
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Robust Model Predictive Control for
Autonomous Spaceships with Failing Sensors

Sinan Harputluoglu

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Robust Model Predictive Control for
Autonomous Spaceships with Failing Sensors

Robuste modellprädiktive Regelung für
autonome Raumschiffe mit fehlerhaften

Sensoren

Author: Sinan Harputluoglu
Supervisor: Prof. Dr. Hans-Joachim Bungartz
Advisor: Dr. Felix Dietrich
Submission Date: 15.11.2021

I confirm that this master’s thesis in informatics is my own work and I have documented all
sources and material used.

Munich, 15.11.2021 Sinan Harputluoglu

Acknowledgments

I would like to thank my advisor, Dr. Felix Dietrich, for his helpful support, guidance,
valuable feedback, and for giving me the opportunity to work on this interesting project. Also,
I would like to thank Kaan Atukalp and Ali Ganbarov for their support and enormous help
when continuing this project. Finally, I would like to express my gratitude to my girlfriend
and family for their continuous support.

Abstract

Controlling a system with constraints is a challenging problem. When robustness against
uncertainties in the system is taken into consideration, it becomes even more challenging. To
overcome this challenge, Model Predictive Control is one of the tools in control theory that
can be used to tackle such challenges. Model Predictive Control (MPC) is widely used in
many application areas such as plants as process control or autonomous vehicle control. The
main idea behind MPC is building a mathematical model of a dynamic system and solving
optimization problems online to find an optimum input to a dynamic system. MPC often
takes account of finite time-horizon, thus, can estimate the future state of the system. In
theory and practice, MPC is one of the successful approaches to control a constrained system.
In this thesis, robustness is incorporated into MPC and a spaceship is chosen to study as the
dynamic system that is controlled.

This thesis is a continuation of the previous work done in controlling a spaceship with
a Model Predictive Control. This thesis describes existing models and studies how they
fail when sensors fail in different ways and compares the models. Existing controllers are
re-implemented to introduce disruption in the system and different landing scenarios are
created. The robustness comparison procedure is implemented via simulating different failure
levels of sensors which are plausible in real-world applications. Finally, the spaceship system
is simulated in a space flight simulation game called Kerbal Space Program that provides
realistic scenarios for space flight travel.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Theoretical Background 3
2.1 Proportional-Integral-Derivative (PID) Controller 3
2.2 Model Predictive Control (MPC) . 4
2.3 Robust MPC . 7

2.3.1 Feedback MPC . 8
2.3.2 Min-max robust MPC . 9
2.3.3 Tube-based robust MPC . 9
2.3.4 Multi-stage MPC . 10

2.4 Fault Detection and Isolation . 11
2.5 Simulation Environment . 13

2.5.1 Kerbal Space Program . 13
2.5.2 Kerbal Remote Procedure Call (kRPC) Server 14

3 Control of a Spaceship with Faulty Sensors 16
3.1 Spaceship Dynamics . 16
3.2 Simulation Environment Setup . 17
3.3 Landing with Faulty Sensors . 17

3.3.1 Landing Simulation Results with Noisy Sensors 18
3.3.1.1 3000 m Landing Simulation Results 19
3.3.1.2 8000 m Landing Simulation Results 26

3.3.2 Landing Simulation Results with Failing Sensors 32
3.3.2.1 3000 m Landing Simulation Results 33
3.3.2.2 8000 m Landing Simulation Results 39

4 Discussion 45

5 Conclusion 47

Bibliography 48

List of Figures 51

v

Contents

List of Tables 53

vi

1 Introduction

Autonomous control of vehicles is becoming more and more relevant. This fashion also
applies to the aviation and space flight industries. Numerous solutions are implemented for
autonomous control of a space flight. However, space travel and production of a spaceship
have a high cost that motivates a requirement to reuse the system components. This motivation
and ability to do more frequent test flights drive people to find solutions to this problem.
Thus, it became a possibility in space flight history with the efforts of organizations such
as Space Exploration Technologies Corporation (SpaceX). SpaceX managed to reuse some
spaceship components successfully from their previous flight in 2017 [1].

Model Predictive Controller (MPC) is a widely used method for process control while
satisfying a set of constraints and has numerous applications in the modern age. The term
MPC refers to the idea of using an explicit model of the plant to be controlled to estimate
future output behavior. This prediction capability enables online optimization of control in
the difference between the predicted output and the target reference, is minimized over a
future horizon, potentially subject to constraints on inputs and outputs. Today, MPC has
many applications in areas such as autonomous vehicles and stability control [2], aircraft
control [3], or portfolio optimization in finance [4].

The robustness of MPC to model or system uncertainty and noise is a principal concern.
When a control system is stated as robust, we imply that it maintains stability and meets
performance standards for a given range of model variations and signal noise. The robustness
of a given control algorithm refers to an uncertainty range as well as specific stability and
performance requirements.

This thesis is a continuation of Ganbaraov’s [5] and Atukalp’s [6] work. They managed to
vertically land a spaceship using MPC, using different models from each other. However,
both of these models rely on the perfect availability of state information. We have taken over
their work and introduced noisy and failing sensors to the system to test and compare their
models under uncertain system conditions. For this purpose, real-life plausible Gaussian
noise is introduced to the sensor data and different landing scenarios are created. For the
failing sensors part of the simulations, we have arranged sensors to give constant output in
the middle of the landing and observed the result with different scenarios. Finally, all these
simulation data are gathered and visualized.

1

1 Introduction

This thesis is divided into five chapters. The first chapter introduces the topic of this
thesis. The second chapter describes the theoretical background related to this thesis’ subject,
proposed solutions in the past, and the simulation environment. The third chapter explains
the work about the comparison of different model predictive controllers under uncertain
system conditions. The fourth chapters discusses results and possible solutions. Finally, the
last chapter concludes this thesis and discusses future work.

2

2 Theoretical Background

This section describes the technical background information and is divided into five main
parts. Section 2.1 describes Proportional-Integral-Derivative (PID) controller, section 2.2
describes the Model Predictive Controller (MPC), section 2.3 describes the Robust MPC and
gives an overview of its different methods, section 2.4 describes the fault detection and
isolation. Finally, section 2.5 describes the simulation environment.

2.1 Proportional-Integral-Derivative (PID) Controller

A proportional-integral-derivative (PID) controller is a widely used control loop mechanism
that uses feedback coming from sensors or observations. The basic idea behind this controller
is reading data from sensors and computing the desired actuator action by calculating
proportional, integral, and derivative responses and finally, summing these three outputs to
compute the final output. The control function of the PID controller can be defined as

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kd

de(t)
dt

, (2.1)

where u(t) is the control value for the next step of the system, e(t) is the error value which is
the difference between the desired setpoint r(t) and measured process value y(t), Kp is the
coefficient for the proportional term (P), Ki is the coefficient for the integral term (I) and Kd is
the coefficient for the derivative (D) term.

As shown in formula 2.1, the proportional term (P) is proportional to the value of e(t), which
means if the error is large, the output u(t) will be proportionally large. The Integral term (I)
takes into account past values of e(t) and integrates over time and attempts to reduce residual
error by introducing a control effect based on the error’s past cumulative magnitude. Finally,
the derivative term (D) is the estimation of the future error e(t). It is proportional to the rate
of change of the error e(t), if there is a drastic change of the error rate, control output u(t)
will be large. These computations are constantly repeated in a loop until termination occurs.
Overall loop structure and components of PID can be seen in figure 2.1.

3

2 Theoretical Background

Figure 2.1: Block diagram of PID controller in a feedback loop [7]

2.2 Model Predictive Control (MPC)

Model Predictive Control (MPC), also known as receding horizon control [8] is one of the
widely used and successful advanced process control mechanisms. It has been used in process
industries such as chemical plants and power system balancing models [9]. The main idea
behind MPC is to forecast the future behavior of the managed system over a fixed time
horizon (prediction horizon) and calculate an optimal control input for the current time step
that minimizes an a priori determined cost function while satisfying a set of given system
constraints. This forecasting method (receding horizon estimation) is illustrated in figure
2.2.

MPC is preferred over other control methods and used in practice for many various reasons.
In contrast to PID controller, MPC can deal with large time delays, MPC has a flexible and
intuitive formulation, MPC can handle issues involving linear and nonlinear systems, as well
as variable and multivariable systems, without changing the controller formulation, MPC
uses an optimal control law that easy to implement and MPC is capable of controlling variety
of simple and complex systems.

4

2 Theoretical Background

Figure 2.2: Receding horizon strategy of MPC [10]

MPC formulation is based on three components; predictive model, objective cost function,
and constraints. The predictive model is the mathematic model that represents the underlying
behavior of the system. A typical discrete linear time-invariant system can be modeled
as

xt+1 = Axt + But, (2.2)

where xt ∈ Rn denotes the state and ut ∈ Rn denotes the input at time instant t.

Cost function is the criteria to be optimized by the problem defined by MPC. It can have the
general form

JN(xt, u(t)) =
N−1

∑
i=0

Lstage(x(t + i|t), u(t + 1|t)) + VTerm(x(t + N|t)), (2.3)

where x(t + N|t) is the predicted state at t + N where N is the prediction horizon, Lstage(.)
represents the stage cost, VTerm(.) represents terminal cost and u(t) is the future control action
of the predictive control horizon calculated at time t.

