backprojected rays through this element [ 23  ], which
essentially means that more measurements reduce the effective noise by averaging.

The filtering step acts edge-enhancing on the image and is realized by applying a
high pass filter in the frequency domain [  36  , p. 179f]:

hφ(ξ) =F−1 (
Fφ(q)·|q |) . (2.11)

In practice, eq.  2.11  can only be approximated due to undesirable properties of the
filter kernel. In consequence, several alternatives have been suggested with the proposal
of Shepp and Logan [ 54  ] being today the most commonly used version [  36  , p. 242f].

2.3.3 Iterative Approaches

While the backprojection-based method outlined in the last section is by far the most
frequently used reconstruction algorithm for X-ray  CT , it is only of minor importance
for this work. Instead, iterative reconstruction methods will be primarily used, which
are known to perform better in case of irregular sampling or sparse data [ 36  ,  55  , p. 201].
So far, all considerations in sec.  2.3 were based on continuous values and distributions.
However, in reality, the detector is composed of a pixel grid and the reconstructed
volume is typically given in form of a discrete scalar field in a voxel grid. As a result,
the continuous representation via the Radon transform can be replaced by a system of
equations [  36  , p. 205] and

pφ(ξ) =R
(

f (x, y)
)

(2.12)

becomes p = Af. (2.13)

The vector p ∈Rm contains all values of the sinogram, i.e., all obtained pφ(ξ) given as
measured pixel values of the sampled object f ∈Rn given in its attenuation values. The
matrix A ∈ Rm×n is called the system matrix and connects both vectors to each other.
Typically, the inversion of A is not trivial or even possible, since it is almost singular
and very large. Furthermore, eq.  2.13  can only be approximately solved since the data
contains noise so that an exact solution cannot be provided. Depending on the number
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of measurements m conducted, A is usually over-determined by design; however, in this
work the number of projections is typically low, which turns it into an under-determined
problem [ 36  , p. 205]. In general, a solution to eq.  2.13  is given by

f̃ = argminf

(∥∥Af −p
∥∥2

)
, (2.14)

which satisfies the least-squares minimum norm [  36  , p. 206f]. This is equivalent to the
definition of the Moore-Penrose pseudo-inverse, which can in theory be computed by
the singular value decomposition (  SVD ). Unfortunately, in practice, this approach is
not achievable except for very small dimensions of A. Given typical parameters used in
this work, A would contain in the order of 1015 elements, which is clearly not feasible
even for modern computers so that iterative approaches have to be used instead.

The basic idea of such methods will be briefly derived in the following. First, ex-
panding the objective function in equation  2.14  gives

f̃ = argminf

((
Af −p

)T (
Af −p

))
, (2.15)

= argminf

((
fTAT −pT)(

Af −p
))

, (2.16)

= argminf

fT (
ATAf −ATp

)︸ ︷︷ ︸
→0, for eq.  2.18 

−pT (
Af −p

)︸ ︷︷ ︸
eq.  2.14  

 , (2.17)

where the last term can be identified again as part of the objective function of eq.  2.14  

that is to be minimized. The residual error is assumed to be negligibly small in the
following as indicated and the normal equation is given by

ATAf = ATp, (2.18)(
I − (

I −ATA
))

f = ATp, (2.19)

f − (
I −ATA

)
f = ATp, (2.20)

f = f −AT (
Af −p

)
, (2.21)

where I denotes the identity matrix [  43  , p. 702f]. While eq.  2.21  defines the update
step of the fixed point iteration schema, it can also be interpreted as a series of back-
and forward projections. Starting from an initial guess for the solution it is possible to
calculate related projections using eq.  2.13  . The difference to the measured projection
can then be back-projected to the volume by AT and used to update the n-th iteration
solution f (n). The algorithm stops after a termination condition is reached, for instance
when the projection error is lower than a predefined threshold or after a certain number
of iterations. More formal, eq.  2.21  is expressed as

f (n) = f (n−1) −

Projection Error︷ ︸︸ ︷
Aif

(n−1) −pi

AiA
T
i

AT
i︸ ︷︷ ︸

Backprojected Error

, (2.22)

where Ai denotes the i -th row of A, i.e., the part associated with pi. The term f (n) after n
iterations is an estimate for the desired solution f̃. The pixel pi to which the volume is
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projected and compared to in each iteration is typically selected randomly or according
to a statistical distribution [  36  , p. 213f]. This method, where only one projection pixel
value per iteration is considered is referred to as the algebraic reconstruction technique
( ART ).

The objective function in eq.  2.14  can be modified to include further properties,
which leads to other iterative approaches such as the maximum likelihood [ 36  , p. 230f],
the conjugate gradient least-squares [  43  , p. 703] or the total variation minimization [  56  ].
Furthermore, regularization terms reflecting prior knowledge of the object can be
included as well [ 43  , p. 703]. One possible choice is a weighted least-squares norm that
is given by ∥∥Af −p

∥∥2
R = (

Af −p
)TR

(
Af −p

)
, (2.23)

where R ∈Rm×m is a diagonal matrix whose entries are defined as Rii = 1/
∑n

j=0 Aij. This
definition of R assigns a higher weight to rays that intersect the reconstructed part
volume only for a small length and vice versa [  43  , p. 702f]. Analogous to eq.  2.22  , the
update step can then be derived as

f (n) = f (n−1) − 1∑m
i=0 Aij

m∑
i=1

(
Aif

(n−1) −pi∑n
j=1 Aij

AT
i

)
. (2.24)

This algorithm is termed the simultaneous iterative reconstruction technique ( SIRT )
and is known to be more stable in the presence of noise, but for the price of a slower
convergence [  43  , p. 702f]. It also deals well with uneven distributions of projection
directions [ 57  ]. While  ART processes each projection pixel value separately in different
iterations,  SIRT uses all available information (i.e., all pixels of all projections) in each
step as indicated by the summation over m elements.

As a compromise between both algorithms, the simultaneous algebraic iteration
algorithm ( SART ) was proposed in 1984 [ 58  ], which will be used primarily in this work.
The algorithm comprises several minor adjustments that will be omitted here for the
sake of clarity and tries to combine the advantages of  ART and  SIRT [  59  , p. 285]. The
update formula is equivalent to eq.  2.24  , but instead of all projections only the values
associated with an angular direction φ (i.e., all pixel values in one single projection) are
considered so that the expression is given by

f (n) = f (n−1) − 1∑m
i∈Iφ

Aij

m∑
i∈Iφ

(
Aif

(n−1) −pi∑n
j=1 Aij

AT
i

)
, (2.25)

where Iφ denotes the set of indices related to the same projection angle φ [  43  , p. 702f].
This change in the considered subset for each iteration leads to faster convergence of

 SART in comparison to  SIRT , while being relatively robust towards streak artifacts and
noise at the same time [ 60  ].
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3 Signal Detection Theory
and Model Observer

While the most important physical principles relevant to X-ray imaging and the founda-
tions of  CT have been covered in the previous chapter  2  , the following sections aim to
provide further concepts that are necessary for this work. First, basic properties of noise
and imaging systems are introduced in sec.  3.1 to  3.3 . An important concept for this
work will be statistical signal detection theory (sec.  3.4 ), which was originally developed
for radar surveillance [ 61  ,  62  , p. 151] and subsequently lead to further important tools,
such as the receiver operating characteristic (sec.  3.5 ) and model observers ( MOs ) that
will be discussed in sec.  3.6 . This chapter ends with a contemplation concerning noise
statistics (sec.  3.7 ) and detection performance criteria (sec.  3.8 ).

3.1 Signal-to-Noise Ratio

The signal-to-noise ratio (  SNR ) is defined as the ratio of the average power 〈Psignal〉 of a
signal (i.e., meaningful information) s(t ) to the average power 〈Pnoise〉 of the background
noise (i.e., the unwanted, disturbing signal) n(t), with t being the time for a time-
dependent signal [ 63  , p. 191]:

SNR = 〈Psignal〉
〈Pnoise〉

, (3.1)

where the operator 〈·〉 denotes the statistical average. The average power Px of a
stationary signal x(t ) is then generally defined as

〈Px〉 = lim
T→∞

1

T

∫ T /2

−T /2
|x(t )|2dt , (3.2)

with T being the observation interval [  63  , p. 7]. As indicated, the power calculated
according to eq.  3.2 is equal to its expectation value if the signal is ergodic 

1
 which is

inherently assumed in the following [ 50  , p. 367f, p. 387]. The expression simplifies for a
constant (i.e., time independent) real-valued signal s(t ) = s to

〈Psignal〉 = lim
T→∞

1

T

∫ T /2

−T /2
|s|2dt = s2. (3.3)

1Ergodicity denotes the property of a random process that each particular realization carries the
identical statistical information, which is closely related to the law of large numbers. For the detailed
background the interested reader is referred to the literature [ 50  , p. 387f].
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The noise can be modeled as a stationary and random process, so that

〈Pnoise〉 = lim
T→∞

1

T

∫ T /2

−T /2
|n(t )|2dt = lim

T→∞
1

T

∫ T /2

−T /2
n(t )2dt , (3.4)

where it is assumed again that the noise is real-valued. The variance Var(X ) of a contin-
uous random variable X is defined as [  64  , p. 1476]

Var(X ) =
∫ ∞

−∞
(X −µ)2 f (X )dX =σ2

X , (3.5)

with µ being the expectation value, f (X ) the probability density and σX the standard
deviation. Since it is assumed that the signal does not exist (or is not of interest due to
being constant) outside the observation interval, the limits can be adjusted accordingly.
Furthermore, if the density function is assumed to be a constant scalar value given
by f (X ) = limT→∞ 1

T it can be removed from the integral. Note that this assumption
equals the discrete case with constant but infinitely high sampling rate. If the noise is
also additive with mean µ= 0 this results in

σ2
n = lim

T→∞
1

T

∫ T /2

−T /2
(n(t )−0)2dt , (3.6)

which can be identified as the expression in eq.  3.4 , so that σ2
n = Pnoise. Together with

the equations  3.1 and  3.3 one finally obtains an expression for the  SNR as

SNR = 〈Psignal〉
〈Pnoise〉

= s2

σ2
n

. (3.7)

The definition of the  SNR provided by eq.  3.7 is often used in engineering disciplines.
However, several alternative definitions are sometimes utilized [  65  ] and in imaging
sciences the  SNR is typically defined as the square root of eq.  3.7 , which is given by [ 36  ,
p. 421]

SNR = s

σn
. (3.8)

One reason for this definition is that the values in an image are usually generated by
a detector, which is typically not detecting single photons or events, but the incident
energy integrated over the exposure time, which is just a process as described by eq.  3.2 .
Consequently, both definitions are linked and express the same fundamental law.

3.2 Noise Equivalent Quanta and Detective Quantum
Efficiency

Assuming a mono-energetic X-ray spectrum and an ideal linear detector, the signal
strength is proportional to the number of incident photons N . Furthermore, photons
are considered to follow a Poisson distribution, i.e., the variance equals the mean
value, which is the desired signal. Considering eq.  3.8 , the equation simplifies further
into [  36  ,  66  , p. 421f]

SNR = s

σn
= 〈N〉p〈N〉 =

p
N . (3.9)
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For an ideal detector every single photon is captured and the  SNR is given as

SNRideal =
〈Nideal〉p〈Nideal〉

=
√
〈Nideal〉, (3.10)

while in reality its efficiency is limited so that only

SNRreal =
〈Nreal〉p〈Nreal〉

=
√
〈Nreal〉 <

√
〈Nideal〉, (3.11)

can be obtained [  66  ]. This is part of the reason why an increasing number of projections
leads to an improvement in image quality that follows a square-root law as discussed in
sec.  4.3 . The number of quanta that actually contribute to the image for the real case is
given as

〈NReal〉 = SNR2
real = NEQ, (3.12)

with  NEQ being called the noise-equivalent quanta. The ratio of the  NEQ to the available
photons that could theoretically be detected provides a figure of merit for the quality of
the detecting device that is referred to as detective quantum efficiency ( DQE  ), which is
defined as [ 66  ]

DQE = SNR2
real

SNR2
ideal

= NEQ

〈Nideal〉
. (3.13)

It shall be noted that the  DQE  for a particular spatial frequency u is proportional to the
modulation transfer function ( MTF  ) and the noise power spectrum ( NPS  ), which will
be introduced in the next sections, so that

DQE(u) ∝ MTF(u)2

NPS(u)
(3.14)

holds [ 66  ]. Comparing with eq.  3.3 and  3.6 this equation can be interpreted as a
frequency-dependent  SNR of the detection stage. By weighting with the relevant fre-
quency components a task-specific figure of merit – the so called model observers
( MOs ) – can be defined, which will be introduced in sec.  3.6 [  50  , p. 866].

3.3 Modulation Transfer Function

An one-dimensional image f ′(x) of an object f (x)is considered, which is produced by a
linear and shift invariant imaging system with x being the spatial coordinate in object
space. The resulting image is then given as

f ′(x) =
∫

f (x −x ′)PSF(x ′)dx ′, (3.15)

where PSF(x) denotes the so called point spread function ( PSF  ), which describes the
resolution properties of the imaging system. It is defined as the response to a Dirac
impulse δ(x) [ 66  ]. Note that eq.  3.15  describes a convolution with the  PSF  as kernel
function. The Fourier transform of the  PSF  is the optical transfer function ( OTF  ):

OTF(u) =F (PSF(x)) , (3.16)
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with u being the frequency coordinate in Fourier space. The magnitude of the  OTF 

is referred to as the modulation transfer function ( MTF  ) denoted as MTF(u), which is
usually normalized by its zero-frequency value to enforce MTF(0) = 1 so that [ 66  ]

MTF(u) = |OTF(u)|
|OTF(0)| . (3.17)

The  MTF  is closely related to the spatial resolution, which indicates how close two
objects (e.g., two lines) that are seen through an imaging system can be to each other
to be still observed as two separate objects. A linked parameter is the contrast C (also
called modulation), which is defined as the quotient of the gray value variation interval
of an image normalized by its mean, which is given as [  36  , p. 404]

C
(

f (x)
)= max( f (x))−min( f (x))

max( f (x))+min( f (x))
. (3.18)

The contrast can be interpreted as a metric for the discriminability of a bright feature
to the dim background in an image or vice versa [  67  , p. 38]. Since eq.  3.15  describes a
convolution in image space, the  MTF  can be used as transfer function; i.e., it describes
the frequency-dependent ratio C ( f ′(x))/C ( f (x)), which can be calculated as multipli-
cation of f (x) with the  MTF  in Fourier space. Note that the discussion in this section
is restricted to an one-dimensional  MTF  . However, since  CT is volumetric imaging
method, the related  MTF  comprises three spatial dimensions and the integral in eq.  3.15  

has to be adjusted to cover the entire volume [  68  ].

3.4 Basic Concepts of Statistical Decision Theory

A continuous object f is considered, which is discretely represented by a vector f in
the Hilbert space of square-integrable functions. The image formation process of an
arbitrary imaging system can then be expressed as

g =H
(
f
)+n, (3.19)

with H being an appropriate imaging operator and g the resulting (i.e., measured) data.
The vector n denotes noise that is added during the image formation process, which
is assumed to be additive, stationary and zero-mean in the following. Consequently,
the noise in a particular measurement can be defined as the difference between the
expected data and the actually resulting data as

n ≡ g −〈g〉 = g −H
(
f
)

, (3.20)

where 〈·〉 again denotes the statistical average for a certain amount of acquired data,
which is equivalent to the expectation value of g [  50  , p. 806f].

The process described in the last passage can be referred to as data acquisition. In
practice, H is non-invertible since it maps the continuous data f of the real world onto a
discrete detector, so that only a finite set of measurements can be conducted [ 69  , p. 150].
Furthermore, for the special case of computed tomography it is worthwhile to point
out that the result of the imaging process is typically not the image itself (unlike in
some other disciplines, like e.g., microscopy or two-dimensional radiography) but
the entire projection data. To obtain the desired image, which is represented by a
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three-dimensional volume f̃, an intermediate step – the reconstruction operation Z as
introduced in sec.  4.4 – is required, which can be considered an approximation for the
discrete inversion of H. Due to the influence of noise in the acquisition process and
properties of the reconstruction, the image (which is referred to as reconstruction or
reconstruction result from now on for convenience) is typically not exactly identical
but only an estimate of the object. Additionally, the reconstruction problem is ill-posed
(see sec.  2.3 ), so that the obvious choice of Z =H−1 is usually not feasible. However,
for the sake of simplicity it is continued with g instead of f̃, but the derivation can
be performed analogously. The imaging process is typically performed with a certain
(decision) task in mind, which will be the decision if a certain signal is present or not in
the following. The means by which this task is performed is called the decision-maker
or the observer. While the observer can be, for instance, a human operator assessing
the image and trying to make a decision, this work focuses on mathematical observer
models [  50  , p. 802f]. An overview of psychophysical methods can be found in the
literature [  70  , p. 7f].

3.5 Receiver Operation Curve

If the object consists of a non-random background signal sb and a known, superimposed
signal of interest which is produced by some feature sf the task is referred to as signal
known exactly/background known exactly ( SKE  / BKE  ). Consequently, the noise n is the
only source of randomness for this model. The binary detection task that the observer
is supposed to handle can then be formulated as a decision if the signal is present or
not, i.e., as the two possible hypotheses

H0 : g = sb +n,

H1 : g = sb +sf +n,

(3.21)

(3.22)

with H0 being the signal absent and H1 the signal present case [ 71  ,  72  ]. Due to eq.  3.19  ,
the feature signal can also be defined as

sf =
〈
H

(
f|H1

)〉−〈
H

(
f|H0

)〉
, (3.23)

where the average operator is required since the image formation is a statistical process
due to the additive noise. From now on, all signals are considered to be real-valued,
which is a reasonable assumption for absorption contrast based  CT . The decision maker
calculates then a test statistic t(g), which is a random variable since it depends on g.
Consequently, the conditional probability density functions on t (g) can be expressed as

p(t |Hi ) =
∫
∞

p(t |g)p(g|Hi )dg , (3.24)

with p(g|Hi ) as the probability density of g given that the hypothesis Hi is true and
the scalar test statistic p(t |g), given the data g. The expression p(g|Hi ) is sometimes
referred to as likelihood function, since it expresses how likely it is to obtain the data g,
given that the hypothesis Hi holds [  50  ,  72  , p. 807f]. For the case of  CT , the uncertainty
to obtain this particular data even in the absence of noise can also be explained by the
fact that the image formation is not a deterministic process per se, but obeys the law of
Poisson photon statistics.
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Figure 3.1: Probability density functions of both hypotheses with the fractions  TPF ,  FPF  ,  TNF  ,
 FNF and the resulting  ROC curve.

The result of the detection task is obtained by comparing the test statistic to a
previously defined scalar threshold tc . If t(g) > tc holds, the null hypothesis H0 is
rejected and vice versa. This results in four possible decision outcomes: if H0 is true
and correctly classified as true, it is termed a true positive, if it was falsely classified it is
referred to as a false positive. Analogous, if H1 is correctly classified it is true negative
and if it is falsely classified as H1 it is called false negative [ 50  , p. 813f]. Assuming an
infinite number of decisions made with the criterion tc the fractions of each possible
outcome are obtained as integral under the curve as illustrated in fig.  3.1 as

TPF = P (t ≥ tc |H1) =
∫ ∞

tc

p(t |H1)dt , (3.25)

FPF = P (t ≥ tc |H0) =
∫ ∞

tc

p(t |H0)dt , (3.26)

FNF = 1−TPF =
∫ tc

−∞
p(t |H1)dt , (3.27)

TNF = 1−FPF =
∫ tc

−∞
p(t |H0)dt , (3.28)

with P (t ≥ tc |Hi ) being the probability (i.e., the integral over the respective probability
density function) to come to each conclusion given the threshold criterion tc and
the underlying hypothesis Hi [  50  , p. 813f]. The true positive fraction ( TPF ) is often
called sensitivity, while the true negative fraction ( TNF  ) is referred to as specificity. It is
apparent from both, the equations and fig.  3.1 , that the choice of the threshold criterion
influences the decision of the observer. Low values of tc favor accepting H1 and vice
versa. Connected to this is a rise in  TPF , but also the false positive fraction ( FPF  ), i.e., a
present feature is more readily detected, but for the price of a higher fraction of falsely
detected signals. At the same time  TNF  and the false negative fraction (  FNF  ) decrease.
Nevertheless, in practice, the consequences of each outcome are typically not identical.
For instance, it is desirable to reliably detect a cancer tumor in a medical  CT scan and
accept a higher number of false alarms. A frequently used method to depict this trade-
off are the so called receiver operating characteristic curves ( ROCs , see right graph in
fig.  3.1 ), where the  TPF and  FPF  (or similar entities) are compared against each other
for different choices of tc . By varying tc , it is possible to move to another working point
on the  ROC [  50  , p. 814f].
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For given probability density functions it is not possible to change the shape of the
 ROC , since it is a representation of the underlying nature of the task and the decision
strategy, i.e., the model to compute p(t |Hi ). Consequently, metrics can be derived that
express how hard the decision task actually is. As such, the  SNR of the test statistic SNRt

is defined analogous to eq.  3.8 as the ratio of the expectation value of the signal (which
is the difference between the expectation values of both hypotheses) and the average of
the variances of the conditional test statistics [ 50  , p. 819f]:

SNRt =
〈t |H1〉−〈t |H0〉√

1
2 (σ2

0 +σ2
1)

. (3.29)

From now on it is assumed that the test statistic follows a Gaussian distribution, which
can be motivated by empirical findings being often in the same shape, the central limit
theorem (i.e., the distributions originate from different but similar sources which are
combined), and generally for the sake of easier mathematical handling [ 73  , p. 19f]. For
further simplification, the variances of signal and noise are considered to be identical.
In this particular case, SNRt is given the special name detectability index d ′ [  50  , p. 819].

Note, that if the variance is set to be equal to one and shift accordingly, the distribu-
tions p(t |H0) =N (0,1) and p(t |H1) =N (d ′,1) are obtained with N (µ,σ) denoting the
Gaussian distribution with mean µ and standard deviation σ, i.e., the detectability d ′

can be interpreted directly from the plot of the probability densities as the difference
of their means [  73  , p. 20]. If both assumptions hold, the  ROC curve is symmetric with
respect to the diagonal from upper left to lower right and d ′ can be found in the diagram
as the distance between the intersection point with this diagonal to the equality line
defined as  TPF =  FPF  as indicated in fig.  3.1 . For d ′ = 0 the enumerator of eq.  3.29  is
required to be zero, so p(t |H0) = p(t |H1) holds and the corresponding  ROC would be
just a straight line, which represents the worst case of two totally indistinguishable
distributions. In the best case that both distributions are perfectly separable, they
need to be an infinite distance apart from each other, since the normal distribution
has no intersection point with the x-axis and infinity is obtained in the enumerator,
yielding d ′ =∞ for the optimal case (see fig.  3.2 ). The detectability index is related to
the integral over the  ROC curve (typically referred to as area under the curve denoted as

 AUC ), which is another frequently used performance metric by

AUC = 1

2
+ 1

2
erf

(
d ′

2

)
, (3.30)

with erf(x) denoting the error function defined as erf(x) = 2p
π

∫ x
0 e−x ′2

dx ′ [  50  , p. 817f].

Another interpretation is given by the formula d ′ = erf(TPF)− erf(FPF) [  73  , p. 24]. It
shall further be noted that the  ROC is related to the concept of probability of detection
( POD ) curves, which can be used to determine the likelihood of detecting a flaw of a
certain characteristic parameter (usually its length, size or volume) reliably. Further
information concerning the  POD can be found in the literature [  8  ,  74  ].
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Figure 3.2: The shape of the test statistics influences the  ROC -curve, which is independent of
the selected tc .

3.6 Ideal Bayesian Observer

The goal is now to define a test statistic which results in the best possible outcome with
respect to some prerequisite. For this, the classification task is performed by computing
the ratio

Λ(g) = p(g|H1)

p(g|H0)
>Λc , (3.31)

and comparing the outcome to a threshold criterion Λc . If Λ(g) > Λc holds, one
decides for H1 and vice versa. The expressionΛ(g) is called the likelihood ratio. Since it
it is often more convenient to work with sums instead of fractions, the log-likelihood-
ratio is defined as λ(g) = log(Λ(g)). Note that the data-dependent part in eq.  3.31  is
formulated on the left side, while the right one only holds a certain threshold that is
defined by some external assumption. This means that the  ROC curve expressed by the
equation is always identical, but with a different operating point and typical examples
for the choice ofΛc are the maximum a posteriori and the maximum likelihood criterion
[  50  , p. 825f]. A test that can be formulated in the form of eq.  3.31  is called likelihood-
ratio test and any observer performing this test is referred to as an ideal observer. It
includes all information that is necessary to compute p(g|H j ) (e.g., noise statistics or
the measurement process itself) and is supposed to be optimal in all possible operating
points, i.e., it yields the maximum  TPF ,  AUC and d ′ [  50  , p. 828f]. However, this does
not mean that the ideal observer always decides correctly (since this is also dependent
on the obtained measurements) but it achieves the minimal estimator variance and
maximizes the  TPF for a given  FNF  [  75  ].
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3.7 Noise Statistics

3.7.1 Uncorrelated Gaussian Noise

It is now assumed that the noise n is zero-mean, stationary, independent and following
a Gaussian distribution with standard deviation σ. As expressed in eq.  3.21  and  3.22  

the noise is also considered to be purely additive and identically distributed for both
hypotheses. Then, the probability density for each of the M vector elements gm is given
by

p(gm |H0) = 1p
2πσ2

exp

(
−

(
gm − sbm

)2

2σ2

)
, (3.32)

p(gm |H1) = 1p
2πσ2

exp

(
−

(
gm − sbm − s f m

)2

2σ2

)
, (3.33)

with sbm , s f m being the m-th vector component of sb and sf, respectively. Due to the
statistical independence, g can be expressed as the product of its elements gm . From
this point, it is straightforward to define the likelihood ratio of eq.  3.31  as [ 50  , p. 835f]

Λ(g) = p(g|H1)

p(g|H0)
=

∏M
m=1

1p
2πσ2

exp

(
−

(
gm−sbm−s f m

)2

2σ2

)
∏M

m=1
1p

2πσ2
exp

(
− (gm−sbm)2

2σ2

) . (3.34)

After canceling out the common terms, the exponential function can be removed by
applying the natural logarithm on both sides of the equation, which yields the log-
likelihood λ(g) introduced in sec.  3.6 and changes the multiplication into an addition.
Since the signal and background are known exactly by definition, the second fraction in
eq.  3.35  is constant since it only depends on those and can be included in the threshold
criterion instead, so that λ(g) is adjusted. This gives a modified expression λ′(g) that
is also referred to as the matched-filter discriminator (for detailed derivation see [  50  ,
p. 835f]):

λ(g) = ln
(
Λ

(
g
))= M∑

m=1

((
sbm + s f m − sbm

)
gm

σ2
−

(
sbm + s f m

)2 − s2
bm

2σ2

)
, (3.35)

λ′(g) =
M∑

m=1
s f m gm = sf

Tg. (3.36)

3.7.2 Correlated Gaussian Noise and Noise Power Spectrum

The expressions for p(gm |H j ) in equation  3.33  can be generalized by introducing the
noise covariance matrix Kn, whose entries are given by

Kij = 〈(gi −〈gi 〉)(g j −〈g j 〉)T〉. (3.37)

The covariance matrix is self-adjoint with the diagonal entries being the variances of the
entries of g. If an off-diagonal entry Ki j is zero, it follows that gi and g j are statistically
independent [ 50  , p. 368f]. Since the noise is assumed to be zero-mean, it is described
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entirely by its covariance matrix 

2
 . For the given case the expected signal is already

known since a  SKE  / BKE  case is assumed, so by use of eq.  3.20  one obtains [  50  , p. 368f]:

Kn, j = 〈(g −〈g〉)(g −〈g〉)T|H j 〉 = 〈nnT〉. (3.38)

Since in eq.  3.21  and  3.22  the noise was defined to be independent of the signal, the
covariance matrix does not depend on the underlying hypothesis as well and the index j
is from now on omitted for convenience.

Similar to the covariance, the noise correlation matrix Cn, j is defined as

Cn, j = 〈ggT|H j 〉 = Kn, j = 〈nnT〉, (3.39)

which is equal to the covariance matrix in case of zero-mean random vectors like the
noise definition used in this work [ 50  , p. 268]. Here, it was again used that the covariance
and correlation matrices are identical for both hypotheses as described above.

According to the Wiener–Khinchin theorem, which can be derived directly as a
special case from the cross-correlation theorem [  76  , p. 51f], the power spectrum Px(u)
with frequency u of the signal x(t ) is given by the Fourier transform of its autocorrelation
function [ 50  , p. 390] which is given as the diagonal values of the correlation matrix,
since both matrices are identical according to eq.  3.39  . If applied only to the noise
part of the signal this frequency-dependent signal power is referred to as the noise
power spectral density, Wiener spectrum or the noise power spectrum  NPS  (u), which is
defined as [ 69  ,  77  , p. 148]

Pnoise(u) = NPS(u) = 1

M

M∑
m=1

(
F

(
n

))2 . (3.40)

or alternatively in its continuous form analogous to eq.  3.4 as [ 50  , p. 390]

NPS(u) = lim
T→∞

1

T
F

(
n(t )2) . (3.41)

The integration of eq.  3.41  over all frequencies gives an expression for 〈Pnoise〉, occa-
sionally also referred to as Parseval’s theorem, which states that the power of a signal is
preserved if it is Fourier-transformed. The reason for this is that the Fourier transform
is a unitary transform, which is invariant of scalar products and norms, like the `2 norm
in this case [  50  , p. 117].

Equation  3.32  and  3.33  can be generalized towards a multivariate normal random
vector as [  50  , p. 836f]:

p(g|H0) = 1√
(2π)M det

(
Kn

)exp

(
−1

2

(
g −sb

)TK−1
n

(
g −sb

))
, (3.42)

p(g|H1) = 1√
(2π)M det

(
Kn

)exp

(
−1

2

(
g −sb −sf

)TK−1
n

(
g −sb −sf

))
, (3.43)

2Generally speaking, this is not exactly true since Kn only captures first and second order correlations
(i.e., connections of sets with three points or more are neglected). However, since additive and zero-mean
Gaussian noise is assumed, this information is sufficient to describe the distribution entirely [  70  , p. 13].
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with det(·) denoting the determinant. After intermediate steps (see [  50  , p. 836f]) a more
general expression for eq.  3.36  is given by

λ′(g) = sf
TK−1

n g. (3.44)

Note that under the assumption of uncorrelated data (i.e., the previous case of sec.  3.7.1  ),
the autocovariance function is zero for all times t 6= 0 [ 76  , p. 342f] and the covariance
matrix becomes diagonal with the standard deviations as diagonal elements [  50  , p. 368f].
This is equivalent to the definition of white noise  

3
 used by some sources [  76  , p. 342]. As

a consequence, for identical standard deviations det(Kn) =σ holds and K−1
n becomes a

scaling with 1
σ

since all entries of the matrix are uncorrelated [ 64  , p. 1443], which can
also be expressed by the combination of eq.  3.4 and  3.6 for the continuous case.

3.7.3 Prewhitening Filter

If K is non-singular, eq.  3.44  can be rewritten as

λ′(g) = sf
TK−1

n g =
(

K
− 1

2
n sf

)
T
(

K
− 1

2
n g

)
. (3.45)

Comparing this with eq.  3.36  this can be interpreted as a multiplication of the expected
signal and the data with the same matrix before computing the scalar product analogous
to the case of uncorrelated Gaussian noise (eq.  3.36  ); this method is sometimes referred
to as prewhitening [  50  ,  72  , p. 839].

The use of applying the prewhitening filter K−1/2
n onto the measurements becomes

particularly apparent if the covariance matrix of the filtered measurements K−1/2
n g is

calculated. Using the definition of the covariance matrix in eq.  3.38  one obtains [ 50  ,
p. 839]

Kz =
〈(

K
− 1

2
n g −

〈
K
− 1

2
n g

〉)(
K
− 1

2
n g −

〈
K
− 1

2
n g

〉)
T
〉

(3.46)

= K
− 1

2
n

〈(
g −〈

g
〉)(

g −〈
g
〉)T〉

K
− 1

2
n (3.47)

= K
− 1

2
n KnK

− 1
2

n = I, (3.48)

where the definition of the covariance matrix Kz of eq.  3.38  is used again in eq.  3.47  .
This means that the covariance matrix of the filtered data becomes the identity matrix I,
which is diagonal and therefore corresponds to white noise.

