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Abstract

Since the financial crisis of 2007-2009 there is an active debate of regulators and academic
researchers on systemic risk, with the aim of preventing similar crises in the future or at least
reducing their impact. A major determinant of systemic risk is the interconnectedness of
the international financial market. We propose to analyze interdependencies in the financial
market using copulas, in particular using flexible vine copulas, which overcome limitations
of the popular elliptical and Archimedean copulas. To investigate contagion effects among
financial institutions, we develop methods for stress testing by exploiting the underlying
dependence structure. New approaches for Archimedean and, especially, for vine copulas are
derived. In a case study of 38 major international institutions, 20 insurers and 18 banks, we
then analyze interdependencies of CDS spreads and perform a systemic risk stress test. The
specified dependence model and the results from the stress test provide new insights into
the interconnectedness of banks and insurers. In particular, the failure of a bank seems to
constitute a larger systemic risk than the failure of an insurer.

JEL classification: C53, G28
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1 Introduction

Dealing with the lessons learned from the financial crisis, the discussion about systemic risk
has become more and more important. The collapse of Lehman Brothers in 2008 showed that
the sudden and uncontrolled breakdown of a global financial company not only affected other
financial institutions and seriously endangered the stability of the global financial sector but
also had a great impact on the real economy of several countries around the world. As a result,
the Financial Stability Board (FSB) developed guidelines to assess the systemic importance of
financial institutions, markets, and instruments. The FSB defines systemic risk as “the risk of
disruption to financial services that is (i) caused by an impairment of all or parts of the financial
system and (ii) has the potential to have serious negative consequences for the real economy”
[Financial Stability Board et al., 2009]. Furthermore, an institution, market, or instrument is
regarded as systemic if “its failure or malfunction causes widespread distress, either as a direct
impact or as a trigger for broader contagion” on the financial system and/or the real economy.

The systemic relevance of an institution can be assessed based on several criteria that have
been identified by the FSB. The three most important are size, lack of substitutability, and
interconnectedness: Financial institutions whose “distress or disorderly failure, because of their
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size, complexity, and systemic interconnectedness, would cause significant disruption to the wider
financial system and economic activity” [Financial Stability Board, 2011] are called systemically
important. These institutions will face additional regulatory measures to reduce the systemic
risk imposed by them. The Basel Committee on Banking Supervision [2011] and the Interna-
tional Association of Insurance Supervisors [2012] have developed methodologies to determine
globally systemically important banks and insurers, respectively. The assessment methodology
for insurers differs to that used for banks, since it takes into account the fundamental differences
in the business models of banks and insurance companies. While a systemic classification of
insurers has not been published yet, a list of globally systemically important banks is released
on a yearly basis. In 2012, there were 28 banks on this list [Financial Stability Board, 2012].

Despite the popular expression “too big to fail”, it has been argued in recent literature that
the interconnectedness of an institution is much more important in the assessment of systemic
risk: Cont and Moussa [2010] and Cont et al. [2013] find that the impact of the failure of an
institution strongly depends on the interdependencies among institutions and less on its size.
Similarly, Markose et al. [2012] observe in their analysis of interconnectedness in the US banking
sector that only a few major institutions play a dominant role in terms of network centrality
and connectivity. With respect to contagion in the US insurance sector, Park and Xie [2011]
evaluate the impact of reinsurer downgradings on US property-casualty insurers and conclude
that a systemic crisis caused by reinsurance transactions is rather unlikely. Billio et al. [2012]
analyze the interdependencies among financial institutions from different sectors using principle
component analysis and Granger-causality networks and detect an interesting asymmetry in
the financial system, as banks are more likely to transmit shocks than insurers, hedge funds or
broker-dealers. Hence, in light of this research, it is more appropriate to speak of systemically
important institutions as “too (inter-)connected to fail”.

The exploration of contagion and interconnectedness is also the topic of this article. We
propose to use copulas to analyze interdependencies in the global financial market, notably in
the banking as well as in the insurance sector and not in both sectors in isolation, as it is often
done. In doing so, we aim to find out whether there are significant differences in the dependence
structure among banks and among (re-)insurers. As a statistical tool for dependence model-
ing, copulas allow for an accurate analysis beyond linear correlations and common multivariate
Gaussian distributions. Therefore, we not only consider the popular classes of Archimedean
and elliptical copulas, but also the more recently proposed vine copulas (see Kurowicka and Joe
[2011] and Czado et al. [2013] for recent overviews). Such vine copulas allow to take into account
tail and asymmetric dependencies and therefore overcome limitations of the elliptical copulas
that are typically used in larger dimensional dependence analysis. Vine copulas may also pro-
vide more parsimonious parameterizations of multivariate distributions and therefore constitute
useful models for a flexible dependence analysis (see also Brechmann and Czado [2011]).

Stress testing is an important tool for the assessment and classification of systemic risk. The
systemic relevance of an institution is decisively determined by the potential impact of its failure
on other institutions. It is therefore crucial to analyze such stress situations in the market by
taking into account the interdependence among the institutions. Statistically speaking, we are
interested in the following situation: LetX := (X1, ..., Xd)′ be a random vector of risk quantities.
Then we are interested in the case X−i|Xi = xi, i ∈ {1, ..., d}, where X−i denotes the random
vector X without the ith component and the event {Xi = xi} corresponds to a stress situation.
For instance, let Xi be the company value, then a stress situation occurs when xi is very small.
Clearly, such an analysis requires the availability of the conditional distribution of X−i|Xi = xi,
given the specific underlying dependence model. As this distribution is typically not known
in closed form, conditional simulation algorithms are needed for the scenario analysis. While
these are straightforward and well-known in the case of elliptical copulas, we derive appropriate
methods for Archimedean and vine copulas.
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The methodology developed in this article is used in a case study of 38 important financial
institutions from all over the world, among them 20 insurers and 18 banks. Their credit default
swap spreads, as market-based indicators of the credit worthiness, are statistically analyzed
and appropriate multivariate dependence models are constructed. A stress testing exercise then
provides insights into the systemic relevance of the different institutions. We detect differences
among regional markets and, in addition, among the banking and the insurance sector. Interest-
ingly, the classification of globally systemically important banks is hardly reflected in the data.
Furthermore, the analysis reveals new results regarding the classification of insurers, which,
however, can not yet be compared to an official classification

The remainder of the paper is structured as follows. Section 2 provides the necessary method-
ological background on copulas and vine copulas in particular. Conditional copula simulation
for the classes of elliptical, Archimedean and vine copulas is then treated in Section 3. The case
study is presented in Section 4. Section 5 concludes.

