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Abstract

Coherent diffractive imaging (CDI), using both x-rays and electrons, has made extremely rapid
progress over the past two decades. The associated reconstruction algorithms are typically iterative,
and seeded with a crude first estimate. A deterministic method for Bragg Coherent Diffraction
Imaging (Pavlov et al 2017 Sci. Rep. 7 1132) is used as a more refined starting point for a shrink-wrap
iterative reconstruction procedure. The appropriate comparison with the autocorrelation function as
astarting point is performed. Real-space and Fourier-space error metrics are used to analyse the
convergence of the reconstruction procedure for noisy and noise-free simulated data. Our results
suggest that the use of deterministic-CDI reconstructions, as a seed for subsequent iterative-CDI
refinement, may boost the speed and degree of convergence compared to the cruder seeds that are
currently commonly used. We also highlight the utility of monitoring multiple error metrics in the
context of iterative refinement.

1. Introduction

The ‘phase problem’ for propagating complex scalar fields seeks to reconstruct both their phase and amplitude
given measurements of wave-field modulus [1]. Such data may be directly obtained using experimental
measurements of field intensity or probability density.

Phase retrieval has a rich history throughout many domains of optical and quantum physics, dating back at
least as far as Wolfgang Pauli’s famous question regarding the possibility of reconstructing a complex scalar
wave-function given knowledge of the modulus of both its real-space and momentum-space wave-functions [2].
Accordingly, phase retrieval methodologies have been applied in many imaging-related fields including visible-
light optics [3], x-ray optics [4—7], electron optics [8] and neutron optics [9]. While linear optics is typically
considered, phase retrieval for non-linear fields (such as those obeying the non-linear Schrodinger equation) has
also been studied [10]. The above rich variety of fields is accompanied by a variety of approaches to phase
retrieval. These include but are not limited to interferometry [ 11]), holography (inline holography [12], off-axis
holography [13-15], Fourier holography [16, 17] etc), through-focal series techniques [18], various means for
the inversion of far-field scattering data [5, 19, 20], ptychographic methods [21], and deliberate introduction of
aberrations [22].

We restrict usage of the term ‘phase retrieval’ to means of phase recovery that are not explicitly based on
interferometry. Two features are common to many methods of phase retrieval. (i) Constructive use is often
made of the differential equation governing the evolution of the field, which couples the measured intensity and
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to-be-recovered phase and thereby permits one to pose the inverse problem of recovering the latter from the
former. (ii) Use of relevant a priori knowledge is often crucial.

The phase-retrieval problem, of recovering phase information from a measurement of wave-field moduli, is
an example of a so-called inverse problem [23]. A specified phase-retrieval scenario is ‘well-posed in the sense of
Hadamard’ if it satisfies the criteria of (i) existence of at least one solution, (ii) uniqueness of the solution modulo
acceptable ambiguities such as meaningless global phase factors and transverse displacement of the object being
reconstructed, and (iii) stability of the solution with respect to imperfections in the input intensity data (see e.g.
p- 221 in Kress [24]).

In deterministic approaches to phase retrieval [25], these three criteria for well-posedness may be explicitly
addressed. This has the advantage of conceptual clarity and rigour, balanced against the negatives that (i) it
severely restricts the scope of phase-retrieval problems that may be addressed; (ii) reconstruction errors can
result from a realistic sample’s deviation from the strong assumptions often needed to develop a deterministic
solution.

A complementary strategy adopts iterative approaches to solving the inverse problem of phase retrieval
[3,26]. Here, one typically sets up an error metric which quantifies the degree of mismatch between the data
implied by a given candidate reconstruction (of the complex wave-field, or of a given object which has resulted in
ameasured wave-field). One seeks to minimise this error metric, subject to suitable constraints (such as the finite
domain occupied by the object, atomicity and/or positivity of the object, ) and other relevant a priori knowledge.
The approach pioneered by Gerchberg and Saxton [26] and Fienup [3], together with its successors (e.g.
Marchesini et al [27]), has been particularly successful. Such iterative approaches to phase retrieval have the
advantage that they can be practically applied to a much broader class of problem than is amenable to
deterministic approaches, while having the drawback that they can lack the conceptual clarity and rigour that
deterministic methods provide. This drawback may be problematic, for example, when an iterative phase-
retrieval algorithm is trapped in a non-global local minimum of the error metric, making it unclear whether the
stagnated solution is indeed acceptably close to the correct solution.