The question arises now, why the observer performance is actually maximized if
the data noise is uncorrelated. To explain this, it is necessary to go one step back to
the beginning of sec.  3.5 where the general test statistic t (g) was introduced. If t (g) is a
linear function, i.e., of the form

t (g) = wTg, (3.49)

with discriminant w, the resulting ideal observer is called the Hotelling observer. It
was shown in sec.  3.7.2  that for the case of a  SKE  / BKE  task with identical Gaussian

3It shall be noted that the concept of white noise is generally problematic for real-world applications,
since an infinite spectrum with constant power does not converge but instead diverge towards infinity,
which holds even for finite observation intervals. To avoid this problem, often a band-limited white noise
is used as an approximation [  76  , p. 343]
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covariances the prewhitening observer defined in eq.  3.36  equals the Hotelling observer
with w = sf, since the only source of randomness is given by the noise vector n. The
proof and further extensions to tasks with statistically varying signal sf (i.e., the signal
and background is not know precisely like in the  SKE  / BKE  case) can be found in the
literature [  50  , 850f]. For the Hotelling observer and the  SKE  / BKE  case, it can be shown
that the  SNR is proportional to the trace  

4
 of the inverse noise covariance matrix [  50  ,

p. 853]
SNR2 ∝ tr(K−1

n ), (3.50)

with tr(·) denoting the trace, which is maximized by the choice of eq.  3.48  if the covari-
ance matrix is similar for each hypothesis [  50  , p. 855].

Summing up, applying a matched filter to the measured data as defined by eq.  3.36  

yields the best results with respect to the performance metrics defined via the  ROC -
concept, given that white noise is present. A proof that this procedure also maximizes
the  SNR of the signal is provided in the literature [ 80  , p. 238f]. If the noise is correlated,
the optimal test statistic is given by performing a prewhitening operation before apply-
ing the matched filter. Further details concerning the matched filter concept is provided
in the literature [  81  ].

It is critically important to point out that the strategy of the ideal observer as derived
in the last equations relies on an invertible covariance matrix Kn. However, the inverse
does not exist unless the number of measurements (i.e., the size of g) equals or exceeds
the dimension of Kn [  72  ]. In reality it is almost never feasible to perform such a high
number of measurements. For instance, if g represents a (1,024×1,024) pixel image,
approx. 106 measured projections would be necessary to allow for matrix inversion. A
possibility to overcome this problem is the introduction of frequency channels that
reduce the dimensionality of Kn significantly, which leads to channelized observer
models that are beyond the scope of this work [  82  ].

3.8 Observer Performance

The signal-noise-ratio defined in eq.  3.29  can be used to provide a figure of merit to
quantify how difficult the classification task described by eq.  3.21  and  3.22  is. This is
possible since the data are assumed to be normally distributed and the formation of
the decision variable is a linear transform. For the enumerator of this expression, the
mean values 〈λ(g|H j )〉 given by eq.  3.44  and variances σ2

λ
defined by eq.  3.38  of the

conditional probability density functions are required, which are given by

〈λ′(g)|H j 〉 = 〈sf
TK−1

n g|H j 〉, (3.51)

σ2
λ′ = 〈(λ′(g)−〈λ′(g)|H j 〉

)2 |H j 〉 = · · · = sf
TK−1

n sf. (3.52)

The skipped intermediate steps can be found in the literature [  50  , p. 837]. Since related
terms are subtracted from each other in the enumerator of the  SNR , constant terms

4In general, this metric is called the Hotelling trace, which describes the inter- and intra class scatter-
ing properties as a generalized class separability metric [  50  , p. 853] and has also been used to quantify
imaging system performance [ 78  ]. Note that this metric is based on the trace of the (inverse) covariance
matrix, while usually (e.g., in eq.  3.42  ) the determinant is used instead. These different scatter expressions
are referred to as total and generalized variance, respectively [  79  , p. 81f].
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can be omitted (i.e., such that do not depend on the data g), which yields together with
eq.  3.29  

SNR2
λ,PW = SNR2

λ′,PW =
(〈λ′(g)|H1〉−〈λ′(g)|H0〉

)2

sf
TK−1

n sf

(3.53)

=
(〈sf

TK−1
n g|H1〉−〈sf

TK−1
n g|H0〉

)2

sf
TK−1

n sf

(3.54)

=
(
sf

TK−1
n (sf +sb)−sf

TK−1
n sb

)2

sf
TK−1

n sf

(3.55)

=
(
sf

TK−1
n sf

)2

sf
TK−1

n sf
= sf

TK−1
n sf, (3.56)

where it was used that 〈sf|H0〉 = 0, i.e., the expected feature signal is not present in the
data if the zero hypothesis holds (see eq.  3.21  ) [ 50  , p. 837]. This derivation is valid for
the case where a prewhitening filter (sec.  3.7.3  ) can be applied to the data as indicated
by the index  PW . For the case without the filtering step or when uncorrelated Gaussian
noise is present eq.  3.36  has to be used instead of eq.  3.44  . Starting again from eq.  3.53  

this results in

SNR2
λ,NPW = SNR2

λ′,NPW =
(〈λ′(g)|H1〉−〈λ′(g)|H0〉

)2

sf
TK−1

n sf

(3.57)

=
(〈sf

Tg|H1〉−〈sf
Tg|H0〉

)2

sf
TK−1

n sf

=
(
sf

Tsf
)2

sf
TK−1

n sf
, (3.58)

where SNRλ,NPW denotes the  SNR of the non-prewhitening ( NPW  ) model observer [  66  ].
Note that according to this definition the  SNR solely depends on the signal strength and
noise properties but not the background signal that is identical for both hypotheses.
For the special case of uncorrelated noise outlined in sec.  3.7.1  and uniform variance
the covariance matrix is diagonal with identical entries and eq.  3.56  simplifies to

SNR2
λ =

sf
Tsf

σ2
, (3.59)

which is equivalent to eq.  3.7 [  50  , p. 838]. With eq.  3.56  and eq.  3.58  two expressions for
the  SNR in given projection or volume data are available. They consider the particular
imaging task in form of the discriminant sf and differ only in their assumptions concern-
ing the statistical nature of the additive noise. So far, due to the expressions in eq.  3.21  

and eq.  3.22  , the expected signal was defined directly in the measured data domain and
all further discussions in this chapter concentrated on the noise component. However,
for practical applications the signal difference of interest is given in the object domain.
As a consequence, the influence of the imaging operator H becomes relevant, which
has been neglected so far for the sake of a more convenient and clear discussion. In
order to include this effect, the signal difference ∆s in the object domain 

5
 is defined

analogously to the one given in sec.  3.4 and  3.5 as

∆s = (
f|H1

)− (
f|H2

)
, (3.60)

5Due to practical considerations ∆s is in this work either defined mathematically or obtained by
estimates for f that are generated by the reconstruction of the maximum feasible measurements as
described in sec.  6.4.1  . See also the discussion concerning the signal template definition in sec.  11.2.1 
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which is in contrast to the definition of sf of eq.  3.23  that was given in the imaging
domain. Note, however, that sf 6=H

(
∆s

)
, since the imaging operator is not necessarily

linear. Furthermore, it is often more convenient to work in the frequency domain
instead of the image domain, since the matrix of the noise power spectrum is diagonal
for stationary noise and easier to handle than the autocorrelation function. This is
possible, since, according to Parseval’s theorem, the value of the  SNR of a signal does
not change if it is Fourier-transformed as outlined in sec.  3.7.2  . Since these formulas are
also typically encountered in their continuous form, for convenience this switch will
also be performed in the following without further discussion. The correspondences for
the most important variables in sec.  3.4 are then given as [  70  , p. 51f]

∆s cF sω, Kn
cF sNPS, H cF sOTF, (3.61)

with the noise power spectrum  NPS  introduced in sec.  3.7.2  and signal template ω. The
variable OTF denotes the optical transfer function ( OTF ), which describes the frequency-
dependent image degradation by the acquisition system [  70  , p. 51f] as discussed in
sec.  3.3 . Since X-ray detectors usually operate by integrating the incoming photon
energy, only the amplitude of the  OTF is relevant, which is given by the  MTF  as defined
in eq.  3.17  .

This makes also intuitively sense, if one considers an extremely poor imaging system
(i.e., the  MTF  drops to zero almost instantly) that leads to a reconstruction image where
all voxels have the identical value. This result would have zero noise, since no derivations
from the average value occur, but would also be clearly useless in practice. Together with
eq.  3.56  and  3.58  this finally yields the frequency-dependent form for the detectability
of the  PW and  NPW  model observer as

SNR2
PW = d ′

PW =
Ñ

(MTF(u, v, w) ·ω(u, v, w))2

NPS(u, v, w)
dudvdw,

SNR2
NPW = d ′

NPW =
(Ð

(MTF(u, v, w) ·ω(u, v, w))2 dudvdw
)2Ð

NPS · (MTF(u, v, w) ·ω(u, v, w))2 dudvdw
,

(3.62)

(3.63)

with u, v, w being the frequencies in the three-dimensional Fourier space. The integral is
justified, since the frequencies of the  NPS  are independent for stationary noise [ 70  , p. 52]
and the index λ is omitted for convenience. Essentially, the prewhitening step aims
toward reducing the impact of frequencies with strong noise, while the matched filter
increases the importance of the frequencies that contain the expected signal and the

 MTF  models the image degradation by the acquisition system [ 70  , p. 52]. This is also
apparent from eq.  3.62  , which is equivalent to eq.  3.14  if the enumerator is weighted
with the expected signal difference.

While the  DQE  introduced in sec.  3.2 has established itself as the standard metric to
quantify detector performance [ 43  , p. 364], the model observers aim to provide an index
that is specific to the considered imaging task. So far, model observers have been used
for a wide variety of applications, for instance to quantify image quality  

6
 of  CT setups

and protocols [  83  – 86  ] and to optimize existing systems, for instance with respect to the

6Observer models are also frequently used to assess image quality with respect to the perception of a
human observer, which is particularly relevant in medical disciplines, where the data are usually assessed
by trained specialists instead of algorithms. For this particular task, several modifications for the  NPW  

have been proposed to correlate better with human perception. In contrast, the  PW model observer is
usually used to assess the maximum possible system performance as baseline.
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used regularization, tube current modulation [ 87  ,  88  ] or further parameters [  89  ]. Other
use cases comprise the assessment of single photon emission computed tomography
( SPECT ) compensation algorithms [  90  ], optimization of tomosynthesis parameters [ 91  ],
loss function for machine learning based denoising [  92  ] or task-based modeling [  93  ].
For the course of this work the  MOs will act as a figure of merit for the optimization
framework (chapter  6  ), since it is an expression that combines the desirable properties
of a high  SNR with the Fourier transformed expected signal, which is important for the
optimization task as outlined in sec.  4.3 .
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4 Outline of the Problem

4.1 Data Sufficiency

An important property of a trajectory implementation is its completeness of the sampled
Fourier space (see also sec.  7.3 ), since otherwise characteristic artifacts (e.g., the well-
known cone-beam artifacts) arise, which lead to a degradation of image quality and
a loss of geometrical information. An illustrative formulation of this requirement is
given by the Tuy-Smith sufficiency condition that states that all surfaces intersecting the
object of investigation also need to intersect the trajectory of the X-ray source at least
once [  94  ]. Designs that fulfill this condition are also referred to as theoretical exact since
the reconstruction for noiseless data is feasible with a unique solution [ 23  ]. Strictly
speaking, the Tuy-Smith condition cannot be fulfilled in practice, since a  CT trajectory
typically consists of a finite number of points instead of a continuous curve [  95  ]. In fact,
the transition to discrete poses is still an unsolved problem [  23  ] and only approximate
formulations to express the extent to which data completeness is achieved are currently
available [  95  ].

According to the Nyquist-Shannon theorem [  97  ,  98  ] the maximum obtainable fre-
quency in a projection image is given as νmax = 1/(2∆ξ) with ∆ξ being the pixel pitch in
the detector line. Since high frequencies are located far from the origin of the coordinate
system, νmax can be identified as a circle line in Fourier space as indicated in fig.  4.1 .
The Fourier slice theorem, which was discussed in sec.  2.3.1  , states that measurements
conducted under a particular acquisition angle with parallel beam geometry corre-
spond to a line in Fourier space. Assuming that the detector has t pixel elements, such
a line will also consist of t entries. Furthermore, since no spatial separability in beam
direction (i.e., the depth information) can be provided, the line is exactly one pixel
wide in angular direction which equals the zero-spatial-frequency (i.e., the averaged
value in this direction). The size of each of this isotropic elements νq can then easily be
calculated as [  96  ]

νq = νmax

t/2
= 2

t

1

2∆ξ
= 1

t∆ξ
, (4.1)

where the expression for the maximum frequency of above is used. As indicated in
fig.  4.1 , the Fourier space is now increasingly sampled by obtaining a growing number
of projections that are ∆φ= 2π/N apart, with N being the number of projections. Due
to point symmetry, the Fourier space can be completely filled without gaps if only a half
circle is sampled. Since the diameter of the highest frequency circle is given with 2πνmax,
the number of equiangularly over a half circle arranged projections that need to be
provided is given by [  96  ]

N = πνmax

νq
=π t∆ξ

2∆ξ
= π

2
t . (4.2)
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Figure 4.1: Illustration of the sampling of the Fourier space with an increasing number of
projections. Left: according to the Fourier slice theorem (sec.  2.3.1  ) each projection corresponds
to t entries located on a line in Fourier space with maximum obtainable frequency νmax. Right:
By acquiring more projections from different scan angles the Fourier space is increasingly filled
and the sufficient number of projections is reached when no gaps are left between the separate
measurements. Graphic adapted from [ 96  ].

In practice, as a rule of thumb instead of eq.  4.2 , the projection number N is often chosen
to fit approximately the number of horizontal detector elements t [  36  , p. 261]. This can
be justified if the high-frequency content in the image is superpositioned by strong
noise. Also, typically cone beam  CT setups are used, where a single projection does
not correspond to a particular line but a wedge having the same opening angle as the
cone beam [  99  ], which will be discussed in sec.  10.4.2 . It shall be noted that it is in fact
possible in practice to acquire a complete reconstruction from only 180° rotation 

1
 which

is referred to as short-scan  CT and contains the minimum degree of redundancy [  43  ,
p. 684f]. If more projections are available, the additional information is used to reduce
interpolation-related errors and noise [  100 ]. Data sufficiency conditions for short scans
are beyond the scope of this work and are provided in the literature [ 101  ]. Recently, it
has also been shown that in practice most operators select a number of projections
that is clearly lower than required by the Nyquist-Shannon sampling theorem, which is
probably primarily driven by economic considerations [  26  ].

Sometimes a different formulation of eq.  4.2 is encountered. The largest object that
fits onto the detector screen has the same size as the detector itself, which equals D = tξ.
According to the Nyquist-Shannon theorem the smallest resolvable feature d has the
size of twice the pixel spacing so that d = 2ξ holds. By using these relations eq.  4.2 can
be rewritten as [  96  ]

N = π

2
t = πtξ

2ξ
=πD

d
. (4.3)

1For  CBCT setups the minimal rotation angle increases to 180° plus the cone beam angle. If a short
scan is performed with such a system, some parts of the Fourier space are sampled more often than
others and a weighting function is necessary to prevent severe artifacts. Typically a so called Parker
window is used to compensate for these redundant data [ 43  , p. 684f].
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This relation is also known as the Crowther criterion, which was originally derived for
electron tomography in 1970 [  102  ]. For more detailed discussions of data sufficiency
and information content in the light of the Shannon-Nyquist criterion the interested
reader is referred to the literature [ 103  – 105 ]. It shall also be mentioned that, as apparent
from fig.  4.1 , the density of projections is higher at the low-frequency domain in the
image center and increases then linearly to higher frequencies. This is the reason why a
ramp-shaped filter is used to compensate for this effect in reconstruction algorithms of
the  FBP type (see sec.  2.3.2  ) [  96  ].

A particular intuitive perception of the problem can be obtained if the reconstruc-
tion task is perceived as solving of a system of equations, which is the fundamental idea
of all iterative reconstruction methods as outlined in sec.  2.3.3  . Referring to eq.  2.13  

it becomes clear that the system is underdetermined if the dimension of f is smaller
than p, i.e., the number of projections must be higher than the number of voxels in
the volume divided by the number of pixels in a projection. However, this is a clearly
simplified point of view, since the system matrix is sparse and not all voxels are sampled
equally well. In fact, for very few projections some information cannot be obtained
since related parts of the Fourier space are not sampled at all. In the extreme case of
a detector with very high resolution and a small volume this relation might yield that
one or two projections are already sufficient to properly reconstruct the object, which
is clearly not realistic. Last, iterative reconstruction methods are simplifications for
themselves, since they are based on the representation of the image in form of a voxel
grid, while it can be shown that continuous objects can in general not be uniquely
determined by a finite number of projections [ 52  , p. 283f].

4.2 Sparsity and Compressibility of Signals

In section  4.1 considerations based on signal theory and data completeness conditions
lead to an estimate for the minimal number of projections. However, this leaves the
question why it should be feasible at all to reduce the projection count under this
lower threshold and still expect a proper outcome in terms of image quality of the
reconstructed volume. According to compressed sensing ( CS ) theory it is nevertheless
possible to obtain useful results, even for acquisition patterns that include signifi-
cantly fewer projections than required by Nyquist and Shannon’s sampling theorem,
if additional constraints are introduced that compensate for the missing data. The
fundamental idea of such approaches is basically very similar to data compression
algorithms and relies on the fact that many signals can be stored more efficiently if
they are transformed into a more appropriate basis in which they appear sparse. While
the Nyquist-Shannon theorem establishes an upper bound for the required sampling
rate, its application is – strictly speaking – only appropriate if the original signal has a
broadband frequency content. However, signals encountered in practice are typically
only broadband if they have been previously compressed and under some conditions
the requirements stated in sec.  4.1 can be relaxed [  106  , p. 91]. The case where only such
a low projection number is available is referred to as sparse-view  CT [  20  ]. The related
theoretical background will be briefly covered in the following:

A vector s ∈ Rn is called sparse of degree m ≤ n if at most m entries differ from
zero. Since sparsity itself is a strong constraint for real data often the weaker concept of
compressibility is more convenient which requires that the number of its components
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that are larger than a certain threshold is relatively small [  107 , p. 41f]. For convenience,
in the course of this work both terms will mostly be used synonymously. A sparsifying
transform basisΨ ∈Rn×n is a basis that expresses the vector x ∈Rn in the sparse vector s:

x =Ψs. (4.4)

Typical examples forΨ are the singular value decomposition ( SVD ), the wavelet trans-
form or the Fourier transform. Such transforms can often be realized in a computation-
ally efficient way, for instance in case of the fast Fourier transform ( FFT ). Storing only
the m ¿ n relevant values (and their position) of s is the fundamental concept of many
compression methods, including well known algorithms like  JPEG or  MPEG [  106 , p. 84f].
Related to these concepts, some work based on the wavelet transform has been per-
formed to compress  CT -scans [  108  ].

The inversion of this idea forms the central concept of compressed sensing. Instead
of acquiring all values of x only a partial quantity of measurements g ∈ Rp , p ¿ n is
performed, which can be used to reconstruct the original signal [  106 , p. 89f]:

g =Φx =ΦΨs, (4.5)

where the measurement matrixΦ ∈Rp×n describes the sampling scheme to select the
subset g of x. While eq.  4.5 is generally underdetermined, it is assumed that the required
solution leads to a sparse s. Under appropriate choice of Φ this can be expressed as
the solution that minimizes the norm `1(s) as side condition. It shall be noted that
nevertheless  CS is rarely used for images due to the high computational costs [  106  , p. 92].
However, the fact that for medical  CT fewer measurements correspond to the particu-
larly valuable benefits of lowering the dose to the patient and less movement artifacts
due to the faster acquisition speed have turned  CS -based reconstruction methods into
an active field of research [  109  ,  110  ]. Further related applications can be found, for
instance, in scatter estimation [  111 ] or magnetic resonance imaging ( MRI ) [  112  ,  113  ].

These considerations show that the sampling conditions derived in sec.  4.1 are
oversimplified for practical problems, since they provide a part-independent upper
threshold for the necessary number of projections. As improvement, a modification
of eq.  4.2 was proposed that includes information on the sparsity of the gradient mag-
nitude image of the object [ 114 ]. For  CS (i.e., eq.  4.5 ) particularly the choice of the
sampling strategyΦ plays an important role. Assuming a Gaussian measurement ma-
trix, the required number of samples N to obtain an accurate representation of x with
high probability is given by

N ≤ cm log
( n

m

)
, (4.6)

where the constant c depends on the coherence betweenΨ andΦ [  106 , p. 90]. In fact,
it has been shown in the case of a  CS -based reconstruction method that under certain
conditions objects can even be reconstructed exactly with a low number of projections
that follow eq.  4.6 [  115  ]. Further sufficient sampling conditions for  CS are discussed
in the literature [ 116  ]. In addition to incoherence it was shown in an experimental
study that the sampling density of the acquired projections influences the final image
quality [  30  ]. While a Gaussian choice ofΦ is generally believed to provide the recovery
strategy with the fewest samples (a property referred to as near-optimal sampling
strategy), Jørgensen and Sidky implied that non-random measurement matrices might
be preferable under certain conditions. Their results suggest that equidistantly sampling
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a planar trajectory is equal or better to drawing random samples, even though the
measurement matrix for such a strategy is highly structured [ 117 ]. These findings are
valid for a generic basis like the one provided by the Fourier transform. If the application
scenario is clearly defined, a tailored basisΨt ∈Rr×n with r ¿ n can be used, which is
specialized for the task and provides a particular low-rank representation for s and for
such bases efficient sampling strategies are known [  118 ]. Nevertheless, the physically
performed Radon transform cannot be avoided so that an arbitrary choice ofΦ andΨ
is not feasible in practice, which will be discussed in sec.  4.3 .

For the applications discussed in this section the fundamental assumption is the
existence of a sparse representation in an appropriately selected basis. This concept
will be illustrated with an example in the following, for which a gray value image with a
certain resolution is considered. Given the assumption that each pixel is statistically
independent it would be necessary to measure each element separately. In such a case,
the Nyquist-Shannon criterion would be justified and not even an average value could
be given by measuring less than every pixel element, since each unmeasured value
might be an extreme outlier. However, to minimize its autocorrelation the image would
basically need to be pure white noise, which is typically not encountered in practical
applications. Considering a natural image instead, it seems more reasonable to assume
that adjacent pixels often do not differ significantly, e.g., if they belong to the same
object with rather homogeneous properties. This means that the separate pixel values
are not independent from each other anymore and less degrees of freedom are required
to describe the image compared to the white noise case. Under those circumstances
it can be justified to sample just a random subset to obtain an approximation of the
imaged object. In a certain sense, thumbnails (i.e., images with reduced resolution
compared to the original version) in computer graphics can be considered a practical
everyday application. Similar examples can be found in other domains. For instance,
acoustic signals like music are typically sparse in a Fourier basis since they consist of
air vibrations that are particularly well represented by a basis that relies on sinusoidal
waves. In contrast, approximating such oscillations with a basis composed of step
functions would intuitively appear inappropriate and inefficient.

Even though the reasoning outlined in the previous paragraphs explains why tra-
jectory optimization as such is actually feasible, it must be stressed that the methods
used in this work cannot be counted towards compressed sensing in a strict sense, even
though many used concepts are very similar. Typically  CS is an approach to efficiently
and accurately determine the image vector x from few measurements g. On the contrary,
the goal of this work is to propose an as efficientΦ as possible with the provided a priori
information (i.e., in form of x) and using the Fourier transform as sparse basisΨ while
the side condition to favor the sparsest solution (e.g., via calculation of the `1(s) norm) is
not explicitly used 

2
 , even though some reconstruction algorithms might include similar

properties. However, in both cases the difference for a given m between the estimate
for x and its true value should be minimized, which will be formalized in sec.  4.3 .

2However, in section  10  the Gini coefficient will be used to quantify the sparsity of s, but for the sake
of assessing the optimizability instead of performing the optimization itself.
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4.3 Practical Implications

In section  2.3.1  the Fourier slice theorem was introduced, which relates the Radon
and the Fourier representation of an object to each other, while sec.  4.2 referred to
the Fourier transform acting as a generic basis, meaning that most natural signals are
sparse if expressed in its modes as basis functions [  106  , p. 85]. These considerations
are linked and have a pictorial explanation that will be illustrated in the following. As
simplification, parallel beam geometry will be assumed for this section (this condition
will be relaxed towards  CBCT in sec.  10  ). While laminography is not explicitly covered in
this work, it shall be noted that an empirical study relating the achievable image quality
to the acquired number of projections has been performed as well [  119 ].

First, a grid pattern is assumed as depicted in fig.  4.2 together with its power spec-
trum in Fourier space. The Fourier transform acts as sparsifying transform so that most
entries of the transformed object correspond to zero. Considering the Fourier slice
theorem by comparing this result to fig.  2.4 , it becomes apparent that these coefficients
can be measured with only a single projection located at φ= 0°. This observation makes
intuitively sense: The pattern can be fully resolved by one view obtained in vertical
direction and the maximal contrast in Radon space can be obtained. For this particular
example all information of the object is contained in a single sample as indicated in the
Fourier space and the original object can be exactly recovered. For all other choices
of φ the relevant part of the Fourier space is not sampled. For the horizontal case
(i.e., φ = 90°) the contrast becomes minimal in the reconstruction since it contains
only a single value which corresponds to the zero frequency (i.e., a single entry) in
Radon space. On the other hand, the power spectrum of the Fourier transform reveals
salient edges of the object it is applied to, which results in high values for the power and
amplitude spectrum at angles perpendicular to the ones in object space as illustrated ex-
emplarily in fig.  4.3 . This property is independent to linear shifts of the object [  120  , 328f].
Combining these two findings yields that valuable image information can be retrieved
if a projection tangential to the corresponding edge of the imaged object is obtained
(see also optimization approach  1  in sec.  5.2 ). A more mathematical derivation of this
intuitive explanation can be found in the literature [ 121  ]. It shall be noted that this also
means that theoretically an infinite number of projections is required to image smooth
transitions or continuous free-form lines (e.g., the orange curve in fig.  4.3 ). However,
in practice this is not the case due to the voxel discretization of the volume – which
can be considered as introducing very small edges into the object – so that a finite (but
relatively high) number of projections can often be considered to be sufficient.

These considerations have several important direct consequences. A study [  122 ]
based on equiangular distributed poses suggests that reconstructions with few projec-
tions show a particularly high direction dependency with respect to the acquisition
poses. This seems reasonable, since the high coefficients can easily be missed if they
need to be covered with few samples. It was also shown that the dependency decreases
if a ring structure is added around the part, while it increases if instead a rectangular
geometry is used. This can directly be explained with the Fourier space as well, since the
first geometry is highly symmetric and invariant to the projection poses (assuming an
equidistant planar trajectory) since in each direction features of the same signal power
amplitude are added. In contrast, a square-shaped object results unavoidably in distinct
streaks in Fourier space that need to be covered with the acquired projections. However,
while this makes the ring-surrounded object less direction-dependent, it is also more
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Figure 4.2: The Fourier transform of a grid pattern is sparse. Strictly speaking this example only
holds qualitatively for an infinite large object with smoothly varying but different grid distances.
Since the shown pattern is uniform the Fourier transform would typically result in only a single
peak (i.e., two peaks due to the point symmetry to the origin). This image could be reconstructed
using only a single, appropriately selected projection.

difficult to image since more projections are required to sample the relevant part of
Fourier space, since all directions carry a certain amount of information in this case and
in fact it was determined that the image quality of this structure is worse compared to
the object without the surrounding structure. The authors conclude that more complex
objects are less dependent on the choice of acquisition angles [  122  ]. According to the
considerations outlined above, this is just a different phrasing of the fact that for such
objects the Fourier space appears to be less sparse (see also sec.  10.1  ). In the light
of these findings it is also not surprising that for trajectory optimization the biggest
improvements have been reported if the part has only few preferential directions, while
such with many salient features can hardly be properly reconstructed with few projec-
tions [  123  ]. Furthermore, the imaging of a continuous object with compact support can
be formulated as a continuous-to-discrete mapping followed by a Fourier transform,
whose coefficients form a matrix of infinite size. Trying to recover the relevant parts of
this matrix (i.e., its dominant Fourier coefficients) lead to discrete sufficiency conditions
for  CBCT , which are beyond the scope of this work [  124  ].

While the examples provided in fig.  4.2 and  4.3 may suggest that trajectory opti-
mization is a relatively simple and straightforward problem, it is in fact much more
demanding in practice. For one, the provided two-dimensional examples have unique
solutions if they contain a finite number of edges, but an infinite amount of possible
ones if the problem is extended to three spatial dimensions. The reason for this is that a
line in 2D – which has a unique tangent – corresponds to a plane in 3D, for which an
arbitrary number of parallel viewing directions can be defined. As direct result, for a
given geometry several solutions for an optimized trajectory can be found and in many
cases completely different acquisition positions lead to a very similar image quality.
Fortunately, experiments have shown that beneficial scan angles are at least unaffected
by the choice of varying X-ray tube settings, even though low power setups can benefit
most from the avoidance of projections associated with a low  SNR .

Opposed to the simplifications in this chapter, in reality the parallel beam geometry
is nowadays not used anymore; instead, the rays diverge and form the cone-beam
geometry of the setup. As a consequence, a single projection does not correspond to
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Figure 4.3: The Fourier transform of a simple object. Dominant streaks corresponding to high
coefficients can be identified as salient edges in the original image as indicated.

a line in Fourier space but forms a segment instead (see sec.  10.4.2 ). Furthermore, a
projection can in theory be tangent to more than one edge, which makes it particularly
valuable. However, in practice this can typically not be achieved if the rotation center
and  SOD  are fixed, but it might provide additional improvements if these parameters can
also be freely selected, which was not investigated in this work due to parameter space
restrictions. Also, a poor  SNR can reduce the information content of some projections
drastically, and even the loss of entire parts of Fourier space due to photon starvation
can occur in the worst case. Geometric constraints of the setup and further similar
limitations have to be considered as well. These aspects were not covered in this section
but also need to be taken into account to obtain a practically feasible optimization
framework.

4.4 Problem Definition and Formal Optimization
Criterion

Bearing these preliminary considerations in mind it is now possible to define a formal
definition of the trajectory optimization problem. In eq.  4.5 a relation between the
image and the related data acquisition was given. Unfortunately, due to the unavoidable
physical Radon transform it is not possible to measure arbitrary components, e.g., of
a Fourier-based sparsifying or tailored transformΨ orΨt. Instead, using the Fourier
slice theorem of eq.  4.5 and the iterative formulation of the problem in eq.  2.13  the
measurement process can be expressed for the particular case of trajectory optimization
as

gCT =Φp =ΦAf =ΦAF−1s =ΦΨCT s, (4.7)

where F−1 denotes the matrix associated with the discrete inverse Fourier transform
andΨCT the sparsifying transform related to the angular projection selection problem.
Note that the vector of measured projections gCT is not equivalent to g, since the entries
of f cannot be observed directly via  CT . Since quantifying the necessary number of
projections for this particular problem is not trivial and beyond the scope of this work
the interested reader is directed to the related literature [  125  ].
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The goal of performing a trajectory optimization is to define a selection of measure-
ments that minimize the deviations between the reconstructed solution and the actual
object. Using the notation introduced in eq.  4.7 , the reconstruction operator Z(gCT) = f̃
can be defined as a mapping from a subset of the projection measurements gCT to an
estimate for the image f̃ (see also sec.  2.3.3  ). The reconstruction step is typically very
complex and nonlinear, so that no matrix representation is possible. For the course of
this work Z (·) serves as an abstract operator that describes the reconstruction process
without having to specify its detailed implementation explicitly. The aim is then to find
an optimized measurement strategyΦN,opt for a predefined number of projections N
so that the achievable image quality is maximized:

ΦN,opt = argmax
Φ∈ΦN

(∥∥f̃
∥∥)

, (4.8)

= argmax
Φ∈ΦN

(∥∥Z (
gCT

)∥∥)
, (4.9)

= argmax
Φ∈ΦN

(∥∥Z (
ΦAf

)∥∥)
, (4.10)

where the norm ‖·‖ denotes an appropriately selected image quality measure that will
be introduced in sec.  6.5.1  andΦN is the set of all measurement matrices that contain N
projections. Quantifying image quality is generally a very hard task, which can, however,
be facilitated if a reference-based measure is applied. Analogous to eq.  4.8 this can be
formulated as

ΦN,opt = argmin
Φ∈ΦN

(∥∥f̃, f
∥∥)

, (4.11)

= argmin
Φ∈ΦN

(∥∥Z (
ΦAf

)
, f

∥∥)
, (4.12)

where the norm ‖A,B‖ indicates the image quality of A with respect to the reference B .
Unfortunately, this formulation is typically also not feasible in practice since f is often
unknown or a continuous function. Instead, the goal of this work will be to provide
a measure that brings the solution as close as possible to the reconstruction of all
available projections:

ΦN,opt = argmin
Φ∈ΦN

(∥∥Z (
gCT

)
,Z

(
p
)∥∥)

,

= argmin
Φ∈ΦN

(∥∥Z (
ΦAf

)
,Z

(
Af

)∥∥)
,

(4.13)

(4.14)

which is an ill-posed problem and not solvable in practice due to the size of its
components and the properties of Z . This definition also assumes that the reconstruc-
tion with all projections yields the result that approximates f best. This simplification
will be outlined in sec.  4.5 and discussed later in sec.  6.5.1  . In theory, eq.  4.14  can be
solved – for instance via brute force – by variation ofΦ until the error becomes mini-
mal. Unfortunately, this is not feasible in practice due to the huge dimensionality of
the measurement strategy (i.e., many different projection combinations exist) and the
very high computational costs to compute Z

(
ΦAf

)
, in particular for high values of N .