2 Copulas

The statistical notion of dependence is closely related to the concept of copulas. In the first place,
a d-dimensional copula simply is a multivariate distribution function on [0, 1]d with uniformly
distributed marginals. According to the theorem by Sklar [1959] any multivariate distribution
is however directly linked to a copula. Let X = (X1, ..., Xd)′ ∼ F with marginal distributions
F1, ..., Fd, then Sklar [1959] shows that

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)), x1, ..., xd ∈ (R ∪ {−∞,∞})d, (2.1)

where C is a d-dimensional copula. That is, Sklar’s Theorem (2.1) allows to decompose any mul-
tivariate distribution in terms of its margins and a copula that specifies the between-variable
dependence. If X is a continuous random vector, then the copula C is unique and the multi-
variate density f of X can be decomposed as

f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))f1(x1)...fd(xd), (2.2)

where c is the copula density and f1, ..., fd are the marginal densities of f . More details on
copulas in general can be found in the comprehensive reference books by Joe [1997] and Nelsen
[2006]. Here, we concentrate on the popular classes of elliptical and Archimedean copulas as well
as the more recently proposed vine copulas, which are also known as pair-copula constructions.

If F is an elliptical distribution function (see Fang et al. [1990] and McNeil et al. [2005]), then
the associated copula C is also called elliptical. More precisely, an elliptical copula is defined
through inversion of Sklar’s Theorem (2.1) as

C(u1, ..., ud) = F (F−11 (u1), ..., F
−1
d (ud)), u1, ..., ud ∈ [0, 1],

where F is elliptical and F1, ..., Fd are the corresponding margins. The most popular examples of
elliptical copulas are the Gaussian copula with correlation matrix R = (ρij)i,j=1,...,d ∈ [−1, 1]d×d

and the Student’s t copula with association matrix R ∈ [−1, 1]d×d and ν > 2 degrees of
freedom. In addition to being reflection symmetric (if (U1, U2)

′ ∼ C, then it also holds that
(1 − U1, 1 − U2)

′ ∼ C), the Gaussian copula is tail independent, while the Student’s t copula
exhibits symmetric lower and upper tail dependence [Embrechts et al., 2002].

Another important class of copulas are Archimedean copulas. For a generator function
ϕ : [0, 1] → [0,∞), whose inverse ϕ−1 is d-monotone on [0,∞) (see McNeil and Nešlehová
[2009]), a d-dimensional Archimedean copula is defined as

C(u1, ..., ud) = ϕ−1 (ϕ(u1) + ...+ ϕ(ud)) , u1, ..., ud ∈ [0, 1]. (2.3)
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Popular Archimedean copulas are the Clayton, Gumbel and Frank copulas, which possess dif-
ferent properties to those of the elliptical copulas such as asymmetric tail dependence. From
Definition (2.3) it is however clear that Archimedean copulas imply exchangeability: If U is
distributed according to an Archimedean copula, any permutation of the components of U fol-
lows the same Archimedean copula. Since this may be rather restrictive in larger dimensional
applications, Archimedean copulas are primarily used in the bivariate case or as building blocks
of so-called vine copulas.

Vine copulas represent a more general approach to construct flexible multivariate copulas,
which recently gained increasing attention in the literature (see Kurowicka and Joe [2011] and
Czado et al. [2013] for recent overviews). While a special case has already been discussed by Joe
[1996], Bedford and Cooke [2001, 2002] independently construct a general class of multivariate
distributions. These so-called regular vine distributions only depend on bivariate and univariate
distributions. We illustrate the concept here with a three-dimensional example.

Let X = (X1, X2, X3)
′ ∼ F with density f . This density can be decomposed by conditioning

into
f(x1, x2, x3) = f1(x1)f2|1(x2|x1)f3|1,2(x3|x1, x2). (2.4)

Using Sklar’s Theorem (2.2), it follows that

f2|1(x2|x1) =
f1,2(x1, x2)

f1(x1)
=
c1,2(F1(x1), F2(x2))f1(x1)f2(x2)

f1(x1)

= c1,2(F1(x1), F2(x2))f2(x2),

(2.5)

where C1,2 is the bivariate copula of the variable pair (X1, X2). In the same way, it holds that

f3|1,2(x3|x1, x2) =
f2,3|1(x2, x3|x1)
f2|1(x2|x1)

=
c2,3;1(F2|1(x2|x1), F3|1(x3|x1))f2|1(x2|x1)f3|1(x3|x1)

f2|1(x2|x1)
= c2,3;1(F2|1(x2|x1), F3|1(x3|x1))f3|1(x3|x1)
(2.5)
= c2,3;1(F2|1(x2|x1), F3|1(x3|x1))c1,3(F1(x1), F3(x3))f3(x3),

where

F2|1(x2|x1) = C2|1(F2(x2)|F1(x1)) :=
∂C1,2(F1(x1), F2(x2))

∂F1(x1)
(2.6)

and similarly for F3|1. Here, C1,3 is the copula of the variable pair (X1, X3) and C2,3;1 that of
the pair (X2, X3) given the first variable X1. Further, C2|1 denotes the conditional distribution
function of U2 given U1 when (U1, U2)

′ ∼ C1,2.
To summarize, we have decomposed the density f of X into its marginal densities and the

three bivariate copulas C1,2, C1,3 and C2,3;1 with densities c1,2, c1,3 and c2,3;1, respectively. For
the three-dimensional copula of X this means that its density is formed as the product of these
bivariate copulas, of which two are unconditional and one is conditional on another variable.
Note that it is typically assumed that the conditional copula C2,3;1 only depends on X1 through
the arguments F2|1 and F3|1. More details on this so-called simplifying assumption can be found
in Hobæk Haff et al. [2010], Stöber et al. [2012] and Acar et al. [2012].

Due to this construction in terms of a cascade of bivariate copulas, vine copulas are also called
pair-copula constructions (PCCs) as introduced by Aas et al. [2009]. The main virtue of such
PCCs is that each bivariate copula can be chosen independently from different copula classes
such as elliptical or Archimedean copulas. In this way, a wide range of different dependence
structures can be captured using vine copulas.

