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Abstract

From healthcare to autonomous driving, Deep Neural Networks (DNN) dominate
over the traditional Computer Vision (CV) approaches in terms of accuracy and effi-
ciency. Exponential increase of DNN applications require tremendous computation
power of the underlying hardware resources. Naturally, the superior performance of
DNN models comes at a cost of huge memory footprint and complex calculations.
Even if Graphics Processing Units (GPU) are the main work-horse during the train-
ing of DNNs for their massive computational capabilities, they are not suitable for
mobile deployments. Computations in remote cloud is also not suitable for unreli-
able network latency and potential security issues. The hardware, accelerating the
inference at the edge, should offer flexibility of deployment due to the rapid-changing
nature of this research area. Field-programmable Gate Array (FPGA) provides the
best trade-off between performance, power-consumption and design flexibility.

Convolutional Neural Networks (CNN) are the state-of-the-art for computer vision
applications. Semantic image segmentation is one of the most complex tasks in
computer vision, providing pixel-wise annotations for complete scene understanding.
For a critical application like autonomous driving, DeepLabV 3+ model provides the
state-of-the-art Mean Intersection-Over-Union (mIOU) for semantic segmentation
on the CityScapes dataset. In this work, a fully pipelined hardware accelerator
implementing novel dilated convolution was introduced. Using this accelerator, an
end-end DeepLabV3+ deployment was possible on FPGA. This architecture exploits
hardware optimizations like 3-D loop unrolling, memory tiling to maximize use of
computational resources and provides 2.34x latency improvement with respect to
the baseline architecture.

Further, a Genetic Algorithm (GA) based automated channel pruning technique
was used to jointly optimize hardware usage and model accuracy. Finally, hardware
awareness was incorporated in the pruning search by hardware heuristics and an
accurate model of the custom accelerator. Overall a 4x speedup was observed for a
4% degradation in mIOU.
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1. Introduction

1.1. Motivation

Computer Vision has already started to disrupt many aspects of our daily life. Clas-
sically, feature extraction was human-engineered which determined the reliability of
the model. In recent times, Deep Learning especially Convolutional Neural Networks
(CNN) showed amazing performance and accuracy gain by extracting features from
the spatial data. Its application widely varies from solving modern problems like
object detection [1], video recognition [2], speech recognition [3], Natural Language
Processing [4] to safety critical applications like autonomous driving [5]. In a generic
Deep Learning Network, millions of trainable parameters are trained with labeled
training data for a large number of training epochs. This high compute intensive
operations are not suitable for general purpose computing devices like CPU (Cen-
tral Processing Unit). As an example, AlexNet [6] achieved breakthrough results
with 3 Fully connected and 5 Conv layers which had around 60 million trainable
parameters. In addition, the number of MAC operations reach a very high value. To
cater to these computation and memory hungry networks, several general puropsoe
and application specific hardware accelerators have been proposed [7, 8, 9]. GPU is
most favourable during training of models [10] for having enormous amount of com-
putation cores and SIMD execution mode, favourable for highly-parallel algorithms.
But often in case of inference, a lower power hungry solution is preferable such as in
battery powered devices or in edge devices, where usually FPGAs [11] and ASICs
[12] are used. Among these two, FPGA has better reprogrammability and suitable
for hardware prototyping, also it provides best trade-off between energy-efficiency
and computation capability. For the use case of autonomous driving, pixel level
image classification or semantic segmentation [13] and its mobile deployment is an
active area of research. In this thesis, we focused on a state-of-the-art semantic seg-
mentation algorithm DeepLabV3+ [14] deployment with reconfigurable hardware,
in our case an Arrial0 GX [15] FPGA.

Primary motivation of this work is to design an accelerator with optimized memory
hierarchies and dataflow, using High-Level Synthesis process which can meet the
enormous compute and memory requirements of a substantially complex model like
DeepLab. On the other hand, there have been significant efforts in recent years
to compress the network size and minimize memory footprints without affecting
much accuracy by various techniques [16]. For reducing the precision of operands,
techniques like quantization [17] and weight sharing [18] have been introduced. Some
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1. Introduction

novel techniques like knowledge distillation [19], network pruning [20] helps to cut
down number of operations. Network pruning is a technique to remove low-saliency
weights and fine-tune the remaining weights to get a desired accuracy and weight
reduction. Particularly we used a coarse-grained structured pruning having low
deployment effort (channel pruning) [21] to reduce the model size as well as runtime
latency. This work particularly addresses the challenge of Co-designing Hardware
and DNN model by deriving hardware heuristics to guide the search algorithm while
compressing the network. It aims to refine the pruning search further by integrating
a hardware model of the designed semantic segmentation accelerator.

1.2. Problem Statement

Though FPGAs have a lot less computational capability as well as memory band-
width compared to ASICs, they are mostly used because they offer flexibility and
suitability for hardware prototyping. In literature, several novel FPGA based hard-
ware accelerator architectures have been proposed. Among them, few focused on
inference of semantic segmentation on low powered devices [22, 23]. In this work we
have tried to convey the problems of a complex semantic segmentation algorithm
which has residual and several special purpose blocks for intermediate processing of
activations. To accelerate the segmentation process, the principal idea is to perform
parallel multiply and add (MAC) operations by increasing the on-FPGA DSP utiliza-
tion. For maximizing the computational resource utilization various loop unrolling
techniques were considered, also fixed-point representation of operands helped to
optimize the convolution operations. As the off-chip memory access is responsible
for a significant percentage of total power consumption [24], we also tried to address
this issue by loop tiling and efficient dilation for the segmentation network having
ResNet architecture underneath. Primary concentration was to pipeline the archi-
tecture so that individual OpenCL kernels [25] can run independently while data
are being fetched from memory and we get a functionally correct prediction result

out of the FPGA.

In order to reduce the runtime latency of segmentation, the problems of exploiting
coarse-grained channel pruning on our custom hardware were addressed. We aim at
obtaining an aggressive compression performance and in this process, GA (Genetic
Algorithm) is used as a tool to get desired compression ratios for individual layers.
This work is concerned with guiding the pruning search by custom hardware and
network specific heuristic strategies and facilitate an effective hardware-software co-
design strategy.

16



1.3. Contribution

1.3. Contribution

The contribution of this Master Thesis is the design of a FPGA based hardware
accelerator for a Decoder-Encoder based complex state-of-the-art segmentation net-
work and subsequent performance improvement leveraging hardware-aware Genetic
Algorithm searched channel-pruning. To increase memory bandwidth, the accelera-
tor uses a 16-bit fixed point precision for all operations. For this latency-critical and
resource-constrained application, this project investigates in dilated convolution, ef-
ficient semantic segmentation and intelligent channel pruning strategies which are
tightly coupled with each other.
Summing up, the core contributions proposed in this literature are as follows:

1. Dilated Convolution in Hardware. This work exploited dilated convolu-
tion for semantic image segmentation applications without the need of inflated
kernels full of zeros using a novel technique. We are able to implement any
dilated kernels irrespective of dilation ratio and fit the weight in the on-chip
buffer. As we are picking selected weights directly from the DRAM depending
on the dilation ratio of the layers, we get a speedup of 2.7x, 8.8x, 18.3x for
dilation factor 2, 4 and 6 respectively.

2. Efficient Segmentation Accelerator. End-end DeepLabV3+ [14] imple-
mentation on Arria 10 GX FPGA using High-Level-Synthesis [26] supporting
all special operations in encoder-decoder type network architecture. Exploited
3 dimensional unrolling and 2-D memory tiling to maximize parallel DSP com-
putes and minimize off-chip memory access respectively. This gave upto 90%
DSP utilizaton and a 2.34x latency improvement with respect to the baseline
architecture with no tilling and unrolling.

3. Operation based Chanel Pruning. Our framework offers a configurable
network architecture maintaining restrictions imposed by shortcut and identity
connections of residual blocks due to pruning. This utilizes a Reinforcement-
Learning based DDPG agent searched pruned network with 50% of original
operations of DeepLab present. Overall latency improvement achieved is 1.43 x
compared to unpruned network.

4. Hardware Aware Chanel Pruning for Custom Accelerator. Identified
hardware heuristics hampering pruning performance and incorporating these
constraints in GA based pruning search, expecting a well optimized network
configuration for our custom hardware. In the next step, a hardware model
of our accelerator was also introduced additionally to steer a latency driven
GA search which performed consistently better with respect to accuracy than
operation based search. This latency based GA search gave a performance
improvement of 4x over baseline implementation.

17



1. Introduction

1.4. Organization

This thesis is organized into 6 chapters.

Chapter 2 gives the necessary background for understanding the content of this
thesis. This chapter is again organized into 4 sections. It starts with a brief theory
of neural networks especially CNNs, followed by model specific optimizations like
pruning and quantization. Section 2.3 deals with various aspects of hardware accel-
erators designed to process DNNs and ends with the semantic segmentation network
under study.

Chapter 3 presents the existing works in literature, relating to this thesis. It
briefly touches on FPGA based hardware accelerators as well the state-of-the-art of
semantic segmentation landscape.

Our approach towards the problem is illustrated in Chapter 4 with architec-
tural description of our accelerator. Further, a hardware aware channel pruning
framework introduced to get channel pruning benefits in our custom accelerator for
DeepLab.

Chapter 5 provides extensive evaluation results of the baseline architecture show-
ing the benefits of implementing architectural optimizations. Also, this chapter in-
cludes qualitative and quantitative analysis of the speedups achieved by introducing
hardware model guided genetic algorithm based pruning search.

Finally, Chapter 6 concludes the thesis and suggests suitable extensions of this
work that might be taken up in the future.
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2. Background

The working principle of Neural Networks imitates how human brain really works. In
Neural networks perceptrons does all the calculations and during training, it adjust
themselves to minimize the loss function until the the network is significantly accu-
rate. This chapter summarizes the basic concepts of Convolutional Neural Networks
based inference for easier understanding of the readers in the following chapters. In
the first section 2.1, motivations and arithmetic of strided convolution are discussed.
Then in section 2.2 and 2.3, different optimization techniques in network level and
hardware level are explained to facilitate deployment of Neural Network inference
in low-powered devices. Finally, the chapter ends with a state-of-the-art semantic
segmentation model, DeepLabV3+ with some unique functionalities.

2.1. Convolutional Neural Networks

Convolutional Neural Network (CNN) is a recent paradigm for solving modern prob-
lems of Machine Learning and Artificial Intelligence. It consists of multiple layers of
convolution and pooling operations in between input and output layers. The deeper
layers can extract features from other lower layers and eventually can produce a
more robust model. Usually the Deep CNNs are trained in supervised mode and
the weights of the neurons are adjusted using backpropagation. The CNN takes an
image as input, then assigns weights and biases to some features or aspects of the
image which helps to differentiate that particular image from another one. CNN
was inspired by the optic nerves of human body and its architecture resembles with
the organisation of visual cortex. If a neuron receives inputs (x) and weights (w)
with bias b, the final output is obtained by applying Equation 2.1, where f(e) is a
non-linear transfer function, further described in section 2.1.2.

y=f<sz"fBz‘+b> (2.1)

2.1.1. Motivations for using CNNs for Segmentation

A diverse range of applications like autonomous driving, remote-sensing imaging
[27] derive knowledge from scene understanding. Complete scene understanding is a
key Computer Vision problem that is being addressed with Semantic Segmentation.
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2. Background

Semantic Segmentation is one step up from the traditional classification problems,
where a single class assigned to a whole output. Object detection and localization
is another set of problem where labels are assigned along with the spatial location
of those classes. Semantic Segmentation moves from this coarse inference to finer
inference and makes dense prediction by attaching labels to each pixel.

This segmentation problem is being tackled with deep network architectures espe-
cially Convolutional Neural Networks which outclasses other traditional techniques
in terms of efficiency and accuracy. There are mainly two advantages of using CNNs
compared to fully connected networks. One is Parameter Sharing. The number
of parameters are significantly less in CNNs, because while convolving over the input
feature map, it shares the parameters and a single filter can detect features in the
different part of the spatial dimension. Another advantage is Sparsity of Con-
nection, because one value in the output feature map depends only on the weight
projection area of input feature map but not on the entire input activation.

Figure 2.1.: A simple FCN network consisting of only convolutional layers, taking
an image as input and gives a semantic segmented image with
pixel-wise classification as output.

In the above Figure 2.1, there is an example of Fully Convolutional Network
(FCN)[28], which makes pixel-wise classification of the input image of a street.
On the right hand side we the expected segmented output with pixel-wise data
annotation.

2.1.2. Strided Convolution Arithmetic
3-D Strided Convolution

This section lays the foundation of a simple convolution layer. In Figure 2.2, we can
see a 3-D input feature map (IfMap) with dimension N;, x N;;, x N;¢ on the left hand
over which a 4-D weight tensor with dimension Ny, x Ny, x N;y x N,y is strided

20



2.1. Convolutional Neural Networks

to get a output feature map (OfMap) of dimension N,, x N, x N,r. One instance
of these convolutions gives a pixel in the OfMap and a number (N,y) of 3-D weight
tensors (Ny, X Niy x N;f) are strided all over the Ifmap to get N,y channels in the
output.

Input FMAP_—
~ Weights - Output FMAP
> '\NAif T
/ INIW
Noy
Niy N

Nox

>
Nkx

Figure 2.2.: A simple Convolutional Layer with strided Convolution. A 4-D weight
tensor is required to produce 3-D ouput feature maps from a 3-D input
feature map.

This strided convolution algorithm can be easily understood using the following
Algorithm 1, where a 7 dimensional nested loop is responsible for a MAC operation
which is the central part of a Conv layer. Here batch size represents how many
input images/activations are taken at the single time for inference.

Padding of Input Feature Maps

Depending on the dimension of the weight kernels (Ny, and Nj,) and stride value
(S; and Sy), the dimension of output feature map changes. To maintain a particular
spatial dimension of OfMaps, sometimes a variable amount of zero-padding is added
to the border of Ifmaps (N;; x N;,). The output feature map dimension for non-unit
stride and zero paddings (P, and P,) are defined by Equation 2.2:

Nox =

Niy — Niow +2- P, Ni, — N; 2P,
ke |+1;Noy={ Y by * yJ+1 (2.2)

S, S,

In most standard CNN architectures, often the size of IfMap and OfMap is kept
same. A specific type of padding is applied to attain this dimension and it is called

21



2. Background

Algorithm 1: 7D nested convolution algorithm

/* Loop over Batch Size */
for b;=0; b; < batch_size; b;++ do
/* Loop over Output Horizontal */
for out_col=0; out_col < Nox; out_col++ do
/* Loop over Output Vertical */
for out_row=0; out_-row < Noy; out_row++ do
/* Loop over Output Channel x/
for ch,=0; ch, < Nof; ch,++ do
/* Loop over Input Channel */
for ch;=0; ch; < Nuf; ch;++ do
/* Loop over Kernel Horizontal x/
for i=0; i < Nkx; i++ do
/* Loop over Kernel Vertical */

for j=0; j < Nky; j++ do
OfMap|batch_size|[out_row][out_col|[ch,] +=
IfMap[batch_size][Stride*out_row-+i|[Stride*out_col+j][ch;]
* Wil[jl[chi][cho]
end

end
end
end

end

end

end

Same Padding or Half Padding. For Same Padding the padding amount should be

equal to:
ka Nky
Px: ;P = | —= 2.3
][] e

In the below Figure 2.3, an example of same padding is demonstrated where the
kernel size is 3 x 3 and padding is 1. So after padding the I[fMaps becomes 7 x 7
from 5 x 5. But after convolution for the same zero padding, the OfMap retains the
dimension 5 x 5.

Pooling

Pooling can be used to steadily decrease the spatial dimension of [fMap. Generally,
pooling is applied in blocks and the 2-D window is slided all over input dimension
just like the strided convolution. But for pooling, no weights are involved. If a
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2.1. Convolutional Neural Networks

Figure 2.3.: zero padding p = 1 and non-unit stride s = 2 for a 3 x 3 weight convolving
over a 5 x 5 padded input generating a 3 x 3 output feature map

pooling window of size Pooly, x Pooly, with stide S, and S, is applied over an
IfMap of size N;;, x N;,, then the spatial dimension of OfMap is given by:

N, — Pooly,, Ny, — Poolky| ‘1 (2.4)

Noz:— 1;No:
P |- [Py

While downsampling the feature maps it actually captures the features present
in blocks in different areas of IfMaps. Mainly two types pooling are generally per-
formed.

e Max Pooling: This is primarily used to downsample an image and get the
most significant pixel values. In Fig 2.4, a 3 x 3 pooling window is applied on
a IfMap of size 5 x 5. For the first stride it selects the maximum value out of
the 9 values in the window, i.e. 3.