For instance, a single reconstruction using approx. 2,500 projections with the typical
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parameters, volumes, projection sizes and hardware (for specifications see sec.  6.4 )
used in this work can easily take over 40 min. Additionally, the computation to evaluate
the image quality metric can become expensive as well, depending on the choice of the
measure and the size of the considered volume. Because of this, a heuristic methodol-
ogy outlined in sec.  6  , which is based on the imaging properties of the  CT system, will
be used for the course of this work.

4.5 Projection Ranges

If a reconstructed volume originates from a sufficiently high number of projections
(i.e., at least the recommended number of sec.  4.1 is reached) the question arises how
the image quality changes if a smaller subset of projections is used instead. Intuitively,
one might assume that a higher number of projections corresponds to more information
and therefore must also lead to a better result. Surprisingly, it has been found that this
is not necessarily the case.

Zhao et al [  126 ] gives a particular illustrative example at low projection numbers. The
authors describe how the image quality improves by actually reducing the projection
number in an equidistant planar scan from 40 to 39, since the odd number breaks the
symmetry and leads to an improved filling of the Fourier domain (see also sec.  7.3 ).
However, this effect decreases very quickly with increasing projection numbers due
to improved sampling conditions. The authors also propose that – assuming a fixed
time budget for the entire scan – a projection region that leads to particular good image
quality exists. This is due to two conflicting effects: the exposure time per projection
has to decrease with an increasing number of samples, which leads to a decreased  SNR 

in each image due to an inherent electronic noise component, while view sampling
effects decrease with more projections [  126  ]. It shall be noted that the latter observation
is probably much less pronounced for industrial  CT due to different detector properties,
exposure times and photon energies. This is supported by findings, where it was
observed for a  CS -based reconstruction method that acquiring many high- SNR images
is clearly preferable to few low- SNR ones [  127 ]. For constant exposure times, it was also
shown that – depending on the particular imaging task and the inspected geometry – an
increase in the projection number or the total sampling angle does not necessarily
lead to image quality improvements. Instead, a complex interplay of aliasing artifacts,
noise effects and the relevant part of the object frequency spectrum was observed,
where high frequency tasks benefit to a certain degree from finer angular sampling and
low frequency ones are improved by covering a broader acquisition range if properly
balanced with occurring noise [ 128  ].

Considering the image quality over a broad range of projection numbers it has been
shown that the first few projections contribute most to the image and often every single
added projection visibly changes the reconstruction [ 10  ,  122  ,  129  ,  130  ], which is also
valid for other imaging modalities [  131 ]. The reason is that every projection contributes
a relatively high fraction to the image if few projections are used, but also the  SNR is
proportional to the square root of the projection number, since the photons follow a
Poisson-distribution and as a result the quality curves (see e.g., sec.  3.2 ) generally follow
approximately the shape of a square root function [  12  ].

For industrial  CT it has been shown that over a broad range of projections very few
improvements can be obtained [  12  ], while increasing over a certain threshold holds
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no further benefits and only increases scan time [  11  ,  132  ]. Focusing on metrological
applications, Buratti et al. proposed three distinct definitions for projection numbers
that they consider to be ideal with respect to different cost functions: the metrological
optimum aims to minimize the measurement uncertainty, while the technical optimum
is supposed to minimize acquisition time and obtaining a similar uncertainty at the
same time. Last, the industrial optimum is defined to minimize the tomographic time,
while sustaining results that fulfill the minimum required measurement uncertainty
[  10  ,  11  ]. In the course of this work these considerations will essentially be avoided by
investigating the quality over a broader range of projections and leaving the optimal
projection number open to the definition of the respective imaging task. However, a
method to identify valuable projection ranges will be proposed in sec.  10  .

Based on considerations of the previous sections, two relevant projection ranges
can be identified: for very low projection numbers every projection adds a relatively
large proportion of information to the reconstructed image. Consequently, avoiding
redundancy can lead to a clear improvement in image quality. In particular, sampling
important parts of the Fourier domain efficiently by adapting the acquisition positions
is believed to improve image fidelity at a faster pace than a standard scheme like the
equiangular planar circle trajectory. The low-projection space is highly relevant for
many applications as outlined in sec.  1  and this work will primarily focus on this range
of low projection numbers.

The advantages of an optimized trajectory gets relativized for higher projection num-
bers as the Fourier space is increasingly sampled and after a certain, part-dependent
threshold no benefit can be observed anymore. Since optimized trajectories are me-
chanically more demanding and comprise less productive exposure time, the use of
standard trajectories appears more appropriate in this range. Since industrial parts
often exhibit a predominant direction where more material is present in the X-ray path
it is reasonable to assume that some projections are inherently more noisy than others.
For very high projection numbers where the Fourier space is mostly filled including
such projections can act disadvantageous since it actually increases the noise level
without adding relevant information. Because the  SNR of a given voxel depends on the
acquired poses that project this particular voxel onto the detector plane [  23  ] this effect
can vary spatially and does not necessarily affect the entire volume.

However, while the linked image degradation is supposed to be typically small in
absolute numbers and therefore difficult or even impossible to detect for a human
observer it might be relevant for automatic software-based evaluation in the context of

 NDT or metrological investigations as indicated by the projection number definitions in
this section. Furthermore, even if the quality differences in this region are not significant
for a particular application, the scan time can be reduced without drawbacks to a certain
extent. It is assumed that location, influence and shape of both regions are generally
part dependent [ 12  ], which will be exemplarily shown in section  10.6  based on in silico
experiments.

The original intention for this work was to reduce the amount of projections that
are necessary for a meaningful output. The reason behind this is that a certain minimal
required image quality is necessary to detect a flaw reliably. However, it often seems
reasonable to prefer referring to image quality enhancement for a given, predefined
number of projections instead, since two reconstructed volumes with the same quality
value are typically not identical and may exhibit different kinds of artifacts which can
lead to confusion and is interpreted subjectively.
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It shall further be noted that the results presented in this work are mostly generated
by an iterative reconstruction method while related work in the literature concerning
the influence of the projection number is typically based on  FBP type algorithms (see
sec.  2.3 ). While being neglected for further discussions, it can generally be assumed that
the choice of the particular reconstruction method and the used filter kernel influences
the results to a certain extent [ 12  ,  126 ].
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5.1 Part-Independent Trajectory Designs

For most applications to date the planar circle ( PC ) trajectory is used due to the relatively
easy mechanical setup that requires only one degree of freedom (  DOF  ) in the most
restricted case. However, many other trajectories have been proposed over time and
an overview of such is given in tab.  5.1 . While particularly helical designs have gained
some relevance in the medical field, most of these approaches are limited to special
cases or primarily of academical interest. Additionally, inspired by pseudorandom
sampling methods with low discrepancy for Monte-Carlo-methods a further design,
the low-discrepancy spherical trajectory ( LDS ), is introduced in sec.  6.5.2.2  , which is
considered to be particularly well suited for benchmarking. Laminographic approaches
or methods with dynamic offset are beyond the scope of this work and the interested
reader is referred to the literature [ 133 – 135  ] for further details about such.

Since according to the Tuy-Smith condition (see sec.  4.1 ) the completeness of the
Fourier space requires movement of the X-ray source into a third dimension it is clear
that the  PC trajectory cannot be theoretical exact. However, adding additional degrees
of freedom to the trajectory is not trivial since an improper choice can lead to decreased
image resolution uniformity or a higher degree of data redundancy, which needs to be
compensated by apodization or window functions [  23  ]. To achieve an as efficient as
possible uniform sampling of the Fourier space, the so called space filling trajectory has
been proposed [  23  ,  150 ], which fulfills a discrete pendant of the Tuy-Smith condition.
However, this design is – although universally applicable – also not optimal, since the
shape of the object is not considered so that less relevant parts of the Fourier space
are assigned the same importance than more relevant ones (see sections.  4.2 and  4.3 ).
Approaches to overcome this limitation and define the trajectory with regard to the part
geometry are outlined in section  5.2 .

Due to practical reasons of the implementation (sec.  6  ) and typical geometric con-
straints of available setups, this work focuses on spherical trajectories, for which all
positions of the X-ray source are located on the surface of a sphere centered around
the object. Furthermore, in each individual considered case  SOD  and  SDD are kept
constant to reduce the complexity, while effects linked to widening the cone beam
angle are discussed in sec.  10.4.2 . It was shown that this type of trajectory holds several
advantages when compared to the conventional circle trajectory, e.g., for the imaging of
flat objects and limited or large cone beam angles [  155 ].
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Table 5.1: Non-exhaustive overview of  CT trajectory designs proposed in the literature. This
table was previously released as part of a separate work [  136 ].
*Depends on detailed realization.

Trajectory Design Theoretically Exact Source

Planar/Inclined Circle No [  53  ]
(Partial) Circle + Arc/Line(s) Yes [  137  – 140  ]
Two Orthogonal Circles Yes [  94  ]
Two Circles + Line Yes [  141  ]
Ellipse-Line-Ellipse Yes [  142  ]
Dual Ellipse Cross Vertex Yes [  143  ]
Two Concentric Arcs Yes [  144  ]
(Reverse) Helix Yes [  145  ,  146 ]
Rotate-Plus-Shift No [  147  ,  148 ]
Closed Sinusoidal Yes [  149  ]
Space Filling Yes [  23  ,  150  ]
Multiple Line Segments Yes/No* [  151  ]
Straight Line No [  152  – 154  ]
Low-Discrepancy Sphere Yes [  136  ]

5.2 Trajectory Optimization Approaches

5.2.1 Conventional Computed Tomography

The common trajectory designs outlined in sec.  5.1 are calculated independently from
the actual shape of the measured specimen. However, for a robot-based medical  CT 

setup (see sec.  5.3 ) adjusting the trajectory from a circular towards an elliptical shape
was found to reduce the influence of scatter effects [  156 ] and further investigations
aiming particularly towards minimizing the dose delivered to the patient with regards to
the trajectory design have been performed [ 157 ,  158 ]. More importantly, several mostly
heuristic approaches have been proposed in the literature to improve the acquisition
trajectory for classical  CT . In the following, these methods will be specified and a coarse
classification is suggested, while it needs to be stressed that many algorithms can be
counted towards more than one category or combine several concepts. A more detailed
overview is provided in tab.  5.2 . As apparent from the table trajectory optimizations is a
relatively young field of active research since most approaches have been developed in
the last 5 years and no system implementing a trajectory optimization algorithm is yet
commercially available or in practical routine use.

5.2.1.1 Capture Tangential to Object Edges

1. In order to reconstruct an edge of a part correctly, projections with X-rays tangent
to this edge are necessary [  121 ], which is essentially just a different formulation of
Tuy’s sufficiency condition [  159  ] as discussed in sec.  4.3 . Therefore, by obtaining
projections from these angles, the object’s shape is better reconstructed than
otherwise. Based on the part geometry as input, a method for identifying these
valuable projection angles based on the Hough transform of the preliminary
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known object has been proposed that shows good results under certain conditions
[  160 ].

2. Recently another approach was suggested by Matz et al., which uses a wavelet
transform to detect the object edges in the projections [ 161 ]. The method also
uses additional weights to exclude opposite projections and prevents projection
clustering (see sec.  6.4.3  ) [  161  ].

5.2.1.2 Avoid Highly Attenuating Directions

3. For very dense objects so called photon starvation artifacts can arise due to the
low signal-noise ratio [  162 ], while also the formation of beam hardening artifacts
is facilitated [  163  ]. Consequently, a simple and frequently used method to im-
prove image quality is to adjust the trajectory or position of the part in such a
way that long X-ray path lengths and very dense materials are avoided, which re-
duces or even entirely avoids such artifacts. While this is typically done manually
and based on the experience of the operator, also computational methods were
developed [  18  ,  163 – 167 ] to automatize the search of beneficial acquisition poses.
Similarly, instead of separate projections, also entire scans obtained from different
positioning angles can be combined to reduce the influence of these artifacts [  168 ]
and some work has been done to determine optimal alignment angles based on
previous scans [  169 ].

4. Based on similar considerations, another approach aims particularly towards the
avoidance of metal artifacts. From few initial scout views a machine learning
framework predicts the location of dense materials, like screws, in the volume.
Given these information, for each possible view the difference between the respec-
tive line integrals for a mono- and polyenergetic X-ray source is calculated, which
is supposed to quantify the severity of beam hardening artifacts. Based on the
inconsistency of this property, referred to as spectral shift, an objective function is
defined that can be minimized in order to obtain an optimized trajectory. As alter-
native, another objective function based on the accumulated attenuation values
has been suggested, which aims to minimize photon starvation artifacts [  170 ,  171  ].

5.2.1.3 Tuy-Smith Completeness

5. The incompleteness of Fourier space in cone beam computed tomography ( CBCT )
leads to the formation of characteristic artifacts [ 172  ] (see also sec.  2.3.1  ) and
some approaches have been made to quantify the extent to which Tuy’s condi-
tion (see sec.  4.1 ) is fulfilled with respect to a specific voxel [  173  ] or volume of
interest ( VOI ) [  174 ]. Based on this preliminary work, an approach [  175  ] aims to
maximize the Fourier space completeness for a particular  VOI , where projections
with intensity values lower than a predefined threshold are not considered. The
latter condition includes part-specific information (since projection data are per
definition part-specific) and reflects consideration  3  , since very noisy projections
can generally be treated as missing parts in Fourier space [  176  ]. An alternative
expression for the local Tuy criterion is given by the percentage of surface area lost
or underrepresented in Radon space, which has recently been used in combina-
tion with metrics related to the X-ray pathlength [ 19  ] (approach  3  ) and a metric
for its variance to reduce beam hardening artifacts [ 177  ] in similar work.

49



CHAPTER 5 | STATE OF THE ART

6. A similar method to approach  5  was used to avoid metal artifacts for medical  CT .
The algorithm is also based on the local Tuy completeness and treats metal artifacts
as lost parts of the Fourier space. For this purpose, a dense sphere, which aims
to generate such artifacts, was introduced into the volume and the trajectory was
optimized for good image quality at several sampling points in its close proximity.
Since it was assumed that the location of the metal is initially not known, its
position was varied and the trajectory design adjusted to perform similarly well for
each. Consequently, the result is independent of the shape of the object and the
dense matter location [  176  ,  178  ]. However, in theory the method can be adapted
for more complex scenarios so that it is counted to the optimization approaches
instead of the proposed trajectory designs of sec.  5.1 . Nevertheless, contrary to
the information provided in tab.  5.2 , such changes would require more knowledge
concerning the imaging task.

5.2.1.4 Image Quality of the Reconstructed Object

7. An optimization method based on the information content of adding an additional
projection has been proposed: first, based on all previously selected projections
the volume is reconstructed, where the first projection is chosen manually. Next,
for each projection candidate the volume is reconstructed under consideration
of all projections that are already in the solution set. The difference between
both reconstruction results is compared; high differences are assumed to be an
indicator of a high amount of information in the next projection and the respective
image is chosen subsequently [ 179  ].

8. Similar to approach  7  but adapted for medical C-arm  CBCT , Hatamikia et al. used
a greedy algorithm to select the best reconstruction using pose combinations from
a predefined set of feasible arcs with respect to an objective function. As image
quality quantifying function the structural similarity index ( SSIM , see sec.  6.5.1.2  )
is used. In the second iteration, the arc candidates are re-evaluated under consid-
eration of the already selected part trajectory and a second arc is chosen. Even
though reconstructions are necessary, this pre-definition of trajectory segments
and the relatively simple objective function reduces the computational costs con-
siderably with respect to comparable approaches. The authors report a similar
image quality to the standard trajectory with just a quarter of the number of pro-
jections [  180 ]. In a variation of the heuristic algorithm, the  SSIM as objective
function was exchanged by the full-width at half maximum ( FWHM ) of the one-
dimensional point-spread function ( PSF  , see sec.  3.3 ) that is obtained by averaging
over the three-dimensional expression [  181 ]. In a later version, the condition of
previously defined arcs was modified and augmented by a more sophisticated
search pattern, which further reduced the calculation time. Additionally, the ob-
jective function was changed again and the feature similarity index (  FSIM ) was
used [  182 ]. The newest development is able to consider kinematic constraints
on-the-fly [ 183  ].

9. Brierley et al. used an approach based on the visibility of defects in industrial
2D-radiography. For this method, a certain number of predetermined flaws are
digitally introduced to the three-dimensional model of the part (e.g., a computer-
aided design ( CAD  ) file). Subsequently, for the original and flawed geometry, a set
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of projections is calculated via radiographic simulation. Subsequently, considering
both datasets, a detectability index based on the visible defect size and the local
contrast-to-noise ratio ( CNR ) is computed for each separate flaw. Based on these
information, preferable projection angles are recommended [  184  ,  185  ]. While
this approach is designed for radiographic projections, an augmentation of a
similar algorithm towards  CT has recently been performed by Suth et al., which
additionally considers the achieved surface sharpness in its figure of merit [  186  ].

5.2.1.5 Model Observer

10. Of particular interest for this work is the approach of Stayman et al. that is based
on the use of model observers ( MOs , see sec.  3  ) to quantify the value of each
projection with respect to the imaging task. The necessary image information –
the noise power spectrum (  NPS  , sec.  3.7.2  ) and the modulation transfer function
( MTF  , sec.  3.3 ) – are efficiently approximated by predictor functions. To obtain the
necessary task information an additional, preliminary scan was conducted. The
projection selection is performed by a greedy algorithm for each iteration, taking
previously selected projection choices into account [  187 – 189 ]. The method was
later augmented with improvements comprising continuous acquisition trajecto-
ries and an adjusted figure of merit [  190 ,  191 ].

11. Recently, this algorithm was supplemented using machine learning methods by
another group. The new approach does not require predictor functions and gen-
erates a closed trajectory path. In contrast to all other methods listed here, the
algorithm requires training data for the scenario, so that it is not generally appli-
cable for all objects by default. However, it is one of few sophisticated methods
that are able to optimize the trajectory on-the-fly in real time, which is a highly
desirable property for practical application [  192  ,  193  ].

12. Another adaptation of approach  10  was performed earlier by Fischer et al. for
industrial  CT . The reachable projection poses are generated by a simulation frame-
work in combination with the previously known geometry. While the approach
was adapted to several  VOIs , the template function for the model observer was in
some cases selected to be uniform 

1
 [  22  ]. The method proposed and investigated

in this work is related to this approach and the most important improvements
comprise a non-uniform template analogous to the approaches of  10  and a geo-
metrical weighting function. Both adjustments will be discussed in detail in sec.  7  .
The method was later adapted for anisotropic dark-field  CT [  194 ].

13. Recently, a combination of model observers (approach  10  ) and a Tuy-based metric
(approach  5  ) was proposed [  195 ]. This method is essentially almost identical to the
one used in this thesis and differs only in the use of a completeness metric instead
of a geometric weighting function (sec.  6.4.3  ). However, both implementations
aim towards fulfilling the same purpose.

1It will be shown in the course of this work that both of these choices in fact strongly decrease the
capabilities of the method and the performance of the optimization algorithm.
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Table 5.2: Overview of trajectory optimization methods for conventional  CT applied in medical
or industrial context. Indicated methods require a wide-sense image reconstruction (including
forward-projection algorithms) or detailed a priori information (typically concerning the part
geometry) about the imaging task, with the classification being ambiguous in some cases. The
indicated year refers to the earliest proposal for each separate approach.

Approach Reconstruction Preknowledge Origin Year Source

 1  No Yes Medicine 2011 [  160 ]
 2  No Yes Industry 2022 [  161 ]
 3  No Yes Industry 2010 [  18  ,  163  – 167  ]
 4  Yes No Medicine 2020 [ 170 ,  171 ]
 5  No Yes Industry 2020 [  19  ,  175  ,  177 ]
 6  No No Medicine 2020 [  176 ]
 7  Yes No Medicine 2013 [ 179 ]
 8  Yes Yes Medicine 2020 [ 180 – 183  ]
 9  Yes Yes Industry 2022 [ 186 ]

 10  No Yes Medicine 2013 [  187 – 191  ]
 11  No Yes Medicine 2019 [  192 ,  193 ]
 12  No Yes Industry 2016 [  22  ]
 13  No Yes Industry 2021 [  195 ]
 14  No No Medicine 2013 [  179 ]
 15  No Yes Medicine 1991 [  14  ,  15  ,  196  ]
 16  Yes No Industry 2000 [ 197 ]
 17  Yes No Medicine 2017 [ 198 ]

Own No Yes Industry 2020 [  129 ,  130 ,  199 ]

5.2.1.6 Further Concepts

14. Haque et al. proposed a method based on a property they call the spectral rich-
ness of the projection: a single projection is (unfiltered) backprojected and sub-
sequently the obtained volume Fourier-transformed. Based on considerations
derived from the Fourier slice theorem (see sec.  2.3.1  ), the absolute values of all
points in the Fourier space that are located on a line (which is rotated around the
origin with the projection angle) are added up, which yields the figure of merit
(higher values are better) [  179  ].

15. Kazantsev defined a metric for the projection information content based on the
approximation of the actual image by functions spanned by a projection subset
[  196  ]. It can be calculated via the Gram determinant and projection images, so
that no reconstruction is required [ 15  ]. It was later adapted by other researchers as
quality criterion for different modalities [ 131  ]. The approach was further extended
and successfully evaluated using computer simulations [  14  ].

16. For elliptically shaped objects a genetic algorithm was developed. The next best
projection is chosen randomly according to an angular distribution that is cal-
culated from a fitness function, while projections close to already chosen angles
are avoided [  197  ]. This method is complex and restricted to very few application
scenarios.
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17. Barkan et al. proposed a method that does not require any a priori information of
the object. In an initial iteration, equidistantly spaced projections are taken from
the object and reconstructed to obtain an updated guess of the part geometry.
Subsequently, a Ridgelet transformation is performed and the directions corre-
sponding to the highest coefficients added the solution set. These angles are then
measured and the workflow is repeated until a termination criterion is met. This
approach is roughly similar to the observer models used in other work, but instead
of the Fourier transformation a Ridgelet transformation is used and the  SNR is not
taken into account [  198  ].

5.2.2 Discrete Tomography

The field of discrete tomography contemplates with  CT images that comprise very few
different gray values [  200 ]. In the extreme case, only two different attenuation values
are considered, which is referred to as binary tomography. These special disciplines
of  CT reconstruction become relevant in cases where it is only of interest to separate
few materials or objects from each other; e.g., in geophysical tomography [ 201 ] or
medical imaging with contrast markers [  202 ]. Since the dynamic range of the gray
values is usually known (or defined) previous to the reconstruction, this information
can be exploited so that proper results are achievable with much fewer images than
typically necessary for conventional  CT [  203 ,  204  ]. However, as for their continuous
counterpart, the particular choice of projections is also highly relevant [ 200 ] and several
optimization approaches have been proposed. This task is significantly easier for
discrete tomography since the problem usually comprises much lower dimensions and
said extensive simplifications have been made. In fact, the reconstruction of discrete
tomography data can be considered a sparse signal recovery problem [  205  ]. Even
though these methods are not directly applicable for industrial  CT , some examples will
be presented in the following for the sake of completeness.

18. Varga et al. [ 206 ,  207 ] proposed a relatively simple algorithm to find the best set
and number of projections for a given part that is similar to the approach of
Hatamikia et al. [  180  ] (see approach  8  ). In a first step, different sets of projections
are provided; these sets differ in the number of involved equidistant projections
and the offset-angle for the first projection. Next, the reconstructed image from
each of these sets is compared to the image of the original object (i.e., the ideal
solution of the reconstruction) and the set with the highest similarity is considered
to be the best, where the relative mean error is used to quantify the image quality.
Alternative to this greedy algorithm, an approach using simulated annealing was
proposed, which was later [  208 ] supplemented by further selection strategies. The
algorithm is computationally very expensive since each possible combination of
projections has to be considered separately [ 206 ,  207  ]. To improve calculation
speed, a significantly faster modification was proposed that replaces parts of the
framework by a neural network and can operate without reconstruction in the
optimization loop [ 209  ].

19. Another approach for discrete tomography is based on the concept of the so
called information gain, which is obtained by computing how much a particular
additional projection would restrict the space of possible solutions, based on
the projections chosen before. The calculation is performed by determining the
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metric space diameter for each possible projection set candidate, which acts as a
figure of merit for the similarity of possible solutions of the equation system and
quantifies how much the choice of a particular additional projection reduces the
uncertainty of the reconstruction result. While no knowledge of the imaged object
is required, the algorithm is computationally very expensive [  210 ]. The approach
was later augmented to be applicable for conventional gray value  CT [  123  ].

20. For binary  CT , a method based on the so called global uncertainty has been
proposed, which also does not require previous knowledge of the part and is
similar to the idea of approach  19  . It measures voxel-wise how many possible
solutions for each binary case exist and calculates from those an entropy-like
metric that was previously introduced in a separate work [  211  ]. This number is
summed up over the entire volume and used as figure of merit by a modified
greedy algorithm. Again, the approach is computationally very demanding so that
approximations are necessary to turn the method practically applicable [  212 ,  213 ].

5.2.3 Further Related Disciplines

Furthermore, also for other related imaging modalities some approaches have been
developed:

21. Vogel et al. proposed an algorithm for freehand single photon emission computed
tomography ( SPECT ), that could be adapted for  CT applications. The approach
does not incorporate prior knowledge (except motion restrictions by the setup,
i.e., feasible and impossible projection poses) and runs in real time. Parallel to the
data acquisition, potential pose candidates are assessed with respect to several
possible figures of merit that are derived from the numerical condition of the
system matrix that would result if the related projection would be picked and
subsequently the one with the highest value is selected. The performance was
validated with simulations and experiments [ 214  ].

22. For electron paramagnetic resonance imaging, an algorithm to determine the
next best acquisition pose was developed. Initially, projections are acquired from
four equidistantly spaced angles. Depending on the distribution of gray values in
these, an entropy-like metric used as figure of merit is assigned to each projection.
Subsequently, the next projection between the two previously obtained projections
is iteratively selected as the one with the highest difference in their entropy metric
until a termination condition is reached. No precomputing or a priori knowledge
of the object is necessary and the next projection can be computed on-the-fly due
to very low computational costs. As result it was possible to reduce the number of
projections by 30 % without any loss of information [ 131  ].

23. A – in comparison to Brierley et al. – highly simplified approach for 2D-radiography
was later proposed, which solely considers the contrast in a predefined  VOI . The
algorithm was combined with a pose estimation framework to allow for fast inline
inspection [  215  – 217  ].

24. Also for radiography, a method has been suggested that particular focuses on
dimensional measurements. The approach aims towards finding a perpendicular
projection to the features to be measured and uses a two-step registration method
in combination with a radiographic simulation tool [ 218 ].
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25. Based on similar considerations, several methods have been developed for coro-
nary X-ray angiography. While the detailed implementation and workflow differs
to some extent, they all try to optimize a cost function that is built up by combining
metrics for vessel foreshortening and overlap as apparent from the projections
corresponding to potential acquisition poses [ 219 – 223 ]. Furthermore, also an
approach aiming to minimize only the vessel foreshortening has been proposed
that essentially aims towards acquiring projections in which the relevant coronary
segment appears parallel to the detector [  224  ], which is comparable to approach  1  

for  CT .

5.3 Versatile Computed Tomography Installations

In order to achieve the maximal flexibility concerning the choice of the acquisition
trajectories, it is necessary to be able to position X-ray source and detector freely around
the object of investigation. Common  CT systems usually utilize a mostly fixed source-
detector system and therefore restrict themselves to rotation and translation of the
probe, resulting in a limited number of degrees of freedom ( DOF  ). As an approach
to mitigate the space and flexibility limitations of such standard configurations, more
versatile or robot-based systems have emerged in the recent years, where at least one
component (X-ray source, workpiece or detector) is attached to a robotic arm that can
be positioned freely in space [  225 ]. Even though new challenges related to positioning
accuracy [  226 ], calibration [ 227  ,  228 ] or the reconstruction method [ 229 ,  230  ] are con-
nected to these setups, the newly gained abilities and  DOFs turn them into well-suited
hardware counterparts for trajectory optimization and related adaptation methods. The
benefits of trajectory optimization for such setups has been confirmed by simulative
investigations [  231  ].

Since the technology is relatively young, only few robot-based  CT systems have
been installed so far, for instance at the car manufacturer BMW in cooperation with the
Fraunhofer institute [  225  ,  232  ], with the latter also operating own systems [ 233  ] or at
the French Alternative Energies and Atomic Energy Commission [ 230 ,  234 ]. A further
setup exist in the veterinary [  235 ] field and recently a comparable medical system has
become commercially available [  236  ]. While these approaches are based on several
manipulators, also some configurations [  237  – 239 ] have been proposed that only rely on
a single industrial robot and allow rapid scan times down to 8 s [ 43  , p. 939].

However, apart of experimental setups [  240 ,  241  ] several conventional configurations
already offer the adaptiveness necessary for optimized or non-standard trajectories.
Examples for such comprise radiotherapy setups [ 43  , p. 907f], mobile C-arms and
angiography suites [  43  , p. 557f] for medical applications or robot-based radiography
and laminography [ 242  ,  243  ] installations in the industrial field.
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6 Trajectory Optimization
and Evaluation Approach

6.1 Overview

As mentioned in sec.  5  , trajectory optimization is a relatively young field of active
research and few practical viable and sophisticated methods were available when
the investigations for this thesis started in 2018. In fact, during the course of this
work, almost half of the approaches shown in tab.  5.2 were suggested in addition to
own developments. Model observer based methods were one of the most promising
concepts that were early available and reported good results for medical (approach  10  )
and industrial (approach  12  ) applications while their practical feasibility was not solely
verified by simulations but additionally validated with real measurements. Based on this
preliminary work, the choice of a  MO  -based backbone for own developments appeared
reasonable. The proposed framework used for this work is depicted in fig.  6.1 and will
be briefly outlined in the following. Further details are provided as part of separate
publications [  136  ,  199  ].

To reduce the complexity of the problem trajectory optimization can be formulated
as a selection task: a number of m reachable acquisition poses are predefined and pro-
jections from these angles are simulated. The objective is now to identify for a number
of projections n < m a combination of positions that maximizes the image quality (see
eq.  4.14  ). The images related to feasible acquisition poses are provided by a simulation
(or a previous scan as in the experimental measurements of part  III ), which needs to be
carried out only once and is described in sec.  6.3 . Further information concerning the
test object for most investigations of this work can be found in sec.  6.2 . Furthermore,
for efficient determination of the image properties during the optimization loop the
reconstruction is avoided and an image quality prediction pipeline is employed instead
that updates and recomputes estimates for  MTF  and  NPS  in each step as described
in sec.  6.4.2  . However, to increase computational performance the so called Fisher
information matrices ( FIMs , see sec.  6.4.2  ) will be computed before the optimization
loop and reused in each iteration as shown in fig.  6.1 .