The above decomposition into a product of bivariate copulas can be extended to the general
multivariate case. This however requires different choices regarding the order of the variables
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Figure 1: C-vine tree sequence with edge labels for five variables.

in the decomposition as made in (2.4). Bedford and Cooke [2001, 2002] introduce vines as a
graphical tool to organize different PCCs and state general conditions in which cases such a
d-dimensional PCC of d(d− 1)/2 bivariate copulas is in fact a valid decomposition. This yields
the class of regular vine copulas as investigated further by Kurowicka and Cooke [2006] and
Dißmann et al. [2013]. Here, we only concentrate on the sub-class of canonical vine (C-vine)
copulas, which yield an appealing model for our purpose of systemic risk stress testing.

A C-vine is characterized by an ordering of the variables. Without loss of generality let
1, ..., d be the ordering. This ordering defines the sequence of conditioning in the PCC: First
we condition on variable 1, then on variable 2, and so on. Let U = (U1, ..., Ud)′ ∼ C, where
C is a C-vine copula with density c. Then this yields the following C-vine copula density
decomposition:

c(u1, ..., ud) =
d∏

`=2

c1,`(u1, u`)

×
d−1∏
j=2

d−j∏
k=1

cj,j+k;1,...,j−1(Cj|1,...,j−1(uj |u1, ..., uj−1), Cj+k|1,...,j−1(uj+k|u1, ..., uj−1)),
(2.7)

where the index of the first product in the second term runs over the conditioning variables and
the index of the second product over the partners of variable j in the conditioned pair (j, j+k).
As in (2.6), the conditional distribution functions Cj+k|1,...,j−1 of Uj+k given U1, ..., Uj−1 can be
obtained recursively for j = 2, ..., d− 1 and k = 0, ..., d− j using

Cj+k|1,...,j−1(uj+k|u1, ..., uj−1) := FUj+k|U1,...,Uj−1
(uj+k|u1, ..., uj−1)

= hj+k|j−1;1,...,j−2
(
Cj+k|1,...,j−2(uj |u1, ..., xj−2)|Cj−1|1,...,j−2(uj−1|u1, ..., uj−2)

)
,

(2.8)

where

hj+k|j−1;1,...,j−2(v|u) :=
∂Cj−1,j+k;1,...,j−2(u, v)

∂u
.

For j = 2 it holds that h2+k|1 = C2+k|1.
This decomposition can be represented graphically in a C-vine tree sequence (see Figure 1).

Each edge is uniquely associated to one bivariate copula in the decomposition: Those in the
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first tree correspond to the first term in (2.7), while those in trees Tj , j ≥ 2, are associated with
the first product in the second term of (2.7). This graphical representation also conveniently
illustrates the order of the variables: In the first tree, variable 1 plays a pivotal role. Then in
the second tree, variable 2 takes on this pivotal role, since all possible pairs of variable 2 with
the remaining variables are modeled conditionally on variable 1, and similarly for all other trees.
The order of the variables can therefore be seen as an importance ordering of the most relevant
variables among variables 1, ..., d. Motivated by the graphical representation, the pivotal variable
in each tree is also called root node.

3 Conditional simulation

As noted in the introduction, we are interested in the following situation for systemic risk stress
testing. Let X := (X1, ..., Xd)′ ∼ F be a continuous random vector and let X−i denote the sub-
vector ofX having the ith component removed, i ∈ {1, ..., d}. Then what is the distribution F−i|i
of X−i|Xi = xi? If the event {Xi = xi} corresponds to an extreme situation, this distribution
describes the impact of the ith variable being stressed.

Using the stressed distribution F−i|i, we are then interested in calculating quantities like
expected value E(X−i|Xi = xi) and variance V ar(X−i|Xi = xi) to assess size and variability of
the impact. Since this may not be feasible in closed form, one often has to resort to statistical
simulation from F−i|i to calculate Monte Carlo estimates of the quantities of interest.

A general approach can be formulated using the transformation by Rosenblatt [1952], which
is an extension of the univariate probability integral transform. Let Fj|1,...,j−1 denote the con-
ditional distribution function of Xj |X1 = x1, ..., Xj−1 = xj−1 for j = 1, ..., d (for j = 1 the
conditioning set is empty). Then

Wj := Fj|1,...,j−1(Xj |X1, ..., Xj−1), j = 1, ..., d, (3.1)

define independent and identically distributed uniform random variables.
Without loss of generality let i = 1. That is, the aim is to sample from F−1|1, the conditional

distribution of X−1|X1 = x1. For this we draw a sample w2, ..., wd of independent, uniformly
distributed random variables. By inverting the Rosenblatt transformation (3.1), the values

xj := F−1j|1,...,j−1(wj |x1, ..., xj−1), j = 2, ..., d,

define a sample from F−1|1. In other words, one iteratively samples from the distribution of
Xj |X1 = x1, ..., Xj−1 = xj−1 for j = 2, ..., d.

This approach is very appealing if the conditional distribution functions Fj|1,...,j−1 can be
determined in closed form. In the case of a C-vine copula as the underlying copula of X, this
will in fact be possible. Before that, we discuss the popular classes of elliptical and Archimedean
copulas. While the conditional simulation of elliptical copulas is well-known, the procedure in
the case of Archimedean copulas is more challenging and we derive a new approach here.

Note that if Uj := Fj(Xj) for j = 1, ..., d, then it is equivalent to sample from the distribution
of X−i|Xi = xi or that of U−i|Ui = ui where ui := Fi(xi), since samples from the latter can be
transformed back to the original level of the data by applying the inverse distribution function
F−1j , j = 1, ..., d. We therefore concentrate on the case U−i|Ui = ui. Without loss of generality
we further let i = 1.

3.1 Elliptical copulas

For conditional simulation from elliptical copulas it is advantageous to transform the random
variables by the respective inverse distribution functions. That is, for the Gaussian copula set

6



Yj := Φ−1(Uj), j = 1, ..., d, and y1 := Φ−1(u1), where Φ is the standard normal distribution
function, and for the Student’s t copula set Yj := F−1t (Uj |ν), j = 1, ..., d, and y1 := F−1t (u1|ν),
where Ft( · |ν) is the univariate Student’s t distribution function with ν degrees of freedom.
Then one draws samples (y2, ..., yd)′ from the corresponding conditional distribution function of
Y −1|Y1 = y1 with appropriate parameters. These samples are finally transformed by uj = Φ(yj)
or uj = Ft(yj |ν), respectively, for j = 2, ..., d.