Constraints are usually defined on state and input as bounded sets. Constraint has to be
enforced because of operational of physical limits in practice. Finally, with the addition of

5

2 Theoretical Background

constraints, MPC can be formulated as

minimize
u

JN(xt, u(k))

subject to

x(t + i|t) ∈ U i = 1, ..., N − 1,

u(t + i|t) ∈ X i = 1, ..., N − 1,

x(t + N|t) ∈ X f

(2.4)

where sets X ∈ Rn and U ∈ Rn denotes the constraints on the state and the input respectively.
The set X f ⊆ X denotes the terminal constraint on the state.

Basic MPC algorithm can be defined by the following steps:

1. Model observes the current system (process).

2. Optimizer solves the problem 2.4 and finds optimal set of controls.

3. Predictive model applies the first optimal control and predicts next horizon.

4. In next time step, go to step 1.

The algorithm runs until a termination condition occurs (e.g. desired condition is met or a
failure happens). There are numerous efficient solvers for the optimization problem that can
be used as optimizers. A predictive model also can be any linear or non-linear (non-linear
MPC) model that represents the system. This MPC algorithm is visualized in figure 2.3.

Figure 2.3: MPC control loop [11]

6

2 Theoretical Background

2.3 Robust MPC

A system is considered to be robust if stability can be assured while fulfilling the performance
specifications in the face of a set of uncertainties [12]. Thus, a robust controller has to ensure
constraints are not violated when the system is open to some disturbances.

In a system, uncertainty may arise in many different ways. The system may have an additive
disturbance that is unknown, the state of the system may not be perfectly known, or the model
of the system that is used to determine control may be inaccurate [13]. The most common
uncertainties are external disturbances, noise in measurement, unmodeled non-linearities,
and this thesis’s main focus: failing sensors.

Conventional MPC has inherent robustness under certain conditions and it is a used approach
to ignore any disturbances in the system and rely on its own robustness. This method is
basically designing the controller as usual and hoping that a new control horizon will be
computed while diminishing any disturbances. But, it is not guaranteed that under the
existing disturbances, the system is stable or performs as well as expected [14]. Since, to solve
this problem of MPC, there are works in literature that propose new MPC methods that can
be stable under uncertainties in the system.

Formulation of a simple uncertain system with additive disturbance and measurement noise
can be modeled by extending the linear model in equation 2.2 as

xt+1 = Axt + But + Evt

yt = Cxt + Dwt,
(2.5)

where w is the measurement noise and v is the unknown state disturbance at time step t. A
system modeled as 2.5 can be controlled by a robust MPC and its optimization problem can
be described as

min
u

JN(xt, u(k))

s.t.

x(t + i|t) ∈ U i = 1, ..., N − 1,

u(t + i|t) ∈ X i = 1, ..., N − 1,

w(t + i|t) ∈W i = 1, ..., N − 1,

v(t + i|t) ∈ V i = 1, ..., N − 1,

x(t + N|t) ∈ X f

(2.6)

7

2 Theoretical Background

where JN(xt, u(k)) is the cost function, w(t+ i|t) and v(t+ i|t) denotes disturbance constraints
on the system respectively. Since robustness is not guaranteed when the disturbances are too
big in a system, sets W and V are usually assumed to be bounded.

2.3.1 Feedback MPC

The conventional MPC that is mentioned in the chapter 2.2 is an open-loop controller by
design. Open-loop systems respond purely based on the input and do not use feedback from
the result to self-correct. But, in a system with unknown disturbance or faults, this is a very
restrictive solution.

To solve these problems, such as disturbance or faults, output-feedback MPC can be used.
MPC is often designed assuming whole state information is present in the system, however,
in practice, the full state cannot be measured and is not available to the controller. In these
circumstances, independent algorithms are used for the state estimation such as observers,
filters, and moving horizon estimation [15]. For an example of the closed-loop structure of a
feedback MPC, see figure 2.4.

In feedback MPC, instead of a control sequence, a control policy is calculated. In practice,
it is seen that feedback MPC performs better than conventional MPC when a system has
uncertainty. But, a consequence of feedback MPC is that complexity of the optimization
problem increases when the decision variable is a control policy [13].

Figure 2.4: Feedback MPC control loop [16]

8

2 Theoretical Background

2.3.2 Min-max robust MPC

The min-max robust MPC is first proposed in 1987 by Campo and Morari [14]. The idea of
min-max MPC is optimizing the worst case deviation in the system. Optimization problem of
min-max MPC can be formulated as

min
u

max
w

JN(xt, u(k))

s.t.

x(t + i|t) ∈ X, ∀w ∈W i = 1, ..., N − 1,

u(t + i|t) ∈ U, ∀w ∈W i = 1, ..., N − 1,

w(t + i|t) ∈W i = 1, ..., N − 1

(2.7)

Thus, the optimization problem is minimizing the maximum w which means worst-case
performance cost. A drawback of this method is that the computational complexity which
increases exponentially.

In addition, closed-loop min-max formulations (feedback min-max MPC) are also proposed
[17] that improve feasibility problems, but they are complex to implement since optimization
is based on searching over control policies – an infinite-dimensional problem instead of a
control sequence [18].

2.3.3 Tube-based robust MPC

In an uncertain system, there are numerous possible future trajectories at every time step
and each future trajectory corresponds to a specific realization of a disturbance in the system.
Tube-based MPC is employed to construct a "tube" that constrains these state disturbance
realizations.

The main idea of the tube-based MPC is generating a tube using a secondary feedback
controller. First, conventional MPC is employed for the problem and used to determine the
nominal trajectory (center of the tube). In the second step, secondary feedback controller that
acts on the deviation between states is used to construct the tube around the found nominal
trajectory [19][20].

There are two main advantages of tube-based MPC: first, the optimization problem is changed
to finding control sequences rather than control policies, thus it reduces the computational
complexity, second, the secondary feedback controller ensures that in presence of the uncer-
tainties in the system the deviation is bounded by the tube.

9

2 Theoretical Background

2.3.4 Multi-stage MPC

Multi-stage MPC models the realizations of uncertainties in a system as scenarios. The main
idea of the multi-stage MPC is considering numerous scenarios that every one of is one
possible realization of all uncertain parameters at every time step within the horizon. These
scenarios that are considered in MPC can be represented as a scenario tree [21] (see figure
2.5)

The basic working principle of Multi-stage MPC is that it solves the problem at every time
step at the root z0 while considering the uncertain future evolution and future decisions
that might utilize the information gathered along the branches. This approach leads to an
open-loop formulation of the optimal closed-loop problem for the uncertainties in the system
which reduces the conservativeness of this approach [22].

Naturally, considering every possible value of uncertain parameters is infeasible, so there are
some implementations of generating scenario trees for all combinations of minimum, nominal
and maximum values of uncertain parameters to reduce the computational cost [23].

Figure 2.5: Scenario tree representation of the uncertainty evolution of multi-stage MPC [24]

10

2 Theoretical Background

2.4 Fault Detection and Isolation

A fault is defined as an unpermitted deviation of at least one characteristic property or
parameter of the system from the acceptable/usual/standard condition [25]. The faults in the
system may cause a failure; permanent disruption of ability to perform under its operating
conditions. Many fault types may occur in a system, but the most common are actuator fault,
sensor fault, and process fault itself.

A sensor fault is an irregular fluctuation in readings, such as a systematic error that affects the
value given by an altimeter. An actuator fault is a malfunction of a device that affects system
dynamics, such as problems in a thruster of a spaceship. Process faults are changes in the
system’s parameters that alter its dynamics, such as an unmodeled change in the aerodynamic
coefficients of a spaceship. There are three categories of temporal aspects of faults; abrupt
faults such as offset, incipients fault such as drifting parameters and intermittent fault. These
faults may arise from various sources such as design error, implementation errors, wear,
aging, and environmental aggressions.

Fault detection is finding out the presence of faults in a system when that fault occurs.
Fault isolation is determining the type and location of these faults. This process is called
fault detection and isolation (FDI). FDI employs the concept of redundancy in two ways:
hardware redundancy and analytical redundancy (see figure 2.6). Hardware redundancy
is comparing signals from sensor sets that have the same function to detect faults. The
analytical redundancy approach uses a mathematical model of the system together with some
estimation techniques for FDI [26].

Figure 2.6: Hardware redundancy and analytical redundancy for FDI [26]

11

2 Theoretical Background

FDI approaches are generally divided into model-based and data-driven (process history)
methods. Further, each of these methods can be divided into quantitative and qualitative
methods (for a list of methods see figure 2.7). The quantitative methods use mathematical
models to generate residuals for FDI, such as observers and Kalman filters. The qualitative
methods use artificial intelligence techniques to find the difference between observed behavior
and predicted behavior, such as neural networks.

Figure 2.7: Fault detection and isolation methods [27]

After fault detection and isolation, the control law of the system needs to change for the
fault-tolerant control (FTC). FTC or named as reconfiguration is changing the controller in
response to the specific fault. The basic idea of fault detection, isolation, and reconfiguration
(FDIR) can be explained in three steps: the generation of residuals which are the difference
between measurements and estimated process output, deciding if a fault occurred in the
system, and reconfiguring the system in response to the fault. These three steps illustrated in
figure 2.8.