Zheng et al. refered to this particular formulation of the selection task as so called
set cover problem, where a group of projections is identified as a set and the task is
to cover the important information in the image, which is represented by its salient
edges [  160 ]. The set cover problem is well-studied and many algorithms for its solution
are available. Examples for such being used by similar approaches are, for instance, ant
colony optimization [ 160  ], the covariance matrix adaptation evolution strategy [ 190  ]
or simulated annealing [ 206  ]. For this work a greedy algorithm was selected for the
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Figure 6.1: Simplified overview of the proposed trajectory optimization framework. Four general
parts can be identified: the data generation stage prepares the input projections that are gradu-
ally selected by a greedy algorithm in the optimization algorithm. To avoid the computational
burden of the reconstruction for each separate evaluation combination, predicted image quality
properties are used, which are provided in each iteration by the prediction framework. Before
the optimization process the Fisher information matrices need to be calculated in a separate
preprocessing step to allow efficient calculation of the estimated data. At predefined iteration
steps the calculated trajectory is passed over to the evaluation pipeline where it is reconstructed
and compared to previously specified reference trajectories.

optimization stage due to its simple implementation, the proven feasibility for the given
problem [  22  ,  206  ], and the deterministic results. While this method is generally only
capable of finding a local maximum, this drawback was neglected since the problem is
expected to have several solutions that perform similarly well as described in sec.  4.3 .
In the first iteration all projections form together the projection pool and a figure of
merit is calculated for each pose. The projection with the highest value is removed from
the evaluation set and added to the solution set (see fig.  6.1 ). The quality indicator is
then computed again for all remaining items in the evaluation set under considera-
tion of all objects that are already in the solution. With progressing iterations fewer
positions are contained in the evaluation set and need to be calculated; however the
complexity for each single computation increases since more poses are already in the
solution set, which makes the prediction step computationally more expensive. The
steps performed during optimization and the figure of merit is described in sec.  6.4 .
Adaptions and refinements concerning the greedy algorithm have been proposed for
trajectory optimization but are omitted for this work due to the higher complexity and
computational effort [  212 ].

The optimization part and in particular the composition of the figure of merit
utilized in the greedy algorithm form the most crucial part of the entire framework. For
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Figure 6.2: The bat phantom used for most investigations in this work. Shown are also the
cylinder (green) and sphere feature (red).

an easier understandable approach several configurations of the latter will be described
and evaluated using simulated data in the separate chapter  7  . This structuring allows to
simultaneously identify and outline fundamental properties that need to be fulfilled for
a successful trajectory optimization and a good reconstruction. However, for assessing
the results and success of the trajectory optimization framework an evaluation method
needs to be implemented and the question needs to be addressed what a "good"
reconstruction is actually supposed to mean. To achieve this, the projections contained
in the solution set are passed over at predefined iterations to a reconstruction pipeline
and the resulting volumes are compared to reference trajectories using appropriate
image quality metrics as described in sec.  6.5 .

6.2 Test Artifact

The bat phantom test part used for most investigations in this work is depicted in fig.  6.2 

with technical details being provided in sec.  B.3  . The approximate geometry and name
were derived from the artifact of a related work [ 244 ]. Within the part two  VOIs are
defined that hold a cylinder and a sphere as primitives; all further investigations will
concentrate only at these two local object as detectable signals. The sphere was selected
since it features per definition no clearly preferred direction, while the cylinder differs
only slightly by the existence of two parallel planes. The features are of particular simple
shape since model observers (see sec.  3  ) are typically used for such geometries.

The main intention for the design was to determine angles that will clearly corre-
spond to a high  SNR and good visibility. To achieve this, the objects are placed outside
of the main body, so that a high contrast between the attenuation values of the feature
and the surrounding air can be assured from a suitable angle. Furthermore, the main
part contains windows of missing material next to the  VOIs , so that projections obtained
from this direction are supposed to result in a particularly high contrast. Furthermore,
the object is significantly longer in one direction and features a concave edge to generate
particular long X-ray penetration lengths to the direction of the edges due to the higher
amount of material, which leads to a decreased  SNR in this direction. The bat phantom
is simulated to be made of elementary iron and is otherwise mostly symmetric with
clearly defined edges and holes, which can similarly be found in typical industrial items.
Furthermore, the part was constructed to be relatively flat to avoid cone-beam effects
given planar reference trajectories.
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6.3 Simulation Framework

The first step depicted in the framework in fig.  6.1 comprises the generation of the pro-
jection dataset, for instance via a simulation framework. Since geometry information of
the parts to be scanned are often available for industrial  CT [  22  ] the use of  CAD files or
similar sources does not pose a significant drawback in practice. While the image stack
can theoretically also stem from experimental measurements instead, this approach
was selected for several reasons. First, a  CT installation with the necessary degrees of
freedom was originally not available for this work. While measurements were neverthe-
less facilitated by augmenting the setup with two tilting tables as presented in sec.  8.1 ,
this method is very laborious which makes it difficult to investigate new scenarios. Fur-
thermore, even with such a setup, additional geometrical restrictions are unavoidable
and the manipulator itself biases the dataset by introducing an additional obstacle in the
beam path for some angles. Additionally, the positioning error and further inaccuracies
of the mechanical setup were avoided by using a simulation-based approach. This is
particularly relevant, since no further software-based alignment correction was used in
the framework and the positioning accuracy for flexible installations is often of concern
if left uncompensated due to its influence on the measurement accuracy [  226  ,  245  ].
Last, the use of simulations allows to assume a mono-energetic X-ray spectrum and no
additional sources of noise, which obviates many artifacts (e.g., beam-hardening by a
polychromatic source spectrum). While this reduces the impact of the optimization ap-
proach since it is not possible to suppress artifacts (they are already avoided per design),
it guarantees a good image quality for the reference dataset and a proper comparison
and evaluation. Furthermore, it allows to isolate the influence of the trajectory choice
onto the image quality, since the focal spot size and other effects (like scattering) are
entirely avoided. However, since many simplifications are made for the simulation step,
it is important to perform additional experiments using real measurements in order
to verify the findings made with artificial data. This was performed in sec.  8  as well as
sec.  9  and these further setups are introduced in the related sections, respectively.

For all simulations in this work the proprietary radiographic simulation tool aRTist
(Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany) was used,
which utilizes an analytical process model and a ray tracing method [  246  ]. Source-
detector distance ( SDD ) and source-object distance (  SOD  ) were kept constant, while
the source position moves on the surface of a sphere surface centered around the test
object. The polar angle φ describes the movement in-plane around the object, while
the azimuthal angle θ refers to shifting the source position in vertical direction, so
that θ = 0° corresponds to a planar trajectory and negative values indicate an inclined
source position. The part was sampled in 5° steps each, ranging fromφ= [0°,5°, . . . ,355°]
and θ = [−85°,−80°, . . . ,85°], where θ = ±90° was left out to prevent the same image
being generated several times in rotated versions. This results in 72 arcs in horizontal
direction containing 35 projections each and 2,520 poses in total. While being relatively
simple to describe and handle, this definition leads to the clustering of projections at
the proximity of both poles (θ =±90°), which poses a systematic error. However, this
definition is necessary to allow for all trajectory designs introduced in sec.  6.5.2  . This is
important, since it is a central property of the evaluation framework that the optimized
and all reference trajectories are defined from the same selection set and no projections
(which are associated with new information) exclusive to some designs are introduced.

62



TRAJECTORY OPTIMIZATION AND EVALUATION APPROACH | CHAPTER 6

It shall be noted that geometrical restrictions of the acquisition setup can be taken into
account by excluding unreachable projections from the simulated image stack.

6.4 Optimization Loop

6.4.1 Figure of Merit

In every iteration of the optimization loop the figure of merit is calculated for each
projection in the evaluation set. This is accomplished in three steps: first, the predic-
tion part of the framework estimates  MTF  and  NPS  for the projection combination
under consideration, which is explained in sec.  6.4.2  . Based on these data, the selected
observer model, template and regularization the detectability index d ′2 is calculated
according to eq.  3.62  ( PW  MO  ) or eq.  3.63  ( NPW   MO ). Last, the selection criterion is
computed by multiplication of d ′2 with the geometric weighting value of the respective
projection, which is calculated after each iteration as described in sec.  6.4.3  . These three
steps take approx. 7 ms on the test system used for this work with 256 GB memory, two
Xeon E5-2640 processors (each 6 cores with 2.5 GHz) and a Nvidia Geforce Titan X GTX
graphics card. The figure of merit is calculated for each possible projection combination
in the evaluation set. Subsequently, the combination with the highest value is added to
the solution set and all parts of the framework including the weighting map are updated
and prepared for the next iteration. The entire optimization framework is formulated in
sec.  C.2  as pseudocode.

The observer models are of fundamental importance for this work and are explained
more thoroughly in chapter  3  . The sphere and cylinder template functions in sec.  7  

are relatively simple and were defined mathematically directly in the voxel grid. For
all other investigations the full projection set was first reconstructed using the  SART 

method. Next, the  VOI was then extracted from the volume, parts not belonging to the
feature were removed manually and finally the template was converted into binarized
form using a single threshold value that was determined individually for each feature.

6.4.2 Image Quality Prediction

To compute the detectability d ′, numerical values for the pixel-wise (i.e., the local)  MTF  

and  NPS  are required by the model observer. Theoretically, these expressions have to be
determined from the reconstructed volumes. The  NPS  can be calculated by evaluating
several  VOIs and averaging the result. However, this assumes that the image properties
are stationary over the entire domain and this approach does only permit to compute
the global  NPS  . To obtain a local expression, it is necessary to determine an invertible
covariance matrix (see sec.  3.7.2  ), which requires a vast number of reconstructions and
measurements 

1
 . Computing the local  MTF  can be performed by introducing a dirac

impulse into the originally imaged object and calculating the point-spread function (see
sec.  3.3 ) [  247  ], which is demanding in practice and particularly if measured data are used
instead of simulated ones. These practical limitations also prevent the use of model
observers as evaluation criterion so that alternative metrics, which are introduced in

1However, the dimensionality of the covariance matrix can be reduced by the use of channelized  MOs 

so that considerably fewer measurements are required and the matrix inversion becomes practically
feasible [ 82  ].

63



CHAPTER 6 | TRAJECTORY OPTIMIZATION AND EVALUATION APPROACH

sec.  6.5.1  , are used in this work. More detailed discussions related to the practical
determination of local  MTF  and  NPS  can be found in the related literature [  68  ,  247 – 250 ].

Instead of measurements, predictor functions will be used to compute the required
expressions. In general, in order to obtain the image properties of the reconstructed
image, it is necessary to solve the estimator for the image defined by eq.  2.14  . Unfortu-
nately, this estimator is given in implicit form, so that the solution cannot be obtained
analytically but has to be found via iterative approaches. However, it was shown that
by use of the implicit function theorem, the Taylor expansion, and the chain rule, ap-
proximations for the mean and variance of such implicitly defined estimators can be
found that only rely on partial derivatives of the objective function [ 251 ]. Based on this
finding, an estimate for the local impulse response can be expressed which depends
solely on the measurement mean 

2
 and the objective function derivatives [  252  ]. Further

work finally yielded expressions valid for transmission tomography [ 253 ] and allowed
for the efficient calculation of  MTF  and  NPS  at a particular position j within the volume
by solving [  254 ]

MTFj ≈
F

(
ATDAej

)
F

(
ATDAej +βRej

) , (6.1)

NPSj ≈
F

(
ATDAej

)
∣∣∣F (

ATDAej +βRej

)∣∣∣2 , (6.2)

with the system matrix A introduced in eq.  2.13  , Fourier transform F , a diagonal vec-
tor D containing the measured pixel values of the respective projection and R being
a quadratic regularization matrix as proposed in the literature [  254  ]. The division is
supposed to be performed element-by-element-wise and the regularization parame-
ter β is typically determined empirically [  190 ]. Note that the formulas here are discrete,
while the equations describing the model observers are provided in continuous form in
sec.  3.8 . In the final implementation a trapezoidal approximation was used to calculate
the integrals; see also sec.  C.2 for the implementation of the optimization framework
in pseudocode. The proper choice of β is dependent on many parameters (e.g., the
number of projections, the object geometry, etc.) and important to obtain reasonable
results. The selection of a suitable β is as far as possible avoided for the course of this
work by performing a parameter sweep with subsequent selection of the best results
according to the achieved image quality as described in sec.  6.5 . The use of the  PW 

 MO  is independent of the used regularization, which can be shown by plugging eq.  6.1 

and  6.2 into eq.  3.62  . The vector ej encodes the evaluated voxel position, which is
located at the center of the  VOI , as a Kronecker delta function, i.e., the desired location
entry is given as one and all other values are set to zero. Since the image properties are
assumed to vary only minimally in close proximity to the evaluated position, the result
is considered to be valid within the entire  VOI . It shall be noted that a vast number of
measures – in particular such concerning the explicit implementation – are necessary
to facilitate the calculation of eq.  6.1 and  6.2 . While a detailed discussion would lead

2For most investigations, including this work, instead of the actual measurement mean only a single
measurement is conducted as estimate for the mean value. This can be justified since the applied
combination of projection- and backprojection (A and AT) acts in a smoothing fashion on the data, which
makes the approach relatively robust towards noise [  252 ].
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very far and is therefore omitted at this point, a thorough derivation and analysis is
provided in the literature [  190 ,  254 ].

The expression ATDA is referred to as Fisher information matrix (  FIM ), which is
precomputed with respect to the considered  VOI for each projection before the actual
optimization loop is entered. Since the  FIM is essentially build by projecting a voxel
on the detector screen, weighting it with the measured intensity values and projecting
it back to the volume, it can be represented as a volume as illustrated in fig.  6.1 . The
implementation is based on projection models provided by the commercially available
CERA 6.0 reconstruction framework (Siemens Healthineers AG, Erlangen, Germany [  255  ])
and make extensive use of graphic card based computing. To obtain the  FIM related to
several projections in the solution, the respective single-projection Fisher information
matrices can be summed up, which has to be performed in each optimization loop
separately.

It shall be noted that the discussion provided here is highly simplified. For instance,
the approximations were originally derived for penalized likelihood  SPECT reconstruc-
tions that (unlike to eq.  2.14  ) include an additional regularization parameter [ 254  ]. Many
further assumptions and simplifications are required to justify the use of eq.  6.1 and  6.2 ,
which are beyond the scope of this work and discussed elsewhere [ 251 ,  252 ,  254  ]. The
validity of the predictor functions have been further investigated for transmission- CT 

using simulations [ 247 ] and experimental measurements [  256 ]. These estimates have
been used in most  MO -based trajectory optimization methods (i.e., approaches  10  ,  12  ,
and  13  in sec.  5.1 ) and other applications, for instance to improve spatial image proper-
ties by locally adjusting reconstruction parameters [  247  ]. It needs to be stressed that
the predictions are strictly speaking only valid for penalized likelihood reconstruction
methods, while a  SART algorithm is considered for this work. However, based on the
considerations of sec.  4  it is assumed that valuable angles are mostly independent of the
applied reconstruction approach, so that the use of predictor functions – even though
they estimate the outcome for a different reconstruction technique – is still justified.

6.4.3 Geometrical Weighting

The geometric weighting step acts as the second part of the optimization criterion.
Since dominant preferential directions can lead to optimized trajectories with very
clustered acquisition poses, this method tries to enforce spreading out over larger parts
of the available positions resulting in a higher coverage of the entire Fourier space.
This property is referred to as angular variety for the course of this work and several
implementation methodologies will be discussed in sec.  7.4.3  . Sampling as much as
possible of the Fourier space is usually necessary to prevent limited angle artifacts [ 244 ].
The weighting achieves a uniform sampling, which is considered to result in a more
homogeneous image quality. A detailed discussion related to the consequences of
sampling with reduced discrepancy is provided by Kingston et al. [ 23  ,  150  ]. Similarly,
it has been suggested that for a fixed number of projections a sampling scheme with
uniform sampling density and high data incoherence yields the most promising results
[  30  ]. Furthermore, projections located opposite to already picked ones are penalized
by the algorithm to break symmetry effects, which reduces data redundancy and is
known to improve the achievable image quality [ 126  ] (see also sec.  4.5 ). The criterion
is implemented as a weighting map that assigns every projection a certain weighting
factor 0 < γ < 1, which is updated after each iteration of the optimization loop. The
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multiplication of this weighting map with the result of the  MO  yields the final figure of
merit.

The weighting map is initialized with γ= 1 for each projection. After the first itera-
tion the weights are updated according to the following scheme: the picked projection
itself is noted with a weighting factor of γ= 0, since it should not be added a second
time to the solution set. All projections located within a 15° angle section are weighted
with γadjacent = 0.8 and all projections in the opposed region (i.e., in an angular range
of 172.5° to 187.5°) to the selected pose (including the directly opposed one) is weighted
by a factor of γopposed = 0.9. This leads to a much lower clustering of projections and
a higher angular variety. Furthermore, projections located directly at opposite sides
of the object are less likely to be chosen in the subsequent optimization iterations.
Additionally, a weighting factor of γclose = 0.2 is assigned to very close projections in an
one-sided angular range of 1°. All weights can only be overwritten if the new assigned
value is lower than the old one. The respective weights were determined empirically
and the pseudocode describing this part of the framework is provided in sec.  C.1  .

The last weighting factor γclose was introduced to stabilize the results for experimen-
tal data sets. Since simulated projection sets are defined to have an angular spacing
of 5° (sec.  6.3 ), this factor has no influence on these data. However, the acquisition
pattern of real setups can lead to position clustering in other directions due to mechan-
ical restrictions of the system, e.g., in the horizontal plane in case of the tilting table
(see sec.  8.2 ). Selecting several of these very close projections would equal including
essentially identical projection (just rotated around the  SDD -axis) to the solution, which
would lead to poor optimization results.

6.5 Evaluation Method

To quantify the performance of the solution, the optimized trajectory is reconstructed
at predefined projection numbers, which are defined in sec.  6.5.2  . As reconstruction
algorithm a modified  SART approach is used, which is implemented and provided via
CERA. The algorithm is outlined in sec.  2.3.3  and alternatives for future use are discussed
in sec.  11.2.4 . The method was selected due to its good performance in the presence of
noise, undersampled data, and irregular sampling conditions [  36  ,  55  , p. 201] as well as
its property to only yield positive voxel values which is relevant for evaluations using
the structural similarity index (sec.  6.5.1.2  ). The volume sizes are provided in sec.  B . The
proposed evaluation framework has been published in detail in a separate work [  136  ].

The image quality of the optimized trajectory is then calculated with respect to the
quality measures defined in sec.  6.5.1  and compared to the performance of standard
trajectories, which are introduced in sec.  6.5.2  and act as baseline reference. It is
important to highlight at this point, that for the sake of a more robust comparison
several representative trajectories of each design are computed and averaged, while
the optimized trajectory is determined by computing several optimized trajectories
with different regularization parameters and selecting the best performing one among
them. While this could in theory be viewed as a brute force approach, where several
random trajectories are generated and only the highest rated one is considered to be
the solution, in practice typically only few or even just one regularization is sufficient
to obtain the optimized trajectory for a certain projection range. However, the ideal
regularization strength is not known before the optimization of new datasets, which

66



TRAJECTORY OPTIMIZATION AND EVALUATION APPROACH | CHAPTER 6

makes the parameter sweep necessary. Furthermore, the parameter selection can be
considered to be a part of the optimization algorithm itself and can improve the results,
since the optimized trajectory for a given number of projections can be different but do
not need to include the poses of such with lower projection numbers (see for a similar
discussion also the definition of  PC and  LDS trajectory in sec.  6.5.2  ). For this work the
influence of the regularization is therefore neglected for convenience and treated as
computational demanding but necessary step in the optimization framework.

6.5.1 Image Quality Metrics

In order to quantify the performance of different trajectories and their influence on
the image quality of the reconstructed volume the use of appropriate image quality
metrics is necessary as indicated in the problem formulation in eq.  4.14  . Generally,
the selection of suitable metrics depend on the purpose of the investigation and no
criterion exhibits universal explanatory power for all applications and circumstances.
Therefore, for this work two different measures are used to evaluate different aspects of
the image assessment task: the root-mean-square error ( RMSE  , sec.  6.5.1.1  ) will be used
as well-established, objective method to express the difference between two volumes
while the structural similarity index ( SSIM , sec.  6.5.1.2  ) is a simple criterion and aims to
relate the results to the subjective human image perception. This choice of the metrics
intends to establish a relationship to manual flaw detection as performed by a human
observer while still assuring objectivity and comparability.

Both metrics directly operate on the voxel information and have been widely used
for the image assessment of volumetric  CT data. Furthermore,  RMSE  and  SSIM are
difference-based figures of merit that require a reference volume to relate to, which is
the reconstruction generated by including all available projections as apparent from
the right term in eq.  4.14  , which is supposed to become minimal. This reference, which
will be referred to as the full reconstruction from now on, is consequently considered to
achieve the maximum obtainable image quality and outperforms all reconstructions
generated by every possible projection subset. As discussed in sec.  4.5 and sec.  10.6  this
is a strong assumption that is not necessarily true [  126  ]. However, this work concentrates
on reconstructions obtained by significantly fewer projections than this reference and
it appears reasonable to assume that the image quality difference is sufficiently high
to neglect this factor. Both metrics are very prone to registration errors, which is
completely avoided since subsamples from the same data set are used which leads to
all possible reconstructions being already perfectly aligned (see also sec.  6.5.2  ). This
is a considerable advantage to many practical studies, where it is often required to
reposition the volume correctly. While this is often not very critical due to the high
material contrast and good image quality for industrial  CT , it becomes particular severe
for medical investigations where the object shape is likely to change between two scans,
so that often additional tracker points or more sophisticated methods are required [ 257 ].

6.5.1.1 Root-Mean-Square Error

Probably the most widely used and direct image quality indicator the root-mean-square
error ( RMSE  ) defined as

RMSE(A,B) =
√

1

n

n∑
i=1

(
Ai −Bi

)2, (6.3)
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where n is the total number of voxels and Ai, Bi denoting a particular pixel in the
evaluation and reference volume, respectively. According to this definition the  RMSE  

equals zero if both volumes are identical and can in theory reach arbitrary high values,
which are, however, bound in practice by the dynamic range of the voxel elements.
Other widely used metrics comprise the mean-squared error (  MSE ) and the peak signal-
to-noise ratio ( PSNR ), which are in essence differently scaled versions of the  RMSE  .

The  RMSE  is symmetric and the standard criterion for image and signal quality
assessment [ 258 ,  259 ] and serves as a widely established and accepted metric that allows
comparison to the results of other studies. However, it also exhibits some disadvantages
that can turn out problematic under certain circumstances. For instance, it has been
pointed out by some researchers that the use of the  RMSE  inherently assumes that
several strong implicit assumptions hold, which are typically not fulfilled. Furthermore,
it correlates extremely poorly with the human perception [  260  ], is very unstable with
respect to registration errors, and cannot differentiate between different forms of image
degradation [ 70  , p. 7f].

6.5.1.2 Structural Similarity Index

Due to the drawbacks mentioned in sec.  6.5.1.1  a second metric is required to relate the
obtained quality to the human image perception. This is generally a very demanding
task and several evaluation approaches have been suggested with the manual rating
performed by human test subjects being the most obvious one. However, this method is
obviously not feasible for most applications owing to the numerous required evaluations
and the linked high manual effort, so that alternatives are necessary [  258 ]. In the last
decades several sophisticated metrics based on models of the human visual system have
been proposed [ 261  ]. While being typically rather complex and nonlinear [ 258  ] they
have been shown to relate usually well with human performance [  262 ]. Unfortunately,
among other limitations [  263 ] this complexity has turned out to be a severe drawback
and has led some researchers to the conclusion that these metrics have become too
complicated for practical applications and particularly for algorithm optimization
purposes [  264 ].

However, as a comparably simple metric not based on such models is the structural
similarity index ( SSIM ), which was developed to overcome the typical limitations of
pointwise difference metrics, has turned out to agree sufficiently well with human
perception and is widely used today. The index is based on the assumption that the
human visual system is highly adapted to extract structural information and uses the
variation of it to quantify the degradation of image quality. To accomplish this, it
separately evaluates luminance, contrast and combines it into a single figure of merit
[  263  ].

Given images A and B defined analogously to sec.  6.5.1.1  , the luminance comparison
function l (A,B) is given with [  263 ]

l (A,B) = 2µAµB +C1

µ2
A +µ2

B +C1
, (6.4)

where µA,µB are the mean signal intensities of the images and C1 is a constant to avoid
instability if the denominator approaches zero. It is defined as C1 = (K1L)2, with L being
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the dynamic pixel value range (e.g., 255 for 8 bit grayscale images) and K1 a sufficiently
small constant ¿ 1. Next, the contrast comparison function c(A,B) is defined as [  263 ]

c(A,B) = 2σAσB +C2

σ2
A +σ2

B +C2
, (6.5)

with σA and σB being the image standard deviations of the mean signal intensities
and C2 is defined analogously to the luminance comparison as C2 = (K1L)2, with L being
the dynamic pixel value range and regularization parameter K2 ¿ 1. After subtracting
the mean luminance and normalization of the contrast the signals

∑n
i=1(Ai −µA/σA)

and
∑n

i=1(Bi −µB )/σB ) are obtained and the structure comparison function s(A,B) can
be defined, which is given by [ 263  ]

s(A,B) = σAB +C3

σAσB +C3
, (6.6)

with the regularization constant C3 and σAB being the correlation coefficient, which is
defined as

σAB = 1

n −1

n∑
i=1

(
Ai −µA

)(
Bi −µB

)
, (6.7)

with total number of pixels n. The three comparison functions can then be combined
generally as

SSIM(A,B) = l (A,B)α · c(A,B)β · s(A,B)γ, (6.8)

with weights α,β,γ> 0. For simplification of the formula, these values are usually set
to 1 and for the particular choice of C3 =C2/2 the final, typically encountered form of
the structural similarity can be obtained as [  263 ]:

SSIM(A,B) = (2µAµB +C1)(2σAB +C2)

(µ2
A +µ2

B +C1)(σ2
A +σ2

B +C2)
. (6.9)

The  SSIM is symmetric and reaches values between 0 and 1, with the latter only being
feasible if both compared images are identical. Theoretically, also negative values are
possible if one image is inversely correlated to the other one, which is typically not the
case for real applications. In this work the regularization constants were selected to
equal approx. 1 % of the typical attenuation value to prevent any relevant influence
on the evaluation results. Furthermore, to calculate this metric a Gaussian-weighted
sliding window with a standard deviation of 4 pixel and a two-sided search range of six
standard deviations is used and averaged to obtain the final value of the  SSIM .

It shall be noted that among other variations [  264 – 267  ] an earlier version of the
 SSIM referred to as universal quality index (  UQI ) exists, for which all regularization
constants are set to zero [ 259 ]. Both, the  SSIM [  12  ,  30  ,  92  ,  180  ,  192  ,  268 – 271  ] and the

 UQI [  109 ,  181  ,  182 ,  272  ] have been previously used as image quality criterion for assessing
 CT volumes.

6.5.2 Reference Trajectories

While it is important to quantify the image quality with respect to the selected tra-
jectory, it is also necessary to have a baseline reference to relate to. For this purpose
several benchmark trajectories shown in fig.  6.3 and  6.4 have been defined that should
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Figure 6.3: The most frequently used trajectory designs in this work. Shown are source position
representatives with 36 projections for the planar circle ( PC , fig.  6.3a ) and low-discrepancy
spherical trajectory ( LDS , fig.  6.3b ), which are used as two- and three dimensional reference.
For comparison an optimized trajectory (feature-based  NPW   MO with geometric weighting for
the cylinder  VOI of the batphantom) is shown in figure  6.3c .

be outperformed by a successfully optimized trajectory. Each benchmark trajectory
depends on the selected number of projections, the implementation of the respective
trajectory design and a shift parameter. While it is theoretically possible that a particular
implementation of a benchmark trajectory outperforms all other designs by chance the
shift parameter allows the generation of several trajectories with the same projection
number and design that allow statistical analysis and diminishes the influence of such
outliers.

To speed up the calculations, reference reconstructions were only performed at
distinct projection numbers, which are defined in steps of four projections (i.e., 4, 8, 12,
16, . . . ) until 72 projections, which equals all positions located in the horizontal plane.
The step size was then first increased to ten until 200 projections and then to 100 until
2,400 projections. The finer step size for low numbers was selected since this region
is of particular interest for this work and the rate of quality change is steepest in this
region [  11  ,  12  ,  126 ,  130 ]. It shall be noted that not equally many shifted trajectories can be
defined for each projection number with the proposed method. This means that fewer
samples exist for higher projection counts, which increases the calculated standard
error of the mean (  SEM ). However, this effect is mitigated to a certain degree since the
direction dependency of a part is highest at low projection numbers [  122  ] where more
samples can be provided. Since the projection pool of available projections consists of
a limited amount of discrete feasible poses some compromises at the definition of each
design were necessary that will be briefly explained in the following while a detailed
contemplation can be found in the literature [  136 ].
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Figure 6.4: Acting as additional spherical reference trajectories, the inclined circle ( IC ) and
half-circle and arc (  HCA ) trajectory are used together with the designs previously introduced in
fig.  6.3 for benchmarking.

6.5.2.1 Planar Equidistant Trajectory

The most often used standard trajectory for industrial  CT systems is a full planar circle
( PC , fig.  6.3a ) trajectory where all n projections are located in equiangular steps with
azimuthal angle θ = 0°. Consequently, a set consisting of b72/nc entries denoted as
s ∈ [0,1, . . . ,b72/nc−1] shifted  PC trajectories is defined by a start angle α0(s) = s ·5° that
serves as offset parameter and an angular increment ∆α= b2π/nc, where b·c denotes
a rounding towards zero. The finest possible ∆α equals 5°, which is considered to be
sufficient, since it was shown that reconstructions stemming from small offsets yield
similar results [  122  ] so that an improved sampling would not provide further benefits.

Since the sampling is performed on discrete poses, α0 <∆α must hold to prevent
defining identical evaluation subsets and the number of trajectories in each sets for
a given projection number n decreases with increasing n. For values n > 36 only
one trajectory can be defined, i.e., no error bars can be provided anymore for higher
choices of n. It is important to highlight that with this definition projections can
be added or removed from the set, i.e., each trajectory design does not necessarily
contain all projections that are included in its realization with a smaller number of
projections, which means that there is no need for the information content to increase
monotonously with n. In particular for few projections this property can lead to jumps
and a high standard error in the quality plots, which has also been observed in related
work [  131 ,  206 ]. Since 72 projections are located in the horizontal plane, this trajectory
can only be defined until this number and no results are provided for higher projection
numbers.
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6.5.2.2 Low-Discrepancy Spherical Trajectory

The low-discrepancy spherical ( LDS , fig.  6.3b ) trajectory was motivated by statisti-
cal sampling point distributions for Monte Carlo simulations and serves as a three-
dimensional equivalent to the  PC trajectory. The definition of this design is more
complex and outlined in a separate work [ 136  ] as well as in pseudocode in sec.  C.3  .
In principle, the surface of a sphere is mapped onto a two-dimensional grid and sam-
ples according to the pseudorandom Halton-sequence are iteratively drawn which are
then rounded to the nearest feasible position that is provided by the full projection
dataset. The sequence starts at a multiple of an offset parameter and a correction term
is included to compensate for pole clustering phenomena. After the desired number
of samples is drawn, the plane is mapped back to the sphere surface and values for φ
and θ are extracted. This design is defined in such a way that its information content
increases monotonously and a uniform angular sampling is achieved, which leads to a
smoother trend in the quality plots. This trajectory design can be calculated for arbitrary
projection numbers.

6.5.2.3 Inclined Circle Trajectory

The inclined circle ( IC , fig.  6.4a ) is defined analogous to the  PC trajectory. Instead of
an angular offset parameter, the intersection point with the plane defined by θ = 0° is
varied while the inclination angle is fixed at 45°. This trajectory can be interpreted as a

 PC where the investigated object is positioned with this angular tilt and can be defined
until the same maximum number of projections.