1 0

3 1 Max Pooling Average Pooling

2 3 3 3 3 1.7 | 1.7 | 1.7
2 0 0 2 2 3 3 3 1 12 | 1.8
2 0 0 0 1 3 2 3 11 | 08 | 1.3

Figure 2.4.: 3 x 3 Max Pool and Average Pool is performed over a 2-dimensional
input feature map having spatial dimension 5 x 5

e Average Pooling: Where Max Pooling extracts the most prominent features
like edges, Average Pooling extracts feature more smoothly. It usually follows
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2. Background

a convolution layer and adds a small amount of translation invariance. In Fig
2.4, a 3 x 3 pooling window is applied on a IfMap of size 5 x 5. For the first
stride it selects the average value out of the 9 values in the window, i.e. 1.7.

Activation for hidden layers

Activation function or transfer function is a elementary part of Neural Network
and it defines how the weighted sum is transformed into the output. Most acti-
vation functions are non-linear and three popular choices of non-linear activation
functions are plotted in Figure 2.5. The choice of activation function decides the
performance of a network and controls how the network learns during the training.
In our network, rectified linear activation function (ReLU) [29] is used which is the
most common transfer function for hidden layers. It is very simple to implement
and susceptible to vanishing gradient problem. ReLLU simply makes the output zero
if the input value is negative and in case of positive input, values are unchanged.

— ReLU | 5|7
—— Tanh 41
Sigmoid | 3 {
2,,
L =
543924112345
_9
—31
4]
_51

Figure 2.5.: Non-linear activation functions used in CNNs

2.1.3. Success of Deep Convolutional Networks and Residual
Networks

Deep Neural Networks have gained significant popularity due to its accuracy in the
most complex problems. Some very deeply stacked networks like VGG16 [30], pro-
posed in 2014 performs really well with 92.7% top-5 test accuracy on ImageNet[31].
But training these very deep networks like Xception [32], GoogleNet [33] requires
very large number of GPU hours and suffer vanishing/exploding gradient problem.

ResNet[34] was introduced in 2015, which consisted of residual blocks that helps
to train the deep network. In this work, we used a state-of-the-art segmentation
network (See Figure 2.9) having ResNet structure at its core. In ResNet, we have
identity /skip connections which takes activation of a layer and feeds another layer
deeper in the network architecture. Generally, while training a very deep network
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the training error decreases at first, but after a point it increases. But the depth
scaling in residual networks improve the accuracy.

2.2. Optimization of Neural Networks

The success of the Deep Neural Networks comes at a cost of high energy requirement
and a huge memory footprint. The number of trainable parameters and total num-
ber of floating point operations (FLOPS) define the complexity of a deep network.
Various network level techniques like pruning [20], quantization [35], knowledge
distillation [19] have been introduced in the last decade which significantly re-
duces the memory requirement of these big models and makes them compatible for
inference on low-power devices without loosing much accuracy.

2.2.1. Network Pruning

Not all weights of the network are equally important for the inference performance.
In pruning, all of these redundancies in the neural network are carefully analyzed and
discarded accordingly. After pruning, generally the remaining structure is retrained
(fine-tuning) to recover the lost accuracy.

In pruning, only individual weights or the entire layer can be removed. On the
basis of granularity of the elements removed from a network, pruning can be classified
into 5 classes that are shown if Figure 2.6. Here it is interesting to notice, in case of
channel pruning an entire channel from a layer is removed. This in other term means
an entire weight kernel is removed from the previous layer. So channel pruning and
kernel pruning term could be used interchangeably.

Also, on the basis of pruning regularities, it can be classified into 2 major classes:

e Unstructured Pruning: Individual weights which are redundant can be
particularly removed in this pruning. There is minor or no latency degrada-
tion and easier to implement in software. But this irregular distribution of
pruned weights makes it impossible for general purpose hardware to exploit
the advantage and does not result performance benefit.

e Structured Pruning: In case of structured pruning specific kernels, filters,
channels and even layers are removed from the network. From the accuracy
point of view this is more challenging to retain original accuracy and leads to
higher accuracy degradation but gives significant advantage while deploying
in real hardware. Structured pruning, specifically channel pruning can take
advantages of existing CUDA kernels [36] or in case of this accelerator, our
custom OpenCL kernels to get remarkable latency benefit. It is challenging to
implement channel pruning in case of residual blocks due to the presence of
identity connections and the number of channels/filters should be consistent.
This issue has been addressed in section 5.2.
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Layer Pruning Channel Pruning Filter Pruning Kernel Pruning Weight Pruning

Figure 2.6.: Classification of Pruning depending on granularity of weight kernels

2.2.2. Quantization of Networks

A straightforward way to reduce model size is to use low precision operands and that
is referred as Quantization. Primarily, there are two motivations behind quantization
which yields benefit to the neural network deployment in real hardware:

1. GPU has enormous computational resources and executing all the primary op-
erations of CNN can be performed in full precision (32/64-bit) floating point
representation. This does not result any computational error in terms of loos-
ing precision and accuracy is also not hampered. But in case of resource
constrained devices at the edge, there are limited number of processing ele-
ments or DSPs available. As DSP blocks are usually data-parallel architecture,
a number of MAC operations can be executed simultaneously on a single DSP
if lower precision is used to represent the operands.

2. If higher number of bits used to represent an activation or weight, naturally
the requirement for on-chip memory increases significantly and usually edge
devices are short in memory. Also the power consumption to bring data from
off-chip memory increases for full-precision networks.

Some extreme forms of quantization has been introduced in the literature [37]
using 2 (Binary Nets) or 3 (Ternary Nets) unique values to represent the operands.
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2.3. Hardware Accelerator for Deep Neural Networks

In case of Binary Neural Networks, the weights and activations are restricted to
{+1,—1}. This representation facilitates substitution of MAC operation by a simple
xnor operation followed by a counter that counts number of bits [38].

In TEEE 754 single-precision binary floating-point format there is a sign bit, a
8-bit exponent and 23-bit mantissa/fraction. The range of numbers represented by
a 32-bit floating point representation is given by:

_2256—127 < xfloat < 2256—127 (25)

Whereas, in this thesis we used 16-bit fixed point representation for our hardware
accelerator. For a N-bit fixed point representation, the number of values possible to
distinctively represent is 2V — 1. So for a signed fixed point number we introduced
a Scaling Factor (SF) that can be used to reshape the data-range. The range of
numbers represented by a 16-bit fixed point representation is given by:

2NV SF < wpipea < (2N = 1) - SF (2.6)

The reason for degradation of accuracy is mainly the resolution of the fixed-
point representation. Resolution is the difference between two consecutive quantized
values and it’s given by 1LSB=SF'. Needless to say, the number of unique values are
way lesser in fixed-point representation and conversion from floating-point number
gives rise to quantization error. When rounding technique is used to truncate the
precision it can result to a quantization error of i%LS B x SF in worst case. As the
convolution operation mainly consists of multiplication and accumulation (MAC),
these quantization errors are also multiplied and added up which may result a major
accuracy degradation.

Another notable technique related to quantization, implemented in hardware is
tackling the underflow and overflow scenario due to restricted representation range.
For our accelerator we used 16-bit fixed precision numbers and for that reason the
minimum and maximum numbers are capped to -32768 and 32767 for underflow
(<-32768) and overflow (>32767) scenarios respectively.

2.3. Hardware Accelerator for Deep Neural Networks

In this work, the hardware acceleration of a semantic segmentation network is pri-
marily discussed. But to understand the reason behind choosing a platform or a
particular workflow, let us first see the panorama of hardware accelerators available
for deployment of DNNs. The application area and primarily design constraints
decides which platform is suitable for a particular problem.
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2.3.1. Temporal and Spatial Architectures

The hardware processing of DNNs can be broadly classified to temporal and spa-
tial architectures. The temporal architecture can be mostly found in CPUs and
GPUs. While most CPUs can process data parallely using SIMD (Single Instruction
Multiple Data), GPUs follow SIMT (Single Instruction Multiple Thread) model to
maximize the huge amount of computational cores available. GPUs are the current
work-horse for DNN processing especially training. As they are made for highly
parallel algorithms, the parallel processing of MACs take the advantage of this.
However, GPU are very power-hungry and consumes hundreds of watts. Also they
are not cost effective for inference use case. So, for their fixed hardware architecture
and less energy-efficiency they are not suitable for low-power mobile applications
and battery-powered devices.

In case of spatial architectures, the computations take place in an array of pro-
cessing elements typically connected by a NOC. Two main spatial architectures are
ASICs (Application-Specific-Integrated-Circuit) and FPGAs (Field-Programmable-
Gate-Arrays). ASICs are full custom chip dedicatedly developed for a particular
application and they have lesser flexibility. In this rapidly moving field of research
sometimes changes are needed based on the model that is being run. But at the
end, these ASICs are most optimized and energy-efficient crafted for a specific ap-
plication.

Figure 2.7.: An FPGA development kit with functional flexibility suitable for
hardware prototyping

FPGAs are mainly constructed with programmable logic blocks, LUTs, DSPs,
on and off-chip memories. Also there are re-configurable interconnects that wires
together programmable logic blocks according to the requirement. In Figure 2.7, we
see a midrange FPGA from Intel Arria device family. The FPGAs provide the best
trade-off between different aspects such as energy efficiency, inference performance,
programmability, and becomes a natural choice for our research. They are also
really cost-effective and have a lesser complex design-flow than ASIC which helps to
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2.3. Hardware Accelerator for Deep Neural Networks

get a better time-to-market. Generally FPGAs have 3-levels of memory hierarchy:
DRAM, SRAM and on-chip buffers, DRAM being the most far from the processing
units. More about the capacities and access latency are analyzed in chapter 4.

2.3.2. Paradigm Shift in FPGA design: High Level Synthesis

For a long time, hardware design for FPGA has been restricted to the community
having sound knowledge in hardware description languages like VHDL and Verilog.
In last decade, few tools have emerged that opens up the use of reconfigurable
platforms to a broader skillset. Developing FPGA hardware in C++ using HLS
(High-Level-Synthesis) reduces design effort significantly compared to writing RTL.
Hardware blocks are generated with high level language and reiteration of design
could be easily done with adding HLS constraints to get desired T (clock period).
Various other vendor specific tunable settings also comes into play like use of a
specific type of on-board resource or partitioning the block RAMs. Tools supplied
by vendors could be used to verify area/timing. Usually the generated circuit is
correct by construction, if needed co-simulation tool like ModelSim [39] can be used
to verify generated RTL.

However, there are some challenges in adaptation of HLS. Usually the HLS com-
pilers are vendor specific and the code written in high-level language must follow the
coding guidelines. For example, memory access on a variable within a dynamically
sized array is not possible because the moemory resource in FPGA is fixed and the
HLS must know the memory requirement at the compilation time. Also, identifying
parallelism can be difficult at times, depending on the algorithm complexity.

Eventhough, we decided upon OpenCL High-Level-Synthesis tool for our proto-
type because it is portable, open and royalty-free standard and supports virtually
any devices including CPUs, GPUs and reconfigurable platforms like Arria 10 GX
in our case. In Figure 2.8, we can see a OpenCL based toolflow for programming a
FPGA. It provides an Application Program Interface (API) from host (A desktop
CPU) to communicate with devices like FPGA over a PCle interface and vice-versa.
In the device (FPGA), some compute units or kernels, which are written using
high-level C maintaining OpenCL standard, runs in parallel. These pieces of code
(kernels) are pre-synthesized using a vendor-specific offline compiler and it is stored
as an image file (.aocx for our case). On the other branch, the host application runs
on a general purpose PC and manages the execution of kernels on FPGA. More
about this have been explained in section 4.1.1. This host application is compiled
using standard C/C++ compiler and then linked to the FPGA SDK for OpenCL
runtime libraries.
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Figure 2.8.: An example toolflow of High-Level-Synthesis Framework: OpenCL

2.3.3. Optimization in Hardware Architecture

Various network and algorithmic level optimizations have been introduced in the
previous section 2.2. Now some hardware architecture specific optimizations for a
simple CNN layer computation, like loop unrolling and data tiling will be briefly
investigated. More implementation details and experimental results for introducing
these optimizations are explained in chapter 4 and 5 respectively.

Loop Unrolling

Previously for 3-dimensional strided convolution, a simple algorithm 1 has been dis-
cussed. The core of this 7-D nested loop is a MAC operation between an element of
a 4-D weight tensor to an element of OfMap. But in order to exploit the parallelism
in highly parallel architecture, unrolling of one or more loops can be beneficiary. The
motivation behind unrolling the loops is to use as many as computational resource
available to perform the MAC operations in parallel.
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2.3. Hardware Accelerator for Deep Neural Networks

We use unrolling factors like P;f, Py,, P, for unrolling along input channel, weight
kernel horizontal and weight kernel vertical direction respectively. This unrolling is
only possible until the PE resources are exhausted. Also logic utilization is increased
to support the unrolling along multiple dimensions [40]. In the below algorithm 2,
the 7-D loop has been refactored by unrolling 3 inner-loops to execute P;f x Py x Py,
MAC operations simultaneously. Please note that the requirement of accumulator
and shift-register also increases with further unrolling which has been demonstrated
in Chapter 4.

Data Tiling

FPGA generally has 3 levels of memory hierarchy: DRAM, SRAM and memory
buffers. These on-chip memories like SRAM are very small in size and can not
accommodate the whole data volume of weight and IfMap. So many number of
sparse accesses to the off-chip costs heavy in terms of power-consumption and also
time consuming compared to fetching data from on-chip buffers. Numerous efforts
have been found in literature, cutting down the number of external data access
[41]. Data tiling is one of the most popular techniques, where a huge volume data
is partitioned into multiple sub-volumes of pre-calculated dimension. These sub-
volumes are carefully selected to be able to fit on the on-chip memory [42].

A new tiling factor (7, and Ty,) is introduced to the system architecture. This
signifies the number of elements in the OfMap to be computed from a single tile of
data. But the size of the tile buffer depends on another factor (7}, and Tj,) which
signifies the actual dimension of tile to be taken from DRAM and given by:

Tiw = (Too = 1) - Sp + Nia Tiy = (Toy — 1) - Sy + Ny (2.7)

If we keep on increasing the tiling factors, the size of tile buffer increases and the
number of tiles needed to cover all IfMap decreases. This results a lot less number of
DRAM access. But at the same time there is restriction of on-chip memory and tile
buffer must be sized in a way that it can fit in the SRAM. While considering tiling
the input, weight and output buffer dimension are given by the following equations:

IfMappusfer = Tig - Tiy - Tig - sizeof(DTYPE) (2.8)
Weightpuffer = Nz - Niy - Tip - Top - sizeof(DTYPE) (2.9)
OfMappusfer = Tow - Loy - Toy - sizeof (DTYPE) (2.10)

If the input feature map dimension is small enough, the whole map could be
covered by a single tile. The total number of tiles required to compute every pixel
of OfMaps is given by the below equation 2.11. The performance improvement in
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Algorithm 2: Pseudo-code of loop unrolling along P;f, Pyy, Py

/* Loop over Batch Size */
for b;=0; b; < batch_size; b;++ do
/* Loop over Output Horizontal */
for out_col=0; out_col < Nox; out_col++ do
/* Loop over Output Vertical */
for out_row=0; out_-row < Noy; out_row++ do
/* Loop over Output Channel x/
for ch,=0; ch, < Nof; ch,++ do
/* Loop over Input Channel */
for ch;=0; ch; < Nif/Pif; ch;++ do
/* Loop over Kernel Horizontal */
for i=0; i < Nkx/Pkx; i++ do
/* Loop over Kernel Vertical */

for j=0; j < Nky/Pky; j++ do
OfMap|batch_size|[out_row][out_col|[ch,] +
Iﬂ\/[ap[batch size][Stride*out_row+0] [Strlde out_col+0][0]
WIO][0][0][chs];
OfMap[batch_size][out_row][out_col][ch,] +=
IfMap[batch _size][Stride*out_row+0][Stride*out_col+1][0]
]

WIOJ[][0[co);

OfMap[batch_size][out_row][out_col][ch,] +=
IfMap|batch_size|[Stride*out_row+(i+Pkx-
1)][Stride*out_col+(j+Pky-1)][ch;+Pif-1] *
W/[i+Pkx-1][j4+Pky-1][ch;+Pif-1][ch,]

end

end
end
end

end

end
end
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terms of latency is available in the experiment section which indicates its success of
not restricting the accelerator design memory-bandwidth bound.
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2.4. DeepLabV3+: A state-of-the-art Semantic
Segmentation Model

With the motivation of deployment of a state-of-the-art segmentation network with
our custom FPGA accelerator, we chose DeepLabV3+ [14] as our model. It is a
revision of the original DeepLab architecture [43] introduced in 2016. In this ar-
chitecture, authors have rethought the idea of Atrous Convolution and introduced
a decoder-encoder architecture to get better segmentation result. In section 4.1.4,
the hardware specific optimizations for DeepLab has been introduced. Before pro-
ceeding there, let us take a look at the elaborate architecture of the network in
Figure 2.9. Here we can see a version of DeepLab network where Resnet18 acts like
a backbone. The major features of this network is listed as below:

e There are 30 layers in the whole model including the shortcut connection of
residual blocks.

e There is one Atrous Spatial Pyramid Pooling (ASSP) block at the end of
ResNet1® which are concatenated channel-wise thereafter.

e There are several convolution layers in the network where dilation ratio is>1.
For example, in residual block 5 there is dilation ratio 2 and in ASPP block
there are several other higher dilation ratios like 6, 12 and 18 present.

e One Average pooling and two bilinear upsampling layers are present in the
model which are followed by convolution layers.

e To get low-level features influencing the prediction, there is a decoder part
in the model. After the upsampling (x4) of the concatenated activation of
the pyramid pooling blocks they are again subjected to another channel-wise
concatenation block. Output from Residual Block 2 passes through a 1 x 1
convolution (decoder_1 block) and that is concatenated with the activation
mentioned in the last line. Please refer the Figure 2.9 for better understanding
of the fairly complex network architecture.
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2.4.1. Dilated Convolution Arithmetic

Dilated convolution [44] is a specific type of strided convolution which comes from
french term atrous, meaning porous. In this section we will explain how this special
convolution works and is applied over IfMaps. The motivation behind this atrous/di-
lated convolution is to vary the area of projection on the IfMaps as per requirement
and capture information in multiple scale.