In model-based FDIR approaches, the residual generation is based on the mathematical model
of the system. When a fault does not exist in a system, residuals should be small (ideally zero)
and when a fault occurs, residuals should be sufficiently large. However, in practice, the model
can not describe the system exactly because of disturbance and noise in the environment.
Thus, residuals are never zero in a system without a fault. To overcome this problem there
are two approaches: robust residual generation and robust residual evaluation.

Robust residual generation is designing a robust filter or estimator to generate residuals
that are unaffected by noise and uncertainties in the system, but sensitive to faults in the
system. Observer-based methods, parity relation methods are some examples of this approach.
The robust residual evaluation method is designing robust hypothesis testing algorithms
to evaluate the residuals that are assumed as random variables. The most basic method is
deciding a fault occurs when a value of residual exceeds a threshold [26].

12

2 Theoretical Background

Figure 2.8: Fault detection, isolation and reconfiguration scheme [26]

2.5 Simulation Environment

2.5.1 Kerbal Space Program

Kerbal space program is a simulation video game for space flight. The game provides a
realistic orbital and Newtonian physics engine in a 3-D environment [28]. Users can simulate
various real-life orbital maneuvers such as orbital rendezvous. In the game, all objects are
simulated based on Newtonian dynamics - except celestial bodies and in the "time warp
mode", where trajectories are precomputed.

Kerbal space program provides many flight scenarios to users. Users can create planes,
spaceships, and aircraft using various components provided by the game. The game has a
large variety of flight components such as guidance systems, different kinds of rocket engines
and fuel tanks, staging separators, etc. In addition to the possibilities of flight vehicles, the
kerbal space program simulates the solar system. Users can visit and land on other planets
using their space flight vehicles.

Kerbal space program provides a detailed interface to the user for the flight simulation.
General interface and game scene shown in figure 2.9.

13

2 Theoretical Background

Figure 2.9: A screenshot of Kerbal Space Program game interface

The game interface has an altimeter at the top, a throttle indicator on the bottom left, and a
navigation ball with a speedometer at the bottom center. In addition to the throttle indicator
at the bottom left, the vehicle’s principal axes -roll, yaw, and pitch- are shown at the bottom
left. Users can use this information and navigate the aircraft.

Kerbal space program received a lot of attention and users created many mods for this game.
These mods provide additional content such as different rocket parts, new destinations. One
of the mods called kRPC is used in this thesis which is explained in section 2.5.2.

2.5.2 Kerbal Remote Procedure Call (kRPC) Server

Kerbal remote procedure call (kRPC) is a mod or plugin for Kerbal Space Program that
allows running scripts to control the game. The mod library has support for many popular
programming languages such as C++, Java, and Python [29].

kRPC runs a server in the game and client scripts connect to this server and use it. Clients’
scripts can execute many procedures to control and interact with aircraft over a local network.
kRPC server has a separate interface that shows server status in the game scene which is
shown in figure 2.10.

14

2 Theoretical Background

Figure 2.10: Screenshot of kRPC mod interface

15

3 Control of a Spaceship with Faulty Sensors

This section presents the landings and navigation of the spaceship with faulty sensors and is
divided mainly into four parts. Section 3.1 describes spaceship dynamics, section 3.2 describes
the simulation environment setup for the landing of the spaceship.Finally, section 3.3 explains
the landing of proposed MPCs before [6][5] with noisy and failing sensors and compares the
results.

3.1 Spaceship Dynamics

In both Ganbarov’s [5] and Atukalp’s [6] thesis, a single model of the spaceship is used for
landing, and for this thesis, the same model will be used for the robust landing. This spaceship
model has a simple design that can be modeled easily with Newtonian dynamics.

Thrust, lift, and drag is the three main forces acting on the spaceship. Lift and drag forces
are aerodynamic forces that are dependent on the size, shape, and velocity of the spaceship.
The drag of the spaceship is modeled as a polynomial model based on altitude and vertical
velocity in Ganbarov’s implementation. In Atukalp’s implementation, the drag model is
replaced with a neural network. The spaceship and acting forces on it can be seen in figure
3.1.

Figure 3.1: Spaceship and acting forces on it

16

3 Control of a Spaceship with Faulty Sensors

3.2 Simulation Environment Setup

The whole simulation is done in the Kerbal Space Program environment using the kRPC
module. Since the purpose of this thesis is to compare two different implementations under
uncertain system conditions and propose a robust implementation, both Ganbarov’s and
Atukalp’s controllers are set up for the simulation. The spaceship is directly imported from
previous setups. The spaceship is constructed with a commanding pod, two fuel tanks, a
liquid engine that has a thrust capacity of 240 kN and the spaceship has a total mass of 7.2t
[5].

In Atukalp’s thesis, there are numerous proposed models for the spaceship. According to
Atukalp’s implementation, a neural network for the altitude prediction and a linear regressor
for the vertical velocity prediction gave the best results in practice [6]. Thus, in this thesis,
these predictors are set up for faulty landings. In Ganbarov’s thesis, a Newtonian model is
proposed for altitude and vertical velocity prediction and used directly in this chapter for
faulty landings.

Both of these implementations assume the perfect availability of state information. Thus, for
this thesis, these controllers were implemented again to introduce noisy or faulty sensors.
These controllers were implemented again in such a way that we can define random Gaussian
noise with a given standard deviation to the system or we can "disrupt" a sensor in a given
time.

3.3 Landing with Faulty Sensors

In this section both MPC implementations are compared in simulation environment under
uncertain system conditions. These controllers’ target values for the system are same and
altitude target can be formulated as

ytarget =

y− 500 y > 5000
y− 800 1000 < y 6 5000
−2 y 6 1000

(3.1)

where y is altitude and ytarget target altitude in meters. In addition, vertical velocity targets
can be formulated as

vtarget =

{
−200 y > 1000

0 y 6 1000
(3.2)

where y is altitude in meters and vtarget is target vertical velocity in meters per second.

Both of these controllers control the throttle of the spaceship based on vertical velocity and
altitude. Both MPCs prediction horizons are ten and for Ganbarov’s implementation, the

17

3 Control of a Spaceship with Faulty Sensors

control horizon is also ten, but for Atukalp’s implementation, the control horizon is one.
Spaceship’s principal axes such as yaw, pitch, and roll are controlled by PID controllers which
are implemented by Ganbarov [5]. PID controllers are optimized to keep the spaceship in the
upright position during the landing. In these landing simulations, PID controllers are directly
used from Ganbarov’s implementation.

We have simulated landings starting from two different altitudes: 3000 and 8000 meters.
The main reason for choosing these altitudes is that the KSP environment simulates the
atmosphere in different layers to make it a more realistic simulation. These layers have a
different atmospheric density which changes the drag force acting on the spaceship.

3.3.1 Landing Simulation Results with Noisy Sensors

For this part of the simulation, we have constructed Gaussian random noises with different
standard deviations and added noise to the altimeter and speedometer. Since model pre-
dictions for the altitude and velocity depend on each other, firstly, we added noise to each
one sensor separately and after, both sensors to observe the differences. In general, noisy
sensors did not cause failure during most of the flights. Both models handled the noise and
approached the ground the same as without the noise case. But, near the end of the landing,
some noise spikes caused a failed landing. In this section, we have visualized the data from
the end of the landing and also the whole landing data for each scenario.

Noise deviation is chosen according to plausible real-life scenarios. We have visualized model
predictions, real values and constructed noisy values for each model, and compared the
results. The summary of landing results can be seen in table 3.1 and table 3.2.

Landing From Altimeter Noise Speedometer Noise Result

3000 m 50 m - Crash
3000 m - 10 m/s Crash
3000 m 50 m 10 m/s Crash
8000 m 50 m - Crash
8000 m - 10 m/s Crash
8000 m 50 m 10 m/s Crash

Table 3.1: Naive MPC simulation results with noisy sensors.

18

3 Control of a Spaceship with Faulty Sensors

Landing From Altimeter Noise Speedometer Noise Result

3000 m 50 m - Crash
3000 m - 10 m/s Crash
3000 m 50 m 10 m/s Crash
8000 m 50 m - Crash
8000 m - 10 m/s Crash
8000 m 50 m 10 m/s Crash

Table 3.2: ML models simulation results with noisy sensors.

3.3.1.1 3000 m Landing Simulation Results

3K Landing Results with Altimeter Noise

We did not observe failure at the beginning of the landing simulation. Because of noise in
the altimeter, target altitudes were noisy for both models. However, both models handled
the noise to some degree and were able to continue the landing process. After passing the
1000 m, both models’ target altitudes were zero (0), thus, the noise did not affect the targets.
But, the last few hundred meters of the landings were affected by the noise and this caused
a crash. Since the last few hundred meters were disturbed, we visualized that part of the
landing in figure 3.2.

In the Newtonian model, controller failure happened at the 29th second of the flight. Simu-
lated noise caused a spike in the data and, the altimeter sent the value of -4 m to the MPC.
According to the controller, the target was reached and this caused the controller to disengage.
But, the real value of altitude was 35 m at this time. Disengagement of the controller caused
the spaceship to free-fall from that altitude without any controls. Finally, the spaceship
accelerated towards to ground, causing a crash.

In the ML models, controller failure happened at the 52nd second of the flight. Similar to the
Newtonian model simulation, simulated noise caused a spike in the data. In the ML model
simulation, the altimeter sent the value of -2 m to the MPC. Again, according to the controller,
the target was reached and this caused the controller to disengage. But, the real value of
altitude was 130 m at this time. Disengagement of the controller caused the spaceship to
free-fall from that altitude without any controls. Finally, the free-fall ended with a crash in
this simulation.