Iterative and deterministic approaches to the inverse problem are not necessarily mutually exclusive.
Deterministic phase-retrieval methods can be used to give a good first estimate to the solution to a specified
phase problem, which can then be iteratively refined into a better solution. The key idea is that the deterministic
method locates a point in the solution space that is sufficiently close to the global error-metric minimum
corresponding to the true solution, thereby aiding both the rapidity and the correctness of the iterative-method
convergence to a better solution to the particular phase problem.

We focus attention on ‘coherent diffractive imaging’ (CDI) [28]. This relates to phase retrieval for non-
crystalline (or imperfectly crystalline) samples using far-field optical scattering data. CDI is a non-destructive
technique enabling nano-resolution imaging, particularly using x-rays and electrons, whose success has been
demonstrated in a number of applications [29].

Until recently, most CDI reconstruction techniques available were iterative. An exception is given by
methods related to Fourier holography [30], about which more will be said later. Contemporary iterative
approaches to CDI have enjoyed an impressive chain of successes, with the associated iterative phase-retrieval
methods having achieved a high level of accuracy and robustness.

Nevertheless, the previously-described issues intrinsic to iterative approaches are not entirely eliminated.
Indicative is the following statement from a recent review: ‘The presence of noise and limited prior knowledge
(loose constraints) increases the number of solutions within the noise level and constraints. Confidence that the
recovered image is the correct and unique one can be obtained by repeating the phase-retrieval process using
several random starts’ [31]. Usually, these iterative reconstruction techniques use as a starting guess in real space
an autocorrelation of the object function, obtained as the inverse Fourier transform of the far-field diffraction
pattern (e.g. [27]) or arandom set of parameters (e.g. the guided hybrid-input-output (HIO) method [32]).

We explore deterministic phase-retrieval seeding of subsequent iterative-method refinement in the problem
of Bragg-CDI phase retrieval. Bragg-CDl is a variant of CDI applied to small imperfect crystals, using 3D far-
field diffracted-intensity measurements in the vicinity of a Bragg peak as data from which one seeks to
reconstruct both the shape and strain-field distribution data in the crystal [33—35]. Typical crystal dimensions
are on the order of tens of nanometres through to several microns. We are particularly interested in investigating
whether an iterative technique can help to remove or reduce the above-mentioned reconstruction errors,
produced by deterministic approaches, by using the reconstruction results of the deterministic method asa
starting guess instead of e.g., an autocorrelation-based function.

The particular technique we consider here is a new deterministic method for 3D Bragg-CDI, which allows a
non-destructive reconstruction of chemical composition and strain in facetted crystalline materials [36]. This
builds upon a deterministic 2D reconstruction approach [30], which may be considered as a form of Fourier
holography [16, 17], and which was later extended and further developed by several groups (see the recent review
on deterministic CDI by Allen et al [25], together with references therein). Deviations from the specified
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Figure 1. Sigma-polarised monochromatic x-rays from a source S impinge upon a cubic crystalline sample, for which only one corner
is shown. Three-dimensional diffraction data is measured by a detector D which records diffracted intensities over a three-
dimensional range of scattering vectors, centred about a particular scattering direction, specified by angles 6, and 6,. Such diffracted
intensity measurements comprise the data which may then be input into our reconstruction method for Bragg-CDI [36], to give both
the structure factor and the displacement field of the crystal.

crystalline shapes or quality produce errors in the obtained reconstructions as shown in Pavlov et al [36]. In the
present paper we show via x-ray simulations that such artefacts in the deterministic Bragg-CDI reconstruction
may be improved via subsequent iterative refinement. Our key focus however is on the more interesting finding
that both the rate and quality of the convergence of iterative Bragg-CDI may be improved by seeding the iterative
Bragg-CDI algorithm with a deterministic-CDI reconstruction, rather than merely seeding it with auto-
correlation-based or random initial guesses. Thus our simulations are consistent with the conclusions (i) that
deterministic-Bragg-CDI errors are reduced by subsequent iterative Bragg-CDI refinement, and (ii) that the
errors of iterative Bragg-CDI are reduced by deterministic-Bragg-CDI seeding. Note that we are primarily
interested in giving an example of the use of deterministic phase-retrieval methods to seed iterative phase-
retrieval methods for Bragg-CDI and hence improve both the rate and quality of convergence of the latter, rather
than exploring the absolute state of the art in either iterative or deterministic methods for approaching such a
phase problem.