6.5.2.4 Half-Circle and Arc Trajectory

For the generation of the half-circle and arc ( HCA , fig.  6.4b ) trajectory, half of the
desired number of projections n is distributed equiangularily in a half circle and the
other half in another half circle perpendicular to it, where both part trajectories are
defined analogously to the  PC trajectory. Results can in theory be provided for up to
70 projections, since 36 poses form a half circle, up to 35 ones are located on one vertical
arc and one point appears double as intersection point. However, due to the defined
step size only results for up to 68 projections are provided.
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7 Optimization Criterion

In sec.  3  expressions for the prewhitening and non-prewhitening model observer were
derived. In this section the influence of the choice of  MO  and signal template will be
evaluated. Furthermore, the weighting map as part of the final figure of merit was intro-
duced in sec.  6.4.3  . By variation of all three parameters (type of model observer, choice
of template function, and use of geometric weighting) three important properties will
by identified in this chapter that are considered to be essential in order to achieve high
image quality and a stable trajectory optimization method. While modified versions of
observer models have been proposed – for instance by the use of an additional noise
source, an eye filter imitating a human observer or less calculation-heavy channel-
ized  MOs – these methods are beyond the scope of this work. The same is valid for
two-dimensional (i.e., slice-wise operating) pendants. However, preliminary investiga-
tions [  130  ] have included such variants as well and demonstrated inferior performance
for trajectory optimization. While all plots in this work are color-coded (see tab.  A.2  in
the appendix), this property is particularly relevant to distinguish different parameter
combinations as shown in this chapter.

7.1 Prewhitening and Non-Prewhitening Model Observer

As a first variation, the performance of the  PW in relation to the  NPW  model observer is
investigated. For this, the signal templateω was initially set uniformly to one. The result-
ing plots shown in fig.  7.1 consist of both resulting optimized trajectories together with
the  PC and  LDS reference trajectory according to the workflow described in chapter  6  .
Image fidelity curves such as this one, which will be used frequently in the course of this
work, are in particularly important for qualitative interpretation. The data are shown as
quasi-continuous curves for better presentability, but are actually discrete as discussed
in sec.  6.5 . From the plots it is apparent that the  PW  MO  performs significantly worse
than the  NPW   MO  for almost all projection numbers. It is known that the  NPW   MO  

shows basic agreement with the performance of human observers over a broad range of
imaging conditions [  190 ], while the  PW model is usually used to quantify maximum
achievable results [ 50  , p. 829], turning it unsuitable for trajectory optimization. As a
consequence, none of the  MO  -based methods outlined in sec.  5  make use of the  PW 

model, but use exclusively the  NPW  observer.
Due to the poor results obtained with the  PW  MO it is excluded from further discus-

sions for convenience. However, all parameter combinations were also performed with
this model, which yielded, without exception, clearly inferior results to the  NPW   MO  .
Experimental findings are shown in sec.  8  and further results are provided in sec.  D.2 for
transparency. However, the performance of both optimized trajectories investigated in
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Figure 7.1: Comparison of results for the  NPW  and  PW model observer for sphere (left, fig.  7.1a )
and cylinder (right, fig.  7.1b ). For most projection numbers the  NPW  clearly outperforms the

 PW . Nevertheless, in most cases the image quality of the reference trajectories is still better than
both observer models.

this section is generally still very poor and outperformed by the  LDS and for some pro-
jection ranges even the  PC trajectory. These unsatisfactory results of the  PW  MO  have
already been shown in a separate work [ 130 ], which was restricted to planar trajectories.

7.2 Uniform and Feature-Specific Templates

Since the results using a uniform template are insufficient, a new optimization run
was performed using a feature-derived template. For this, the sphere and cylinder
object were defined on a voxel grid in binarized versions and used as signal templates
for the optimization framework. In contrast, for more complex features in this work
such templates were generated by cropping and thresholding the respective  VOI from
the full reconstruction (see sec.  6.4.1  ). By providing this additional input, the model
observer gains access to a part-dependent signal template and does not rely solely on
the information provided by the projection images and the location. As apparent from
the results in fig.  7.2 this leads to a remarkable improvement of the optimization results.
The use of feature-based templates does not only clearly outperform the trajectories
related to the uniform one but results also in a similar or better image quality than the

 PC or  LDS trajectory for a broad range of projections.
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Figure 7.2: Comparison of uniform and feature-based  NPW   MO . The use of a part-specific
template significantly improves the image quality associated with the optimized trajectory and
performs equally well or better for all projection numbers than the benchmark.

The improvement can be seen as a direct result of the considerations of sec.  4.3 .
While the uniform template acts on the entire Fourier space, the feature-based  MO  

assigns additional weight to the frequencies that are associated with the feature in the
 VOI and can cover these parts of the spectrum more efficiently. It shall be noted that
the combination of  NPW   MO and feature-weighting is the typically used one for all

 MO  -based trajectory optimization approaches in the literature [ 187  – 193  ,  195  ]. The only
counter example is the work of Fischer et al. [ 22  ], for which good results have been
reported using also a uniform template. Their results contradict the findings provided
in fig.  7.2 . This might be caused by the different reconstruction method used in their
work, which is more appropriate with respect to the used predictor functions. It is
also possible that the test parts used in their investigation coincidentally have few and
clearly defined preferential directions, so that a purely  SNR -based approach is sufficient
by chance.

7.3 Influence of the Geometrical Weighting

In section  6.4.3  the geometric weighting method was introduced, which reduces the
clustering of projections that is related to limited view angle artifacts and tries to en-
force a more homogeneous distribution over the entire range of available positions.
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Figure 7.3: Optimization results for the KUKA robot engine using a  NPW   MO  with and without
geometric weighting function. While for signal templates without clear preferential direction
angular variety is typically automatically achieved, the additional weighting step can further
improve the image quality for other objects.

However, the results for a weighted  NPW   MO  are almost identical to the outcome of the
unweighted one (see sec.  D.3 and  7.2 ), irrespective of the used evaluation metric. For
all other parameter combinations, i.e., the uniformly weighted  NPW   MO  (sec.  D.1 ) as
well as the  PW  MOs with uniform or feature-specific template (sec.  D.2  and fig.  7.1 ) the
geometric weighting clearly improves the results. In these cases the solely  MO -based
figure of merit did not perform well but the image quality improved when at least a
certain degree of angular variety was achieved. As discussed in sec.  4.3 an infinite
number of one-dimensional parallel tangents to a two-dimensional plane exists and
consequently several solutions that are similarly correct. If the optimization using an

 MO  is considered to find such tangents 

1
 , the geometric weighting decides in favor of

some (i.e., such that provide angular variety) of these possible solutions without intro-
ducing new ones. This might explain why the use of the weighting function typically
does not reduce the outcome of the optimization but performs at least equally well.

However, as mentioned above the weighted and unweighted  NPW   MO  performed
almost equally which can be attributed to their relatively simple shape and lack of
dominant edges. Due to this, for both  VOIs angular variety is already achieved without
the additional use of the geometric weighting, so that no difference is observable in
image quality. In order to illustrate the beneficial effect of the geometric weighting, a
different, more edge dependent datset was used. The optimizations concerning this
example have been separately published and the interested reader is referred to the
respective investigations [  129 ] for more details concerning the workflow or the test
objects. In the related work it was also shown that the image quality for both,  VOIs 

located at the surface or within the part, can be improved by the proposed trajectory
optimization. The new optimization task is an industrial robot, which features a round
manipulation head and an engine  VOI . For the investigation in this section the engine

 VOI was used, which features few, but very dominant edges. This feature was also used

1This is highly simplified since the  MO  consider more information than the location of edges in space,
for instance the  SNR . For the sake of a more illustrative explanation its validity is nevertheless assumed
at this point.
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in addition to the symmetric head  VOI in sec.  10.5  . As shown in fig.  7.3 , the weighting
function improves the image quality with respect to the unweighted model observer.
This observation holds for all considered projection numbers. It shall be noted that a
similar investigation as the one outlined in this section has recently been performed by
other researchers [  195  ], with their results being in agreement with the results provided
in this section (see also sec.  7.4.3  ). As the weighted  NPW   MO  with non-uniform feature
template is considered the most promising parameter combination it will be the primary
choice for the remaining part of this work.

7.4 Comparison to the State of the Art

Building on the results provided in the last sections, three important properties can
be identified that are required to accomplish an effective trajectory optimization and
achieve high image quality. Remarkably, it can be shown that almost all  

2
 existing

approaches outlined in sec.  5.2 make directly or indirectly use of one or several of
these characteristics as summarized in tab.  7.1 . Since the criteria are implemented
very differently in other trajectory optimization algorithms, a short overview will be
provided in this section. Furthermore, as already outlined in sec.  5.1 and sec.  6.5.2  ,
several standard trajectories exist that are occasionally applied for industrial  CT imaging.
Since the use of an optimized trajectory can only be reasonably justified if it offers
an improvement to the status quo – which is given by part-independent designs – a
comparison to the most frequently used ones that can be investigated with the proposed
evaluation approach (chapter  6  ) is performed in sec.  7.4.4  .

7.4.1 Contrast and Noise

The property of achieving a good  SNR is probably the most straightforward one to
be accomplished and is typically already used in industrial practice as  CT operators
usually attempt to achieve an object positioning that results in the lowest amount of
material in the X-ray path. As such, the approach of Herl et al. considered the condition
of a good  SNR by introducing a gray value threshold in the projections, i.e., very high
attenuating directions are per default excluded from possible solutions [ 175  ]. Similar
methods aiming either towards minimizing the sum of attenuation values or the X-ray
pathlength through the object (which is equivalent for monomaterial objects) are used
by other algorithms [ 18  ,  160 ,  163  – 165  ]. Even simpler than those, Grace et al. defined
regions of highly attenuating material and treated every ray passing through this area
automatically as one with poor  SNR that should be avoided [ 176  ]. Wu et al. made
use of a figure of merit that was defined as the sum of all attenuation coefficients over
the X-ray intersection length. As alternative, the so called spectral shift was proposed,
which was defined as the discrepancy between the measured attenuation given a mono-
and polychromatic source [ 170  ,  171  ]. However, this discrepancy will also be typically
higher for long paths through the object, so that a similar result is achieved. Another
formulation of this property is provided by Kano et al., who aimed to maximize the
visible area of high density material in a single projection [ 166 ]. Since maximizing this

2If approaches based on the image quality quantification of reconstructed solution candidates are
included, which can be reasoned as outlined in sec.  7.4.1  , even all methods discussed in this work rely on
these three criteria.
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Table 7.1: Overview of the approaches from sec.  5.2 and the explicitly used properties for
trajectory optimization. The numeration is derived and identical to tab.  5.2 . While almost
every method in the literature relies on at least one condition identified in this chapter, only
method  13  and the one proposed in this work fully satisfy all criteria. Reconstruction-based
image quality assessment was not considered as  SNR -related method for this table.
1 Not explicitly stated (see full text).
2 Depending on detailed implementation and objective function.
3 Assured by the side condition of a smooth trajectory.
4 Assuming the use of an object-specific template function.

Approach High  SNR High Fourier Coefficients Angular Variety Source

 1  Yes Yes Partially1 [  160 ]
 2  No Yes Yes [  161 ]
 3  Yes No Yes2 [  18  ,  163 – 167  ]
 4  Yes No Partially3 [  170 ,  171 ]
 5  Yes No Yes [  19  ,  175 ,  177 ]
 6  Yes No Yes [  176 ]
 7  No No Yes [  179 ]
 8  Yes2 No Partially3 [  180 – 183  ]
 9  No No No [  186 ]

 10  Yes Yes Partially3 [  187 – 191  ]
 11  Yes Yes Partially3 [  192 ,  193 ]
 12  Yes Yes4 No [ 22  ]
 13  Yes Yes Yes [  195 ]
 14  No Yes Yes [  179 ]
 15  No No No [  14  ,  15  ,  196 ]
 16  No No Yes [  197 ]
 17  No Yes No [  198 ]

Own Yes Yes Yes [ 129 ,  130 ,  199 ]

area also means that such highly attenuating materials are not located along the same
X-ray path in this particular projection, long pathlengths of highly attenuating material
are indirectly avoided.

As outlined in detail in chapter  3  , all model observer based methods (approaches  10  ,
 11  ,  12  and  13  ) are based on  MTF  and  NPS  and therefore reflect the  SNR as well. Fur-
thermore, it has been noted that a well-reasoned selection of projections is particularly
important for high noise levels in imaging via  MRI [  131 ]. As part of one of the objective
functions proposed by Hatamikia et al., the three-dimensional point spread function
is applied, which is directly linked to the contrast and noise levels (see sec.  3.3 ). Other
figures of merit for trajectory optimization are derived by comparing the reconstructed
volume of a certain evaluation set to a reference reconstruction [  180 – 182 ], which was
used in this work solely for evaluation purposes. While it is reasonable that such an
evaluation – that is similarly also used by other studies (for instance approach  14  ) – in-
cludes information concerning the  SNR of the reconstructed projections, it does not
directly target this property and is not considered in tab.  7.1 .
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7.4.2 High Fourier Coefficients

Contrary to the condition of a high  SNR , this property is probably the least frequently
used principle. Nevertheless, for instance, all model observer based methods use a
matched filter that includes the part geometry and aims particularly towards including
high components in Fourier space, which holds for approaches  10  ,  11  ,  13  and this work.
As such, also the method of Fischer et al. holds this property. However, in their work
the signal template was in some cases selected to be uniform in order to be suitable for
arbitrary objects without further parameter adjustment [ 22  ]. The results provided in
sec.  7.2 show that this choice is generally not recommended since significantly better
results can be achieved by defining a template function.

The approach of Barkan et al. [ 198 ] uses the highest coefficients of a Ridgelet trans-
form instead of the Fourier transformation for their optimization method, which is
considered to result nevertheless in a similar effect. The first method proposed by
Haque et al. (approach  14  ) backprojects each projection into the volume, applies a
two-dimensional Fourier transform on it and sums the resulting entries parallel to the
detector plane [  179 ]. This is equivalent to finding projections that contain high Fourier
coefficients over the entire frequency spectrum and – if the entire object and not just a
small  VOI  is considered – acts as part-dependent Fourier weighting. The method is very
similar to the concept of amplitude-summed Fourier coefficient ( ASFC ) maps that will
be introduced in sec.  10.2  . However, for the  ASFC the object itself is considered, while
the optimization approach is projection-based.

As alternative, some approaches optimize the acquisition trajectory by selecting
projections that correspond to rays that are tangential to the object edges [  160  ,  161  ],
which is also equivalent to including high Fourier coefficients (see also sec.  4.3 ). For
this purpose the Hough or wavelet transform have been applied, which are widely used
in image science. The method proposed by Heinzl et al. and Amirkhanov et al. aims
towards minimizing parts of the object for which the Tuy-Smith condition is not fulfilled,
therefore avoiding cone beam artifacts for these regions [  163  ,  164 ]. Consequently, this
means that the acquisition angles are adjusted in such a way that in particular high
Fourier coefficients are sampled. It shall be noted that the use of a criterion that
exploits the property of high Fourier coefficients is considered to be unsuited without
the additional use of a  SNR -based figure of merit, since parts of the Fourier space that
are lost due to very low  SNR are treated as available, which can lead to severe artifacts
and even decrease image quality to values lower than the part-independent reference
trajectories.

7.4.3 Angular Variety

The geometric weighting introduced in sec.  6.4.3  and investigated in sec.  7.3 aims
towards sampling the Fourier space as uniform and complete as possible with respect
to the given number of projections. Some methods [  189  ,  192  ] optimize one position
per circular increment, for instance in order to achieve a smooth acquisition trajectory
that can be mechanically implemented relatively uncomplicated for certain setups.
Using the terminology of this work this procedure equals finding the best θ-coordinate
for each available φ. It is obvious that angular variety – at least in the horizontal
plane – is automatically achieved by such approaches. However, angular variety is not
necessarily fulfilled in the vertical plane and related methods are indicated accordingly
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in tab.  7.1 . Contrary to this, the proposed trajectory design of Kingston et al. aims
towards minimizing the degree of redundancy in adjacent projections for three spatial
directions. The authors argue that their design fulfills a discrete version of the Tuy-
Smith criterion (sec.  4.1 ), uses more information due to a more efficient apodization
window, and tries to maximize isotropy in order to obtain a uniform resolution [  23  ]. The
geometric weighting function (sec.  6.4.3  ) targets all these properties as well, even though
being probably less efficient than the more direct Tuy-based approaches. Similarly, for
a switched source X-ray system it was found that a sampling pattern that generates
a uniform ray density and angular distribution per voxel results in particularly good
reconstruction results [  273 ]. For planar trajectory optimization a related concept has
been used in both approaches of Haque et al., which include a maximum angular step
size to assure that a certain minimal spread over the plane of feasible projections is
always achieved [  179 ]. The method of Matz et al. also includes a weighting function
that aims to avoid projection clustering [  161  ].

As already mentioned in sec.  5.2 , different further methods [ 175 ,  176  ,  195 ] have been
developed to directly quantify the degree to which Tuy’s condition is locally fulfilled,
which was used in the trajectory optimization approach of Herl et al. High local values
of this quantitative Tuy criterion result in similar properties like the geometric weighting
function and angular variety can be achieved [  175 ]. The approach of Herl et al. is of
particular interest, since it was used later together with model observers and compared
to a purely  MO  -based method, which is essentially the same investigation as carried out
in sec.  7.3 . For this particular optimization the opposed positions were not included in
the projection pool, therefore avoiding the need for a separate treatment of such poses
entirely. Their results confirm that the additional weighting provides better results [ 195 ],
which is in agreement with the findings of this work. Furthermore, their method is
considered to be the only other one that is able to fully optimize all three criteria shown
in tab.  7.1 .

Jørgensen et al. found that acquiring many angular projections is clearly beneficial,
even if the  SNR per projection needs to be lowered to achieve this [  127  ] (see also sec.  4.5 ).
Interestingly, these findings contradict the results of several other studies conducted by
Sollmann et al. and Rayudu et al. [ 31  – 33  ]. A possible explanation is that these studies
were performed for medical  CT and are likely to differ considerably in the choice of
imaging parameters. Unfortunately, since only the relative and not the total number of
projections is reported, no direct comparison to the work of Jørgensen et al. is possible.
However, it is not improbable that the benefits of achieving angular variety only become
relevant for higher projection numbers when the most important parts of the Fourier
space have already been sufficiently covered, which would explain the discrepancy if
Sollmann et al. and Rayudu et al. used a higher number of projections as ground truth.
In addition, Jørgensen et al. chose the "SophiaBeads" dataset [ 274 ] for their work, which
comprises of a collection of spherical beads, together with a  CS -based reconstruction
method which is able to deal well with noisy data. Consequently, a high number of
projections is necessary to obtain a reasonable edge contrast and their conclusions are
likely influenced by the systematic bias of the test set and the reconstruction algorithm.

It is assumed that a high angular variety can also be beneficial for reducing artifacts
stemming from defect detector pixels or inadequate calibration, since they are spread
out over larger parts of the volume which makes them easier to compensate. For
instance, the use of helical instead of planar designs has been suggested to mitigate
the severity of ring artifacts [ 275  ]. Furthermore, Zhao et al describes image quality
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improvements by selecting an odd projection number for a  PC trajectory, which is
caused by an improved sampling of the Fourier space (see also sec.  4.5 ). This even holds
if the overall number of projections has to be slightly reduced to accomplish this pattern
[  126  ]. Similar results were found by Grace et al., where sinusoidal trajectories with
odd frequency outperformed such with an even one due to the avoidance of opposite
projections [  178 ]. These findings suggest that for low projections numbers views located
at opposite sides (i.e., spanning 180°) should be avoided, due to the information gain
being comparably low, since they are related to identical points in Fourier space and
are therefore redundant information. In addition to projections that are tangential
to salient edges, Zheng et al. includes further projections from other directions [ 160 ].
Unfortunately, it is not further specified how these supplementary poses are selected,
but it seems reasonable to assume that they fulfill a similar function. As last example,
Venere et al. used an optimization method that assigns every possible acquisition pose
after each iteration a certain probability to get selected in the next iteration, where the
probability for adjacent projections to already selected ones vanishes [ 197  ]. This has
a very similar effect as the geometric weighting and prevents projection clustering as
well.

7.4.4 Performance of Common Trajectory Designs

For the optimization to be successful, the proposed trajectory must be able to out-
perform other designs that were defined without taking the shape of the part into
consideration. As such, in sec.  6.5.2  four different benchmark trajectories were intro-
duced. Figure  7.4 show the  SSIM and  RMSE  values over the entire projection range,
while exemplarily difference images between the full reconstruction and each design
for 16 projections is shown in fig.  7.5 . It is apparent that the optimized trajectory yields
a significantly higher image quality for all investigated projection numbers, which is
particularly obvious for the cylinder feature. The part-dependent ranking among the
benchmark trajectories was discussed in detail in a separate publication [  136 ], where
also additional metrics were used for the evaluation.

While the image quality increases for most of the part even outside the defined
 VOIs as visible in fig.  7.5 it is important to outline that this is not necessarily always the
case and a counterexample for this will be given in sec.  8.3 . As an example, one might
imagine an octahedral feature that is inscribed into a cube. The edges of both parts
would barely coincide, which leads to different preferable trajectories for both objects
so that the image quality of the entire object would be reduced by a respective trajectory
while it is improved for the  VOI or vise versa.
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Figure 7.4: Comparison of the optimized and all feasible reference trajectories used in this work.
For both features the optimized trajectory outperforms all other designs over the entire range of
projections. Difference images for 16 projections are shown in fig.  7.5 as indicated.
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Figure 7.5: Absolute gray value differences of the reconstructions with 16 projections for a
representative of each reference trajectory to the full reconstruction. The  PC design performs
poorest while the optimized trajectory clearly results in the lowest deviations.
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8 Experimental Verification

So far only simulated projections and data sets have been used for the evaluations.
Since all imaging parameters are assumed to be ideal (see sec.  6.5 ) the findings of the
previous investigations are clearly limited and need to be supplemented by experi-
mental measurements. In particular, the influence of the polyenergetic X-ray tube
emission spectrum, scattering effects, and noise could not be considered. To clarify
if the trajectory optimization framework is also applicable to real-world data and in
order to confirm the findings of the last sections, a  CT -scan and optimization of the bat
phantom was conducted and compared to the simulation-based results.

8.1 Generation of the Experimental Dataset

For the work presented in this chapter an experimental  CT setup depicted in fig.  8.1 was
used for the measurements. The system consists of a water cooled transmission micro-
focus X-ray tube type XT9225-TED (Viscom AG, Hannover, Germany) with a tungsten
target (shown on the left side). The highest attainable acceleration voltage is 225 kV and
the maximum permitted target power is 120 W. The high-precision rotation stage where
the object of investigation is placed uses air bearings (depicted in the center). As detec-
tor (right) a flat panel detector type XRD 1621 AN14 EHS (PerkinElmer, Inc., Waltham,
USA) was utilized. It is equipped with a (2,048×2,048) pixel screen of (41×41) cm size
and 200µm pixel pitch. The scintillator layer is based on gadolinium oxysulfide.

The test part was milled using aluminum instead of iron-based alloys due to the
limited acceleration voltage of the used X-ray tube and the small bars over both features
were removed to facilitate manufacturing. Due to the poor commercial availability of
aluminum balls of suitable size, steel-made sphere and cylinder features were used and
glued into the frame. Since the  CT setup was unable to offer all necessary axis for the
movements related to a spherical trajectory, the part was mounted on an assembly of
two tilting tables as shown in fig.  8.2 . Since each table was only able to move up to 30°
in each direction, a plastic wedge with an additional 30° angle was polymer-printed to
reach a total range of motion of 90°. This part is X-ray transparent in comparison to the
denser other materials and acts as intermediate layer to enable easy separation of bat
phantom and mount.

The setup was scanned using a standard planar trajectory with 72 projections, re-
sulting in a step size of 5°. Subsequently, the inclination angle was raised in 5° steps
until 85°, yielding 14 additional scans. Next, the polymer wedge was flipped horizontally
while the position of the bat phantom remained identical with respect to the assembly
and the procedure was repeated, resulting in 35 separate circular scans with 72 pro-
jections each. Additionally, a single planar reference scan using 2,520 projections was
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Figure 8.1: The industrial lab  CT setup used for the experimental measurements in this chapter.
Shown is the water-cooled transmission X-ray tube on the left side, the rotation stage in the
center and the shielded detector on the right. The scanner has seven degrees of freedom, is
installed on a vibration-damped granite bed and placed in a separate room with lead-reinforced
walls for radiation protection.

performed in the untilted position, which was done as the first scan to prevent devia-
tions to the shorter scan in horizontal position. All datasets with few projections were
reconstructed separately using the  SART algorithm, while the  FDK method was used
for the last scan, since it resulted in a better distinguishability of background and test
object. The scans with a lower number of projections cannot be directly combined into
a single dataset since their coordinate systems do not align and need to be rotated back
with respect to the world coordinate system. Also, the rotation points of the tilting tables
are unknown and located (unlike the simulations) somewhere outside of the center
of the bat phantom, which introduces a linear shift to the volumes so that additional
processing steps are necessary.

Subsequently, all reconstructed volumes were loaded into the commercial  CT visu-
alization and evaluation tool VGStudio MAX 3.4.3 (Volume Graphics GmbH, Heidelberg,
Germany) where the surface of each individual bat phantom reconstruction was deter-
mined manually. To reduce the influence of potential positioning errors between the
scans and to quantify the displacement that was introduced by tilting the setup, the
built-in automatic registration method was used to align all volumes with respect to the
reference scan with 2,520 projections. Next, the projection matrices, which describe
the acquisition position relative to the CT setup coordinate system for each projection,
were computed. Using the translational and rotational components determined in
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(a) Resting Position at 0° (b) Maximum Extension at 90°

Figure 8.2: Manipulator setup for the experimental measurements. The test part can be rotated
accurately between 0° (fig.  8.2a ) and 90° (fig.  8.2b ). The polymer wedge appears transparent
compared to the other materials in the X-ray image and allows easy separation of tilting table
and test part.

the registration step, the projection matrices for each scan were modified so that the
reconstructed volume was aligned with the reference scan. These adjusted projection
matrices were separately computed for each of the 34 tilted scans and stored together
with the projection data as additional input files. In combination with the untilted scan,
for which no change of projection matrices is necessary, the final dataset was obtained.

8.2 Differences to the Simulated Dataset

It is important to highlight that the dataset presented in this chapter is not identical –
neither with respect to the acquisition poses nor the projections themselves – to the
simulated projections of sec.  6.3 . While the phantom was considered to be free floating
without any mount or assembly for the simulations, the test part for the measurements
was attached to the mount described above, which has to be positioned in the beam for
some acquisition positions so that the image quality clearly deteriorates in such cases.
For instance, if a very inclined angle as shown in fig.  8.2b is considered, projections
taken from lateral direction will contribute very few information to the reconstruction
in case of the cylinder, while the sphere feature remains unaffected. Furthermore, for
the experimental data acquisition the bat phantom was tilted instead of the  CT setup,
which leads to a different distribution of acquisition poses. In case of the simulated
dataset a singularity can be found (i.e., several projections rotated around the  SOD  axis
at the identical acquisition position) at the poles located at θ =±90°, which is avoided
by the sampling schema that spans between θ ∈ [−85°; . . . ;85°]. However, this does not
hold for the experimental dataset, where such a situation occurs at φ= [0°;180°]. This
problem is solved by an adjustment of the weighting function as described in sec.  7.3 .
Nevertheless, this solution leads to a systematic bias since projections located at the
singularity are less likely to be included in the optimized trajectory after the first one
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is selected, so that fewer projections are effectively available. In addition, projections
located in the vertical plane were not acquired to fit the number of 2,520 projections
which poses an additional bias as well. Last, as mentioned above, while the test part
itself consists of aluminum, the features were made of steel and are therefore more
absorbing. While this leads to slight horizontal artifacts around both features, which
was observed even for the reconstruction using all available projections, it also increases
the visibility of the features in the projections due to their enhanced contrast. Contrary
to this, the simulated dataset was completely modeled as iron parts and the resulting
higher attenuation is compensated by virtually increasing the energy of the monoen-
ergetic X-ray spectrum (see fig.  6.2 ). Consequently, this dataset needs to be treated
separately from the one defined in sec.  6.3 and previously generated results are not
directly applicable, e.g., it is not possible to use the trajectory optimized on simulated
data for the experimental measurements using the datasets generated for this work.

As planar reference scan for evaluation, the untilted scan with 72 projection was
used, since all of these projections are contained in the optimization dataset. Un-
fortunately, it is not possible to define a meaningful spherical benchmark trajectory,
since some projections are systematically impeded by the manipulator and manually
removing those would improve the average  SNR in the remaining projections, therefore
biasing the results as well. It shall be noted that the method applied for generation of
the dataset is only able to compensate for inaccuracies of the setup and discrepancies
of nominal and actual position to a certain extent, since it relies heavily on the regis-
tration performance of VGStudio and the achieved image quality. However, while the
geometric accuracy will obviously be worse compared to flawless simulations, the ac-
quisition method is considered to be still more reliable than uncorrected measurements
as conducted in sec.  9  .

8.3 Evaluation of the Experimental Measurements

A trajectory optimization (parameters see chapter  B ) using different configurations was
performed on the dataset described in sec.  8  . The evaluation using the  SSIM turned out
to be problematic, since the calculated values did not coincide with the perceived image
quality. It is known that the  SSIM fails when applied to very blurred images [  276  ], which
is probably the reason for this issue, since, unlike the simulated data, the experimental
measurements include scattering effects and noise. For comparison, the  SSIM plots are
shown in sec.  D.4 , while the reconstructed images are presented in sec.  E.1 .

Results using the  RMSE  , which turned out to be more representative for this dataset,
are shown in fig.  8.3 . Due to reasons outlined in sec.  8.1 only the planar circle is feasible
as reference trajectory. However, the performance of the  PC in comparison to the  LDS 

for this part is known from the results provided in sec.  7  and it seems reasonable to
assume a similar relation also for the experimental data. To prevent singularities, the
geometric weighting was included in all cases (see sec.  7.3 ). This is not considered
a disadvantage since almost no difference between weighted and unweighted model
observers was observed in the simulations (see fig.  D.3  ) and the weighting step only
improved the results for other parts.

All in all, the results are in agreement with the simulations (see sec.  7  and fig.  D.2  ):
the  PW model observers perform poorly while both  NPW   MOs reach better or equal
image quality levels for all numbers of projections compared to the planar reference
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Figure 8.3: Quantitative results for the trajectory optimization with feature based and uniform
template for the experimental data for both  VOIs  . A weighting function is necessary and used
for all optimizations in order to avoid singularities. Both optimized NPW trajectories are better
or equal to the planar reference trajectory for all projection numbers while the PW trajectories
perform worse. Slices of the reconstructions using the indicated projection numbers are pro-
vided in sec.  E.1 .

trajectory. Unlike for the simulations, the optimization results for the cylinder are
slightly worse than for the sphere in comparison to the reference trajectory, while
feature-based and uniformly weighted  NPW  -optimizations perform comparably well.
However, the differences are relatively small and in the order of the  SEM of the reference
trajectory.

Reconstructed images of the the planar circle and the optimized feature-based
trajectory for 12 projections (first dashed line in fig.  8.3 ) are provided in fig.  8.4 . The
remaining reconstructed images indicated in fig.  8.3 are shown in sec.  E.1 . The qualita-
tive visual comparison is in agreement with the quantitative findings and shows a clear
improvement for the optimized trajectory. Additionally, the undersampling artifacts
around both  VOIs are almost entirely suppressed. However, the optimization of one  VOI  

can lead to a decrease in image quality for another one, which has similarly been re-
ported by other sources as well [ 190 ,  195 ]. This is particularly well visible in case of the
cylinder optimization, where the right half of the artifact exhibits severe artifacts caused
by a poor  SNR . Considering the example mentioned in sec.  8.2 , this is not surprising: a
projection acquired from a position like depicted in fig.  8.2b shows a good visibility and
contrast for one feature but in exchange for a very unfavorable acquisition position for
the second one that is characterized by a high amount of material in the X-ray path that
leads to a poor  SNR . This was not visible to this extent for the simulated dataset, since
no manipulator setup was necessary for the data generation so that both features were
always similarly well visible.