19

3 Control of a Spaceship with Faulty Sensors

(a) Newtonian Model (b) ML Models

Figure 3.2: Last moments of spaceship landing results from 3000 meters with two models.
In both landings, altimeter is simulated with a standard deviation of 50 meters
Gaussian noise.

Finally, we visualized the whole landing process in figure 3.3. Noise in the sensor caused noise
in altitude and vertical velocity prediction for both models during the flight. We observed
that the nature of ML model predictions was noisier compared to the Newtonian model. The
cause of vertical velocity prediction noise is the noise in the altitude sensor. The reason is,
vertical velocity predictions are dependent on altitude in both models.

One of the main differences between these models is the cost function in the controller. The
Newtonian model punishes the throttle and ML models do not. In figure 3.3, we observed
that there was not any noise in the vertical prediction until the 15th second in the Newtonian
model. The reason is the spaceship free-falls until that point. After that, the controller tries to
optimize and makes noisy predictions which also causes noisy control values. For the ML
model case, vertical velocity prediction and control values were always noisy.

20

3 Control of a Spaceship with Faulty Sensors

(a) Newtonian Model (b) ML Models

Figure 3.3: Spaceship landing results from 3000 meters with two models. In both landings,
altimeter is simulated with a standard deviation of 50 meters Gaussian noise. The
filling effect in ML model plots comes from fluctuations in noisy outputs.

21

3 Control of a Spaceship with Faulty Sensors

3K Landing Results with Speedometer Noise

(a) Newtonian Model (b) ML Models

Figure 3.4: Last moments of spaceship landing results from 3000 meters with two models.
The speedometer is simulated with a standard deviation of 10 m/s Gaussian noise.

In our 3K speedometer noise simulation, we did not observe failure until the last few seconds
of the landing. We visualized the last moments of the simulation that the crash happened in
figure 3.4. In the Newtonian model, the spaceship hangs at 10 m altitude for a few seconds.
The controller reached the velocity target at 44th second because of spikes in the noise, but it
did not reach the altitude target. After that, a spike in the velocity causes the controller to
input throttle, and the altitude rises. This unstabilized the system, including the yaw and
pitch controller. Finally, the angle between the ground and the spaceship changed and caused
the spaceship to crash. In ML models, we observed a similar result with the Newtonian
model. The spaceship started to float around 5 m of altitude while reaching its velocity target.
But, the spaceship destabilized while floating and crashed to the ground.

We visualized the whole landing process and included the control signal in figure 3.5. Noise in
the sensor caused noise in altitude and vertical velocity prediction for both models. Compared
to altitude noise simulation, altitude prediction was affected less for both models. The reason
is velocity has little impact on altitude prediction in both models.

22

3 Control of a Spaceship with Faulty Sensors

(a) Newtonian Model (b) ML Models

Figure 3.5: Spaceship landing results from 3000 meters with two models. In both landings,
speedometer (vertical velocity) is simulated with a standard deviation of 10 m/s
Gaussian noise. The filling effect in ML model plots comes from fluctuations in
noisy outputs.

23

3 Control of a Spaceship with Faulty Sensors

3K Landing Results with Altimeter and Speedometer Noise

(a) Newtonian Model (b) ML Models

Figure 3.6: Last moments of spaceship landing results from 3000 meters with two models.
The speedometer and altimeter are simulated with a standard deviation of 10 m/s
and 50 meters Gaussian noise

We did not observe failure at the beginning of the landing simulation. We visualized the last
moments of the simulation that the crash happened in figure 3.6. These landing results were
similar to landing with only altimeter noise. In the Newtonian model, simulated altimeter
noise caused a spike in the data, the altimeter sent the value of -6 m to the MPC and this
caused the controller to disengage. Disengagement caused the spaceship to free-fall from
that altitude without any controls and causing a crash. In the ML models, similar to the
Newtonian model simulation, simulated altitude noise caused a spike in the data. Again,
according to the controller, the target was reached and this caused the controller to disengage.
This caused the spaceship to free-fall from that altitude without any controls.

The main difference between this simulation and only the altimeter noise simulation is
predictions. In both models, velocity and altitude predictions were noisier. The whole
simulation process with including the control signal visualized in figure 3.7.

24

3 Control of a Spaceship with Faulty Sensors

(a) Newtonian Model (b) ML Models

Figure 3.7: Spaceship landing results from 3000 meters with two models. In both landings,
speedometer and altimeter are simulated with a standard deviation of 10 m/s
and 50 meters Gaussian noise. The filling effect in ML model plots comes from
fluctuations in noisy outputs.

25

3 Control of a Spaceship with Faulty Sensors

3.3.1.2 8000 m Landing Simulation Results

8K Landing Results with Altimeter Noise

(a) Newtonian Model (b) ML Models

Figure 3.8: Last moments of spaceship landing results from 8000 meters with two models.
In both landings, altimeter is simulated with a standard deviation of 50 meters
Gaussian noise.

We observed similar results to 3000 m landing in our simulation. The last few hundred meters
of the landings were affected by the noise spikes. Since the last few hundred meters were
disturbed, we visualized that part of the landing in figure 3.8.

In the Newtonian model, controller failure happened at the 32nd second. Simulated noise
caused a spike in the data. According to the controller, the target was reached and disengaged.
Controller disengagement caused the spaceship to free-fall from 80 m. In the ML models,
controller failure happened at the 52nd second. Similar to the Newtonian model simulation,
simulated noise caused a spike in the data, disengagement of the controller, and the free-fall
from 70m. Similar to 3000 m flight, noise in the altimeter caused noisy predictions of both
altitude and velocity for both models. The whole flight simulation with control signal values
visualized in figure 3.9.

26

3 Control of a Spaceship with Faulty Sensors

(a) Newtonian Model (b) ML Models

Figure 3.9: Spaceship landing results from 8000 meters with two models. In both landings,
the altimeter is simulated with a standard deviation of 50 meters Gaussian noise.
The filling effect in ML model plots comes from fluctuations in noisy outputs.

27

3 Control of a Spaceship with Faulty Sensors

8K Landing Results with Speedometer Noise

(a) Newtonian Model (b) ML Models

Figure 3.10: Last moments of spaceship landing results from 8000 meters with two models.
The speedometer is simulated with a standard deviation of 10 m/s Gaussian
noise.

In our 8K speedometer noise simulation, we observed similar results to our 3000 m simulation.
We visualized the last moments of the simulation that the crash happened in figure 3.10.

In the Newtonian model, the spaceship floats at 10 m altitude. The controller reached the
velocity target faster because of noise spikes, but it did not reach the altitude target. This
unstabilized the system, including the yaw and pitch controller. Finally, the angle between
the ground and the spaceship changed, the controller could not stabilize the spaceship and
crash. In ML models, the spaceship velocity target was reached around -10 m/s. Similar to
Newtonian model results, the system unstabilized, pitch and yaw changed and started to fall
with a constant vertical speed.

We visualized the whole landing process and included the control signal in figure 3.5. Noise in
the sensor caused noise in altitude and vertical velocity prediction for both models. Compared
to altitude noise simulation, altitude prediction was affected less for both models.

28

3 Control of a Spaceship with Faulty Sensors

(a) Newtonian Model (b) ML Models

Figure 3.11: Spaceship landing results from 8000 meters with two models. In both landings,
speedometer is simulated with a standard deviation of 10 m/s Gaussian noise.
The filling effect in ML model plots comes from fluctuations in noisy outputs.

29

3 Control of a Spaceship with Faulty Sensors

8K Landing Results with Altimeter and Speedometer Noise

(a) Newtonian Model (b) ML Models

Figure 3.12: Last moments of spaceship landing results from 8000 meters with two models.
The speedometer and altimeter are simulated with a standard deviation of 10
m/s and 50 meters Gaussian noise

We observed similar results to 3000 m landing in our simulation. Noise spike disturbed the
flight near the landing. we visualized that part of the landing in figure 3.12. These landing
results were similar to landing with only altimeter noise.

In the Newtonian model, at 10 m altitude, simulated altimeter noise caused a spike in the
data, the altimeter sent the value of -10 m to the MPC and this caused the controller to
disengage and the free-fall resulting in a crash. In the ML models, similar to the Newtonian
model, simulated altitude noise caused a spike in the data at 80 m from the ground. Again,
according to the controller, the target was reached and this caused the controller to disengage.
This caused the spaceship to free-fall from that altitude without any controls.

Similar to 3K landing, the main difference between this simulation and only the altimeter
noise simulation is predictions. In both models, velocity and altitude predictions were affected.
The whole simulation process with including the control signal visualized in figure 3.13.

30

3 Control of a Spaceship with Faulty Sensors

(a) Newtonian Model (b) ML Models

Figure 3.13: Spaceship landing results from 8000 meters with two models. In both landings,
speedometer and altimeter are simulated with a standard deviation of 10 m/s
and 50 meters Gaussian noise. The filling effect in ML model plots comes from
fluctuations in noisy outputs.

31

3 Control of a Spaceship with Faulty Sensors

3.3.2 Landing Simulation Results with Failing Sensors

For this part of the simulation, we have created failures in the altimeter and speedometer.
Since model predictions for the altitude and velocity depend on each other, firstly, we failed
each one sensor separately and after, both sensors to observe the differences. All of the
landings failed simulation rounds.