Specifically for dilated convolution, there is an additional hyperparameter con-
sidered that controls the number of zero elements inserted in the kernel to inflate
it. Let us refer this by D, and D, and setting it to 1 gives us regular convolution.
When D, > 1, usually D, — 1 number of blank spaces or zero elements are inserted
in the spatial dimension of the weight kernels to extend it. For a weight kernel with
dimension N, and N, the extended dimension after dilation applied is given by:

~ ~

Niz = N + (ka — 1) : (Dx — 1) Nky = Nky + (Nky — 1) . (Dy — 1) (212)

From Figure 2.10, we can see a simple example of Dilated Convolution with dila-
tion rate D, = 2. Naturally a 3 x 3 weight kernel is expanded to dimension 5 x 5
and it is strided over a IfMap with dimension 7 x 7, that results a 3 x 3 OfMap.

[

|

Figure 2.10.: Example of dilated convolution with dilation rate = 2 for kernel size
3 x 3 on input feature map dimension 7 x 7

The equation to calculate the spatial dimension of OfMap is modified slightly for
the introduction of dilation rate hyperparameter, and is given by:

Noy = {Ni _Nkw_(ka_l)'(D’_l)Jrz'P””|+1; (2.13)
S

N, = {Niy—Nky_(Nky _Sl)'(Dy_1)+2'PyJ +1 (2.14)
y
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The use of dilated convolution has recently been emerged with the popularity of
Networks like WaveNet [45] and DeepLab [14] where layers with varied dilation ratios
are stacked up to get diverse receptive field area. However there are few hardware
implementations of dilation, especially on FPGA, mainly because of high memory
requirement to store extended weight kernels. This problem has been discussed in
detail in section 5.1.2.
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This thesis presents a FPGA based hardware accelerator for semantic image seg-
mentation. In this chapter, the research papers supporting the idea and those who
inspired the work have been discussed. First in section 3.1, the foundation architec-
ture inspiration is briefly discussed followed by some state-of-the-art architectures
based on both FPGA and ASIC. The next section 3.2 gives details and motivation
of semantic image segmentation along with its efficient execution from hardware
community. This chapter ends with explaining some efforts to incorporate hardware
specific metrics to improve channel pruning strategy.

3.1. Hardware Accelerators for CNN

A host of hardware solutions [41, 12, 46, 47] have emerged in the last decade focusing
on the problem of efficient execution of DNNs especially CNNs in various use-cases.
Most of them are developed as ASICs or on FPGAs with limited resources. Following
are some of the most prominent works to mitigate the problems like high off-chip
memory access, execution latency.

3.1.1. PipeCNN

PipeCNN [48] is one of the first works on OpenCL based hardware accelerator for
CNNs that was publicly available and this was used as a baseline architecture at the
beginning of our development. It consists of cascaded OpenCL kernels connected
with OpenCL channel extension. This provides a deep-pipelined architecture sup-
porting only convolution and fully connected layers. PipeCNN introduces a sliding
window based data buffering scheme to cache data locally and off-chip memory
bandwidth requirement are relaxed. Data vectorization and 2-D loop unrolling was
implemented to increase the number of parallel MAC operations improving over-
all throughput. Also, the benefit of using fixed point arithmetic in place of using
floating-point numbers was demonstrated reducing logical resource and memory re-
quirement of FPGA. In our work, we extended the loop unrolling to 3-dimensions
and dynamic tiling was introduced to reduce number of DRAM access. Further-
more, end-end deployment of a decoder-encoder based segmentation network was
executed.
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3.1.2. Intel DLA

Intel Deep Learning Accelerator (DLA) [49] published in 2017 focused maximiz-
ing the data reuse and minimizing the external memory bandwidth. Here stream
buffers are used in double buffer configuration to cache the intermediate data. This
methodology helps to reduce external bandwidth requirement for both conv and
FC layers. They introduced a shared exponent half-precision floating point repre-
sentation that permitted a lower memory footprint with almost no degradation of
accuracy. A design space exploration methodology was also introduced which gave
maximum possible throughput by using most computation resources possible. Fur-
thermore, this design leverages Winograd transformation to cut down number of
MAC operations. In our work, 16-bit fixed point precision was used for operands
and a hardware-aware pruning technique was leveraged to optimize runtime of a
segmentation network.

3.1.3. Reducing the Memory Access

Memory access being the bottleneck of CNN computation in hardware, the major
focus was on investigating efficient dataflow during the development of first DNN
accelerators. The mapping of operations and data movement must be well orches-
trated to have significant performance and throughput. There are three kinds of
data-reuse possible for a vanilla convolution layer: weight reuse (for a single channel
in IfMap), input reuse (same IfMap for N,; times) and convolutional reuse or data
tiling. The input value falling in the overlapping region of multiple strides dur-
ing a convolution can be reused. In [50], an analytical framework was introduced
to measure DRAM access volume determined by partitioning and scheduling con-
figurations. For a particular network architecture, it proposes the best data-reuse
scheme by providing the best tiling factor of each layer.

Based on the data reuse scheme, early introduced accelerators are classified as
below:

e Weight Stationary (WS): This accelerators exploit the weight reuse and data
tiling. In [51, 52] weights are stored in register files or on-chip buffers but
input and partial sums are distributed.

e Output Stationary (OS): In this type of accelerators like [53][54], weights and
input feature maps are spread in different ways but the partial sum after one
convolution is kept fixed for a processing element (PE).

e Row Stationary (RS): This is one of the most innovative dataflows which com-
bines the reuse of weights, inputs and partial sums. In [41], the accelerator
Eyeriss showed significant performance improvement by mapping the opera-
tions of a row of a convolution to a single processing element.
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In our work, we are using weight stationary dataflow alongwith convolutional
reuse by exploiting tiling.

3.1.4. Exploiting Sparsity in Network

In recent years, the focus on architecture researchers are on mainly exploiting spar-
sity in the network and providing more flexibility to the accelerator. Usually the
humongous networks are over-parameterized. With the help of advanced technique
like pruning, a big part of the weights can be eliminated. Also frequent use of ReLLU
function makes a big part of the activation zero. If one of the weights or inputs is zero
the result can be pre-computed and the entire operation could be skipped. Most
accelerators use different sparsity-compression methods to make the most of this
observation. The most popular schemes are : Run Length Coding (RLC), Com-
pressed Sparse Row (CSR), Compressed Sparse Column (CSC) and Compressed
Image Size (CIS). The Cambricon-X [12] accelerator is ASIC based which appeared
in 2016, exploits CIS scheme for compressing weights in asynchronous computations
but does not use sparsity of the activations. ASIC based SCNN [46] uses the most
advantageous CSC scheme in both weights and activations. It has a dedicated in-
terconnection mesh to add up the scattered products. The EIE [55] accelerator also
uses CSC scheme and contains extra logic to skip the zero activation values. Thus a
superior energy efficiency is achieved by having less number of DRAM access. Also
in FPGA, NullHop [47] is a great example of hardware accelerator using sparsity in
the network. It uses the CIS scheme for weights and able to skip the null activations.

In this thesis, we used a structured pruning (channel pruning) technique to get
latency benefit without dedicated HW implementation. Network specific hardware
heuristics were introduced to the pruning search (using genetic algorithm) to get
desirable network compression without losing much accuracy.

3.2. Accelerating Semantic Segmentation

3.2.1. Semantic Segmentation Network

For complete visual scene understanding, dividing an image to multiple meaningful
sections is important and each pixel can be assigned to a specific entity. In com-
puter vision this idea is regarded as image segmentation which actually provides
pixel-wise classification for an image. As an evaluation metric for accuracy, mean
Intersection over Union (mIOU) is the most widely accepted. One of the first net-
works providing pixel-wise dense perdition was Fully Convolutional Network (FCN)
[28]. It has an entire CNN structure and can process any input size. Even though
FCN demonstrated large improvement over traditional approaches it was not able
to capture spatial consistency between the pixels. After the success of FCN, a host
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of new encoder-decoder type of architectures became popular for semantic segmen-
tation. As an encoder or backbone network usually successful classification models
are used which produces lower-resolution images. In [56], SegNet uses max-pooling
indices to upsample the feature maps in the decoder and they are further subjected
to convolution to get dense predictions. With U-Net [57], in decoder part, upsam-
pled feature maps are concatenated with cropped duplicates of OfMaps from the
encoder to enhance the resolution of final output. One more trick was used to inte-
grate context-knowledge is Conditional Random Field (CRF) [58]. In DeepLab [43],
this CRF was used and it was supported by dilated convolution, expanding the re-
ceptive field to incorporate context-knowledge. Several other iterations of DeepLab
have emerged since then introducing concepts like Atrous Spatial Pyramid Pooling
(ASPP) along with an XCeption module [32] as decoder. This obtains the state-of-
art performance for semantic segmentation on popular datasets like CityScapes [59]

and Pascal-VOC 2012 [60].

3.2.2. Hardware Acceleration for Semantic Segmentation

For complex architectures and special operations there are a few efforts in acceler-
ating the semantic segmentation networks on FPGA. [61] was one of the first works
proposing efficient hardware implementation of parametric deconvolution layer. This
accelerator is based on U-Net and shared memory was used between convolution
and deconvolution modules. In [62], an OpenCL based flexible accelerator was in-
troduced for decoder-encoder based architecture. The storage of the pooling indices
used for unpooling operation was optimized and that saved memory consumption.
It implemented SegNet-basic algorithm and achieved 48.89 GOPS throughput for
CamVid dataset [63]. For remote-sensing imaging application, Liu et al. in [27]
uses vector multiplication for convolution and deconvolution operations and stores
intermediate feature maps in on-chip buffers. Another implementation in FPGA is
found in [64], where OpenCL kernels were used for classic Encoder-Decoder seman-
tic segmentation network SegNet. In our work we used a more complex network
DeepLabV3+ [14] (with superior mean mIOU value for CityScapes or Pascal-VOC
2012), having dilation, bilinear upsampling , average pooling producing a through-
put of 183.293 GOPS using almost 90% computational resource of Arria 10GX 1150
FPGA. This architecture was kept as baseline for pruning experiments to reduce
latency further.

3.3. Hardware Aware Channel Pruning

Pruning is performed with an objective to reduce the hardware footprint of Machine
Learning models. Automated pruning techniques tend to jointly optimize hardware
metrics and model accuracy by searching for the optimum pruning configuration.
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Early pruning approaches like Deep Compression by Han et al. [65] use proxy metrics
like number of parameters during the search. These methods can be termed as HW
agnostic since they rely on proxy metrics rather than real hardware metrics. How-
ever, it has been observed that these proxy metrics cannot accurately predict real
hardware estimates. This led to hardware aware model compression, where latency
or energy consumption, measured in hardware, is incorporated into the search algo-
rithm. In AMC [66], MnasNet [67], real latency measured in smartphone devices,
is considered by the RL agent while obtaining the optimum model configuration.
Wang et al. in their recent paper APQ [68] construct look-up-tables, by measuring
latency and energy in real hardware for different model configurations, and use it
during the search. While executing the model on target hardware gives the most
accurate results, this process can be time-consuming. ProxylessNAS [69] introduces
hardware model for predicting model latency from layer dimensions, allowing the
HW loss to be differentiable. NetAdapt [70] devises an algorithm for model com-
pression using empirical measurements for latency so that detailed knowledge of the
platform and toolchain is not required. In this thesis, we build a hardware model
for our custom accelerator to get latency estimates without measuring on real hard-
ware. While NetAdapt aims to reduce inference latency on mobile CPU or GPU,
we feed the estimated latency values to our GA search algorithm with an objective
to reduce inference latency on our FPGA accelerator.
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This chapter talks about the approaches that were taken while designing a hard-
ware accelerator for semantic image segmentation on a reconfigurable platform like
FPGA. Towards the end we introduce an end-end compression pipeline using channel
pruning to improve the throughput of semantic segmentation.

The first section 4.1.1 gives a generic high level architecture of the accelerator
along with the functional units designed using High-Level-Synthesis tools [71]. In
section 4.1.2, the generic functional units principally responsible for convolution
computations are introduced followed by the essential memory buffer units to load-
store intermediate weights or activations in section 4.1.3. In the next section 4.1.4,
DeepLab specific functional units are presented including dilated convolution and
bilinear upsampling. In the last two sections 4.2 and 4.3, a theoretical model of
our accelerator is explained which helps to complete a automated channel pruning
framework. This framework uses a Genetic Algorithm based search to find suitable
compression ratios for a channel pruned DeepLab network.

4.1. Accelerator Design for Semantic Segmentation

4.1.1. Architectural Overview and Optimization Techniques

This accelerator consists of OpenCL kernels and the system is fully pipelined. Over-
all toolflow of the OpenCL framework is already explained in section 2.3.2. Network
architecture and several other configurations can be configured during runtime re-
sulting a very flexible system. The high level system diagram is shown in Figure 4.1.
Overall execution of the system is managed by an application (host code) running
independently on a general-purpose PC. Basic functionalities include:

e Managing Data:
— Preprocess the image to be evaluated during inference.

— Vectorize and devectorize data in between consecutive layer execution.

— Allocate memory and prepare different buffers to allow device side kernels
function properly.

— Postprocess the data coming out of the FPGA at the end of the pipeline
and validate against golden reference, if required.
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e Managing Kernels:

— In case of multiple parallel OpenCL kernels running, like ours, the host
side program determines the order of kernel execution. Also it initializes
and cleans up after the kernels are finished running.

— Sets the arguments for the kernels, which they need while running.

— Enqueue the data in the allotted buffers and transfer data to the DRAM
of the FPGA. For input activation, the vector is composed of P;; values
and for weights, it ships P - Py, - P,y elements to the off-chip memory.
Please refer to section 2.3.3 of Background for details on unrolling factors.

e Managing Networks:

— Configures the network structure that runs on the FPGA. It determines
the sequence of data flowing through the kernels. For example, Max Pool-
ing can be enabled or disabled after convolution and ReLLU operation can
be configured to be completed after BatchNorm or even after activations
are added in case of fused layers.