2. Methods

Consider a plane monochromatic x-ray wave with sigma polarisation and unit intensity, which illuminates a
small deformed crystal. The angle between the wave vector k of the incident wave and the x-axis is

0, = 05 + A0, (see figure 1), where 6 is the Bragg angle for a symmetrical (00L) type reflection, A, is the
angular deviation and the Cartesian axes (X, Y, Z) are as defined in figure 1. The scattered wave is registered in the
direction of the wave vector k’. The angle between k’ and the x-axisis 6, = 0 + A0, (see figure 1), where A6,
is the angular deviation. The incident wave vector k and the average scattered wave vector k' lie in the diffraction
plane XOZand |k| = |k’| = k = 27/ )\, where \is the wavelength in vacuum. The plane of detector D is
perpendicular to the average vector k'. The scattering vector, Q, is definedas Q = kK’ — k.

We consider two-beam kinematical diffraction in a coplanar geometry, where the XOY plane is the top
surface of the crystal. For simplicity, the crystalline structure is assumed to have cubic symmetry with lattice
constant a and parallelepiped shape with dimensions L,= N, - a,L,= N, - aand L,= N, - a, where the
z-direction is vertical, XOY is the horizontal plane (cf figure 1) and N, ,, , are integers. For simplicity, we set
L. =L, = L,ie,N, = N, = N,. Toavoid any aliasing problems and allow a successful iterative
reconstruction procedure weuse4 x 4 X 4 = 64 oversampling ratio as defined in Miao et al[37]. In our
previous paper [36], we introduced a reconstruction method based on an assumption that at least half of the
crystal is ideal, i.e., deformation and defect free. In this paper we assume that there are three spherical inclusions
(structural defects) in the upper half of the crystal, as in Pavlov et al [36]. We also assume the existence of a curved
deformation field in the entire crystal (see figure 2(a)) according to the following functional form [36]:
e=hu® — pivlc—Le/2%+ (=L, /271 ~2/L:) for 7z € [0, L,]. This parabolic displacement may be associated [38]
with the incorporation of the ‘non-ideal’ part of the crystal to an ‘ideal’ part of the crystal. This means that the
deterministic Bragg-CDI (BCDI) reconstruction algorithm, outlined in Pavlov et al [36], will inevitably produce
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Figure 2. Visualisation of the phase (colour) and amplitude (greyscale) for (a) the simulated crystal, (b) the crystal reconstructed using
the deterministic BCDI reconstruction [36], (c) the crystal reconstructed using the shrink-wrap iterative procedure [27], with the
BCDI reconstruction as a starting point and (d) the crystal reconstructed using the shrink-wrap iterative procedure, with the
autocorrelation function as a starting point.
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reconstruction errors, which will be then partly compensated by the subsequent application of an iterative
refinement procedure. The constant used in describing the deformation field, , is inversely proportional to the
radius of curvature of the deformation field. In our simulations, we have chosen the values of the coefficient -y to
yield a maximum phase shift of 0.257 radians at the edges of the crystal, so that displacements in the bottom half
of the crystal are relatively small. Therefore, the deformation field in the bottom part can be considered as a small
perturbation to the ideal model (i.e., a deformation-free bottom half of the crystal volume), as required for the
deterministic Bragg-CDI reconstruction algorithm [36]. The choice of maximum phase shift of 0.257 simplifies
the reconstruction procedure as it does not require unwrapping of the reconstructed phase.

The ‘target’ function in our reconstructions will be 3, (r) exp (—ih - u(r)) (cfPavlov et al [36]), where
Br(r) = x;,(r) / Xj, (r), X, (r) is the polarizability of a non-ideal crystal, x} (1) is the polarizability of an ideal
crystal, h = Q — qisthereciprocal lattice vector for the chosen 00L reflection, Q is the scattering vector, and
u(r) is the displacement vector field. For simplicity, we can neglect the imaginary component (as is usually done
in BCDI see e.g. Vartanyants et al [39]) of the function 3, (r) because the imaginary parts of the functions y;, (r)
and 4 (r) are typically significantly smaller than their corresponding real parts.