We failed the sensors on purpose to give constant output at some altitude levels. Altimeter
and speedometer failure is simulated to output constant 0 (zero) value, and we observed
the results. The summary of landing results can be seen in table 3.3 and table 3.4. Finally,
we illustrated detailed simulations by comparing two models under faulty sensor data
conditions.

Landing From Altimeter Fault At Speedometer Fault At Result

3000 m 1000 m - Floating at 500 m
3000 m - 1000 m Crash while accelerating
3000 m 1000 m 1000 m Crash while decelerating
8000 m 3000 m - Floating at 2800 m
8000 m - 3000 m Crash while accelerating
8000 m 3000 m 3000 m Crash while decelerating

Table 3.3: Naive MPC simulation results with faulty sensors.

Landing From Altimeter Fault At Speedometer Fault At Result

3000 m 1000 m - Floating at 600m
3000 m - 1000 m Crash while accelerating
3000 m 1000 m 1000 m Crash while decelerating
8000 m 3000 m - Floating at 1600m
8000 m - 3000 m Crash while accelerating
8000 m 3000 m 3000 m Crash while accelerating

Table 3.4: ML models simulation results with faulty sensors.

32

3 Control of a Spaceship with Faulty Sensors

3.3.2.1 3000 m Landing Simulation Results

3K Landing Results with Failing Altimeter

In this part of the simulation, we have failed the altimeters for both controllers and observed
the results. Failure simulation was done by giving constant zero (0) output for the altimeter.
We failed the altimeters when the spaceship reached 1000 m altitude for both controller
landing scenarios. Finally, total flight simulation data for both models are visualized in figure
3.14.

In our naive MPC simulation round, we observed predictable results. The Newtonian model
predictions for both altitude and vertical velocity were robust and stable until the failure.
The altimeter failure happened at the 18th second of the flight, and the model predictions
were immediately affected at this point. As expected, The Newtonian model predictions
changed to zero (0) after the altimeter failure. The controller assumes that it reached its target
altitude, thus, completed the landing process. After satisfying the altitude target, the control
function also tries to reach its velocity target. The controller maximized the throttle to reach
its velocity target at the 25th second. The spaceship started to slow down at 1000 m altitude
and balanced itself at 500 m after reaching the velocity target. Starting from the 26th second
of the landing, the controller reached both velocity and altitude targets and maintained the
current state.

In our ML models simulation round, we observed similar results to the Newtonian model
flight simulation. ML models’ predictions for both altitude and vertical velocity were again
robust and stable until the failure. But, compared to the Newtonian model, the vertical
velocity predictions and the control signal of ML models were noisier. The reason for the
velocity prediction noise is the nature of the predictor for this model. The altimeter failure
happened at the 37th second of the flight, and at this point, the model predictions were
affected. The ML models’ predictions changed to zero (0) after the altimeter failure. Again,
the controller assumed that it reached its target altitude. After satisfying the altitude target,
the control function also tried to get to its velocity target. The controller maximized the
throttle in a short time to reach its velocity target at the 37th second. The spaceship started to
slow down at 1000 m altitude and balanced itself at 600 m after reaching the velocity target.
Starting from the 47th second of the landing, the controller reached both velocity and altitude
targets and maintained the current state.

The total flight period was the main difference between the two models. The ML models’
flight was longer than the Newtonian model. The reason for that is the difference between
the cost functions between these two controllers. The Newtonian model includes the throttle
value in cost function in contrast to the ML model.

33

3 Control of a Spaceship with Faulty Sensors

(a) Newtonian Model (b) ML Models

Figure 3.14: Spaceship landing results from 3000 meters with two models. In both landings,
altimeter failure happened at 1000 meters above the ground. The filling effect in
ML model plots comes from fluctuations in noisy outputs.

34

3 Control of a Spaceship with Faulty Sensors

3K Landing Results with Failing Speedometer

In this part of the simulation round, we have failed the speedometers for both controllers and
observed the results. Failure simulation was done by giving constant zero (0) output for the
speedometer. We failed the speedometers when the spaceship reached 1000 m altitude for
both controller landing scenarios. Finally, total flight simulation data for both models are
visualized in figure 3.15.

In our naive MPC simulation round, we observed different behavior than the altimeter failure
simulation results. Until the failure, the Newtonian model predictions for both altitude and
vertical velocity were steady. The speedometer failure happened at the 18th second of the
flight, and the model predictions were immediately affected at this point. As expected, The
Newtonian model vertical velocity predictions changed to zero (0) after the speedometer
failure. The controller estimates it has achieved its target velocity, further, altitude predictions
increased. The cause of an increase in altitude prediction is the effect of vertical velocity on
altitude predictions. When vertical speed is low, the predicted altitude is high in the next
step. The controller activated the throttle at the 15th second and tried to maintain a regular
landing. After 3 seconds, the failure happened, and at this point, the controller deactivated
the throttle, predicting the current speed is close to zero (0). The cost function is responsible
for this behavior; vertical velocity has a greater impact than altitude in the cost function,
therefore the cost function had already a small value. The controller did not minimize the
cost function further and this caused no output signal (throttle) until the crash. Finally, the
spaceship free-fall starting from 1000 m altitude and crashed while accelerating.

In our ML models simulation round, we observed similar results to the Newtonian model
flight simulation. Until the failure, the ML models’ forecasts for both altitude and vertical
velocity were robust and reliable. However, as compared to the Newtonian model, the ML
models’ vertical velocity estimates and control signal were noisier again. The speedometer
failure happened at the 34th second of the flight, and at this point, the model’s velocity
prediction was zero (0). Again, the controller assumed that it reached its target speed. From
this point of the flight similar to the Newtonian model chain of events happened. Altitude
prediction was higher than the previous step because velocity is zero (0). The throttle was cut
off slowly by the controller since the cost was already low, thus, this caused the spaceship
to free-fall from 1000 m altitude. Finally, the spaceship crashed to the ground while it was
accelerating.

35

3 Control of a Spaceship with Faulty Sensors

(a) Newtonian Model (b) ML Models

Figure 3.15: Spaceship landing results from 3000 meters with two models. In both landings,
speedometer (vertical velocity) happened at 1000 meters above the ground. The
filling effect in ML model plots comes from fluctuations in noisy outputs.

36

3 Control of a Spaceship with Faulty Sensors

3K Landing Results with Failing Altimeter and Speedometer

In this part of the simulation round, we have failed the altimeter and speedometer for both
controllers and observed the results. Failure simulation was done by giving constant zero (0)
output for both the speedometer and the altimeter. We failed both of the sensors when the
spaceship reached 1000 m altitude for both controller landing scenarios. Finally, total flight
simulation data for both models are visualized in figure 3.16.

In our naive MPC simulation round, we observed that the Newtonian model predictions for
both altitude and vertical velocity were steady. Sensor failures happened at the 18th second
of the flight, and the model predictions were immediately affected at this timestamp. As
expected, both altitude and velocity predictions changed to zero (0) after failures. At the point
of failure, both of the predictions satisfied their target values, and this caused the controller
to stop optimizing. Just before the failures, the throttle value is optimized for the value of
0.32 to continue its regular landing. However, the controller was passive from that point
and the throttle remained the same as before (the spaceship throttle value does not change
without additional input). This thrust was enough to slow down the spaceship, and velocity
decreased from -170 m/s to -140 m/s. But, the spaceship without any controls, crashed to the
ground at the 24th second of the flight while deaccelerating.

In our ML models simulation round, we again observed similar results to the Newtonian
model flight simulation. Until the failure, the ML models’ predictions for both altitude and
vertical velocity were robust. In addition, compared to the Newtonian model, the ML models’
vertical velocity estimates and control signal were noisier again. The speedometer and the
altimeter failures happened at the 36th second of the flight, and at this point, the model’s
velocity and altitude predictions were near zero (0). Again, the controller assumed that it
reached its target speed and altitude. As same as the Newtonian model simulation, the
controller stopped optimizing the cost function. The main difference between this simulation
and the Newtonian model was that the ML model was slower at the point of failure because
of more frequent thrust inputs. However, at the time of failures, the current thrust was not
enough to decelerate the spaceship, and finally, the spaceship crashed to the ground while it
was accelerating.

37

3 Control of a Spaceship with Faulty Sensors

(a) Newtonian Model (b) ML Models

Figure 3.16: Spaceship landing results from 3000 meters with two models. In both landings,
speedometer and altimeter failures happened at 1000 meters above the ground.
The filling effect in ML model plots comes from fluctuations in noisy outputs.

38

3 Control of a Spaceship with Faulty Sensors

3.3.2.2 8000 m Landing Simulation Results

8K Landing Results with Failing Altimeter

In this part of the simulation, we have failed the altimeters for both controllers and observed
the results. Failure simulation was done by giving constant zero (0) output for the altimeter.
We failed the altimeters when the spaceship reached 1000 m altitude for both controller
landing scenarios. Finally, total flight simulation data for both models are visualized in figure
3.17.