As consequence, it can be deduced that the best potential for trajectory optimization
is achieved if only few (ideally only one)  VOIs of reasonably small size are optimized.
Also, an optimization towards one part of the object can lead to image degradation
in other regions. Both assumptions are assumed to hold irrespectively of the used
optimization framework. While the measurements conducted in this chapter confirm
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Figure 8.4: Visual comparison of the optimized trajectory towards the sphere (upper left) and
the cylinder (lower left) and the reference  PC trajectory (right). For each dataset an intersection
plane and the horizontal cross section is provided (indicated with light blue and orange). For all
depicted reconstructions 12 projections were used and the optimization was carried out using
a weighted feature-based  NPW   MO . While the optimized trajectory shows clearly improved
image quality and artifact suppression for each feature compared to the planar reference, in
return the phantom area outside of the  VOI shows severe artifacts, which is particularly visible
in case of the cylinder optimization. Isolated white dots in the reconstructed images are caused
by uncorrected defect detector pixels, i.e., by the acquisition setup, and not related to the
optimization.

the former findings it was not possible to directly apply the simulation-based optimized
trajectory to an experimental setup due to practical restrictions.
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9 Practical Application with
Robotic Setup

After verifying the investigations stemming from simulations (chapter  7  ) with experi-
mental data (chapter  8  ) the next logical step is to leave the laboratory setting and apply
the optimization algorithm to an existing robotic  CT setup. This chapter aims to provide
a proof of concept that image quality improvements or a significant reduction of the
projection number can be obtained for practical usage as well. As stated in sec.  5.3 

robotic  CT installations have emerged just in the recent years and are typically still not
applicable for routine use. Furthermore, the used setup differs in many aspects from the
simulated or laboratory conditions that all other results of this work are based on. Such
differences are, for instance, limited accessibility, higher  SOD  and  SDD and reduced
positioning accuracy. In particular, only half-circle trajectories were feasible for image
acquisition due to range of motion restrictions of the robots. The investigation provided
in this chapter is considered to be the first trajectory optimization for an industrial
robotic  CT system using experimentally acquired data and was also published as a
separate work [ 199  ], where further information is provided. The images used in this
section are identical or modified versions to the ones used in the paper.

9.1 Setup and Inspection Task

The setup used for this work is the RoboCT-system of the car manufacturer BMW, which
was developed together with the Fraunhofer institute and is depicted in fig.  9.1 . Detailed
information about the setup is available in the literature [  225  ,  232  ] so that only a brief
overview is provided here. While the entire installation comprises four cooperating
industrial robots (Kuka Quantec extra KR90 R3100 HA, Kuka AG, Augsburg, Germany)
with a position repeatability of ±0.04 mm [  277  ] which are assembled on two linear axes,
only two are used for this investigation, which will be focused on in the following. These
are equipped with a Varex XRD 3025 detector (Varex Imaging Corporation, Salt Lake City,
Utah, USA) and a Comet MXR-225VF X-ray tube (COMET AG, Flamatt, Switzerland).
The setup is located in a closed area with radiation-shielded walls and provides enough
space to fit the largest car models as a whole.

As test object a Siemens CSM12/24 industrial Ethernet switch (Siemens AG, Munich,
Germany) as shown in fig.  9.2 was used, which has a base plate size of (90×70) mm and
a height of approx. 60 mm. To provide a well-defined imaging task, the component was
opened and a screw nut (size M6) was glued onto the lower circuit board (see fig.  9.2b ),
which acts as signal template and the surrounding volume as  VOI for the optimization
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Figure 9.1: Robotic  CT system ("RoboCT") of the BMW AG. The setup for this work comprises
two cooperative robots carrying the detector (left) and the source (right) as well as a mobile
sample holder (middle). The latter is equipped with an X-ray transparent polystyrene block at
the top on which the test part (see fig.  9.2 ) was fixated. Only the two robots in the foreground
were used for this investigation.

algorithm. Both parts can be considered typical industrial items with many parallel
and perpendicular surfaces. The inner electric components of the Ethernet switch
are located in two separate height levels, but unevenly distributed in each horizontal
plane. While the housing is made from plastic, these inner parts are significantly higher
absorbing and can cause image degradationin some regions, so that it is considered to
be well-suited as demonstration object for trajectory optimization.

9.2 Data Acquisition and Optimization Method

The test part was assembled onto an X-ray transparent polystyrene block that is located
at the top of a movable stand as shown in fig.  9.1 . Due to reduced accessibility and
motion restrictions of the robots, only a limited space was available in horizontal
direction for positioning of X-ray source and detector. In vertical direction, imaging of
the metal parts of the assembly had to be avoided as well as collisions with the sample
holder itself. Due to these constraints, the acquisition trajectory for generating the
projection pool had to be restricted to 190° in horizontal and 135° in the vertical plane
of which were 70° in inclining and 65° in declining direction to avoid colliding with the
stand. Since the cone beam angle was determined to be maximal approx. 16.8° for the
entire detector size of (354×304) mm, but the actual part being clearly smaller, this
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(a) Industrial Ethernet Switch (b) Open Part with Screw Nut Feature

Figure 9.2: As test object for the investigation an industrial Ethernet switch was selected. While
the housing (fig.  9.2a ) is almost completely X-ray transparent with respect to the used imaging
parameter (see sec.  B.2  ), the inner electronic components are clearly more attenuating. A screw
nut (white arrow) was glued into the lower circuit board as shown in the center of fig.  9.2b , which
was used as feature for the optimization. Figure  9.2b is rotated by 180° relative to fig.  9.2a for
better visibility.

trajectory is just at the border of acquiring the full Fourier space related to the horizontal
plane, which is necessary to avoid cone beam artifacts in this direction. The angular
sampling steps were uniformly set to 5°, resulting in 39 poses in the horizontal and 28 in
the vertical direction, yielding overall 1092 projections available, which is significantly
less than for other investigations in this work. Due to mechanical restrictions the
orientation of source and detector relative to the test part had to be rotated by 180° for
some projections, which was compensated by aligning the respective projections prior
to further processing steps. Some partial trajectories had to be manually complemented
by additional support movements to prevent collision with the sample holder. The
imaging and volume parameters are provided in sec.  B .

Analogous to sec.  7  and  8  an optimization using a weighted  NPW   MO was performed.
Since other optimization parameters and models did not outperform this configuration
as described in these sections they were omitted entirely for this investigation. For the
acquired positions  LDS and  PC trajectories were computed analogous to the previous
sections. However, since only less than a half sphere was available for reference def-
inition and optimization, the  PC trajectory was renamed to the more representative
planar half circle trajectory ( PHC ) and both benchmark trajectories are shown with
dashed lines to highlight the difference to former designs. However, also the acquisition
positions of the optimized trajectory is located in a half-sphere due to this definition of
the input projection set.

9.3 Evaluation Results for the Robotic Setup

Analogous to sec.  8  , evaluations using the structural similarity index as image quality
criterion have turned out to be problematic, so that the discussion concentrates on
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Figure 9.3: Optimization results for the RoboCT application. The optimized and  LDS trajectories
perform significantly better than the  PHC reference. The curves for the reference trajectories are
plotted in a dashed format to highlight that they are – unlike all other cases in this work – defined
only in a half sphere due to the available poses in the projection pool. For all projection numbers
the optimization approach, which was also restricted to the same feasible poses, is able to
provide the best image quality.

the  RMSE  shown in fig.  9.3 , while  SSIM -plots are additionally provided in sec.  D.5  .
Unfortunately, no values beyond 36 projections for the  PHC can be provided due to
the positions of the acquired projections. As apparent from the quality curves, the

 PHC performs poorly with respect to the  LDS trajectory. As in former investigations,
the optimized trajectory outperforms the  LDS for all projection numbers. However,
the improvements are much less than the transition from the planar  PHC to the three-
dimensional  LDS trajectory. This is likely caused by the shape of the test object: the
polymer housing is almost entirely X-ray transparent for the selected acceleration
voltage, but the internal structure is arranged in two planar circuit boards that comprises
highly absorbing electronic components. This leads to a systematic disadvantage for a
planar trajectory, since effectively none of these dense objects can be avoided, which
leads to a poor  SNR even though the structure of the screw nut with many edges
tangential to the horizontal and vertical plane would be well suited for such a design.
Contrary, most of the absorbing structures are avoided if projections stemming from
out-of-plane source positions are used. Since the circuit boards are an almost perfectly
two-dimensional structure any arbitrary three-dimensional trajectory is assumed to
improve the image quality with respect to the  PHC . Additionally, the upper board is
much smaller than the lower one, where the  VOI  is located, so that only few projections
are affected by this structure. The optimized trajectory can only improve this result by
achieving a more homogeneous image due to the geometric weighting and better edge
contrast in the  VOI due to the signal template used for calculating the observer model,
which explains the comparably lower gain in image quality with respect to the  LDS .

A cross-section view through representative reconstructed volumes for each trajec-
tory using 12 projections is shown in fig.  9.4 . The findings of fig.  9.3 can be confirmed
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Figure 9.4: Exemplary volume cross sections through the center of the screw nut using all
1,092 poses for the reference reconstruction and 12 projections for all other depicted cases. As
apparent from the overview images and in particular the magnified  VOI , the optimized trajectory
leads to clear improvements with respect to the  LDS and especially the  PHC design. As in the
former experimental investigation (see fig.  8.4 ) the  VOI image quality improvements lead to a
slightly higher noise level in the remaining image. For arrow explanations see full text.

visually, i.e.,  LDS and optimized trajectory perform significantly better than the  PHC ,
which is particularly well visible in the magnified  VOIs . Further visual images for the
other projection steps indicated in fig.  9.3 can be found in sec.  E.2 . As for the experi-
mental investigation of sec.  8  , the noise level for the overview image of the optimized
trajectory appears slightly higher than for the reference trajectories, e.g., the  LDS , while
the image quality and edge detectability in the  VOI improves. However, the difference
is relativized for higher projection numbers as apparent from the cross-sections in
sec.  E.2 .

The visual images provide further relevant details. For one, even in the reference im-
age slight geometric distortions are visible. This is most likely caused by a discrepancy
between assumed and actual positions of X-ray tube and detector for each projection.
Due to practical limitations of the acquisition software, each acquired arc of the input
dataset (i.e., positions with different θ but identical φ) was imaged separately in pre-
defined steps. These predefined steps were also used for the optimization algorithm
and all reconstructions. However, this approach does not allow the use of the actual
setup positions but only the nominal ones. While this difference is typically negligible
in practice for conventional industrial  CT systems, it is much higher for robotic instal-
lations and should be taken into account [  226 ,  233  ]. Furthermore, no software-based
alignment or other correction methods were used, so that these geometrical errors are
completely uncompensated and only the nominal geometry information was used.
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Concerning image quality, the  PHC performs poorly, which is apparent as well in the
 VOI  , where the inner hole of the screw nut disappears due to low contrast. In particular,
highly absorbing structures on the circuit board cannot be resolved as shown at arrow
a. Also, the position of the lowest structure at b appears right instead of left of the one
located higher in the image and the structure at c is not displayed round but angular,
which can lead to false conclusions about the structure. While the low-absorbing round
structures at d are visible in the optimized and  LDS trajectory, it cannot be observed in
the  PHC reference at all. It is surprising that such low-contrast structures (as apparent in
the full reference image) can already be resolved relatively well with only 12 projections.
It shall be noted that the missing edge at e is no artifact, but is caused by the restricted
and cubic reconstruction volume which ends at this part of the image. Last, as intended,
it can be observed that the optimization algorithm aims towards acquiring projections
parallel to edges of the feature template. This is well visible by the diagonal streaks at
f, which are caused by rays passing the volume almost unobstructed in proximity to
higher absorbing object parts.

Considering these aspects it can be concluded that it was possible to successfully
apply the proposed optimization framework to a robotic  CT installation for a practically
relevant task and representative imaging conditions. It was shown that the adaptation
of the acquisition trajectory towards spherical designs can clearly improve image quality
with respect to the typically used planar half-circle trajectory and that a reasonable
reconstruction result can be obtained even for relatively few projections if an iterative
method is used. Due to the particular structure of the test part it is assumed that
out-of-plane trajectories generally outperform the conventional planar design for the
investigated object. Furthermore, it shall be noted that the test object is the only multi-
material part used in this work. However, even though this restricts the potential for
optimization in this case, the optimization method was able to define a trajectory design
that is able to provide better imaging conditions than both reference trajectories for all
considered projection numbers. Considering the  RMSE  as criterion, a similar quality
can be achieved by the optimized trajectory with 16 compared to 36 projections for the

 PHC , i.e., only approx. 45 % of projections are necessary. Alternatively, if 36 projections
are considered, the  RMSE  of the  PHC can is determined to approx. 0.051 compared to
0.031 for the optimized trajectory, which equals a quality improvement by approx. 40 %
for this particular object and projection number.
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10 Influence of Part and Setup
Geometry

10.1 General Considerations

As discussed in sec.  4.3 the shape of the object greatly influences the distribution of high
coefficients in Fourier space. Since a sparse representation in the frequency domain is
necessary for successful trajectory optimization it stands to reason that not all items
can benefit in the same degree from such an approach. For instance, it was found that
the highest potential can be achieved by objects with few preferential directions [ 123 ].
In the extreme case, one can even imagine geometries that can be imaged with only two
projections for both, parallel beam geometry (e.g., cuboid) and  CBCT (e.g., deformed
parallelepiped). However, in general it is much easier to construct a shape that can be
imaged with a certain number of projections than quantifying how simple a particular
profile is with respect to the trajectory optimization task.

Furthermore, due to the properties of the Fourier transform an edge of the object is
not mapped to a single entry but an entire line through the origin located in Fourier
space. The Fourier slice theorem (see sec.  2.3.1  ) states that the values in this domain
cannot be measured individually but are located on such a line as well, since it cor-
responds to all the information inherent to a single projection, which is the smallest
unit of information obtainable. Consequently, the more representative property with
respect to the optimizability of a part is not the sparsity of its Fourier transform but its
angular sparsity instead, which means that the Fourier space consists mostly of small
values and the high components are concentrated on a few directions expressed in polar
coordinates. Varga et al. proposed a measure to quantify the direction dependency of
the reconstructions for a given part [ 122  ] which is likely linked to the optimizability.
Unfortunately, to be applicable for the investigations in this work the method requires a
high number of reconstructions and a similar size of samples per data point, which was
not always feasible (e.g., between different trajectory designs or for  PC trajectories with
many projections) for the results provided in this work and was therefore omitted.

Instead, in sec.  10.2  an optimizability metric will be derived that aims to predict the
potential for trajectory optimization. In order to validate the findings of the metric and
to better evaluate experimental results, a simple quantitative quality indicator will be
introduced in sec.  10.4.1 . Furthermore, as result of an intermediate computation step
to calculate the optimizability metric, the concept of summed Fourier coefficient plots
is introduced, which tries to visualize the angular sparsity for a given object and can be
used as a tool to identify valuable acquisition poses directly.
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10.2 Definition of a Metric for Optimizability

Based on the considerations of sec.  10.1  a quantitative metric can be derived that
expresses the angular sparsity – and as a consequence the optimization potential –
quantitatively. To accomplish this, after a Fourier transform of the feature (i.e., the
signal) that is to be optimizedω =F (∆s), the coordinate system is changed to spherical
coordinates and coefficients corresponding to different distances from the volume cen-
ter but the same spacial direction are summed up. While typically for the quantification
of signals the signal power is used (e.g., in sec.  4  ), the amplitude spectrum is applied
instead as it is considered to be more representative due to its direct link to the original
image and not the physical processes that lead to its generation. However, since the
power spectrum equals the amplitude spectrum squared, this choice is eventually of
minor importance since it just affects the scaling of the optimizability metric. Using
the signal power as basis for the optimizability metric instead would disproportion-
ately emphasize high valued coefficients, which distorts the quantitative values of the
optimizability metric and shifts it to relatively high numbers.

This step produces a coefficient map that shows the direction of valuable projection
poses with respect to the angles φ and θ. Exemplary these plots, which will be referred
to as angular summed Fourier coefficient plot ( ASFC -plot) in the following, are shown in
fig.  10.1  for two objects that will be introduced in sec.  10.4  . The values of the  ASFC -plot
can be used to calculate an angular histogram h

(
∆s

)
. Using the notation introduced in

sec.  4.2 these steps can be expressed as

h
(
∆s

)=Rφ,θ
(
F

(
∆s

))=Rφ,θ
(
ω

)
, (10.1)

where Rφ,θ indicates an angular Radon transform for a single pixel detector. Note that
this is a combination of Radon and Fourier transform applied to a part of the object,
while the baseΨCT suited for  CT of eq.  4.7 is a combination of Radon and inverse Fourier
transform to the Fourier-transformed object, which yields a similar matrix structure.
Figuratively speaking, the  ASFC -plot represents the information per spacial direction
of the Fourier-transformed feature. Such maps can in principle be used to identity
valuable angles for the trajectory optimization since these are located perpendicular
to particular high entries in the plots and a framework based on this property will be
proposed in sec.  11.2.1 . Theoretically, it is also possible that one direction corresponds
to more than one edge of the object, which would result in particular high values. A
similar concept – but based on projections instead of the feature itself – has been
previously proposed as figure of merit for a trajectory optimization algorithm [  179 ] (see
sec.  5.2 , approach  14  ).

To quantify the sparsity of h
(
∆s

)
, several metrics have been suggested in the past,

for instance the Shannon entropy or the `1 norm that is frequently used as constraint in
compressed sensing [ 106  ,  278  , p. 89]. Taking use of one of these metrics, the optimiz-
abilityΞ is defined as the Gini coefficient of h

(
∆s

)
, which is treated as one-dimensional

vector so that
Ξ

(
∆s

)= Gini
(
h

(
∆s

))= Gini
(
Rφ,θ

(
F

(
∆s

)))
, (10.2)

which is a scalar value. The pseudocode for the calculation is given in sec.  C.4 . It shall
be noted that an alternative implementation could be achieved by use of the Hankel
transform, which is the special case of a Fourier transform with a radial symmetric kernel
[  36  , p. 128f] that would improve the performance for the summation step. The Gini
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coefficient, which is mainly known for its application to express disparities in economics,
was selected as sparsity metric since it shows several beneficial properties compared
to other metrics [  279  ]. Particularly relevant for this application is the homogenity of
degree 0, which means that a multiplication of the input vector for the Gini coefficient
with a constant value α causes an scaling of the result with factor α0 = 1, i.e., the Gini
coefficient is scale invariant and Gini(a) = Gini(αa) is valid for an arbitrary distribution a
[  279  ]. As direct consequence, the template does not need to be defined in binarized
form but can be given in arbitrary values (assuming a mono-material part) as long as the
background is set to zero. Even more important, the result is theoretically independent
of the volume size and the number of voxels containing the feature itself (see sec.  10.3  ),
since the magnitude of the values of ∆s and ω are bounded and linked by Parseval’s
theorem (see sec.  3.7.2  ).

While the Gini coefficient ranges between 0 (perfect equality of all coefficients) and 1
(all coefficients except a single one are 0), the optimizability Ξ cannot reach 0. Because
of the summation of angles in space and the feature being defined in a cubic volume
the diagonal path through this space is longer than the side edges and more voxels
are contained in comparison to those. Therefore, due to this systematic bias – even in
the case of a dirac impulse δ in object space, which leads to a Fourier Space with all
elements having the same value – Ξ(δ) does not reach 0 but instead results in a value
of approx. 0.41 for the considered volume size of (91×91×91) voxels. However, the
reverse effect does not exist: the Fourier transform of a completely filled volume Ξ(αI)
with a constant factor α yields 1. Considering these extreme cases, the optimiziability Ξ
can be normalized to cover the full range:

Ξ(ω) = Ξ(ω)−Ξ(δ)

Ξ(I)−Ξ(δ)
, (10.3)

yielding the normalized optimizability Ξ ∈ [0;1]. Higher values of Ξ indicate an angular
sparse Fourier space and high potential for the trajectory optimization.

10.3 Limitations

It was stated in sec.  10.2  that the optimizability metric is independent from the volume
size it is defined in and consequently the sampling resolution, which has, however,
some limitations. Beside numerical inaccuracies due to the change of the coordinate
system and subsequent summation, a too small resolution might also result in the
loss of relevant feature properties, e.g., in case of curved transitions. Additionally,
the obtainable angular resolution decreases for a coarser voxel grid. On the other
hand, extremely large volumes can become computationally demanding, since the Gini
coefficient needs to be computed in a single step and cannot be generated by combining
precomputed smaller segments of the volume [  280 ], so that parallelized computation
is not feasible. To mitigate this effect it is recommended to explicitly compute the
minimum and maximum obtainable optimizability metrics with test functions for each
volume size and normalize subsequently using eq.  10.3  . For this work the normalization
test functions were a uniformly filled volume and a dirac impulse as indicated in eq.  10.3  .
The volume size was (91×91×91) voxels with an angular resolution of 1°.

Furthermore, the optimizability metric is just an approximative indicator. For
instance, a cube can be captured with the same number of projections, irrespective
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(a) Octahedron (8 faces, Ξ= 0.44)
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(b) Icosahedron (20 faces, Ξ= 0.35)

Figure 10.1: Exemplary  ASFC -plots of summed Fourier coefficients for the octahedron (fig.  10.1a )
and the icosahedron (fig.  10.1b ). High coefficients indicate valuable acquisition directions,
which correspond to the number of edges of the object and are symmetric due to geometric rea-
sons. The angular distribution of these coefficients is less sparse for the icosahedron compared
to the octahedron, which results in a lower value of the optimizability metric Ξ and corresponds
to less improvements for the trajectory optimization. Plots for the remaining platonic solids are
shown in sec.  F  .

of its size. However, the Fourier transform of differently sized objects differ and the
distribution of coefficients does as well, which can lead to slightly varying values for
otherwise almost identical objects. This property justifies the normalization towards
the theoretical extreme values instead of using practically more representative test
functions. Furthermore, the rotation of the object in space can influence the result of
the optimizability metric as well to a certain degree due to the voxel discretization of
the volume. This inaccuracy can be reduced by a finer voxel grid for the cost of a higher
computational effort.

As mentioned in sec.  10.2  the  ASFC -plots can be used to identify valuable angles
that can be used for trajectory optimization. However, this does strictly speaking only
hold if a parallel beam setup is used, since the Fourier transform does not consider the
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Figure 10.2: Overview of the Platonic solids used for the investigation. From left to right:
tetrahedron (4 faces), cube (hexaeder, 6 faces), octahedron (8 faces), dodecahedron (12 faces),
icosahedron (20 faces) and sphere.

diverging rays caused by the cone beam angle. This assumption can be approximately
fulfilled if the object is centered in the middle of the rotary stage and the  VOI  is consider-
ably small (see also sec.  10.4.2 for further discussion). It shall also be noted that modern
robot-based systems are able to scan in a virtual parallel beam mode, which is achieved
by the postprocessing of several acquired images [ 281  ]. Furthermore, even though the
concept of  ASFC -plots corresponds well with subjective intuition, only the information
of the amplitude spectrum is taken into account. In addition to the limitations and
drawbacks mentioned above, also several extensions and adaptions are conceivable,
which will be discussed in sec.  11.2.2 .

10.4 Simulative Verification via Platonic Solids

To investigate the suitability of a part with respect to trajectory optimization six test
parts have been defined. These are the six regular Platonic solids depicted in fig.  10.2  

that were selected due to their high symmetry, their spatial expansion, and their well
defined increasing complexity; i.e., the increasing number of edges. The test objects
were scaled so that they are inscribed into the sphere to reduce size-dependent effects.

10.4.1 Parallel Beam Configuration

Figure  10.3  shows the normalized optimizability values for each test object. As expected,
the optimizability decreases with increasing number of faces of each body, where the
sphere is considered to have an infinite number of faces. However, the value for the
tetrahedron is unusually low and on the same level as the more complex octahedron,
which appears to be implausible at the first glance. The explanation comprises a close
look at the symmetry of the Platonic solids: for the cube, octahedron, dodecahedron
and icosahedron two planes are always parallel to each other, while this is not the
case for tetrahedron and sphere. Consequently, the cube has only three unique faces
compared to four for the tetrahedron, which results in a higher optimizability value for
the former.

Also counter-intuitively, the tetrahedron (4 faces) reaches the same value as the
octahedron (8 faces). However, this can be explained by a similar argument as both
bodies have each four unique planes. Moreover, in this particular case, under an
appropriate orientation those faces overlap as illustrated in fig.  10.4  . This suggests
that both parts can not only be similarly well optimized but the optimized trajectories
should even coincide. As logical consequence, the  ASFC -plots appear identical for both
bodies (compare fig.  F.1  and fig.  F.3  ).
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Figure 10.3: Calculated normalized optimizability for all platonic solids. Due to the planes of
the cube being aligned in only three different spacial directions, the calculated value is higher
compared to the tetrahedron that spans four directions. Even though having double as many
faces, the octahedron yields the identical value since only the same four spatial directions are
covered (see fig.  10.4  ).

To confirm these considerations, datasets for each part were generated analogous
to the workflow described in sec.  6.3 , using Aluminum as material. Since the simu-
lation tool does not permit parallel beam geometry, the source-object distance was
increased until an effective half cone beam angle of maximum 1.2° was reached, which
is considered to be negligible in the following. Analogous to the workflow proposed
in sec.  6.5 , sets of ten  LDS reference trajectories were generated and averaged. Addi-
tionally, a feature-based optimization using a  NPW   MO with geometrical weighting
was performed for each Platonic solid. Since the test parts are the only objects in the
simulation, the optimization  VOI was enlarged to (91×91×91) voxel in order to fit the
entire part. As an empirical figure of merit for the optimizability per projection number
the image quality ratio  IQR is defined as the ratio of the  RMSE  of the  LDS reference to
the optimized trajectory:

IQR = RMSELDS

RMSEoptimized
, (10.4)

where values higher than 1 correspond to an improved image quality compared to the
reference (i.e., a successful optimization) and for values lower than 1 the optimization
algorithm failed. The  LDS trajectory was chosen as reference, since the optimized
trajectory comprises poses located in three spatial directions, while using e.g., the  PC 

as reference would result in a systematic error due to its planar design. A drawback of
the simple definition of the IQR is a dependency on the volume filling of the evaluated
part. Reconstructions with a small number of acquired projections typically lead to
smeared out attenuation values over larger parts of the volume, since few samples are
averaged over the domain. This is particularly well visible for  FDK reconstructions,
where few projections result in typical, well visible streaks through the volume, but also
other methods such as the  SART algorithm used for this investigation exhibit a similar
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Figure 10.4: For an octahedron (blue) inscribed into a tetrahedron (gray) as depicted in the
center, four of the eight octahedron faces match the faces of side planes of the tetrahedron,
while the other four ones are aligned parallel to them as shown schematically on the left and
right. Since no additional plane directions are introduced, the optimizability indexΞ is identical
for both figures (see fig.  10.3  ), even though the number of edges differ by a factor of two.
Given parallel beam geometry, both features can theoretically be reconstructed with the same
minimum number of projections and even the identical trajectory, while the octahedron requires
double as many for a cone beam setup. The sizes of the depicted objects do not correspond to
their actual size for the simulation, since both were inscribed into a sphere (see sec.  10.4  ).

behavior. For bodies on the left side of fig.  10.2  this leads to particular high  RMSE  values,
since the volume filling of e.g., tetrahedron or cube is comparably small so that smeared
out attenuation values are compared to the very low air values of the environment and
subsequently squared, which increases the effect. For Platonic solids with high volume
filling, the effect is smaller, since the  VOI contains less air. As result the  IQR values of
test objects with low volume can be slightly worse than such for larger parts.

The resulting  IQR curves for all Platonic solids are shown in fig.  10.5  where the
error bars were omitted since they are barely visible due to the scale adjustment. The
improvement is in agreement with the calculated optimizability values (see fig.  10.3  ):
as expected, the cube, which showed the highest optimizability reaches very high

 IQR values higher than 3, while a lower Ξ correlates with a lower  IQR . In theory, the
curves corresponding to test parts with few unique planes should also incline earlier
than others (e.g., the cube at 3 and tetrahedron and octahedron at 4 projections, even
though this would not be distinguishable due to the sampling resolution in steps of
2 projections). However, this is not observed, most likely due to the insufficiently fine 5°-
discretization of the available poses and the normalization with respect to the  LDS 

design. Due to performance limitations only the first 72 projections were calculated
for each geometry. However, based on the typical shape of the image quality curves
(see sec.  7  ) it appears reasonable to assume that the  IQR of all test parts will quickly
converge to 1 for higher projection numbers.
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Figure 10.5: Image quality ratios for the parallel beam geometry case. All test parts show im-
proved image quality compared to the  LDS benchmark trajectory (equal performance indicated
by a ratio of 1) and behave like predicted by the optimizability metric in fig.  10.3  . For higher
projection numbers all curves would converge towards 1.

10.4.2 Cone Beam Configuration

Most discussions in this work were conducted with a parallel beam geometry for conve-
nience and since the derivation for cone beam can be performed analogously. However,
the use of a  CBCT setup has a direct practical consequences. The cone beam angle
generally depends on the  CT geometry and the size of the investigated part or the de-
tector. Typically, the  HCA is not explicitly predetermined in practice but derives from
the application because other geometry parameters as the  SDD cannot be selected
arbitrarily since the  VOI of the part needs to fit the screen and higher  SDDs lead to
longer scan times due to the inverse square law of radiation. While a single projec-
tion image captured via parallel beam setup appears to be a line in Fourier space (see
fig.  2.4 ), it resembles a wedge for  CBCT , where the opening angle equals the  HCA [  99  ].
Analogously, obtaining a cone beam projection can be imagined as acquiring several
partial images from different angles, with each of them projecting to another position
on the detector plane [  36  , p. 265f].

It can be intuitively shown that the proposed optimizability metric (sec.  10.2  ) cannot
be directly applied for  CBCT since the phase spectrum is not taken into account. Both
Fourier-transformed figures in fig.  10.6  have the same amplitude spectra, therefore
resulting in the same values for Ξ. However, the left example (fig.  10.6a ) can be almost
perfectly recovered 

1
 by only one projection if the upper and lower edges – which would

1In practice, this is only approximately true as a shift to higher attenuation coefficients for the lateral
rays can be observed in fig.  10.6c . This is caused by the reconstruction algorithm that weights each ray
by the sum of voxels in the reconstructed volume that it passes through. In this example the volume is
rectangular and ends abruptly at both horizontal sides, which means that less voxels are used to weight
the respective rays and the lateral voxel values are considered to be higher.
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(a) Positive Example (b) Negative Example

(c) Reconstruction of  10.6a (d) Reconstruction of  10.6b 

Figure 10.6: The amplitude and power spectra of the Fourier-transformed test parts in  10.6a 

and  10.6b are identical. Nevertheless, the first part can be almost perfectly reconstructed from
a single projection (fig.  10.6c ) while this is not possible for the second one (fig.  10.6d ). This
effect is caused by the cone beam geometry of the setup, which is not taken into account by the
Fourier transform.

require adding significantly more projections – are not of interest, which is not feasible
for the second part (fig.  10.6b ).

While in this example the  CBCT geometry can be considered to be beneficial since
fig.  10.6d cannot be obtained with a parallel beam setup, the opposite effect is also
possible and even more likely to occur. Since the number of faces increase with each
Platonic solid, it appears reasonable to assume that the number of faces determine
the optimizability of the part for the  CBCT case, irrespective of any symmetries. This
is exemplary illustrated in fig.  10.7  . Analogous to fig.  4.2 , the Fourier transform of the
object would result in a very sparse representation that allows imaging by a parallel
beam setup with only two projections for the entire part or with only a single one if
solely the grid pattern needs to be resolved. Unfortunately, this is not feasible if a  CBCT 

setup is used instead, since only a single ray (marked green) is parallel to one part
of the lattice at the same time. One can imagine cases where the angle between the
edges corresponds to the  HCA (e.g., fig.  10.6  ), which are in favor of the cone beam setup.
However, in practice for typical industrial items most edges are parallel or perpendicular
to each other and will only seldom coincide with this angle by chance. In such cases the
optimizability can be qualitatively determined by counting the edges of the part (fewer
edges are better optimizable) instead of using the metric introduced in sec.  10.2  .

To further investigate the influence of the  CBCT quantitatively, the steps described in
sec.  10.4.1 were repeated where  SDD and  SOD  were decreased while the magnification
was kept constant, resulting in a wide half cone beam angle of approx. 22°. The results
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(a) First Necessary Angle (b) Third Necessary Angle

Figure 10.7: For a parallel beam setup, the vertical part of the grid could be imaged with a
single projection. However, since the rays of a cone beam setup diverge, each edge needs to be
captured separately as shown for the first (fig.  10.7a ) and the third left edge (fig.  10.7b ) of the
lattice (counted from inside to outside, aligned ray marked green). As a result, significantly more
projections are necessary for this example with a cone beam geometry compared to a parallel
beam setup to obtain a reasonable reconstruction.

are shown in fig.  10.8  . As expected, unlike in the parallel beam configuration, the
performance of the tetrahedron (4 faces) appears now better than the cube (6 faces) due
to its lower total number of planes. Also, the  IQR values are generally lower, since one
projection is now necessary for each plane, assuming that no two planes span precisely
the cone beam angle.