While the host software routine runs, some functions are generally computation-
ally expensive and can benefit from highly parallel processing elements. These piece
of codes that are being executed independently on the FPGA are referred as com-
putational units. The host program uses standard OpenCL APIs to transfer data
and invoke the computational units. The OpenCL channels extension allows the
computational units to talk directly with the help of FIFO buffers. It decouples
data movement between simultaneously executing computational units from the host
CPU. The computational units responsible for core computations are discussed in
section 4.1.2 and details of DeepLabV3+ specific computational units are in section
4.1.4.
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Figure 4.1.: System level architecture of the Accelerator. The green boxes are part

of the host side which are running on Intel based Workstation. All the
orange boxes in the lower part are standalone kernels running parallelly
on the FPGA and the dotted arrows are connecting them via OpenCL
channels.
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4.1.2. Computational Units

In this section, the generalized computational units which are responsible for con-
volution, batch normalization and other relevant operations have been discussed
following the optimizations mentioned in section 2.3.3. These computational units
get the data from other computational units or from the memory buffer units which
effectively hides the DRAM access latency.

Core Convolution in PE Array

In Figure 4.1, the central part of picture is represented by Processing Elements (PE
Array) which are suitable for massive execution on parallel convolutions. In this unit,
all optimizations like loop unrolling (section 2.3.3) and data tiling (section 2.3.3)
have been implemented to get benefit of more parallelism and less DRAM access.
According to the Arria 10 GX datasheet [15], it contains variable precision DSP
blocks, which supports both fixed and floating point operations. As we used 16-bit
fixed point precision for all the operations, we can execute two multiplications/DSP
block because each DSP block can support two 18 x 19 multipliers or one 27 x 27
multiplier [72]. So, the number of parallel MAC operations needed are multiple of
all the unrolling factors and half of that number is the DSP requirement, given by
Equation 4.1.

1
#DSP = - Piy- Py - Poy (4.1)

Two functional units are responsible to bring weights and input activations from
DRAM. From them, Py, x Py x P,y and Py, x Pjy data is supplied respectively
with 16-bit precision and after convolution partial sums are locally stored in a shift
register with configurable depth, consecutively they are added by a adder tree.
So the number of clock cycles required for one vanilla convolution layer can be
represented by Equation 4.2.

N; N, N,
#OLKOQC[@S = ’VPZ “ : ’(P]’(:m“ : Nky ' ’( Of\‘ : Nom ’ Noy (42)

Algorithm 3 gives the strided convolution algorithm adapted in our custom accel-
erator.

Batch Normalization

Strided convolution is always followed by a Batch Normalization unit. To get re-
duced logic utilization, we enabled BN unit by default to apply the Scaling Factors
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Algorithm 3: Convolution execution in OpenCL kernel in the accelerator

for out_ch,=0; out_ch, < [];"Jf |; out_ch, + + do
Load Bias in the On-chip buffer

for conv_zy=0; conv_ry < Ny - Noy; conv_zy++ do

for j=0; j < ]1\3[—; % * Nyy; j++ do
Load Weights in the On-chip buffer
Read IFmap values
for 11=0; ll < P,; ll++ do

for 220, 1< Pkm . Pl'f,' 1++ do

| Psumsl[ll]= data*weight[j][11];

end

Store and accumulate P,y number of Psums in shift register
end
end
Produce F,; convolution output values
Add Bias to each of P,y channels

end

end

(SF) prepared for our 16-bit activations explained in section 2.2.2. This avoids repe-
tition of scaling factor multiplication logic to the activations in the convolution unit.
For each chunk of N,; channels coming out the computational unit for convolution,
the BN is needed to be performed only once. First it is converted to floating point
values to operate with other BN parameters which are directly derived from DRAM
in floating-point format. From Equation 4.3, we can see how it is normalized using
the parameters (mean p, variance o, gamma yand beta (3) of the specific layer. SFj,
SF, and SF, are the scaling factors for input activation, weight and output acti-
vation respectively. For dummy BN layers, to keep the conv results unchanged, BN
params are substituted with zeros and ones accordingly. Algorithm of the BN unit
is briefly explained in 4.

(float32(x)> —u
BN, = int16 [( SFi‘Sf; -y - 5) : SFo] (4.3)

Max Pooling

Data from computational units responsible for BatchNorm or CoreConuv, are received
in the MaxPool computational unit if pooling is enabled in the network. The number
of iterations largely depends on the dimension of vectorized data coming from other
computational units and also on Pooling parameters like stride. Usually this unit
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Algorithm 4: BatchNorm OpenCL kernel in the accelerator

for k=0; k < [%w “Nog - Noy ; k++ do
f

Read Py Valfles of convolution output from conv_batchNorm_ch
Load P,y number of 1, o, 3, yfrom DRAM

for [i=0; Il < P,s; ll++ do
Perform the operation of Equation 4.3

Handles overflow and underflow cases and convert to short(16-bit)

Performs ReLLU operation if enabled in Network by the host
end

Write P,y output values to channels leading to MemWrite or MaxPool
kernel

end

consists of a few compare functions which returns the maximum value of all the
elements present in a selected data window. A pool buffer is filled with initial
results after pooling and waits until a whole input window is received. In the
current implementation the pooling unit operates row-wise and 1-D tiling along N,
is supported. This is why in the first layer of DeepLab (where max pool is only
enabled), 1-D tiling is applied instead of 2-D tiling.

ReLU Operation

The Rectified Linear Activation function or ReLU is a piecewise linear makes the
output zero if the input is negative or it keeps the same value in output if the input
is positive. It is a trivial part of neural networks as they achieve good performance
and easier to train too.

ReLU operation is very computationally inexpensive. In our accelerator negative
value is detected by the Most Significant Bit (MSB) in signed-number representation.
Depending upon this value the ReLLU operation is performed on the input activation.
This activation is configurable by network, depending on where it is needed. As an
example, it can performed after Conv, BatchNorm or even for fused layers after the
activation from the previous layer is added.

4.1.3. Memory Buffer Units

For DNN processing on HW, the MAC operations are not the only bottleneck.
DRAM access sometimes require several order of higher energy and time than the
MAC operations. For each MAC operation there are 3 memory read operation and
one memory write operation. If all of these accesses are through off-chip memory
it can badly affect the power consumption and throughput. Because of this, it is
critical to restrict the number of DRAM accesses and data movement in the memory
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hierarchy as minimal as possible. Several measures have already been taken to paral-
lelize the processing that demands a higher memory bandwidth. In this subsection,
the memory buffers considered for reading or storing activation/weights/outputs in
our accelerator and how they are sized have been discussed.

Weight Buffer Unit

For convolution operation activation and weights are required as operands. Clearly
the weight buffer unit (mac_weight) storing weights is one of the most crucial buffers
considered, consuming on-chip memory. For DeepLab there are some restrictions of
sizing this memory, and this has been addressed in the Experiment section 5.1.2. The
on-chip SRAM/M20K blocks are nearer to the computation units (hides latency),
and gives a scope to reuse data over the course of convolution. From the fetch_weights
unit weight of size Py, x P,y x P, is fetched from DRAM and sent to Conv unit. The

weight buffer is partially filled in each of [%] . [%] - N}, iterations and eventually it

is filled with vectors suitable to get output for F,; channels. The total size of 4D sub-
tensor stored at a particular time in this buffer is Ny, - Ny, Nis-Pog-sizeof (DTY PE).
In our case we are using 16-bit fixed point notation for calculation and DTYPE is
considered as short datatype.

Input Buffer Unit

Reading the input data from DRAM before sending to the Conv unit is done by
MemRead unit, which has a very complex architecture. To reduce the DRAM access,
it resorts to loop tiling technique elaborately described in the Background section
2.3.3.

In order to pipeline the data fetching from DRAM and sending data to Con-
volution unit, it uses a double buffering technique. These coupled buffers are
alternatively used to fetch a whole tile from DRAM (P;s values at a time) and on
the other hand striding over a tile window to send respective activation (Py, x Pif
values at a time) for Convolution. If tiling factors are defined as T;, and Ty, the
input tiling factors are given by equation 4.4.

Tiw = (Toe — 1) - Sy + Nig Tiy = (Toy — 1) - Sy + Nigy (4.4)
Accordingly the on-chip buffer size is given by equation 4.5.

Tia

Tile_Buf fer_Size =2 - Py, - [
Pk‘:ﬂ

} - Tyy - Nig - sizeof (DataType) (4.5)
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The number of off-chip memory access for the layer, depends on the number of
tiles needed to load the whole input activation and that is defined by equation 4.6.

. . No:c . Noy ) Nof
-

Output Buffer Unit

This buffer stores the data arriving at the end of pipeline. After that, either it is
fetched again by the next layer or it is loaded by the host in case of last layer of
the network. Every cycle it receives P,y number of results from other units (Conv/
BatchNorm/ Maxpool/ Upsampling) and it stores P,y number of 16-bit values to
the DRAM each time.

The MemWrite unit has mainly two tasks:

e Storing results of the layers to the DRAM as explained above.

e In case of residual layers, the activations from a previous shortcut connection
are added with the current activation. Also the fixed-point representations are

converted to floating point representation in order to multiply scaling factor
(SF) of the fused layer.

4.1.4. Deeplab Specific layers for Segmentation

Before going into more details of DeepLabV3+ specific units in the custom accelera-
tor, please refer to network architecture in section 2.4. We use a version of DeepLab
network where Resnet18 acts like a backbone.

Atrous Convolution [44] or Dilated Convolution is the key contribution of DeepLab
based models because they are able to encode multi-scale contextual information
by applying atrous convolution at multiple scales. The weight kernels are inflated
with dummy zeros to get a larger area of projection on the input feature map
according to the dilation ratio. The principles and arithmetic of Atrous Convolution
is already explained in Background section 2.4.1 and here we will focus on the FPGA
implementation. We used a novel technique to not extend the dimensions of the
weight kernel but select specific activation values from the last feature map based
on dilation ratio and other standard convolution parameters. Below we can see a
simplfied Algorithm 5 of MemRead kernel, where particular features are directly
loaded from the DRAM.

Concatenation and Network Restructure

ASPP was introduced in DeepLabV3 [43] after spatial pyramid pooling showed
promising results in resampling features at different scales. This ASPP block consists
of one 1 x 1 Convolution, three 3 x 3 Convolution with different dilation ratios and
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Algorithm 5: Dilation Logic while reading data from DRAM
for T;=0; k < num_tiles ; T;++ do
Iterate over all data vectors in the group
for Win;=0; Win; < (Loop bound for DRAM < Loop bound for

SRAM?Loop bound for SRAM:Loop bound for DRAM ); Win;++ do
Step 1: Load one data vector from global DRAM

Along X direction select the features according to dilation rate, stride
and Py,

Along Y direction select the features according to dilation rate and
stride

Step 2: Load one data vector from SRAM

end

replicate it P,y times and write it into data channel vector

end

one image level feature though averagepool, 1 x 1 convolution and upsampling of
the last feature of ResNet18. At the end, all of these branches are concatenated and
passed through a 1 x 1 convolution called decoder_4 as described in the Figure 2.9.
In DeepLabV3+, when decoder-encoder type architecture was introduced to refine
the segmentation results, another concatenation takes place joining the upsampled
output of decoder_ 4 and another branch carrying low-level features. This channel-
wise concatenation function can be executed by a standalone OpenCL kernel, but
there are several implementation challenges for designing a dedicated kernel:

e High DRAM access: Usually the intermediate activations in between the
layers are stored in on-chip memory and reused in the next layer as input. But
for ASPP block, after the 5 branches are finished processing they write the
output activation to the DRAM. There would have been a lot of extra off-chip
memory access if they are read from the DRAM for concatenation.

e Extra Logic Utilization: For dedicated computational unit implementation
it costs extra logic during the high-level-synthesis process. In current scenario,
for the baseline accelerator we nearly used most of on-board logical resources
(See Chapter 5). So we could not afford extra logic required.

Instead a novel technique was adapted to couple the ASPP concatenation and
decoder_4 operation. This technique is explained for a simple layer in Figure 4.2.
Here two input feature maps (IfMapl and ifMap2) are first concatenated and then
convolution is applied with weight dimension 1 x 1 x 2 x 1. In the alternative
approach the weight is split in the 3rd dimension and then multiplied individually
to the activations with no concatenation, now if they are added element-wise, it
results the same value. Following the same approach, we structurally modified
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Concatenated IfMap: 2*2*2
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Figure 4.2.: Avoiding a dedicate kernel for concatenation followed by convolution

the DeepLabV3+ architecture to get efficient implementation in the FPGA, but
functionality of the model remains unchanged. We split the decoder_4 weights into
5 parts in dimension 3 (with 256 channels in each segment) and then each of this
weight segments were appended as independent 1 x 1 convolution layers after each
of the ASPP branches. We reused the fuse layer functionality to add up the output
activations and at the end of all additions we got the activation that we would
have gotten after decoder_4 block. Some extra effort of pre-processing is required
to prepare the weights and dummy convolution layers are appended in the network.
The scaling factors (SF) are duplicated for each of the new segments.

There are two concatenations followed by convolution in the entire network, and
these were replaced by multiple simple convolution layers, summed up by residual
layer fusion logic. In Figure 4.3, we see a restructured DeepLabV3+ architecture,
the new dummy layers are highlighted with blue and total number of layers increases
from 30 to 38 (including average pooling and upsampling).

Average Pooling in ASPP Block

Global average pooling is an integral part of the ASPP block. For adopting image-
level features this average pooling is applied on the last feature-map of ResNet, i.e.
Res5_2:2. Independent of the spatial dimension of input feature map, this function
reduces it down to 1 x 1 output activation with same number of output channels
present. There is no weight involved in this operation. So scaling up the unit
in P, direction is not relevant. The dedicated computational unit responsible for
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Figure 4.3.: Restructured network architecture for Deeplabv3+ to eleminate the
need of dedicated concatenation kernel
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Algorithm 6: Pseudo-code for Average Pooling OpenCL Kernel

for out_z=0; out_z < [g}{ |; out_z + + do

. . P
for lane_div_vec=0; lane_div_vec < =L;

5= lane_div_vec + + do
if

for i=0; i < input_xy; 1++ do
Read a vector Input vector from DRAM
for 11=0; ll < Py; ll++ do
| Sum up values in each channel
end

end

end
end

for out_z=0; out_z < [J]\;ch |; out_z + + do

for 11=0; ll < Py, ll++ do
Divide the sum by input_xy
Converted to float-point values and scaling factors multiplied
Convert back to fixed point notation

end

Write into the channel to MemWrite
end

performing average pooling directly fetch the data from DRAM, takes the average
across each channel and writes the data back to DRAM via MemWrite unit. A
dedicated input buffer is required to store the partial sums and the size of this
buffer is defined by Equation 4.7. A pseudo-code of the kernel implementation can
be found in Algorithm 6.

P_Sum_Size = Max(N,y) - sizeof(DataType) (4.7)

Bilinear Upsampling

In image processing and computer vision applications, resizing an image or activation
to a specific spatial dimension is very common. In DeepLabV3+ there are 2 instances
of bilinear upsampling. From Figure 2.9, we can see one upsampling is in the ASPP5
block (1 x 1 — 60 x 60 in spatial dimension) and the other is after decoder_4 block
(60 x 60 —> 240 x 240 in spatial dimension). Though the first one has repeated
values in all of the 60 x 60 pixels, for the second case it is computationally expensive
and the value of each of the 240 x 240 pixels are computed with bilinear interpolation.
In our accelerator we designed a generic implementation of bilinear upsampling unit
to address this problem which uses bilinear interpolation to calculate each of the
output pixels.
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Bilinear interpolation is a generalized algorithm of linear interpolation, which only
works for 1D array. Let us take a look at, how interpolation works. If there are two
points (a and b) having values A and B on a straight line, then the value of a third
point on the line with co-ordinate x (a < x < b) is given by Equation 4.8:

X=A-(1-w)+B-w (4.8)
where (- a)
w = b= a) (4.9)

It is actually the weighted average value of the two end points. We can extend
this idea to 2-D arrays and it is then called bilinear interpolation. This can be
separated into two linear resizing operation in x and y direction. From Figure 4.4,
we can see a simple setup where four points with values A, B, C and D are taken
with coordinates (z1,v1), (2, y1), (21, y2),(x2, y2) respectively.