For the multivariate Gaussian case the conditional distribution of Y −1|Y1 = y1 is well-
known [Kotz et al., 2004]. Let Y ∼ Nd(µ,Σ) with mean vector µ ∈ Rd and covariance matrix
Σ = (σij)i,j=1,...,d ∈ Rd×d. Further let µ = (µ1,µ

′
−1)
′ and

Σ =

(
σ11 σ′1
σ1 Σ(−1,−1)

)
,

where σ1 := (σ12, ..., σ1d)′ and Σ(−1,−1) denotes the covariance matrix Σ with first row and
first column removed. Then Y −1|Y1 = y1 is again Gaussian with modified mean vector and
covariance matrix:

Y −1|Y1 = y1 ∼ Nd−1(µ̃, Σ̃),

where
µ̃ = µ−1 + σ′1Σ

−1
(−1,−1)(y1 − µ1) and Σ̃ = Σ(−1,−1) − σ1σ

′
1/σ11. (3.2)

Since the conditional distribution is hence known in closed form, expectation and variance are
given explicitly and simulation is only required if non-standard quantities need to be obtained.
For the conditional copula simulation set µ = 0 and Σ = R, where R is the corresponding
correlation matrix.

The conditional distribution in the case of a multivariate Student’s t distribution is also
known in closed form. Let Y ∼ td(Σ, ν) with association matrix Σ ∈ Rd×d and ν > 2 degrees
of freedom. The d-dimensional Student’s t distribution function with association matrix Σ ∈ R
and ν degrees of freedom is denoted by Ftd( · |Σ, ν). Then (see, e.g., Kotz and Nadarajah [2004])

FY −1|Y1
(y−1|y1) = Ftd−1

(√
ν + 1

ν + y21/σ11

(
y−1 − y1

σ1

σ11

)∣∣∣∣∣ Σ̃, ν + 1

)
,

where Σ̃ is defined in (3.2). That is, a sample from FY −1|Y1
can be drawn by sampling (ỹ2, ..., ỹd)′

from td(Σ̃, ν + 1) and then setting yj = ỹj
√

(ν + y21/σ11)/(ν + 1) + y1σ1j/σ11. To conditionally
sample from a Student’s t copula, set Σ = R as before.

3.2 Archimedean copulas

According to Mesfioui and Quessy [2008], the conditional distribution of Uj |U1 = u1, ..., Uj−1 =
uj−1 for j = 2, ..., d, in the case of U being distributed according to an Archimedean copula C,
is given by

Cj|1,...,j−1(uj |u1, ..., uj−1) =
(ϕ−1)(j−1)

(∑j
i=1 ϕ(ui)

)
(ϕ−1)(j−1)

(∑j−1
i=1 ϕ(ui)

) .
Conditional inverse sampling using the Rosenblatt transformation (3.1) hence requires inversion
of (ϕ−1)(j−1) for j = 2, ..., d, which may be numerically rather challenging, although explicit
functional expressions of (ϕ−1)(j−1) for common Archimedean generators are provided in Hofert
et al. [2012]. We therefore derive an alternative conditional sampling strategy.

Here, we use a trick and introduce the following variable: Z := C(U1, ..., Ud) ∈ [0, 1], which
is the contour level of a copula. The variable Z is univariate and known to be distributed
according to the so-called Kendall distribution function FZ , which can be determined in terms
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of the Archimedean generator (see Barbe et al. [1996]). Now, instead of directly sampling
from the conditional distribution of Uj |U1 = u1, ..., Uj−1 = uj−1 when using the Rosenblatt
transformation (3.1), the idea is to iteratively sample z from Z|U1 = u1 and use this to sample
uj from Uj |Z = z, U1 = u1, ..., Uj−1 = uj−1 for j = 2, ..., d. That is, first the contour level
Z is sampled given the event {U1 = u1} and then the remaining variables are obtained given
this contour level and the event {U1 = u1}. This approach is beneficial, since the distribution
FUj |Z,U1,...,Uj−1

of Uj |Z = z, U1 = u1, ..., Uj−1 = uj−1 is known in closed form as (see Brechmann
[2012])

FUj |Z,U1,...,Uj−1
(uj |z, u1, ..., uj−1) =

(
1− ϕ(uj)

ϕ(z)−∑j−1
i=1 ϕ(ui)

)d−j

. (3.3)

The inversion of this conditional distribution function is straightforward, and it is therefore nu-
merically very efficient to use it for the conditional inverse sampling strategy using the Rosenblatt
transformation (3.1).

Hence, the open question is how to sample from Z|U1 = u1 ∼ FZ|U1
. For this, we begin with

decomposing the density fZ|U1
corresponding to FZ|U1

as

fZ|U1
(z|u1) = fU1|Z(u1|z)fZ(z), (3.4)

which holds, since U1 is uniform, that is fU1(u1) = 1, u1 ∈ (0, 1). The density fZ of Z is derived
by Barbe et al. [1996] as

fZ(z) =
(−1)d−1

(d− 1)!
ϕ(z)d−1ϕ′(z)(ϕ−1)(d)(ϕ(z)). (3.5)

Further, since Expression (3.3) also holds for j = 1 (with an empty conditioning set), the density
fU1|Z of U1|Z = z is given by

fU1|Z(u1|z) = −(d− 1)

(
1− ϕ(u1)

ϕ(z)

)d−2 ϕ′(u1)

ϕ(z)
. (3.6)

Combining Equations (3.4), (3.5) and (3.6) then yields

fZ|U1
(z|u1) =

1

(d− 2)!
(ϕ(u1)− ϕ(z))d−2 ϕ′(u1)ϕ

′(z)(ϕ−1)(d)(ϕ(z)),

and

FZ|U1
(z|u1) =

∫ z

0
fZ|U1

(y|u1)dy
x=ϕ(y)

=
1

(d− 2)!
ϕ′(u1)

∫ ϕ−1(z)

1
(ϕ(u1)− x)d−2 (ϕ−1)(d)(x)dx.