In our naive MPC simulation round, we observed similar to 3K flight results. The Newtonian
model predictions for both altitude and vertical velocity were robust and stable until the
failure. The controller maximized the throttle when the target velocity has changed at the
24th second of flight and the landing continued. The altimeter failed at the 37th second of the
flight, and the model forecasts were instantly impacted and caused the model predictions
to change to zero (0) after the altimeter failure. The controller estimated it has achieved its
target altitude and has so completed the landing operation. After reaching the altitude target,
the control function attempted to achieve the velocity target as well. The controller increased
the throttle to achieve the desired velocity at the 38th second. After attaining the velocity
target, the spaceship began to slow down at 3000 m altitude and balanced itself at 2800 m.
The controller attained both velocity and altitude targets and maintained the present state
from the 42nd second of the landing.

We observed comparable findings to the Newtonian model flight simulation in our ML models
simulation round. ML models’ predictions for both altitude and vertical velocity were again
robust enough to land safely until the failure. However, as compared to the Newtonian model,
ML models’ vertical velocity estimates and control signal were noisier. The velocity prediction
was much noisier when compared to the 3K flight and when the vertical velocity target had
changed, predictions became much noisier. In addition, in contrast to the Newtonian model,
vertical velocity was linear and constantly slowing. The altimeter failed in the 41st second of
the flight, and the model projections were disrupted at this moment. Following the altimeter
failure, the ML models’ forecasts became zero (0). The controller assumed it had reached its
target altitude. After satisfying the altitude target, the control function also tried to reach its
velocity target as soon as possible in a linear fashion. The spaceship started to slow down
and balanced itself at 1600 m after reaching the velocity target. The controller met both
velocity and altitude targets and maintained the current state starting at the 59th second of
the landing.

39

3 Control of a Spaceship with Faulty Sensors

(a) Newtonian Model (b) ML Models

Figure 3.17: Spaceship landing results from 8000 meters with two models. In both landings,
altimeter failure happened at 3000 meters above the ground. The filling effect in
ML model plots comes from fluctuations in noisy outputs.

40

3 Control of a Spaceship with Faulty Sensors

8K Landing Results with Failing Speedometer

We failed the speedometers for both controllers in this section of the 8K landing simulation
run and observed the result. The speedometer was given a steady zero (0) output to simulate
failure. For both controller landing scenarios, the speedometers failed after the spaceship
reached 3000 m altitude. Finally, figure 3.18 depicts the overall flight simulation data for both
models.

We observed different behavior in our naive MPC simulation round than the altimeter failure
simulation results. The Newtonian model’s predictions for altitude and vertical velocity were
stable until the failure. At the 24th second of the landing, the vertical velocity target has
changed and throttle output was maximized by the controller and until the time of failure,
the spaceship maintained a constant speed. The altimeter failed on the 38th second of the
flight, causing the model forecasts to be affected immediately. After the speedometer failed,
the Newtonian model vertical velocity predictions changed to zero (0), as expected. The
controller estimates it has achieved its target velocity, similar to the 3K landing scenario, and
altitude projections were higher than a usual flight. The effect of vertical velocity on altitude
estimations is the reason for an increase in altitude prediction. The controller deactivated the
throttle at the time of failure, predicting that the current speed was close to zero (0). The
cost function is responsible for this behavior; vertical velocity has a bigger impact on the
cost function than altitude, hence the cost function had a minimal value. The cost function
was not further minimized by the controller, resulting in no output signal (throttle) until the
crash. Finally, the spaceship began a free fall from a height of 3000 meters and crashed as it
accelerated.

We noticed similar findings in our ML model flight simulation as in our Newtonian model
flight simulation. Until the failure, the ML models’ forecasts for both altitude and vertical
velocity were stable for a regular landing process. At the 25th second of landing, the vertical
velocity target has changed to zero(0). Thus, throttle output was increased by the controller
linearly and until the time of failure and the spaceship decelerated to its target speed. The
ML models’ vertical velocity estimates and control signal were noisier than the Newtonian
model. The speedometer failed in the 42nd second of the flight, and the model’s velocity
prediction was zero at that time (0). The controller assumed it had reached its targeted speed
again. A chain of events occurred from this point in the flight, comparable to the Newtonian
model. Because velocity is zero (0), the altitude projection was higher than the prior stage.
Because the cost was already minimal, the controller gradually reduced the throttle, causing
the spaceship to free-fall from 3000 meters altitude. Finally, the spaceship collided with the
ground as it was speeding up.

41

3 Control of a Spaceship with Faulty Sensors

(a) Newtonian Model (b) ML Models

Figure 3.18: Spaceship landing results from 8000 meters with two models. In both landings,
speedometer (vertical velocity) happened at 3000 meters above the ground. The
filling effect in ML model plots comes from fluctuations in noisy outputs.

42

3 Control of a Spaceship with Faulty Sensors

8K Landing Results with Faulty Altimeter and Speedometer

We failed the altimeter and speedometer for both controllers in this section of the 8K landing
simulation round and observed the result. Both the speedometer and the altimeter were given
constant zero (0) output to simulate failure. For both controller landing scenarios, we failed
both sensors when the spaceship reached 3000 m altitude. Finally, figure 3.16 depicts the
overall flight simulation data for both models.

We noticed that the Newtonian model predictions for both altitude and vertical velocity were
accurate in our Newtonian MPC simulation run. At the 36th second of the flight, sensor
failures occurred, and the model predictions were instantly altered. After failures, both
altitude and velocity forecasts were set to zero(0), as expected. Both predictions satisfied their
target values at the point of failure, causing the controller to stop optimizing. The throttle
value was optimized at a value of 0.3 just before the failures to require the plane to land safely.
However, the controller became inactive at that time, and the throttle stayed unchanged. The
spaceship’s velocity dropped from -175 m/s to -110 m/s as a result of this throttle. However,
the spaceship, which had no controls, crashed to the ground while decelerating at the 57th
second of the flight.

We found analogous findings in our ML model flight simulation as we observed in our
Newtonian model flight simulation. Until the failure, the ML models’ altitude and vertical
velocity estimates were accurate. Furthermore, the ML models’ vertical velocity estimates
and control signal were noisier than the Newtonian model. At the 42nd second of the flight,
the speedometer and altimeter failed, and the model’s velocity and altitude predictions were
close to zero (0). Again, the controller assumed that it reached its target speed and altitude.
As same as the Newtonian model simulation, the controller stopped optimizing the cost
function and the control signal vanished slowly. Because of the more frequent thrust inputs,
the ML model was slower at the point of failure than the Newtonian model. However, the
present thrust was insufficient to slow the spaceship during the failures, and the spaceship
eventually crashed to the ground while accelerating.

43

3 Control of a Spaceship with Faulty Sensors

(a) Newtonian Model (b) ML Models

Figure 3.19: Spaceship landing results from 8000 meters with two models. In both landings,
speedometer and altimeter failures happened at 3000 meters above the ground.
The filling effect in ML model plots comes from fluctuations in noisy outputs.

44

4 Discussion

We have tested many failing and noisy sensors in our landing simulations. There are methods
to solve these problems in practice. For noise in sensors, there are filtering methods such as
Kalman Filter. There are applications in literature to incorporate the Kalman filter into MPC
[30]. The Kalman filter is an algorithm that estimates unknown variables by using a set of data
observed over time that contains noise and other imperfections. R. E. Kalman proposed it in
1960 [31], and it has since become a common approach for an optimal estimate. Because of its
advantages of real-time, fast, efficient, and powerful anti-interference, the Kalman filter has
been widely used in orbit computation, target tracking, and navigation, such as calculations
of spacecraft orbit, tracking of maneuvering targets, and GPS positioning [32].

We have approached the noise in sensor problem with a Kalman Filter solution. Because of the
time constraints, we could not finish and conclude this part of the project, but, we are sharing
our current results in figure 4.1. In this figure, we have visualized filtered altimeter noise from
one of our simulation rounds. Since Kalman Filter requires a model of a system, we have used
our existing model and extended the model with environment and measurement noise. We
have tested our model on offline flight data results and saw promising results. However, since
we have used an offline method and Kalman Filter adds another complexity to our critical
system, online usage of this method is debatable and requires extensive simulations.

Figure 4.1: Filtered altitude sensor noise results. Kalman Filter is used for filtering process.

45

4 Discussion

For our failing sensor simulations, finding a solution is harder. The trivial solution is
implementing a hardware redundancy, but this may not be possible in every dynamic system.
While robust MPC solutions [12] exist to mitigate the effects of external disturbances, there
are no clear MPC strategies to account for the model mismatch. Sensor faults are a source of
modeling error that can be avoided by applying fault-tolerant control (FTC) techniques.

Firstly, we need to generate robust residuals to detect faults. We can design a robust filter or
an estimator that generates residuals reactive to faults. There are methods for this purpose
such as fault detection filters, observer-based methods, and Kalman filter-based methods
[26]. But, fault isolation is not guaranteed, thus, residuals should distinguish between faults.
In our simulation case, it can be an altimeter failure, speedometer failure, or both. We can
incorporate a filter and can check for differences between the predicted model state and the
observed state.

The next step is determining if there is any fault in the system and the type of the fault.
The trivial approach can be deciding a fault occurred if the value of a residual exceeds a
threshold. In our case, it can be an unexpectedly big difference between the current altitude
and measured altitude, so we can assume that the altimeter is faulty.

The final step of our method is reconfiguration. It is important to determine the best control
actions after a failure and its detection. So, we need to reconfigure the controller online in
response to the failures. One common approach is the multiple-model implementation for
this problem and it has applications in MPC [33]. Thus, we can also employ this approach to
our problem. We can create a set of different models to describe the system under normal
operation and fault conditions. We will also employ a controller designed for each model
specifically. In addition, a switching mechanism will be designed to determine the model of
the system (faulty or not) and select the corresponding controller. In our case, we will have a
model for altimeter failure, a speedometer failure, and both. We will detect the fault, isolate it
and finally change our model and controller corresponding to that fault.