Surprisingly, the optimized trajectory for all test bodies except the first two performs
very poorly, with all  IQR values being below 1.1 and even lower than 1 for a broad
range. This is not linked to the optimizability of the parts; instead, the setup geometry
violates the assumption of a small cone beam angle. The problem is illustrated in
fig.  10.9  . Exemplarily shown is the central section plane of a tetrahedron (green) and
an dodecahedron, which is a regular hexaeder (red). As described in sec.  10.9  both are
inscribed into a sphere (gray). As described in sec.  6.4.2  , the Fisher information matrix
used for the optimization is calculated based on a single evaluation point E, which is the
central voxel of the  VOI . For convenience the  VOI  is shown centered in the principal ray
between source and detector. Modulation transfer function and noise power spectrum
are predicted for the evaluation point and considered to be identical for each voxel in
the  VOI  ; this is equivalent to the assumption of a small  VOI  , where image characteristics
do not change considerably, including the cone beam angle. This is an approximation,
resulting in the angular errors α and β for each test object. These errors depend on
the effective size of each object (i.e., the distance between evaluation point and outer
edge) and the  SOD  , where smaller objects or larger  SDDs lead to smaller errorsα′ and β′

as indicated on the right side. It is apparent that the angular error for the given setup
approaches the half cone beam angle for larger  VOIs and therefore larger test objects,
resulting in a very poor result of the optimization algorithm for such. For the smaller
cube and tetrahedron objects the error is also smaller, so that still reasonable results can
be obtained, while it is worst per definition for the sphere. Theoretically, this problem
could be avoided by evaluating at each voxel position in the  VOI . However, this would
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Figure 10.8: Image quality ratios for a wide half cone beam angle of 22°. The total achievable
image quality ratio is greatly reduced and the relative performance of cube (6 faces) and tetrahe-
dron (4 faces) change compared to the parallel beam case (fig.  10.5  ) since the overall number of
planes becomes relevant instead of the number of unique faces. For the remaining, larger test
objects the optimization algorithm fails as the  IQR drops below 1; for a discussion see main text
and fig.  10.9  .

linearly increase the computational time; for this case with a size of (91×91×91) voxel
the calculation would take approx. 750,000 times longer, which is clearly not feasible
for practical use.

10.5 Industrial Example Applications

In section  10.4  the validity of the optimizability predictions have been investigated using
artificial, mathematically defined test objects that correspond to extreme cases. In the
following, an example application for the industrial parts introduced in sec.  7.3 will be
used to demonstrate that the metric can also be applied to more realistic cases. While
further details concerning this dataset have been previously published in a separate
work [  129 ], considerations concerning the optimizability have not been conducted in
this paper and will be added in the following. Further details about this dataset are also
summarized in sec.  B .

As  VOIs , an electric engine and the manipulation head of an industrial robot is
considered. The former contains sharp, clearly defined edges and reaches a normalized
optimizability of Ξ = 0.80. Contrary, the head part is round and highly symmetric,
yielding a lower value of Ξ= 0.71. Both are very high values compared to the Platonic
solids of sec.  10.4  , which is probably a result of the smaller  VOI ((49×49×49) voxels
opposed to (91×91×91) voxels) that results in a coarser reachable angular resolution
leading to a sparser distribution of the summed Fourier coefficients (see sec.  10.3  ).

 IQR plots for both  VOIs are shown in fig.  10.10 together with reconstructed slices for
16 projections. The comparably low projection number was selected since differences

109



CHAPTER 10 | INFLUENCE OF PART AND SETUP GEOMETRY

a
b

E

SOD SOD' = 3 SOD

Figure 10.9: Influence of the  CT setup and object shape, exemplarily depicted for horizontal
cross sections of tetrahedron (gray) and dodecahedron (green), which are inscribed into the
boundary sphere (light blue), together with their effective half-  VOI sizes a and b. For perfor-
mance reasons the optimization algorithm assumes a  VOI -centered X-ray beam path passing
through the evaluation point E. Low  SDDs or large objects (a) result in a wide half cone beam
(left side) and the angular errors α and β increase. Contrary, for smaller features (b) or higher

 SDDs a narrower half cone beam angle results (right), which leads to negligible angular errors α′

and β′.

are better visible for few projections; additional reconstructions for more projections
are provided in the related work [  129  ]. As predicted by the optimizability metric, the

 IQR is higher for the engine, reaching values of approx. 1.5, while comparably low
values around 1.2 are obtained for the head  VOI . Both findings are also confirmed
by the visual impression of the reconstructed volume slices. The  IQR decreases after
approx. 80 projections, while the head values are mostly constant over a longer range.
In contrast, most Platonic solids have not reached the plateau in the investigated range
until 72 projections in sec.  10.4.1 . The optimized trajectory also outperforms the  LDS 

reference for all projection numbers.
This example demonstrates that the optimizability metric derived in sec.  10.2  is

capable to qualitatively predict how well a certain feature can be optimized even for
complicated  VOIs . The highest empirically obtained  IQR values are approx. 3.2 in the
extreme case of the cube (fig.  10.5  ) and 1.5 for the more realistic industrial part. This
corresponds to a decrease of the  RMSE  of approx. 70 % and 35 %, respectively.

10.6 Relevant Projection Ranges for the Bat Phantom

Due to the considerations of chapter  4  this work concentrates on trajectory optimiza-
tion with less than approx. 150 projections. However, for the simulated bat phantom
optimized trajectories over almost the entire range up to 2,400 (of a set of 2,520) projec-
tions have been generated, so that these results are available for further analysis. The
optimizability values were calculated asΞ= 0.70 for sphere andΞ= 0.85 for the cylinder,
where the  VOIs were of size (49×49×49) voxels as for the industrial parts in sec.  10.5  .
The  IQR values are shown in fig.  10.11 and are in agreement with the optimizability
values. In particular, the sphere reaches their first plateau at  IQR values of approx. 1.2,
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Figure 10.10: Image quality ratios (left) for the industrial example parts: as predicted by the opti-
mizability values, the engine  VOI  (Ξ= 0.80) includes several salient edges and has consequently
more potential for improvement via trajectory optimization than the round and symmetric
head part (Ξ= 0.71). This is also obvious in the reconstructions (right) as shown exemplarily
for 16 projections, where the image quality clearly improves for the engine but changes barely
noticeable (to a human observer) for the head  VOI .

which is identical for the head  VOI (Ξ = 0.71) for which a similar optimizability was
calculated. Interestingly, apart from the first, sharp  IQR peak under 200 projections
both features show a second peak towards very high projection numbers. This peak
differs in magnitude, spread and location between both test objects and exceeds the
primary peak clearly for the sphere. Since the  IQR at 2,520 projections is 1 per definition,
the second peak for the cylinder has to be even more narrow than the first one.

These findings suggest that apart from the optimization for low projection numbers
on which this work concentrates on, there also exists a second range closer to the full
projection set as proposed in sec.  4.5 where the adjustment of the trajectory is worth-
while. While the absolute  RMSE  difference of the second peak is negligible compared
to the first one, where differences can typically be seen with the bare eye, the relative
improvement in the high projection region can even surpass the potential in the first
region in relative numbers. Such considerations could be relevant for metrological in-
vestigations using industrial  CT scans. All of the left out projections are located opposite
to already included ones or along the longest X-ray path in case of the sphere, with
most of them being concentrated at the poles, i.e., the algorithm tries to achieve an
angular uniform sampling pattern. Interestingly, the same distribution can be found at
the much lower projection numbers at approx. 1,600 projections which indicates that
the Fourier space is already completely sampled at this point and adding further projec-
tions only affects the noise. Since the dataset was generated by simulations with perfect
detectors the only source of noise is given by the photon statistics determined by the
attenuation values of the object, which is not critical in vertical direction and leads to
preferable positions at the poles. The conclusion is that the extended plateau between
approx. 1,600 projections to 2,000 projections arises due to the addition of pole-located
projections that provide few further information and the decrease in image quality
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Figure 10.11: Image quality ratios for the bat phantom  VOIs . While this work mostly concen-
trates on the region with low projection numbers, also a second range was identified where
the optimized approach clearly outperforms the reference trajectory (both approximate ranges
highlighted). The location of this second maximum is part-dependent and even higher than the
first peak for the sphere.

for higher numbers is caused by including low-contrast ones in the horizontal plane.
For the cylinder the result is similar, but most missing projections can be found in the
regions outside the horizontal or vertical plane, since these correspond to the least
important directions in Fourier space. In this case a homogeneous angular projection
distribution seems to be less relevant and the distinct peak at high numbers corresponds
to poses related to the longest X-ray path. Both results appear reasonable and are in
accordance with the properties outlined in chapter  7  . The high projection peaks could
be more efficiently identified by adapting the trajectory optimization algorithm so that
projections are successively removed from the full set. However, it is not yet clear if
the resulting trajectory is identical to the ones shown here, which were generated by
adding projections to the solution set. Furthermore, it is crucial to bear in mind that
this discussion is based on the assumption that the best image quality is achieved by
the full reconstruction with 2,520 projections as outlined in sec.  6.5.1  , which is just a
simplification to facilitate this analysis. It appears reasonable to assume that reference-
less metrics like the Shannon entropy are better suited to assure representative image
quality assessment in the high projection domain which, however, is beyond the scope
of this work.
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11 Discussion and Outlook

While this work aims towards providing a set of tools and methods to facilitate and
evaluate trajectory optimization for industrial  CT , still several limitations apply and
many questions that are important for its practical usage are yet unanswered. In sec.  11.1  

an overview of such will be provided, while suggestions for further development are
discussed in sec.  11.2  . In general, the structure is organized with respect to the priority
of each item, i.e., most relevant points are listed first.

11.1 Limitations and Open Questions

The framework proposed in this work is still far from being applicable for industrial
routine and several points have to be clarified before a large scale application can
reasonably take place. Probably the most pressing question that could not been an-
swered in this work due to reasons outlined in part  III , is how well optimizations based
on simulations and measured projection data coincide (sec.  11.1.1 ). The clarification
of this point is imperative for a broader use of trajectory adjustment methods, since
time-consuming and costly experiments could be avoided in the workflow. Practical
problems related to the adjustment of the setup (sec.  11.1.2 ) and mechanical optimiza-
tions of the path (sec.  11.1.3 ) are further limitations that should be solved in subsequent
steps. The next question to be addressed should be how many projections are actually
necessary to obtain a sufficient image quality (sec.  11.1.6 ). However, in order to give
an accurate answer it is essential to first develop more reliable image quality metrics
(sec.  11.1.4 ) and investigate their impact onto the  POD (sec.  11.1.5 ) to avoid overlooking
certain kinds of defects. Last, the influence of the inspected object geometry (sec.  11.1.7 )
and the consequences of spatially varying image properties (sec.  11.1.8 ) should be ana-
lyzed to gather experience on how to use such optimization methods and how much
adjusted workflows can benefit in practice.

11.1.1 Transferability between Simulations and Test Objects

While the results presented in this work suggest that the input projections for the
optimization framework can either stem from simulations (sec.  6.3 ) or experimental
measurements (sec.  8  and  9  ), it is not yet clear if results performed on the former can
directly be used for real world applications. Since the generation of synthetic datasets
is significantly cheaper and easier than real measurements, it is desirable to evaluate
to which extent simulation parameters need to agree with the measurement setup to
obtain reliable results. Solving these questions would allow to optimize and refine a
trajectory based solely on digital data (e.g., via  CAD  ) so that no expensive measurements
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need to be conducted at all before productive use. Furthermore, most of the experi-
ments in this work were conducted using noise-free simulations of primitives (sphere
and cylinder) or simple geometrical shapes (Platonic solids) that are not representative
for typical industrial items in all aspects. For instance, the evaluations using the image
quality ratio ( IQR ) in sec.  10.5  showed that the highest optimizability for such objects is
achieved at much lower projection numbers than for other test bodies. Furthermore,
the potential was much lower and decreased earlier, but showed benefits for symmetric
parts over a longer projection range. For future developments it would be desirable to
evaluate certain properties with more diverse geometrical shapes – preferably in form
of predefined test datasets – to obtain more robust results.

11.1.2 Practical Routine Implementation

While the results presented in this work suggest that trajectory optimization has a high
potential for many industrial scenarios, its realization requires that the proposed design
can also be implemented swiftly in practice. Consequently, the uncomplicated mechan-
ical realization of the respective movements, for instance of the source-detector system,
needs to be easily adjustable in a shop floor environment. Unfortunately, setups offering
the necessary flexibility and  DOFs have only recently been developed (see sec.  5.3 ) and
the technology is still in its infancy, which turns the detailed trajectory definition into a
demanding and time-consuming task that needs to be performed manually in many
small steps. In particular, adjusting the setup with respect to geometrical restrictions,
accessibility and collision avoidance is still a major obstacle for its routine usage. To
allow for trajectory optimization in a productive context it is essential to first facilitate
the uncomplicated selection and adaptations of the proposed design [  195  ].

11.1.3 Spatial Constraints and Smooth Trajectories

For the course of this work it was assumed that all positions on a sphere around the part
can be reached by the acquisition setup. While this condition can be investigated by the
use of simulation tools, it is clearly not feasible in practice due to kinematic and spatial
constraints, so that the input data set was reduced accordingly for the experimental
measurements (see sec.  8  ). In practice, such movement restrictions also apply for
most medical [ 182  ,  191 ] and industrial setups [  240  ] and in extreme cases only a two-
dimensional trajectory optimization is possible. Particularly problematic with respect to
spatial constraints are robotic installations, where often an accessibility of less than 180°
can be achieved [  230  ]. It seems reasonable to assume that such restrictions will also
diminish the improvements that can be obtained by adjusting the acquisition poses. It
shall also be noted that a smoothly connected trajectory as result of the optimization
framework would generally be desirable, which was not investigated in this work to
reduce the overall complexity. While some work has been performed towards generating
a smooth and continuous curve as side condition of the optimization [ 190 ] it has also
been shown that this can have a significant negative impact onto the achievable image
quality when compared to discontinuous designs as used in this work [ 195  ]. However,
for such trajectories the unproductive positioning time is also reduced, which increases
the overall acquisition speed so that more projections can be generated in the same
amount of time, which can improve image quality for a given time budget.
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11.1.4 Robust Image Quality Indicators

Currently, no generally accepted image quality metric for reconstructed volumes exist
that can be reliably applied to all use cases (see sec.  6.5.1  ). In preliminary investiga-
tions [ 136 ] for this work, five different image quality metrics have been considered
in particular ( RMSE  ,  SSIM , mutual information, Shannon entropy and Fourier shell
correlation). However, the evaluation of experimental data has still turned out to be de-
manding (see sec.  8  ). One reason is probably that the reconstructed volume represents a
mathematically derived, highly artificial image defined in three dimensions, while most
quality measures were developed for natural two-dimensional images. A universally
applicable, stable and volume-defined image quality metric for  CT data would clearly
facilitate the evaluation of optimized trajectories and appears also relevant for other
use cases and related future investigations.

11.1.5 Influence onto Probability of Detection

As repeatedly outlined in this work, features do typically not contain frequencies of the
entire Fourier space, but span only a limited part of it. While this lays the foundation
for trajectory optimization, several geometries that need to be detected are not known
beforehand and not including the mandatory projections for related angles could lead
to a significantly more difficult or even impossible detection of such. The incapability of
resolving features and discontinuities that are not tangential to acquired poses [  121 ] is
particularly problematic for near-2D or 1D geometries like cracks [ 282 ], delaminations
or interface layers (e.g., adhesive bonds). Furthermore, defect detection is a complicated
task including many influence factors and even though a flaw is clearly visible in one
part of the test piece, it might become less recognizable in other parts of the volume due
to varying imaging properties and influence of the part geometry [  283 ]. Currently, it is
unclear how trajectory optimization approaches influence the probability of detection
of such geometries; however, there is strong evidence [  284 ] that these methods should
not be used if certain kinds of flaws (e.g., very directed ones) need to be detected since
they might disappear in the reconstructed images. In any case profound knowledge of
the imaging task, likely flaws and the part as such are strongly required to safely apply
trajectory optimization algorithms on a routine basis.

11.1.6 Definition of the Termination Criterion

For the course of this work the explicit definition of a termination criterion for the
optimization algorithm was entirely avoided by repeating the calculation for different
projection numbers, which results in the quality plots that were extensively used, e.g., in
sec.  7  . However, in practice it is typically not feasible to determine a projection number
that leads to a sufficient image quality before the optimization step. One possibility
would be to repeatedly reconstruct the optimized trajectory at different projection
numbers and compare it to a reference like performed in this work. The termination
criterion could then be defined as the number of projections that lead to an image
quality that reaches a predefined threshold or does not change considerably anymore
over a certain range; this corresponds to finding a plateau in the quality curves. Since a
certain image quality does typically not have sufficient expressive value on its own, it
would be desirable to link the probability of detection of certain kinds of flaws – which
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is usually the property that one is eventually interested in – to a certain image quality
value, combined with further properties of the object. This seems reasonable, since
the concepts of  POD and receiver operating characteristic curve (ROC) are related
(see sec.  3.5 ). Unfortunately, these criteria would increase the computational costs
of the algorithm due to the necessary but unproductive reconstruction steps so that
alternative definitions are preferable. A more efficient method would be to determine
the termination condition with respect to the optimizability value defined in sec.  10.2  ,
which is computationally cheap and can be calculated before the expensive and time-
consuming optimization, therefore allowing to decide if the effort is actually worthwhile.
While a very first step towards such a criterion has been made in sec.  10.4  by qualitatively
linking the image quality ratio to the optimizability, still significantly more work is
required to define a feasible and reliable termination criterion that can be applied in
practice.

11.1.7 Geometry Influence Investigation via Part Libraries

As outlined at various parts of this work (e.g., sec.  4.3 ), the potential of trajectory op-
timization approaches depends heavily on the definition of the imaging task and the
shape of the object to be investigated. While this has been covered in sec.  10  for par-
ticular geometries, most experiments in this work have been conducted with only few
test bodies due to computational constraints. In order to obtain more accurate and
representative results it would be desirable to optimize not just few parts but entire
databases of various different shapes and compare the outcome. Unfortunately, such
a broad investigation was beyond the scope of this work since it requires significantly
more measurements, time and computational power. However, for the easier case
of discrete tomography problems such evaluations are often feasible and have been
performed in most of the work presented in sec.  5.2.2  .

11.1.8 Practical Impact of Spatially Varying Image Properties

Since the density of X-ray paths crossing a particular voxel varies over the geometry of
the object, trajectory optimization can lead to spatially inhomogeneous image prop-
erties like noise, contrast or resolution [ 23  ] (see also sec.  4.5 ). While this is generally a
desirable mechanism since the goal of the method is to improve these characteristics
for the  VOI , it is imaginable that the image degradation in other parts of the volume
(see fig.  8.4 ) can lead to confusion for human observers or ultimately wrong conclu-
sions. Furthermore, it is known that uncompensated, nonuniform resolution can lead
to geometric distortions that impede image registration and the direct comparison of
features at different locations within one image is not feasible for such cases [ 285 ,  286 ].
However, it is yet unclear to what extent these effects are relevant for practical trajectory
optimization applications.
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11.2 Further Work

11.2.1 Adaptations of the Optimization Approach

As stated in sec.  11.1  , several questions are still unanswered, but also further develop-
ments to improve the performance of the trajectory optimization approach are also
imaginable. Certainly by far the most important improvement would be to reduce
the complexity of the method (sec.  11.2.1.1  ) to become independent of the predictor
functions (sec.  6.4.2  ) and therefore avoid the necessity of costly parameter sweeps
for the regularization parameter. Next, clarifying what the inspection task actually is
can turn out to be very demanding and will usually require expert knowledge. Some
approaches are imaginable that allow more flexibility in the task definition and extend
its use to new application scenarios, which are discussed in sec.  11.2.1.2  . While several
methods, such as simulation-based refinement steps (sec.  11.2.1.3  ) or an extension of
the parameter space (sec.  11.2.1.4  ) are possible to improve the outcome of the trajectory
optimization, also advances concerning the computational speed are feasible. Such
comprise, for instance, simplifications in form of partial trajectories instead of single
projections (sec.  11.2.1.5  ) and reductions of the problem towards lower dimensions
(sec.  11.2.1.6  ) or even a discrete formulation (sec.  11.2.1.7  ). While such optimizations
are usually of relatively low relevance if sufficient calculation power can be provided
(e.g., via cloud-based computation services), these approaches can become important
if online optimizations (sec.  11.2.1.8  ) are required. However, such methods are usually
less relevant in industrial practice, due to the existence of repeated inspection workflows
and the broad availability of geometrical object data.

11.2.1.1 Simplified Framework

The optimization framework (see fig.  6.1 ) proposed in this work is generally complex
and intertwines various effect by use of a model observer. Furthermore, the prediction
framework is highly dependent on a (in advance typically unknown) regularization
parameter and can even introduce a certain chaotic behavior in some cases. Conse-
quently, a drastic simplification of the approach is desirable; a suggestion for such is
depicted in fig.  11.1  , which combines several already existing approaches. In sec.  10  

it was demonstrated that the potential of the trajectory optimization is particularly
high if the  VOI to be optimized is relatively small. Taking advantage of this, a recon-
struction stage of this small local volume can be included in the optimization loop,
which becomes computational feasible by a high degree of parallelization and replaces
the prediction framework. The relevant optimization properties can be assessed by
separate metrics instead of the  MO  . For the image quality, for instance, a figure of
merit like the  RMSE  or  SSIM used in this work could be used. In fact, for a very similar
framework promising results have been reported using either  SSIM ,  FSIM or a averaged

 PSF  (see sec.  5.2 ) [ 180 – 182 ]. Also, noise-quantifying metrics like the Shannon entropy
or edge-based metrics are conceivable. The  ASFC maps introduced in sec.  10.2  are
a helpful method to identify valuable poses with respect to the part to be optimized,
since these are located perpendicular to points with particular high summed Fourier
coefficients in the diagram (termed Fourier weighting in fig.  11.1  ). Last, the geometric
weighting proposed in this work can still be used to enforce a high coverage of the
Fourier space. However, more direct methods of accomplishing this goal have been

117



CHAPTER 11 | DISCUSSION AND OUTLOOK

Optimization

Evaluation
Set

Build
Evaluation

Set
Projection

Pool

Create Input
Projections

Rated
Projections

Selection

Optimization Criterion

Reconstruction
Image Quality

Metric

Fourier
Weighting

Tuy 
Completeness

Weighting

Generation

Figure 11.1: Proposed simplified framework for the trajectory optimization. For small  VOIs and
a high degree of parallelization of the main loop the reconstruction stage becomes computa-
tionally feasible and can replace the prediction framework. Separate assessment and pooling of
the different optimization properties reduces the overall complexity considerably.

proposed, so that a weighting based on, for instance, the local Tuy criterion [ 174 ,  175  ] or
a combination of sampling density and data incoherence [ 30  ] might be preferable.

11.2.1.2 Practical Signal Template Definition

The definition of a signal template ω as described in sec.  6.4.1  has been relatively
straightforward for this work, since  VOI and object of interest were always clearly de-
fined. Furthermore, in all cases only one relatively small  VOI was considered to reduce
the computational cost. However, the task definition can be problematic in practice,
since often the shape, type, and location of potential errors are not known in the first
place. While in the course of this work, trajectory optimization has been suggested
primarily for repeated scanning of known objects (e.g., inline-  CT ), where one is typ-
ically already familiar with the object, also different other application scenarios are
conceivable, where the imaging task cannot be defined directly. Typically, expert knowl-
edge will be required to define areas where defects might occur. Detailed information
concerning flaw types and sizes are necessary to adapt the  VOI and template definition
accordingly. Alternatively, e.g., for additive manufacturing or machine tools, production
parameters may be available that support specifying the task. As shown in sec.  8.3 , it is
important to select these parameters carefully, since image degradation in other parts
of the object can occur. Furthermore, it is possible to define several  VOIs of similar
importance with distinct templates and combine their separate detectability values
into a single figure of merit. While several possible combination strategies for this have
been proposed [  190  ], it shall be noted that the use of too many separate  VOIs is not
recommended, since it reduces the potential of the optimization method as discussed
in sec.  8.3 . However, it not impossible that the optimized trajectory with such a task
definition is still able to outperform a conventional planar trajectory in some cases. The
framework can also be relatively easy extended to predict  MTF  ,  NPS  , and the result of
the computed  MO  for several evaluation points. While this increases the computational
burden almost linearly, it would also allow the investigation of larger  VOIs , since the
influence of the cone beam error (sec.  10.4.2 ) can be mitigated by the use of several
separate evaluation voxels and the recombination of the predicted quality properties
into a single metric. As extreme case, one might even define the entire geometry as task
template and use the complete volume as  VOI , which of course is computationally not
feasible at the moment and might yield insufficient results due to the huge  VOI size. An
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alternative, computationally less demanding attempt for such scenarios is the method
of Haque et al. [  179 ], which has been outlined in sec.  5.2 .

11.2.1.3 Refinement via Simulation and Parameter Sweeps

A fundamental problem of the proposed optimization method is its formulation as
selection problem, i.e., the achievable solution depends on the number of the input
projections, which in return depend on the angular resolution of the simulation. While
the 5°-steps used in this work have turned out to be sufficient for most cases, it seems
likely that a finer sampling could lead to an improved solution. For instance, in case of
the platonic solids theoretically the  IQR plots should rise at the distinct number of edges
for each test body, which was not observed and is believed to be caused by the insuffi-
cient angular resolution. However, increasing the size of the input stack would lead to a
higher computational cost and higher time demands. As compromise, the framework
could be modified, so that additional projections are simulated on-the-fly for spatial
position areas that have been found to be valuable, e.g., starting with explorative 5° steps
and refining to 1° or less for regions corresponding to high values of the figure of merit.
Since the simulation is relatively fast if most degradation mechanisms (e.g., scattering)
are not considered and the projection size can be reduced to the relevant part that
backprojects into the  VOI  , the additional computational and time demands are believed
to be well manageable. It is also possible to replace the simulation framework entirely
by few initial measurements of the object and optimize iteratively on the reconstructed
result of this estimate as suggested, for instance, by approach  17  in sec.  5.2 . Similarly,
the regularization parameter sweep could subsequently be improved by refining the
step size for values and projection numbers providing good results.

11.2.1.4 Extension of Parameter Space

In this work only the source position defined by its two angular coordinates has been
optimized. However, a  CT system is a complex setup with many additional parameters
that could be considered as well for the optimization, making the appropriate choice
of the acquisition trajectory only one of several possible improvement methods which
can be combined to further reduce scan times; a review of related automation methods
is provided in the literature [ 287  ]. For instance, approaches aiming at determining
suitable imaging parameters (e.g., prefilter, tube voltage or current) have been proposed
for several applications [  165 ,  288 ]. As mentioned in sec.  4.3 and suggested for a similar
framework [ 190 ], additionally adjusting the  SOD  ,  SDD , or rotation center could lead
to better results since a projection can be selected tangential to more than one non-
parallel edge, and the  SNR can be improved while imaging a sufficiently large fraction
of the  VOI  at the same time. Furthermore, the image quality assessment and prediction
used to compute model observers can also be extended towards other factors. For fixed
trajectories, this has already been performed for tube current modulation [  87  ,  289  ],
the  FDK filter kernel [  289  ], the regularization parameter for an iterative reconstruc-
tion [ 87  ,  88  ], and further parameters [  290 ]. However, such augmentations are often
more demanding for many reconstruction algorithms, which can lead to new artifacts
or higher computational demands. Also, due to time and performance restrictions,
more powerful hardware is necessary to further extend the parameter space of the
optimization framework.
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11.2.1.5 Optimization of Partial Trajectories

One possible simplification to increase the computational performance is to optimize
not in steps of single projections but of projection sets instead. For instance, grouping
acquisition positions and treating them as an inseparable set can reduce complexity
clearly and similar approaches have already been suggested [  181 ]. While this will proba-
bly slightly decrease the outcome in terms of achievable image quality, an appropriate
choice of these subsets can also fulfill further side conditions so that the efficient filling
of the Fourier space (sec.  7.3 ) is achieved without additional calculations. Alternatively,
instead of selecting partial trajectories, one might think of cases where only one pro-
jection of each set is permitted. For instance, splitting the evaluation dataset in arc
subsets with constant φ and only allowing one pose of each set, automatically results in
a smooth trajectory that is easier to implement on mechanical setups. In practice, par-
ticularly for robot-guided  CT systems, it is often not feasible to obtain projections from
more than approx. 180° of the horizontal plane. Consequently, it appears reasonable
for such cases to adapt the input projection set to contain only images from slightly
more than a half sphere in order to sample the entire Fourier space due to cone-beam
effects (see sec.  4.1 ). This restriction would speed up the computations by a factor of
approximately two and avoids the necessity to weight projections that are opposed on
the sphere while probably still yielding good results (see also sec.  9  ).

11.2.1.6 Reducing Dimensionality

A problem for most methods proposed in this work is that the computational burden
increases significantly if the considered volume sizes are getting larger. In principle it
is possible to combine several pixels or voxels of an image or volume (e.g., via build-
ing the average or median) into a new one with reduced resolution and perform the
optimization and computational steps on this one instead. This method, referred to
as binning, can greatly reduce the dimensionality of the problem and increase perfor-
mance. Unfortunately, there is a certain threshold until which this approach is feasible.
For binary tomography similar volume sizes as used in this work have been found to
provide acceptable results [ 291 ]. While it is yet unclear if this finding is directly applica-
ble for  CT with multiple gray values, methods of this kind appear promising to tackle
practical problems caused by large volumes or detectors with a high number of pixels
and reduce calculation times.

11.2.1.7 Reduction to Discrete Problem

Unlike in the medical field, the objects scanned by industrial  CT systems typically
consist of only few different materials. In many relevant cases (e.g., parts produced via
additive manufacturing) only a distinction between air and a much denser material
needs to be performed. In such situations, the task can be formulated as discrete
tomography problem, which is considerably easier and allows additional trajectory
optimization approaches (see sec.  5.2.2  for an overview) that require fewer projections
than conventional  CT [  210 ]. Furthermore, the reconstruction can be performed faster
and more efficiently, which is particularly interesting for future methods (e.g., the one
proposed in fig.  11.1  ) and specialized algorithms for such cases are available [  203  ,  205 ,

 207 ,  292 ].
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11.2.1.8 On-the-Fly Optimization

The method proposed in this work requires a description of the part geometry (e.g., as
 CAD  file) to compute projection candidates for the optimization step. However, it is
possible to acquire a small number of (e.g., equiangularly distributed) projections in
an initial scan, reconstruct them and use the result as initial guess instead of the part
geometry. Subsequently the optimization is performed and these steps can be repeated
multiple times. While the feasibility of such an approach has been demonstrated for
a different optimization framework [  198  ], its performance is yet unknown for larger
dimensions and very complex geometries. Furthermore, it shall be noted that in most
industrial application scenarios for trajectory optimization – for instance the repeated
measurement of similar parts – the geometry is typically already available [  22  ] so that
on-the-fly methods are only necessary in a limited amount of cases.

11.2.2 Extension of the Optimizability Metric

The optimizability metric derived in sec.  10.2  is only valid for parallel beam geometry,
which is usually not or only approximately fulfilled by most setups. Consequently, an
augmentation towards  CBCT appears reasonable (sec.  11.2.2.1  ). It could further be
related to other properties that are relevant in industrial practice, which would increase
its expressive value as a predictor if trajectory optimization can be applied well to a given
scenario (sec.  11.2.2.2  ). Also, the concept of  ASFC maps has been found to be helpful
and could be further developed towards new use cases or optimization algorithms as
outlined in sec.  11.2.2.3  .

11.2.2.1 Adaptation for Cone Beam Geometry

A drawback of the optimizability metric is that it is only accurate for approximately
parallel X-ray beams. While it is feasible to adapt the computation so that the divergence
of a cone beam setup and the feature’s off-center position is considered, this does
not allow the direct use of the fast Fourier transform as efficient calculation method.
However, such an adjustment would be beneficial for practical usage and to obtain
more representative information than just counting the faces of a part for the  CBCT 

case, which can be considered more a rule of a thumb than a detailed analysis.