In thls paper, we place weak inclusions in the upper half of the crystal, each filled with a material having a
smaller structure factor than the bulk (minimum [, = 0.9). The remainder of the simulated crystalline
structure (i.e. all but the spherical inclusions) has 3, = 1 (see figure 2(a) showing 3, (r) and
phase(r) = —h - u(r)). The cropped data array of far-field intensity used in the reconstructions results in a
voxel resolution in real space of 80 x 80 x 80 nm’, which is comparable to the resolution demonstrated in
Williams et al [40]. However, it should be noted that a better resolution is reported in more recent literature (e.g.
Labat et al[41]). Application of the proposed reconstruction technique for a smaller voxel size is straightforward.

The expression for the simulated far-field intensity (without noise) is given in Pavlov et al [36] as:

sin (q,aN, /2) sin(q,aN, /2) sin(q,aN, /2) }2 + NN, sin (g, aN; /2)
q,aNe/2  qaN,/2  q,aN;/2 T gaN2
sin(q,aN, /2) sin (q,aN, /2)
g,/ aN./2
sin (q,aN, /2) sin(q,aN, /2) sin(q,aN, /2)
GaN2 gaN,2  gaN.2

Lin/C = {NxNyNz

N
eiqxu(N,c—1)/Zeiqya(Ny—1)/26iqza(Nz—l)/2 Z(q)z e_iq‘Rp [ﬁﬁe_ih'ul’ _ 1]
p=1

e—iqxa(I\L— 1)/2€—iqyu(Ny— 1)/Ze—iqza(Nz— n/2

+ NN, N,

N N
X ZXQ ) e [(Bp)Fe™ — 1]+ | Z(@ )] e e[ Bheh — 1] M

p=1 p=1

Here, u, = u(r) - 6(r — Rp), B = Bu(x) - 6(r — R,), R, defines the position of the p-th cell in an ideal 3D
periodic lattice, Z(q) = Z 1, €xp(—iqr)isan interference function, r; defines the position of elementary cells
within the p-th cell, Cis a constant and 6 (r) is the Dirac delta function.
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Ifatleast one half of the crystal is an ideal reference part (the bottom half in our case), we can obtain a closed-
form solution to the BCDI inverse problem of reconstructing (3, (r) exp (—ih - u(r)) (¢f- equation (11) in Pavlov
et al [36]) by introducing the auxiliary function:

1 .
UR= (% y,2) = CW// 99, lkin€’ 43+ 47 1.9 dg  dg, g @

Here [, is the intensity I;, with added Poisson noise. In our simulations, we consider two cases of noise applied
to the simulated data, namely, noise-free and with a maximum intensity of 10'" photons per voxel (atq = 0). As
we want to compare the effectiveness of deterministic and iterative reconstruction procedures in this paper, we
have not excluded the brightest voxel, corresponding to the origin in Fourier space, from the noise adding
procedure as was done in our previous publication [36]. For real experimental data, Liinis proportional to the
registered intensity.

As shown in detail in Pavlov et al [36], the auxiliary function U(x,y,z) reduces to

8
UR=(x,y,2)=A+> B+ C) + D. 3)

=1

Here, A is a term proportional to the shape function of the sample, the B;and C; terms are 16 spatially-translated
independent reconstructions of the unknown complex field

Br () exp (i - phase™ (r)) = B (r) exp (—ih - u™(r)) or its complex conjugate, and D is related to the
derivative of the cross-correlation of the object.

The closed-form solution to the BCDI inverse problem, obtained using equation (2), is exact if (i) thereisno
noise in I;, and (ii) the reference partisindeed a perfect undeformed crystal. If either of these conditions is not
tulfilled, the reconstruction of 3, (r) exp (—ih - u(r)) will contain some errors. The stronger the deviations from
the ideal reconstruction conditions, the greater these errors will typically become.