We have talked about modeling the system, but these models can also be replaced by
reinforcement learning techniques. This way, robustness can be achieved with the same
methods that are mentioned.

46

5 Conclusion

We simulated numerous landing scenarios with faulty sensors using two different Model
Predictive Controllers. We compared the results and visualized our findings. In general, we
found out that controllers with the Newtonian model and the ML models can land successfully
when system information is perfectly available. However, when there are disturbances in the
system, both of these controllers fail to land the spaceship.

We have implemented new features for controllers to introduce noisy and failing sensors to
the system. We created similar landing scenarios that Atukalp[6] and Ganbarov[5] did in
their earlier work. Our noisy landings showed that both of these controllers are capable of
continuing to land until the critical moment of touchdown. However, since controllers depend
on perfect data, they have failed to finish the landing because of spikes in the noise.

In our failing sensor simulations, we have created scenarios to observe and compare every
combination of sensor failures. We have failed the altimeter, the speedometer, and two of the
sensors together and explained the results. We observed different results for every failure
type. We concluded that both of the controllers were not able to handle missing or wrong
data in the system as expected, and landing simulations ended in various failures.

In future work, FDI methods can be implemented to detect and isolate a disruption in the
system. In noisy sensors case, there are that methods can be used to filter the noise, such
as Kalman Filter, to stabilize the system. In our failure case, adaptive predictive controller
methods can be used when there is a failure to change the model or the cost function.
Finally, models can be extended by reinforcement learning to include noisy and faulty
scenarios.

47

Bibliography

[1] L. Z. Zhang Bojun and L. Gang. “High-Precision Adaptive Predictive Entry Guidance
for Vertical Rocket Landing”. In: Journal of Spacecraft and Rockets (2019).

[2] S. Di Cairano and H. Tseng. “Driver-assist steering by active front steering and differen-
tial braking: Design, implementation and experimental evaluation of a switched model
predictive control approach”. In: (2010), pp. 2886–2891.

[3] S. Gros, R. Quirynen, and M. Diehl. “Aircraft control based on fast non-linear MPC and
multiple-shooting”. In: (2012), pp. 1142–1147.

[4] M. F. Torsten Trimborn Lorenzo Pareschi. “Portfolio optimization and model predictive
control: A kinetic approach”. In: Discrete and Continuous Dynamical Systems - B 24.11
(2019), pp. 6209–6238.

[5] A. Ganbarov. Autonomous spaceship navigation and landing using Model Predictive Control.
Technical University of Munich, Munich, Germany, 2020.

[6] K. Atukalp. Automated Feature Selection and Learning of a Spaceship Model for Model
Predictive Control. Technical University of Munich, Munich, Germany, 2021.

[7] J.-j. Xue, Y. Wang, H. Li, X.-f. Meng, and J.-y. Xiao. “Advanced Fireworks Algorithm
and Its Application Research in PID Parameters Tuning”. In: Mathematical Problems in
Engineering 2016 (Jan. 2016), pp. 1–9.

[8] K. R. Muske and J. B. Rawlings. “Model predictive control with linear models”. In:
Aiche Journal 39 (1993), pp. 262–287.

[9] G. A. Michèle Arnold. Model Predictive Control of energy storage including uncertain
forecasts.

[10] C. E. García, D. M. Prett, and M. Morari. “Model predictive control: Theory and
practice—A survey”. In: Automatica 25.3 (1989), pp. 335–348.

[11] M. Yousuf, H. Al-Duwaish, and Z. Hamouz. “PSO Based Nonlinear Predictive Control
of Single Area Load Frequency Control”. In: (Aug. 2021).

[12] A. Bemporad and M. Morari. Robust model predictive control: A survey. Ed. by A. Garulli
and A. Tesi. London: Springer London, 1999, pp. 207–226.

[13] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl. Model Predictive Control: Theory, Computa-
tion and Design. Nob Hill Publishing, Feb. 2019. url: http://www.nobhillpublishing.
com/mpc-paperback/index-mpc.html.

48

http://www.nobhillpublishing.com/mpc-paperback/index-mpc.html
http://www.nobhillpublishing.com/mpc-paperback/index-mpc.html

Bibliography

[14] P. J. Campo and M. Morari. “Robust Model Predictive Control”. In: 1987 American
Control Conference (1987), pp. 1021–1026.

[15] D. A. Copp and J. P. Hespanha. “Nonlinear output-feedback model predictive control
with moving horizon estimation”. In: (2014), pp. 3511–3517. doi: 10.1109/CDC.2014.
7039934.

[16] U. Yüzgeç, Y. Becerkli, and M. Türker. “Dynamic Neural-Network-Based Model-
Predictive Control of an Industrial Baker’s Yeast Drying Process”. In: Neural Networks,
IEEE Transactions on 19 (Aug. 2008), pp. 1231–1242. doi: 10.1109/TNN.2008.2000205.

[17] D. Mayne. “Control of Constrained Dynamic Systems”. In: European Journal of Control
7.2 (2001), pp. 87–99. issn: 0947-3580. doi: https://doi.org/10.3166/ejc.7.87-99.
url: https://www.sciencedirect.com/science/article/pii/S0947358001711417.

[18] D. Mayne. “Robust and Stochastic MPC: Are We Going In The Right Direction?” In:
IFAC-PapersOnLine 48.23 (2015). 5th IFAC Conference on Nonlinear Model Predictive
Control NMPC 2015, pp. 1–8. issn: 2405-8963. doi: https://doi.org/10.1016/j.
ifacol.2015.11.255. url: https://www.sciencedirect.com/science/article/pii/
S2405896315025392.

[19] W. Langson, I. Chryssochoos, S. Raković, and D. Mayne. “Robust model predictive
control using tubes”. In: Automatica 40.1 (2004), pp. 125–133. issn: 0005-1098. doi: https:
//doi.org/10.1016/j.automatica.2003.08.009. url: https://www.sciencedirect.
com/science/article/pii/S0005109803002838.

[20] D. Mayne, M. Seron, and S. Raković. “Robust model predictive control of constrained
linear systems with bounded disturbances”. In: Automatica 41.2 (2005), pp. 219–224.
issn: 0005-1098. doi: https://doi.org/10.1016/j.automatica.2004.08.019. url:
https://www.sciencedirect.com/science/article/pii/S0005109804002870.

[21] S. Lucia, A. Tătulea-Codrean, C. Schoppmeyer, and S. Engell. “Rapid development
of modular and sustainable nonlinear model predictive control solutions”. In: Control
Engineering Practice 60 (2017), pp. 51–62. issn: 0967-0661. doi: https://doi.org/10.
1016/j.conengprac.2016.12.009. url: https://www.sciencedirect.com/science/
article/pii/S0967066116302970.

[22] S. Thangavel, R. Paulen, and S. Engell. “Multi-stage NMPC using sigma point princi-
ples”. In: IFAC-PapersOnLine 53.1 (2020). 6th Conference on Advances in Control and Op-
timization of Dynamical Systems ACODS 2020, pp. 386–391. issn: 2405-8963. doi: https:
//doi.org/10.1016/j.ifacol.2020.06.065. url: https://www.sciencedirect.com/
science/article/pii/S2405896320300847.

[23] G. Franceschini and S. Macchietto. “Model-based design of experiments for parameter
precision: State of the art”. In: Chemical Engineering Science 63.19 (2008). Model-Based
Experimental Analysis, pp. 4846–4872. issn: 0009-2509. doi: https://doi.org/10.
1016/j.ces.2007.11.034. url: https://www.sciencedirect.com/science/article/
pii/S0009250907008871.

49

https://doi.org/10.1109/CDC.2014.7039934
https://doi.org/10.1109/CDC.2014.7039934
https://doi.org/10.1109/TNN.2008.2000205
https://doi.org/https://doi.org/10.3166/ejc.7.87-99
https://www.sciencedirect.com/science/article/pii/S0947358001711417
https://doi.org/https://doi.org/10.1016/j.ifacol.2015.11.255
https://doi.org/https://doi.org/10.1016/j.ifacol.2015.11.255
https://www.sciencedirect.com/science/article/pii/S2405896315025392
https://www.sciencedirect.com/science/article/pii/S2405896315025392
https://doi.org/https://doi.org/10.1016/j.automatica.2003.08.009
https://doi.org/https://doi.org/10.1016/j.automatica.2003.08.009
https://www.sciencedirect.com/science/article/pii/S0005109803002838
https://www.sciencedirect.com/science/article/pii/S0005109803002838
https://doi.org/https://doi.org/10.1016/j.automatica.2004.08.019
https://www.sciencedirect.com/science/article/pii/S0005109804002870
https://doi.org/https://doi.org/10.1016/j.conengprac.2016.12.009
https://doi.org/https://doi.org/10.1016/j.conengprac.2016.12.009
https://www.sciencedirect.com/science/article/pii/S0967066116302970
https://www.sciencedirect.com/science/article/pii/S0967066116302970
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.06.065
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.06.065
https://www.sciencedirect.com/science/article/pii/S2405896320300847
https://www.sciencedirect.com/science/article/pii/S2405896320300847
https://doi.org/https://doi.org/10.1016/j.ces.2007.11.034
https://doi.org/https://doi.org/10.1016/j.ces.2007.11.034
https://www.sciencedirect.com/science/article/pii/S0009250907008871
https://www.sciencedirect.com/science/article/pii/S0009250907008871

Bibliography

[24] S. Subramanian, S. Lucia, S. A. Baradaran Birjandi, R. Paulen, and S. Engell. “A
Combined Multi-stage and Tube-based MPC Scheme for Constrained Linear Systems”.
In: IFAC-PapersOnLine 51.20 (2018). 6th IFAC Conference on Nonlinear Model Predictive
Control NMPC 2018, pp. 481–486. issn: 2405-8963. doi: https://doi.org/10.1016/j.
ifacol.2018.11.043. url: https://www.sciencedirect.com/science/article/pii/
S2405896318327010.