(3.7)
This last expression can then be used for conditional inverse sampling from Z|U1 = u1. This
means, in contrast to inversion of (ϕ−1)(j−1) for j = 2, ..., d, as in direct conditional inverse
sampling of Archimedean copulas, the only numerically challenging step of this newly proposed
strategy is inversion of FZ|U1

, which is given in (3.7).

3.3 C-vine copulas

Simulation from a C-vine copula is straightforward using the Rosenblatt transformation (3.1) and
the conditional distribution functions Cj|1,...,j−1 given in (2.8). The general sampling algorithm
for C-vine copulas can be found in Aas et al. [2009]. Since this sampling strategy makes use
of the ordering of the variables in the C-vine, it is straightforward to conditionally sample
from U−1|U1 = u1. However, in contrast to elliptical and Archimedean copulas, the cases of
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U−i|Ui = ui for i > 1 need to be considered explicitly, since the variables of a C-vine copula
cannot simply be reordered.

Now, let i > 1. Clearly, for j > i the sampling strategy of Uj |U1, ..., Ui, ..., Uj−1 does
not change. The question hence is how to sample from U1|(Ui = ui), U2|(U1 = u1, Ui = ui),...,
Ui−1|(U1 = u1, ..., Ui−2 = ui−2, Ui = ui). This means that we need to compute the corresponding
distribution functions Cj|1,...,j−1,i for 1 ≤ j < i. It holds that

Cj|1,...,j−1,i(uj |u1, ..., uj−1, ui)
= hj|i;1,...,j−1

(
Cj|1,...,j−1(uj |u1, ..., uj−1)|Ci|1,...,j−1(ui|u1, ..., uj−1)

)
.

(3.8)

Both arguments, Cj|1,...,j−1 and Ci|1,...,j−1, can be computed recursively according to Equation
(2.8).

To make things more concrete, we consider an illustrative example with d = 5 and i = 4.
That is, we need to determine the conditional distribution functions C1|4, C2|1,4 and C3|1,2,4,
while C5|1,2,3,4 is the same as in standard C-vine copula simulation. The first term, C1|4 = h1|4,
is straightforwardly given as derivative with respect to the second argument of the copula C1,4,
which is part of the decomposition (2.7) and therefore known. According to Equation (3.8) we
further obtain

C2|1,4(u2|u1, u4) = h2|4;1
(
C2|1(u2|u1)|C4|1(u4|u1)

)
= h2|4;1

(
h2|1(u2|u1)|h4|1(u4|u1)

)
, (3.9)

where the known copulas C1,2, C1,4 and C2,4;1 are used. By using Equation (3.8) we also compute
C3|1,2,4 as

C3|1,2,4(u3|u1, u2, u4) = h3|4;1,2
(
C3|1,2(u3|u1, u2)|C4|1,2(u4|u1, u2)

)
, (3.10)

where C3|1,2 and C4|1,2 are computed as in (2.8). In particular, the copula C3,4;1,2 as part of
the decomposition (2.7) is used. Sampling using the Rosenblatt approach is then feasible: Let
w1, w2, w3 and w5 be independent, uniformly distributed samples. Then, we obtain

u1 = h−11|4(w1|u4),
u2 = h−12|1(h

−1
2|4;1(w2|h4|1(u4|u1))|u1),

u3 = h−13|1(h
−1
3|2;1(h

−1
3|4;1,2(w3|h4|2;1(h4|1(u4|u1)|h2|1(u2|u1)))|h2|1(u2|u1))|u1),

and finally u5 by recursively inverting the terms in (3.9), (3.10) and (2.8), respectively.
More generally the sampling algorithm can be written down as outlined in the following. This

extends the C-vine simulation algorithm by Aas et al. [2009] from where notation is adopted.

Algorithm 3.1 (Conditional C-vine copula simulation). To generate a sample from a C-vine
copula given that the ith variable is equal to ui, proceed as follows.

Let V = (vj,k)j,k=1,...,d be an auxiliary array.

Obtain independent uniformly distributed samples w1, ..., wi−1, wi+1, ..., wd.

vi,1 = ui

for j ← 1, ..., i− 1, i+ 1, ..., d
vj,1 = wj

if j < i then
vj,1 = h−1j|i;1,...,j−1(vj,1|vi,j)

end if

if j > 1 then
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for k ← j − 1, ..., 1
vj,1 = h−1j|k;1,...,k−1(vj,1|vk,k)

end for
end if
uj = vj,1

if j < d then
for `← 1, ..., j − 1

vj,`+1 = hj|`;1,...,l−1(vj,`|v``)
end for

end if

if j < i then
vi,j+1 = hi|j;1,...,j−1(vi,j |vj,j)

end if
end for

Return samples u1, ..., ui−1, ui+1, ..., ud.

4 Systemic risk analysis and stress testing

The purpose of our case study on interconnectedness in the financial market is threefold. First,
using appropriate statistical dependence models we carefully analyze the interdependencies
among major financial institutions in the banking as well as the insurance sector and point
out differences between these two sectors. Second, the developed statistical models are used
to stress test the global financial market in order to obtain new insights with respect to the
assessment and classification of systemically important institutions. Third, as we use credit
default swap spreads for our analyses, we also investigate whether such data is actually useful
to analyze systemic risk. The developed methodology is however independent of data, which
means that the first two questions can be investigated using the same tools but different data.

Recently, there has been active research on the connection of credit default swaps and sys-
temic risk. Credit default swaps (CDS) are bilateral credit derivative contracts that allow the
trading of default risks of an underlying corporate or government entity. Since the payoff of
a CDS contract is caused by the default on debt, CDS spreads are a market-based indicator
of the credit worthiness of the reference entity. Rising CDS spreads indicate growing default
expectations of the other market participants regarding the referenced entity. In fact, Hull et al.
[2004] and Norden and Weber [2004] found that there is statistical evidence for the CDS market
actually anticipating later rating announcements by the credit rating agencies.

The relationship between CDS and systemic risk seems obvious: If there is a systemic event
in the market, default expectations of relevant institutions should rise, which is then reflected
in increasing CDS spreads. Authors have therefore developed measures of systemic risk that are
directly based on CDS spreads or the default probabilities derived from these (see for instance
Acharya et al. [2011], Huang et al. [2009], and Giglio [2011]). CDS spreads have also been used
to examine interdependencies among financial institutions: see Markose et al. [2012], Rahman
[2009], Kaushik and Battiston [2012], and Chen et al. [2012]. None of the authors however use
copulas to account for non-standard interdependencies among the institutions. This is one aim
of our study.