To reduce the reconstruction errors associated with our deterministic BCDI algorithm, we employ the
widely-used shrink-wrap iterative reconstruction algorithm [27]. The shrink-wrap algorithm, being very well
known, will not be described here. In the original paper by Marchesini et al [27], it was suggested that one could
use the autocorrelation function as a starting point for this iterative reconstruction algorithm. Such a choice has
been commonly employed, in a large number of successful CDI reconstructions. However, as an alternative that
is explored in the present paper, one can choose a BCDI reconstruction result as a starting point for subsequent
iterative refinement.

3. Modelling, results and discussion

Now we apply our deterministic BCDI reconstruction (see equation (2)) to the simulated x-ray intensity
(equation (1)) to obtain a starting point for the shrink-wrap iterative reconstruction procedure. This iterative
reconstruction procedure uses the y” error metric in Fourier space, as is typical for iterative CDI algorithms (see
e.g. Williams et al [40]):

= hins = I/ EN Gin- @)

In our case, fkin,i is the 3D array of the simulated intensity distribution (with and without added noise) in
Fourier space, modelled using the original values for the phase and amplitude. Ir; is the 3D array of the simulated
intensity distribution (no extra noise added) in Fourier space, modelled using the reconstructed values for the
phase and amplitude, produced by the iterative procedure.

To estimate errors in the reconstructed functions, with amplitude 3 (r), and phase phase™ (r), we use two
metrics for the real-space data [42], namely a normalised root-mean-square (RMS) error criterion, defined as

d — \/Z( i;‘]ic _ Glé‘dml)z/Z(Gi;‘iml _ <Gideal>)2 , (5)

and a normalised absolute difference,

ideal ideal
r= 3G — G| /S G, ©)
ideal rec

where G** and Gj* are ideal and reconstructed three-dimensional functions, respectively. (G“) is the mean
of the original function. As the phase reconstruction in the iterative procedure may contain an unknown
constant offset, we calculate error metrics d and r for the derivative of the reconstructed phase, phase™(r), with
respect to the z coordinate, namely, d_ph_zandr_ph_z, respectively. Table 1 (no noise in the simulated data) and
Table 2 (where the maximum intensity of the simulated data is 10'" photons per voxel) show values of criteria
d_ph_z,r_ph_zandd_amp, r_amp for the phase derivative along the z-direction (0(phase™ (r)) /0z) and

amplitude (3} (r)), respectively, for different reconstructions: deterministic BCDI (DCDI), the shrink-wrap
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Table 1. Error metrics r and d for real space and x* for Fourier space data for no-noise initial ‘experimental’ intensity data. Real-space
metrics (d_abs, r_abs) and (d_ph_z,r_ph_z)are for functions 5} (r) and 9(phase™ (r)) / Oz, respectively. Maximum phase 0.25 rad.
Minimum amplitude 0.9.

r_abs r_ph_z d_abs d_ph_z XZ
DCDI 1.43 x 107" 7.09 x 107" 4.23 x 1072 1.74 x 107" 2.74 x 1072
iterations started from the DCDI data 8.98 x 107° 217 327 x 107* 5.28 3.81 x 1078
iterations started from the autocorrelation data 3.74 x 107! 3.58 2.13 x 107! 1.23 x 10" 1.08 x 1073

Table 2. Error metrics r and d for real space and x* for Fourier space data for maximum ‘experimental’ intensity of 10'" photons per voxel.
rec

Real-space metrics (d_abs, r_abs) and (d_ph_z, r_ph_z) are for functions 35 (r) and 9(phase™(r)) / Oz, respectively. Maximum phase 0.25
rad. Minimum amplitude 0.9.

r_abs r_ph z d_abs d_ph_z X2
DCDI 1.43 x 107! 7.09 x 107! 423 x 1072 1.74 x 107" 2.74 x 107°
iterations started from the DCDI data 3.13 x 1072 1.76 241 x 1072 3.42 9.69 x 107°
iterations started from the autocorrelation data 2.68 x 1071 1.95 2.50 x 107} 4.22 1.36 x 1074

from autocorrelation no noise

g ~ - —from deterministic BCDI no noise

1077 ... from autocorrelation max intensity 10*11

3 —-—- from deterministic BCDI max intensity 10711
deterministic BCDI max intensity 1011

500 1000 1500 2000
Number of iterations

Figure 3. The x” error metrics as a function of the number of iterations.

algorithm with deterministic BCDI as the starting point, and the shrink-wrap algorithm with autocorrelation-
based function as the starting point. For the (00L) type of reflections (i.e., h has only a z component)
O(phase™ (r)) /Oz is proportional to the ,, = Ou, /0z component of the symmetrical strain tensor

6,']' = 1/2(8uj/6xi + 8u,»/8xj) [43—45].