[25] R. Isermann and P. Ballé. “Trends in the application of model-based fault detection and
diagnosis of technical processes”. In: Control Engineering Practice 5.5 (1997), pp. 709–
719. issn: 0967-0661. doi: https://doi.org/10.1016/S0967-0661(97)00053-1. url:
https://www.sciencedirect.com/science/article/pii/S0967066197000531.

[26] I. Hwang, S. Kim, Y. Kim, and C. E. Seah. “A Survey of Fault Detection, Isolation,
and Reconfiguration Methods”. In: IEEE Transactions on Control Systems Technology 18.3
(2010), pp. 636–653. doi: 10.1109/TCST.2009.2026285.

[27] R. Arunthavanathan, F. Khan, S. Ahmed, and S. Imtiaz. “An analysis of process fault
diagnosis methods from safety perspectives”. In: Computers and Chemical Engineering
145 (2021). doi: https://doi.org/10.1016/j.compchemeng.2020.107197. url:
https://www.sciencedirect.com/science/article/pii/S0098135420312400.

[28] Kerbal space program. 2021. url: https://www.kerbalspaceprogram.com/game/kerbal-
space-program/.

[29] Kerbal remote procedure call. 2021. url: https://krpc.github.io/krpc/.

[30] “Model Predictive Control meets robust Kalman filtering”. In: IFAC-PapersOnLine 50.1
(2017). 20th IFAC World Congress, pp. 3774–3779. issn: 2405-8963.

[31] R. E. Kalman. “A new approach to linear filtering and prediction problems”. In: Journal
of Fluids Engineering 82.1 (1960), pp. 35–45.

[32] Q. Li, R. Li, K. Ji, and W. Dai. “Kalman Filter and Its Application”. In: 2015 8th
International Conference on Intelligent Networks and Intelligent Systems (ICINIS) (2015),
pp. 74–77.

[33] E. Camacho, T. Alamo, and D. M. de la Peña. “Fault-tolerant model predictive control”.
In: 2010 IEEE 15th Conference on Emerging Technologies Factory Automation (ETFA 2010)
(2010), pp. 1–8.

50

https://doi.org/https://doi.org/10.1016/j.ifacol.2018.11.043
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.11.043
https://www.sciencedirect.com/science/article/pii/S2405896318327010
https://www.sciencedirect.com/science/article/pii/S2405896318327010
https://doi.org/https://doi.org/10.1016/S0967-0661(97)00053-1
https://www.sciencedirect.com/science/article/pii/S0967066197000531
https://doi.org/10.1109/TCST.2009.2026285
https://doi.org/https://doi.org/10.1016/j.compchemeng.2020.107197
https://www.sciencedirect.com/science/article/pii/S0098135420312400
https://www.kerbalspaceprogram.com/game/kerbal-space-program/
https://www.kerbalspaceprogram.com/game/kerbal-space-program/
https://krpc.github.io/krpc/

List of Figures

2.1 Block diagram of PID controller in a feedback loop [7] 4
2.2 Receding horizon strategy of MPC [10] . 5
2.3 MPC control loop [11] . 6
2.4 Feedback MPC control loop [16] . 8
2.5 Scenario tree representation of the uncertainty evolution of multi-stage MPC [24] 10
2.6 Hardware redundancy and analytical redundancy for FDI [26] 11
2.7 Fault detection and isolation methods [27] . 12
2.8 Fault detection, isolation and reconfiguration scheme [26] 13
2.9 A screenshot of Kerbal Space Program game interface 14
2.10 Screenshot of kRPC mod interface . 15

3.1 Spaceship and acting forces on it . 16
3.2 Last moments of spaceship landing results from 3000 meters with two models.

In both landings, altimeter is simulated with a standard deviation of 50 meters
Gaussian noise. 20

3.3 Spaceship landing results from 3000 meters with two models. In both landings,
altimeter is simulated with a standard deviation of 50 meters Gaussian noise.
The filling effect in ML model plots comes from fluctuations in noisy outputs. 21

3.4 Last moments of spaceship landing results from 3000 meters with two models.
The speedometer is simulated with a standard deviation of 10 m/s Gaussian
noise. 22

3.5 Spaceship landing results from 3000 meters with two models. In both landings,
speedometer (vertical velocity) is simulated with a standard deviation of 10 m/s
Gaussian noise. The filling effect in ML model plots comes from fluctuations
in noisy outputs. 23

3.6 Last moments of spaceship landing results from 3000 meters with two models.
The speedometer and altimeter are simulated with a standard deviation of 10
m/s and 50 meters Gaussian noise . 24

3.7 Spaceship landing results from 3000 meters with two models. In both landings,
speedometer and altimeter are simulated with a standard deviation of 10 m/s
and 50 meters Gaussian noise. The filling effect in ML model plots comes from
fluctuations in noisy outputs. 25

3.8 Last moments of spaceship landing results from 8000 meters with two models.
In both landings, altimeter is simulated with a standard deviation of 50 meters
Gaussian noise. 26

51

List of Figures

3.9 Spaceship landing results from 8000 meters with two models. In both landings,
the altimeter is simulated with a standard deviation of 50 meters Gaussian
noise. The filling effect in ML model plots comes from fluctuations in noisy
outputs. 27

3.10 Last moments of spaceship landing results from 8000 meters with two models.
The speedometer is simulated with a standard deviation of 10 m/s Gaussian
noise. 28

3.11 Spaceship landing results from 8000 meters with two models. In both landings,
speedometer is simulated with a standard deviation of 10 m/s Gaussian noise.
The filling effect in ML model plots comes from fluctuations in noisy outputs. 29

3.12 Last moments of spaceship landing results from 8000 meters with two models.
The speedometer and altimeter are simulated with a standard deviation of 10
m/s and 50 meters Gaussian noise . 30

3.13 Spaceship landing results from 8000 meters with two models. In both landings,
speedometer and altimeter are simulated with a standard deviation of 10 m/s
and 50 meters Gaussian noise. The filling effect in ML model plots comes from
fluctuations in noisy outputs. 31

3.14 Spaceship landing results from 3000 meters with two models. In both landings,
altimeter failure happened at 1000 meters above the ground. The filling effect
in ML model plots comes from fluctuations in noisy outputs. 34

3.15 Spaceship landing results from 3000 meters with two models. In both landings,
speedometer (vertical velocity) happened at 1000 meters above the ground.
The filling effect in ML model plots comes from fluctuations in noisy outputs. 36

3.16 Spaceship landing results from 3000 meters with two models. In both landings,
speedometer and altimeter failures happened at 1000 meters above the ground.
The filling effect in ML model plots comes from fluctuations in noisy outputs. 38

3.17 Spaceship landing results from 8000 meters with two models. In both landings,
altimeter failure happened at 3000 meters above the ground. The filling effect
in ML model plots comes from fluctuations in noisy outputs. 40

3.18 Spaceship landing results from 8000 meters with two models. In both landings,
speedometer (vertical velocity) happened at 3000 meters above the ground.
The filling effect in ML model plots comes from fluctuations in noisy outputs. 42

3.19 Spaceship landing results from 8000 meters with two models. In both landings,
speedometer and altimeter failures happened at 3000 meters above the ground.
The filling effect in ML model plots comes from fluctuations in noisy outputs. 44

4.1 Filtered altitude sensor noise results. Kalman Filter is used for filtering process. 45

52

List of Tables

3.1 Naive MPC simulation results with noisy sensors. 18
3.2 ML models simulation results with noisy sensors. 19
3.3 Naive MPC simulation results with faulty sensors. 32
3.4 ML models simulation results with faulty sensors. 32

53

	Acknowledgments
	Abstract
	Contents
	Introduction
	Theoretical Background
	Proportional-Integral-Derivative (PID) Controller
	Model Predictive Control (MPC)
	Robust MPC
	Feedback MPC
	Min-max robust MPC
	Tube-based robust MPC
	Multi-stage MPC

	Fault Detection and Isolation
	Simulation Environment
	Kerbal Space Program
	Kerbal Remote Procedure Call (kRPC) Server

	Control of a Spaceship with Faulty Sensors
	Spaceship Dynamics
	Simulation Environment Setup
	Landing with Faulty Sensors
	Landing Simulation Results with Noisy Sensors
	3000 m Landing Simulation Results
	8000 m Landing Simulation Results

	Landing Simulation Results with Failing Sensors
	3000 m Landing Simulation Results
	8000 m Landing Simulation Results

	Discussion
	Conclusion
	Bibliography
	List of Figures
	List of Tables