As data for our statistical analyses we use senior CDS spreads with a maturity of five years
observed from January 4, 2006 to October 25, 2011 (n = 1371 daily observations), which are
obtained from Bloomberg. In the attempt of a balanced selection of companies regarding their
geographical region and sectoral belonging, we select 38 companies from the financial sector
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for the analysis of their interdependence structure. Among these are 18 banks and 20 (re-
)insurers from different countries in three major geographical regions (abbreviations are shown
in brackets):

• Systemically important banks according to the Financial Stability Board [2012] (15):

– Europe: Banco Bilbao Vizcaya Argentaria (BBVA), Banco Santander (BS), Barclays,
BNP Paribas, Deutsche Bank (DB), Royal Bank of Scotland (RBS), Société Générale
(SG), Standard Chartered (SC), UBS, Unicredit

– USA: Citigroup, Goldman Sachs (GS), JP Morgan Chase (JPM)

– Asia-Pacific: Bank of China (BoC), Sumitomo Mitsui

Note that at the time of this analysis Banco Bilbao Vizcaya Argentaria and Standard
Chartered had not yet been officially classified as systemic; see Financial Stability Board
[2011].

• Not systemically important banks (3):

– Europe: Intesa Sanpaolo

– Asia-Pacific: Kookmin Bank, Westpac Banking

• (Re-)Insurers (20):

– Europe: Aegon, Allianz, Assicurazioni Generali, Aviva, AXA, Hannover Rück (HR),
Legal & General (LG), Munich Re (MR), Prudential, SCOR, Swiss Re (SR), Zurich
Insurance

– USA: ACE, Allstate, American International Group (AIG), Chubb, Hartford Finan-
cial Services, XL Group

– Asia-Pacific: QBE Insurance, Tokio Marine (TM)

4.1 Model specification

For our analyses we use daily log returns of the CDS spreads. To deal with the serial dependence
in the time series as well as the between-series dependence, we employ the popular copula-
GARCH approach (see, e.g., Liu and Luger [2009]): When univariate time series are modeled
by appropriate GARCH models, dependence is captured among the residuals of the time series,
which can be regarded as approximately independent and identically distributed samples of the
respective innovations distribution. Typically this approach is carried out in two steps. First,
the marginal time series are estimated. Then, the margins are fixed and solely the between-series
dependence is analyzed. This approach is called inference functions for margins [Joe and Xu,
1996].

The time series of the log returns of the CDS spreads show common features of financial
time series such as autocorrelation, leptokurtosis (heavy tails) and volatility clustering (see
[Hendrich, 2012, Table 4.2]). To remove these characteristics, we apply appropriate time series
models. While often (ARMA-)GARCH models with (skewed) Student’s t innovations provide
good fits for financial time series (see, e.g., Chu et al. [2010] for an application to the iTraxx CDS
index), this is not the case here. Hence, for each of the 38 time series we separately consider
extended GARCH models, such as the asymmetric exponential GARCH by Nelson [1991] or
GARCH-in-mean by Engle et al. [1987], as well as non-standard innovations distributions like
the generalized error, the generalized hyperbolic and the normal inverse Gaussian. All model
fits are then carefully checked using a range of goodness-of-fit tests such as the Ljung-Box, the
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Figure 2: Multidimensional Kruskal-Shephard scaling of the institutions according to the dis-
similarity measure 1− τ̂j,k.

EU banks EU ins. US banks US ins. AP banks AP ins.

EU banks 0.36-0.67
EU ins. 0.25-0.46 0.29-0.60
US banks 0.23-0.29 0.19-0.29 0.44-0.47
US ins. 0.16-0.24 0.15-0.24 0.19-0.27 0.21-0.43
AP banks 0.08-0.20 0.10-0.22 0.07-0.17 0.10-0.19 0.12-0.29
AP ins. 0.09-0.18 0.10-0.19 0.08-0.15 0.09-0.19 0.14-0.31 0.14-0.14

Table 1: Ranges of empirical Kendall’s τ values τ̂j,k within and between sectors in the different
regions.

ARCH-LM or the Nyblom stability test. More details on the fitting process can be found in
Hendrich [2012, Section 5.1].

After adequately removing the serial dependence in each of the 38 univariate time series,
we investigate dependence among the residuals e`j , j = 1, ..., 38, ` = 1, ..., n. As we fix the

estimated margins, we set û`j := F̂j(e`j), where F̂j is the estimated innovations distribution
of the jthe time series. To get a first impression of the interdependencies among the different
institutions, we calculate empirical Kendall’s τ values, τ̂j,k, for all pairs j, k = 1, ..., 38, j < k, and
use multidimensional Kruskal-Shephard scaling to embed the institutions in the plane according
to the dissimilarity measure 1− τ̂j,k (see, e.g., Hastie et al. [2009]). This means that the closer
two institutions are to each other, the stronger is the dependence of their CDS spreads. The
resulting plot is shown in Figure 2. Ranges of the empirical Kendall’s τ values per geographical
region and sector are shown in Table 1.

The multidimensional scaling shows that there is significant geographical clustering present
among the CDS spreads: European institutions can be found on the right of Figure 2, US
institutions in the lower left corner and institutions from the Asia-Pacific region in the upper
left corner. Within these regions there also is a clear separation of banks and insurers observable.
Hence, all pairs of companies within either one of the sectors show the strongest dependencies.
Another interesting fact is that the banks that have not been officially classified as systemically
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Copula Log lik. # Par. AIC BIC

Gumbel 8640.22 1 -17278.45 -17273.22
Gaussian 18326.53 703 -35247.07 -31575.09
Student’s t 19915.88 704 -38423.76 -34746.56
C-vine 20393.29 488 -39810.58 -37261.61

Table 2: Log likelihoods, numbers of parameters, AIC and BIC values of the copulas estimated
by maximum likelihood.

important do not play a significantly different role than the other banks. The classification is
not reflected here.

This exploratory look at the data illustrates that there are considerably different relationships
among the institutions depending on the geographical region and the sector. Such heterogeneous
dependencies cannot be appropriately captured using an Archimedean copula, which assumes
exchangeability of all variables. While elliptical copulas are more appropriate for this purpose,
they are still somewhat restrictive by imposing symmetric tail dependence. In the literature, it is
however often observed that in times of crisis the dependence of joint negative events increases.
For CDS spreads this means that one may expect the presence of upper tail dependence, which
reflects the joint probability of extreme upward jumps in the expected default probabilities.
Such dependence characteristics can be accounted for using a vine copula.