We restrict the total number of shrink-wrap iterations to 2000, because, as shown in figure 3, no
improvements are observed beyond 1800 iterations. Figure 3 clearly demonstrates that the shrink-wrap iterative
reconstruction procedure improves the x> metric for both starting points (deterministic BCDI or
autocorrelation function) in real space in comparison to the one-step deterministic BCDI reconstruction, which
is shown in figure 3 only for the case of the maximum intensity of 10'" photons per pixel, because it is
indistinguishable from the noise-free reconstruction. The use of the deterministic BCDI reconstruction as the
starting point in the iterative procedure allows faster convergence and the final x> result is better than the one
obtained when the starting point is the autocorrelation function.

In the case when no noise is added to the simulated intensity (equation (1)), the reconstruction results for the
one-step deterministic BCDI reconstruction ((3} (r) and phase™ (r))) are shown in figure 2(b).

Figure 2(c) shows real space outcomes (55 (r) and phase™ (r)) of the iterative procedure when the starting
point was the deterministic BCDI reconstruction (figure 2(b)). The reconstruction errors, which are visible in
figure 2(b) and are caused by the non-ideality of the reference part, have disappeared. At the same time the
iterative procedure, using the autocorrelation function as its starting point, produces typical edge-like artefacts
(see figure 2(d)) which have some artificial symmetry.
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It should be noted that using only y* metrics does not give a proper indication of the reconstruction quality
as demonstrated in figure 4. Certain error metrics can have a rapid drop or even a strong oscillation, while other
error metrics stay relatively constant. For example, in figure 4(a), between 0 and 100 iterations, the red curve
drops sharply and begins to oscillate, while the green curve drops only marginally and then stagnates; at around
700 iterations the roles are reversed, with the green metric dropping significantly while the red metric stays
roughly constant. In figure 4(b), a steady drop of the red error metric over two orders of magnitude (from 300 to
1500 iterations) gives relatively little change in the pink curve; however, figure 4(d) shows the opposite
behaviour, for at 1100 iterations both the blue and the pink error metrics drop significantly, while the black and
red stay relatively constant, and the green metric even increases. No one error metric is able to give an
unproblematic handle on quantifying all errors that may be present in the process of iterative refinement. A
more balanced picture of the error landscape is provided by monitoring a portfolio of error metrics, as done in
figures 3 and 4. There can sometimes be relatively important changes in the reconstruction that are not
accompanied by significant changes in the y* metric, corresponding to degrees of freedom for which a
significant change in the properties of the scattering object yield only a small change in the corresponding
CDI data.

4. Conclusions

In this simulation-based study we used a deterministic Bragg Coherent Diffraction Imaging approach to seed a
subsequent shrink-wrap iterative refinement. The final reconstruction using this starting point was seen to be
better than the corresponding approach that employs an autocorrelation function as a starting point, for both
noisy and noise-free simulated data considered in this study. Two broad recommendations are suggested by this
investigation. (i) Iterative CDI reconstructions may benefit from reconsidering the use of very crude first
estimates, such as random starts or seeds based on auto-correlation estimates, as in the shrink-wrap algorithm
[27]. The use of more refined estimates for subsequent iterative-CDI refinement, including but not limited to the
deterministic CDI seed considered in this paper, may be useful for the further advancement of CDI
reconstructions. (ii) Many iterative refinement schemes, including but not limited to those employed in CDI
phase retrieval, monitor a single error metric to determine convergence. We suggest that a portfolio of such
metrics, namely a vector of scalar error metrics, may provide a more nuanced measure with which to monitor
convergence. This vector of scalar error metrics gives additional degrees of freedom that may be input into each
decision-tree node in iterative phase-retrieval algorithms.
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