M
< X - X > €—X2 - X—p
A . ! Y * B
(x1: ¥1) (x,y1) 2 (x2, ¥4}
e
xy Y Z
: .;[
xy2) § I
Cc [ & l J D
< X - Xq 3 o Xp - X >
(x4, ¥2) N (x2, y2)

Figure 4.4.: Bilinear interpolation between 4 points in spatial dimension

First we calculate the interpolated values in the horizontal direction. The points
with coordinates (x,y;) and (x,ys) have values M and N respectively which are
defined by Equation 4.10:

M=A-(1-w,)+ B-w, N=C -1-w;)+ D w, (4.10)
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Now, we need to perform linear interpolation (in vertical direction) on the already
interpolated points M and N. We get the value of Z located on the line connecting
M, N with coordinate (x,y) defined by Equation 4.11:

Z=A(1-wy) (1-wy)+B-w, - (1—wy)+C-(1—w,) w,+D w, w, (4.11)

where:

(z — 1) _ w—w)
Sl w, = 2“1
(22 — 1) Y (Y2 — 1)

Now in our case, the idea is to find interpolated value for each output pixel. The
first step is to get upsample or compression ratio between the spatial dimensions
of input and output image. Then with the help of this ratio 4 pixels are selected
for each output pixel to be interpolated and the weighted average is calculated. At
any time during the computation of upsampling, a dedicated memory is required
to store the spatial activations of P, channels. The size of this buffer is defined
by Equation 4.13. We can see a pseudo-code of this algorithm implemented in our
kernel in Algorithm 7.

w, = (4.12)

activation_channelwise = Max(N;,) - Max(Nyy,) - Pys - sizeof (DataType) (4.13)

4.2. Theoretical Model

The aim of the thesis is to get latency benefits for FPGA inference by Channel
Pruning using Genetic Algorithm search. We are using a framework (in section
4.3.3) to determine a set of compression ratios for each layer of DeepLab. As a
requirement, a hardware model of our custom FPGA for DeepLab is required which
is used to simulate the real hardware latency. This estimated latency metric by
newly plugged in hardware model is used to guide the Genetic Algorithm to perform
a latency based pruning search.

4.2.1. Design Variables of Hardware Model

The hardware model is able to predict the latency if the specification of each layer
to be executed is provided. DeepLab consists of variety of different layers including
Convolution (standard and dilated), Average Pooling and Upsampling. Naturally,
the calculation to estimate latency for any layer varies largely. Please note that,
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Algorithm 7: Pseudo-code for Upsampling OpenCL Kernel

for out_z=0; out_z < [];]{ |; out_z + + do

for lane_div_vec=0; lane_div_vec <
for 1=0; i < N;;; i++ do
for j=0; © < Ny, j++ do
Read a vector Input vector from DRAM
for 1l1=0; Il < Pyy; ll++ do
| In local buffer store entire activation for F;; channels
end
end

P,y
Py

; lane_div_vec + + do

end

end

for i=0; i < N,; i++ do

for j=0; 1 < N,,; j++ do

for [[=0; Il < Py; ll++ do
Calculate coordinates of 4 pixels for each output pixel
Calculate the weighted average value of output pixel
Converted to float-point values and scaling factors multiplied
Convert back to fixed point notation

end
Write into the channel to MemWrite
end
end
end

for the latency calculation of convolution layers, all the related functions like Max-
Pooling, ReLU, Batch Normalization are already covered as they are dominated by
convolution latency (compute-bound or memory-bandwidth bound). Here are the
layer parameters given as input to the hardware model:

e Layer Type (Comvolution/Fused Convolution/Average Pooling, Bilinear Up-
sampling)

e Dilated Convolution (True/False)

e spatial dimension of input feature map (N, and N;,)
e spatial dimension of output feature map (IV,, and N, )
e spatial dimension of weight kernels (N, and Ny,)

e Number of input channels (N;r)
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e Number of output channels (N,y)

Except these above parameters, we have some design choices and specification
based constant parameters inside the FPGA based accelerator. This includes:

e Unrolling factor along input channel dimension(P;;)

Unrolling factor along output channel dimension(P,y)

Unrolling factor along x dimension of weight kernel (Py,)

Precision of operands inside the hardware in Bytes (2 for 16 bit quantization)

peak frequency of the FPGA (in Hz)

DDR memory bandwidth (in B/sec.)

4.2.2. Convolution Latency Prediction
Compute Bound Latency Calculation

For strided convolution we reduced the number of DRAM access by using loop tiling
technique. In Section 2.3.3, data re-use by tiling is explained where tiling a larger
volume of input feature map helps to make the process compute-bound rather than
restricted by global memory bandwidth. Due to the high computational demand of
convolutional layer, tiling more input features does not improve latency and in this
case the latency calculation is compute-bounded.

For MAC operations, the number of additions performed is almost equal to the
number of multiplications. For ease of calculation total number of effective opera-
tions in a strided convolution layer in our custom accelerator having unrolling factors
Py, Pyy and Py, is given by Equation 4.14:

N, N N;
HEf fective_Ops = 2+ (Nyy - N,y - [—f} Pys)- (Nyy- [_ﬂ Prg- [—f} .Py) (4.14)
Pof ka PL

As explained in section 4.1.2, one DSP in the Arria 10 GX FPGA is capable
of doing two 16-bit multiplications and two accumulations [72]. So the number of
operations paralelly executed and the number of DSP blocks required for convolution
operation are given by Equation 4.15:

#Ops_parallel =2 - (Pis - Pyp - Pyy) #DSPs = —-(Py- P,y Pyy) (4.15)

N | —
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To get the number of cycles required for a convolution, we need to divide the
number of effective operations (4.14) by the number of operations parallely executing
(4.15) on available DSPs. The total number of cycles taken and the total latency in
seconds for execution this layer is given in Equation 4.16:

N, N; Nige #Cycles
Cycles = Nyy- Ny, - . . -N Lat = ——— (4.16
#Cycles Y [Pof} [PZ- } [ka} h WY = Prequency (4.16)

Memory Bound Latency Calculation

For the convolution layers with dilation, it was not possible to use tiling technique in
our current accelerator implementation. This is because of irregular re-use pattern of
activations in tile buffer depending on the dilation factor. A special dataflow must
be adopted to support tiling for dilated layers along with stride. So the latency
calculation is memory bandwidth bound rather than being compute-bound. This
estimation of latency consists of three different latency:

1. Initialization Latency: Time taken to load activation and weights from the
memory. These two latencies are individually computed using Equations 4.17
and 4.18:

N; :
([ﬁ;ﬂ Py - Niy [P—ﬂ . Pyy) - sizeof (DTY PE)
MemoryBandwidth

Latency_in = (4.17)

(|52 | Pra Ny - | 52| - P - Pug) - sizeof (DTY PE)

MemoryBandwidth

Latency_weight =
(4.18)

2. Latency for Convolution: This part of latency is responsible for the actual
convolution operation by taking data from the SRAM. This is exactly similar
to the latency calculation previously shown in Equation 4.14 - 4.16.
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3. Latency for Broken Pipeline: This latency only comes into existence when
the loop bound for DRAM is greater than the loop bound of SRAM. In that
case the data pipeline breaks and data is shifted partially from DRAM to
SRAM.

4.2.3. Latency for Average Pool and Bilinear Upsampling

We have 1 average pooling and 2 bilinear upsampling in DeepLabV3+ model. These
special layers have a bit irregular type of computations than vanilla convolution
layer. So to predict a near accurate latency value of each of these specific layers we
resorted to unique linear regression functions or step functions on the experimental
data.

Only for these layers, we experimented with different number of output channels
(Nof) and got respective latency in ms. The line or step function that fits to these
points are given in Appedix A.2. Below in Equation 4.19 we can see an example of
step function equation to predict the latency of an Upsampling layer (60 x 60 —
240 x 240) of DeepLab network. Here 28.4 ms. is the latency of upsampling layer
having upto F,; channels, and the value increases in steps of Fy.

N;
Latency-ms = 28.4 - ({P——]lil|> +28.4 (4.19)
of

4.3. Automated Channel Pruning for Custom
Accelerator

4.3.1. Genetic Algorithm

Genetic algorithms (GA) are a class of evolutionary algorithms inspired from the
process of natural selection. In natural selection, species that can adapt well to
changes in the environment, survive and go to the next generation, a concept also
termed as ‘survival of the fittest’. Genetic algorithms simulate the process of natural
selection, where the fitness of the individuals is defined by our desired optimization
criteria.

At first, the population is initialized with a set of individuals. The fitness of each
individual in the population is evaluated based on some fitness function. Offsprings
are generated from the existing population through the process of variation. The
process of variation involves Crossover and Mutation. The fitness of the generated
offsprings is evaluated. The fittest individuals from the parents as well as the chil-
dren are identified through Selection to go onto the next generation. This process
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is continued till a maximum fitness value is reached or for a given number of genera-
tions. The process of Crossover, Mutation and Selection are elaborately discussed
in Appendix A.3.

4.3.2. Choice of Genetic Algorithm: NSGA-II

Various variants of Genetic Algorithms are available in literature. For our purpose,
we use the Non-dominated Sorting Genetic Algorithm II or NSGA II [73]. The
pruning problem at hand demands solving a multi-criteria optimization problem
with two opposing objectives. We aim at finding the layerwise sparsity ratios such
that the computation effort in terms of number of operations or hardware estimate
like latency is minimized. At the same time, we want to ensure that this does not
affect the mIOU of Segmentation. However, aggressive pruning leads to a drop in
mlOU, whereas, higher mIOU is costly in terms of hardware. Hence, there is no
unique best solution but a trade-off between mIOU and latency has to be made.
NSGA provides a set of pareto-optimal solutions that balances mIOU and hardware
estimate.

This problem can also be solved using Simple Genetic Algorithm (SGA) or tradi-
tional Reinforcement Learning based search agents. However, in this case, a reward
or fitness function needs to be formulated, that performs the trade-off between mIOU
and hardware cost and provides a unique solution. The success of these methods is
heavily reliant on the formulation of the reward function. NSGA, on the other hand,
provides the flexibility to choose among a number of pareto-optimal solutions based
on hardware constraints. Hence, NSGA is used for the pruning search problem.

4.3.3. Channel Pruning Framework using NSGA-II

This work focuses on structured pruning, more specifically channel pruning, since
the advantages of channel pruning can be directly obtained in hardware. The NSGA
algorithm is configured such that it maximizes the mIOU and simultaneously mini-
mizes the hardware estimates. We conduct experiments using two hardware metrics:

— MAC operations: Initially experiments are conducted using number of opera-
tions, which is a proxy metric giving an indication of the required computa-
tional effort.

— Hardware Model Latency: NSGA search is also conducted using the latency
values predicted by the theoretical model of our hardware accelerator, de-
scribed in section 4.2.
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Figure 4.5.: GA Pruning Framework

An overview of the pruning framework is provided in figure 4.5. The GA search
engine initially starts with a population of given size. Each individual in the popu-
lation is a neural network, with randomly selected pruning ratios of its layers. These
networks are evaluated to obtain their mIOU and hardware estimates. The mIOU
values are obtained by evaluating the pruned model on the test set. If number of
operations is optimized in GA search, the number of operations is calculated using
layer-dimensions of the pruned model. For latency based GA search, latency values
are calculated using the hardware model discussed in section 4.2. The mIOU and
hardware estimate values are fed back to the GA, based on which the GA assesses the
fitness of the individuals. The individuals in the population then undergo variation
(cross-over and mutation) producing offsprings. The offspring are also evaluated as
described above. Based on their fitness, a set of individuals are then selected from
the parents and offsprings to go onto the next generation. This process is contin-
ued for a predefined number of generations. The algorithm 8 gives a walkthrough
of the GA search procedure. After evaluation, the NSGA algorithm finds a set of
non-dominated or pareto-optimal solutions. Pareto-optimal solutions are a set of
solutions beyond which none of the objectives can be improved without sacrificing
at least one of the other objectives. The pareto-optimal solutions obtained using
NSGA have been illustrated in section 5.2.1.
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Algorithm 8: Channel Pruning using NSGA-II.
Input : Initial population size init_sz, Running population size mu,
Number of layers in the network n, Crossover probability p.,
Mutation probability p,,, Lower bound and upper bound of
compression for each layer: lbound and ubound
Output : Pareto-optimal solutions balancing Accuracy and Hardware
Estimates
1. Define individual: [random_uniform(lbound, ubound) for i in range(n)]
2. Initialize population P with init_sz individuals
3. [Acclist, Estimate_list] = Evaluate(P)
for index, ind in enumerate(P) do
| ind.fitness = [Acc_list[index], Estimate_list[index]]
end
4. Update Pareto solutions
for gen in range(1, maz_gen) do
Offspring O «— Variation (P, pe, Pm)
[Acc list, Estimate_list] = Fvaluate(O)
for index, ind in enumerate(O) do
| ind.fitness = [Acc_list[index], Estimate_list[index]]
end
P — select Tournament (P + O, mu, tourn_size = 5)

Update Pareto solutions
end

4.3.4. Hardware Heuristics
Residual Network and DeeplLab specific Hardware Heuristics

Due to presence of identity and shortcut connections in the residual layers, some
feature maps must have the same dimension. For channel pruning, we need to
ensure that the output channels (IV,f) of the preceding layer or the input channels
of the next layer, for these connections, are equal. This is necessary to facilitate
element-wise addition. In Figure 4.6, these constraints are marked and the layers
which should have same number of input channels are color-coded. It is interesting
to notice that, for Conv2_1:1, Conv2_2:1, Conv3_1:short, Conv3_1:1 and Decoderl,
it forms a chain, and every layer in the chain has same number of input channels.

Introducing Deeplab specific Compression Constraints in Pruning Search

The constraints on the number of input channels in feature maps also impacts the
layerwise compression ratios, since the pruned model must also satisfy these con-
straints, when deployed in hardware. The compression ratios for the layers are
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Figure 4.6.: Hardware Heuristics detected for DeepLabV3+ network architecture to
guide the Genetic Algorithm search
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usually chosen independently. However, if the constraints on compression ratios
are not introduced during GA search, we need to consider an upper bound of the
predicted channels for color-coded channel sets. This results in an increase in esti-
mated hardware metrics. We illustrate in section 5.2.1 that imposing compression
constraints during GA search yields better hardware estimates.

HW Model Latency based Pruning Search

The pruning search can be conducted using proxy metrics like number of parame-
ters or operations. However, a decrease in number of operations does not necessarily
mean a decrease in real latency, as illustrated in section 5.2.3. The actual hardware
latency depends on various hardware parameters and is specific to the implementa-
tion of different layers in the hardware accelerator. Hence, an accelerator specific
hardware model emulating the real latency is beneficial for guiding the search algo-
rithm. In section 5.2.3, we illustrate that using a hardware model, we are able to
obtain extremely low values of latency on our custom accelerator. Also, we achieve
a much better trade-off between mIOU and latency.
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5. Experimental Results

This chapter is based on the results of the experiments performed with the cus-
tom accelerator described in the previous Chapter 4 implemented on Arria 10 GX
FPGAJ15]. The baseline implementation results of DeepLabV3+ [14] network for
semantic image segmentation on FPGA is described first in section 5.1. This covers
experimental setup, special layers requirements in hardware, design space explo-
ration, speedup due to tiling and various other metrics for different configurations
of the accelerator. Following that, channel pruning benefits are demonstrated in
Section 5.2. The aspects of ops based channel pruning and reduction in layer-wise
latency have been considered in section 5.2.1. At the end, section 5.2.3 tells about
hardware model of the accelerator to facilitate latency based channel pruning of
DeepLabV3+ and shows improvement with respect to number of ops based channel
pruning.

5.1. Image Segmentation using DeepLab V3+ on
FPGA

5.1.1. Experimental Setup
Hardware

Different configurations of the accelerator were synthesized using Intel® FPGA
SDK for OpenCL™ Offline Compiler [25] for Intel Arria 10 GX 1150 FPGA [15].
The synthesis machine is supposed to have decent specifications for memory inten-
sive applications in the OpenCL Offline compiler. A machine with Intel@®) Xeon(®)
CPU and 128 GB memory was used for synthesis. The host side application was
running on Intel®) Core i7-3770K CPU with which the FPGA was connected and
the compiled OpenCL kernels were running on the FPGA.

The unrolling factors along the input channel (P;s), output channel (P,f), kernel
(Py,) dimensions and precision of operands are configurable before the synthesis
start. Also, the size of the buffers required by the OpenCL kernels are configured
beforehand (Section 4.1.3) by computing the requirement of most memory resource
intensive layer of the segmentation model considered. At runtime, several items can
be configured in the host side application such as the network architecture, respective
scaling factors (SF;, SF,, and SF,) of layers and any post-processing of data coming
out of FPGA. Alongside with a separate configuration file, the programmable aocx
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file (synthesized), validation references and tiling factors (75,, T,,) can be customized
which can improve latency of the network.