We select a C-vine copula in a sequential way that was proposed by Czado et al. [2012]. The
institution with the highest sum of absolute empirical Kendall’s τ values to the other institutions
is selected as the first root node. Then, using the AIC, appropriate bivariate copulas (first term
in the decomposition (2.7)) are selected from the following list: non tail dependent Gaussian,
symmetric tail dependent Student’s t, lower tail dependent Clayton, upper tail dependent Gum-
bel and non tail dependent Frank as well as rotations by 90◦, 180◦ (survival copula) and 270◦

degrees of the tail asymmetric copulas. To obtain a more parsimonious model, the independence
copula is also taken into account after performing an independence test of each pair. As second
root node the institution with the maximal sum of absolute empirical Kendall’s τ values after
removing dependence on this first pivotal variable (using (2.8)) is then selected. Appropriate
bivariate copulas for the conditioned pairs (j = 2 in the first product of the second term of (2.7))
are again selected according to the AIC. This selection procedure is then carried forward for all
remaining root nodes. In this way, all required bivariate copulas forming the building blocks of
the C-vine copula are selected. Estimation then proceeds by joint maximum likelihood over all
copula parameters. Note that we also fitted a more general regular vine copula as described in
Dißmann et al. [2013]. The model however did not improve over the C-vine copula, so that we
do not consider it any further here (see [Hendrich, 2012, Section 6.3.5] for more details).

Table 2 shows the maximum likelihood fits of Gaussian, Student’s and C-vine copulas for
our 38-dimensional data set. In addition, the fit of an upper tail dependent 38-dimensional
Gumbel copula is shown for comparison, illustrating the inappropriateness of an exchangeable
Archimedean copula here. According to AIC and BIC the C-vine copula can be regarded as
the best model. In addition to a higher log likelihood compared to the elliptical copulas, it
also benefits from a smaller number of parameters, which is achieved by using the independence
copula for certain conditional pairs. As noted above, the C-vine copula may also better account
for potential asymmetry in the dependence structure. In fact, three upper tail dependent bi-
variate Gumbel copulas were selected for the bivariate copulas of the first C-vine tree specifying
unconditional dependence. Overall, almost 50% of the selected copulas are non-elliptical. This
indicates that a purely elliptical approach to measuring systemic interdependencies falls short
of adequately capturing all relevant dependence characteristics, in particular the asymmetric
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tail behavior, which is, of course, especially important in the analysis of stress situations. The
Student’s t copula however does not assume tail independence as the Gaussian copula does. In
fact, the estimated degrees of freedom are 14.71 and therefore clearly indicate the presence of
non-Gaussian dependence.

The ordering of the institutions itself is less important here, since it is strongly driven by
the number of institutions selected among certain regions and sectors and therefore does not
directly provide an ordering of systemic importance. It is hence not surprising that the European
institutions Allianz, BNP Paribas and Zurich Insurance are selected as the first three pivotal
variables. Hartford Financial Services and JP Morgan Chase are then the first US institutions
in the ordering, while QBE Insurance is the first institution from the Asia-Pacific region.

Interestingly, neither the exploratory analysis in Figure 2 nor the fitted models show that
interdependencies involving systemically important banks are structurally different from those
involving institutions that have not been classified as systemic. An interesting finding however
is that the dependence of US banks and European institutions is determined to be higher than
that of US insurers and European institutions. This indicates the, maybe not surprising, fact
that especially the US banking sector plays a systemically important role in the financial market.
This is in line with findings of Billio et al. [2012]. To obtain a more differentiated view on the
systemic importance of specific institutions and sectors, we conduct a stress testing exercise of
the global CDS market.

4.2 Stress testing and classification

According to the Financial Stability Board et al. [2009], a systemic crisis is defined as the
distress of a whole system caused by the failure of one institution and the subsequent spreading
of malfunction from one company to another. Hence, we now aim to further investigate the
possibility of contagion among the institutions in our sample. We perform a simulation study to
exploit the modeled dependence structure. More precisely, we assume a stress situation for one
of the institutions and simulate the resulting impact on the remaining institutions. In particular,
we are interested to find out whether there are significant differences regarding the type of the
institution that is stressed.

The fictitious stress situation that we analyze is a severe drop in the credit-worthiness of one
particular institution. Assuming that the market works properly, this would result in a sharp
increase of the CDS spreads for the company in question, since the market participants expect
its default and require higher risk premiums. Such an increase, in turn, would be reflected in
large residuals of the fitted time series models for the log returns of the CDS spreads and thus
in quantiles of the respective distributions that are close to one. This means we are able to
directly work on the copula level and not on the original level of the data. For our simulation
study we assume that the variable of interest, Ui, i ∈ {1, ..., 38}, takes on the predefined quantile
value of ui = 0.99. Given this stress situation, we then use the methods developed in Section 3
to simulate the impact on the remaining institutions in terms of quantiles of their innovations
distributions. That is, we draw samples from the distribution of U−i|Ui = ui. This simulation
is repeated N = 10, 000 times for each institution and for each of the different copulas that have
been fitted in the previous section. We denote the samples conditioned on Ui being stressed by
ũ`,j|i, j ∈ {1, ..., 38} \ {i}, ` = 1, ..., N .

As an illustration, Figure 3 shows the mean impact per sector and region in the case of JP
Morgan Chase and Hartford Financial Services being stressed: For sector s (within a specific
region) with members Ms define

µ̃s|i :=
1

N

N∑
`=1

ũ`,s|i, where ũ`,s|i :=
1

|Ms \ {i}|
∑

j∈Ms\{i}

ũ`,j|i. (4.1)
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Figure 3: Mean impact µ̃s|i (4.1) per sector and region in the case of JP Morgan Chase (left panel)
and Hartford Financial Services (right panel) being stressed according to different copulas. An
impact of 0.5 corresponds to independence, since this is the mean of a uniform random variable.