11.2.2.2 Link to Practically Relevant Properties

To provide more accurate and economically more relevant information than the interval
between zero and one in which the optimizability metric is defined (eq.  10.3  ), it would
be desirable to link the total number of saved projections or the image improvement
for a given number of projections to a value of this figure of merit. However, this would
likely require to include additional parameters such as the cone beam angle or further
information about the imaging conditions and would probably be very complex. Also, a
link to the probability of detection would be desirable in the long term, which might,
however, even more demanding to determine.
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11.2.2.3 Combination with Attenuation Map

Furthermore, the optimizability was investigated with respect to the Fourier space
representation of the object, but without taking further important properties like the

 SNR into account. Analogous to the  ASFC plots, an attenuation map based on the
summed material attenuation values in one spatial direction could be determined.
By combining this second representation with the  ASFC map a modified map could
be computed that is not only more representative if used for the search of valuable
acquisition poses but could also result in a more precise optimizability value. Based on
these considerations, a simplified optimization framework is proposed in sec.  11.2.1.1  .
For the sake of completeness, it shall also be noted that the sparsity of the transformed
feature space can not only be exploited for optimized acquisition (for instance for
compressed sensing approaches) but as well for data compression and storage [  108  ].
Consequently, the optimizability metric could, in theory, also be used to quantify the
degree of compressibility (see also sec.  4.2 ).

11.2.3 Faster Image Acquisition

While most approaches for performance advances suggested in this section concen-
trate on the use of algorithms considering a limited amount of data, additionally also
other enhancements are conceivable that directly increase the imaging speed of the

 CT system. Such concepts comprise better hardware (ref.  11.2.3.1  ), post-processing
algorithms (sec.  11.2.3.2  ) or an automatic choice of appropriate imaging parameters
(sec.  11.2.3.3  ). Supplementary to the improved instrumentation, also the implementa-
tion of mechanical adjustments, such as continuous image acquisition (sec.  11.2.3.4  )
or the use of several X-ray sources and detectors (sec.  11.2.3.5  ) can improve the overall
scan speed.

11.2.3.1 Improved X-ray Tubes and Detectors

The usage of X-ray tubes with a higher output power and photon flux is generally an
effective method to reduce detector exposure time for a given  SNR so that remarkable
enhancements in scan speed can be obtained if used in combination with fast read-
out electronics. Unfortunately, this is typically linked to a higher thermal load to the
target, so that larger focal spots are required that inherently lead to image blurring.
To mitigate this effect, alternative tube designs such as liquid metal jet [  293 ] or line
focus [  294 ] based configurations have been proposed that are able to achieve a higher
photon flux while retaining a comparably small focus. Other, less common, methods
comprise synchrotron light sources [  295 ] and pulsed flash X-ray tubes [  27  ], which are
more complex in handling and therefore only applicable for special cases.

11.2.3.2 Compensation for Blurred or Noisy Projections

Instead of tackling the issue of increased focal spots using improved hardware, an
alternative is extensive software-based post-processing. Recently, such an approach
using convolutional neural networks was proposed to resharpen blurry projection
images. The method allowed the operation with a higher photon flux, while maintaining
a comparable image quality, so that the acquisition was feasible almost three times
faster than a conventional scan [  296  ,  297  ]. The reverse is also imaginable: images are
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obtained by reduced detector exposure times, which leads to noisy but sharp projections
that can subsequently be enhanced, e.g., by other machine learning algorithms. For
this method, scan time reductions of over 60 % have been reported [  268  ]. A third viable
option is to perform the denoising operation on the reconstructed volume instead of
the projection data [  298  ]. Such approaches are in particular attractive since they can be
applied independently from other optimization methods.

11.2.3.3 Modulation of Imaging Parameters

Higher part thicknesses or denser materials lead to a decrease in  SNR , which makes re-
lated acquisition poses less favorable as shown in this work. Furthermore, in particular
for very different path lengths or multi-material objects it can be difficult to balance
the applied X-ray energy due to limitations of the dynamic detector range [  155  ]. As a
consequence, X-ray tubes with current modulation and variable voltage selection are
available for medical imaging, which are able to adjust several parameters for each
projection accordingly to obtain a uniform  SNR , while delivering an as low as possible
radiation dose to the patient [  299  ]. Applying a similar concept to industrial  CT by
dynamically changing the exposure time for each projection instead of the tube param-
eters seems reasonable. While fast power-switching of the tube is generally demanding,
the comparably slow rotation and acquisition speed of industrial  CT systems simplify
the use of such methods compared to medical setups [  21  ]. While some work has been
performed on automatically determining preferable acquisition parameters [  288 ], also
augmentations towards dynamic settings are conceivable. Such a modulated system
would be able to acquire projections more efficiently from directions with a short X-ray
pathlength, while making better use of the dynamic detector resolution simultaneously.
The concept could also be extended to different other imaging parameters like pixel
binning or tube voltage. It shall also be mentioned that the binning of detector elements
reduces the effective pixel pitch, which results in less required projections according to
eq.  4.2 at the cost of decreased resolution.

11.2.3.4 Acquisition in Continuous Motion

For this work, the projection images were acquired in distinct positions with the source-
detector system standing still. However, it is also common to generate images without
stopping the setup but in a continuous motion movement instead, which is more time-
efficient. While this is not always viable for most application scenarios in this work
based on separated projection positions, it can be a reasonable choice for connected
and smooth trajectories (see sec.  11.1.3 ) in the future.

11.2.3.5 Simultaneous Acquisition by Multiple Sources

In theory, a straightforward method to increase the speed of data acquisition is the usage
of several separate source-detector systems (or parts thereof, e.g., for electron beam  CT )
instead of a single one and a wide range of such setups has been proposed [ 300  ]. While
such methods can increase the scanning speed remarkably, also the setup becomes
much more complex and expensive. For many inspection scenarios like robot-based  CT ,
particularly spatial restrictions make it very difficult or even impossible to increase the
number of X-ray sources or detectors at all. As a consequence, this method seems yet to
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be a viable option only for special applications, for instance airport baggage scanners
[  24  ], but might provide a valuable concept in some cases, given further technological
advancements.

11.2.4 Further Improvement Methods

In addition to the approaches suggested so far, also several methods can be applied that
combine trajectory optimization with already existing concepts, leveraging the advan-
tages of both techniques. For instance, the usage of modern iterative reconstruction
algorithms is not only reasonable as stand-alone method, but can be used to further
improve the image quality of sparsely sampled trajectories (sec.  11.2.4.1  ). Similarly,
interpolating the missed out projections can enhance the achievable image fidelity sig-
nificantly, even though its value as inspection modality might be reduced (sec.  11.2.4.2  ).
Since  CT or radiography is only a single modality, the combination with different other

 NDT techniques can help to obtain more information about a given part (sec.  11.2.4.3  )
and can further be used as additional input for data fusion or specialized reconstruction
algorithms (sec.  11.2.4.4  ). All these methods are comparably relevant since they satisfy
different application scenarios.

11.2.4.1 Advanced Reconstruction Methods

While the  SART reconstruction (see sec.  2.3.3  ) used in this work has previously demon-
strated good results for undersampled and non-uniform data [  36  ,  55  , p. 201], modified
versions are available that have been reported to perform even better under certain
conditions [ 230 ,  301 ]. Furthermore, over the last decades a myriad of different recon-
struction methods for various applications and conditions has been developed. For
instance,  CS -inspired methods (e.g., such based on total-variation minimization) have
turned out to be well-suited for scenarios where only a very limited number of projec-
tions is available [  21  ,  210 ,  302 ], which could provide better results than the algorithm
used in this work, if applied and tuned properly. As an example for such, prior image
constrained compressed sensing ( PICCS  ) has been reported to provide accurate results
using only about 20 projections [ 303  ]. Recently, several machine learning based re-
construction methods have been proposed that are also able to deal well with sparse
information [  304 ]. Particularly for inline- CT , Janssens et al. proposed such an algorithm,
referred to as neural network Hilbert transform based filtered backprojection ( NN-hFBP )
that is able to provide reasonable results with relatively few projections in less than a
second [  305  ]. It was later extended with an automatic defect-recognition method [  306 ].
Similarly, Pereira et al. suggested a method for sparse inline-laminography [ 270 ] and
Russ et al. presented a fast reconstruction algorithm for non-circular acquisition or-
bits [  271  ]. A non-exhaustive overview of  CBCT reconstruction algorithms developed
before 1990 [  307 ], iterative methods already implemented by major vendors [ 308  ] as well
as performance evaluations for several iterative [  309 ] and machine learning based [  269 ]
methods for sparse projection data are provided in the literature.

11.2.4.2 Sinogram Interpolation

The use of few projections can lead to view alising artifacts if a backprojection-type
reconstruction algorithm is used [ 310 ]. While typically iterative methods are better
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suited for such cases [ 55  ], these approaches are still preferable under some condi-
tions due to their lower computational complexity. A possibility to reduce arising
artifacts for such applications is to interpolate within the incomplete sinogram (see
fig.  2.4 ) in order to restore the missing parts, which has been proposed already in the
1970s [  103  ,  311 ]. Even rather simple approaches like linear interpolation can already
reduce streak artifacts greatly [  312  ] and further work based on the sinc-interpolation
has been performed [  313  ,  314  ]. Unfortunately, it was also shown that both methods
inherently lead to slightly blurred images due to low-pass filtering [  315  ]. Instead of
interpolation, it has also been suggested to obtain the missing projections by forward-
projecting the limited view reconstruction and subsequently applying several filtering
and post processing steps. It is also possible to forward-project instead of using actually
measured positions and use the deviation to those for artifact suppression [  310  ]. Other
methods based on displacement functions [  20  ], a sine-wave approximation referred to
as warp [ 316 ] or directional interpolation [ 317 ] have been suggested as well and lately
machine-learning based methods have increasingly gained attention [  318  ]. Recently,
Wei et al. proposed an advanced framework that combines several methods and in-
cludes an additional refinement step [  319 ]. A good overview of further approaches can
be found in the literature [  316  ]. Sinogram-based image enhancement methods have
also been successfully applied for metal artifact reduction [  320 ] as well as compensation
for undersampled  PET [  321 ] and  SPECT [  322 ] data. It shall be noted, however, that – if
applicable with enough samples – trajectory optimization is generally preferable to
such interpolation based artifact compensation methods, since there is no guarantee
that the restored data are identical with the real data [  176  ] as discussed in sec.  11.1.5 .
This is particularly relevant if important discontinuities like flaws or voids occur, while
adjusted trajectories might be able to acquire information from this region.

11.2.4.3 Combination with Further  NDT Modalities

While this work focuses on the use of  CT for non-destructive inspection, also further
modalities are of interest in the context of trajectory optimization. For one, it has been
shown that other X-ray based methods, such as dark field [  194  ] and likely also phase
contrast  CT can benefit from such approaches due to the improved  SNR , which can
be relevant, e.g., for dynamic imaging of biological processes [ 323 ] as mentioned in
chapter  1  . But also robotic inspection systems are generally well suited for the use
with additional sensors. For instance, a system recently entered the market that can be
equipped with further capabilities, such as optical surface scanning, thermography, air-
coupled ultrasound and even more exotic applications like X-ray fluorescence imaging
and diffraction or absorption spectroscopy due to the use of photon-counting detectors
[  281 ]. The additional information obtained from such sources can then further be used
for data fusion [ 324  ,  325  ] or the generation of a digital twin of the inspected part.

11.2.4.4 A Priori Knowledge

One often encounters the situation that preliminary information for the specimen
is available, originating for instance from earlier scans, blueprints or other imaging
modalities. This information can be used via data-fusion to improve the final image,
which is particularly beneficial to reduce artifacts that arise if only view projections
or such originating from a limited angle are available [  324 ,  326  ,  327  ]. Also, often only
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image differences between scans are of major interest, for instance in industrial defect
recognition (e.g., inline-  CT of many similar parts) or medical follow-up scans. In such
cases, one is actually only interested in smaller changes, for which an even sparser
representation is possible than for the entire scan and modified reconstruction methods
are available that aim to provide particularly efficient solutions to this problem [ 21  ].
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12 Overview and Conclusion

12.1 Summary

This work started with a brief overview of the basics of  CT imaging (sec.  2  ) and the
statistical theory required for the methodology (sec.  3  ). In sec.  4  preliminary consid-
erations were discussed regarding the influence of projection numbers and ranges as
well as their practical implications. Furthermore, based on compressed sensing and
signal theory it was outlined why trajectory optimization is feasible at all and a more
detailed definition of the problem was provided. Relevant preliminary investigations in
the literature were gathered in sec.  5  .

Based on such previous work, in sec.  6  the methodology was outlined, which com-
prises an algorithm to optimize a trajectory with respect to a given part and without
performing any expensive reconstructions. Furthermore, the framework allows direct
evaluation of the resulting trajectory and comparison to conventional designs. The
optimization criterion of the algorithm was refined in sec.  7  and used to identify three
important properties. First, the signal-to-noise ratio needs to be maximized. This was
achieved by reducing the noise level by avoiding projections that correspond to highly
attenuating parts of the object and favoring those that result in a good visibility of the
relevant parts of the volume. Furthermore, it appears important to sample the Fourier
space as completely and homogeneously as possible, where directions corresponding to
high coefficients of the Fourier-transformed  VOI are most important. It was shown that
most state-of-the-art approaches directly or indirectly aim to include these properties
in their respective implementation.

The feasibility of the optimization framework and confirmation of the simulation-
based findings was demonstrated using experimentally acquired data in sec.  8  . It was
additionally shown that an optimization towards one  VOI can lead to a decrease in
image quality in other regions of the part. As a consequence, it seems reasonable to
assume that trajectory optimization works best for few and small  VOIs . Both taken
assumptions are considered to hold independently of the optimization algorithm used.
To demonstrate that the method can be applied in practice and for multi-material
parts, a feasibility study using a robot-based  CT platform was conducted. Several minor
adaptations were necessary to meet the requirements for this setup particularly with
respect to the limited accessibility and range of motion. Due to the specific object
geometry the planar reference trajectory was clearly outperformed by spherical designs,
while the optimized trajectory performed best for all investigated projections numbers.
This is considered to be the first successful proof-of-concept of a part-specific trajectory
optimization for a robotic industrial  CT system.
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In section  10  the practical relevant influence of the part geometry was investigated.
By quantifying the sparsity of the angular Fourier coefficient distribution of the Fourier-
transformed object, an optimizability metric, denoted as Ξ, was derived as predictor
of the trajectory optimization potential for a given part in case of parallel X-rays. The
metric was validated using artificial (sec.  10.4  ) and more realistic (sec.  10.5  ) examples.
The concept of  ASFC maps was introduced, which are a side product of the calcula-
tion of Ξ and can be used to identify valuable angles that are of interest for trajectory
optimization. To compare with experimental in silico observations, the image quality
ratio ( IQR ) was defined to quantify the optimizability if an already optimized trajec-
tory design is available. With this second metric it is possible to additionally identify
particularly valuable ranges of projections. Evaluations based on the given examples
suggest that at least two of these ranges exist, being located in the domain of very few
and close to all feasible projections. Furthermore, these projection ranges were found
to be highly part dependent and confirm the assumptions given in sec.  4.5 . Last, it was
shown that for typical industrial parts a low cone-beam angle is preferable and that the
optimization framework can fail when a too large angle or  VOI is selected.

12.2 Conclusion

Circular standard trajectories typically used for industrial  CT are suboptimal, since
they are defined without consideration of the particular object and inspection task.
Furthermore, in practice the application of such common approaches is often impeded
by motion restrictions and artifacts associated with poor radiolucency, which holds
especially for flexible setups or large parts. To improve performance with respect to
image quality and throughput of evolving versatile  CT scanners and leverage the effect
of optimized sampling patterns, this work aimed to identify valuable acquisition poses
and evaluate the practical consequences of such adapted trajectories.

The investigations and examples provided in this thesis have demonstrated that
trajectory optimization methods have remarkable potential. This goes particularly for
often encountered scenarios like low cone beam angles or large distances between X-ray
source and detector. But also demanding imaging situations, which are characterized by
highly attenuating and low-contrast objects in close proximity to each other can benefit
from such approaches, which has also been suggested by similar work [  191 ]. Addition-
ally, irregularly shaped or large components with strongly differing aspect ratios can
benefit greatly. Most of these conditions typically appear in the inspection of industrial
items and especially for  CT systems with many degrees of freedom. Considering a
spherical trajectory as reference and for noise- and artifact-free simulations of typical
industrial items, image quality improvements (according to the  RMSE  criterion) in the
range of 35 % to 70 % were evident (sec.  10.5  ). Furthermore, it seems reasonable to ex-
pect even higher gains for more realistic imaging conditions. In the first representative
investigation for an implementation on a robot-based  CT scanner, it was possible to
achieve quality enhancements on the order of 40 %, which is equivalent to a measure-
ment time reduction by approx. 55 % compared to the conventional planar standard
trajectory (sec.  9  ). While this work has focused on relatively few projections (fewer than
about 150 images), where the highest gains in image fidelity can be expected, further
results have been presented which suggest that relevant advances can also be reached
for very high projection numbers (see sec.  10.6  ).
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While these findings clearly show the potential of the proposed methodology, it
needs to be stressed that trajectory optimization is by no means a universal remedy that
can be carelessly applied. Instead, profound knowledge of the inspected object and
the imaging task is imperative for reasonable and consistent results. While, correctly
used, the optimized trajectories performed in no observed case worse than the standard
approach, several practically relevant questions are yet unclear and require further
investigation (see sec.  11.1  ). Furthermore, while it has been shown that not all parts
and problems benefit equally from such methods, first steps towards the assessment
of inspection scenarios with respect to their suitability for beneficial trajectory adjust-
ments have been suggested (sec.  10  ). It also needs to be stressed that in practice, the
choice of the acquisition trajectory is not solely guided by the problem itself, but also
depends on further criteria. Such can be, for instance, accessibility, the available setup
and its specifications (e.g., positioning accuracy or permitted inspection volume), time
demand, accomplishable adjustments in the shop floor environment and many other
factors.

Trajectory optimization techniques combined with iterative reconstruction algo-
rithms could pose a remedy for the limitations in achievable cycle times of current  CT 

setups that prevent their broad usage in industrial mass inspection. However, inline-  CT 

can only have any practical impact if an automated analysis of the scan data is avail-
able [ 328 ] and it is embedded in a comprehensive inspection framework. This may
comprise many individual parts that range from sample handling mechanisms and
real-time defect recognition to data fusion, storage and reporting routines. As such,
optimization approaches as proposed in this work should not be considered an isolated
concept. Instead, they must rather be understood as a part of the journey towards
a wider and more economical use of industrial  CT systems and a highly sustainable
method of non-destructive inspection.
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A Remarks Concerning
Notation and Stylistic
Elements

The overall color scheme (e.g., in graphs or figures) used in this work was originally
inspired by the "LocusZoom" color map [  329 ], which has been strongly modified and
extended for this work and is shown in fig.  A.1  . Differing from this, the heat maps
and Fourier-transformed image representations use the "lajolla" color map, which was
scientifically derived and optimized for human perception [  330  ]. Although compro-
mises were necessary, particular care was given to coherently apply colors. Whenever
possible, the color coding used in this work refers to the systematic listed in tab.  A.2  .
In derogation of this, the cover page and formal elements use the color schema of the
Technical University of Munich to maintain a uniform layout on several pages.

Table A.1: Color palette used for this work. Color codes are given in RGBA format as hexadecimal
numbers with the alpha-channel taking values between 0 and 255.

Color
RGBA bf3934ff 235580ff 478c47ff db9723ff 44b6d6ff 8d2eadff

Color
RGBA bf393480 23558066 478c4780 db972380 44b6d666 8d2ead66

Color
RGBA 000000ff 666666ff 808080ff b3b3b3ff ccccccff ffffffff
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Table A.2: Typical color encoding for continuous or dotted curves in the quality plots and
different style elements of this work.

Color Trajectory (continuous) Trajectory (dotted) Platonic Solid Domain

 PC  PHC Tetrahedron Object
 LDS half-sphere  LDS Icosahedron Fourier
 NPW  /Uniform,  IC N/A Dodecahedron N/A
 NPW  /Feature N/A N/A N/A
 NPW  /Uniform + W N/A Octahedron N/A
 NPW  /Feature + W N/A Cube Radon
 PW /Uniform + W,  HCA  PW /Uniform Sphere N/A
 PW /Feature + W  PW /Feature N/A N/A

As convention for the notations, following nomenclature is applied: lower case
Greek and Latin letters are used to denominate scalar parameters, while bold ones are
applied for vectors and upper case bold ones for matrices. Operators and transforms
are expressed via calligraphic capital letters (e.g., F for the Fourier transform). Matrix
and vector indices are typically used as a part of the variable name (e.g., Kn for the noise
covariance matrix) but are sporadically also used as indexing variables if fit, for instance
for the pseudocode in sec.  C . The overall notation style follows the recommendations
of the German National Metrology Institute [  331  ] and the DIN 1338 [  332 ] whenever
reasonable in order to stay concise.
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B Overview of Test Parts and
Imaging Parameters

B.1 Reconstructed Volume Sizes

Table B.1: Complete and  VOI -sizes of the reconstructed volumes.

Dataset Volume Size  VOI -Size Voxel Size
[voxel] [voxel] [µm]

Bat Phantom (Simulation) 512×512×512 49×49×49 100
Bat Phantom (Experiment) 512×512×512 49×49×49 250
Platonic Solids (Parallel Beam) 512×512×512 91×91×91 600
Platonic Solids (Cone Beam) 512×512×512 91×91×91 600
KUKA Robot 512×512×512 49×49×49 100
RoboCT 512×512×512 91×91×91 200
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B.2 Imaging Parameters
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B.3 Design Drawing of the Bat Phatom
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C Algorithms and Code

C.1 Pseudocode of the Geometric Weighting Function

Algorithm 1: Implementation of the geometric weighting function, which is
explained in detail in sec.  6.4.3  . For comprehensibility, the empirically deter-
mined weighting zone ranges are exemplary used that were also applied in the
final implementation, while the weights were selected as described in the main
text.

Input: Index of the selected projection out of all possible projections n in
optimization iteration j ∈ [0;n −1] as dynamically built vector pj

Result: Weighting map Γjw consisting of n weights w for each iteration j

Γjw ← 1 // inititalize matrix with all weights equal to one

for j > 0 do
the optimization loop is performed at this point (see alg.  2  )
Γjw ←Γ(j−1)w // initialize with weights from previous iteration

Γj(w=pj)
← 0 // selected iteration solution has zero weight

for all w 6= pj entries of Γjw do

a ←^
(
pj,Γjw

)
// calculate difference angle in degrees

if a ≤ 1° then
γ← γclose // assign close weighting factor

else if 1° < a ≤ 15° then
γ← γadjacent // assign adjacent weighting factor

else if 172.5° ≤ a ≤ 187.5° then
γ← γopposed // assign opposed weighting factor

else
γ← 1 // assign no weighting factor to other entries

if γ<Γ(j−1)w then
Γjw ← γ // apply weighting factor only if stricter rule than the previous one

end
end

end
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C.2 Pseudocode for the Model Observer based
Optimization Framework

Algorithm 2: Model observer-based trajectory optimization algorithm includ-
ing prediction part for a  NPW   MO  . For the calculation of d′2 element-wise
multiplication applies and a trapezoidal approximation was used to compute
the integrals. In derogation of the usual notation convention used in this work
d′2 denotes here a matrix of dimension m ×n. The weighting step is only indi-
cated and its detailed implementation is described in alg.  1  .

Input: Evaluation projection set containing n projections including their
associated projection matrices; part volume of the feature ∆s with
position (a,b,c), regularization strength β

Result: Subset containing m < n projections of the input projection set
ω←F

(
∆s

)
// calculate  FFT of ∆s

R ← 0 // calculate quadratic regularization matrix R
foreach (−1,−1,−1) ≤ (i , j ,k) ≤ (1,1,1) do

Ra+i,b+j,c+k ←−1/
√

i 2 + j 2 +k2

end
Rabc ←−`1(R)
for all n projections do

reshape projection pixel values into diagonal matrix Dn
calculate  VOI -part of the system matrix A
FIMn ← ATDnA // calculate Fisher information matrix FIMn

end
Γ← 1 // inititalize geometrical weights Γ (line vector) as equal to one

i ← 0 // start optimization loop

d′2 ← 0
for i < m do

for all n projections do
MTFn ← ∣∣F (

FIMn

)∣∣/
∣∣F (

FIMn +βR
)∣∣ // estimate MTFn

NPSn ← ∣∣F (
FIMn

)∣∣/
∣∣F (

FIMn +βR
)∣∣2

// estimate NPSn

d′2
in ← (Ð

(MTFn ·ω)2
)2

/
Ð (

NPSn · (MTFn ·ω)2
)

// calculate  NPW   MO  

d′2
in ← d′2

in ·Γin // apply geometrical weights for iteration and projection

end
add projection n0 with heighest value in d′2

i to solution
for all n projections do

assure d′2
jn0

← 0∀ j > i // remove projection from evaluation set

calculate Γjn∀ j > i // update geometrical weights for next iterations

end
i ← i +1

end
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C.3 Pseudocode for Generation of Low Discrepancy
Spherical Reference Trajectories

Algorithm 3: Calculation of the low-discrepancy spherical trajectory ( LDS ) with
correction term for pole clustering compensation. This code was previously
published as part of a separate work [  136  ].

Input: List of feasible poses defined by (φ,θ) pairs, number of desired samples
in trajectory, offset parameter ω

Result:  LDS trajectory defined by (φ,θ) pairs
load list of possible (φ,θ) pairs
calculate φmin,φmax,∆φ,θmin,θmax,∆θ
for all φ,θ do

φk ←φk −φmin;θk ← θk −θmin // shift

φk ←bφk /∆φc;θk ←bθk /∆θc // scale

end
i ← θmin

for i < θmax do
ηi ← 0 // create empty bin vector ηi

ξi ←
⌊

1
cos(πi /180)

⌋
// create bin thresholds ξi

i ← i +∆θ
end
j ← 0
while j < desired number of samples do

(φtest,θtest) ← ( j +ω)-th Halton-sample // offset ω controls start position

(φtest,θtest) ← (φtest,θtest) · (φmax,θmax) // scale to fit range of positions

ηφtest ← modulo(ηφtest +1;ξi ) // fill bin

if ηφtest = 0 then
if (φtest,θtest) is not already in solution set then

add combination (φtest,θtest) to solution set
end

end
j ← j +1

end
for all φ,θ in solution set do

φl ←φl ·∆φ;θl ← θl ·∆θ // scale back

φl ←φl +φmin;θl ← θl +θmin // shift back

end
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C.4 Pseudocode for the Optimizability Metric

Algorithm 4: Calculation of the unnormalized optimizability metric, which
can be normalized using eq.  10.3  . The metric yields a value that indicates
how much optimization potential the respective feature has by quantifying the
sparsity of the Fourier-transformed feature.

Input: 3D Volume of the Feature to be Optimized in Object Space ∆s
Result: Unnormalized Optimizability Metric Ξ(ω)
load volume ∆s of size (kmax, lmax,mmax)
∆φ← 1;∆θ← 1 // define angular step size, e.g., 1°

ω←F
(
∆s

)
// calculate  FFT of ∆s

Φ← 0;Θ← 0
foreach (0,0,0) ≤ (k, l ,m) < (kmax, lmax,mmax) do
Φabc ←φ(k, l ,m) // calculate spherical coordinate angle forΦ

Θabc ← θ(k, l ,m) // calculate spherical coordinate angle forΘ

end
Sφ← [0,∆φ,2 ·∆φ, . . . ,360−∆φ] // define histogram step vector Sφ

Sθ← [−90,−90+∆θ,−90+2 ·∆θ, . . . ,90−∆θ] // define histogram step vector Sθ

H ← 0
i ← 0 // loop over all possible directions

for i < (360/∆φ) do
j ← 0
for j < (180/∆θ) do

ξ← 0
foreach (0,0,0) ≤ (k, l ,m) < (kmax, lmax,mmax) do

if
(
Sφi ≤Φklm < Sφi+1

)
&&

(
Sθj ≤Θklm < Sθj+1

)
then

ξ← ξ+ωklm // sum all Fourier coefficients on a line

end
Hij ← ξ // save all summed coefficients in the histogram matrix H

end
j ← j +1

end
i ← i +1

end

H
′
n ← Hij // reshape into line vector with nmax elements

sort H
′

ascendingly

ν← `1(H
′
n) // ν is the sum over all nmax elements of H

′

η← 0; k ← 0 // calculate Gini coefficient of H
′

for k < nmax do
η← η+ (H

′
k/ν) · (nmax −k +0.5) · (1/nmax)

k ← k +1
end
Ξ← 1−2η
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D Supplementary Image
Quality Plots

D.1 Bat Phantom – Uniform Template With and Without
Weighting Function for the Non-Prewhitening Model
Observer
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Figure D.1: Comparison of weighted and unweighted uniform  NPW  model observer.

183



APPENDIX D | SUPPLEMENTARY IMAGE QUALITY PLOTS

D.2 Bat Phantom – Additional Results for the
Prewhitening Model Observer
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Figure D.2: Results for the prewhitening model observer with additional parameter combina-
tions.
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D.3 Bat Phantom – NPW Model Observer With and
Without Geometric Weighting Function
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Figure D.3: Comparison of  NPW   MOs with and without geometric weighting.
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D.4 Bat Phantom – Experimental Structural Similarity
Plot

 NPW/Feature + W 
 NPW/Uniform + W 
 PW/Feature + W 
 PW/Uniform + W 
 PC 

0 20 40 60 80 100 120 140 160
0.0

0.2

0.4

0.6

0.8

1.0

Number of Projections

St
ru

ct
ur

al
 S

im
ila

rit
y 

In
de

x 
[-]

(a) Sphere

 NPW/Feature + W 
 NPW/Uniform + W 
 PW/Feature + W 
 PW/Uniform + W 
 PC 

0 20 40 60 80 100 120 140 160
0.0

0.2

0.4

0.6

0.8

1.0

Number of Projections
St

ru
ct

ur
al

 S
im

ila
rit

y 
In

de
x 

[-]

(b) Cylinder

Figure D.4: Structural similarity values for the experimental measurements shown in fig.  8.3 . The
values are unreliable due to the high noise level as outlined in sec.  8  . Slices of the reconstructions
using the indicated projection numbers are provided in sec.  E.1 .

D.5 RoboCT – Experimental Structural Similarity Plot
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Figure D.5:  SSIM plot for the RoboCT application that has turned out to be less reliable than the
evaluation via  RMSE  , which is provided in fig.  9.3 
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E Reconstruction Images

E.1 Bat Phantom – Experimental
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Figure E.1: Reconstructions of the bat phantom with equidistant and optimized trajectories
using experimental data and 12 or 16 projections. For the optimization a weighted feature-based

 NPW  model observer was used.
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Figure E.2: Reconstructions of the bat phantom with equidistant and optimized trajectories
using experimental data and 20, 24 or 32 projections. For the optimization a weighted feature-
based  NPW  model observer was used.
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Figure E.3: Reconstructions of the bat phantom with equidistant and optimized trajectories
using experimental data and 48, 64 or 72 projections. For the optimization a weighted feature-
based  NPW  model observer was used.
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E.2 RoboCT

12 Projections

Planar Half-Circle Low-Discrepancy Optimized

Figure E.4: Reconstruction images of the RoboCT dataset for 12 projections. For the optimiza-
tion a weighted feature-based  NPW  model observer was used. The plane of the intersection
images in the lower row is exemplarily indicated in the first image.

24 Projections
Planar Half-Circle Low-Discrepancy Optimized

Figure E.5: Reconstruction images of the RoboCT dataset for 24 projections. For the optimiza-
tion a weighted feature-based  NPW  model observer was used.

190



RECONSTRUCTION IMAGES | APPENDIX E

36 Projections
Planar Half-Circle Low-Discrepancy Optimized

Figure E.6: Reconstruction images of the RoboCT dataset for 36 projections. For the optimiza-
tion a weighted feature-based  NPW  model observer was used.

1092/80 Projections
Reference Low-Discrepancy Optimized

Figure E.7: Reconstruction images of the RoboCT dataset for 80 projections and the reference
reconstruction using all 1,092 projections. For the optimization a weighted feature-based  NPW  

model observer was used.
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F ASFC Plots for the Platonic
Solids
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Figure F.1: Plot of summed Fourier coefficients for the tetrahedron (4 faces, Ξ= 0.45).
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Figure F.2: Plot of summed Fourier coefficients for the cube (6 faces, Ξ= 0.75).
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Figure F.3: Plot of summed Fourier coefficients for the octahedron (8 faces, Ξ= 0.44).
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Figure F.4: Plot of summed Fourier coefficients for the dodecahedron (12 faces, Ξ= 0.39).
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Figure F.5: Plot of summed Fourier coefficients for the icosahedron (20 faces, Ξ= 0.35).
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Figure F.6: Plot of summed Fourier coefficients for the sphere (infinite number of faces,Ξ= 0.16).
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