Segmentation Model

In the experiments, to get real-time semantic image segmentation we used Deeplab
[58] model by Google which was introduced in 2016. It controls filter’s field-of-view
using a parameter dilation rate which is typically called Atrous Convolution. Since
then several improvements have been proposed. In DeepLab V2 [74] to tackle the
problem of segmenting objects in multiple scales, a pyramid pooling block using
Atrous Convolution was introduced. In V3 [44], image level feature pooling which
encodes global context was incorporated and in the latest version V34 [14] a decoder
module was added to refine the segmentation result. For our accelerator the network
was implemented using 16 bit precision of weights and activations. The DeepLab
network has ResNet [34] as a backbone and residual block are frequently duplicated
to be used in cascade or in pyramid pooling manner. In our all experiments we used
DeepLabV3+ with ResNet18, which includes a Encoder-Decoder type architecture
and all the previous DeepLab features. The shapes and desciption of all layers of
the network is available in section 2.4 of Chapter 2.

Dataset

With the DeepLab network, we used Cityscapes [59] as the dataset. It contains high-
quality pixel-level annotations of 5000 images for semantic understanding urban
street scenes. 960 x 960 images with 3 channels images were used as a input to the
FPGA which were preprocessed from 2048 x 1024 sized raw images. Total 19 classes
were used for annotating segmentation output and the resulting mean Intersection-
Over-Union was 67.27%.

5.1.2. Memory Requirement for Dilation

An integral part of any iteration of DeepLab network is Dilated Convolution or
Atrous Convolution. An additional hyperparameter (dilation rate) was introduced
to inflate the kernel. This is done by inserting some additional zeroes in between the
weight kernel elements. As a result we get an enlarged kernel in spatial dimension,
which was described in Chapter 2. In the FPGA based accelerator, it is required
to store a block of weights in local SRAM for computing convolution of each of the
output activations of a channel. Naturally, the memory requirement increases with
increasing kernel size in x and y dimension. For higher dilation rates the weight
buffer size explodes which results an enormous requirement of on-chip memory to
implement that particular layer in the hardware. For example, with dilation rate
18 for a 3 x 3 kernel, it inflates to size of 37 x 37. With a input channel size of
512 it requires around 22.5 MB in the on-chip memory (calulated with precision
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16, (P;)=16, (P,f)=16, (Py;)=1). In the Arria 10 FPGA there are two types of
memory blocks: M20K blocks and memory logic array blocks (MLABs). In our
specific FPGA model, we have around 7.2MB memory available comprising of the
two types of memories. Naturally in the pyramid pooling, layers with dilation 12
and 18 requires way more higher memory than they are available in the FPGA.
In Figure 5.1, we can see the memory requirements of the extended dilation layer
weights and the same in our implementation. Please note that the Y-axis is in log-
scale and the horizontal line signifies the available on-board memory. A detailed
weight memory requirement of all the layers of DeepLabV3+ network can be found
in Appendix A.1.
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Figure 5.1.: Weight Buffer comparison in generic and our hardware
implementation of Dilated Convolution

5.1.3. Design Space Exploration
Loop Unrolling Based Configurations

In this section, resource utilization of different versions of the DeepLabV3+ accel-
erator for deployment in Arrial0 GX FPGA has been considered. The High-Level
Synthesis (HLS) was done using AOC version 19.4.0 and Quartus 19.4.0 Build 64.
The reference accelerator model is being taken from PipeCNN [48], where unrolling
along the input and output channel dimensions (Pj; and P,) were introduced.
From this research practice report [40], unrolling along the horizontal axis of the
kernel( Py, ) was also possible.

In most semantic segmentation networks there are other special type of layers
involving operations other than vanilla convolution. In hardware implementation of
DeepLabV3+, the dilated convolution feature has already been introduced in the
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convolutional computational unit as explained in section 4.1.2. Along with dilation
there are special OpenCl kernels required which are responsible for average-pooling
and bilinear upsampling the input activations. Theoretically concatenation feature
is also necessary which we tactically avoided by exploiting the fuse layer functionality
already implemented for residual layers in ResNet architecture.

Introduction of these new kernels affects the FPGA resource utilization as they
consume additional logic, memory and DSP. These average-pooling and bilinear
upsampling does not need any weights to operate. Naturally, scaling up OpenCL
kernels in the input and output channel dimensions were introduced. In Table 5.1,
we can see the resource utilization of different configurations and the aim of the
table is to point the variation of the resource demands.

Unroll config Logic Registers DSP BRAM | Frequency
Pis, Pop, P Utilization blocks M20K MHz
16, 16, 1 | 41% | 327698(19%) | 394(26%) | 960(35%) |  208.33
16, 32, 1 | 58% | 456043 (27%) | 690(46%) | 1478(64%) |  189.81
16, 64, 1 | 68% | 582430 (34%) | 617 (41%) | 2175 (80%) |  161.46
16, 16, 4 | 51% | 415308 (24%) | 778 (51%) | 1327 (49%) |  190.97
16, 32, 4 | 72% | 588693 (34%) | 1362 (90%) | 2025 (75%) |  148.44
Max Available 100% 1708800 1518 2713

Resource

Table 5.1.: Resource Utilization of DeepLabV3+ Accelerator for different
configuration of Unrolling factors

In Arrial0 GX 1150 FPGA, maximum available resources are mentioned in the
last row. This FPGA contains two types of memory blocks: M20Ks (20Kb/each
block) which are suitable for larger memory arrays and memory logic array blocks
(MLABsS, 640 bit each) which are usually used for shift register implementation in
DSP applications. The Flip-Flops are Dedicated Logic Registers and a fixed amount
of maximum DSP blocks (1518) are available on board. As a baseline implementa-
tion, an accelerator with configuration F;;=16, P,;=16 and P;,=1 was synthesized.
Any significant stall in the whole acclerator dataflow pipeline was identified with
the Intel FPGA Dynamic Profiler for OpenCL [71]. The stalls were tackled with
various preprocessing diretives (pragma) which forces the offline compiler to do the
implementation in a specific way. For example, unrolling the primary loop in the
OpenCL kernel responsible for Batch Normalization operation helps to mitigate stall
in the pipeline. In subsequent implementations, unrolling in the output channel di-
mension, i.e. P,y = 32 and 64 were considered which naturally resulted in higher
logic and RAM requirement. Unfortunately with P,y = 64, the logic requirement
was >100%. So different measures were taken to minimize the logic utilization. For
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example, offline compiler was forced to implement pipelined Load-Store Unit (LSU)
instead of Burst-Coalesced LSU and fusing scaling factor multiplication through
BatchNorm kernel was implemented. Even then, unrolling the primary loop fully
in BatchNorm kernel was not synthesizable. As expected, latency performance was
inferior because of the stalls present in the pipeline (for not being able to unroll the
BatchNorm kernel). Next, the accelerator was scaled in the Py, direction which has
much more usage of on-board DSPs. But as lesser unrolling factor was considered
in the P,; direction, the logic and memory requirement was reduced from the pre-
vious iterations. The final baseline considered was both scaled up in P,y and Py,
direction and utilizing around 90% of on-board DSPs. Here also several techniques
were used at the kernel level to keep logic requirement minimal. We got the best
latency performance from this configuration which is described in section 5.1.3.
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Figure 5.2.: Measured Latency of the different Convolution layers of DeepLab with
and without Dilation feature in accelerator configuration Py = 16, Py
=16 and Py, =1

Dilation layer speedup with respect to Naive Implementation

In this section, the speedup of execution of dilated layers will be briefly discussed in
comparison with general Convolution implementation. If dilated kernels are com-
puted with zeros in-between the effective weights, the actual number of operations
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are very high. In Figure 5.2, this comparison of execution times has been plotted for
the accelerator configuration Py = 16, P,y = 16 and Py, = 1. Please note that, for
layer 27 and 28, i.e. ASPP layers 4 and 5, where dilation factors are respectively 12
and 18, the naive implementation is not synthesizable for higher memory require-
ment (section 5.1.2). As we are picking selected weights directly from the DRAM
depending on the dilation ratio of the layers we get a speedup of 2.7x, 8.8x, 18.3x
for dilation factor 2, 4 and 6 respectively.

Baseline results of Segmentation
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Figure 5.3.: Latency comparison of computation intensive layers of DeepLab for ac-
celerator configuration (Pjf x P,¢ x Py, = 16 x 16 x 1), and scaled up
accelerator along output channel with configuration (P;; x Py X Py, =
16 x 32 x 1) having no tiling implemented.

As mentioned earlier, we maximized the use of computational resources on the
FPGA and by unrolling the loops in 3 directions. The motivation is to improve infer-
ence time by increasing the DSP utilization. At the end we got an accelerator with
16 x 32 x 4 configuration which had most DSPs utilized while synthesis(around 90%).
However, while measuring inference latency, we have to remember that DeepLab has
ResNet architecture as backbone which contains memory bounded residual blocks.
Now step by step, let us see how the latency performance improves with subsequent
loop unrollings. In Figure 5.3, we can see the measured execution times of the
most computation intensive layers of DeepLabV3+ architecture (which we slightly
modified for efficient hardware implementation) for the baseline 16 x 16 x 1 and
another P,y scaled 16 x 32 x 1 accelerator. Please note that the layers with similar
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number of operations and lower operations were not plotted to maintain readability.
It is evident that we got execution time benefits in most layers. There are a few
exceptions like Conv2_2 layer where the number of output channel is 48, which is
not a multiple of 32. Naturally it does some extra computations resulting slightly
higher latency than the 16 x 16 x 1 configuration. Overall, for segmenting a single
960 x 960 cityscapes [59] image as input, the 16 x 32 x 1 had a speedup of 1.38x
over the baseline accelerator configuration 16 x 16 x 1.

What really matters for the inference performance is the percentage of useful com-
putations happening in the all the DSPs, and this is termed as DSP Efficiency. To
analyze further, the complexity (in #GOPs), DSP efficiency and actual throughput
(in GOPS) of each layer are reported in Table A.3 (Appendix A.4) for 3 accelerator
configurations. Although the 16 x 32 x 4 has the most number of DSPs available
for the computation, it does not result the highest throughput because of potential
pipeline stalls and restricted memory bandwidths. Further improvements in this
aspect have been demonstrated in the next section 5.1.4 via memory tiling .

In the 16 x 16 x 1 accelerator we see a overall DSP efficiency of 93% and in most
of the layers it has full DSP usage except the first and prediction layer. This is
for the reason that the input activation has 3 input channels (not a multiple of 16)
and prediction layer has a 19 numbers of output channels (also not a multiple of
16). On the other hand in the accelerator which is scaled in the Py, direction has
a lot more DSP in disposal. For 16 x 32 x 4, it has potentially 8 times more DSPs
blocks than the accelerator with unrolling configuration 16 x 16 x 1. Still the layer
dimensions does not always match with P, unrolling factor and produces lesser DSP
efficiency. For example, for weight kernels with spatial dimension 3 x 3 and 1 x 1,
this accelerator will always have DSP efficiency as (3/4) = 75% and (1/4) = 25%
respectively at runtime. Overall this configuration has DSP efficiency of 68.23% but
actual throughput is slightly better than 16 x 16 x 1 configuration.

5.1.4. Latency improvement for Data Tiling

The DeepLab model is comparatively a complex architecture which contains a
ResNet Network. Hence the time needed for transferring data from DRAM may
be significant and comparable to convolutional computations. Earlier, in PipeCNN
[75] only one tiling factor Ty, could be configured during the synthesis process and it
is called as static tiling. In previous works [76] and [40], a new technique of dynamic
bi-directional tiling, has been adapted where the tiling factors can be configured
at inference runtime depending on the output spatial dimensions of individual lay-
ers. This two-directional (7,, and Ty, ) tiling technique is very effective with the
convolutional layers which has low spatial dimension in output feature map (N,,).
Potentially the full feature map in the x direction can be tiled in the on-chip buffer
and the remaining space could be used to load more features in the vertical direction,
maximizing data reuse.
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Figure 5.4.: Comparison of DRAM access in MegaBytes between no tiling and
with tiling for the accelerator with configuration Py = 16, P,y = 32
and ka =4

In this section we analyze how the DRAM access rate and eventually latency drops
for higher tiling factors, configured during runtime. Here we take our most scaled
up version of accelerator designed for segmentation. In Appendix A.2, the DRAM
access count along with the inference latency of each layer of DeepLabV3+ has
been reported for untiled and 2D dynamically tiled accelerator with configuration
Py = 16, P,y = 32 and Py, = 4. Tiling all the layers with same tiling factor is
inefficient because in that case the tiling factor will be restricted by a layer with
high input channel number (N;s). The size of the tiling buffer calculation (refer
section 2.3.3) is dominated by input channel dimension(N;f). So another layer with
less N;; might use a higher tiling factor to get lesser DRAM access count. In our
accelerator we used a tile buffer size of 64 x 1024 bytes to store the sub-volume of
input feature map (7}, x T;, x N;s) loaded from off-chip memory, so that we can try
sufficiently high tiling factors for most layers. It is important to remember that in
our current architecture, we are not able to tile the convolutional layers which have
dilation value> 1. A more complex dataflow needs to be adapted to facilitate data
reuse for dilated layers via tiling. Also the special layers like bilinear upsampling

74



1. Image Segmentation using DeepLab V3+ on FPGA

and average pooling does not have opportunity to exploit tiling, and for maxpool
layer tiling can only be exploited in the T,, direction. By applying 2D tiling factors
of Ty, and T,, = 10 and 10 respectively to most conv layers, we got a 9x DRAM
access benefit. Overall for the DeepLabV3+ architecture we got more than 2 times
DRAM access benefits.
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Figure 5.5.: Comparison of latency in ms. between no tiling and with tiling for
the accelerator with configuration Py = 16, P,y = 32 and Py, = 4.
Latency(ms.) in y-axis is in log-scale.

In Figure 5.4, the influence of 2D tiling on the DRAM access are clearly shown for
multiple layers of DeepLab. Here also for better visualization the y axis is plotted
as log of DRAM access in MB and only layers with noticeable reduction has been
taken. It is interesting to note that, sometimes increasing the tiling factors do not
influence the latency. At this point the pipeine is full and we are restricted by
limited memory bandwidth. From Figure 5.5, we can see the latency reduction (due
to tiling) in ms., of the same layers considered in the previous diagram and how the
off-chip memory access count actually influences the overall latency. In total, we got
a final latency of 1614.608ms (improvement of 2.3 x with respect to not tiled version)
in a tiled accelerator with configuration 16 x 32 x 4. The overall throughput for this
configuration is 182.806 GOPS. It is the best inference performance we got with
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the baseline architectures, which is used for the experiments in following sections
dealing with network compression. As a summary, in Table 5.2, we get latency
comparison of accelerators with different unroll configurations, all exploiting data
reuse by tiling.

Pi. Pog, Do | 16,16,1 | 16,32,1 | 16,32,4
latency[ms] | 3228.235 | 1928.854 | 1614.608

Table 5.2.: Tiled and Scaled Semantic Image Segmentation Accelerators

5.2. Channel Pruning for Segmentation

Channel pruning is performed on the Deeplab model with an objective to further
reduce the model latency, when deployed in hardware. For this purpose, a pre-
trained Deeplab model is considered. Genetic search is performed in order to obtain
the layerwise pruning ratios, that provide the best trade-off between mIOU and
hardware estimates. Finally, the pruned model is fine-tuned for 40 epochs to recover
its mIOU value.

The NSGA algorithm implementation uses the DEAP framework [77]. The exper-
iments are performed with an initial population size of 50 and a running population
size of 25, after the first generation. The individuals are defined as a list of com-
pression ratios of the layers of the CNN. We use one-point crossover and replace
mutation with a cross-over probability p. and mutation probability p,, of 1.0 and
0.4 respectively. The GA search is performed for 25 generations.

5.2.1. Ops-based Pruning without compression constraints

GA search is initially performed using number of operations as a hardware estimate,
without considering any constraints required for deploying the model in real hard-
ware. This returns a set of compression ratios for the layers, that are independent of
one another. However, as explained in section 4.3.4, some feature maps must have
the same number of channels. Therefore, the compression ratios of their correspond-
ing layers must also be the same. Since this is not taken into account here, when
deploying the model, we need to take an upper bound of the predicted number of
channels for these layers. This leads to an increase in overall latency of the model,
the minimum possible latency achieved being 531ms.