This gives an indication which sectors are most strongly influenced by stress to institution i.
Of course, this is only informative if the underlying copula is non-exchangeable: The results
obtained when using the (exchangeable) Gumbel copula are shown here only for comparison,
since they imply that each sector is impacted in the same way, an obviously incorrect statement.
As expected, JP Morgan Chase most strongly impacts the US banking sector and Hartford
Financial Services the US insurance sector as shown by the elliptical copulas and the C-vine
copula. Interestingly, a stress to JP Morgan Chase influences the US banking sector as well as
European banks and insurers equally strongly, while the impact of stress to Hartford Financial
Services is stronger on US banks than on European institutions. This underlines the previous
statement that US banks play a systemically important role in the global financial market.

Comparing the results of elliptical and C-vine copulas, we observe that the tail dependence
implied by the Student’s t copula increases the mean values in comparison to the Gaussian
case. The C-vine copula lies somewhere in the middle, since it is more flexible in accounting for
different types of (tail) dependence. Due to this flexibility, we will concentrate on the C-vine
copula in the following.

To further investigate the question which of the sectors in the market is most systemic, we
compute the mean impact of one sector s1 on another s2 as

µ̃s2|s1 :=
1

|Ms1 |
∑

i∈Ms1

µ̃s2|i. (4.2)

The resulting values are shown in Table 3. They confirm the previous findings about the systemic
role of US banks and also show that the impact of a stressed bank is, in general, stronger than
that of a stressed insurer. This is quite interesting in light of the argumentation of the Geneva
Association [2010] claiming that insurers should not be treated as being similarly systemic as
banks.

Finally, we move to the question of a possible classification of systemically important institu-
tions. Here, we concentrate on the two largest sectors: European banks and insurers with eleven
and twelve members, respectively. Among these institutions we not only consider the mean im-
pacts, µ̃EU-banks|i and µ̃EU-ins.|i, but also the corresponding confidence intervals to better assess
the differences in the conditional simulations. For this we compute empirical quantiles from
ũ`,s|i (see (4.1)). The results are shown in Figure 4. According to our analysis the systemically
most important banks are (in this order) Barclays, Banco Santander, BNP Paribas, Banco Bil-
bao Vizcaya Argentaria and Unicredit. The ranking of insurers is Allianz, Aviva, Assicurazioni
Generali, Zurich Insurance and Aegon. The differences among the simulated values are however
quite small and the confidence intervals largely overlap. It should also be noted that, by the
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Stress situation in
Impact on EU banks EU ins. US banks US ins. AP banks AP ins.
EU banks 0.87 0.83 0.73 0.67 0.65 0.62
EU ins. 0.83 0.87 0.72 0.68 0.66 0.64
US banks 0.74 0.73 0.88 0.72 0.63 0.60
US ins. 0.68 0.69 0.73 0.79 0.64 0.62
AP banks 0.65 0.66 0.63 0.64 0.68 0.69
AP ins. 0.63 0.65 0.61 0.62 0.69 0.62

Table 3: Mean impact (4.2) per sector (rows) of another sector being stressed (columns) accord-
ing to the C-vine copula.
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Figure 4: Top five banks and insurers impacting the European banking and insurance sectors,
respectively, in case of a stress situation. Mean values and 50% confidence bounds according to
the C-vine copula are shown.

time of this analysis, Banco Bilbao Vizcaya Argentaria had not been officially classified as sys-
temically important by the Financial Stability Board [2011]. The 2012 classification [Financial
Stability Board, 2012] however included the bank and is therefore in line with our analysis. This
however indicates that either a systemic risk analysis should not solely be based on CDS spreads
or that the classification of the Financial Stability Board [2011, 2012] does not appropriately
take into account the observed interdependence among default probabilities as reflected by CDS
spreads.

This partly answer the question whether CDS spreads are actually useful for systemic risk
analysis. As a market-based indicator of the credit worthiness of an institution they certainly
contain important information to be taken into account. However, we found that dependencies in
the CDS market are strongly driven by geographical regions, which hinders a global classification
of systemically important institutions. The removal of this geographical dependence in a copula
framework is a prerequisite for further attempts to classify institutions using CDS spreads and
subject of ongoing research.

5 Conclusion

We propose a copula-based approach to the analysis of interdependencies among financial in-
stitutions for systemic risk measurement. For the purpose of stress testing the market, we
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develop necessary conditional simulation procedures. In particular, we derive new methods
for Archimedean and, especially, for vine copulas. The application of these techniques in the
analysis of the CDS spreads of 38 major international banks and insurers gives new insights
into their interconnectedness and the closely related question of systemic importance. In the
dependence analysis we find evidence of non-elliptical structures, especially of asymmetric tail
behavior, which is crucial to take into account in stress situations. We also find that banks are
systemically more important than insurers. Particularly US banks strongly influence the inter-
national financial market. The question whether CDS spreads are actually useful for systemic
risk analysis cannot be answered entirely: As a market-based indicator of the credit worthiness
of an institution they contain important information. However, they should not be the sole
source of information for the assessment of systemic relevance.

We finally also take a first step to a classification of institutions according to the performed
stress test. It should nevertheless be kept in mind that the results also depend on the selected
sample, although this includes major institutions of the global financial market. The proposed
methodology, in particular the stress testing approach, is however not limited to the presented
case study but can easily be applied to other relevant data. A major purpose of such investi-
gations certainly should be the further assessment and classification of systemically important
institutions according to some appropriate systemic risk measure (see, e.g., Adrian and Brun-
nermeier [2010], Acharya et al. [2011], and Bernard et al. [2013]).
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S. Kotz and S. Nadarajah. Multivariate t Distributions and Their Applications. Cambridge
University Press, Cambridge, 2004.

S. Kotz, N. Balakrishnan, and N. L. Johnson. Continuous Multivariate Distributions, Models
and Applications. Wiley, New York, 2nd edition, 2004.

D. Kurowicka and R. M. Cooke. Uncertainty Analysis with High Dimensional Dependence
Modelling. John Wiley, Chichester, 2006.

19



D. Kurowicka and H. Joe. Dependence Modeling: Vine Copula Handbook. World Scientific
Publishing Co., Singapore, 2011.

Y. Liu and R. Luger. Efficient estimation of copula-GARCH models. Computational Statistics
& Data Analysis, 53(6):2284–2297, 2009.

S. Markose, S. Giansante, and A. R. Shaghaghi. ”Too interconnected to fail” Financial network
of US CDS market: Topological fragility and systemic risk. Journal of Economic Behavior &
Organization, 83(3):627–646, 2012.
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