The figure 5.6, shows a plot of mIOU vs operations on the left and mIOU vs
real hardware latency on the right. The grey dots in the left figure are the pareto
solutions of each generation, with darker dots representing higher generations. The
pareto solutions of the last generation are used to construct the pareto-front (dis-
played in red). The fine-tuned mIOU values for the respective latency reductions
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are shown as green dots. The mIOU vs real latency (on the right), for these pareto-
optimal solutions, further prove that a reduction in number of operations does not
necessarily guarantee a reduction in network latency.
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Figure 5.6.: NSGA Search using Ops without compression constraints

5.2.2. Ops-based Pruning with compression constraints

In the next step, GA search is performed using number of operations but taking into
consideration the hardware constraints, described in section 4.3.4. The solutions
obtain show better latency values, with the minimum achievable latency being
349 ms. Figure 5.7 shows the generation wise results for GA search on the left and
mlOU vs real latency on the right, similar to figure 5.6. Even in this case, the pareto
solutions obtained using operations do not follow the same trend for real hardware
latency.

5.2.3. Hardware Model Latency guided Pruning with
compression constraints

The failure of proxy metrics like operations to provide accurate estimates of real
hardware metrics motivated us to develop the hardware model to better guide the
GA search algorithm. Figure 5.8 illustrates the combined plot for all the three
GA search scenarios. The hardware model latency values are shown on the left
whereas real latency values are shown on the right. The graphs on the left and the
right are identical in nature, indicating the accuracy of our hardware model. Using
hardware model latency for GA search, we achieved a minimum latency of 263
ms, which is by far the best. The blue curve, which considers HW model latency
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Figure 5.7.: NSGA Search using Ops with compression constraints

during search, also yields better trade-off between mIOU and latency. Considering
the same mIOU of 0.63, the three methods achieved latency of 608 ms, 541 ms and
400 ms respectively, whereas the baseline latency obtained is 1614 ms. Thus, for a
degradation of 4% in mIOU, we are able to achieve a speedup of 4x. Also,

incorporating the hardware model provides an improvement in latency
by 1.52x as compared to ops.
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Figure 5.8.: NSGA Search using HW Model Latency with compression constraints

In the below Figure 5.9, a qualitative analysis of the hardware aware pruning
framework for our custom accelerator has been demonstrated. We see 3 raw frames
from CityScapes dataset and the respective ground truths (pixel-wise annotation).
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Baseline(1.6 sec)

o - - -

Figure 5.9.: Qualitative results for HW aware pruned models on different scenarios
in the CityScapes dataset. Black regions are unlabeled in the original
dataset.

We compared the segmented output of baseline implementation and another one
using the pruned network (hardware model guided latency based GA search). With
a mIOU drop of around 2%, we achieve a significant speedup of 2.7x. Visually, there
are a few pixel differences noticeable, for example in the first image, less number of
pixels are classified as ‘bike’ in pruned network compared to the original network.
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6. Conclusion and Outlook

6.1. Conclusion

In this thesis, the problem of accelerating a state-of-the-art semantic segmentation
network is successfully tackled by a FPGA based accelerator exploiting hardware-
aware channel pruning technique. The entire system was designed with High-Level-
Synthesis methodology which helped to cut down the development time and a num-
ber of design reiterations incorporating new architectural optimizations were possi-
ble. This architecture is fully pipelined and the computational units can be easily
reorganized to accelerate a completely different network. Our platform provides a
configurable architecture suitable for any DNN use case providing the maximum use
of available resources.

Instead of using full precision floating point operations, this work leverages 16-bit
fixed point representation for both weights and activations. A concept of scaling
factor was introduced for handling this quantization problem. For further logic op-
timization, the operations for maintaining precision of the operands were fused for
convolution and batch normalization. The fundamental architecture [48] was im-
proved by exploiting three dimensional loop unrolling technique, that improved the
latency and throughput. Furthermore, data tiling and double streaming-buffer were
used to reduce number of off-chip memory access by re-using input feature map ele-
ments from a tile of data. Several DeepLabV3+ specific optimization measures were
also taken care of including the implementation of novel dilated convolution. The
computational unit, reading data from memory smartly selects the relevant input
elements according to the dilation ratio of the specific layer. Alongside, dedicated
computational units were developed to tackle bilinear upsampling and average pool-
ing of input feature maps. Our baseline accelerator (before channel pruning) gives
183.293 GOPS throughput and takes 1.6 sec to process a single frame of 960 x 960
RGB CityScapes image.

At the end, we proposed a framework for automated channel pruning of segmen-
tation algorithm on our custom hardware. We identified specific hardware heuristics
that necessitates to have equal compression ratios for some specific layer of the un-
derlying ResNet architecture. With this, also a hardware model was crafted that
simulates the latency of the actual FPGA accelerator. These metrics and heuris-
tics were introduced in the Genetic Algorithm based search giving a 4x speedup
over baseline model with a degradation of 4% mIOU accuracy. Also compared to
proxy-metric (#operations) based GA search, this gave over 1.52x speedup.
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6.2. Future Work

During the implementation of this project several possible improvements were noted
and can be incorporated in future implementations:
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¢ Tiling Dilated Convolution: We use a tiling buffer in our architecture to

store inputs for multiple consecutive convolutions. A data sharing possible
within a tile and thus it reduces the number of DRAM access significantly.
But in case of convolution layers with dilation, the data-reuse pattern is not
straightforward. The rate of data reuse also reduces with increasing dilation
ratio. For example, a layer with dilation ratio = 2 will have reuse benefit
when T,, > 3. A dedicated dataflow can be designed with a support to tile
the dilation layers along with vanilla convolution.

Efficient Bilinear Upsampling: In current implementation, the compute
unit responsible for bilinear upsampling consumes a significant amount of time
while inference. In DeepLabV3+, there are two bilinear upsamplings (1x1 —
60 x 60 and 60 x 60 — 240 x 240) and this is responsible for around 15% of
total latency. More efficient implementation and concepts like unpooling and
deconvolution can be investigated to formulate a more efficient computational
unit.

Smartly Detect Zero Channels: We formulated a hardware-aware channel
pruning technique which uses genetic algorithm for searching optimal com-
pression ratios. Further modifications in the memory read computational unit
can be done so that it can intelligently detect a zero channel coming from a
previous layer, and subsequently skip the relevant operations. This can re-
sult an improvement on the latency performance for channel pruning in our
accelerator.



A. Appendix

A.1. Experiments and Design Space Exploration

A.1.1. Weight Buffer Requirement in Memory

Extended Kernel

Unextended Kernel

Block Layer | weight_w | weight_h | input_n | Buffer[B] | weight_-w | weight h | Buffer[B]
conv_1_1 1 7 7 3 4704 7 7 4704
Res2_1 2 3 3 64 18432 3 3 18432
Res2_1 3 3 3 64 18432 3 3 18432
Res2_2 4 3 3 64 18432 3 3 18432
Res2.2 ) 3 3 64 18432 3 3 18432
Res3_1 6 1 1 64 2048 1 1 2048
Res3_1 7 3 3 64 18432 3 3 18432
Res3_1 8 3 3 128 36864 3 3 36864
Res3_2 9 3 3 128 36864 3 3 36864
Res3.2 10 3 3 128 36864 3 3 36864
Res4_1 11 1 1 128 4096 1 1 4096
Res4_1 12 3 3 128 36864 3 3 36864
Res4_1 13 3 3 256 73728 3 3 73728
Res4 2 14 3 3 256 73728 3 3 73728
Res4 2 15 3 3 256 73728 3 3 73728
Res5_1 16 1 1 256 8192 1 1 8192
Res5_1 17 ) 5 256 204800 3 3 73728
Resb_1 18 5 5 512 409600 3 3 147456
Resb_2 19 ) ) 512 409600 3 3 147456
Resb_2 20 ) 5 512 409600 3 3 147456
ASPP1 21 1 1 512 16384 1 1 16384
ASPP2 22 13 13 512 2768896 3 3 147456
ASPP3 23 25 25 512 10240000 3 3 147456
ASPP4 24 37 37 512 22429696 3 3 147456
ASPP5 25 1 1 512 16384 1 1 16384
Decoder_4 26 1 1 1280 40960 1 1 40960
Decoder_1 27 1 1 64 2048 1 1 2048
Conv2 28 3 3 304 87552 3 3 87552
Conv3 29 3 3 256 73728 3 3 73728
prediction | 30 3 3 256 73728 3 3 73728

Table A.1.: Weight Buffer Requirement in FPGA local memory
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A.1.2. Latency Performance and DRAM access after Tiling the

accelerator with configuration 16 x 32 x 4

Static Tiling 2D Tiling
Block Layer | T,, | Tp, DRAM Latency | Top | Toy DRAM Latency
access[MB] [ms] access[MB] [ms]
conv_1_1 1 1 1 403.155 131.212 | 80 | 1 134.61 50.022
Res2_1 2 1 1 223.1464 55.216 10 | 10 24.308 11.037
Res2_1 3 1 1 | 223.14656 101.503 | 10 | 10 24.308 11.067
Res2.2 4 1 1 | 223.143936 55.219 10 | 10 24.308 11.045
Res2.2 ) 1 1 223.14656 101.591 10 | 10 24.308 11.053
Res3-1 6 1 1 33.041 27.677 10 | 10 28.017 6.807
Res3-1 7 1 1 91.53 27.66 10 | 10 36.498 8.751
Res3-1 8 1 1 217.756 53.693 10 | 10 23.848 10.273
Res3.2 9 1 1 217.756 38.185 10 | 10 23.848 10.256
Res3.2 10 1 1 217.756 53.69 10 | 10 23.848 10.293
Res4 1 11 1 1 31.036 13.924 10 | 10 28.018 6.523
Resd 1 12 1 1 87.2544 19.308 10 | 10 35.846 8.479
Res4_1 13 1 1 214.357 37.986 10 | 10 22.946 10.11
Res4 2 14 1 1 214.357 38.055 10 | 10 22.946 10.113
Res4 2 15 1 1 214.357 38.033 10 | 10 22.946 10.103
Res5_1 16 1 1 143.529 27.681 10 | 10 34.413 8.402
Res5_1 17 1 1 668.991 75.699 1 1 668.991 75.694
Res5_1 18 1 1 1337.9829 150.51 1 1 1337.98 150.515
Resb_2 19 1 1 1337.9829 150.504 1 1 1337.98 150.515
Resb_2 20 1 1 1337.9829 150.513 1 1 1337.98 150.499
ASPP1 21 1 1 143.529472 25.609 10 | 10 34.4144 8.208
Decoder4_1 22 1 1 71.7648 14.069 10 | 10 17.206 4.433
ASPP2 23 1 1 594.542 75.928 1 1 594.542 75.897
Decoder4 2 24 1 1 72.647 25.597 10 | 10 17.2067 4.541
ASPP3 25 1 1 490.7335 75.651 1 1 490.733 75.665
Decoder4 3 26 1 1 72.646 25.614 10 | 10 17.2067 4.586
ASPP4 27 1 1 396.361 75.468 1 1 396.361 75.473
Decoder4 4 28 1 1 72.645 25.559 10 | 10 17.2067 4.409
ASPP5_Average 29 1 1 7.237 22.582 1 1 7.2376 22.571
ASPP5 _Conv 30 1 1 0.010048 0.627 1 1 0.010048 0.575
ASPP5_Upsample 31 1 1 0.000512 13.915 1 1 0.000512 13.873
Decoder4_5 32 1 1 72.645 25.558 10 | 10 17.207 4.426
Upsample_Decoder4 33 1 1 1.8432 227.08 1 1 1.8432 227.099
Conv2_1 34 1 1 | 3511.47308 | 602.661 | 10 | 10 388.932 155.715
Decoderl 35 1 1 76.915 55.409 10 | 10 17.5719 5.604
Conv2_2 36 1 1 673.077 414.066 10 | 10 72.9244 34.542
Conv3 37 1 1 3511.473 602.694 | 10 | 10 388.931 155.68
Prediction 38 1 1 438.934 75.627 10 | 10 48.616 19.754
Total 17869.893 | 3731.573 7746.114 | 1614.608

Table A.2.: 2D Tiling benefits in Latency and DRAM access for restructured
DeepLabV3+ network on FPGA [16 x 32 x 4]

84




A.2. Linear Regression Graphs of Hardware Model Latency for Special Layers of DeeplLab

A.2. Linear Regression Graphs of Hardware Model
Latency for Special Layers of DeepLab
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Figure A.1.: Linear Regression projection of hardware model based latency
prediction for average pooling kernel
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A.2.2. Upsampling Layer (Layer 31)
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Figure A.2.: Linear Regression projection of hardware model based latency
prediction for upsampling kernel

A.3. General Terminologies of Genetic Algorithm

86

Pruning
Ratios

=

1.0 |0.500.375/0.25|0.75|0.50 |= = = = = 0.25

Number of Layers

Figure A.3.: Encoding individuals

e Crossover: Cross-over is the process where, according to the crossover prob-
ability p., consecutive individuals in the population are mated to produce chil-
dren. The mating can be performed through various techniques. One-point
crossover and two-point crossover, illustrated in figure A.4, are the simplest



A.3. General Terminologies of Genetic Algorithm

and the most common ones. The cross-over sites are selected at random and
the genes are exchanged between parent individuals to produce offsprings or
new individuals.
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Figure A.4.: One-point and Two-point Crossover mechanisms

e Mutation: Mutation is the process of inserting random genes in offspring to
maintain the diversity in population. The individuals produced after cross-over
undergo mutation, with a probability p,,. The figure A.5 illustrates Replace
mutation and Swap mutation. While replace mutation replaces one value of
genotype in the individual, swap mutation swaps two values of the genotype
with each other.

AlB|c|D|E|F|Gg|Repace, | A | B|H|D|E|F|G
Mutation

Swap
[alefcle]e]r o] [a[F]c o [=]aTe]

Figure A.5.: Replace and Swap Mutation mechanisms
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A.4. DSP efficiency and Throughput of different

configurations
Layer 4GOPs (16 x 16 x 1) (16 x 32 x 1) (16 x 32 x 4)
Eff. throughput Eff. throughput Eff. throughput
convl_1 4.34 188 % 13.232 188 % 24.113 16.4 % 33.022
Res2.1:1 4.246 100 % 68.170 100 % 98.282 75 % 76.9
Res2_1:2 4.246 100 % 67.990 100 % 53.565 75 % 41.842
Res2.2:1 4.246 100 % 68.181 100 % 98.226 75 % 76.939
Res2 2:2 4.246 100 % 67.971 100 % 53.578 75 % 41.844
Res3_1:short 0.235 100 % 49.194 100 % 10.870 25 % 8.532
Res3_1:1 2.123 100 % 67.753 100 % 97.923 75 % 76.777
Res3_1:2 4.246 100 % 81.926 100 % 93.469 75 % 79.130
Res32:1 4.246 100 % 82.537 100 % 150.269 75 % 111.188
Res3_2:2 4.246 100 % 81.811 100 % 93.428 75 % 79.1
Resd_1:short 0.235 100 % 25.159 100 % 21.324 25 % 16.864
Resd_1:1 2.123 100 % 81.967 100 % 148 871 75 % 109.850
Resd_1:2 4.246 100 % 92.973 100 % 163.323 75 % 111.730
Res4_2:1 4.246 100 % 92.984 100 % 168.207 75 % 111.712
Resd 2:2 4.246 100 % 92.945 100 % 163.515 75 % 111.749
Resb_1:short 0.943 100 % 45.580 100 % 43.325 25 % 34.172
Resb_1:1 8.493 100 % 93.202 100 % 169.214 75 % 112178
Resb_1:2 16.986 100 % 99.414 100 % 180.529 75 % 112.859
Resb_2:1 16.986 100 % 99.444 100 % 180.596 75 % 112.871
Res5_2:2 16.986 100 % 99.441 100 % 180.556 75 % 112.861
ASPP1 0.943 100 % 42.358 100 % 79.768 25 % 36.884
Decoderd_1 0.471 100 % 45.037 100 % 42.736 25 % 33.656
ASPP2 8.493 100 % 98.503 100 % 180.210 75 % 111.828
Decoder4_2 0.471 100 % 43.438 100 % 20.390 25 % 18.459
ASPP3 8.493 100 % 92.343 100 % 172.903 75 % 112.256
Decoderd_3 0.471 100 % 43.793 100 % 20.471 25 % 18.432
ASPP4 8.493 100 % 96.612 100 % 178.821 75 % 112.580
Decoderd_4 0.471 100 % 43.456 100 % 20.479 25 % 18.465
ASPP5_Average | 0.025 100 % 1.607 100 % 1.462 100 % 1.143
ASPP5_Conv 0.0003 100 % 0.538 100 % 0.587 25 % 0.472
ASPP5_Upsample | 0.028 100 % 5.947 100 % 2.619 100 % 2.055
Decoder4_5 0.471 100 % 43.636 100 % 20.464 25 % 18.479
Upsample 0.468 100 % 5.850 100 % 2.637 100 % 2.062
Conv2_1 67.947 100 % 93.167 100 % 170.137 75 % 112.743
Decoderl 0.353 100 % 51.620 75 % 8.172 18775 % 6.383
Conv2_2 12.740 100 % 61.004 100 % 38.543 75 % 30.779
Conv3 67.947 100 % 93.169 100 % 170.091 75 % 112.75
Prediction 5.042 | 59.375 % 55.276 59.375 % | 100.612 | 44.531 % 66.709
\ all [ 295.258 [ 92.996 % | 78.231 [92.962 % | 108.120 [68.229 % | 79.135 |

Table A.3.: DSP efficiency and Throughput in GOPS for different configurations
[(Pif x Pop x Pyy = 16 x 16 x 1), (P;f X Py x Py = 16 x 32 x 1) and
(Pif x Py x Py = 16 x 32 x 4)] of segmentation based Accelerator for
each layer of the DeeplLabV3+ with no tiling.

88



Bibliography

1]

Zhong-Qiu Zhao, Peng Zheng, Shou tao Xu, and Xindong Wu. Object detection
with deep learning: A review, 2019.

H. Zhang, D. Liu, and Z. Xiong. Convolutional neural network-based video
super-resolution for action recognition. In FG, 2018.

D. Guiming, W. Xia, W. Guangyan, Z. Yan, and L. Dan. Speech recognition
based on convolutional neural networks. In 2016 IEEFE International Conference
on Signal and Image Processing (ICSIP), 2016.

T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learn-
ing based natural language processing [review article]. [EEE Computational
Intelligence Magazine, 2018.

Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A
survey of deep learning techniques for autonomous driving. Journal of Field
Robotics.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 1097-1105. Curran Associates, Inc., 2012.

Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. In ISSCC; 2016.

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning. SIGPLAN Not., 2014.

NVIDIA. Nvidia deep learning accelerator. 2018.

Linnan Wang, Wei Wu, Jianxiong Xiao, and Yang Yi. Large scale artificial
neural network training using multi-gpus, 2015.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. Optimizing fpga-based accelerator design for deep convolutional neural

89



Bibliography

[12]

[20]

[21]

[22]

[23]

90

networks. In Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, 2015.

Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. Cambricon-x: An accelerator for sparse neu-
ral networks. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1-12, 2016.

Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtar-
navaz, and Demetri Terzopoulos. Image segmentation using deep learning: A
survey, 2020.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and
Hartwig Adam. Encoder-decoder with atrous separable convolution for seman-
tic image segmentation. In FCCV, 2018.

Arria 10 FPGA Development Kit Overview.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compres-
sion and acceleration for deep neural networks, 2020.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quanti-
zation of neural networks for efficient inference, 2019.

Etienne Dupuis, David Novo, Ian O’Connor, and Alberto Bosio. Fast explo-
ration of weight sharing opportunities for cnn compression, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network, 2015.

Hao Li, Asim Kadav, [gor Durdanovic, Hanan Samet, and H.P. Graf. Pruning
filters for efficient convnets. 08 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very
deep neural networks, 2017.

Mengqi Yu, Hongzhi Huang, Hong Liu, Shuyi He, Fei Qiao, Li Luo, Fugui
Xie, Xin-Jun Liu, and Huazhong Yang. Optimizing fpga-based convolutional
encoder-decoder architecture for semantic segmentation. In 2019 IEEE 9th An-

nual International Conference on CYBER Technology in Automation, Control,
and Intelligent Systems (CYBER), pages 1436-1440, 2019.

Shuanglong Liu, Hongxiang Fan, Xinyu Niu, Ho-cheung Ng, Yang Chu, and
Wayne LUK. Optimizing cnn-based segmentation with deeply customized con-
volutional and deconvolutional architectures on fpga. ACM Trans. Reconfig-
urable Technol. Syst., 11(3), December 2018.



[24]

[25]

[20]

[27]

28]

[29]

[30]

[31]

[32]

[34]

[35]

Bibliography

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it).
In 2014 IEEFE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pages 10-14, 2014.

Khronos OpenCL Working Group. The opencl specification.

Haoxing Ren. A brief introduction on contemporary high-level synthesis. In
2014 IEEFE International Conference on IC Design Technology, pages 1-4, 2014.

Shuanglong Liu and Wayne Luk. Towards an efficient accelerator for dnn-
based remote sensing image segmentation on fpgas. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL), pages 187—
193, 2019.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 3431-3440, 2015.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of
rectified activations in convolutional network. ArXiv, abs/1505.00853, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. 2015.

Image classification on imagenet, https://paperswithcode.com/sota/image-
classification-on-imagenet.

Francois Chollet. Xception: Deep learning with depthwise separable convolu-
tions. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1800-1807, 2017.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1-9, 2015.

K. He, X. Zhang, S. Ren, et al. Deep residual learning for image recognition.
In CVPR, 2016.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and
training of neural networks for efficient integer-arithmetic-only inference. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2018.

91



Bibliography

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

92

Valentin Radu, Kuba Kaszyk, Yuan Wen, Jack Turner, José Cano, Elliot J.
Crowley, Bjorn Franke, Amos Storkey, and Michael O’Boyle. Performance aware
convolutional neural network channel pruning for embedded gpus. In 2019 IEEE
International Symposium on Workload Characterization (IISWC), pages 24-34,
2019.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.
Xnor-net: Imagenet classification using binary convolutional neural networks.

CoRR, abs/1603.05279, 2016.

E. Nurvitadhi et al. Accelerating binarized neural networks: Comparison of
fpga, cpu, gpu, and asic. In FPT, Dec. 2016.

U. Hatnik and S. Altmann. Using modelsim, matlab/simulink and ns for simu-
lation of distributed systems. In Parallel Computing in Electrical Engineering,
2004. International Conference on, pages 114-119, 2004.

Ahmed Mzid. Design and implementation of an opencl-based efficient acceler-
ator for convolutional neural networks. Research practice, 2020.

Y. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. In 2016 ACM/IEEE }3rd
Annual International Symposium on Computer Architecture (ISCA), 2016.

T. Tian, X. Jin, L. Zhao, X. Wang, J. Wang, and W. Wu. Exploration of
memory access optimization for fpga-based 3d cnn accelerator. In 2020 Design,
Automation Test in Europe Conference Exhibition (DATE), 2020.

Liang-Chieh Chen, George Papandreou, lasonas Kokkinos, Kevin Murphy, and
Alan L. Yuille. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. CoRR, abs/1606.00915, 2016.

Liang-Chieh Chen, G. Papandreou, Florian Schroff, and Hartwig Adam.
Rethinking atrous convolution for semantic image segmentation.  ArXiv,
abs/1706.05587, 2017.

Adron van den Oord, S. Dieleman, H. Zen, K. Simonyan, Oriol Vinyals,
A. Graves, Nal Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: A
generative model for raw audio. In SSW, 2016.

Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. Senn: An accelerator for compressed-sparse convolutional
neural networks. In 2017 ACM/IEEE }4th Annual International Symposium
on Computer Architecture (ISCA ), pages 2740, 2017.



[47]

[48]

[49]

[50]

[51]

[52]

[53]

Bibliography

Alessandro Aimar, Hesham Mostafa, Enrico Calabrese, Antonio Rios-Navarro,
Ricardo Tapiador-Morales, Iulia-Alexandra Lungu, Moritz B. Milde, F. Corradi,
A. Linares-Barranco, Shih-Chii Liu, and T. Delbruck. Nullhop: A flexible
convolutional neural network accelerator based on sparse representations of
feature maps. IFEFE Transactions on Neural Networks and Learning Systems,
30:644-656, 2019.

Dong Wang, Ke Xu, and Diankun Jiang. Pipecnn: An opencl-based open-
source fpga accelerator for convolution neural networks. In 2017 International
Conference on Field Programmable Technology (ICFPT). IEEE, 2017.

Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C. Ling, and Gor-
don R. Chiu. An opencl™ deep learning accelerator on arria 10. In FPGA 17,
2017.

J. Li, G. Yan, W. Lu, S. Jiang, S. Gong, J. Wu, and X. Li. Smartshuttle:
Optimizing off-chip memory accesses for deep learning accelerators. In 2018
Design, Automation Test in Europe Conference Exhibition (DATE), 2018.

Vinayak Gokhale, Jonghoon Jin, Aysegul Dundar, Berin Martini, and Eugenio
Culurciello. A 240 g-ops/s mobile coprocessor for deep neural networks. In 201/
IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 696701, 2014.

Jouppi Et al. In-datacenter performance analysis of a tensor processing unit.
SIGARCH Comput. Archit. News, 45(2):1-12, June 2017.

Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. Shidiannao: Shifting vision
processing closer to the sensor. In 2015 ACM/IEEE /2nd Annual International
Symposium on Computer Architecture (ISCA), pages 92-104, 2015.

Lukas Cavigelli and Luca Benini. Origami: A 803-gop/s/w convolutional net-
work accelerator. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 27(11):2461-2475, 2017.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally.
Eie: Efficient inference engine on compressed deep neural network. In 2016
ACM/IEEE 48rd Annual International Symposium on Computer Architecture
(ISCA), 2016.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep con-

volutional encoder-decoder architecture for image segmentation. IEEFE Trans-
actions on Pattern Analysis and Machine Intelligence, 39(12):2481-2495, 2017.

93



Bibliography

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

94

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In MICCAI 2015.

Liang-Chieh Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille.
Semantic image segmentation with deep convolutional nets and fully connected
crfs. CoRR, abs/1412.7062, 2015.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
The cityscapes dataset for semantic urban scene understanding. In Proc. of the

IEEFE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC /voc2012/workshop/index.html, 2012.

Shuanglong Liu, Hongxiang Fan, Xinyu Niu, Ho-Cheung Ng, Yang Chu, and
W. Luk. Optimizing cnn-based segmentation with deeply customized convolu-
tional and deconvolutional architectures on fpga. ACM Transactions on Recon-
figurable Technology and Systems (TRETS), 11:1 — 22, 2018.

Mengqi Yu, Hongzhi Huang, Hong Liu, Shuyi He, Fei Qiao, Li Luo, Fugui
Xie, Xin-Jun Liu, and Huazhong Yang. Optimizing fpga-based convolutional
encoder-decoder architecture for semantic segmentation. In 2019 IEEE 9th An-
nual International Conference on CYBER Technology in Automation, Control,
and Intelligent Systems (CYBER), pages 1436-1440, 2019.

Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla.
Segmentation and recognition using structure from motion point clouds. In

ECCYV (1), pages 44-57, 2008.

Hongzhi Huang, Yakun Wu, Mengqi Yu, Xuesong Shi, F. Qiao, Li Luo, Qi Wei,
and Xinjun Liu. Edssa: An encoder-decoder semantic segmentation networks
accelerator on opencl-based fpga platform. Sensors (Basel, Switzerland), 20,
2020.

Song Han, Huizi Mao, and W. Dally. Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding. arXiv:
Computer Vision and Pattern Recognition, 2016.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc:
Automl for model compression and acceleration on mobile devices. In European
Conference on Computer Vision (ECCV), 2018.



[67]

[68]

[69]

[70]

[71]
[72]
[73]

[74]

[75]

[76]

[77]

Bibliography

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V.
Le. Mnasnet: Platform-aware neural architecture search for mobile. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2815-2823, 2019.

Tianzhe Wang, K. Wang, Han Cai, Ji Lin, Zhijian Liu, and Song Han. Apq:
Joint search for network architecture, pruning and quantization policy. 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2075-2084, 2020.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture
search on target task and hardware. ArXiv, abs/1812.00332, 2019.

Tien-Ju Yang, Andrew G. Howard, Bo Chen, Xiao Zhang, Alec Go, V. Sze,
and Hartwig Adam. Netadapt: Platform-aware neural network adaptation for
mobile applications. ArXiv, abs/1804.03230, 2018.

Altera(Intel). Implementing fpga design with the opencl standard.
Altera(Intel). Intel®) arria@®) 10 device overview.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. [IFEE Transactions on Evolutionary
Computation, 6(2):182-197, 2002.

Liang-Chieh Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40:834-848, 2018.

Dong Wang, Ke Xu, and Diankun Jiang. Pipecnn: An opencl-based open-
source fpga accelerator for convolution neural networks. 2017 International
Conference on Field Programmable Technology (ICFPT), pages 279-282, 2017.

Pierpaolo Mori. Winograd aware quantized neural network acceleratordesign.
Master Thesis, 2020.

Félix-Antoine Fortin, Francois-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy.
Journal of Machine Learning Research, 13:2171-2175, jul 2012.

95






Confirmation

Herewith I, Saptarshi Mitra, confirm that I independently prepared this work. No
further references or auxiliary means except those declared in this document have

been used.

Munich, July 1, 2021

Saptarshi Mitra



	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contribution
	1.4 Organization

	2 Background
	2.1 Convolutional Neural Networks
	2.1.1 Motivations for using CNNs for Segmentation
	2.1.2 Strided Convolution Arithmetic
	2.1.3 Success of Deep Convolutional Networks and Residual Networks

	2.2 Optimization of Neural Networks
	2.2.1 Network Pruning
	2.2.2 Quantization of Networks

	2.3 Hardware Accelerator for Deep Neural Networks
	2.3.1 Temporal and Spatial Architectures
	2.3.2 Paradigm Shift in FPGA design: High Level Synthesis
	2.3.3 Optimization in Hardware Architecture

	2.4 DeepLabV3+: A state-of-the-art Semantic Segmentation Model
	2.4.1 Dilated Convolution Arithmetic


	3 Related Work
	3.1 Hardware Accelerators for CNN
	3.1.1 PipeCNN
	3.1.2 Intel DLA
	3.1.3 Reducing the Memory Access
	3.1.4 Exploiting Sparsity in Network

	3.2 Accelerating Semantic Segmentation
	3.2.1 Semantic Segmentation Network
	3.2.2 Hardware Acceleration for Semantic Segmentation

	3.3 Hardware Aware Channel Pruning

	4 Approach
	4.1 Accelerator Design for Semantic Segmentation
	4.1.1 Architectural Overview and Optimization Techniques
	4.1.2 Computational Units
	4.1.3 Memory Buffer Units
	4.1.4 DeepLab Specific layers for Segmentation

	4.2 Theoretical Model
	4.2.1 Design Variables of Hardware Model
	4.2.2 Convolution Latency Prediction
	4.2.3 Latency for Average Pool and Bilinear Upsampling

	4.3 Automated Channel Pruning for Custom Accelerator
	4.3.1 Genetic Algorithm
	4.3.2 Choice of Genetic Algorithm: NSGA-II
	4.3.3 Channel Pruning Framework using NSGA-II
	4.3.4 Hardware Heuristics


	5 Experimental Results
	5.1 Image Segmentation using DeepLab V3+ on FPGA
	5.1.1 Experimental Setup
	5.1.2 Memory Requirement for Dilation
	5.1.3 Design Space Exploration
	5.1.4 Latency improvement for Data Tiling

	5.2 Channel Pruning for Segmentation
	5.2.1 Ops-based Pruning without compression constraints
	5.2.2 Ops-based Pruning with compression constraints
	5.2.3 Hardware Model Latency guided Pruning with compression constraints


	6 Conclusion and Outlook
	6.1 Conclusion
	6.2 Future Work

	A Appendix
	A.1 Experiments and Design Space Exploration
	A.1.1 Weight Buffer Requirement in Memory
	A.1.2 Latency Performance and DRAM access after Tiling the accelerator with configuration Lg

	A.2 Linear Regression Graphs of Hardware Model Latency for Special Layers of DeepLab
	A.2.1 AveragePool Layer
	A.2.2 Upsampling Layer (Layer 31)

	A.3 General Terminologies of Genetic Algorithm
	A.4 DSP efficiency and Throughput of different configurations

	Bibliography

